WO2019210492A1 - 电子阀及其减速转子组件 - Google Patents

电子阀及其减速转子组件 Download PDF

Info

Publication number
WO2019210492A1
WO2019210492A1 PCT/CN2018/085519 CN2018085519W WO2019210492A1 WO 2019210492 A1 WO2019210492 A1 WO 2019210492A1 CN 2018085519 W CN2018085519 W CN 2018085519W WO 2019210492 A1 WO2019210492 A1 WO 2019210492A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
rotor
disposed
slider
connecting plate
Prior art date
Application number
PCT/CN2018/085519
Other languages
English (en)
French (fr)
Inventor
胡煜刚
曹雪涛
侯晓伟
詹少军
詹钱勇
Original Assignee
浙江盾安禾田金属有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江盾安禾田金属有限公司 filed Critical 浙江盾安禾田金属有限公司
Priority to PCT/CN2018/085519 priority Critical patent/WO2019210492A1/zh
Publication of WO2019210492A1 publication Critical patent/WO2019210492A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid

Definitions

  • the present invention relates to a reduction rotor assembly for an electronic valve, and more particularly to a reduction rotor assembly for an electronic valve of a refrigeration apparatus including an air conditioner.
  • the invention also relates to an electronic valve having a retarding rotor assembly. Background technique
  • Valves used as pipe fittings for air conditioning systems, are used to control the direction, flow and pressure of the fluid and provide important adjustment and control.
  • Common electronic valves include switching valves, expansion valves, and reversible valves.
  • the switching valves include three-way valves, four-way valves, and the like.
  • the existing electronic valves of the air conditioning system use the motor as a driving device for the movement of the spool.
  • Electronic valves can be classified into direct-acting and decelerating types depending on the transmission structure of the electronic valve.
  • an electronic expansion valve is disclosed in the Chinese Patent Publication No. CN105333203A.
  • the motor drives the rotor to rotate, and under the action of the screw transmission mechanism, the valve core realizes the axial action, and the valve core approaches or moves away from the valve port to adjust the flow area of the valve port.
  • the invention uses the direct output of the motor as the driving torque, there are disadvantages such as small valve opening torque, small number of control pulses, and poor flow adjustment accuracy.
  • the rotor-to-coil facing area is constantly changing during the switching valve, and the driving stability is poor.
  • an electric three-way valve is disclosed in the Chinese Patent Publication No. CN103375606A.
  • the three-way valve is provided with a DC motor, the DC motor drives the gear device, and the gear device drives the valve core to move the valve core on the valve seat to control the connection and disconnection between the valve ports.
  • the gear device of the invention is disposed in the outer valve housing of the rotor assembly, the volume of the valve is large, and the rotational transmission noise is large.
  • an electric valve with a reduction gear is disclosed in the Chinese Patent Publication No. CN1821632B.
  • a planetary gear transmission mechanism is disposed on the inner side of the rotor, wherein the fixed gear is connected with the valve housing, the sun gear is fixedly disposed in the middle of the rotor body, the planetary gear rotates around the sun gear, and drives the output gear, and the output gear drive and the rotor body
  • the coaxially disposed actuator has a central fixed shaft in the rotor, the upper end of the fixed shaft is supported at the top of the valve housing, and the lower end is supported by the actuator.
  • the structure of such a valve is complicated and inconvenient to assemble.
  • a deceleration rotor assembly for an electronic valve, comprising: a rotor portion and a deceleration support coupled to the rotor portion, the rotor portion including a rotor body and a rotor connection disposed within the rotor body a rotor cavity is formed in the rotor body, the rotor portion is sleeved outside the deceleration support portion, and the deceleration support portion includes: an input shaft extending along an axis of the rotor portion, the input shaft facing The upper end is fixedly coupled to the rotor connector; the output shaft; the support assembly; one end is fixedly disposed with respect to the valve housing of the electronic valve, and the other end extends toward the rotor cavity to support the input shaft and/or a rotor body; and a reduction gear assembly mounted on the support assembly and at least partially within the rotor cavity, the reduction gear assembly being disposed between the input shaft and the output shaft.
  • the rotor portion Since the rotor portion is sleeved outside the deceleration support portion, the first end of the input shaft facing upward is fixedly connected to the rotor connector, and one end of the support assembly of the deceleration support portion is fixedly disposed with respect to the valve housing of the electronic valve, and the other end faces
  • the rotor cavity extends so that the rotor portion and the deceleration support portion form a complete assembly, and the input shaft can be supported in the rotor cavity through the support assembly without supporting the upper end of the input shaft on the top of the valve housing.
  • the entire reduction rotor assembly only needs to be fixed to the valve housing by the support assembly, and the assembly is convenient.
  • the reduction gear assembly of the deceleration support portion is at least partially located in the rotor cavity, the structure of the entire reduction rotor assembly and the electronic valve is compact, and transmission noise can be reduced.
  • the support assembly can also support the rotor body, so that the rotor portion can be better supported to further reduce the vibration of the rotor portion.
  • a larger drive torque can be achieved.
  • the support assembly may provide a first support portion and a second support portion disposed along an axis of the rotor portion, the first support portion and the second support portion being respectively used for supporting a support One of the rotor body and the input shaft. Since the two support portions arranged along the axis of the rotor portion are provided, the rotor portion can be better supported.
  • first support portion and the second support portion may be respectively located on both sides of the rotor body at an intermediate position along the axis of the rotor portion, and both support the input shaft.
  • the reduction gear assembly may include an input gear, the input gear is mounted at a second end of the input shaft; an output gear, the output gear is mounted at a first end of the output shaft; An intermediate gear disposed between the input gear and the output gear; and an intermediate gear shaft supporting the intermediate gear.
  • the support assembly may include: a first end connection plate for providing the first support portion; a second end connection plate at a bottom of the support assembly, a valve housing of the electronic valve is fixedly connected; a first intermediate connecting plate is disposed between the first end connecting plate and the second end connecting plate for providing the second supporting portion; and a plurality of connecting columns Connecting the first end connecting plate, the second end connecting plate and the first intermediate connecting plate, wherein the reduction gear assembly is disposed on the first intermediate connecting plate and the second end connecting plate between.
  • the reduction gear assembly is disposed on the side close to the second end connecting plate and closer to the fixed connection position with the valve housing, the eccentric vibration of the rotor rotation has less influence on it, thereby being more reliable and more stable in operation.
  • the second end connecting plate may be fixedly connected to the valve housing of the electronic valve by screwing or welding. In this way, the retarding rotor assembly can be reliably connected to the valve housing.
  • the plurality of connecting posts may include: a plurality of first connecting posts connecting the first end connecting plate and the first intermediate connecting plate; and a plurality of second connecting posts connecting the first intermediate a connecting plate and the second end connecting plate, wherein the first connecting post and the second connecting post are arranged offset in a circumferential direction. This misalignment arrangement of the first connecting post and the second connecting post can serve to mitigate vibration.
  • the support assembly may further include: a second intermediate connecting plate, the second intermediate connecting plate is disposed between the first intermediate connecting plate and the second end connecting plate, and the second connecting column a second intermediate connecting plate; and a spacer sleeve disposed on the second connecting post and spaced between the second intermediate connecting plate and the second end connecting plate, the reduction gear assembly
  • the method may further include: an input gear, the input gear is mounted on the second end of the input shaft; an output gear, the output gear is mounted on the first end of the output shaft; and the first intermediate gear shaft is connected at the first end a second end connected to the second end connecting plate on the first intermediate connecting plate; a first intermediate gear shaft large gear, set Cooperating with the input gear on the first intermediate gear shaft; a first intermediate gear shaft pinion disposed on the first intermediate gear shaft to rotate synchronously with the first intermediate gear shaft large gear; a second intermediate gear shaft, the first end is connected to the first intermediate connecting plate, the second end is connected to the second end connecting plate; the second intermediate gear shaft large gear is disposed at the
  • the support assembly ensures reliable support of the input shaft, and the reduction gear assembly can be incorporated in the support assembly, achieving a compact structure.
  • the second intermediate connecting plate is located in the rotor cavity, and the second end connecting plate has a safe distance from the second end of the rotor body.
  • the rotor connector has a center hole
  • the input shaft has a first diameter section that cooperates with a center hole of the connection connector
  • the first end connection plate has a center hole
  • the first a first fixing sleeve serving as a sliding bearing is disposed in the center hole of the end connecting plate
  • the first fixing sleeve has a step portion for preventing upward disengagement from the first end connecting plate
  • the input shaft has the first fixing a second diameter segment of the inner bore of the sleeve and a third diameter segment below the rotor connector, the diameter of the second diameter segment being greater than the diameter of the first diameter segment, the diameter of the third diameter segment Greater than the diameter of the second diameter segment.
  • the first fixed sleeve is used as a sliding bearing, which not only can reduce the friction, but also can be used as a limit structure to effectively limit the axial movement of the input shaft.
  • the input shaft includes a second retaining sleeve that is fixedly nested thereon to form a third diameter section of the input shaft.
  • the first fixing sleeve and the second fixing sleeve cooperate to limit the axial yaw of the input shaft, and at the same time, the plurality of diameter segments of the input shaft can ensure that the first end connecting piece and the rotor connecting piece are connected at different positions of the input shaft. And the structure is easy to assemble and disassemble.
  • the rotor connector may be disposed within a first end of the rotor body, the rotor body and the rotor connector collectively defining the turn that is open toward a second end of the rotor body Subcavity. In this way, the axial dimension of the rotor cavity is larger, which facilitates the arrangement of the deceleration support and better supports the support assembly.
  • the lower end of the output shaft forms a threaded drive for axial drive or a non-circular drive for rotational drive.
  • the lower end structure of these output shafts can effectively transmit the driving force of the output shaft directly or indirectly to the spool.
  • an electronic valve having a valve seat, a valve housing, a valve core mated with the valve seat, a stator coil sleeved outside the valve housing, and the foregoing invention
  • the retarding rotor assembly is disposed within the valve housing.
  • the electronic valve employs such a retarding rotor assembly, the structure of the electronic valve is compact and the transmission noise can be reduced.
  • the electronic valve here may be a switching valve, an expansion valve, a reversible valve, etc.
  • the valve core may be a slider, a valve needle, etc., and may be a single member or a component.
  • the valve housing and the valve seat may each be a single piece or may also comprise a plurality of separate component assemblies.
  • the valve housing and the valve seat may be fixedly coupled together, or at least a portion of the valve housing may be integrally formed with at least a portion of the valve seat.
  • an electronic valve having a valve housing, a valve seat coupled to the valve housing, a valve core mated with the valve seat, and a stator sleeved outside the valve housing a coil, the electronic valve further comprising a retarding rotor assembly according to the first aspect of the invention disposed in the valve housing; the electronic valve being a switching valve, the valve seat having a plurality of valve ports;
  • the spool is a slider, and the output shaft is directly or indirectly connected to the slider to drive the slider to switch the conduction relationship between the valve ports.
  • the retarding rotor assembly is employed in the switching valve, the structure of the switching valve is more compact, and a larger driving torque can be obtained, thereby better switching the conduction relationship between the valve ports.
  • the switching valve is a three-way valve
  • the plurality of valve ports on the valve seat comprise an A valve port, a B valve port and a C valve port
  • the slider is rotatably rotated by a slider shaft Mounted in a slider shaft hole on the valve seat, and the upper surface of the slider is provided with a driving groove
  • the three-way valve further includes a dialing member, and the dialing member has a fixing with the output shaft A fixed section connected, a drive section mated with the drive slot, and a slanted connection section connecting the fixed section and the drive section.
  • the slider is mounted on the valve seat through the slider shaft, and can smoothly swing along the surface of the valve seat, so that the switching action of the slider is smooth and smooth. Thanks to the use of a toggle, the output shaft can pass a simple knot Constructed to drive the slider for valve port switching.
  • the dial member may be a spring paddle, and the driving segment is elastically pressed on the bottom surface of the slot of the driving slot of the slider.
  • the elastic force of the bottom surface of the groove is applied by the driving section of the spring pad, so that the pressure center of the slider corresponds to the valve port to be closed, so that a better sealing effect can be obtained, and the structure is simple.
  • the fixing portion of the dial member is provided with a sleeve portion that cooperates with the output end
  • the driving portion of the dial member is provided with a blister that cooperates with the groove bottom surface of the driving groove of the slider .
  • the switching valve is a four-way valve
  • the plurality of valve ports on the valve seat comprise an S valve port, a C valve port, a D valve port and an E valve port;
  • the bottom surface of the slider is provided with a communication groove such that the S valve port selectively communicates with the C valve port or the E valve port.
  • the communication groove on the bottom surface of the slider of the four-way valve realizes conduction between the two valve ports, and the other two valve ports can be electrically connected outside the slider, thereby realizing a simple structure.
  • the slider is axially movably mounted on the output shaft;
  • the four-way valve further includes a spring, the spring is sleeved on the output shaft, and The slider is pressed;
  • the S valve port is disposed at a position corresponding to the output shaft; the position of the first end of the communication slot always corresponds to the position of the S valve port, and the second of the communication slot The end is selectively in communication with the C port or the E port.
  • the spring pressure ensures the seal between the slider and the valve seat, and the communication groove of the slider always corresponds to the position of the S valve port, so that the communication groove has better communication.
  • the lower end of the output shaft is provided with a driving section and a cylindrical section;
  • the four-way valve further includes a dialing member, the dialing member is disposed above the slider, has a first driving slot and a radial direction a rod, the first driving groove is engaged with a driving section of the output shaft;
  • the slider further includes a pivot hole and a second driving groove, the pivot hole is matched with a cylindrical section of the lower end of the output shaft, The second drive slot cooperates with the radial rod of the dial member.
  • the slider is further provided with an upwardly extending cylindrical portion, wherein the pivot hole is disposed in the cylindrical portion; and the dial member is further provided with a cylindrical portion of the slider Hole.
  • the cylindrical portion of the upper portion of the slider cooperates with the corresponding hole on the dial member, so that the slider and the dial member can be better combined, thereby reducing the vibration, making the slider rotate more smoothly, and can be more Goodly sealed to the seat.
  • valve seat is further provided with a stop block for limiting the range of rotation of the slider. This protects the slider from swinging over the effective range, making the job more reliable.
  • This limit structure can be used for both three-way and four-way valves.
  • an electronic valve having a valve housing, a valve seat coupled to the valve housing, a valve core mated with the valve seat, and a sleeve disposed outside the valve housing a stator coil, the electronic valve further comprising the deceleration rotor assembly of the first aspect, the deceleration rotor assembly is disposed in the valve housing; the electronic valve is an expansion valve, and the valve seat has a valve port; The output shaft directly or indirectly drives the spool axially by driving a thread pair to adjust the opening of the valve port.
  • the retarding rotor assembly since the retarding rotor assembly is provided, the structure of the expansion valve is made more compact, and a larger driving torque can be obtained, and at the same time, the valve opening opening control precision of the expansion valve can be improved.
  • the axial position of the rotor body is stationary, ensuring that the rotor and the coil face-to-face area are constant during the opening/closing process of the expansion valve, thereby ensuring stable electronic driving.
  • an outer surface of the output shaft forms an external thread
  • an internal thread is formed in an axial inner bore of the valve needle
  • the external thread and the internal thread together form the drive thread pair
  • the valve further includes a guiding sleeve fixedly disposed in the valve housing and having a non-circular guiding inner hole
  • the valve core is a valve needle
  • the valve needle has a non-circular guiding inner hole with the guiding sleeve The mating non-circular outer surface prevents the valve needle from rotating during axial movement.
  • valve needle Since the valve needle is engaged with the non-circular guide inner bore of the guide sleeve through the non-circular outer surface, it is ensured that the valve needle can smoothly perform axial movement under the driving of the thread pair.
  • the guide sleeve divides a space in the valve housing into a first space and a second space, the deceleration rotor assembly is located in the first space, and the valve seat is located in the second space
  • a gas balance structure such as a balance hole may also be provided on the second end connector on the deceleration rotor assembly.
  • the gas pressure balance in the valve housing facilitates the smooth movement of the moving parts, thus ensuring reliable operation of the electronic valve.
  • the electronic valve further includes: a nut sleeve, the nut sleeve is fixedly disposed in the valve housing; a screw is disposed in the nut sleeve, an external thread of the screw is inside the nut sleeve The threads collectively form the drive thread pair, the first end of the screw is drivingly engaged with the second end of the output shaft, and axially moves within the nut sleeve as the output shaft rotates; The valve needle is disposed at the second end of the screw and moves axially with the screw.
  • the second end of the output shaft is provided with a driving protrusion; the first end of the screw is provided with a driving groove that cooperates with the driving protrusion.
  • the power transmission can be reliably realized by the cooperation of the driving projections and the driving grooves.
  • the electronic valve further includes: a guide sleeve fixedly disposed in the valve housing, having a side wall and a bottom wall having a central hole; a spring sleeve disposed in the guide sleeve; the valve core a valve needle, the valve needle being disposed in the guide sleeve, comprising a needle shaft portion and a flange portion at the first end, the needle rod portion passing through the spring sleeve, and the guide sleeve A central bore on the bottom wall is oriented toward the valve port, the flange portion being supported on the spring sleeve.
  • the spring sleeve can be used to reset the valve needle in time to ensure the accuracy of the valve opening control.
  • the inner surface of the guide sleeve and the central guide hole can guide the valve needle to ensure smooth operation of the valve needle.
  • the first end of the valve needle is provided with an axial adjustment screw. This screw can be used to further adjust the opening setting of the valve needle.
  • the second end connecting plate of the retarding rotor assembly is provided with a balance hole to balance the pressure in the valve housing on both sides of the second connecting plate.
  • the gas balance structure such as the balance hole facilitates the smooth movement of the moving parts, thereby ensuring reliable operation of the electronic valve.
  • a small flow adjustment mechanism is further disposed inside the valve core, and the small flow adjustment
  • the joint mechanism includes a valve needle disposed inside the spool and a micro regulating valve port disposed on the spool.
  • an electronic valve having a valve housing, a valve seat coupled to the valve housing, a valve core mated with the valve seat, and a stator sleeved outside the valve housing a coil, wherein the electronic valve further includes the deceleration rotor assembly of the first aspect of the invention disposed in the valve housing; the electronic valve is a reversible valve, including two of the valve seats, each of the The valve seats each have a valve port; the output shaft of the retarding rotor assembly directly or indirectly drives the spool to move axially through the drive thread pair to communicate or disconnect the valve ports of the two valve seats.
  • the retarding rotor assembly is employed in the reversible valve, a larger driving torque can be obtained, so that the two-way reversible switch of the reversible valve can be realized more easily, and the reversible valve can have a compact structure.
  • the outer surface of the output shaft forms an external thread
  • the valve core comprises: a bracket having an internal thread, the internal thread of the bracket and the external thread of the output shaft are formed together The driving thread pair; two sliders respectively disposed on opposite sides of the bracket, moving with the bracket to respectively connect or disconnect the valve ports of the two valve seats; Elastic members are respectively disposed on opposite sides of the bracket and located between the bracket and the corresponding slider, and press the corresponding sliders to the corresponding valve seats.
  • This specific structure of the reversible valve ensures that the spool moves up and down smoothly and that the valve port is well sealed.
  • the electronic valve further includes a guiding sleeve fixedly disposed in the valve housing, located under the deceleration rotor assembly, having a guiding inner hole; the upper portion of the tray has a guiding column And cooperate with the guiding inner hole of the guiding sleeve.
  • the guide sleeve is arranged so that the movement of the bracket is not skewed, the malfunction is reduced, the movement is smooth, and the work is reliable.
  • An internal thread of the bracket is disposed in the guide post, and the output axially extends downward through a guide inner hole of the guide sleeve such that an external thread of the output shaft and the inside of the bracket Threaded joint.
  • the electronic valve further includes a limiting seat, the limiting seat is fixedly disposed in the valve housing, located below the bracket; the limiting seat and the bracket are organic Made of materials. With the limit seat, the down position of the bracket can be defined to prevent the drive thread pair from being disengaged. In addition, the weight of the limit seat and the bracket can be reduced by using an organic material.
  • the opposite sides of the bracket are respectively provided with slider mounting recesses, each of the sliders being mounted in a corresponding one of the slider mounting recesses and being mounted with the slider Side wall sliding fit.
  • the slider has a bottom wall and a side wall, and the bottom wall and the side wall together define an elastic member receiving cavity that is open toward the bracket, and the elastic member is accommodated in the corresponding elastic member receiving cavity.
  • the slider has a longer mating length with the elastic member accommodating chamber on the bracket, so that it can be more reliably mounted in the elastic member accommodating chamber, and at the same time, under the action of the elastic member, it can be more reliably Abut against the corresponding surface of the corresponding valve seat.
  • the elastic member is a spring piece, and the upper and lower sides of the spring piece are respectively provided with elastic flanges protruding toward the slider side.
  • the resilient flange of the leaf spring allows the slider to rest more reliably against the corresponding surface of the corresponding valve seat.
  • a limiting card slot is disposed on a lower sidewall of the slider mounting recess; and a limiting block corresponding to the limiting card slot is disposed under the lower sidewall of the slider, wherein the limit The card slot cooperates with the limit block to allow the slider to have a predetermined amount of motion along the slider mounting recess.
  • FIG. 1 is a cross-sectional structural view showing an embodiment of a reduction rotor assembly according to a first aspect of the present invention
  • FIG. 2 is a front perspective view showing a deceleration support portion of the reduction rotor assembly of FIG.
  • Figure 3 is a perspective exploded perspective view of the deceleration support portion of Figure 2;
  • Figure 4 is a cross-sectional structural view showing an embodiment of a switching valve according to a second aspect of the present invention,
  • the switching valve is a three-way valve
  • Figure 5 is a partial perspective exploded structural view of the three-way valve of Figure 4, showing the structural relationship between the deceleration support portion, the slider, and the valve seat;
  • FIGS. 6A and 6B are schematic diagrams of the valve port opening and closing of the three-way valve of Fig. 4, wherein Fig. 6A shows A,
  • Figure 7 is a perspective structural view of the toggle member of the three-way valve of Figure 4.
  • Figure 8 is a perspective structural view of the slider of the three-way valve of Figure 4.
  • Figure 9 is a cross-sectional structural view showing another embodiment of the switching valve according to the second aspect of the present invention, in which the switching valve is a four-way valve;
  • Figure 10 is a partial perspective exploded structural view of the four-way valve of Figure 9, showing the structural relationship between the deceleration support, the slider, and the valve seat;
  • FIG. 11A and FIG. 11B are schematic diagrams of the valve port opening and closing of the four-way valve of FIG. 9, wherein FIG. 6A shows the S and E valve ports communicating, and the D and C valve ports are connected, and FIG. 6B shows the S and C valve ports. Connected, D, E valve port connected;
  • Figure 12 is a perspective structural view of the dial member of the four-way valve of Figure 9;
  • Figure 13 is a perspective structural view of the slider of the four-way valve of Figure 9;
  • Figure 14 is a perspective view showing the toggle structure of the four-way valve of Figure 9 (combined state of the dial member and the slider);
  • Figure 15 is a perspective sectional structural view showing an embodiment of an expansion valve according to a third aspect of the present invention.
  • Figure 16 is a cross-sectional structural view of the expansion valve of Figure 15;
  • Figure 17 is a perspective structural view showing the valve needle of the expansion valve of Figure 15;
  • Figure 18 is a perspective sectional structural view showing a guide sleeve of the expansion valve of Figure 15;
  • Figure 19 is a perspective sectional view showing another embodiment of the expansion valve according to the third aspect of the present invention.
  • Figure 20 is a cross-sectional structural view of the expansion valve of Figure 19;
  • Figure 21 is a schematic structural view showing the relationship between the output shaft of the expansion valve of Figure 19 and the screw;
  • Figure 22 is a cross-sectional structural view of one embodiment of the reversible valve according to the fourth aspect of the present invention;
  • Figure 23 is a view of Figure 22 Schematic diagram of the three-dimensional decomposition structure of the reversible valve. detailed description The embodiments of the present invention are described in detail below, but the invention may be embodied in many different ways as defined and covered by the appended claims.
  • valve housing means a support structure body of an electronic valve for forming an internal accommodation space of an electronic valve, either alone or together with a valve seat; the term “valve” refers to an electronic
  • the structure of the valve for forming the valve port which may be a single component or component, or may be integral with other associated structures.
  • the valve housing and the valve seat may each be a single piece or may also comprise a plurality of separate component assemblies.
  • the valve housing and the valve seat may be fixedly coupled together, or at least a portion of the valve housing may be integrally formed with at least a portion of the valve seat.
  • spool means a moving member for controlling opening and closing of a valve port in an internal accommodation space of an electronic valve, and may be an assembly or a separate member.
  • FIG. 1 is a cross-sectional structural view showing an embodiment of a reduction rotor assembly according to a first aspect of the present invention.
  • the retarding rotor assembly 100 of the electronic valve includes a rotor portion 10 including a rotor body 11 and a rotor coupling member 12 disposed in the rotor body 11, and a rotor chamber 13 is formed in the rotor body 11.
  • the other structure in the figure belongs to the deceleration support portion, and it can be seen that the rotor portion 10 is sleeved outside the deceleration support portion, and the deceleration support portion is connected to the rotor portion 10.
  • FIGS. 2 and 3 are a front perspective view and a perspective exploded structural view, respectively, of the deceleration support portion in the reduction rotor assembly.
  • the deceleration support includes an input shaft 20, an output shaft 25, a support assembly 30, and a reduction gear assembly 40.
  • the input shaft 20 extends along the axis of the rotor portion 10, and its upwardly facing end is a first end that is fixedly coupled to the rotor connector 12 of the rotor portion 10 to support and position the rotor portion 10.
  • the lower end of the support assembly 30 needs to be fixedly disposed relative to the valve housing of the electronic valve so that the entire retarding rotor assembly can be fixedly disposed within the valve housing.
  • the upper end of the support assembly 30 extends toward the interior of the rotor cavity 13 such that the support assembly 30 can be used to support the input shaft 20 located within the rotor cavity 13.
  • the support assembly 30 provides two support locations disposed along the axis of the rotor portion 10 to support the input shaft 20.
  • the support assembly 30 includes a first end connection plate 31 at the upper end, a second end connection plate 34 at the lower end, and a first intermediate connection plate 32 and a second therebetween. Intermediate connecting plate 33.
  • the first end connecting plate 31 of the upper end is for providing a first supporting portion for supporting the input shaft 20, and the first intermediate connecting plate 32 is for providing a second supporting portion for supporting the input shaft 20.
  • the second end link 34 forms the bottom of the support assembly 30 and is fixedly coupled to the valve housing of the electronic valve.
  • Each of the connecting plates is connected by a plurality of connecting columns and maintains the required distance through the connecting posts.
  • the first support portion and the second support portion are respectively located on both sides of the rotor body 11 at an intermediate position along the axis of the rotor portion 10, and both support the input shaft 20 . Since the two support portions are respectively located on both sides of the rotor body at an intermediate position along the axis of the rotor portion, the rotor portion can be better supported.
  • the support assembly 30 can also provide support to the inner wall of the rotor body 11 within the rotor cavity 13, so that the rotor portion can be better supported, further reducing the vibration of the rotor portion.
  • the plurality of connecting posts may include two first connecting posts 35 connecting the first end connecting plate 31 and the first intermediate connecting plate 32, and two second connecting posts connecting the first intermediate connecting plate 32 and the second end connecting plate 34 36.
  • the two first connecting posts 35 and the two second connecting posts 36 are arranged offset in the circumferential direction. This misalignment arrangement of the first connecting post 35 and the second connecting post 36 can serve to mitigate vibration.
  • the second intermediate connecting plate 33 is disposed between the first intermediate connecting plate 32 and the second end connecting plate 34, and the second connecting post 36 extends through the second intermediate connecting plate 33, and the spacer sleeve 37
  • the sleeve is sleeved on the second connecting post 36 and supported between the second intermediate connecting plate 33 and the second end connecting plate 34 to have a desired spacing therebetween.
  • the reduction gear assembly 40 acts as a reduction mechanism between the input shaft 20 and the output shaft 25, is mounted on the support assembly 30, and is at least partially located within the rotor cavity 13. With the reduction gear assembly 40, the output shaft 25 can provide a greater drive torque (valve opening torque), thereby allowing the electronic valve to have a greater valve opening capability.
  • the reduction gear assembly of the deceleration support is at least partially located within the rotor cavity, so that the structure of the entire reduction rotor assembly and the electronic valve is compact and transmission noise can be reduced.
  • the reduction gear assembly 40 is disposed between the first intermediate web 32 and the second end web 34 throughout the retarding rotor assembly. Since the reduction gear assembly is disposed on the side close to the second end connecting plate and closer to the fixed connection position with the valve housing, the eccentric vibration of the rotor rotation has less influence on the rotor, thereby being more reliable and more stable in operation.
  • the retarding rotor assembly there is a safe distance between the second end connecting plate 34 of the decelerating support portion and the second end of the rotor body 11.
  • Such an arrangement can prevent friction between the rotor body and the second end connecting plate during the working process, thereby ensuring the reliability of the work.
  • the second end connection plate 34 can be fixedly connected to the valve housing of the electronic valve by screwing or welding. Thus, the retarding rotor assembly can be reliably connected to the valve housing.
  • the reduction gear assembly 40 includes: an input gear 41 mounted at a second end of the input shaft 20 (i.e., a lower end shown in the drawing) and a first end mounted on the output shaft 25 (i.e., The output gear 46 of the upper end shown may further include a plurality of intermediate gears supported by the plurality of intermediate gear shafts disposed between the input gear 41 and the output gear 46.
  • the reduction gear assembly 40 has a first intermediate gear shaft 47 and a second intermediate gear shaft 48, the first end of which is coupled to the first intermediate link 32, second The end is connected to the second end connecting plate 34, and the second intermediate gear shaft 48 is connected to the first intermediate connecting plate 32 at the first end and to the second end connecting plate 34 at the second end.
  • a first intermediate gear shaft large gear 42 that meshes with the input gear 41 and a first intermediate gear shaft pinion 43 that rotates in synchronization with the first intermediate gear shaft large gear 42 are disposed on the first intermediate gear shaft 47.
  • a second intermediate gear shaft large gear 44 meshing with the first intermediate gear shaft pinion 43 and a second intermediate gear shaft pinion 45 rotating in synchronization with the second intermediate gear shaft large gear 44 are disposed on the second intermediate gear shaft 48.
  • the second intermediate gear shaft pinion 45 meshes with the output gear 46.
  • the support assembly ensures reliable support of the input shaft, and the reduction gear assembly can be incorporated in the support assembly, achieving a compact structure.
  • a three-stage reduction structure is provided from the reduction gear assembly 40.
  • the transmission structure can be decelerated more or less as needed. If only one stage of the reduction structure is provided, the intermediate and intermediate gear shafts can be removed.
  • the second intermediate web 33 is located within the rotor cavity 13 with a secure spacing between the second end web 34 and the second end of the rotor body 11.
  • the portion other than the final stage deceleration structure (the second intermediate gear shaft pinion 45 and the output gear 46) of the reduction gear assembly is placed in the rotor cavity to reduce transmission noise and prevent friction.
  • the final stage deceleration structure can also be placed in the rotor cavity.
  • the rotor connector 12 has a central bore
  • the input shaft 20 has a first diameter section that mates with a central bore of the connecting connector 12
  • the first end web 31 has a central bore
  • the first end A first fixing sleeve 60 serving as a sliding bearing is disposed in the center hole of the connecting plate 31, and the first fixing sleeve 60 has a step portion for preventing upward disengagement from the first end connecting plate 31
  • the input shaft 20 has the same a second diameter section of the inner sleeve of the fixing sleeve 60 and a third diameter section below the rotor connector 12, the diameter of the second diameter section being larger than the diameter of the first diameter section, the third The diameter of the diameter segment is greater than the diameter of the second diameter segment.
  • the first fixing sleeve not only can reduce the friction, but also can be used as a limit structure to effectively limit the axial movement of the input shaft.
  • the input shaft 20 includes a second retaining sleeve that is fixedly nested thereon to form a third diameter section of the input shaft 20.
  • the first fixing sleeve 60 may be fixedly coupled to the first end connecting plate 31 by riveting.
  • the second fixing sleeve can be fixedly connected to the input shaft 20 by riveting.
  • the first fixing sleeve and the second fixing sleeve cooperate to limit the axial movement of the input shaft, and at the same time, the plurality of diameter segments of the input shaft can ensure that the first end connecting piece and the rotor connecting piece are connected at different positions of the input shaft. And the structure is easy to assemble and disassemble.
  • the rotor connector 12 may be disposed within a first end of the rotor body 11, the rotor body 11 and the rotor connector 12 collectively defining a rotor cavity that is open toward the second end of the rotor body 11. 13. In this way, the axial dimension of the rotor cavity is larger, which facilitates the arrangement of the deceleration support and better supports the support assembly.
  • the lower end of the output shaft 25 may form a threaded drive for axial drive or a non-circular drive for rotational drive.
  • the lower end structure of these output shafts can effectively transmit the driving force of the output shaft directly or indirectly to the spool.
  • the aforementioned retarding rotor assembly can be applied in an electronic valve.
  • an electronic valve having a valve housing, a valve seat coupled to the valve housing, a valve core mated with the valve seat, a stator coil sleeved outside the valve housing, and any of the foregoing
  • the retarding rotor assembly 100 is disposed within a valve housing of the electronic valve.
  • the structure of the electronic valve is compact and the transmission noise can be reduced.
  • the reduction gear assembly is included in the reduction rotor assembly,
  • the electronic valves herein may be switching valves, expansion valves, reversible valves, and the like. Embodiments of the switching valve, the expansion valve, and the reversible valve are described in detail below.
  • the spool may be a slider, a valve needle, etc., and may be a single component or an assembly.
  • the switching valve is a type of electronic valve, including a three-way valve and a four-way valve.
  • FIG 4 is a cross-sectional structural view showing an embodiment of a switching valve according to a second aspect of the present invention, in which the switching valve is a three-way valve;
  • Figure 5 is a partial perspective exploded view of the three-way valve of Figure 4; Schematic diagram of the structure, showing the structural relationship between the deceleration support, the slider, and the valve seat.
  • the three-way valve of this embodiment has a valve housing 101, a valve seat 104 connected to the valve housing 101, a slider 103 as a valve core that cooperates with the valve seat 104,
  • a stator coil (not shown) is disposed outside the valve housing 101, and the three-way valve further includes a reduction rotor assembly 100 disposed within the valve housing 101.
  • the reduction rotor assembly may be a reduction rotor assembly 100 according to any of the foregoing first aspects of the first aspect of the invention.
  • FIGS. 6A and 6B are schematic views of the valve port opening and closing of the three-way valve of Fig. 4, and Figs. 7 and 8 are schematic perspective views of the dial member 102 and the slider 103 of the three-way valve of Fig. 4, respectively.
  • the valve port includes an A valve port 106A, a B port 106B and a C port 106C.
  • a plurality of connecting pipes including a first connecting pipe 108A, a second connecting pipe 108B and a third connecting pipe 108C, are connected to the valve seat 104 and correspond to the positions of the A valve port 106A, the B port 106B and the C port 106C, respectively.
  • the slider shaft 103a is rotatably mounted in the slider shaft hole 104a on the valve seat 104 to drive the slider 103 to switch the conduction relationship between the valve ports.
  • FIG. 6A shows that the A and B ports are connected, the C port is closed
  • FIG. 6B shows that the A and C ports are connected and the B port is closed.
  • the slider 103 is attached to the valve seat 104 via the slider shaft 103a, and can smoothly swing along the surface of the valve seat 104, so that the switching operation of the slider 103 is smooth and smooth.
  • the dial member 102 has a fixed section 1021 fixedly coupled to the output shaft 25, a drive section 1023 that cooperates with the drive slot 1033, and a tilted connection section 1022 that connects the fixed section 1021 and the drive section 1023, wherein the drive section 1023 and the upper portion of the slider 103 drive slot 1033 is provided on the mating surface, to drive the slide 103 thanks to the O toggle member 102, so that the output shaft 25 may be driven slider 103 port switch with a simple structure.
  • switching valves for refrigeration equipment such as three-way valves, especially electric three-way valves in heat pump type air conditioning pipelines, mostly switch the on/off and flow direction of the refrigerant through the sliders in the valve, due to the cross-sectional area of the slider.
  • the three-way valve according to the embodiment of the present invention since the reduction rotor assembly is employed, the structure of the three-way valve is more compact, and a larger driving torque can be obtained, thereby better achieving the conduction relationship between the valve ports. Switching.
  • the dial member 102 is a spring paddle and the drive section 1023 is resiliently biased against the bottom surface of the slot of the drive slot 1033 of the slider 103.
  • the elastic force of the bottom surface of the groove by the driving section of the spring pad can make the pressure center of the slider 103 correspond to the valve port to be closed, so that a better sealing effect can be obtained and the structure is simple.
  • the fixing portion 1021 of the dial member 102 is provided with a sleeve portion 1025 that cooperates with the output end 25, and the driving portion 1023 of the dial member 102 is provided with a slot with the driving groove 1033 of the slider 103.
  • the bottom surface is fitted with a blister 1024. This structure of the spring paddles contributes to better driving and elastic pressing.
  • valve seat 104 can also be provided with a limiting block 105 for limiting the range of rotation of the slider 103. This protects the slider from swinging over the effective range, making the job more reliable.
  • Figure 9 is a cross-sectional structural view showing another embodiment of a switching valve according to a second aspect of the present invention,
  • the switching valve is a four-way valve
  • Fig. 10 is a partial perspective exploded structural view of the four-way valve of Fig. 9, showing the structural relationship between the deceleration support portion, the slider, and the valve seat.
  • the four-way valve of this embodiment has a valve housing 101, a valve seat 104 connected to the valve housing 101, a slider 103 as a valve core that cooperates with the valve seat 104,
  • a stator coil (not shown) is disposed outside the valve housing 101, and the four-way valve further includes a reduction rotor assembly 100 disposed within the valve housing 101.
  • the reduction rotor assembly may be a reduction rotor assembly 100 according to any of the foregoing first aspects of the first aspect of the invention.
  • FIGS. 11A and 11B are schematic diagrams of the valve port opening and closing of the four-way valve of Fig. 9, and Figs. 12 and 13 are respectively a perspective structural view of the dial member 102 and the slider 103 of the four-way valve of Fig. 9, and Fig. 14 is Fig. 9 is a perspective view showing the structure of the toggle mechanism of the four-way valve (combined state of the dial member and the slider).
  • the plurality of valve ports on the valve seat 104 include S valve port 106S, C valve port 106C, D valve port 106D and E valve port 106E;
  • a plurality of connecting pipes including a first connecting pipe 108S, a second connecting pipe 108C, a third connecting pipe 108D and a fourth connecting pipe 106E, are connected to the valve seat 104, respectively, with the A valve port 106A, the B port 106B and the C
  • the position of the valve port 106C corresponds.
  • the slider 103 is mounted on the output shaft 25 and rotates in synchronization with the output shaft 25.
  • the bottom surface of the slider 103 is provided with a communication groove 1031 (shown in Fig. 9) such that the S valve port 106S selectively communicates with the C valve port 106C or the E valve port 106E.
  • the communication groove 1031 on the bottom surface of the slider 103 of the four-way valve realizes conduction between the two valve ports, and the other two valve ports can be electrically connected outside the slider, thereby being simple.
  • the structure realizes the switching of the conduction relationship of the four-way valve.
  • the slider 103 is axially movably mounted on the output shaft 25; the four-way valve further includes a spring 107, and the spring 107 is sleeved on the output shaft 25, and The slider 103 is pressed.
  • the S valve port 106S is disposed at a position corresponding to the output shaft 25; the position of the first end of the communication groove 1031 always corresponds to the position of the S valve port 106S, and the second end of the communication groove 1031 is selectively coupled with the C valve.
  • Port 106C or E port 106E is in communication.
  • the spring pressure ensures the seal between the slider and the valve seat, and the communication groove of the slider always corresponds to the position of the S valve port, so that the communication groove has better communication.
  • the lower end of the output shaft 25 is provided with a driving section 25a and a cylindrical section 25b; the four-way valve further includes a dialing member 102, and the dialing member 102 is disposed.
  • the slider Above the 103 there is a first driving groove 102a and a radial rod 102c.
  • the first driving groove 102a cooperates with the driving segment 25a of the output shaft 25; the slider 103 further includes a pivot hole 103b and a second driving groove 103c, the pivot hole
  • the 103b is engaged with the cylindrical section 25b at the lower end of the output shaft 25, and the second drive groove 103c is engaged with the radial rod 102c of the dial member 102.
  • the slider 103 is further provided with an upwardly extending cylindrical portion 103a, and a pivot hole 103b is provided in the cylindrical portion 103a.
  • the dial member 102 is further provided with a hole for engaging with the cylindrical portion 103a of the slider 103.
  • the cylindrical portion of the upper portion of the slider cooperates with the corresponding hole on the dial member, so that the slider and the dial member can be better combined, thereby facilitating the reduction of the vibration, making the rotation of the slider smoother and more capable. Goodly sealed to the seat.
  • valve seat 104 can also be provided with a limiting block 105 for limiting the range of rotation of the slider 103. This protects the slider from swinging over the effective range, making the job more reliable.
  • the internal fitting structure is also under development and development, and the rotary four-way valve is a main direction. Since the cross-sectional area of the slider of the four-way valve is large, the required rotational torque is large, and it is difficult to directly drive by the stepping motor.
  • the four-way valve according to the embodiment of the present invention is driven by a stepping motor principle and simultaneously introduces a micro gear transmission structure (reduction gear assembly of the rotary rotor assembly) to ensure stable and reliable switching of the four-way valve, and the four-way valve has a structure. Compact, low noise, and improved transmission accuracy and transmission efficiency.
  • the expansion valve is a type of electronic valve.
  • Fig. 15 is a perspective sectional view showing the first embodiment of the expansion valve according to the third aspect of the present invention
  • Fig. 16 is a cross-sectional structural view showing the expansion valve of Fig. 15.
  • the expansion valve of this embodiment has a valve housing 201, a valve seat 204 coupled to the valve housing 201, a valve needle 203 as a spool, and a sleeve that cooperates with the valve seat 204.
  • a stator coil 50 is provided outside the valve housing 201.
  • the valve seat 204 has a valve port 206.
  • the expansion valve also includes a reduction rotor assembly 100 disposed within the valve housing 201.
  • the reduction rotor assembly may be a reduction rotor assembly 100 according to any of the foregoing first aspects of the first aspect of the invention.
  • the output shaft 25 of the retarding rotor assembly 100 directly drives the valve needle 203 to move axially through the drive thread pair to adjust the opening of the valve port 206.
  • the existing electronic expansion valve usually adopts a structure in which a magnetic rotor is fixed to a mandrel screw, and the mandrel screw and After the thread component side effect of the nut assembly, the valve needle integrated with the mandrel screw is driven to move up and down in the axial direction to realize flow adjustment. Therefore, during the process of opening and closing the valve, the area of the rotor and the coil are constantly changing, which affects the driving stability. In addition, there are problems such as small valve opening torque, small number of control pulses, and poor flow adjustment accuracy.
  • the structure of the expansion valve is made more compact, and a larger driving torque can be obtained, and at the same time, the valve opening degree control precision of the expansion valve can be improved.
  • the axial position of the rotor body 11 is stationary, ensuring that the rotor body 11 and the stator coil 50 face each other in the opening/closing process, thereby ensuring stable electrons. drive.
  • Figure 17 is a perspective cross-sectional structural view showing the valve needle of the expansion valve of Figure 15; As can be seen from Figures 16 and 17, in this embodiment of the expansion valve, the outer surface of the output shaft 25 is internally threaded, and the inner bore of the valve needle 203 is internally threaded, and the external and internal threads together form a drive thread. vice.
  • the expansion valve also includes a guide sleeve 205 that is fixedly disposed within the valve housing 201.
  • Figure 18 is a perspective cross-sectional view showing the guide sleeve of the expansion valve of Figure 15, and it can be seen that the guide sleeve 205 has a non-circular guide inner bore 205a.
  • the valve needle 203 has a non-circular outer surface 203a that cooperates with the non-circular guiding inner bore 205a of the guide sleeve 205 so that the valve needle 203 does not rotate when moved axially.
  • valve needle 203 Since the valve needle is engaged with the non-circular guide inner bore of the guide sleeve through the non-circular outer surface, it is ensured that the valve needle can smoothly perform axial movement under the driving of the thread pair.
  • the non-circular outer surface of the valve needle 203 shown in Figures 17 and 18 and the non-circular inner bore of the guide sleeve 205 each have a square outline, however, it is known that any other non-circular contour, such as a rectangle, a pentagon, etc. Both achieve the same goal.
  • the guide sleeve 205 divides the space within the valve housing 201 into a first space and a second space, the deceleration rotor assembly 100 is located in the first space, and the valve seat 204 is located on the side of the second space.
  • the guide sleeve 205 is further provided with a balance hole 2052 for balancing the first space and the second space in the valve housing 201.
  • the second end connector 34 of the retarding rotor assembly 100 is located above the guide sleeve 205.
  • a gas balance structure such as a balance hole may be provided on the second end connecting member 34 of the decelerating rotor assembly 100.
  • the gas pressure balance in the valve housing 201 facilitates the smooth movement of the moving parts, thereby ensuring expansion
  • the expansion valve works reliably.
  • Fig. 19 is a perspective sectional structural view showing a second embodiment of the expansion valve according to the third aspect of the present invention
  • Fig. 20 is a cross-sectional structural view showing the expansion valve of Fig. 19.
  • the expansion valve of the second embodiment will be mainly described below with respect to the difference of the first embodiment, and the same portions will be omitted.
  • the expansion valve further includes a nut sleeve 225 and a screw 226.
  • the nut sleeve 225 is fixedly disposed in the valve housing 201, and the screw 226 is inserted into the nut sleeve 22.
  • the external thread of the screw 226 and the internal thread of the nut sleeve 225 together form a driving thread pair.
  • the first end of the screw 226 is in driving engagement with the second end of the output shaft 25 and moves axially within the nut sleeve 225 as the output shaft 25 rotates.
  • the valve needle 203 is disposed at the second end of the screw 226 and moves axially with the screw 226.
  • Figure 21 is a schematic view showing the relationship between the output shaft of the expansion valve of Figure 19 and the screw.
  • the second end (lower end) of the output shaft 25 is provided with a driving projection; the first end (upper end) of the screw 226
  • a drive slot is provided for mating with the drive lug. The power transmission can be reliably realized by the cooperation of the driving projections and the driving grooves.
  • the expansion valve further includes a guide sleeve 205 and a spring sleeve 227, the guide sleeve 205 is fixedly disposed in the valve housing 201, having a side wall and a bottom wall, the bottom There is a central hole in the wall.
  • the spring sleeve 227 is disposed within the guide sleeve 205.
  • the valve needle 203 is disposed within the guide sleeve 205 and includes a needle shaft portion and a flange portion at the first end (upper end) through which the needle shaft portion passes and is centered on the bottom wall of the guide sleeve 205 Guided, extending toward the valve port 206, the flange portion is supported on the spring sleeve 227.
  • the spring sleeve 227 can be used to reset the valve needle 203 in time to ensure the accuracy of the valve opening control.
  • the inner surface of the guide sleeve 205 and the center guide hole can both guide the valve needle 203, thereby ensuring the smooth operation of the needle 203.
  • the upper end of the valve needle 203 has an axial adjustment screw disposed along the axial direction of the valve needle 203.
  • This screw can be used to further adjust the opening setting of the valve needle.
  • the second end connecting plate 34 of the decelerating rotor assembly 100 is provided with a balance hole 342 so that the second connecting plate in the valve housing 201 is located. 34 Space pressure balance on both sides.
  • a gas balancing structure such as a balance hole can also be provided on the fixing sleeve 225 accordingly.
  • a small flow adjustment mechanism is disposed inside the spool, and the small flow adjustment mechanism includes a valve needle disposed inside the spool and a micro regulating valve port disposed on the spool.
  • a valve needle disposed inside the spool and a micro regulating valve port disposed on the spool.
  • a small flow regulating mechanism are described in detail in the "two-stage electronic expansion valve" of the Chinese patent document CN06870750A.
  • the reversible valve is a type of electronic valve.
  • 22 and 23 are respectively a cross-sectional structural view and a perspective exploded structural view of one embodiment of a reversible valve according to a fourth aspect of the present invention.
  • the reversible valve of this embodiment has a valve housing 301, a valve seat 304 connected to the valve housing 301, a valve core mated with the valve seat 304, and a valve housing.
  • the reversible valve further includes a reduction rotor assembly 100 of any of the foregoing embodiments of the first aspect of the invention disposed within the valve housing 301.
  • two valve seats 304 are fixedly disposed in the valve housing 301, and each valve seat 304 has a valve port 306.
  • a plurality of connecting tubes including a first connecting tube 308A and a second connecting tube 308B, are respectively coupled to respective ones of the valve seats 304, corresponding to the positions of the respective valve ports 306.
  • the output shaft 25 of the retarding rotor assembly 100 drives the spool axially by driving the threaded pair to communicate or disconnect the valve ports 306 of the two valve seats 304.
  • the existing electric reversible valve is generally a pilot-type structure controlled by an electromagnet.
  • the decelerating rotor assembly is employed in the reversible valve, a larger driving torque can be obtained, so that the bidirectional reversible switch of the reversible valve can be more easily realized, and the reversible valve can be made compact. Structure.
  • the outer surface of the output shaft 25 of the retarding rotor assembly 100 is externally threaded;
  • the spool includes a bracket 302, two slides disposed on either side of the bracket Block 303, two resilient members disposed between the bracket 302 and the corresponding slider 303.
  • the bracket 302 has internal threads, and the internal threads of the bracket 302 together with the external threads of the output shaft 25 form a drive thread pair.
  • Two sliders 303 are respectively disposed on opposite sides of the bracket 302, and move with the bracket 302 to respectively connect or disconnect the valve ports 306 of the two valve seats 304.
  • Two elastic members are respectively disposed on opposite sides of the bracket 302, and are located between the bracket 302 and the corresponding slider 303, and press the corresponding slider 303 to the corresponding valve seat 304.
  • This specific structure of the reversible valve ensures that the spool moves up and down smoothly and that the valve port is well sealed.
  • the electronic valve further includes a guide sleeve 305 fixedly disposed within the valve housing 301, below the reduction rotor assembly, having a guide bore;
  • the upper portion of the 302 has a guide post 3024 that mates with a guide bore of the guide sleeve 305.
  • the guide sleeve 305 can be arranged so that the movement of the bracket is not deflected, the occurrence of malfunction is reduced, the movement is smooth, and the work is reliable.
  • the internal thread of the bracket 302 is disposed within the guide post 3024, and the output shaft 25 extends downwardly through the guide bore of the guide sleeve 305 such that the external thread of the output shaft 25 engages the internal thread of the bracket 302.
  • the reversible valve of this embodiment further includes a limiting seat 306 fixedly disposed in the valve housing 301 at the bracket 302.
  • the limit seat 306 and the bracket 302 are both made of an organic material. With the limit seat, the down position of the bracket can be defined to prevent the drive thread from being disengaged.
  • the weight of the limiting seat 306 and the bracket 302 can be reduced by using an organic material.
  • the opposite sides of the bracket 302 are respectively provided with slider mounting recesses 3023, and each of the sliders 303 is mounted in the corresponding slider mounting recess 3023, and It is slidably engaged with the side wall of the slider mounting recess 3023.
  • the slider can be reliably mounted on the valve frame and can reliably abut against the corresponding surface of the corresponding valve seat.
  • the slider 303 has a bottom wall and a side wall, and the bottom wall and the side wall together define an elastic member receiving cavity 3023 that is open toward the bracket 302, and the elastic member accommodates In the corresponding elastic member accommodating chamber 3023.
  • the slider has a longer mating length with the elastic member accommodating chamber on the bracket, so that it can be more reliably mounted in the elastic member accommodating chamber, and at the same time, under the action of the elastic member, it can be more reliably They abut against the respective surfaces of the respective valve seats 304.
  • the elastic member is a spring piece 307,
  • the upper and lower sides of the spring piece 307 are respectively provided with elastic flanges 3071 projecting toward the side of the slider 303.
  • the resilient flange of the spring leaf allows the slider to rest more reliably against the corresponding surface of the respective valve seat 304.
  • the lower side wall of the slider mounting recess 3023 is provided with a limit card slot 302a; the lower side wall of the slider 303 is provided with a limit card slot 302a.
  • the matching limit block 303a wherein the limit card slot 302a and the limit block 303a cooperate to allow the slider 303 to have a predetermined amount of movement along the slider mounting recess 3023.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

一种电子阀及其减速转子组件,减速转子组件包括:转子部(10)以及与转子部(10)连接的减速支撑部,转子部(10)套设在减速支撑部外,减速支撑部包括:输入轴(20),沿转子部(10)的轴线延伸,输入轴(20)朝上的第一端固定连接到转子连接件(11);输出轴(25);支撑组件(30);一端相对电子阀的阀壳体固定设置,另一端朝向转子腔内延伸,以支撑输入轴(20);以及减速齿轮组件(40),安装在所述支撑组件(30)上;该减速转子组件能使电子阀具有紧凑的结构和较大的开阀能力。

Description

电子阀及其减速转子组件
技术领域
本发明涉及一种电子阀的减速转子组件, 尤其涉及用于包括空调在内的制 冷设备的电子阀的减速转子组件。 本发明还涉及具有减速转子组件的电子阀。 背景技术
阀门作为空调系统的管道附件, 在系统中用来控制流体的方向、 流量和压 力, 起到了重要调节和控制作用。 常见的电子阀包括切换阀、 膨胀阀和可逆阀 等, 切换阀包括三通阀、 四通阀等。 目前空调系统现有的电子阀均采用电机作 为阀芯运动的驱动装置。 根据电子阀的传动结构的不同, 电子阀可分为直动式 和减速式。
作为直动式电子阀的一个举例, 在公开号为 CN105333203A的中国发明专 利文件中, 公开了一种电子膨胀阀。 该膨胀阀动作时, 电机带动转子转动, 转 子转动动作时在螺纹传动机构的作用下, 使阀芯实现轴向动作, 使阀芯靠近或 者远离阀口从而实现阀口流通面积的调节。 由于该发明使用电机的直接输出作 为驱动力矩,存在开阀力矩小,控制脉冲数少,流量调节精度差等缺点。此外, 在开关阀过程中转子与线圈正对面积在不断改变, 驱动稳定性较差。
作为减速式电子阀的一个举例, 在公开号为 CN103375606A的中国发明专 利文件中, 公开了一种电动三通阀。 该三通阀设置有直流电机, 直流电机驱动 齿轮装置, 齿轮装置驱动阀芯, 使得阀芯在阀座上活动, 以控制各阀口间的连 通和断开。 该发明中的齿轮装置设置在转子组件外阀壳体内, 阀的体积较大, 并且旋转传动噪音较大。
作为减速式电子阀的另一个举例, 在公开号为 CN1821632B的中国发明专 利文件中, 公开了一种附带减速装置的电动阀。 其中, 在转子的内侧设置有行 星齿轮传动机构, 其中固定齿轮与阀壳体连接, 太阳轮固定设置在转子本体的 中部, 行星齿轮围绕太阳轮转动, 并驱动输出齿轮, 输出齿轮驱动与转子本体 同轴设置的传动器, 转子内具有中心固定轴, 固定轴的上端支撑于阀壳体的顶 部, 下端支撑于传动器。 这种阀的结构较为复杂, 组装不便。
发明内容 本发明的目的在于提供一种电子阀及其减速转子组件, 以解决前述现有技 术中的至少一个技术问题。
本发明第一个方面
根据一个实施例, 提供了一种电子阀的减速转子组件, 包括: 转子部以及 与所述转子部连接的减速支撑部, 所述转子部包括转子本体和设置在所述转子 本体内的转子连接件, 所述转子本体内形成转子腔, 所述转子部套设在所述减 速支撑部外, 所述减速支撑部, 包括: 输入轴, 沿所述转子部的轴线延伸, 所 述输入轴朝上的第一端固定连接到所述转子连接件; 输出轴; 支撑组件; 一端 相对电子阀的阀壳体固定设置, 另一端朝向所述转子腔内延伸, 以支撑所述输 入轴和 /或转子本体; 以及减速齿轮组件, 安装在所述支撑组件上, 并至少部分 地位于所述转子腔内,所述减速齿轮组件设置在所述输入轴和所述输出轴之间。
由于转子部套设在减速支撑部外, 输入轴朝上的第一端固定连接到所述转 子连接件, 并且减速支撑部的支撑组件一端相对电子阀的阀壳体固定设置, 另 一端朝向所述转子腔内延伸, 这样, 转子部与减速支撑部形成了一个完整的组 件, 输入轴通过支撑组件就能在转子腔内得到支撑, 不需要将输入轴的上端支 撑于阀壳体的顶部, 在电子阀的安装过程中, 整个减速转子组件只需要以支撑 组件固定于阀壳体即可, 组装方便。
由于减速支撑部的减速齿轮组件至少部分地位于转子腔内, 因而整个减速 转子组件和电子阀的结构是紧凑的, 并且能够减少传动噪声。 支撑组件除支撑 输入轴外, 还可以支撑转子本体, 因而转子部可以得到更好的支撑, 进一步减 小转子部的振动。 另外, 由于具有减速齿轮组件, 可以实现更大的驱动力矩。
根据一个实施例, 其中, 所述支撑组件可以提供沿所述转子部的轴线布置 的第一支撑部位和第二支撑部位, 所述第一支撑部位和所述第二支撑部位各自 用于支撑所述转子本体和所述输入轴中之一。 由于提供了沿转子部的轴线布置 的两个支撑部位, 转子部可以得到更好地支撑。
进一步地, 所述第一支撑部位和所述第二支撑部位可以分别位于所述转子 本体的沿所述转子部的轴线的中间位置的两侧, 并均支撑所述输入轴。
由于两个支撑部位分别位于转子本体的沿转子部的轴线的中间位置的两侧, 转子部可以得到更好地支撑。 根据一个实施例, 其中, 所述减速齿轮组件可以包括输入齿轮, 所述输入 齿轮安装在所述输入轴的第二端; 输出齿轮, 所述输出齿轮安装在所述输出轴 的第一端; 中间齿轮,设置在所述输入齿轮和输出齿轮之间; 以及中间齿轮轴, 支撑所述中间齿轮。 通过设置中间齿轮, 可以实现多级减速, 从而能够获得更 大的驱动力矩。
根据一个实施例, 在该减速转子组件中, 支撑组件可以包括: 第一端连接 板, 用以提供所述第一支撑部位; 第二端连接板, 位于所述支撑组件的底部, 与所述电子阀的阀壳体固定连接; 第一中间连接板, 设置在所述第一端连接板 和所述第二端连接板之间, 用以提供所述第二支撑部位; 以及多个连接柱, 将 所述第一端连接板、 第二端连接板和第一中间连接板连接在一起, 其中, 所述 减速齿轮组件设置在所述第一中间连接板与所述第二端连接板之间。
由于减速齿轮组件设置在靠近第二端连接板的一侧, 更接近与阀壳体的固 定连接位置, 转子自转的偏心振动对其影响较小, 因而更可靠, 工作更稳定。
进一步地,所述第二端连接板与所述转子本体的第二端之间具有安全间距。 这样的设置, 可以防止在工作过程中, 转子本体与第二端连接板发生摩擦。
进一步地, 所述第二端连接板可以通过螺纹或焊接与所述电子阀的阀壳体 固定连接。 这样, 减速转子组件可以可靠地连接在阀壳体上。
进一步地, 所述多个连接柱可以包括: 多个第一连接柱, 连接所述第一端 连接板和所述第一中间连接板; 以及多个第二连接柱, 连接所述第一中间连接 板和所述第二端连接板, 其中, 所述第一连接柱与所述第二连接柱在沿周方向 上错位布置。 第一连接柱和第二连接柱的这种错位布置可以起到减缓震动的作 用。
进一步地, 所述支撑组件还可以包括: 第二中间连接板, 所述第二中间连 接板设置在所述第一中间连接板与所述第二端连接板之间, 所述第二连接柱贯 穿所述第二中间连接板; 以及间隔套, 套设在所述第二连接柱上, 并间隔在所 述第二中间连接板与所述第二端连接板之间, 所述减速齿轮组件还可以包括: 输入齿轮, 所述输入齿轮安装在所述输入轴的第二端; 输出齿轮, 所述输出齿 轮安装在所述输出轴的第一端; 第一中间齿轮轴, 第一端连接在所述第一中间 连接板上, 第二端连接在所述第二端连接板上; 第一中间齿轮轴大齿轮, 设置 在所述第一中间齿轮轴上, 与所述输入齿轮嗤合; 第一中间齿轮轴小齿轮, 设 置在所述第一中间齿轮轴上, 与所述第一中间齿轮轴大齿轮同步转动; 第二中 间齿轮轴, 第一端连接在所述第一中间连接板上, 第二端连接在所述第二端连 接板上; 第二中间齿轮轴大齿轮, 设置在所述第二中间齿轮轴上, 与第一中间 齿轮轴小齿轮啮合; 以及第二中间齿轮轴小齿轮, 设置在所述第二中间齿轮轴 上, 与所述第二中间齿轮轴大齿轮同步转动, 并与所述输出齿轮啮合, 其中, 所述第一中间齿轮轴大齿轮和第二中间齿轮轴大齿轮位于所述第一中间连接板 和所述第二中间连接板之间, 所述输出齿轮位于所述第二中间连接板与所述第 二端连接板之间。
采用上述结构, 支撑组件确保了对输入轴的可靠支撑, 并能将减速齿轮组 件结合在支撑组件内, 实现了紧凑的结构。
进一步地, 所述第二中间连接板位于所述转子腔内, 所述第二端连接板与 所述转子本体的第二端之间具有安全间距。 通过该结构, 实现了将减速齿轮组 件置于转子腔内, 减少传动噪声, 防止摩擦。
根据一个实施例, 所述转子连接件具有中心孔, 所述输入轴具有与所述连 接连接件的中心孔配合的第一直径段; 所述第一端连接板具有中心孔, 所述第 一端连接板的中心孔内设置有用作滑动轴承的第一固定套, 所述第一固定套具 有防止向上脱离所述第一端连接板的台阶部; 所述输入轴具有与所述第一固定 套的内孔配合的第二直径段以及位于所述转子连接件下方的第三直径段, 所述 第二直径段的直径大于所述第一直径段的直径, 所述第三直径段的直径大于所 述第二直径段的直径。 第一固定套作为滑动轴承, 不但可以起到减摩的作用, 也可以作为限位结构, 有效地限制输入轴的轴向窜动。
根据一个实施例, 输入轴包括固定地套设在其上的第二固定套, 以形成输 入轴的第三直径段。
第一固定套和第二固定套配合共同限制输入轴的轴向窜动, 同时, 输入轴 的多个直径段可以确保将第一端连接件和转子连接件连接在将输入轴的不同的 位置, 且该结构便于组装和拆卸。
根据一个实施例, 所述转子连接件可以设置在所述转子本体的第一端内, 所述转子本体和所述转子连接件共同限定朝向转子本体的第二端开放的所述转 子腔。 这样话, 转子腔的轴向尺寸更大, 便于布置减速支撑部, 且能更好地实 现支撑组件的支撑作用。
根据一个实施例, 所述输出轴的下端形成有用以实现轴向驱动的螺纹驱动 部或用以实现旋转驱动的非圆驱动部。 这些输出轴的下端结构可以有效地将输 出轴的驱动力直接或间接地传递给阀芯。
根据一个实施例, 还提供了一种电子阀, 具有阀座、 阀壳体、 与所述阀座 相配合的阀芯、 套设在所述阀壳体外的定子线圈, 还包括前述本发明第一个方 面的减速转子组件, 所述的减速转子组件设置在所述阀壳体内。
由于电子阀采用了这种减速转子组件, 因而电子阀的结构是紧凑的, 并且 能够减少传动噪声。 这里的电子阀可以是切换阀、 膨胀阀和可逆阀等, 在不同 的电子阀中, 阀芯可以是滑块、 阀针等, 可以是单个构件, 也可以是组件。
阀壳体与阀座各自可以是一体件,或者也可以包含多个单独件的组件结构。 阀壳体与阀座可以是固定连接在一起, 也可以阀壳体的至少一部分与阀座的至 少一部分共同形成一个一体件。
本发明第二个方面
根据一个实施例, 提供了一种电子阀, 具有阀壳体、 连接在所述阀壳体上 的阀座、 与所述阀座相配合的阀芯、 套设在所述阀壳体外的定子线圈, 所述电 子阀还包括设置在所述阀壳体内的根据前述本发明第一个方面的减速转子组件; 所述电子阀为切换阀, 所述阀座上具有多个阀口; 所述阀芯为滑块, 所述输出 轴直接或间接地连接到滑块, 以驱动所述滑块切换所述阀口之间的导通关系。
由于在切换阀中采用了减速转子组件, 因而切换阀的结构更加紧凑, 并且 能够获得更大的驱动力矩, 从而更好地实现阀口之间导通关系的切换。
根据一个实施例, 所述切换阀是三通阀, 所述阀座上的所述多个阀口包括 A阀口、 B阀口和 C阀口; 所述滑块通过滑块轴可旋转地安装在所述阀座上的 滑块轴孔中,并且所述滑块的上表面设置有驱动槽;所述三通阀还包括拨动件, 所述拨动件具有与所述输出轴固定连接的固定段、 与所述驱动槽配合的驱动段 以及连接所述固定段和所述驱动段的倾斜连接段。
滑块通过滑块轴安装在阀座上, 可以顺利地沿阀座的表面摆动, 从而使得 滑块的切换动作顺利流畅。 由于采用了拨动件, 使得输出轴可以通过简单的结 构来驱动滑块进行阀口切换。
进一步地, 所述拨动件可以为弹簧拨片, 所述驱动段弹性施压在所述滑块 的驱动槽的槽底面上。 这样, 通过弹簧拨片的驱动段对槽底面的弹性施压, 可 以使得滑块的压力中心正好与要封闭的阀口相对应, 从而可以取得更好的封闭 效果, 并且结构简单。
进一步地, 所述拨动件的固定段设置有与所述输出端配合的套筒部, 所述 拨动件的驱动段上设置有与所述滑块的驱动槽的槽底面配合的凸泡。 弹簧拨片 的这种结构有利于更好地实现其驱动和弹性施压的作用
根据一个实施例, 所述切换阀是四通阀, 所述阀座上的所述多个阀口包括 S阀口、 C阀口、 D阀口和 E阀口; 所述滑块安装于所述输出轴上, 并随所述 输出轴同步转动, 所述滑块的底面设置有连通槽, 使得所述 S阀口选择性地与 所述 C阀口或所述 E阀口连通。
利用上述结构, 四通阀的滑块底面的连通槽实现了两个阀口之间的导通, 另外两个阀口之间则可以在滑块的外部进行导通, 从而以简单的结构实现了四 通阀的导通关系的切换。
进一步地, 在电子阀中, 所述滑块可轴向移动地安装于所述输出轴上; 所 述四通阀还包括弹簧, 所述弹簧套设在所述输出轴上, 并向所述滑块施压; 所 述 S阀口设置在与所述输出轴相应的位置; 所述连通槽的第一端的位置始终与 所述 S阀口的位置相对应, 所述连通槽的第二端选择性地与所述 C阀口或所述 E阀口连通。
弹簧施压保证了滑块与阀座之间的密封, 并且, 滑块的连通槽与 S阀口的 位置始终相对应, 使得连通槽具有更好的连通作用。
进一步的, 所述输出轴的下端设置有驱动段和圆柱段; 所述四通阀还包括 拨动件, 所述拨动件设置在所述滑块的上方, 具有第一驱动槽以及径向杆, 所 述第一驱动槽与所述输出轴的驱动段配合; 所述滑块还包括枢转孔和第二驱动 槽, 所述枢转孔与所述输出轴下端的圆柱段配合, 所述第二驱动槽与所述拨动 件的径向杆配合。
拨动件和滑块的这种组合结构, 能够减小震动, 使得滑块的转动更顺利, 并且能更好地与阀座密封。 进一步地, 所述滑块上还设置有向上延伸的圆筒部, 所述枢转孔设置在所 述圆筒部内; 所述拨动件上还设置有与所述滑块的圆筒部配合的孔。
滑块上部的圆筒部与拨动件上的相应孔配合, 能够使得滑块与拨动件更好 地结合在一起, 从而有利于减小震动, 使得滑块的转动更顺利, 并且能更好地 与阀座密封。
根据一个实施例, 所述阀座上还设置有用于限制所述滑块的旋转范围的限 位块。 这样可以保护滑块在有效范围内摆动, 从而使得工作更可靠。 无论是三 通阀还是四通阀均可采用该限位结构。
本发明第三个方面
根据一个实施例, 提供了一种电子阀, 其具有阀壳体、 连接在所述阀壳体 上的阀座、 与所述阀座相配合的阀芯、 套设在所述阀壳体外的定子线圈, 所述 电子阀还包括前述第一个方面的减速转子组件, 所述减速转子组件设置在所述 阀壳体内; 所述电子阀为膨胀阀, 所述阀座具有阀口; 所述输出轴通过驱动螺 纹副直接或间接地驱动所述阀芯轴向运动以调节所述阀口的开度。
该膨胀阀中, 由于提供了减速转子组件, 使得膨胀阀的结构更加紧凑, 并 且能够获得更大的驱动力矩,同时能够提高膨胀阀的阀口开度控制精度。另外, 在该减速转子组件中, 转子本体的轴向位置是不动的, 确保了膨胀阀在开启 / 闭合过程中转子与线圈正对面积不变, 从而能保证稳定的电子驱动。
根据一个实施例, 所述输出轴的外表面形成外螺纹, 所述阀针的轴向内孔 中形成内螺纹, 所述外螺纹和所述内螺纹共同形成所述驱动螺纹副; 所述电子 阀还包括导向套, 所述导向套固定设置在所述阀壳体内, 具有非圆导向内孔; 所述阀芯为阀针, 所述阀针具有与所述导向套的非圆导向内孔相配合的非圆外 表面, 使得所述阀针在轴向运动时不会转动。
由于阀针通过非圆外表面与导向套的非圆导向内孔配合, 因而可以确保阀 针在螺纹副的驱动下能够顺利实现轴向运动。
根据一个实施例, 所述导向套将所述阀壳体内的空间分成第一空间和第二 空间, 所述减速转子组件位于所述第一空间内, 所述阀座位于所述第二空间所 在一侧; 所述导向套上设置有平衡孔, 以使所述阀壳体内的第一空间和第二空 间压力平衡。 相应地, 减速转子组件上的第二端连接件上也可以设置有诸如平衡孔这样 的气体平衡结构。
阀壳体内的气体压力平衡有利于各运动部件的顺利动作, 从而确保电子阀 的工作可靠。
根据一个实施例, 电子阀还包括: 螺母套, 所述螺母套固定设置在所述阀 壳体内; 螺杆, 穿设于所述螺母套中, 所述螺杆的外螺纹与所述螺母套的内螺 纹共同形成所述驱动螺纹副, 所述螺杆的第一端与所述输出轴的第二端驱动配 合, 并且在所述输出轴旋转时在所述螺母套内轴向运动; 所述阀芯为阀针, 所 述阀针设置在所述螺杆的第二端, 随所述螺杆而轴向运动。
在该实施例中,由于驱动螺纹副既不设置在输出轴上,也不设置在阀针上, 避免了元件偏心等加工误差对传动的不利影响。
进一步地, 所述输出轴的第二端设置有驱动凸块; 所述螺杆的第一端设置 有与所述驱动凸块配合的驱动槽。 利用驱动凸块与驱动槽的配合, 可以可靠地 实现动力传动。
根据一个实施例, 电子阀还包括: 导向套, 所述导向套固定设置在所述阀 壳体内, 具有侧壁和具有中心孔的底壁; 弹簧套, 设置在导向套内; 所述阀芯 为阀针, 所述阀针设置在所述导向套内, 包括针杆部和位于第一端的凸缘部, 所述针杆部从所述弹簧套中穿过, 并由所述导向套的底壁上的中心孔导向, 朝 向所述阀口延伸, 所述凸缘部支撑在所述弹簧套上。
采用弹簧套, 可以使得阀针及时复位, 从而保证阀口开度控制的准确性。 另外, 导向套的内表面及中心导向孔均可起到对阀针的导向作用, 从而确保阀 针顺利动作。
进一步地, 所述阀针的第一端设置有轴向调节螺钉。 利用该螺钉可以进一 步对阀针的开度设置进行调节。
根据一个实施例, 所述减速转子组件的第二端连接板上设置有平衡孔, 以 使所述阀壳体内的位于所述第二连接板两侧的空间压力平衡。 通过诸如平衡孔 这样的气体平衡结构, 有利于各运动部件的顺利动作, 从而确保电子阀的工作 可靠。
根据一个实施例, 所述阀芯内部还设置有小流量调节机构, 所述小流量调 节机构包括设置在所述阀芯内部的阀针和设置在所述阀芯上的微量调节阀口。 利用该小流量调节机构, 阀芯与阀座上的阀口可以实现相对较大的流量调 节粗调, 阀芯内的阀针与阀芯上的微量调节阀口的配合可以实现较小的流量调 节精调。
本发明第四方面
根据一个实施例, 提供了一种电子阀, 具有阀壳体、 连接在所述阀壳体上 的阀座、 与所述阀座相配合的阀芯、 套设在所述阀壳体外的定子线圈, 其中, 所述电子阀还包括设置在所述阀壳体内的前述本发明第一个方面的减速转子组 件; 所述电子阀为可逆阀, 包括两个所述阀座, 每个所述阀座均具有阀口; 所 述减速转子组件的输出轴通过驱动螺纹副直接或间接地驱动所述阀芯轴向运动 以使两个所述阀座的阀口连通或断开。
由于在可逆阀中采用了减速转子组件, 能够获得更大的驱动力矩, 从而可 以使得可逆阀的双向可逆开关更容易实现, 同时还能使该可逆阀具有紧凑的结 构
根据一个实施例,所述输出轴的外表面形成外螺纹;所述阀芯包括:托架, 所述托架具有内螺纹, 所述托架的内螺纹与所述输出轴的外螺纹共同形成所述 驱动螺纹副; 两个滑块, 分别设置在所述托架的相对两侧, 随所述托架运动, 以分别以使两个所述阀座的阀口连通或断开; 两个弹性件, 分别设置在所述托 架的相对两侧, 并位于所述托架与相应的所述滑块之间, 将相应的所述滑块向 相应的所述阀座施压。
可逆阀的该具体结构, 可以确保阀芯顺利地上下移动以及确保阀口良好密 封。
根据一个实施例, 所述电子阀还包括导向套, 所述导向套固定设置在所述 阀壳体内, 位于所述减速转子组件的下方, 具有导向内孔; 所述拖架的上部具 有导向柱, 与所述导向套的导向内孔配合。
设置导向套,使得托架的运动不发生偏斜,减少故障发生,确保运动顺利, 工作可靠。 所述托架的内螺纹设置在所述导向柱内, 所述输出轴向下延伸穿过 所述导向套的导向内孔, 使得所述输出轴的外螺纹与所述所述托架的内螺纹接 合。 根据一个实施例, 所述电子阀还包括限位座, 所述限位座固定设置在所述 阀壳体内,位于所述托架的下方;所述限位座和所述托架均采用有机材料制成。 利用限位座, 可以限定托架的下行位置, 防止驱动螺纹副脱开。 另外, 采用有 机材料可以减轻限位座和所述托架的重量。
根据一个实施例, 所述托架的所述相对两侧分别设置有滑块安装凹部, 每 个所述滑块安装在相应的所述滑块安装凹部内, 并与所述滑块安装凹部的侧壁 滑动配合。 利用该结构, 可以使滑块可靠地安装在阀架上, 并能可靠地抵靠在 相应阀座的相应表面上。
进一步地, 所述滑块具有底壁和侧壁, 所述底壁和侧壁共同围成朝向所述 托架敞开的弹性件容纳腔, 所述弹性件容纳在相应的所述弹性件容纳腔中。 利 用该结构, 滑块与托架上的弹性件容纳腔之间具有更长的配合长度, 从而可以 更可靠地安装在弹性件容纳腔内, 同时, 在弹性件的作用下, 可以更可靠地抵 靠在相应阀座的相应表面上。
进一步地, 所述弹性件是弹簧片, 所述弹簧片的上下两侧分别设置有朝向 所述滑块侧突伸的弹性凸缘。 弹簧片的弹性凸缘可以使滑块更可靠地抵靠在相 应阀座的相应表面上。
进一步地, 所述滑块安装凹部的下侧壁上设置有限位卡槽; 所述滑块的下 侧壁下方设置有与所述限位卡槽相配合的限位卡块, 其中所述限位卡槽与所述 限位卡块配合为允许所述滑块沿所述滑块安装凹部有预定的活动量。 利用该结 构, 可以便于滑块可靠的安装, 并允许滑块具有必要的活动量, 以确保阀口良 好密封。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限 定。 在附图中:
图 1是根据本发明第一个方面的减速转子组件的实施例的剖视结构示意图; 图 2是图 1中的减速转子组件的减速支撑部的主视结构示意图;
图 3是图 2中的减速支撑部的立体分解结构示意图;
图 4是根据本发明第二个方面的切换阀的一个实施例的剖视结构示意图, 在该实施例中, 切换阀是三通阀;
图 5是图 4中的三通阀的局部立体分解结构示意图, 其中示出了减速支撑 部、 滑块、 阀座之间的结构关系;
图 6A和图 6B是图 4中的三通阀的阀口通断示意图,其中图 6A示出了 A、
B阀口连通, C阀口关闭, 图 6B示出了 A、 C阀口连通, B阀口关闭;
图 7是图 4中的三通阀的拨动件的立体结构示意;
图 8是图 4中的三通阀的滑块的立体结构示意图;
图 9是根据本发明第二个方面的切换阀的另一个实施例的剖视结构示意图, 在该实施例中, 切换阀是四通阀;
图 10是图 9中的四通阀的局部立体分解结构示意图,其中示出了减速支撑 部、 滑块、 阀座之间的结构关系;
图 11A和图 11B是图 9中的四通阀的阀口通断示意图, 其中图 6A示出了 S、 E阀口连通, D、 C阀口连通, 图 6B示出了 S、 C阀口连通, D、 E阀口连 通;
图 12是图 9中的四通阀的拨动件的立体结构示意图;
图 13是图 9中的四通阀的滑块的立体结构示意图;
图 14是图 9中的四通阀的拨动结构(拨动件和滑块的组合状态)的立体结 构示意图;
图 15 是根据本发明第三个方面的膨胀阀的一个实施例的立体剖视结构示 意图;
图 16是图 15中的膨胀阀的剖视结构示意图;
图 17是图 15中的膨胀阀的阀针的立体剖视结构示意图;
图 18图 15中的膨胀阀的导向套的立体剖视结构示意图;图 19是根据本发 明第三个方面的膨胀阀的另一个实施例的立体剖视结构示意图;
图 20是图 19中的膨胀阀的剖视结构示意图;
图 21是图 19中的膨胀阀的输出轴与螺杆之间的结构关系示意图; 图 22是根据本发明第四个方面的可逆阀的一个实施例的剖视结构示意图; 图 23是图 22中的可逆阀的立体分解结构示意图。 具体实施方式 以下对本发明的实施例进行详细说明, 但是本发明可以由权利要求限定和 覆盖的多种不同方式实施。
为了使本技术领域的人员更好地理解本发明方案, 下面将结合本发明实施 例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所 描述的实施例仅仅是本发明一部分的实施例, 而不是全部的实施例。 基于本发 明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获得的所 有其他实施例, 都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、
“第二”等是用于区别类似的对象, 而不必用于描述特定的顺序或先后次序。 应该理解这样使用的结构在适当情况下可以互换, 以便这里描述的本发明的实 施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括” 和“具有” 以及他们的任何变形, 意图在于覆盖不排他的包含。 本发明中, 凡 提及“连接”, 除另有指明, 均包括可以实现发明目的的任何直接或间接连接方 式。 本发明中, 除另有指明, 术语“阀壳体”是指电子阀的支撑结构主体, 用 于单独地或或与阀座一起形成电子阀的内部容纳空间; 术语“阀座”是指电子 阀的用于形成阀口的结构, 其可以是一个单独的元件或部件, 也可以与其他关 联结构形成一体。 例如, 阀壳体与阀座各自可以是一体件, 或者也可以包含多 个单独件的组件结构。 阀壳体与阀座可以是固定连接在一起, 也可以是阀壳体 的至少一部分与阀座的至少一部分共同形成一个一体件。 本发明中, 术语“阀 芯”是指位于电子阀的内部容纳空间内的用来控制阀口开闭的运动部件, 可以 是组件, 也可以是单独的元件。
(一) 减速转子组件
图 1是根据本发明第一个方面的减速转子组件的实施例的剖视结构示意图。 从图 1中可以看到, 电子阀的减速转子组件 100包括转子部 10, 转子部 10 包括转子本体 11和设置在转子本体 11 内的转子连接件 12, 转子本体 11 内形 成转子腔 13。 图中其他结构属于减速支撑部, 可以看到, 转子部 10套设在减 速支撑部外, 并且减速支撑部与转子部 10连接。
图 2和图 3分别是减速转子组件中的减速支撑部的主视结构示意图和立体 分解结构示意图。 参见图 1, 并结合参见图 2和 3 , 可以看到, 减速支撑部包括输入轴 20、 输出轴 25、 支撑组件 30和减速齿轮组件 40。
输入轴 20沿转子部 10的轴线延伸, 其朝上的一端为第一端, 固定连接到 转子部 10的转子连接件 12上, 从而实现对转子部 10的支撑和定位。
支撑组件 30的下端需要相对电子阀的阀壳体固定设置, 这样,才能将整个 减速转子组件固定设置于阀壳体内。 支撑组件 30的上端则朝向转子腔 13内延 伸, 这样支撑组件 30可以用来支撑位于转子腔 13内的输入轴 20。
支撑组件 30提供沿转子部 10的轴线布置的两个支撑部位, 以支撑输入轴 20。从图 1和图 2中可以看到,支撑组件 30包括位于上端的第一端连接板 31、 位于下端的第二端连接板 34以及位于二者之间的第一中间连接板 32和第二中 间连接板 33。 其中, 上端的第一端连接板 31用以提供对输入轴 20的支撑的第 一支撑部位,第一中间连接板 32用以提供对输入轴 20的支撑的第二支撑部位。 第二端连接板 34形成支撑组件 30的底部, 与电子阀的阀壳体固定连接。 各连 接板之间是通过多个连接柱连接在一起的,并通过这些连接柱保持所需的距离。
作为优选的实施方式, 从图 1和 2中可以看到, 第一支撑部位和第二支撑 部位分别位于转子本体 11的沿转子部 10的轴线的中间位置的两侧, 并均支撑 输入轴 20。 由于两个支撑部位分别位于转子本体的沿转子部的轴线的中间位置 的两侧, 转子部可以得到更好地支撑。 当然, 作为可选的实施方式, 支撑组件 30也可以在转子腔 13内对转子本体 11的内壁提供支撑, 因而转子部可以得到 更好的支撑, 进一步减小转子部的振动。
多个连接柱可以包括连接第一端连接板 31和第一中间连接板 32的两个第 一连接柱 35以及连接第一中间连接板 32和第二端连接板 34的两个第二连接柱 36。 从图 2和 3中可以看到, 两个第一连接柱 35与两个第二连接柱 36在沿圆 周方向上错位布置。 第一连接柱 35和第二连接柱 36的这种错位布置可以起到 减缓震动的作用。
从图 2和 3还可以看到, 第二中间连接板 33设置在第一中间连接板 32与 第二端连接板 34之间, 第二连接柱 36贯穿第二中间连接板 33, 间隔套 37套 设在第二连接柱 36上, 并支撑在第二中间连接板 33与第二端连接板 34之间, 使二者之间具有所需的间距。 减速齿轮组件 40作为输入轴 20和输出轴 25之间的减速机构,安装在支撑 组件 30上, 并至少部分地位于转子腔 13内。 由于具有减速齿轮组件 40, 输出 轴 25可以提供更大的驱动力矩 (开阀力矩), 从而使得电子阀具有较大的开阀 能力。 减速支撑部的减速齿轮组件至少部分地位于转子腔内, 因而整个减速转 子组件和电子阀的结构是紧凑的, 并且能够减少传动噪声。
从图 1和 2还可以看到, 在整个减速转子组件中,减速齿轮组件 40设置在 第一中间连接板 32与第二端连接板 34之间。 由于减速齿轮组件设置在靠近第 二端连接板的一侧, 更接近与阀壳体的固定连接位置, 转子自转的偏心振动对 其影响较小, 因而更可靠, 工作更稳定。
从图 1中可以看到, 减速转子组件中, 减速支撑部的第二端连接板 34与转 子本体 11的第二端之间具有安全间距。 这样的设置, 可以防止在工作过程中, 转子本体与第二端连接板发生摩擦, 保证工作的可靠性。第二端连接板 34可以 通过螺纹或焊接与电子阀的阀壳体固定连接。 这样, 减速转子组件可以可靠地 连接在阀壳体上。
结合参见图 2和 3 ,减速齿轮组件 40包括: 安装在输入轴 20的第二端(即 图中所示的下端) 的输入齿轮 41和安装在输出轴 25的第一端 (即图中所示的 上端) 的输出齿轮 46, 还可以包括设置在输入齿轮 41和输出齿轮 46之间的由 多个中间齿轮轴支撑的多个中间齿轮,通过设置中间齿轮,可以实现多级减速, 从而能够获得更大的驱动力矩。
从图 2和 3可以看到, 减速齿轮组件 40具有第一中间齿轮轴 47和第二中 间齿轮轴 48, 第一中间齿轮轴 47的第一端连接在第一中间连接板 32上, 第二 端连接在第二端连接板 34上, 第二中间齿轮轴 48, 第一端连接在第一中间连 接板 32上, 第二端连接在第二端连接板 34上。
在第一中间齿轮轴 47上设置有与输入齿轮 41嗤合的第一中间齿轮轴大齿 轮 42以及与第一中间齿轮轴大齿轮 42同步转动的第一中间齿轮轴小齿轮 43。 在第二中间齿轮轴 48上设置有与第一中间齿轮轴小齿轮 43啮合的第二中间齿 轮轴大齿轮 44以及与第二中间齿轮轴大齿轮 44同步转动的第二中间齿轮轴小 齿轮 45, 该第二中间齿轮轴小齿轮 45与输出齿轮 46啮合。
从图 2可以看到, 第一中间齿轮轴大齿轮 42和第二中间齿轮轴大齿轮 44 位于第一中间连接板 32和第二中间连接板 33之间,输出齿轮 46位于第二中间 连接板 33与第二端连接板 34之间。 采用上述结构, 支撑组件确保了对输入轴 的可靠支撑, 并能将减速齿轮组件结合在支撑组件内, 实现了紧凑的结构。 在 该实施例中, 从减速齿轮组件 40提供了三级减速结构。 可选地, 根据需要, 也 可以更多或更少级减速传动结构。 如果提供仅一级减速结构的话, 则各中间齿 轮和中间齿轮轴可以去掉。
从图 1可以看到, 第二中间连接板 33位于转子腔 13内, 第二端连接板 34 与转子本体 11的第二端之间具有安全间距。通过该结构, 实现了将减速齿轮组 件的除末级减速结构 (第二中间齿轮轴小齿轮 45和输出齿轮 46) 外的部分均 置于转子腔内, 减少传动噪声, 防止摩擦。 当然, 作为一个可选的实施方式, 也可以将末级减速结构也置于转子腔内。
根据一个实施例, 根据一个实施例, 转子连接件 12 具有中心孔, 输入轴 20具有与连接连接件 12的中心孔配合的第一直径段; 第一端连接板 31具有中 心孔, 第一端连接板 31 的中心孔内设置有用作滑动轴承的第一固定套 60, 第 一固定套 60具有防止向上脱离所述第一端连接板 31的台阶部; 所述输入轴 20 具有与所述第一固定套 60 的内孔配合的第二直径段以及位于所述转子连接件 12下方的第三直径段, 所述第二直径段的直径大于所述第一直径段的直径, 所 述第三直径段的直径大于所述第二直径段的直径。 第一固定套作为滑动轴承, 不但可以起到减摩的作用, 也可以作为限位结构, 有效地限制输入轴的轴向窜 动。
根据一个未示出的实施例,输入轴 20包括固定地套设在其上的第二固定套, 以形成输入轴 20的第三直径段。
根据一个实施例, 第一固定套 60可以与第一端连接板 31通过铆接固定连 接。第二固定套可以与输入轴 20通过铆接固定连接。第一固定套和第二固定套 共同配合, 限制输入轴的轴向窜动, 同时, 输入轴的多个直径段可以确保将第 一端连接件和转子连接件连接在输入轴的不同的位置, 且该结构便于组装和拆 卸。
根据一个实施例, 转子连接件 12可以设置在转子本体 11的第一端内, 转 子本体 11和转子连接件 12共同限定朝向转子本体 11 的第二端开放的转子腔 13。 这样话, 转子腔的轴向尺寸更大, 便于布置减速支撑部, 且能更好地实现 支撑组件的支撑作用。
为了实现动力输出, 作为可选的实施方式,输出轴 25的下端可以形成有用 以实现轴向驱动的螺纹驱动部或用以实现旋转驱动的非圆驱动部。 下文将有更 详尽的描述。 这些输出轴的下端结构可以有效地将输出轴的驱动力直接或间接 地传递给阀芯。
根据本发明的实施例,前面提到的减速转子组件可应用于电子阀中。因而, 提供了一种电子阀, 具有阀壳体、 连接在阀壳体上的阀座、 与阀座相配合的阀 芯、 套设在阀壳体外的定子线圈, 还包括前述的任何一种实施方式的减速转子 组件 100, 减速转子组件 100设置在电子阀的阀壳体内。
由于电子阀采用了这种减速转子组件, 因而电子阀的结构是紧凑的, 并且 能够减少传动噪声。 同时, 由于由于减速转子组件中包含了减速齿轮组件, 使 得可以
这里的电子阀可以是切换阀、 膨胀阀和可逆阀等。 切换阀、 膨胀阀和可逆 阀的实施例在下文有详细说明。在不同的电子阀中, 阀芯可以是滑块、阀针等, 可以是单个构件, 也可以是组件。
(二) 切换阀
切换阀是电子阀的一种, 包括三通阀和四通阀。
图 4是根据本发明第二个方面的切换阀的一个实施例的剖视结构示意图, 在该实施例中, 切换阀是三通阀; 图 5是图 4中的三通阀的局部立体分解结构 示意图, 其中示出了减速支撑部、 滑块、 阀座之间的结构关系。
参见图 4和 5, 可以看到, 该实施例的三通阀具有阀壳体 101、 连接在阀壳 体 101上的阀座 104、与阀座 104相配合的作为阀芯的滑块 103、套设在阀壳体 101外的定子线圈 (未示出), 三通阀还包括设置在阀壳体 101内的减速转子组 件 100。 该减速转子组件可以是根据前述本发明第一个方面的任意一个实施例 的减速转子组件 100。
图 6A和图 6B是图 4中的三通阀的阀口通断示意图, 图 7和 8分别是图 4 中的三通阀的拨动件 102和滑块 103的立体结构示意图。
结合参见图 5、 图 6A、 6B, 以及图 7和 8, 可以看到, 阀座 104上有多个 阀口, 包括 A阀口 106A、 B阀口 106B和 C阀口 106C。 多个连接管, 包括第 一连接管 108A、第二连接管 108B和第三连接管 108C, 连接在阀座 104上, 分 别与 A阀口 106A、 B阀口 106B和 C阀口 106C位置相对应。滑块轴 103a可旋 转地安装在阀座 104上的滑块轴孔 104a中, 以驱动滑块 103切换阀口之间的导 通关系。 其中图 6A示出了 A、 B阀口连通, C阀口关闭, 图 6B示出了 A、 C 阀口连通, B阀口关闭。 滑块 103通过滑块轴 103a安装在阀座 104上, 可以顺 利地沿阀座 104的表面摆动, 从而使得滑块 103的切换动作顺利流畅。
拨动件 102具有与输出轴 25固定连接的固定段 1021、 与驱动槽 1033配合 的驱动段 1023以及连接固定段 1021和驱动段 1023的倾斜连接段 1022, 其中 驱动段 1023与滑块 103的上表面上设置的的驱动槽 1033配合,以驱动滑块 103 o 由于采用了拨动件 102, 使得输出轴 25可以通过简单的结构来驱动滑块 103进 行阀口切换。
目前, 用于制冷设备的切换阀, 例如三通阀, 特别是热泵型空调管路中的 电动三通阀, 大都通过阀内的滑块切换控制冷媒的通断和流向, 由于滑块截面 积大, 需要的旋转力矩较大, 采用步进电机难以直接驱动。 在根据本发明的实 施例的三通阀中, 由于采用了减速转子组件, 因而三通阀的结构更加紧凑, 并 且能够获得更大的驱动力矩, 从而更好地实现阀口之间导通关系的切换。
从图 4、 5和 7可以看到, 拨动件 102是弹簧拨片, 驱动段 1023弹性施压 在滑块 103的驱动槽 1033的槽底面上。这样,通过弹簧拨片的驱动段对槽底面 的弹性施压, 可以使得滑块 103的压力中心正好与要封闭的阀口相对应, 从而 可以取得更好的封闭效果, 并且结构简单。
从图 7还可以看到, 拨动件 102的固定段 1021设置有与输出端 25配合的 套筒部 1025, 拨动件 102的驱动段 1023上设置有与滑块 103的驱动槽 1033的 槽底面配合的凸泡 1024。 弹簧拨片的这种结构有利于更好地实现其驱动和弹性 施压的作用。
从图 5中还可以看到, 在该三通阀中, 阀座 104上还可以设置有用于限制 滑块 103 的旋转范围的限位块 105。 这样可以保护滑块在有效范围内摆动, 从 而使得工作更可靠。
图 9是根据本发明第二个方面的切换阀的另一个实施例的剖视结构示意图, 在该实施例中, 切换阀是四通阀; 图 10是图 9中的四通阀的局部立体分解结构 示意图, 其中示出了减速支撑部、 滑块、 阀座之间的结构关系。
参见图 9和 10, 可以看到, 该实施例的四通阀具有阀壳体 101、 连接在阀 壳体 101上的阀座 104、与阀座 104相配合的作为阀芯的滑块 103、套设在阀壳 体 101外的定子线圈(未示出), 四通阀还包括设置在阀壳体 101内的减速转子 组件 100。 该减速转子组件可以是根据前述本发明第一个方面的任意一个实施 例的减速转子组件 100。
图 11A和图 11B是图 9中的四通阀的阀口通断示意图, 图 12和 13分别是 图 9中的四通阀的拨动件 102和滑块 103的立体结构示意图,图 14是图 9中的 四通阀的拨动结构 (拨动件和滑块的组合状态) 的立体结构示意图。
结合参见图 10、 图 6A、 6B, 以及图 7和 8, 可以看到, 阀座 104上的多 个阀口包括 S阀口 106S、 C阀口 106C、 D阀口 106D和 E阀口 106E; 多个连 接管, 包括第一连接管 108S、 第二连接管 108C、 第三连接管 108D和第四连接 管 106E,连接在阀座 104上,分别与 A阀口 106A、 B阀口 106B和 C阀口 106C 位置相对应。滑块 103安装于输出轴 25上, 并随输出轴 25同步转动。滑块 103 的底面设置有连通槽 1031(示于图 9中),使得 S阀口 106S选择性地与 C阀口 106C或 E阀口 106E连通。
利用上述结构,四通阀的滑块 103底面的连通槽 1031实现了两个阀口之间 的导通, 另外两个阀口之间则可以在滑块的外部进行导通, 从而以简单的结构 实现了四通阀的导通关系的切换。
参见图 9和 10, 在该实施例的四通阀中, 滑块 103可轴向移动地安装于输 出轴 25上; 四通阀还包括弹簧 107, 弹簧 107套设在输出轴 25上, 并向滑块 103施压。 优选地, S阀口 106S设置在与输出轴 25相应的位置; 连通槽 1031 的第一端的位置始终与 S阀口 106S的位置相对应, 连通槽 1031的第二端选择 性地与 C阀口 106C或 E阀口 106E连通。
弹簧施压保证了滑块与阀座之间的密封, 并且, 滑块的连通槽与 S阀口的 位置始终相对应, 使得连通槽具有更好的连通作用。
参见图 10、 图 12至图 14, 在该实施例的四通阀中, 输出轴 25的下端设置 有驱动段 25a和圆柱段 25b; 四通阀还包括拨动件 102, 拨动件 102设置在滑块 103的上方, 具有第一驱动槽 102a以及径向杆 102c, 第一驱动槽 102a与输出 轴 25的驱动段 25a配合; 滑块 103还包括枢转孔 103b和第二驱动槽 103c, 枢 转孔 103b与输出轴 25下端的圆柱段 25b配合, 第二驱动槽 103c与拨动件 102 的径向杆 102c配合。 拨动件和滑块的这种组合结构, 能够减小震动, 使得滑块 的转动更顺利, 并且能更好地与阀座密封。
滑块 103上还设置有向上延伸的圆筒部 103a, 枢转孔 103b设置在圆筒部 103a内; 拨动件 102上还设置有与滑块 103的圆筒部 103a配合的孔。 滑块上 部的圆筒部与拨动件上的相应孔配合, 能够使得滑块与拨动件更好地结合在一 起,从而有利于减小震动,使得滑块的转动更顺利,并且能更好地与阀座密封。
从图 10中还可以看到, 在该四通阀中, 阀座 104上还可以设置有用于限制 滑块 103 的旋转范围的限位块 105。 这样可以保护滑块在有效范围内摆动, 从 而使得工作更可靠。
随着空调小型化的发展, 其内部配件结构也处于开发变更中, 旋转式四通 阀是一个主方向。 由于四通阀的滑块截面积大, 需要的旋转力矩较大, 采用步 进电机难以直接驱动。 根据本发明的该实施例的四通阀, 采用步进电机原理驱 动的同时引入微型齿轮传动结构(旋转转子组件的减速齿轮组件),保证四通阀 能够稳定可靠的切换, 四通阀具有结构紧凑, 噪音小等优点, 并且提高了传动 精度及传动效率。
(三) 膨胀阀
膨胀阀是电子阀的一种。
图 15 是根据本发明第三个方面的膨胀阀的第一个实施例的立体剖视结构 示意图, 图 16是图 15中的膨胀阀的剖视结构示意图。
参见图 15和 16, 可以看到, 该实施例的膨胀阀具有阀壳体 201、 连接在阀 壳体 201上的阀座 204、与阀座 204相配合的作为阀芯的阀针 203、套设在阀壳 体 201外的定子线圈 50。 阀座 204具有阀口 206。 该膨胀阀还包括设置在阀壳 体 201 内的减速转子组件 100。 该减速转子组件可以是根据前述本发明第一个 方面的任意一个实施例的减速转子组件 100。减速转子组件 100的输出轴 25通 过驱动螺纹副直接驱动阀针 203轴向运动以调节阀口 206的开度。
现有的电子膨胀阀通常采用磁性转子与芯轴螺杆固连的结构, 芯轴螺杆与 螺母组件螺纹副作用后带动与芯轴螺杆一体的阀针做轴向上下运动,实现流量 调节。 因此, 在开关阀过程中转子与线圈正对面积在不断改变, 影响驱动稳定 性; 此外, 还存在开阀力矩小, 控制脉冲数少、 流量调节精度差等问题。
根据本发明的实施例的膨胀阀中, 由于提供了减速转子组件 100, 使得膨 胀阀的结构更加紧凑, 并且能够获得更大的驱动力矩, 同时能够提高膨胀阀的 阀口开度控制精度。 另外, 在该减速转子组件中, 转子本体 11的轴向位置是不 动的, 确保了膨胀阀在开启 /闭合过程中转子本体 11与定子线圈 50正对面积不 变, 从而能保证稳定的电子驱动。
图 17是图 15中的膨胀阀的阀针的立体剖视结构示意图。 从图 16和 17中 可以看到, 在膨胀阀的该实施例, 输出轴 25的外表面形成外螺纹, 阀针 203的 轴向内孔中形成内螺纹, 外螺纹和内螺纹共同形成驱动螺纹副。
从图 16和 17可以看到, 该膨胀阀还包括导向套 205, 导向套 205固定设 置在阀壳体 201内。图 18是图 15中的膨胀阀的导向套的立体剖视结构示意图, 可以看到, 导向套 205具有非圆导向内孔 205a。 相应地, 从图 17可以看到, 阀针 203具有与导向套 205的非圆导向内孔 205a相配合的非圆外表面 203a, 使得阀针 203在轴向运动时不会转动。
由于阀针通过非圆外表面与导向套的非圆导向内孔配合, 因而可以确保阀 针在螺纹副的驱动下能够顺利实现轴向运动。 图 17和 18中所示的阀针 203的 非圆外表面和导向套 205的非圆内孔均呈正方形轮廓, 然而, 可以知道, 任何 其他的非圆形轮廓, 例如长方形、 五边形等均实现同样的目的。
从图 16可以看到,导向套 205将阀壳体 201内的空间分成第一空间和第二 空间, 减速转子组件 100位于第一空间内, 阀座 204位于第二空间所在一侧。 从图 18可以看到, 导向套 205上还设置有平衡孔 2052, 以使阀壳体 201 内的 第一空间和第二空间压力平衡。
从图 16中还可以看到, 减速转子组件 100的第二端连接件 34位于导向套 205 的上方。 为了更好地实现使第一空间与第二空间气体平稳, 相应地, 在减 速转子组件 100的第二端连接件 34上也可以设置有诸如平衡孔这样的气体平衡 结构。
阀壳体 201 内的气体压力平衡有利于各运动部件的顺利动作, 从而确保膨 胀阀的工作可靠。
图 19 是根据本发明第三个方面的膨胀阀的第二个实施例的立体剖视结构 示意图, 图 20是图 19中的膨胀阀的剖视结构示意图。
为描述简便起见, 下面主要描述该第二实施例的膨胀阀相对于第一实施例 的不同, 相同的部分省略。
参见图 19和 20, 可以看到, 在该膨胀阀的第二实施例中, 膨胀阀还包括 螺母套 225和螺杆 226。螺母套 225固定设置在阀壳体 201内, 螺杆 226, 穿设 于螺母套 22中,螺杆 226的外螺纹与螺母套 225的内螺纹共同形成驱动螺纹副。 螺杆 226的第一端与输出轴 25的第二端驱动配合, 并且在输出轴 25旋转时在 螺母套 225内轴向运动。 阀针 203设置在螺杆 226的第二端, 随螺杆 226而轴 向运动。
在该实施例中,由于驱动螺纹副既不设置在输出轴上,也不设置在阀针上, 避免了元件偏心等加工误差对传动的不利影响。
图 21是图 19中的膨胀阀的输出轴与螺杆之间的结构关系示意图。 从图 21 可以看到, 在该实施例中, 为了将输出轴 25的动力传递给螺杆 226, 输出轴 25 的第二端 (下端) 设置有驱动凸块; 螺杆 226的第一端 (上端) 设置有与驱动 凸块配合的驱动槽。利用驱动凸块与驱动槽的配合,可以可靠地实现动力传动。
再来参见图 19和 20, 在膨胀阀的该第二实施例中, 膨胀阀还包括导向套 205和弹簧套 227, 导向套 205固定设置在阀壳体 201内, 具有侧壁和底壁, 底 壁上具有中心孔。弹簧套 227设置在导向套 205内。阀针 203设置在导向套 205 内,包括针杆部和位于第一端(上端)的凸缘部,针杆部从弹簧套 227中穿过, 并由导向套 205的底壁上的中心孔导向, 朝向阀口 206延伸, 凸缘部支撑在弹 簧套 227上。
采用弹簧套 227, 可以使得阀针 203及时复位, 从而保证阀口开度控制的 准确性。 另外, 导向套 205的内表面及中心导向孔均可起到对阀针 203的导向 作用, 从而确保阀针 203顺利动作。
作为可选的实施方式, 从图 20中还可以看到, 阀针 203的上端具有沿阀针 203 的轴向设置的轴向调节螺钉。 利用该螺钉可以进一步对阀针的开度设置进 行调节。 从图 21中可以看到, 在该第二实施例的膨胀阀中,减速转子组件 100的第 二端连接板 34上设置有平衡孔 342, 以使阀壳体 201 内的位于第二连接板 34 两侧的空间压力平衡。 相应地, 在相应地, 在固定套 225上也可以设置有诸如 平衡孔这样的气体平衡结构。
虽然没有示出, 作为一种可选的实施方式, 阀芯内部还设置有小流量调节 机构, 小流量调节机构包括设置在阀芯内部的阀针和设置在阀芯上的微量调节 阀口。 这样的阀芯和小流量调节机构在中国专利文献 CN06870750A“二段式电 子膨胀阀” 中有详细的说明。 利用该小流量调节机构, 阀芯与阀座上的阀口可 以实现相对较大的流量调节粗调, 阀芯内的阀针与阀芯上的微量调节阀口的配 合可以实现较小的流量调节精调。
(三) 可逆阀
可逆阀是电子阀的一种。
图 22和 23分别是根据本发明第四个方面的可逆阀的一个实施例的剖视结 构示意图和立体分解结构示意图。
参见图 22和 23 , 可以看到, 该实施例的可逆阀具有阀壳体 301、 连接在阀 壳体 301上的阀座 304、 与阀座 304相配合的阀芯、 套设在阀壳体 201外的定 子线圈(未示出)。该可逆阀还包括设置在阀壳体 301内的前述本发明第一个方 面的任意一个实施例的减速转子组件 100。 该可逆阀中, 两个阀座 304固定设 置在阀壳体 301 内, 每个阀座 304均具有阀口 306。 多个连接管, 包括第一连 接管 308A和第二连接管 308B, 分别连接在相应的一个阀座 304上, 与相应的 阀口 306位置相对应。减速转子组件 100的输出轴 25通过驱动螺纹副驱动阀芯 轴向运动以使两个阀座 304的阀口 306连通或断开。
现有的电动可逆阀一般为电磁铁控制的先导式的结构。 本发明该实施例的 可逆阀, 由于在可逆阀中采用了减速转子组件, 能够获得更大的驱动力矩, 从 而可以使得可逆阀的双向可逆开关更容易实现, 同时还能使该可逆阀具有紧凑 的结构。
从图 22和 23可以看出, 在该实施例的可逆阀中, 减速转子组件 100的输 出轴 25的外表面形成外螺纹; 阀芯包括托架 302、 设置在托架两侧的两个滑块 303、 设置在托架 302与相应的滑块 303之间的两个弹性件。 具体来说, 托架 302具有内螺纹, 托架 302的内螺纹与输出轴 25的外螺纹 共同形成驱动螺纹副。 两个滑块 303分别设置在托架 302的相对两侧, 随托架 302运动, 以分别以使两个阀座 304的阀口 306连通或断开。 两个弹性件分别 设置在托架 302的相对两侧, 并位于托架 302与相应的滑块 303之间, 将相应 的滑块 303向相应的阀座 304施压。
可逆阀的该具体结构, 可以确保阀芯顺利地上下移动以及确保阀口良好密 封。
从图 22和 23中可以看到, 在该实施例中, 电子阀还包括导向套 305, 导 向套 305固定设置在阀壳体 301内,位于减速转子组件的下方,具有导向内孔; 拖架 302的上部具有导向柱 3024, 与导向套 305的导向内孔配合。
设置导向套 305可以使得托架的运动不发生偏斜, 减少故障发生, 确保运 动顺利, 工作可靠。 托架 302的内螺纹设置在导向柱 3024内, 输出轴 25向下 延伸穿过导向套 305的导向内孔,使得输出轴 25的外螺纹与托架 302的内螺纹 接合。
从图 22和 23中可以看到, 作为一种可选的实施方式, 该实施例的可逆阀 还包括限位座 306, 限位座 306固定设置在阀壳体 301内, 位于托架 302的下 方。 可选的, 限位座 306和托架 302均采用有机材料制成。 利用限位座, 可以 限定托架的下行位置, 防止驱动螺纹副脱开。 另外, 采用有机材料可以减轻限 位座 306和托架 302的重量。
作为一种可选的实施方式, 该实施例的可逆阀中, 托架 302的相对两侧分 别设置有滑块安装凹部 3023, 每个滑块 303安装在相应的滑块安装凹部 3023 内, 并与滑块安装凹部 3023的侧壁滑动配合。利用该结构, 可以使滑块可靠地 安装在阀架上, 并能可靠地抵靠在相应阀座的相应表面上。
作为一种可选的实施方式, 该实施例的可逆阀中, 滑块 303具有底壁和侧 壁, 底壁和侧壁共同围成朝向托架 302敞开的弹性件容纳腔 3023 , 弹性件容纳 在相应的弹性件容纳腔 3023中。利用该结构,滑块与托架上的弹性件容纳腔之 间具有更长的配合长度, 从而可以更可靠地安装在弹性件容纳腔内, 同时, 在 弹性件的作用下, 可以更可靠地抵靠在相应阀座 304的相应表面上。
作为一种可选的实施方式, 该实施例的可逆阀中, 弹性件是弹簧片 307, 弹簧片 307的上下两侧分别设置有朝向滑块 303侧突伸的弹性凸缘 3071。 弹簧 片的弹性凸缘可以使滑块更可靠地抵靠在相应阀座 304的相应表面上。
作为一种可选的实施方式, 该实施例的可逆阀中,滑块安装凹部 3023的下 侧壁上设置有限位卡槽 302a; 滑块 303 的下侧壁下方设置有与限位卡槽 302a 相配合的限位卡块 303a, 其中限位卡槽 302a与限位卡块 303a配合为允许滑块 303沿滑块安装凹部 3023有预定的活动量。 利用该结构, 可以便于滑块可靠的 安装, 并允许滑块具有必要的活动量, 以确保阀口良好密封。
发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何 修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1. 电子阀的减速转子组件, 包括: 转子部 (10) 以及与所述转子部 (10)连 接的减速支撑部, 其特征在于,
所述转子部 (10) 包括转子本体 (11) 和设置在所述转子本体 (11) 内 的转子连接件 (12), 所述转子本体 (11) 内形成转子腔 (13), 所述转子部 (10) 套设在所述减速支撑部外,
所述减速支撑部包括:
输入轴 (20), 沿所述转子部 (10) 的轴线延伸, 所述输入轴 (20) 朝 上的第一端固定连接到所述转子连接件 (12);
输出轴 (25);
支撑组件 (30); —端相对电子阀的阀壳体固定设置, 另一端朝向所述 转子腔内延伸, 以支撑所述输入轴 (20) 和 /或转子本体 (11); 以及
减速齿轮组件 (40), 安装在所述支撑组件 (30) 上, 并且至少部分地 位于所述转子腔 (13)内, 所述减速齿轮组件 (40)设置在所述输入轴 (20) 和所述输出轴 (25) 之间。
2. 根据权利要求 1所述的减速转子组件, 其特征在于: 所述支撑组件 (30) 提供沿所述转子部 (10) 的轴线布置的第一支撑部位和第二支撑部位, 所述 第一支撑部位和所述第二支撑部位各自用于支撑所述转子本体 (11)和所述 输入轴 (20) 中之一。
3. 根据权利要求 2所述的减速转子组件, 其特征在于,所述第一支撑部位和 所述第二支撑部位分别位于所述转子本体 (11) 的沿所述转子部 (10) 的轴 线的中间位置的两侧, 并均支撑所述输入轴 (20)。
4. 根据权利要求 1所述的减速转子组件,其特征在于,所述减速齿轮组件 (40) 包括:
输入齿轮 (41), 安装在所述输入轴 (20) 的第二端;
输出齿轮 (46), 安装在所述输出轴 (25) 的第一端;
中间齿轮, 设置在所述输入齿轮 (41) 和输出齿轮 (46) 之间; 以及 中间齿轮轴, 支撑所述中间齿轮。
5. 根据权利要求 2所述的减速转子组件, 其特征在于:
所述支撑组件 (30) 包括: 第一端连接板 (31), 用以提供所述第一支撑部位; 第二端连接板 (34), 位于所述支撑组件 (30) 的底部, 与所述电子阀 的阀壳体固定连接;
第一中间连接板 (32), 设置在所述第一端连接板 (31) 和所述第二端 连接板 (34) 之间, 用以提供所述第二支撑部位; 以及
多个连接柱, 将所述第一端连接板 (31)、 第二端连接板 (34) 和第一 中间连接板 (32) 连接在一起,
其中, 所述减速齿轮组件 (40) 设置在所述第一中间连接板 (32) 与所 述第二端连接板 (34) 之间。
6. 根据权利要求 5所述的减速转子组件,其特征在于,所述第二端连接板 (34) 与所述转子本体 (11) 的第二端之间具有安全间距。
7. 根据权利要求 5所述的减速转子组件,其特征在于,所述第二端连接板 (34) 通过螺纹或焊接与所述电子阀的阀壳体固定连接。
8. 根据权利要求 5所述的减速转子组件,其特征在于,所述多个连接柱包括: 多个第一连接柱 (35), 连接所述第一端连接板 (31) 和所述第一中间 连接板 (32); 以及
多个第二连接柱 (36), 连接所述第一中间连接板 (32) 和所述第二端 连接板 (34),
其中, 所述第一连接柱 (35) 与所述第二连接柱 (36) 在沿圆周方向上 错位布置。
9. 根据权利要求 5所述的减速转子组件, 其特征在于:
所述支撑组件 (30) 还包括:
第二中间连接板 (33), 所述第二中间连接板 (33) 设置在所述第一中 间连接板 (32) 与所述第二端连接板 (34) 之间, 所述第二连接柱 (36) 贯 穿所述第二中间连接板 (33); 以及
间隔套 (37), 套设在所述第二连接柱 (36) 上, 并间隔在所述第二中 间连接板 (33) 与所述第二端连接板 (34) 之间,
所述减速齿轮组件 (40) 包括:
输入齿轮 (41), 所述输入齿轮 (41) 安装在所述输入轴 (20) 的第二 端;
输出齿轮 (46), 所述输出齿轮 (46) 安装在所述输出轴 (25) 的第一 端;
第一中间齿轮轴 (47), 第一端连接在所述第一中间连接板 (32) 上, 第二端连接在所述第二端连接板 (34) 上;
第一中间齿轮轴大齿轮 (42), 设置在所述第一中间齿轮轴 (47) 上, 与所述输入齿轮 (41) 嗤合;
第一中间齿轮轴小齿轮 (43), 设置在所述第一中间齿轮轴 (47) 上, 与所述第一中间齿轮轴大齿轮 (42) 同步转动;
第二中间齿轮轴 (48), 第一端连接在所述第一中间连接板 (32) 上, 第二端连接在所述第二端连接板 (34) 上;
第二中间齿轮轴大齿轮 (44), 设置在所述第二中间齿轮轴 (48) 上, 与第一中间齿轮轴小齿轮 (43) 嗤合; 以及
第二中间齿轮轴小齿轮 (45), 设置在所述第二中间齿轮轴 (48) 上, 与所述第二中间齿轮轴大齿轮 (44) 同步转动, 并与所述输出齿轮 (46) 啮 合,
其中,所述第一中间齿轮轴大齿轮(42)和第二中间齿轮轴大齿轮(44) 位于所述第一中间连接板 (32) 和所述第二中间连接板 (33) 之间, 所述输 出齿轮 (46) 位于所述第二中间连接板 (33) 与所述第二端连接板 (34) 之 间。
10. 根据权利要求 9所述的减速转子组件, 其特征在于:
所述第二中间连接板 (33) 位于所述转子腔 (13) 内, 所述第二端连接 板 (34) 与所述转子本体 (11) 的第二端之间具有安全间距。
11. 根据权利要求 5所述的减速转子组件, 其特征在于:
所述转子连接件 (12) 具有中心孔, 所述输入轴 (20) 具有与所述连接 连接件 (12) 的中心孔配合的第一直径段;
所述第一端连接板 (31) 具有中心孔, 所述第一端连接板 (31) 的中心 孔内设置有用作滑动轴承的第一固定套 (60), 所述第一固定套 (60) 具有 防止向上脱离所述第一端连接板 (31) 的台阶部; 所述输入轴 (20) 具有与所述第一固定套 (60) 的内孔配合的第二直径 段以及位于所述转子连接件 (12) 下方的第三直径段, 所述第二直径段的直 径大于所述第一直径段的直径, 所述第三直径段的直径大于所述第二直径段 的直径。
12. 根据权利要求 11所述的减速转子组件, 其特征在于:
所述输入轴 (20)包括固定地套设在其上的第二固定套, 以形成所述输 入轴 (20) 的所述第三直径段。
13. 根据权利要求 1所述的减速转子组件, 其特征在于:
所述转子连接件 (12) 设置在所述转子本体 (11) 的第一端内, 所述转 子本体 (11) 和所述转子连接件 (12) 共同限定朝向转子本体 (11) 的第二 端开放的所述转子腔 (13)。
14. 根据权利要求 1所述的减速转子组件, 其特征在于:
所述输出轴 (25) 的下端形成有用以实现轴向驱动的螺纹驱动部或用以 实现旋转驱动的非圆驱动部。
15. 一种电子阀, 具有阀壳体 (101 ; 201; 301)、 连接在所述阀壳体 (101 ; 201; 301) 上的阀座 (104; 204; 304)、 与所述阀座 (104; 204; 304) 相 配合的阀芯、 套设在所述阀壳体 (101 ; 201 ; 301) 外的定子线圈 (50), 其 特征在于:
还包括设置在所述阀壳体 (101 ; 201; 301) 内的根据权利要求 1至 14 中任一项所述的减速转子组件 (100)。
16. 一种电子阀,具有阀壳体( 101)、连接在所述阀壳体( 101)上的阀座( 104)、 与所述阀座(104)相配合的阀芯、套设在所述阀壳体(101)外的定子线圈, 其特征在于: 所述电子阀还包括设置在所述阀壳体 (101) 内的根据权 利要求 1至 14中任一项所述的减速转子组件 (100);
所述电子阀为切换阀, 所述阀座 (104) 上具有多个阀口;
所述阀芯为滑块(103),所述输出轴(25)直接或间接地连接到滑块(103), 以驱动所述滑块 (103) 切换所述阀口之间的导通关系。
17. 根据权利要求 16所述的电子阀, 其特征在于:
所述切换阀是三通阀, 所述阀座 (104) 上的所述多个阀口包括 A阀口 (106A)、 B阀口 (106B) 和 C阀口 (1060;
所述滑块 (103) 通过滑块轴 (103a) 可旋转地安装在所述阀座 (104) 上的滑块轴孔(104a)中,并且所述滑块(103)的上表面设置有驱动槽( 1033); 所述三通阀还包括拨动件 (102), 所述拨动件 (102) 具有与所述输出 轴 (25) 固定连接的固定段 (1021)、 与所述驱动槽 (1033) 配合的驱动段 (1023) 以及连接所述固定段 (1021) 和所述驱动段 (1023) 的倾斜连接段 (1022)。
18. 根据权利要求 17所述的电子阀, 其特征在于:
所述拨动件 (102) 为弹簧拨片, 所述驱动段 (1023) 弹性施压在所述 滑块 (103) 的驱动槽 (1033) 的槽底面上。
19. 根据权利要求 18所述的电子阀, 其特征在于:
所述拨动件 (102) 的固定段 (1021) 设置有与所述输出端配合的套筒 部(1025),所述拨动件(102)的驱动段(1023)上设置有与所述滑块(103) 的驱动槽 (1033) 的槽底面配合的凸泡 (1024)。
20. 根据权利要求 16所述的电子阀, 其特征在于:
所述切换阀是四通阀, 所述阀座 (104) 上的所述多个阀口包括 S 阀口 (106S)、 C阀口 (106C)、 D阀口 (106D) 和 E阀口 (106E);
所述滑块 (103) 安装于所述输出轴 (25) 上, 并随所述输出轴 (25) 同步转动, 所述滑块 (103) 的底面设置有连通槽 (1031), 使得所述 S阀口 (106S) 选择性地与所述 C阀口 (106C) 或所述 E阀口 (106E) 连通。
21. 根据权利要求 20所述的电子阀, 其特征在于:
所述滑块 (103) 可轴向移动地安装于所述输出轴 (25) 上;
所述四通阀还包括弹簧(107),所述弹簧( 107)套设在所述输出轴(25) 上, 并向所述滑块 (103) 施压;
所述 S阀口 (106S) 设置在与所述输出轴 (25) 相应的位置; 所述连通槽(1031) 的第一端的位置始终与所述 S阀口 (106S) 的位置 相对应, 所述连通槽(1031) 的第二端选择性地与所述 C阀口 (1060或所 述 E阀口 (106E) 连通。
22. 根据权利要求 20所述的电子阀, 其特征在于: 所述输出轴 (25) 的下端设置有驱动段 (25a) 和圆柱段 (25b);
所述四通阀还包括拨动件 (102), 所述拨动件 (102) 设置在所述滑块 (103) 的上方, 具有第一驱动槽 (102a) 以及径向杆 (102c), 所述第一驱 动槽 (102a) 与所述输出轴 (25) 的驱动段 (25a) 配合;
所述滑块 (103) 还包括枢转孔 (103b) 和第二驱动槽 (103c), 所述枢 转孔 (103b) 与所述输出轴 (25) 下端的圆柱段 (25b) 配合, 所述第二驱 动槽 (103c) 与所述拨动件 (102) 的径向杆 (102c) 配合。
23. 根据权利要求 22所述的电子阀, 其特征在于:
所述滑块(103)上还设置有向上延伸的圆筒部(103a),所述枢转孔( 103b) 设置在所述圆筒部 (103a) 内;
所述拨动件 (102) 上还设置有与所述滑块 (103) 的圆筒部 (103a) 配 合的孔。
24. 根据权利要求 16所述的电子阀, 其特征在于:
所述阀座 (104) 上还设置有用于限制所述滑块 (103) 的旋转范围的限 位块 (105)。
25. 一种电子阀,具有阀壳体(201)、连接在所述阀壳体( 201)上的阀座( 204)、 与所述阀座(204)相配合的阀芯、套设在所述阀壳体(201)外的定子线圈, 其特征在于:
所述电子阀还包括根据权利要求 1至 14中任一项所述的减速转子组件 (100), 所述减速转子组件设置在所述阀壳体 (201) 内;
所述电子阀为膨胀阀, 所述阀座 (204) 具有阀口 (206);
所述输出轴 (25)通过驱动螺纹副直接或间接地驱动所述阀芯轴向运动 以调节所述阀口 (206) 的开度。
26. 根据权利要求 25所述的电子阀, 其特征在于:
所述输出轴 (25) 的外表面形成外螺纹, 所述阀针 (203) 的轴向内孔 中形成内螺纹, 所述外螺纹和所述内螺纹共同形成所述驱动螺纹副;
所述电子阀还包括导向套 (205), 所述导向套 (205) 固定设置在所述 阀壳体 (201) 内, 具有非圆导向内孔 (205a);
所述阀芯为阀针 (203), 所述阀针 (203) 具有与所述导向套 (205) 的 非圆导向内孔 (205a) 相配合的非圆外表面 (203a), 使得所述阀针 (203) 在轴向运动时不会转动。
27. 根据权利要求 25所述的电子阀, 其特征在于: 其特征在于,
所述导向套 (205)将所述阀壳体 (201) 内的空间分成第一空间和第二 空间, 所述减速转子组件 (100) 位于所述第一空间内, 所述阀座 (204) 位 于所述第二空间所在一侧;
所述导向套 (205) 上设置有平衡孔 (2052), 以使所述阀壳体 (201) 内的第一空间和第二空间压力平衡。
28. 根据权利要求 25所述的电子阀, 其特征在于: 还包括:
螺母套 (225), 所述螺母套 (225) 固定设置在所述阀壳体 (201) 内; 螺杆 (226), 穿设于所述螺母套 (22) 中, 所述螺杆 (226) 的外螺纹 与所述螺母套 (225) 的内螺纹共同形成所述驱动螺纹副, 所述螺杆 (226) 的第一端与所述输出轴 (25) 的第二端驱动配合, 并且在所述输出轴 (25) 旋转时在所述螺母套 (225) 内轴向运动;
所述阀芯为阀针 (203), 所述阀针 (203) 设置在所述螺杆 (226) 的第 二端, 随所述螺杆 (226) 而轴向运动。
29. 根据权利要求 28所述的电子阀, 其特征在于:
所述输出轴 (25) 的第二端设置有驱动凸块;
所述螺杆 (226) 的第一端设置有与所述驱动凸块配合的驱动槽。
30. 根据权利要求 25所述的电子阀, 其特征在于: 还包括:
导向套 (205), 所述导向套 (205) 固定设置在所述阀壳体 (201) 内, 具有侧壁和具有中心孔的底壁;
弹簧套 (227), 设置在导向套 (205) 内;
所述阀芯为阀针(203),所述阀针(203)设置在所述导向套(205)内, 包括针杆部和位于第一端的凸缘部, 所述针杆部从所述弹簧套 (227) 中穿 过, 并由所述导向套 (205) 的底壁上的中心孔导向, 朝向所述阀口 (206) 延伸, 所述凸缘部支撑在所述弹簧套 (227) 上。
31. 根据权利要求 30所述的电子阀, 其特征在于: 还包括:
所述阀针 (203) 的第一端设置有轴向调节螺钉。
32. 根据权利要求 28所述的电子阀, 其特征在于: 其特征在于,
所述减速转子组件 ( 100)的第二端连接板 (34)上设置有平衡孔 (342), 以使所述阀壳体 (201) 内的位于所述第二连接板 (34) 两侧的空间压力平 衡。
33. 根据权利要求 25所述的电子阀, 其特征在于: 其特征在于,
所述阀芯内部还设置有小流量调节机构, 所述小流量调节机构包括设置 在所述阀芯内部的阀针和设置在所述阀芯上的微量调节阀口。
34. 一种电子阀,具有阀壳体 (301)、连接在所述阀壳体 ( 301 )上的阀座 ( 304 )、 与所述阀座 (304) 相配合的阀芯、 套设在所述阀壳体 (301) 外的定子线圈
(50), 其特征在于:
所述电子阀还包括设置在所述阀壳体 (301) 内的根据权利要求 1至 14 中任一项所述的减速转子组件 (100);
所述电子阀为可逆阀, 包括两个所述阀座 (304), 每个所述阀座 (304) 均具有阀口 (306);
所述减速转子组件 (100) 的输出轴 (25) 通过驱动螺纹副直接或间接 地驱动所述阀芯轴向运动以使两个所述阀座 (304) 的阀口 (306)连通或断 开。
35. 根据权利要求 34所述的电子阀, 其特征在于:
所述输出轴 (25) 的外表面形成外螺纹;
所述阀芯包括:
托架 (302), 所述托架 (302) 具有内螺纹, 所述托架 (302) 的内螺纹 与所述输出轴 (25) 的外螺纹共同形成所述驱动螺纹副;
两个滑块 (303), 分别设置在所述托架 (302) 的相对两侧, 随所述托 架 (302) 运动, 以分别以使两个所述阀座 (304) 的阀口 (306) 连通或断 开;
两个弹性件, 分别设置在所述托架 (302) 的相对两侧, 并位于所述托 架 (302) 与相应的所述滑块 (303) 之间, 将相应的所述滑块 (303) 向相 应的所述阀座 (304) 施压。
36. 根据权利要求 35所述的电子阀, 其特征在于:
所述电子阀还包括导向套 (305), 所述导向套 (305) 固定设置在所述 阀壳体 (301) 内, 位于所述减速转子组件的下方, 具有导向内孔; 所述拖架 (302) 的上部具有导向柱 (3024), 与所述导向套 (305) 的 导向内孔配合。
37. 根据权利要求 35所述的电子阀, 其特征在于:
所述电子阀还包括限位座 (306), 所述限位座 (306) 固定设置在所述 阀壳体 (301) 内, 位于所述托架 (302) 的下方;
所述限位座 (306) 和所述托架 (302) 均采用有机材料制成。
38.根据权利要求 37所述的电子阀, 其特征在于:
所述托架 (302) 的所述相对两侧分别设置有滑块安装凹部 (3023), 每 个所述滑块 (303) 安装在相应的所述滑块安装凹部 (3023) 内, 并与所述 滑块安装凹部 (3023) 的侧壁滑动配合。
39.根据权利要求 38所述的电子阀, 其特征在于:
所述滑块 (303) 具有底壁和侧壁, 所述底壁和侧壁共同围成朝向所述 托架 (302) 敞开的弹性件容纳腔 (3023), 所述弹性件容纳在相应的所述弹 性件容纳腔 (3023) 中。
40.根据权利要求 39所述的电子阀, 其特征在于:
所述弹性件是弹簧片 (307), 所述弹簧片 (307) 的上下两侧分别设置 有朝向所述滑块 (303) 侧突伸的弹性凸缘 (3071)。
41.根据权利要求 40所述的电子阀, 其特征在于:
所述滑块安装凹部 (3023) 的下侧壁上设置有限位卡槽 (302a);
所述滑块 (303) 的下侧壁下方设置有与所述限位卡槽 (302a) 相配合 的限位卡块 (303a),
其中所述限位卡槽 (302a) 与所述限位卡块 (303a) 配合为允许所述滑 块 (303) 沿所述滑块安装凹部 (3023) 有预定的活动量。
PCT/CN2018/085519 2018-05-03 2018-05-03 电子阀及其减速转子组件 WO2019210492A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/085519 WO2019210492A1 (zh) 2018-05-03 2018-05-03 电子阀及其减速转子组件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/085519 WO2019210492A1 (zh) 2018-05-03 2018-05-03 电子阀及其减速转子组件

Publications (1)

Publication Number Publication Date
WO2019210492A1 true WO2019210492A1 (zh) 2019-11-07

Family

ID=68386236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085519 WO2019210492A1 (zh) 2018-05-03 2018-05-03 电子阀及其减速转子组件

Country Status (1)

Country Link
WO (1) WO2019210492A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2374716Y (zh) * 1999-03-19 2000-04-19 湖州特种传动设备厂 燃气卡式收费系统专用机电阀
JP2000274544A (ja) * 1999-03-25 2000-10-03 Pacific Ind Co Ltd 電動膨張弁
JP2000346227A (ja) * 1999-06-09 2000-12-15 Pacific Ind Co Ltd 電動膨張弁
CN2787942Y (zh) * 2005-02-06 2006-06-14 上海俊乐制冷自控元件有限公司 一种减速式电子膨胀阀
CN201170368Y (zh) * 2008-02-03 2008-12-24 张能练 一种电控燃气阀门
CN101586668A (zh) * 2009-07-02 2009-11-25 郑晓亮 Ic卡式燃气表用磁性电机控制阀
CN204328147U (zh) * 2014-10-30 2015-05-13 浙江盾安禾田金属有限公司 一种电子膨胀阀

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2374716Y (zh) * 1999-03-19 2000-04-19 湖州特种传动设备厂 燃气卡式收费系统专用机电阀
JP2000274544A (ja) * 1999-03-25 2000-10-03 Pacific Ind Co Ltd 電動膨張弁
JP2000346227A (ja) * 1999-06-09 2000-12-15 Pacific Ind Co Ltd 電動膨張弁
CN2787942Y (zh) * 2005-02-06 2006-06-14 上海俊乐制冷自控元件有限公司 一种减速式电子膨胀阀
CN201170368Y (zh) * 2008-02-03 2008-12-24 张能练 一种电控燃气阀门
CN101586668A (zh) * 2009-07-02 2009-11-25 郑晓亮 Ic卡式燃气表用磁性电机控制阀
CN204328147U (zh) * 2014-10-30 2015-05-13 浙江盾安禾田金属有限公司 一种电子膨胀阀

Similar Documents

Publication Publication Date Title
EP3098494B1 (en) Direct-action-type electrically-operated valve and assembly method therefor
JP6091903B2 (ja) 電動弁
JP5995528B2 (ja) 流量制御弁
US8820356B2 (en) Multi-way reversing valve
JP6684599B2 (ja) 流路切換弁
CN109519564B (zh) 电动阀
JP2002005543A (ja) 四方切換弁と電動膨脹弁との複合弁
JP5046798B2 (ja) 回転リフト式電動弁
JP2003148642A (ja) 電動弁
JP7098740B2 (ja) 電子膨張弁
CN111417807A (zh) 一种电动阀及电动阀的制造方法
JP2007113626A (ja) 電動アクチュエータ
JP7127142B6 (ja) 電子膨張弁
WO2019210492A1 (zh) 电子阀及其减速转子组件
JP4819450B2 (ja) 電動アクチュエータ
JP2001317839A (ja) 四方切換弁と電動膨脹弁との複合弁
JP2000320711A (ja) 電動式コントロールバルブ
KR102138432B1 (ko) 전기 밸브
KR101255595B1 (ko) 정량펌프
CN110094513B (zh) 一种电动阀
CN110094567B (zh) 一种电动三通旋塞阀
JP2019152246A (ja) 電動弁
KR20070029559A (ko) 전동 액추에이터
JP2013137041A (ja) 電動弁
JP3291261B2 (ja) 副弁付回転弁の開閉装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18917217

Country of ref document: EP

Kind code of ref document: A1