WO2019208758A1 - モータ駆動装置及び搬送システム - Google Patents

モータ駆動装置及び搬送システム Download PDF

Info

Publication number
WO2019208758A1
WO2019208758A1 PCT/JP2019/017881 JP2019017881W WO2019208758A1 WO 2019208758 A1 WO2019208758 A1 WO 2019208758A1 JP 2019017881 W JP2019017881 W JP 2019017881W WO 2019208758 A1 WO2019208758 A1 WO 2019208758A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
control
scale
unit
scale position
Prior art date
Application number
PCT/JP2019/017881
Other languages
English (en)
French (fr)
Inventor
雅史 三島
慶成 池内
裕介 今田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020515595A priority Critical patent/JP7213471B2/ja
Priority to CN201980028221.0A priority patent/CN112041775B/zh
Publication of WO2019208758A1 publication Critical patent/WO2019208758A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors

Definitions

  • the present disclosure relates to a motor drive device and a transport system used in a transport system that controls the position of a motor that transports a transport target by full-close control.
  • a conventional transport system includes a motor for operating a transport target, an encoder that detects the position of the motor, an external scale that detects the position of the transport target and outputs it to a motor driving device, and position information of the external scale. And a motor driving device that drives the motor so that the position of the conveyance target follows the position command from the host controller.
  • the motor drive device controls the motor according to the output from the normal encoder and moves the object to be transported (referred to as semi-closed control). Then, when it is determined that the conveyance target has reached a predetermined target position, the motor drive device controls the motor by the output from the external scale and switches the conveyance target to move (full-closed control).
  • the conventional transport system is provided with a sensing element in the vicinity of the target position where the control is switched.
  • the sensing element outputs to the motor drive device that the conveyance target has reached the target position.
  • the motor driving device controls the motor by semi-closed control until the signal from the sensing element is detected, and after detecting the signal from the sensing element, switches to full-closed control to control the motor.
  • the normal motor is controlled according to the output from the encoder (semi-closed control).
  • the motor is controlled based on position information detected by an external scale.
  • the present disclosure solves this problem, and even when the position of a conveyance target is controlled by semi-closed control, the motor drive that can be controlled with full-closed control without switching the control method as a conveyance system. It is an object to provide an apparatus and a transport system.
  • a motor driving device includes a motor position capturing unit, a scale position capturing unit, a scale position calculating unit, a control position switching unit, and a motor control unit.
  • the motor position capturing unit captures the motor position.
  • the scale position capturing unit captures the external scale position.
  • the scale position calculation unit outputs a value obtained by converting the motor position to the scale position as a pseudo scale position, and outputs the external scale position as an actual scale position.
  • the control position switching unit outputs a control position signal based on the output of the scale position calculation unit. Then, the position command signal and the control position signal are input to the motor control unit, and the motor control unit controls the motor so that the control position signal follows the position command signal.
  • a transport system includes the motor drive device and a motor that is driven by a drive current output from the motor drive device and transports a transport target.
  • FIG. 1 is a conceptual diagram of the transport system 1.
  • the transport system 1 includes a host controller (not shown), a motor drive device 100, a transport unit 200, and a scale position detection unit 204.
  • the transport unit 200 includes a motor position detection unit 201, a motor 202, and a rotor 203.
  • the conveyance target 205 conveyed by the conveyance system 1 is moved by driving the motor 202.
  • the conveyance target 205 is, for example, a wire rod or paper.
  • An arrow A1 in FIG. 1 indicates an operation direction (movement direction) of the conveyance target 205.
  • the transport system 1 causes the transport unit 200 to move the transport target 205 at a predetermined speed, a predetermined distance, or a predetermined time.
  • the conveyance target 205 conveys the conveyance target 205 by the motor 202 and the rotor 203.
  • the motor position detection unit 201 detects the rotation angle of the motor 202 as the motor position. As the motor position detection unit 201, for example, an incremental encoder is used.
  • the motor position detection unit 201 is attached to the motor 202.
  • the scale position detection unit 204 uses, for example, an absolute type or increment type encoder.
  • the scale position detection unit 204 includes a scale and a detector that reads the position of the scale.
  • the motor driving apparatus 100 includes a motor control unit 101, a motor position capturing unit 102, a scale position calculating unit 103, a scale position capturing unit 104, and a control position switching unit 105.
  • the motor position detection unit 201 outputs the detected motor position to the motor position capturing unit 102.
  • the scale position detection unit 204 outputs the detected scale position of the conveyance target 205 to the scale position capturing unit 104.
  • a position command signal D1 output from the host controller and a control position signal D2 output from the control position switching unit 105 are input to the motor control unit 101.
  • the motor control unit 101 controls the motor drive current I1 supplied to the motor 202 so that the control position signal D2 follows the position command signal D1.
  • the external scale position D3 output from the scale position capturing unit 104 and the motor position D4 output from the motor position capturing unit 102 are output to the control position switching unit 105 via the scale position calculating unit 103.
  • the control position signal D2 is input from the motor drive device 100 to the host controller.
  • the host controller outputs a position command signal D1 and a first control position reference switching command D5 to the motor drive device 100.
  • the scale position capturing unit 104 acquires the value of the scale position detected by the scale position detection unit 204 at a constant cycle (motor control cycle), and uses this value as the external scale position D3 to the scale position calculation unit 103. Is output.
  • the scale position calculation unit 103 to which the external scale position D3 is input outputs the external scale position D3 as the actual scale position D6 to the control position switching unit 105.
  • the control position switching unit 105 to which the actual scale position D6 is input outputs the normally input actual scale position D6 to the motor control unit 101 as the control position signal D2.
  • the motor control unit 101 performs feedback control on the motor 202 by updating the position information for motor control processing with the control position signal D2.
  • the motor drive device 100 controls the movement (rotation) amount and movement (rotation) speed of the motor 202 based on the value measured by the scale position detection unit 204 (the control is performed in the full-closed control mode). )is doing.
  • the transmission of the scale position from the scale position detection unit 204 to the scale position capturing unit 104 is realized through the communication circuit 107, for example.
  • control position switching unit 105 uses the value converted into the pseudo scale position D7 based on the motor position D4 captured by the motor position capturing unit 102 as the control position signal D2. Output to the motor control unit 101. That is, by converting the motor position D4 to the external scale reference value, the motor 202 can be operated as if the control is continued with the external scale reference.
  • the motor control unit 101 controls the motor 202 (control in the virtual full-closed control mode) so that the pseudo scale position D7 follows the position command signal D1. That is, the control position switching unit 105 changes the control of the motor 202 from the full-closed control mode to the virtual full-closed control mode according to the control position reference switching command D5.
  • control position signal D2 can follow the position command signal D1 even when the conveyance target 205 does not reach the scale position detection unit 204.
  • the pseudo scale position D7 is calculated from the motor position D4 according to the following expression of “Expression 1”, and the actual scale position D6 is calculated from the external scale position D3 according to the expression of “Expression 2”.
  • the previous control position is “P0”
  • the motor position D4 in the current motor control cycle is “P1”
  • the motor position D4 in the previous motor control cycle is “P2”
  • the resolution of the scale position detection unit 204 is It is assumed that “R1”, the resolution of the motor position detector 201 is “R2”
  • the pseudo scale position D7 is “P10”.
  • the “previous control position” here corresponds to the control position signal D2 in the previous motor control cycle.
  • the scale position calculation unit 103 can calculate the amount of change by acquiring the previous and current motor position information (motor position D4).
  • the host controller When it is determined that the transport target 205 has reached the scale position detection unit 204, the host controller outputs a control position reference switching command D5 for switching to the actual scale position D6 to the control position switching unit 105.
  • the control position switching unit 105 that has received this control position reference switching command D5 outputs the actual scale position D6 as the control position signal D2 instead of the pseudo scale position D7. That is, the control position reference switching command D5 for switching to the actual scale position D6 is a command for switching the target output as the control position signal D2 from the control position switching unit 105 from the pseudo scale position D7 to the actual scale position D6. is there.
  • the control position signal D2 or the external scale position D3 may be used for switching determination by the host controller.
  • Embodiment 2 the conveyance system according to Embodiment 2 will be described with reference to FIG.
  • the present embodiment is different from the first embodiment in that difference calculation is not used in the calculation formula of the pseudo scale position D7 of the scale position calculation unit 103.
  • the pseudo scale position D7 is calculated from the motor position D4 by the following formula “Formula 3”, and the external scale position D3 is calculated by the formula “Formula 2” described in the first embodiment.
  • the motor position D4 in the current motor control cycle is “P1”
  • the resolution of the scale position detector 204 is “R1”
  • the resolution of the motor position detector 201 is “R2”
  • the pseudo scale position D7 is “P10”.
  • Embodiment 3 the conveyance system according to Embodiment 3 will be described with reference to FIG.
  • the present embodiment is different from the first and second embodiments in that a control position switching determination unit 108 is provided in the motor drive device 100.
  • the scale position capturing unit 104 acquires the value of the scale position detected by the scale position detection unit 204 at a constant cycle (motor control cycle), and uses this value as the external scale position D3 as the control position switching determination unit 108. To output.
  • the control position switching determination unit 108 has a change amount of the external scale position D3 detected at a constant cycle equal to or less than a preset value (for example, a scale corresponding to one rotation of the motor 202 connected to the motor driving device 100).
  • a preset value for example, a scale corresponding to one rotation of the motor 202 connected to the motor driving device 100.
  • control position switching unit 105 In response to the control position reference switching command D8, the control position switching unit 105 outputs the pseudo scale position D7 instead of the actual scale position D6 to the motor control unit 101 as the control position signal D2. That is, the control position reference switching command D8 for switching to the pseudo scale position D7 is a command for switching the target output as the control position signal D2 from the control position switching unit 105 from the actual scale position D6 to the pseudo scale position D7. is there.
  • control position signal D2 can follow the position command signal D1 even when the conveyance target 205 does not reach the scale position detection unit 204.
  • the control position switching determination unit 108 determines that the amount of change in the external scale position D3 detected at a constant period is equal to or greater than a preset value (for example, one rotation of the motor 202 connected to the motor driving device 100).
  • a control position reference switching command D8 for switching to the actual scale position D6 is output to the control position switching unit 105.
  • the control position switching unit 105 that has received this control position reference switching command D8 outputs the actual scale position D6 as the control position signal D2 instead of the pseudo scale position D7. That is, the control position reference switching command D8 for switching to the actual scale position D6 is a command for switching the target output as the control position signal D2 from the control position switching unit 105 from the pseudo scale position D7 to the actual scale position D6. is there.
  • the above-described embodiment is merely one of various embodiments of the present disclosure.
  • the above-described embodiment can be variously changed according to the design or the like as long as the object of the present disclosure can be achieved.
  • some or all of the same functions as those of the motor driving apparatus 100 may be embodied by a motor management method, a computer program, a non-transitory recording medium that records the program, or the like.
  • the motor drive device (100) includes the motor position capturing unit (102), the scale position capturing unit (104), the scale position calculating unit (103), and the control position switching. Part (105) and a motor control part (101).
  • the motor position capturing unit (102) captures the motor position (D4).
  • the scale position capturing unit (104) captures the external scale position (D3).
  • the scale position calculation unit (103) outputs a value obtained by converting the motor position (D4) to the external scale position (D3) as a pseudo scale position (D7), and outputs the external scale position (D3) to the actual scale. Output as position (D6).
  • the control position switching unit (105) outputs a control position signal (D2) based on the output of the scale position calculation unit (103).
  • the motor control unit (101) receives the position command signal (D1) and the control position signal (D2), and the motor (202) causes the control position signal (D2) to follow the position command signal (D1). To control.
  • control position switching unit (105) is based on either the pseudo scale position (D7) or the actual scale position (D6).
  • a control position signal (D2) is output.
  • the pseudo scale position P10 is calculated by the following formula.
  • the pseudo scale position P10 is calculated by the following formula.
  • the actual scale position (D6) P11 is calculated using the following formula.
  • the motor drive device (100) according to the sixth aspect is configured to change between the pseudo scale position (D7) and the actual scale position (D6) according to the amount of change in the external scale position (D3).
  • a control position switching determination unit (108) that determines which one to switch to is provided.
  • the control position switching unit (105) selects either the pseudo scale position (D7) or the actual scale position (D6) based on the control position reference switching command (D8) of the control position switching determination unit (108).
  • a control position signal (D2) is output.
  • the transport system (1) according to the seventh aspect is driven by the motor drive device (100) according to any one of the first to sixth aspects and the drive current (I1) output from the motor drive device (100). And a motor (202) for transporting the transport target (205).
  • the conveyance system (1) further includes a motor position detection unit (201) that detects the position of the motor (202) and outputs the position to the motor position acquisition unit (102) in the seventh aspect. .
  • the transport system (1) according to the ninth aspect further includes a scale position detection unit that detects the position of the transport target and outputs the position to the scale position capturing unit (104).
  • the transport system (1) outputs the position command signal (D1) to the motor driving device (100) and the motor driving device (100).
  • the control position signal (D2) to be input is input, and the switching command generated based on the position command signal (D1) and the control position signal (D2) is output to the control position switching unit (105) of the motor drive device (100). To do.
  • the pseudo scale position (D7) is calculated by converting the motor position (D4) into the external scale position (D3), the position of the conveyance target (205) is calculated based on the pseudo scale position (D7).
  • the motor drive device (100) and the conveyance system (1) can control the position of the motor (202) as pseudo full-closed control by using the pseudo scale position (D7).
  • the configurations according to the second to sixth aspects are not essential to the motor drive device (100) and can be omitted as appropriate.
  • the configurations according to the eighth to tenth aspects are not essential to the transport system (1), and can be omitted as appropriate.
  • the motor driving device of the present disclosure is also useful for industrial equipment that requires continuous motor driving even when the value of the external scale is interrupted during full-closed control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position Or Direction (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

セミクローズ制御からフルクローズ制御、もしくはフルクローズ制御からセミクローズ制御へ切り替える際には、搬送システムとモータ駆動装置が持つ位置情報とそれに伴う制御方法も切り替える必要がある。この課題を解決するために、スケール位置算出部(103)は、モータ位置取り込み部(102)で取得されたモータ位置(D4)を、スケール位置取り込み部(104)で取得された外部スケール位置(D3)へと換算した擬似スケール位置(D7)として出力し、かつ、スケール位置取り込み部(104)で取得された外部スケール位置(D3)を実スケール位置(D6)として出力する。制御位置切り替え部(105)は、スケール位置算出部(103)の出力に基づいて、制御位置信号(D2)を出力する。モータ制御部(101)は、制御位置信号(D2)が位置指令信号(D1)に追従するようにモータ(202)を制御する。

Description

モータ駆動装置及び搬送システム
 本開示は、フルクローズ制御によって、搬送対象を搬送するモータの位置を制御する搬送システムなどに用いるモータ駆動装置及び搬送システムに関する。
 従来の搬送システムは、搬送対象を動作させるためのモータと、モータの位置を検知するエンコーダと、搬送対象の位置を検出してモータ駆動装置へと出力する外部スケールと、外部スケールの位置情報に基づいて、上位コントローラからの位置指令に搬送対象の位置を追従させるようにモータを駆動させるモータ駆動装置と、を有している。
 モータ駆動装置は、通常エンコーダからの出力に応じてモータを制御して、搬送対象を移動させる(セミクローズ制御という)。そして、モータ駆動装置は、搬送対象が所定の目標位置まで到達したと判定した場合に、外部スケールからの出力によってモータを制御して、搬送対象を移動する(フルクローズ制御)へと切り替える。
 このようにして切り替えを行なうために、従来の搬送システムは、制御を切り替える目標位置の近傍にセンシング素子を設ける。センシング素子は、搬送対象が目標位置へ到達したことをモータ駆動装置へと出力する。そして、モータ駆動装置は、センシング素子からの信号を検出する前までの間、セミクローズ制御によってモータを制御し、センシング素子からの信号を検出した後に、フルクローズ制御へ切り換えてモータを制御する。(例えば、特許文献1参照)
特開2016-155144号公報
 しかしながら、従来のモータ駆動装置において、通常モータはエンコーダからの出力に応じて制御されている(セミクローズ制御)。一方、フルクローズ制御時にモータは外部スケールで検出された位置情報に基づいて制御される。ところが、セミクローズ制御からフルクローズ制御、もしくはフルクローズ制御からセミクローズ制御へ切り替える際には、搬送システム及びモータ駆動装置が持つ位置情報に加えて、それに伴う制御方法も切り替える必要があるという課題を有していた。例えば、フルクローズ制御中に外部スケールの値が途絶えた場合には、モータのエンコーダの位置によるセミクローズ制御へ、制御方法を切り替える必要がある。
 そこで本開示は、この問題を解決したもので、セミクローズ制御で搬送対象の位置を制御する場合でも、搬送システムとしては制御方式を切り替えることなくフルクローズ制御のままで制御することができるモータ駆動装置及び搬送システムを提供することが目的である。
 前記従来の課題を解決するために、本開示の一態様に係るモータ駆動装置は、モータ位置取り込み部と、スケール位置取り込み部と、スケール位置算出部と、制御位置切り替え部と、モータ制御部とを有している。モータ位置取り込み部は、モータ位置を取り込む。スケール位置取り込み部は、外部スケール位置を取り込む。スケール位置算出部は、モータ位置をスケール位置へと換算した値を、擬似スケール位置として出力し、かつ、外部スケール位置を、実スケール位置として出力する。制御位置切り替え部は、スケール位置算出部の出力に基づいて、制御位置信号を出力する。そして、モータ制御部に位置指令信号と制御位置信号とが入力されて、モータ制御部では、前記制御位置信号が位置指令信号に追従するようにモータを制御する。
 本開示の一態様に係る搬送システムは、前記モータ駆動装置と、前記モータ駆動装置から出力される駆動電流によって駆動されて、搬送対象を搬送するモータと、を有する。
本開示の実施の形態1、2における搬送システムの概念図である。 本開示の実施の形態3における搬送システムの概念図である。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本開示が限定されるものではない。
 (実施の形態1)
 図1は、搬送システム1の概念図である。以下、モータ位置からフルクローズ制御における制御位置を算出するモータ駆動装置について図1を参照しながら説明する。搬送システム1は、上位コントローラ(図示せず)と、モータ駆動装置100と、搬送部200と、スケール位置検出部204とを有している。搬送部200は、モータ位置検出部201と、モータ202とローター203とを含んでいる。なお、搬送システム1で搬送される搬送対象205は、モータ202の駆動によって移動される。搬送対象205は、例えば線材又は紙などである。図1中の矢印A1は、搬送対象205の動作方向(移動方向)を示している。
 搬送システム1は、搬送部200によって搬送対象205を所定の速度で、あるいは所定の距離だけ、さらには所定の時間だけ移動させる。搬送対象205は、モータ202とローター203とによって搬送対象205を搬送する。モータ位置検出部201は、モータ202の回転角度をモータ位置として検出している。モータ位置検出部201としては、たとえばインクリメンタル式のエンコーダなどを用いる。なお、モータ位置検出部201は、モータ202へ取り付けられている。
 スケール位置検出部204は、たとえばアブソリュート型またはインクリメント型のエンコーダを用いている。スケール位置検出部204は、スケール、及びこのスケールの位置を読み取る検出器などを含む。
 モータ駆動装置100は、モータ制御部101と、モータ位置取り込み部102と、スケール位置算出部103と、スケール位置取り込み部104と、制御位置切り替え部105とを有している。
 そして、モータ位置検出部201は、検出したモータ位置をモータ位置取り込み部102へと出力している。一方、スケール位置検出部204は、検出した搬送対象205のスケール位置をスケール位置取り込み部104へと出力している。上位コントローラから出力される位置指令信号D1と、制御位置切り替え部105から出力される制御位置信号D2とが、モータ制御部101へと入力される。そして、モータ制御部101は、制御位置信号D2を位置指令信号D1に対して追従するようにモータ202へ供給されるモータ駆動電流I1を制御する。
 スケール位置取り込み部104から出力された外部スケール位置D3と、モータ位置取り込み部102から出力されたモータ位置D4はスケール位置算出部103を介して制御位置切り替え部105へと出力される。
 上位コントローラには、モータ駆動装置100から制御位置信号D2が入力される。上位コントローラは、モータ駆動装置100へ位置指令信号D1と、第1制御位置基準切り替え指令D5とを出力している。
 次に、搬送システム1の動作について説明する。
 (A)スケール位置取り込み部104は、一定周期(モータ制御周期)でスケール位置検出部204によって検出されたスケール位置の値を取得して、この値を外部スケール位置D3としてスケール位置算出部103へと出力する。外部スケール位置D3が入力されたスケール位置算出部103は、外部スケール位置D3を実スケール位置D6として、制御位置切り替え部105へと出力する。実スケール位置D6が入力された制御位置切り替え部105は、通常入力された実スケール位置D6を制御位置信号D2としてモータ制御部101へと出力する。そして、モータ制御部101は、モータ制御処理用の位置情報を制御位置信号D2によって更新することでモータ202に対してフィードバック制御を行う。すなわち、モータ駆動装置100は、搬送対象205の移動量をスケール位置検出部204で計測した値によって、モータ202の移動(回転)量や移動(回転)速度を制御(フルクローズ制御モードにて制御)している。なお、スケール位置検出部204からスケール位置取り込み部104へのスケール位置の送信は、たとえば通信回路107を通じて実現されている。
 (B)次に、搬送対象205を搬送システム1へ新たに投入した場合の搬送システム1の動作について説明する。この場合、搬送対象205はスケール位置検出部204の位置にまで到達していない。この間、搬送対象205は、搬送部200までは人手により、その後モータ202の駆動によってスケール位置検出部204の位置にまで搬送される。そして搬送対象205がスケール位置検出部204に到達するまでの間は、モータ202を駆動させても、スケール位置検出部204では搬送対象205の移動量を検出できない。したがって、モータ制御部101が、位置指令信号D1に対して制御位置信号D2を追従させようとしても、追従できない状態となる。
 (C)そこで、上位コントローラは、位置指令信号D1に対して制御位置信号D2が追従していないと判定した場合、制御位置切り替え部105に対して、擬似スケール位置D7に切り替えるための制御位置基準切り替え指令D5を出力する。この制御位置基準切り替え指令D5を受けた制御位置切り替え部105は、実スケール位置D6に代えて擬似スケール位置D7を、制御位置信号D2として出力する。つまり、擬似スケール位置D7に切り替えるための制御位置基準切り替え指令D5は、制御位置切り替え部105から制御位置信号D2として出力される対象を、実スケール位置D6から擬似スケール位置D7に切り替えるための指令である。
 (D)制御位置基準切り替え指令D5の指令によって、制御位置切り替え部105は、モータ位置取り込み部102で取り込んだモータ位置D4に基づいて擬似スケール位置D7へと換算された値を制御位置信号D2としてモータ制御部101へと出力する。すなわち、モータ位置D4を外部スケール基準の値に変換することで、モータ202はあたかも外部スケール基準のままで、制御を継続されているように動作できる。
 (E)モータ制御部101は、擬似スケール位置D7が位置指令信号D1に追従するようにモータ202を制御(仮想フルクローズ制御モードにて制御)する。すなわち、制御位置切り替え部105は、制御位置基準切り替え指令D5によって、モータ202をフルクローズ制御モードから仮想フルクローズ制御モードへと制御を変更する。
 以上の構成により、搬送対象205がスケール位置検出部204に到達していない状態でも、制御位置信号D2は位置指令信号D1に追従することが可能となる。
 そしてこの場合、従来の構成で要したセミクローズ制御と、フルクローズ制御との切り替えを行う必要がない。
 次に、スケール位置算出部103の動作について詳細に説明する。スケール位置算出部103では、以下の「式1」の計算式によりモータ位置D4から擬似スケール位置D7を算出し、「式2」の計算式により外部スケール位置D3から実スケール位置D6を算出する。式1では、前回制御位置を「P0」、今回のモータ制御周期でのモータ位置D4を「P1」、前回のモータ制御周期でのモータ位置D4を「P2」、スケール位置検出部204の分解能を「R1」、モータ位置検出部201の分解能を「R2」、擬似スケール位置D7を「P10」とする。ここでいう「前回制御位置」は、前回のモータ制御周期での制御位置信号D2に相当する。
 P10=P0+(P1-P2)×(R1/R2)・・・(式1)
 式2では、今回のモータ制御周期での外部スケール位置D3を「EP1」、実スケール位置D6を「P11」とする。
 P11=EP1・・・(式2)
 そのために、モータ位置取り込み部102でモータ位置D4を取得するタイミングと、スケール位置取り込み部104で外部スケール位置D3を取得するタイミングとは、いずれもモータ制御周期と同期している。そして、スケール位置算出部103は、前回及び今回のモータ位置情報(モータ位置D4)を取得することにより、それらの変化量を算出できる。
 (F)次に、仮想フルクローズ制御モードで制御中に、搬送対象205がスケール位置検出部204に到達した場合の動作について説明する。上位コントローラは搬送対象205がスケール位置検出部204に到達したと判断した場合、制御位置切り替え部105に対して、実スケール位置D6に切り替えるための制御位置基準切り替え指令D5を出力する。この制御位置基準切り替え指令D5を受けた制御位置切り替え部105は、擬似スケール位置D7に代えて実スケール位置D6を、制御位置信号D2として出力する。つまり、実スケール位置D6に切り替えるための制御位置基準切り替え指令D5は、制御位置切り替え部105から制御位置信号D2として出力される対象を、擬似スケール位置D7から実スケール位置D6に切り替えるための指令である。上位コントローラでの切り替え判断には、制御位置信号D2や外部スケール位置D3を用いてもよい。
 以上の構成により、搬送対象205がスケール位置検出部204に到達した状態では、搬送対象205の移動量をスケール位置検出部204で計測した値によって制御し、制御位置信号D2を位置指令信号D1に追従させることが可能となる。
 (実施の形態2)
 以下、実施の形態2に係る搬送システムについて、図1を用いて説明する。本実施の形態では、スケール位置算出部103の擬似スケール位置D7の算出式で差分計算を用いない点で、実施の形態1と相違する。
 以下では、スケール位置算出部103の動作について、実施の形態1と相違する点について説明する。
 (A)スケール位置算出部103では、以下の「式3」の計算式によりモータ位置D4から擬似スケール位置D7を算出し、実施の形態1記載の「式2」の計算式により外部スケール位置D3から実スケール位置D6を算出する。式3では、今回のモータ制御周期でのモータ位置D4を「P1」、スケール位置検出部204の分解能を「R1」、モータ位置検出部201の分解能を「R2」、擬似スケール位置D7を「P10」とする。
 P10=P1×(R1/R2)・・・(式3)
 そのために、モータ位置取り込み部102でモータ位置D4を取得するタイミングと、スケール位置取り込み部104で外部スケール位置D3を取得するタイミングとは、いずれもモータ制御周期と同期している。
 (実施の形態3)
 以下、実施の形態3に係る搬送システムについて、図2を用いて説明する。本実施の形態では、モータ駆動装置100内に制御位置切り替え判定部108を備えている点で、実施の形態1、2と相違する。
 以下では、制御位置切り替え判定部108、及び制御位置切り替え部105の動作について、実施の形態1、2と相違する点について説明する。
 (A)スケール位置取り込み部104は、一定周期(モータ制御周期)でスケール位置検出部204によって検出されたスケール位置の値を取得して、この値を外部スケール位置D3として制御位置切り替え判定部108へと出力する。
 (B)制御位置切り替え判定部108は、一定周期で検出された外部スケール位置D3の変化量が事前に設定された値以下(例えばモータ駆動装置100に接続されたモータ202の1回転相当のスケール移動量以下など)となった場合に、制御位置切り替え部105に対して、擬似スケール位置D7に切り替えるための第2制御位置基準切り替え指令D8を出力する。
 (C)制御位置基準切り替え指令D8の指令によって、制御位置切り替え部105は、実スケール位置D6に代えて擬似スケール位置D7を、制御位置信号D2としてモータ制御部101へと出力する。つまり、擬似スケール位置D7に切り替えるための制御位置基準切り替え指令D8は、制御位置切り替え部105から制御位置信号D2として出力される対象を、実スケール位置D6から擬似スケール位置D7に切り替えるための指令である。
 以上の構成により、搬送対象205がスケール位置検出部204に到達していない状態でも、制御位置信号D2は位置指令信号D1に追従することが可能となる。
 (D)次に、制御位置切り替え判定部108は、一定周期で検出された外部スケール位置D3の変化量が事前に設定された値以上(例えばモータ駆動装置100に接続されたモータ202の1回転相当のスケール移動量以上など)となった場合に、制御位置切り替え部105に対して、実スケール位置D6に切り替えるための制御位置基準切り替え指令D8を出力する。この制御位置基準切り替え指令D8を受けた制御位置切り替え部105は、擬似スケール位置D7に代えて実スケール位置D6を、制御位置信号D2として出力する。つまり、実スケール位置D6に切り替えるための制御位置基準切り替え指令D8は、制御位置切り替え部105から制御位置信号D2として出力される対象を、擬似スケール位置D7から実スケール位置D6に切り替えるための指令である。
 以上の構成により、搬送対象205がスケール位置検出部204に到達した状態では、搬送対象205の移動量をスケール位置検出部204で計測した値によって制御し、制御位置信号D2を位置指令信号D1に追従させることが可能となる。
 なお、上述の実施形態は、本開示の様々な実施形態の一つに過ぎない。上述の実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。また、モータ駆動装置100と同様の機能の一部または全ては、モータ管理方法、コンピュータプログラム、又はプログラムを記録した非一時的な記録媒体等で具現化されてもよい。
 以上説明したように、第1の態様に係るモータ駆動装置(100)は、モータ位置取り込み部(102)と、スケール位置取り込み部(104)と、スケール位置算出部(103)と、制御位置切り替え部(105)と、モータ制御部(101)と、を有する。モータ位置取り込み部(102)は、モータ位置(D4)を取り込む。スケール位置取り込み部(104)は、外部スケール位置(D3)を取り込む。スケール位置算出部(103)は、モータ位置(D4)を外部スケール位置(D3)へと換算した値を、擬似スケール位置(D7)として出力し、かつ、外部スケール位置(D3)を、実スケール位置(D6)として出力する。制御位置切り替え部(105)は、スケール位置算出部(103)の出力に基づいて、制御位置信号(D2)を出力する。モータ制御部(101)は、位置指令信号(D1)と制御位置信号(D2)とが入力されて、制御位置信号(D2)が、位置指令信号(D1)に追従するようにモータ(202)を制御する。
 第2の態様に係るモータ駆動装置(100)では、第1の態様において、制御位置切り替え部(105)は、擬似スケール位置(D7)と実スケール位置(D6)とのいずれかに基づいて、制御位置信号(D2)を出力する。
 第3の態様に係るモータ駆動装置(100)では、第1又は2の態様において、スケール位置算出部(103)は、前回制御位置P0、今回のモータ制御周期でのモータ位置情報P1、前回のモータ制御周期でのモータ位置情報P2、スケール位置検出部の分解能R1、及びモータ位置検出部(201)の分解能R2を用いて、
P10=P0+(P1-P2)×(R1/R2)
の算出式によって、擬似スケール位置P10を算出する。
 第4の態様に係るモータ駆動装置(100)では、第1又は2の態様において、スケール位置算出部(103)は、今回のモータ制御周期でのモータ位置情報P1、スケール位置検出部の分解能R1、及びモータ位置検出部(201)の分解能R2を用いて、
P10=P1×(R1/R2)
の算出式によって、擬似スケール位置P10を算出する。
 第5の態様に係るモータ駆動装置(100)では、第1~4のいずれかの態様において、スケール位置算出部(103)は、今回のモータ制御周期での外部スケール位置情報EP1を用いて、
P11=EP1
の算出式によって、実スケール位置(D6)P11を算出する。
 第6の態様に係るモータ駆動装置(100)は、第1~5のいずれかの態様において、外部スケール位置(D3)の変化量により擬似スケール位置(D7)と実スケール位置(D6)とのどちらに切り替えるかを判定する制御位置切り替え判定部(108)を有する。制御位置切り替え部(105)は、制御位置切り替え判定部(108)の制御位置基準切り替え指令(D8)に基づいて擬似スケール位置(D7)と実スケール位置(D6)とのいずれかを選択し、選択した擬似スケール位置(D7)又は実スケール位置(D6)に基づいて、制御位置信号(D2)を出力する。
 第7の態様に係る搬送システム(1)は、第1~6のいずれかの態様に係るモータ駆動装置(100)と、モータ駆動装置(100)から出力される駆動電流(I1)によって駆動されて、搬送対象(205)を搬送するモータ(202)と、を有する。
 第8の態様に係る搬送システム(1)は、第7の態様において、モータ(202)の位置を検出し、モータ位置取り込み部(102)へ出力するモータ位置検出部(201)を、さらに有する。
 第9の態様に係る搬送システム(1)は、第7又は8の態様において、搬送対象の位置を検出し、スケール位置取り込み部(104)へ出力するスケール位置検出部を、さらに有する。
 第10の態様に係る搬送システム(1)は、第7~9のいずれかの態様において、位置指令信号(D1)をモータ駆動装置(100)へ出力し、かつモータ駆動装置(100)から出力される制御位置信号(D2)が入力され、位置指令信号(D1)と制御位置信号(D2)に基づいて生成された切り替え指令をモータ駆動装置(100)の制御位置切り替え部(105)に出力する。
 この態様によれば、モータ位置(D4)を外部スケール位置(D3)へと換算して擬似スケール位置(D7)を算出しているので、擬似スケール位置(D7)によって搬送対象(205)の位置を判定できる。すなわち、モータ駆動装置(100)及び搬送システム(1)は、擬似スケール位置(D7)を用いることにより、擬似的なフルクローズ制御としてモータ(202)の位置を制御することが可能となる。
 第2~6の態様に係る構成は、モータ駆動装置(100)に必須の構成ではなく、適宜省略可能である。
 第8~10の態様に係る構成は、搬送システム(1)に必須の構成ではなく、適宜省略可能である。
 本開示のモータ駆動装置は、フルクローズ制御中に外部スケールの値が途絶えた場合でも、継続してモータ駆動が必要になるような産業用機器などにも有用である。
 1 搬送システム
 100 モータ駆動装置
 101 モータ制御部
 102 モータ位置取り込み部
 103 スケール位置算出部
 104 スケール位置取り込み部
 105 制御位置切り替え部
 106 通信回路
 107 通信回路
 108 制御位置切り替え判定部
 I1 モータ駆動電流
 D4 モータ位置
 D7 擬似スケール位置
 D3 外部スケール位置
 D2 制御位置信号
 D1 位置指令信号
 D5 第1制御位置基準切り替え指令
 D6 実スケール位置
 D8 第2制御位置基準切り替え指令
 200 搬送部
 201 モータ位置検出部
 202 モータ
 203 ローター
 204 スケール位置検出部
 205 搬送対象

Claims (10)

  1. モータ位置を取り込むモータ位置取り込み部と、
    外部スケール位置を取り込むスケール位置取り込み部と、
    前記モータ位置を前記外部スケール位置へと換算した値を、擬似スケール位置として出力し、かつ、前記外部スケール位置を、実スケール位置として出力するスケール位置算出部と、
    前記スケール位置算出部の出力に基づいて、制御位置信号を出力する制御位置切り替え部と、
    位置指令信号と前記制御位置信号とが入力されて、前記制御位置信号が、前記位置指令信号に追従するようにモータを制御するモータ制御部と、
    を有した、
    モータ駆動装置。
  2. 前記制御位置切り替え部は、前記擬似スケール位置と前記実スケール位置とのいずれかに基づいて、前記制御位置信号を出力する、
    請求項1記載のモータ駆動装置。
  3. 前記スケール位置算出部は、前回制御位置P0、今回のモータ制御周期でのモータ位置情報P1、前回のモータ制御周期でのモータ位置情報P2、スケール位置検出部の分解能R1、及びモータ位置検出部の分解能R2を用いて、
    P10=P0+(P1-P2)×(R1/R2)
    の算出式によって、前記擬似スケール位置P10を算出する、
    請求項1又は2記載のモータ駆動装置。
  4. 前記スケール位置算出部は、今回のモータ制御周期でのモータ位置情報P1、スケール位置検出部の分解能R1、及びモータ位置検出部の分解能R2を用いて、
    P10=P1×(R1/R2)
    の算出式によって、前記擬似スケール位置P10を算出する、
    請求項1又は2記載のモータ駆動装置。
  5. 前記スケール位置算出部は、今回のモータ制御周期での外部スケール位置情報EP1を用いて、
    P11=EP1
    の算出式によって、前記実スケール位置P11を算出する、
    請求項1~4のいずれか1項に記載のモータ駆動装置。
  6. 前記外部スケール位置の変化量により前記擬似スケール位置と前記実スケール位置とのどちらに切り替えるかを判定する制御位置切り替え判定部を有し、
    前記制御位置切り替え部は、前記制御位置切り替え判定部の制御位置基準切り替え指令に基づいて前記擬似スケール位置と前記実スケール位置とのいずれかを選択し、選択した前記擬似スケール位置又は前記実スケール位置に基づいて、前記制御位置信号を出力する、
    請求項1~5のいずれか1項に記載のモータ駆動装置。
  7. 請求項1~6のいずれか1項に記載のモータ駆動装置と、
    前記モータ駆動装置から出力される駆動電流によって駆動されて、搬送対象を搬送するモータと、
    を有した、搬送システム。
  8. 前記搬送システムは、
    前記モータの位置を検出し、前記モータ位置取り込み部へ出力するモータ位置検出部を、
    さらに有した、
    請求項7記載の搬送システム。
  9. 前記搬送システムは、
    前記搬送対象の位置を検出し、前記スケール位置取り込み部へ出力するスケール位置検出部を、
    さらに有した、
    請求項7又は8記載の搬送システム。
  10. 前記位置指令信号を前記モータ駆動装置へ出力し、かつ前記モータ駆動装置から出力される前記制御位置信号が入力され、前記位置指令信号と前記制御位置信号に基づいて生成された切り替え指令を前記モータ駆動装置の前記制御位置切り替え部に出力する、
    請求項7~9のいずれか1項に記載の搬送システム。
PCT/JP2019/017881 2018-04-27 2019-04-26 モータ駆動装置及び搬送システム WO2019208758A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020515595A JP7213471B2 (ja) 2018-04-27 2019-04-26 モータ駆動装置及び搬送システム
CN201980028221.0A CN112041775B (zh) 2018-04-27 2019-04-26 电动机驱动装置和输送系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-086091 2018-04-27
JP2018086091 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019208758A1 true WO2019208758A1 (ja) 2019-10-31

Family

ID=68294982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017881 WO2019208758A1 (ja) 2018-04-27 2019-04-26 モータ駆動装置及び搬送システム

Country Status (3)

Country Link
JP (1) JP7213471B2 (ja)
CN (1) CN112041775B (ja)
WO (1) WO2019208758A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000333484A (ja) * 1999-05-20 2000-11-30 Matsushita Electric Ind Co Ltd モータ制御方法
JP2002278628A (ja) * 2001-03-16 2002-09-27 Yaskawa Electric Corp 位置制御方法
JP2002297241A (ja) * 2001-03-30 2002-10-11 Toshiba Mach Co Ltd 位置制御装置および位置制御方法
JP2009026144A (ja) * 2007-07-20 2009-02-05 Yaskawa Electric Corp 位置決め制御装置とその制御方法
JP2009201169A (ja) * 2008-01-09 2009-09-03 Mitsubishi Heavy Ind Ltd サーボ制御装置
WO2012164740A1 (ja) * 2011-06-03 2012-12-06 株式会社安川電機 多軸モータ駆動システム及び多軸モータ駆動装置
JP2016155144A (ja) * 2015-02-24 2016-09-01 蛇の目ミシン工業株式会社 サーボプレス、制御方法およびプログラム
WO2016203614A1 (ja) * 2015-06-18 2016-12-22 三菱電機株式会社 制御パラメータ調整装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1258431C (zh) * 2004-03-31 2006-06-07 清华大学 数控机床误差补偿方法及其系统
JP4137849B2 (ja) * 2004-06-21 2008-08-20 三菱電機株式会社 サーボモータ制御方法および装置
JP5045377B2 (ja) * 2007-11-08 2012-10-10 パナソニック株式会社 サーボアンプ
JP5544857B2 (ja) * 2009-12-11 2014-07-09 株式会社ニコン 駆動装置、駆動方法、及び装置
JP5455737B2 (ja) * 2010-03-26 2014-03-26 三菱電機株式会社 駆動制御装置
JP5689704B2 (ja) * 2010-08-08 2015-03-25 日本電産サンキョー株式会社 モータ制御装置およびモータ制御方法
JP6502634B2 (ja) * 2014-08-29 2019-04-17 国立大学法人 東京大学 制御装置
CN104506088A (zh) * 2014-12-16 2015-04-08 苏州聚晟太阳能有限公司 一种用于太阳能跟踪系统的直流电机控制装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000333484A (ja) * 1999-05-20 2000-11-30 Matsushita Electric Ind Co Ltd モータ制御方法
JP2002278628A (ja) * 2001-03-16 2002-09-27 Yaskawa Electric Corp 位置制御方法
JP2002297241A (ja) * 2001-03-30 2002-10-11 Toshiba Mach Co Ltd 位置制御装置および位置制御方法
JP2009026144A (ja) * 2007-07-20 2009-02-05 Yaskawa Electric Corp 位置決め制御装置とその制御方法
JP2009201169A (ja) * 2008-01-09 2009-09-03 Mitsubishi Heavy Ind Ltd サーボ制御装置
WO2012164740A1 (ja) * 2011-06-03 2012-12-06 株式会社安川電機 多軸モータ駆動システム及び多軸モータ駆動装置
JP2016155144A (ja) * 2015-02-24 2016-09-01 蛇の目ミシン工業株式会社 サーボプレス、制御方法およびプログラム
WO2016203614A1 (ja) * 2015-06-18 2016-12-22 三菱電機株式会社 制御パラメータ調整装置

Also Published As

Publication number Publication date
JPWO2019208758A1 (ja) 2021-05-20
CN112041775B (zh) 2024-05-31
CN112041775A (zh) 2020-12-04
JP7213471B2 (ja) 2023-01-27

Similar Documents

Publication Publication Date Title
US10391729B2 (en) Servo press, control method, and program
US9716459B2 (en) Mobile body, mobile body system, and position detecting method for mobile body
KR900002540B1 (ko) 위치 제어장치
JP5203585B2 (ja) 駆動制御装置及びその制御方法
JP6377506B2 (ja) モータ制御装置および同装置における補正データ作成方法
WO2019208758A1 (ja) モータ駆動装置及び搬送システム
KR0185465B1 (ko) 압솔루트엔코더 및 그의 현재위치 생성방법
JP2005229668A (ja) 機械制御装置
JP3370845B2 (ja) アブソリュートエンコーダ
JP5037437B2 (ja) 内部情報出力機能を有するエンコーダ
JP6157772B1 (ja) サーボ制御診断システム
JP4941011B2 (ja) モータ駆動装置
JPH01320467A (ja) 機械の回転数の測定方法
KR102021461B1 (ko) 모터 제어 장치 및 방법
CN110463029B (zh) 马达控制系统以及输入输出装置
JP2007017385A (ja) アブソリュートエンコーダ
JP2015142390A (ja) モータ制御装置および同装置における補正データ作成方法
CN112385134B (zh) 电动机驱动控制装置
US11435718B2 (en) Machine controller
US20240022201A1 (en) Motor control device, motor control method, and non-transitory computer-readable recording medium
US20040017189A1 (en) Method and apparatus for soft absolute position sensing of an electromechanical system output
KR100950252B1 (ko) 상태전이를 이용한 모션제어기용 데이터 제공 방법
JP3527097B2 (ja) 射出成形機の位置検出方法及び装置
JP5554555B2 (ja) 位置決め装置
JPH05164541A (ja) 移動位置校正装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515595

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792876

Country of ref document: EP

Kind code of ref document: A1