WO2019208063A1 - モータユニット - Google Patents

モータユニット Download PDF

Info

Publication number
WO2019208063A1
WO2019208063A1 PCT/JP2019/012646 JP2019012646W WO2019208063A1 WO 2019208063 A1 WO2019208063 A1 WO 2019208063A1 JP 2019012646 W JP2019012646 W JP 2019012646W WO 2019208063 A1 WO2019208063 A1 WO 2019208063A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
motor
reservoir
pair
stator core
Prior art date
Application number
PCT/JP2019/012646
Other languages
English (en)
French (fr)
Inventor
勇樹 石川
慶介 福永
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201990000666.3U priority Critical patent/CN213817494U/zh
Publication of WO2019208063A1 publication Critical patent/WO2019208063A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a motor unit.
  • This application is based on Japanese Patent Application No. 2018-084481 filed on Apr. 25, 2018. This application claims the benefit of priority to that application. The entire contents of which are hereby incorporated by reference.
  • Patent Document 1 discloses a structure for cooling a motor by supplying a refrigerant to the motor from a refrigerant inlet located on the upper side of the motor.
  • the motor generates the most heat from the coil.
  • the coil has a pair of coil ends that protrude from both sides of the stator core in the axial direction. For this reason, it is considered that the motor can be efficiently cooled by directly cooling the pair of coil ends.
  • the conventional motor cooling structure cannot sufficiently supply oil to the pair of coil ends.
  • One aspect of the present invention is to provide a motor unit capable of efficiently cooling a motor.
  • One aspect of the motor unit of the present invention includes a motor having a rotor that rotates about a motor shaft that extends in the horizontal direction, a stator that is positioned radially outward of the rotor, a housing that houses the motor, And oil contained in the container.
  • the stator includes a stator core and a coil wound around the stator core. The coil has a pair of coil ends protruding from the stator core on both sides in the axial direction.
  • the housing is provided with an oil passage for circulating the oil and supplying the oil to the motor from above the motor.
  • the oil passage is provided with a reservoir that is located above the motor and stores the oil.
  • the reservoir extends along the axial direction and receives a main shaft for receiving the oil supplied from the upstream side of the oil passage, and a pair of axial ends extending from the ends on both sides in the axial direction of the main shaft toward one side in the circumferential direction.
  • a scissors One of the pair of side rods is provided with an outlet for supplying the oil in the reservoir to one of the pair of coil ends.
  • the other of the pair of side rods is provided with an outlet for supplying the oil in the reservoir to the other of the pair of coil ends.
  • a motor unit capable of efficiently cooling a motor is provided.
  • FIG. 1 is a conceptual diagram of a motor unit according to an embodiment.
  • FIG. 2 is a cross-sectional view of the motor unit, and is a view of the motor and the second reservoir as seen from above.
  • FIG. 3 is a perspective view of the second reservoir.
  • FIG. 4 is a schematic cross-sectional view of the side wall bottom portion.
  • FIG. 5 is a cross-sectional view of the motor unit viewed along a plane orthogonal to the axial direction.
  • FIG. 6 is a cross-sectional view of a modified example of the recess and the first discharge hole.
  • an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system.
  • the Z-axis direction indicates the vertical direction (that is, the vertical direction)
  • the + Z direction is the upper side (opposite to the gravity direction)
  • the ⁇ Z direction is the lower side (gravity direction).
  • the X-axis direction is a direction orthogonal to the Z-axis direction and indicates the front-rear direction of the vehicle on which the motor unit 1 is mounted.
  • the Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction, and indicates the width direction (left-right direction) of the vehicle.
  • the direction parallel to the motor shaft J2 of the motor 2 (Z-axis direction) is simply referred to as “axial direction”, and the radial direction around the motor shaft J2 is simply referred to as “radial direction”.
  • the circumferential direction around the motor shaft J2, that is, the circumference of the motor shaft J2 is simply referred to as “circumferential direction”.
  • extending along in a predetermined direction is inclined in a range of less than 45 ° with respect to the strict direction, in addition to extending in a strict direction. Including cases extending in the direction.
  • the motor unit 1 of this embodiment is mounted on a vehicle using a motor as a power source, such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), and an electric vehicle (EV), and is used as the power source.
  • a motor such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), and an electric vehicle (EV)
  • FIG. 1 is a conceptual diagram of the motor unit 1.
  • the motor unit 1 includes a motor (main motor) 2, a gear portion 3 including a reduction gear 4 and a differential device 5, a housing 6, an oil O accommodated in the housing 6, and an inverter unit 8. .
  • a housing space 80 for housing the motor 2 and the gear portion 3 is provided inside the housing 6.
  • the housing 6 holds the motor 2 and the gear portion 3 in the accommodation space 80.
  • the accommodating space 80 is partitioned into a motor chamber 81 that accommodates the motor 2 and a gear chamber 82 that accommodates the gear portion 3.
  • the housing 6 is made of, for example, aluminum die casting.
  • the housing 6 has a partition wall 61c.
  • the accommodation space 80 is partitioned into a motor chamber 81 and a gear chamber 82 by a partition wall 61c.
  • the housing 6 has a closing portion 63 that surrounds the motor chamber 81 and faces the partition wall 61c.
  • the blocking part 63 can be removed from the housing 6. In the assembly process, the operator stores the motor 2 in the motor chamber 81 with the blocking portion 63 removed.
  • an oil reservoir P in which oil O is accumulated is provided in the lower region in the accommodation space 80.
  • the bottom 81 a of the motor chamber 81 is located above the bottom 82 a of the gear chamber 82.
  • a partition wall opening 68 is provided in the partition wall 61 c that partitions the motor chamber 81 and the gear chamber 82.
  • the partition opening 68 allows the motor chamber 81 and the gear chamber 82 to communicate with each other.
  • the partition opening 68 moves the oil O accumulated in the lower region in the motor chamber 81 to the gear chamber 82. Therefore, in this embodiment, the oil sump P is located in the lower region of the gear chamber 82.
  • the motor 2 is accommodated in the motor chamber 81 of the housing 6.
  • the motor 2 includes a rotor 20 that rotates about a motor axis J2 that extends in the horizontal direction, a stator 30 that is positioned radially outward of the rotor 20, and a pair of bearings 26 and 27 that rotatably support the rotor 20.
  • the motor 2 of this embodiment is an inner rotor type motor.
  • the rotor 20 rotates when an alternating current is supplied from a battery (not shown) to the stator 30 via the inverter unit 8.
  • the rotor 20 includes a shaft 21, a rotor core 24, and a rotor magnet (not shown).
  • the rotor 20 (that is, the shaft 21, the rotor core 24, and the rotor magnet) rotates around a motor shaft J2 that extends in the horizontal direction and the width direction of the vehicle.
  • the torque of the rotor 20 is transmitted to the gear unit 3.
  • the shaft 21 extends along the axial direction around the motor shaft J2.
  • the shaft 21 rotates about the motor shaft J2.
  • the shaft 21 is a hollow shaft in which a hollow portion 22 is provided.
  • a communication hole 23 is provided in the shaft 21.
  • the communication hole 23 extends in the radial direction and allows the hollow portion 22 to communicate with the outside of the shaft 21.
  • the shaft 21 extends across the motor chamber 81 and the gear chamber 82 of the housing 6. One end of the shaft 21 protrudes toward the gear chamber 82 side.
  • the first gear 41 of the gear portion 3 is fixed to the end portion of the shaft 21 that protrudes into the gear chamber 82.
  • the shaft 21 is rotatably supported by a pair of bearings (first bearing 26 and second bearing 27).
  • the first bearing 26 and the second bearing 27 are located in the motor chamber 81.
  • the first bearing 26 and the second bearing 27 are located on both sides in the axial direction of the shaft 21 with the rotor core 24 interposed therebetween.
  • the first bearing 26 and the second bearing 27 are held by the housing 6. More specifically, the first bearing 26 is held by the closing part 63 and the second bearing 27 is held by the partition wall 61c.
  • the rotor core 24 is configured by laminating silicon steel plates.
  • the rotor core 24 is a cylindrical body extending along the axial direction.
  • a plurality of rotor magnets (not shown) are fixed to the rotor core 24.
  • the plurality of rotor magnets are arranged along the circumferential direction with alternating magnetic poles.
  • the stator 30 has a stator core 32, a coil 31, and an insulator (not shown) interposed between the stator core 32 and the coil 31.
  • the stator 30 is held by the housing 6.
  • the stator core 32 has a plurality of magnetic pole teeth (not shown) radially inward from the inner peripheral surface of the annular yoke.
  • a coil wire is wound between the magnetic pole teeth.
  • the coil wire wound around the magnetic pole teeth constitutes the coil 31. That is, the coil 31 is wound around the stator core 32 via the insulator.
  • a coil wire extending from the coil 31 is connected to the inverter unit 8 via a bus bar (not shown).
  • the coil 31 has a first coil end 31a and a second coil end 31b.
  • the first coil end protrudes to one axial side of the stator core 32.
  • the second coil end 31 b protrudes on the other axial side of the stator core 32. That is, the coil 31 has a pair of coil ends 31 a and 31 b that protrude from both sides of the stator core 32 in the axial direction.
  • the gear unit 3 is accommodated in the gear chamber 82 of the housing 6.
  • the gear unit 3 is connected to the shaft 21 on one axial side of the motor shaft J2.
  • the gear unit 3 includes a speed reduction device 4 and a differential device 5. Torque output from the motor 2 is transmitted to the differential device 5 via the speed reducer 4.
  • the reduction gear 4 is connected to the rotor 20 of the motor 2.
  • the reduction gear 4 has a function of reducing the rotational speed of the motor 2 and increasing the torque output from the motor 2 in accordance with the reduction ratio.
  • the reduction gear 4 transmits the torque output from the motor 2 to the differential device 5.
  • the reduction gear 4 includes a first gear (intermediate drive gear) 41, a second gear (intermediate gear) 42, a third gear (file null drive gear) 43, and an intermediate shaft 45.
  • Torque output from the motor 2 is transmitted to the ring gear (gear) 51 of the differential device 5 via the shaft 21, the first gear 41, the second gear 42, the intermediate shaft 45 and the third gear 43 of the motor 2.
  • the gear ratio of each gear, the number of gears, and the like can be variously changed according to the required reduction ratio.
  • the reduction gear 4 is a parallel shaft gear type reduction gear in which the shaft cores of the respective gears are arranged in parallel.
  • the first gear 41 is provided on the outer peripheral surface of the shaft 21 of the motor 2.
  • the first gear 41 rotates with the shaft 21 around the motor shaft J2.
  • the intermediate shaft 45 extends along an intermediate axis J4 that is parallel to the motor axis J2.
  • the intermediate shaft 45 rotates around the intermediate axis J4.
  • the second gear 42 and the third gear 43 are provided on the outer peripheral surface of the intermediate shaft 45.
  • the second gear 42 and the third gear 43 are connected via an intermediate shaft 45.
  • the second gear 42 and the third gear 43 rotate around the intermediate shaft J4.
  • the second gear 42 meshes with the first gear 41.
  • the third gear 43 meshes with the ring gear 51 of the differential device 5.
  • the differential device 5 is connected to the motor 2 via the speed reducer 4.
  • the differential device 5 is a device for transmitting torque output from the motor 2 to the wheels of the vehicle.
  • the differential device 5 has a function of transmitting the same torque to the axles 55 of the left and right wheels while absorbing the speed difference between the left and right wheels when the vehicle is turning.
  • the differential 5 includes a ring gear 51, a gear housing (not shown), a pair of pinion gears (not shown), a pinion shaft (not shown), and a pair of side gears (not shown).
  • the ring gear 51 rotates around a differential axis J5 parallel to the motor axis J2. Torque output from the motor 2 is transmitted to the ring gear 51 via the reduction gear 4. That is, the ring gear 51 is connected to the motor 2 via another gear.
  • the oil O circulates in the oil passage 90 provided in the housing 6.
  • the oil O is used for lubricating the speed reducer 4 and the differential 5.
  • the oil O is used for cooling the motor 2.
  • Oil O accumulates in the lower region (namely, oil reservoir P) in the gear chamber 82. Since the oil O functions as a lubricating oil and a cooling oil, it is preferable to use an oil equivalent to an automatic transmission fluid (ATF) having a low viscosity.
  • ATF automatic transmission fluid
  • the oil passage 90 is provided in the housing 6.
  • the oil passage 90 is configured to straddle the motor chamber 81 and the gear chamber 82 of the accommodation space 80.
  • the oil path 90 is a path of the oil O that supplies the oil O from the oil reservoir P to the motor 2 and guides it to the oil reservoir P again.
  • the “oil path” means a path of the oil O that circulates in the accommodation space 80. Therefore, the “oil path” is not only a “flow path” that forms a steady oil flow in one direction in a steady manner, but also a path (for example, a reservoir) for temporarily retaining oil and the oil dripping. It is a concept that includes routes.
  • the oil passage 90 includes a first oil passage 91 that passes through the inside of the motor 2 and a second oil passage (oil passage) 92 that passes through the outside of the motor 2.
  • the first oil passage 91 and the second oil passage 92 each circulate the oil O inside the housing 6.
  • the oil O cools the motor 2 from inside and outside in the first oil passage 91 and the second oil passage 92.
  • Both the first oil path 91 and the second oil path 92 are paths for supplying the oil O from the oil reservoir P to the motor 2 and collecting it in the oil reservoir P again.
  • the oil O drops from the motor 2 and accumulates in the lower region in the motor chamber 81.
  • the oil O collected in the lower region in the motor chamber 81 moves to the lower region in the gear chamber 82 (that is, the oil reservoir P) through the partition opening 68. That is, the first oil passage 91 and the second oil passage 92 include a path for moving the oil O from the lower region in the motor chamber 81 to the lower region in the gear chamber 82.
  • first oil passage 91 In the first oil passage 91, the oil O is drawn up from the oil reservoir P by the differential device 5 and guided into the rotor 20. The centrifugal force accompanying rotation of the rotor 20 is given to the oil O inside the rotor 20. As a result, the oil O is evenly diffused toward the stator 30 surrounding the rotor 20 from the radially outer side, and cools the stator 30.
  • the first oil passage 91 has a scooping path 91a, a shaft supply path 91b, an in-shaft path 91c, and an in-rotor path 91d.
  • a first reservoir 93 is provided in the first oil passage 91.
  • the first reservoir 93 is provided in the gear chamber 82.
  • the scraping path 91 a is a path for scooping up the oil O from the oil reservoir P by the rotation of the ring gear 51 of the differential device 5 and receiving the oil O in the first reservoir 93.
  • the first reservoir 93 opens upward.
  • the first reservoir 93 receives oil O lifted up by the ring gear 51.
  • the first reservoir 93 is the oil pumped up by the second gear 42 and the third gear 43 in addition to the ring gear 51. Receive O.
  • the shaft supply path 91b guides the oil O from the first reservoir 93 to the hollow portion 22 of the shaft 21.
  • the in-shaft path 91 c is a path through which the oil O passes through the hollow portion 22 of the shaft 21.
  • the in-rotor path 91 d is a path that passes through the interior of the rotor core 24 from the communication hole 23 of the shaft 21 and scatters to the stator 30.
  • the oil O that has reached the stator 30 removes heat from the stator 30.
  • the oil O that has cooled the stator 30 is dropped downward and collected in a lower region in the motor chamber 81.
  • the oil O accumulated in the lower region in the motor chamber 81 is in the gear chamber 82 through the partition opening 68 provided in the partition wall 61c.
  • the second oil passage 92 In the second oil passage 92, the oil O is pulled up from the oil reservoir P to the upper side of the motor 2 and supplied to the motor 2. That is, the second oil passage 92 supplies oil O to the motor 2 from above the motor 2.
  • the oil O supplied to the motor 2 removes heat from the stator 30 and cools the motor 2 while traveling along the outer peripheral surface of the stator 30.
  • the oil O transmitted along the outer peripheral surface of the stator 30 drops downward and accumulates in a lower region in the motor chamber 81.
  • the oil O in the second oil passage 92 merges with the oil O in the first oil passage 91 in the lower region in the motor chamber 81.
  • the oil O collected in the lower region in the motor chamber 81 moves to the lower region in the gear chamber 82 (that is, the oil reservoir P) through the partition opening 68.
  • the second oil passage 92 includes a first flow path 92a, a second flow path 92b, and a third flow path 92c.
  • the first flow path 92 a, the second flow path 92 b, and the third flow path 92 c pass through the wall portion of the housing 6 that surrounds the accommodation space 80.
  • the oil O passes through the first passage 92 a, the oil pump 96, the second passage 92 b, the cooler 97, the third passage 92 c, and the second reservoir 10 in this order. It passes through and is supplied to the motor 2.
  • the first flow path 92 a connects the oil reservoir P in the lower region of the accommodation space 80 and the oil pump 96.
  • the second flow path 92 b connects the oil pump 96 and the cooler 97.
  • the third flow path 92 c extends upward from the cooler 97 and opens at the top of the motor chamber 81.
  • the oil pump 96 is an electric pump that is driven by electricity.
  • the oil pump 96 sucks up the oil O from the oil reservoir P through the first flow path 92a, and the motor through the second flow path 92b, the cooler 97, the third flow path 92c, and the second reservoir 10. 2 is supplied. That is, the oil pump 96 is provided for circulating the oil O in the second oil passage 92.
  • the cooler 97 cools the oil O that passes through the second oil passage 92.
  • the cooler 97 is connected to the first flow path 92a and the second flow path 92b.
  • the first flow path 92 a and the second flow path 92 b are connected via the internal flow path of the cooler 97.
  • the cooler 97 is connected to a cooling water pipe 97j through which the cooling water cooled by a radiator (not shown) is passed.
  • the oil O passing through the inside of the cooler 97 is cooled by exchanging heat with the cooling water passing through the cooling water pipe 97j.
  • An inverter unit 8 is provided in the path of the cooling water pipe 97j.
  • the cooling water that passes through the cooling water pipe 97j cools the inverter unit 8.
  • the second reservoir 10 is located in the motor chamber 81.
  • the second reservoir 10 is located on the upper side of the motor 2.
  • the second reservoir 10 stores the oil O supplied to the motor chamber 81 through the third flow path 92c.
  • the second reservoir 10 is provided with a plurality of outlets (outlet 10a, first discharge hole 19).
  • the oil O collected in the second reservoir 10 is supplied to the motor 2 from each outlet.
  • the oil O that has flowed out from the outlet of the second reservoir 10 flows along the outer peripheral surface of the motor 2 from the upper side to the lower side and takes the heat of the motor 2. Thereby, the whole motor 2 can be cooled.
  • the oil O that has cooled the coil 31 is dropped on the lower side and collected in a lower region in the motor chamber 81.
  • the oil O accumulated in the lower region in the motor chamber 81 moves to the gear chamber 82 through the partition opening 68 provided in the partition wall 61c.
  • FIG. 2 is a cross-sectional view of the motor unit 1, and is a view of the motor 2 and the second reservoir 10 as viewed from above.
  • FIG. 3 is a perspective view of the second reservoir 10.
  • the one side in the circumferential direction is the ⁇ X direction.
  • the second reservoir 10 includes a bottom portion (main rod bottom portion 12a, side rod bottom portion 11a) extending along a horizontal plane, and wall portions (main rod wall portions 12b, 12c, Side wall portions 11b and 11c).
  • the second reservoir 10 stores the oil O supplied from the third flow path 92c to the motor chamber 81 in a space surrounded by the bottom portion and the wall portion.
  • the second reservoir 10 is provided with a plurality of outlets (the outlet 10a, the first discharge hole 19, and the second discharge hole 17) through which the oil O flows out.
  • Each outflow port causes the oil O accumulated in the second reservoir 10 to flow out, and supplies it to the motor 2 from above. That is, the second reservoir 10 supplies the oil O stored through the outlet to each part of the motor 2 from above.
  • the second reservoir 10 has a main basket 12 and a pair of side bars 11A and 11B.
  • the main rod 12 and the pair of side rods 11A and 11B each have a bowl shape having a substantially U-shaped cross section that opens upward. That is, the second reservoir 10 has a bowl shape.
  • the second reservoir 10 is made of a resin material.
  • the main rod 12 is located immediately above the stator core 32.
  • the main rod 12 is located immediately below the supply port 92ca to the motor chamber 81 of the third flow path 92c. For this reason, the main rod 12 receives the oil O supplied from the upstream side of the second oil passage 92.
  • positioned immediately above means that the object is positioned above the object and overlaps the object when viewed from the vertical direction.
  • located directly below means positioned below the object and overlapping when viewed from above and below.
  • the main shaft 12 extends along the axial direction.
  • the supply port 92ca of the third flow path 92c is located in the middle of the main rod 12 in the length direction. Therefore, the oil O supplied from the third flow path 92c to the main rod 12 branches and flows on both sides of the main rod 12 in the length direction.
  • the main rod 12 has a main rod bottom portion (bottom portion) 12a and a pair of main rod wall portions (wall portions) 12b and 12c. That is, the second reservoir 10 has a main rod bottom portion 12a and main rod wall portions 12b and 12c.
  • the main rod bottom 12a extends along a horizontal plane.
  • the main rod bottom 12a is substantially parallel to the horizontal plane.
  • the main rod bottom 12a has a substantially rectangular shape with the axial direction as the length direction. In other words, the main rod bottom portion 12 a extends along the length direction of the main rod 12.
  • the pair of main fence wall portions 12b and 12c project upward from the main fence bottom portion 12a.
  • the pair of main eaves wall portions 12b and 12c are located on both sides of the main eaves bottom portion 12a in the width direction.
  • the pair of main wall portions 12b and 12c oppose each other in the circumferential direction.
  • the width direction of the bottom portion refers to the length of each rib portion (the main rod 12 and the pair of side rods 11A and 11B) in the plane in which the bottom portion extends. It means the direction orthogonal to the direction.
  • the width dimension of a bottom part means the dimension of the width direction.
  • the pair of main wall portions 12b and 12c are classified into a first main wall portion 12b and a second main wall portion 12c.
  • the first main wall 12b is located at the end of one side of the main wall 12a in the circumferential direction.
  • the 2nd main wall 12c is located in the edge part of the circumferential direction other side of the main wall 12a.
  • the oil O collected in the main rod 12 is restricted from flowing in the circumferential direction by the pair of main rod wall portions 12b and 12c.
  • the main rod 12 is opened on both sides in the axial direction and is connected to the side rods 11A and 11B on both sides in the axial direction. For this reason, the oil O which accumulates in the main rod 12 flows on both sides in the axial direction and flows into the side rods 11A and 11B.
  • the pair of side rods 11 ⁇ / b> A and 11 ⁇ / b> B are connected to the ends on both sides in the axial direction of the main rod 12.
  • the pair of side bars 11A and 11B respectively extend in a hook shape from the ends on both sides in the axial direction of the main bar 12 toward the one side in the circumferential direction.
  • the pair of side bars 11 ⁇ / b> A and 11 ⁇ / b> B are positioned on one side and the other side of the stator core 32 in the axial direction.
  • the side rod 11A located on one side in the axial direction is located immediately above the first coil end 31a.
  • the side rod 11B located on the other axial side of the pair of side rods 11A and 11B is located immediately above the second coil end 31b.
  • first side rod 11A when one of the pair of side rods 11A and 11B located on one side in the axial direction is referred to as a first side rod 11A, and the other located on the other side in the axial direction is referred to as a second side rod 11B.
  • the first side rod 11A and the second side rod 11B have substantially the same configuration except that they are arranged on the opposite sides of the stator core 32 in the axial direction.
  • Each of the pair of scissors 11A and 11B has a scissor bottom (bottom) 11a, a pair of scissors walls (walls) 11b and 11c, and a blocking wall 11d. That is, the second reservoir 10 has a side wall bottom portion 11a, side wall walls 11b and 11c, and a blocking wall portion 11d. Further, the pair of side flanges 11A and 11B has an outlet 10a, a plurality (two in this embodiment) of recesses 18, and a plurality (two in this embodiment) of first discharge holes (discharge holes). 19, a concave groove (recess) 16, and a second discharge hole (bearing supply hole) 17 are provided. In other words, the second reservoir 10 is provided with an outlet 10 a, a recess 18, a first discharge hole 19, a groove 16, and a second discharge hole 17.
  • the side wall bottom portion 11a extends along a horizontal plane.
  • the side heel bottom portion 11a has a substantially rectangular shape with a length direction in a direction orthogonal to the axial direction. That is, the side hook bottom portion 11a extends along the length direction of the side hooks 11A and 11B.
  • the side heel bottom portion 11 a has a first region 11 aa and a second region 11 ab.
  • the first region 11aa is a region that is continuous with the main rod bottom portion 12a in the side rod bottom portion 11a.
  • the first region 11aa is substantially parallel to the horizontal plane. 1st area
  • region 11aa is located in the flow direction upstream of the oil O with respect to 2nd area
  • region 11ab is located in the circumferential direction one side with respect to 1st area
  • the second region 11ab is inclined upward as it goes to the one side in the circumferential direction.
  • Second region 11ab is curved along the outer peripheral surface of stator core 32.
  • region 11ab a width dimension becomes small as it goes to the circumferential direction one side.
  • An outflow port 10a is provided at the tip of one side in the circumferential direction of the second region 11ab. The outflow port 10 a causes the oil O accumulated in the second reservoir 10 to flow out and supplies it to the motor 2.
  • the outflow port 10a is provided on one side in the circumferential direction of the second region 11ab.
  • the second region 11ab is inclined upward as it goes toward the outflow port 10a. Therefore, the outflow port 10a is located above the main rod bottom 12a and the first region 11aa.
  • the oil O in the second reservoir 10 flows out from the outlet 10a after the liquid level reaches the height of the outlet 10a.
  • the second reservoir 10 of the present embodiment has both a function as a soot that constitutes the flow path of the oil O and a function as a storage unit that stores the oil O.
  • the second reservoir 10 functions as a soot to allow the oil O to flow and the oil O to flow out from the outlet 10a.
  • the second reservoir 10 stores the oil O. That is, the oil O in the second reservoir 10 does not flow in one direction. Even when the second reservoir 10 stores the oil O, a constant amount of the oil O flows out from the first discharge hole 19 and the second discharge hole 17 which will be described later. .
  • the pair of side wall portions 11b and 11c protrude upward from the side wall bottom portion 11a.
  • the pair of side wall portions 11b and 11c are located on both sides in the width direction of the side wall bottom portion 11a.
  • the pair of side wall portions 11b and 11c face each other in the axial direction.
  • the pair of side wall parts 11b and 11c are classified into a first side wall part 11b and a second side wall part 11c.
  • the first side wall portion 11b is located at the end of the side wall bottom portion 11a on the stator core 32 side.
  • the second side wall 11c is located at the end of the side wall bottom 11a opposite to the stator core 32. That is, of the pair of side wall portions 11b and 11c, the second side wall portion 11c is located on the opposite side of the main rod 12, and the first side wall portion 11b is on the main rod 12 side. On the other side.
  • the first side wall 11b is connected to the first main wall 12b of the main wall 12.
  • the second side wall 11c is connected to the second main wall 12c of the main wall 12.
  • the second side wall 11c has a curved portion 11ca that curves toward the second main wall 12c and is smoothly connected.
  • the bending portion 11ca is bent with a uniform radius of curvature when viewed from the vertical direction.
  • the full width of the main rod 12 overlaps the curved portion 11ca when viewed from the axial direction. For this reason, even if the oil O flows through any position in the width direction of the main rod 12, it flows into the side rods 11A and 11B and hits the curved portion 11ca. Thereby, the oil O smoothly changes the flow toward the one side in the circumferential direction along the curve of the bending portion 11ca. That is, according to the present embodiment, the oil O flowing into the side rods 11A and 11B from the main rod 12 is provided by providing the second side rod wall portion 11c with the curved portion 11ca larger than the full width of the main rod 12. Can be smoothly changed from the axial direction to the circumferential direction.
  • the radius of curvature of the curved portion 11ca is uniform. However, if the bending portion 11ca is smoothly connected to the second main wall 12c and the bending direction is uniform, the curvature radius of the bending portion 11ca does not necessarily have to be uniform.
  • the closing wall portion 11d is provided in a partial region on the opposite side of the main rod 12 in the end portion on one side in the circumferential direction of the side rod bottom portion 11a.
  • the blocking wall portion 11d protrudes upward from the side wall bottom portion 11a.
  • the blocking wall portion 11d closes a part of the opening on one side in the circumferential direction of the side rods 11A and 11B.
  • occlusion walls block the edge part of the circumferential direction one side of the recessed groove part 16 provided in the side hooks 11A and 11B.
  • Outflow port 10a is configured in a region that is not blocked by blocking wall portion 11d among the end portions on one side in the circumferential direction of side rods 11A and 11B.
  • the outflow port 10a is located in the edge part of the circumferential direction one side of the scissors 11A and 11B.
  • the outflow port 10a overlaps either one of the pair of coil ends 31a and 31b when viewed in the vertical direction.
  • the outlet 10a of the second side rod 11A is located directly above the first coil end 31a.
  • the outflow port 10a of the second side rod 11B is located immediately above the second coil end 31b.
  • the outlet 10 a supplies the oil O in the second reservoir 10 to the motor 2. More specifically, the outflow port 10a of the first side flange 11A supplies oil O to one (first coil end 31a) of the pair of coil ends 31a and 31b. The outflow port 10a of the second side rod 11B supplies oil O to the other (second coil end 31b) of the pair of coil ends 31a and 31b.
  • the second reservoir 10 of the present embodiment includes a side rod 11A having an outlet 10a that supplies oil O to the first coil end 31a, and an outlet 10a that supplies oil O to the second coil end 31b. And a scissor 11B provided with for this reason, according to the present embodiment, the pair of coil ends 31a and 31b of the stator 30 can be individually cooled, and the cooling efficiency of the stator 30 can be increased.
  • the outlet 10a of the present embodiment opens on one side in the circumferential direction.
  • the amount of oil O supplied to the motor 2 can be controlled by adjusting the amount of oil O supplied to the second reservoir 10 using the oil pump 96.
  • the motor 2 can be cooled according to the load of the motor 2 by controlling the oil pump 96.
  • cooling according to the temperature of the motor 2 can be performed.
  • two concave portions 18 and two first discharge holes 19 are provided in the first region 11aa of the side wall bottom portion 11a.
  • the recess 18 is substantially rectangular when viewed from above.
  • the two recessed portions 18 are arranged side by side along the length direction (circumferential direction) of the side wall bottom portion 11a.
  • the first discharge hole 19 penetrates the side wall bottom portion 11a.
  • the first discharge hole 19 is circular when viewed from above.
  • the two first discharge holes 19 are located inside different recesses 18 as viewed from above.
  • FIG. 4 is a schematic cross-sectional view of the side gutter bottom portion 11a.
  • the recessed portion 18 is recessed downward on the upper surface of the side wall bottom portion 11a.
  • the upper surface 18a of the recess 18 extends along a horizontal plane.
  • the first discharge hole 19 penetrates the side wall bottom portion 11a in the vertical direction.
  • the first discharge hole 19 opens on the upper surface 18a of the recess 18 on the upper side.
  • the first discharge hole 19 opens on the lower side just above one of the pair of coil ends 31a and 31b.
  • the first discharge hole 19 of the first scissor 11A is located immediately above the first coil end 31a.
  • the first discharge hole 19 of the second scissor 11B is located immediately above the second coil end 31b.
  • the first discharge hole 19 allows the oil O in the second reservoir 10 to pass therethrough, and further drops it to the lower side to supply it to the motor 2. More specifically, the first discharge hole 19 supplies the oil O in the second reservoir 10 to the coil ends 31a and 31b.
  • the oil O supplied to the coil 31 penetrates from the gap between the conducting wires constituting the coil 31.
  • the oil O soaked in the coil 31 removes heat from the coil while penetrating the entire coil 31 by capillary force and gravity acting between the conductors. Further, the oil O accumulates at the lowermost part of the inner peripheral surface of the stator core 32 and drops from the axial ends of the coil 31.
  • the oil O in the side rods 11A and 11B flows along the length direction of the side rods 11A and 11B.
  • the flow rate of the oil O flowing through the side rods 11A and 11B increases.
  • the 1st discharge hole 19 opens to the upper surface 18a of the recessed part 18 provided in the side wall bottom part 11a.
  • the oil O poured into the concave portion 18 temporarily stays in the concave portion 18 without climbing the step. Further, the oil O staying in the recess 18 can only flow out from the first discharge hole 19. For this reason, the oil O easily flows out from the first discharge holes 19. As a result, regardless of the increase or decrease in the amount of oil O supplied to the second reservoir 10, the oil O can be steadily discharged from the first discharge hole 19, and the cooling efficiency of the coil 31 is increased.
  • the two recesses 18 are arranged side by side along the length direction of the scissors 11A and 11B. That is, the plurality of recesses 18 are arranged along the flow direction of the oil O in the second reservoir 10. Oil O is poured into each of the two recesses 18.
  • the flow direction of the oil O means the length direction of each rod (the main rod 12 and the side rods 11A and 11B) of the second reservoir 10.
  • the second reservoir 10 supplies oil O to the motor 2 through the outlet 10a and the first discharge hole 19.
  • the outlet 10a and the first discharge hole 19 supply oil to one region and the other region, respectively, across the motor shaft J2.
  • the entire motor 2 can be cooled by the oil O that flows downward along the surface of the motor 2.
  • the side gutter bottom portion 11 a is provided with a concave groove portion 16 and a second discharge hole 17.
  • the concave groove portion 16 is a groove that opens upward.
  • the recessed groove portion 16 extends linearly along the circumferential direction.
  • the recessed groove portion 16 is located on one side in the axial direction of the inclined second region 11ab, but extends in the horizontal direction without being inclined.
  • the concave groove portion 16 is located at the end of the side wall bottom portion 11a opposite to the main rod 12. That is, the groove 16 extends along the side wall 11b on the opposite side of the main wall 12 out of the pair of side walls 11b and 11c.
  • the concave groove portion 16 provided in the first side flange 11A is located immediately above the first bearing 26.
  • the recessed groove portion 16 provided in the second side rod 11 ⁇ / b> B is located immediately above the second bearing 27.
  • the second discharge hole 17 penetrates the side wall bottom portion 11a in the vertical direction.
  • the second discharge hole 17 is provided in the groove 16. That is, the second discharge hole 17 opens into the groove 16 on the upper side.
  • the second discharge hole 17 opens on the lower side just above one of the pair of bearings 26 and 27.
  • the second discharge hole 17 of the first scissor 11A opens immediately above the first bearing 26 and supplies the oil O in the second reservoir 10 to the first bearing 26.
  • the second discharge hole 17 of the second side flange 11 ⁇ / b> B opens immediately above the second bearing 27 and supplies the oil O in the second reservoir 10 to the second bearing 27.
  • the second discharge hole 17 provided in one side rod supplies oil O to one bearing (first bearing 26) and the other side rod (second side rod).
  • the second discharge hole 17 provided in the side rod 11B supplies the oil O to the other bearing (second bearing 27).
  • FIG. 5 is a sectional view of the motor unit 1 viewed along a plane orthogonal to the axial direction.
  • the path of oil supplied from the second discharge hole 17 of the second scissor 11B to the second bearing 27 will be described with reference to FIG. Since the path of oil supplied from the second discharge hole 17 of the first side rod 11A to the first bearing 26 is the same as this, the description thereof is omitted.
  • the second bearing 27 has an inner ring 27a, an outer ring 27b, and a plurality of steel balls 27c arranged between the inner ring 27a and the outer ring 27b in the radial direction.
  • the second bearing 27 holds the shaft 21 in the inner ring 27a.
  • the second bearing 27 is held by the housing 6 in the outer ring 27b.
  • the housing 6 has a bearing holding portion 69 extending in a cylindrical shape along the axial direction.
  • the bearing holding portion 69 is provided in the partition wall 61 c of the housing 6.
  • the bearing holding part 69 surrounds the second bearing 27 from the outside in the radial direction.
  • the bearing holding portion 69 holds the outer ring 27 b of the second bearing 27.
  • the bearing holding portion 69 is provided with a through hole 69a.
  • the through hole 69a penetrates the bearing holding portion 69 in the radial direction. Further, the through hole 69a opens upward.
  • the through hole 69a exposes a part of the outer peripheral surface of the outer ring 27b of the second bearing 27 to the upper side.
  • the through hole 69a of the present embodiment is a notch that extends along the axial direction with a uniform cross section and opens at the axial end of the bearing holding portion 69.
  • the second discharge hole 17 of the second reservoir 10 is located above the through hole 69a.
  • the oil O that has passed through the second discharge hole 17 reaches the through hole 69a. That is, the second discharge hole 17 supplies oil O to the through hole 69a.
  • the oil O that has reached the through-hole 69a reaches the steel ball 27c and the inner ring 27a along the surface of the outer ring 27b of the bearing and improves the lubricity of the second bearing 27. That is, according to the present embodiment, the oil O can be supplied from the second reservoir 10 to the second bearing 27 to increase the rotational efficiency of the second bearing 27.
  • the oil O is supplied to the first bearing 26 and the second bearing 27 from the second discharge hole 17 penetrating the side wall bottom of the second reservoir 10.
  • the 2nd discharge hole 17 is a through-hole penetrated along an up-down direction. Therefore, the second discharge hole 17 allows the oil O to flow out at a substantially constant flow rate, regardless of the liquid level of the oil O in the second reservoir 10 as compared with the outlet 10a that opens in the circumferential direction. . Therefore, according to the present embodiment, a substantially constant amount of oil O can be supplied per unit time from the second reservoir 10 to the first bearing 26 and the second bearing 27.
  • the 2nd discharge hole 17 of this embodiment is located directly above the through-hole 69a, and drops the oil O to the through-hole 69a, and supplies it directly.
  • the second discharge hole 17 may transmit the dropped oil O to the inner wall surface of the housing 6 and supply the oil O to the through hole 69a.
  • the second discharge hole 17 of the present embodiment is provided in the groove 16. Since the recessed groove portion 16 is formed to be recessed downward from the bottom of the second reservoir 10, the oil O is easily collected when the oil O is supplied to the second reservoir 10. According to the present embodiment, since the second discharge hole 17 is provided in the concave groove portion 16, the oil O is discharged before the other outlet (for example, the outlet 10 a) of the second reservoir 10. Thereby, the lubricity of the 1st bearing 26 and the 2nd bearing 27 can be improved at the time of starting of the motor unit 1.
  • the end portion on one side in the circumferential direction of the concave groove portion 16 is closed by the blocking wall portion 11d. For this reason, the oil O stays in the groove 16. For this reason, the second discharge hole 17 reduces the amount of oil O accumulated in the second reservoir 10, and even after the outflow of oil O from another outlet (for example, outlet 10a) stops.
  • One bearing 26 and a second bearing 27 can be supplied.
  • the second discharge hole 17 of the present embodiment is located in the vicinity of the blocking wall portion 11d.
  • the oil O flowing in the length direction of the scissors 11A and 11B in the concave groove portion 16 is blocked by the blocking wall portion 11d. For this reason, the flow velocity of the oil O is reduced in the vicinity of the blocking wall portion 11d.
  • the second discharge hole 17 is positioned in the vicinity of the blocking wall portion 11d, whereby the flow rate of the oil O is reduced on the upper side of the second discharge hole 17, and the second discharge hole 17 Oil O can be dripped constantly.
  • the groove 16 is located at the end of the side rods 11A and 11B opposite to the main rod 12 and extends along the second side wall 11c.
  • the oil that has flowed from the main rod 12 into the side rods 11A and 11B changes the flow direction to one side in the circumferential direction at the second side rod wall portion 11c, and flows along the second side rod wall portion 11c. For this reason, even when the amount of oil O supplied to the second reservoir 10 is small, the oil O tends to accumulate in the recessed groove portion 16. That is, the oil O accumulates in the recessed groove portion 16 before the oil O reaches the other areas of the second reservoir 10.
  • the oil O can be discharged from the second discharge hole 17 before the other outlets (the outlet 10a and the first discharge holes 19).
  • the motor unit 1 drives the oil pump 96 before driving the motor 2. That is, the oil pump 96 supplies the oil O to the second reservoir 10 before the rotor 20 of the motor 2 starts to rotate. Further, as described above, the second discharge hole 17 discharges the oil O prior to the other outlet 10a. According to this embodiment, the motor 2 can be driven after the lubricity of the first bearing 26 and the second bearing 27 is improved by the oil O.
  • the motor unit 1 If the motor unit 1 is not used for a long period of time, the oil O does not circulate. Therefore, the oil O from the first bearing 26 and the second bearing 27 that support the shaft 21 comes off, and the first bearing 26 and the second bearing There is a possibility that the lubricity of No. 27 is lowered. According to the present embodiment, even in the first drive after the motor unit 1 has not been started for a long time, the rotor 20 can be rotated after the oil O is supplied to the first bearing 26 and the second bearing 27. it can.
  • the first side wall 11b of the side bars 11A and 11B has a facing surface 11ba facing the stator core 32 side.
  • the facing surface 11ba faces the end surface of the stator core 32 that faces in the axial direction.
  • the facing surface 11ba of the first side flange 11A faces the end surface 32a facing the one axial side of the stator core 32.
  • the facing surface 11ba of the second side rod 11B faces the end surface 32b facing the other axial side of the stator core 32. That is, the pair of side bars 11A and 11B have opposing surfaces 11ba that face the end surfaces 32a and 32b facing the one side and the other side of the stator core 32 in the axial direction.
  • a protruding portion (first protruding portion) 15 that protrudes toward the stator core 32 is provided on each of the opposing surfaces 11ba of the pair of side bars 11A and 11B. Each protrusion 15 contacts the stator core 32 at the tip surface.
  • the first side flange 11A contacts the end face 32a facing the one axial side of the stator core 32 at the protrusion 15.
  • the second side rod 11B is in contact with the end face 32b facing the other axial side of the stator core 32 at the protrusion 15. That is, the pair of side bars 11A and 11B are in contact with the end surface 32a facing the one side in the axial direction of the stator core 32 and the end surface 32b facing the other side, respectively.
  • the second reservoir 10 can sandwich the stator core 32 from both sides in the axial direction by the side hooks 11 ⁇ / b> A and 11 ⁇ / b> B and hold the stator core 32 on the stator core 32.
  • the side bars 11A and 11B are in contact with the stator core 32 at the protrusions 15 respectively.
  • the contact position between the side rods 11 ⁇ / b> A and 11 ⁇ / b> B and the stator core 32 can be limited to the tip of the protrusion 15.
  • the lateral flanges 11 ⁇ / b> A and 11 ⁇ / b> B and the stator core 32 can be reliably brought into contact with each other by managing the dimensional accuracy of the tip surface of the protrusion 15.
  • the main rod bottom portion 12a of the main rod 12 has a plurality of support ribs (second protruding portions) 14 protruding downward. That is, the second reservoir 10 has a support rib 14 that protrudes downward.
  • the support rib 14 extends in a rib shape along the circumferential direction.
  • the support rib 14 has a support surface 14a facing downward.
  • the support surface 14a is curved along the circumferential direction.
  • the support rib 14 contacts the outer peripheral surface of the stator core 32 on the support surface 14a.
  • the second reservoir 10 contacts the outer peripheral surface of the stator core 32 at the support rib 14. Therefore, the second reservoir 10 can be prevented from rotating around the protrusion 15 with respect to the stator core 32. That is, according to the present embodiment, the second reservoir 10 can be held in the circumferential direction by the stator core 32.
  • the support rib 14 extends in a rib shape along the circumferential direction. Further, the support surface 14 a of the support rib 14 that contacts the outer peripheral surface of the stator core 32 is curved along the outer peripheral surface of the stator core 32. Therefore, according to the present embodiment, the contact surface between the support rib 14 and the outer peripheral surface of the stator core 32 is secured long in the circumferential direction, and the stability of holding the second reservoir 10 by the stator core 32 can be improved.
  • a contact rib (third projecting portion) 13 is provided on the curved portion 11ca provided on the second side wall 11c of the side walls 11A and 11B. That is, the second reservoir 10 has the contact rib 13.
  • the contact rib 13 protrudes on the other side in the circumferential direction with respect to the curved portion 11ca.
  • the contact rib 13 extends in a rib shape along the axial direction.
  • the second reservoir 10 contacts the outer peripheral surface of the stator core 32 at the support rib 14. Therefore, the second reservoir 10 is sandwiched between the outer peripheral surface of the stator core 32 and the inner wall surface 6 a of the housing 6 and is held by the stator core 32 and the housing 6. According to this embodiment, the second reservoir 10 can be stably held in the housing 6.
  • the housing 6 is formed by casting such as die casting. For this reason, the inner wall surface 6a of the housing 6 in contact with the contact rib 13 becomes a tapered surface that inclines radially inward from the one side in the axial direction (the closed portion 63 side) toward the other side (the partition wall 61c side). Further, in the manufacturing process of the motor unit 1 of the present embodiment, the second reservoir 10 is moved in the axial direction together with the motor 2 in a state where the second reservoir 10 is assembled and held in the motor 2 and accommodated in the motor chamber 81 of the housing 6. Is done. Therefore, in the process of housing the second reservoir 10 in the motor chamber 81, the contact rib 13 of the second side rod 11B receives stress from the inner wall surface 6a toward the one side in the axial direction.
  • the contact rib 13 extends in a rib shape along the axial direction. For this reason, the contact rib 13 has high rigidity along the axial direction. Even if the contact rib 13 receives stress in the axial direction from the inner wall surface 6a in the step of housing the second reservoir 10 in the motor chamber 81, damage is suppressed. Further, the contact rib 13 extends in a rib shape along the axial direction, so that it deforms appropriately in the radial direction when contacting the inner wall surface 6a. Thereby, since the contact rib 13 is in contact with the inner wall surface 6a, the main rod 12 and the side rods 11A and 11B can be prevented from being deformed.
  • FIG. 6 is a cross-sectional view of a modified recess 118 and first discharge hole 119 that can be employed in the second reservoir 10 described above.
  • symbol is attached
  • the concave portion 118 and the first discharge hole 119 of the present modification are provided in the side wall bottom portion 11a.
  • the recessed portion 118 is recessed downward on the upper surface of the side wall bottom portion 11a.
  • the upper surface 118a of the recess 118 has a horizontal surface portion 118aa and a tapered surface portion 118ab.
  • the horizontal plane portion 118aa extends along a horizontal plane.
  • the tapered surface portion 118ab is inclined to one side in the circumferential direction as it goes upward.
  • the tapered surface portion 118ab is inclined to face one side in the circumferential direction.
  • the oil O flows through the side walls 11A and 11B with the one side in the circumferential direction as the flow direction. Accordingly, the tapered surface portion 118ab is inclined to face the upstream side in the flow direction of the oil O in the second reservoir 10.
  • the first discharge hole 119 penetrates the side wall bottom portion 11a.
  • the first discharge hole 119 extends in the thickness direction of the tapered surface portion 118ab.
  • the first discharge hole 119 opens to the tapered surface portion 118ab of the concave portion 118 on the upper side.
  • the first discharge hole 119 opens on the lower side just above one of the pair of coil ends 31a and 31b.
  • the first discharge hole 119 passes and drops the oil O in the second reservoir 10 to the lower side, and supplies it to either one of the pair of coil ends 31a and 31b.
  • the first discharge hole 119 opens on the upper surface 118a of the recess 118 provided in the side wall bottom portion 11a.
  • the oil O flowing through the side rods 11 ⁇ / b> A and 11 ⁇ / b> B reaches the recess 118, the oil O is poured into the recess 118 from the step of the recess 118.
  • the oil O poured into the concave portion 118 temporarily stays in the concave portion 118 without climbing the step. Further, the oil O staying in the recess 18 can only flow out from the first discharge hole 19. For this reason, the oil O easily flows out from the first discharge holes 119.
  • the oil O can be steadily discharged from the first discharge hole 119, and the cooling efficiency of the coil 31 is increased.
  • the first discharge hole 119 of this modification opens in the tapered surface portion 118ab.
  • the tapered surface portion 118ab faces the upstream side in the flow direction of the oil O. Therefore, according to this modification, when the flow rate of the oil O is increased, the oil O can be smoothly discharged from the first discharge hole 119 using the flow rate of the oil O. Thereby, when the supply amount of the oil O to the 2nd reservoir
  • second discharge holes (bearing supply holes), 18,118 Recesses, 18a, 118a ... Upper surface, 19 ... First discharge hole (discharge hole), 20 ... Rotor, 21 ... Shaft, 26, 27 ... Bearing, 27b ... Outer ring, 30 ... Stator, 31 ... Coil, 31a, 31b ... Coil end, 32 ... Stator core, 32a, 32b ... End face 69 ... Bearing holding portion, 69a ... Through hole, 92 ... Second oil passage (oil passage), 98 ... Second reservoir (reservoir), 11ba ... Opposing surface, 11ca ... Curved portion, 118ab ... Tapered surface portion, J2 ... Motor shaft, O ... oil

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

本発明のモータユニットの一つの態様は、モータと、モータを収容するハウジングと、ハウジング内に収容されるオイルと、を備える。ハウジングには、オイルを循環させオイルをモータの上側からモータに供給する油路が設けられる。油路には、モータの上側に位置しオイルを貯留するリザーバが設けられる。リザーバは、軸方向に沿って延び油路の上流側から供給されるオイルを受ける主樋と、主樋の軸方向両側の端部からそれぞれ周方向一方側に向かって延びる一対の側樋と、を有する。一対の側樋には、それぞれリザーバ内のオイルをモータのコイルエンドに供給する流出口が設けられる。

Description

モータユニット
 本発明は、モータユニットに関する。本出願は、2018年4月25日に提出された日本特許出願第2018-084481号に基づいている。本出願は、当該出願に対して優先権の利益を主張するものである。その内容全体は、参照されることによって本出願に援用される。
  モータは、駆動時に発熱するため、高トルクを生じさせるモータには、冷却構造が設けられる。特許文献1には、モータの上側に位置する冷媒流入口からモータに冷媒を供給してモータを冷却する構造が開示されている。
特開2016-73163号公報
 一般的にモータは、コイルの発熱量が最も顕著である。コイルは、ステータコアの軸方向両側にそれぞれ突出する一対のコイルエンドを有する。このため、一対のコイルエンドをそれぞれ直接的に冷却することで、モータを効率的に冷却できると考えられる。しかしながら、従来のモータの冷却構造では、一対のコイルエンドに十分にオイルを供給することができなかった。
 本発明の一つの態様は、モータを効率的に冷却できるモータユニットの提供を目的の一つとする。
 本発明のモータユニットの一つの態様は、水平方向に延びるモータ軸を中心として回転するロータおよび前記ロータの径方向外側に位置するステータを有するモータと、前記モータを収容するハウジングと、前記ハウジング内に収容されるオイルと、を備える。前記ステータは、ステータコアと、前記ステータコアに巻き付けられるコイルと、を有する。前記コイルは、前記ステータコアから軸方向両側にそれぞれ突出する一対のコイルエンドを有する。前記ハウジングには、前記オイルを循環させ前記オイルを前記モータの上側から前記モータに供給する油路が設けられる。前記油路には、前記モータの上側に位置し前記オイルを貯留するリザーバが設けられる。前記リザーバは、軸方向に沿って延び前記油路の上流側から供給される前記オイルを受ける主樋と、前記主樋の軸方向両側の端部からそれぞれ周方向一方側に向かって延びる一対の側樋と、を有する。一対の前記側樋のうち一方には、前記リザーバ内の前記オイルを一対の前記コイルエンドのうち一方に供給する流出口が設けられる。一対の前記側樋のうち他方には、前記リザーバ内の前記オイルを一対の前記コイルエンドのうち他方に供給する流出口が設けられる。
 本発明の一つの態様によれば、モータを効率的に冷却できるモータユニットが提供される。
図1は、一実施形態のモータユニットの概念図である。 図2は、モータユニットの断面図であって、モータおよび第2のリザーバを上側から見た図である。 図3は、第2のリザーバの斜視図である。 図4は、側樋底部の断面模式図である。 図5は、軸方向と直交する平面に沿って見たモータユニットの断面図である。 図6は、変形例の凹部および第1の吐出孔の断面図である。
 以下、図面を参照しながら、本発明の実施形態に係るモータユニットについて説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。
 以下の説明では、モータユニット1が水平な路面上に位置する車両に搭載された場合の位置関係を基に、重力方向を規定して説明する。また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、Z軸方向は、鉛直方向(すなわち上下方向)を示し、+Z方向が上側(重力方向の反対側)であり、-Z方向が下側(重力方向)である。また、X軸方向は、Z軸方向と直交する方向であってモータユニット1が搭載される車両の前後方向を示す。Y軸方向は、X軸方向とZ軸方向との両方と直交する方向であって、車両の幅方向(左右方向)を示す。
 以下の説明において特に断りのない限り、モータ2のモータ軸J2に平行な方向(Z軸方向)を単に「軸方向」と呼び、モータ軸J2を中心とする径方向を単に「径方向」と呼び、モータ軸J2を中心とする周方向、すなわち、モータ軸J2の軸周りを単に「周方向」と呼ぶ。
 また、本明細書において、所定の方向(又は平面)に「沿って延びる」とは、厳密に所定の方向に延びる場合に加えて、厳密な方向に対して、45°未満の範囲で傾いた方向に延びる場合も含む。
 以下、本発明の例示的な一実施形態に係るモータユニット1について説明する。
 本実施形態のモータユニット1は、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)等、モータを動力源とする車両に搭載され、その動力源として使用される。
 図1は、モータユニット1の概念図である。
 モータユニット1は、モータ(メインモータ)2と、減速装置4および差動装置5を含むギヤ部3と、ハウジング6と、ハウジング6内に収容されるオイルOと、インバータユニット8と、を備える。
 <ハウジング>
 ハウジング6の内部は、モータ2およびギヤ部3を収容する収容空間80が設けられる。ハウジング6は、収容空間80においてモータ2およびギヤ部3を保持する。収容空間80は、モータ2を収容するモータ室81と、ギヤ部3を収容するギヤ室82と、に区画される。ハウジング6は、例えばアルミダイカスト製である。
 ハウジング6は、隔壁61cを有する。収容空間80は、隔壁61cによってモータ室81とギヤ室82とに区画される。また、ハウジング6は、モータ室81を囲み隔壁61cと対向する閉塞部63を有する。閉塞部63は、ハウジング6から取り外すことができる。組み立て工程において、作業者は、閉塞部63を取り外した状態でモータ2をモータ室81に格納する。
 収容空間80内の下部領域には、オイルOが溜るオイル溜りPが設けられる。本実施形態では、モータ室81の底部81aは、ギヤ室82の底部82aより上側に位置する。また、モータ室81とギヤ室82とを区画する隔壁61cには、隔壁開口68が設けられる。隔壁開口68は、モータ室81とギヤ室82とを連通させる。隔壁開口68は、モータ室81内の下部領域に溜ったオイルOをギヤ室82に移動させる。したがって、本実施形態においてオイル溜りPは、ギヤ室82の下部領域に位置する。
 <モータ>
 モータ2は、ハウジング6のモータ室81に収容される。モータ2は、水平方向に延びるモータ軸J2を中心として回転するロータ20と、ロータ20の径方向外側に位置するステータ30と、ロータ20を回転可能に支持する一対のベアリング26,27と、を備える。本実施形態のモータ2は、インナーロータ型モータである。
 ロータ20は、図示略のバッテリからインバータユニット8を介してステータ30に交流電流が供給されることで回転する。ロータ20は、シャフト21と、ロータコア24と、ロータマグネット(図示略)と、を有する。ロータ20(すなわち、シャフト21、ロータコア24およびロータマグネット)は、水平方向かつ車両の幅方向に延びるモータ軸J2を中心として回転する。ロータ20のトルクは、ギヤ部3に伝達される。
 シャフト21は、モータ軸J2を中心として軸方向に沿って延びる。シャフト21は、モータ軸J2を中心として回転する。シャフト21は、内部に中空部22が設けられた中空シャフトである。シャフト21には、連通孔23が設けられる。連通孔23は、径方向に延びて中空部22とシャフト21の外部とを連通させる。
 シャフト21は、ハウジング6のモータ室81とギヤ室82とを跨って延びる。シャフト21の一方の端部は、ギヤ室82側に突出する。ギヤ室82に突出するシャフト21の端部には、ギヤ部3の第1のギヤ41が固定されている。
 シャフト21は、一対のベアリング(第1のベアリング26および第2のベアリング27)により回転可能に支持される。第1のベアリング26および第2のベアリング27は、モータ室81に位置する。また、第1のベアリング26および第2のベアリング27は、ロータコア24を挟んでシャフト21の軸方向両側にそれぞれ位置する。第1のベアリング26および第2のベアリング27は、ハウジング6に保持される。より具体的には、第1のベアリング26は閉塞部63に保持され、第2のベアリング27は隔壁61cに保持される。
 ロータコア24は、珪素鋼板を積層して構成される。ロータコア24は、軸方向に沿って延びる円柱体である。ロータコア24には、図示略の複数のロータマグネットが固定される。複数のロータマグネットは、磁極を交互にして周方向に沿って並ぶ。
 ステータ30は、ステータコア32と、コイル31と、ステータコア32とコイル31との間に介在するインシュレータ(図示略)とを有する。ステータ30は、ハウジング6に保持される。ステータコア32は、円環状のヨークの内周面から径方向内方に複数の磁極歯(図示略)を有する。磁極歯の間には、コイル線が掛けまわされる。磁極歯に掛けまわされたコイル線は、コイル31を構成する。すなわち、コイル31は、インシュレータを介してステータコア32に巻き付けられる。コイル31から延び出るコイル線は、図示略のバスバーを介してインバータユニット8に接続される。
 コイル31は、第1のコイルエンド31aと、第2のコイルエンド31bと、を有する。第1のコイルエンドは、ステータコア32の軸方向一方側に突出する。第2のコイルエンド31bは、ステータコア32の軸方向他方側に突出する。すなわち、コイル31は、ステータコア32の軸方向両側にそれぞれ突出する一対のコイルエンド31a、31bを有する。
 <ギヤ部>
 ギヤ部3は、ハウジング6のギヤ室82に収容される。ギヤ部3は、モータ軸J2の軸方向一方側においてシャフト21に接続される。ギヤ部3は、減速装置4と差動装置5とを有する。モータ2から出力されるトルクは、減速装置4を介して差動装置5に伝達される。
 <減速装置>
 減速装置4は、モータ2のロータ20に接続される。減速装置4は、モータ2の回転速度を減じて、モータ2から出力されるトルクを減速比に応じて増大させる機能を有する。減速装置4は、モータ2から出力されるトルクを差動装置5へ伝達する。
 減速装置4は、第1のギヤ(中間ドライブギヤ)41と、第2のギヤ(中間ギヤ)42と、第3のギヤ(ファイルナルドライブギヤ)43と、中間シャフト45と、を有する。モータ2から出力されるトルクは、モータ2のシャフト21、第1のギヤ41、第2のギヤ42、中間シャフト45および第3のギヤ43を介して差動装置5のリングギヤ(ギヤ)51へ伝達される。各ギヤのギヤ比およびギヤの個数等は、必要とされる減速比に応じて種々変更可能である。減速装置4は、各ギヤの軸芯が平行に配置される平行軸歯車タイプの減速機である。
 第1のギヤ41は、モータ2のシャフト21の外周面に設けられる。第1のギヤ41は、シャフト21とともに、モータ軸J2を中心に回転する。中間シャフト45は、モータ軸J2と平行な中間軸J4に沿って延びる。中間シャフト45は、中間軸J4を中心として回転する。第2のギヤ42および第3のギヤ43は、中間シャフト45の外周面に設けられる。第2のギヤ42と第3のギヤ43は、中間シャフト45を介して接続される。第2のギヤ42および第3のギヤ43は、中間軸J4を中心として回転する。第2のギヤ42は、第1のギヤ41に噛み合う。第3のギヤ43は、差動装置5のリングギヤ51と噛み合う。
 <差動装置>
 差動装置5は、減速装置4を介しモータ2に接続される。差動装置5は、モータ2から出力されるトルクを車両の車輪に伝達するための装置である。差動装置5は、車両の旋回時に、左右の車輪の速度差を吸収しつつ、左右両輪の車軸55に同トルクを伝える機能を有する。差動装置5は、リングギヤ51と、ギヤハウジング(不図示)と、一対のピニオンギヤ(不図示)と、ピニオンシャフト(不図示)と、一対のサイドギヤ(不図示)と、を有する。
 リングギヤ51は、モータ軸J2と平行な差動軸J5を中心として回転する。リングギヤ51には、モータ2から出力されるトルクが減速装置4を介して伝えられる。すなわち、リングギヤ51は、他のギヤを介してモータ2に接続される。
 <オイル>
 オイルOは、ハウジング6に設けられた油路90内を循環する。オイルOは、減速装置4および差動装置5の潤滑用として使用される。また、オイルOは、モータ2の冷却用として使用される。オイルOは、ギヤ室82内の下部領域(すなわちオイル溜りP)に溜る。オイルOは、潤滑油および冷却油の機能を奏するため、粘度の低いオートマチックトランスミッション用潤滑油(ATF:Automatic Transmission Fluid)と同等のものを用いることが好ましい。
 <油路>
 油路90は、ハウジング6に設けられる。油路90は、収容空間80のモータ室81とギヤ室82とに跨って構成される。油路90は、オイル溜りPからオイルOをモータ2に供給し、再びオイル溜りPに導くオイルOの経路である。
 なお、本明細書において、「油路」とは、収容空間80を循環するオイルOの経路を意味する。したがって、「油路」とは、定常的に一方向に向かう定常的なオイルの流動を形成する「流路」のみならず、オイルを一時的に滞留させる経路(例えばリザーバ)およびオイルが滴り落ちる経路をも含む概念である。
 油路90は、モータ2の内部を通る第1の油路91と、モータ2の外部を通る第2の油路(油路)92と、を有する。第1の油路91および第2の油路92は、それぞれハウジング6の内部でオイルOを循環させる。オイルOは、第1の油路91および第2の油路92において、モータ2を内部および外部から冷却する。
 (第1の油路と第2の油路の共通部分)
 まず、第1の油路91と第2の油路92の共通部分について説明する。 第1の油路91および第2の油路92は、ともにオイル溜りPからオイルOをモータ2に供給して、再びオイル溜りPに回収する経路である。第1の油路91および第2の油路92において、オイルOは、モータ2から滴下して、モータ室81内の下部領域に溜る。モータ室81内の下部領域に溜ったオイルOは、隔壁開口68を介して、ギヤ室82内の下部領域(すなわち、オイル溜りP)に移動する。すなわち、第1の油路91および第2の油路92は、オイルOをモータ室81内の下部領域からギヤ室82内の下部領域に移動させる経路を含む。
 (第1の油路)
 第1の油路91において、オイルOは、オイル溜りPから差動装置5によりかき上げられてロータ20の内部に導かれる。オイルOには、ロータ20の内部で、ロータ20の回転に伴う遠心力が付与される。これにより、オイルOは、ロータ20を径方向外側から囲むステータ30に向かって均等に拡散されステータ30を冷却する。
 第1の油路91は、かき上げ経路91aと、シャフト供給経路91bと、シャフト内経路91cと、ロータ内経路91dと、を有する。また、第1の油路91の経路中には、第1のリザーバ93が設けられる。第1のリザーバ93は、ギヤ室82に設けられている。
 かき上げ経路91aは、差動装置5のリングギヤ51の回転によってオイル溜りPからオイルOをかき上げて、第1のリザーバ93でオイルOを受ける経路である。第1のリザーバ93は、上側に開口する。第1のリザーバ93は、リングギヤ51がかき上げたオイルOを受ける。また、モータ2の駆動直後などオイル溜りPの液面が高い場合等には、第1のリザーバ93は、リングギヤ51に加えて第2のギヤ42および第3のギヤ43によってかき上げられたオイルOも受ける。
 シャフト供給経路91bは、第1のリザーバ93からシャフト21の中空部22にオイルOを誘導する。シャフト内経路91cは、シャフト21の中空部22内をオイルOが通過する経路である。ロータ内経路91dは、シャフト21の連通孔23からロータコア24の内部を通過して、ステータ30に飛散する経路である。
 シャフト内経路91cにおいて、ロータ20の内部のオイルOには、ロータ20の回転に伴い遠心力が付与される。これにより、オイルOは、ロータ20から径方向外側に連続的に飛散する。また、オイルOの飛散に伴い、ロータ20内部の経路が負圧となり、第1のリザーバ93に溜るオイルOが、ロータ20の内部に吸引され、ロータ20内部の経路にオイルOが満たされる。
 ステータ30に到達したオイルOは、ステータ30から熱を奪う。ステータ30を冷却したオイルOは、下側に滴下され、モータ室81内の下部領域に溜る。モータ室81内の下部領域に溜ったオイルOは、隔壁61cに設けられた隔壁開口68を介してギヤ室82
 (第2の油路)
 第2の油路92においてオイルOは、オイル溜りPからモータ2の上側まで引き上げられてモータ2に供給される。すなわち、第2の油路92は、オイルOをモータ2の上側からモータ2に供給する。モータ2に供給されたオイルOは、ステータ30の外周面を伝いながら、ステータ30から熱を奪い、モータ2を冷却する。ステータ30の外周面を伝ったオイルOは、下方に滴下してモータ室81内の下部領域に溜る。第2の油路92のオイルOは、第1の油路91のオイルOとモータ室81内の下部領域で合流する。モータ室81内の下部領域に溜ったオイルOは、隔壁開口68を介して、ギヤ室82内の下部領域(すなわち、オイル溜りP)に移動する。
 第2の油路92には、オイルポンプ96と、クーラー97と、第2のリザーバ(リザーバ)98と、が設けられる。また、第2の油路92は、第1の流路92aと第2の流路92bと第3の流路92cとを有する。第1の流路92a、第2の流路92bおよび第3の流路92cは、収容空間80を囲むハウジング6の壁部を通過する。
 第2の油路92において、オイルOは、第1の流路92a、オイルポンプ96、第2の流路92b、クーラー97、第3の流路92c、第2のリザーバ10の順で各部を通過して、モータ2に供給される。第1の流路92aは、収容空間80の下部領域のオイル溜りPとオイルポンプ96とを繋ぐ。第2の流路92bは、オイルポンプ96とクーラー97とを繋ぐ。第3の流路92cは、クーラー97から上側に延びてモータ室81の上部で開口する。
 オイルポンプ96は、電気により駆動する電動ポンプである。オイルポンプ96は、第1の流路92aを介してオイル溜りPからオイルOを吸い上げて、第2の流路92b、クーラー97、第3の流路92cおよび第2のリザーバ10を介してモータ2に供給する。すなわち、オイルポンプ96は、第2の油路92中でオイルOを循環させるために設けられる。
クーラー97は、第2の油路92を通過するオイルOを冷却する。クーラー97には、第1の流路92aおよび第2の流路92bが接続される。第1の流路92aおよび第2の
流路92bは、クーラー97の内部流路を介して繋がる。クーラー97には、ラジエーター(図示略)で冷却された冷却水を通過させる冷却水用配管97jが接続される。クーラ
ー97の内部を通過するオイルOは、冷却水用配管97jを通過する冷却水との間で熱交換されて冷却される。なお、冷却水用配管97jの経路中には、インバータユニット8が設けられる。冷却水用配管97jを通過する冷却水は、インバータユニット8を冷却する
 第2のリザーバ10は、モータ室81に位置する。第2のリザーバ10は、モータ2の上側に位置する。第2のリザーバ10は、第3の流路92cを介してモータ室81に供給されたオイルOを貯留する。また、第2のリザーバ10には、複数の流出口(流出口10a、第1の吐出孔19)が設けられる。第2のリザーバ10内に溜ったオイルOは、各流出口からモータ2に供給される。第2のリザーバ10の流出口から流出したオイルOは、上側から下側に向かってモータ2の外周面を伝って流れてモータ2の熱を奪う。これにより、モータ2全体を冷却することができる。コイル31を冷却したオイルOは、下側に滴下され、モータ室81内の下部領域に溜る。モータ室81内の下部領域に溜ったオイルOは、隔壁61cに設けられた隔壁開口68を介してギヤ室82に移動する。
 <第2のリザーバ>
 第2のリザーバ10についてより詳細に説明する。
 図2は、モータユニット1の断面図であって、モータ2および第2のリザーバ10を上側から見た図である。図3は、第2のリザーバ10の斜視図である。なお、図2を用いた第2のリザーバ10の説明において、周方向一方側とは-X方向である。
 図2に示すように、第2のリザーバ10は、水平平面に沿って延びる底部(主樋底部12a、側樋底部11a)と、底部から上側に延びる壁部(主樋壁部12b、12c、側樋壁部11b、11c)と、を有する。第2のリザーバ10は、第3の流路92cからモータ室81に供給されたオイルOを底部および壁部に囲まれる空間において貯留する。
 第2のリザーバ10には、オイルOを流出させる複数の流出口(流出口10a、第1の吐出孔19、第2の吐出孔17)が設けられる。各流出口は、第2のリザーバ10内に溜ったオイルOを流出させ、モータ2に上側から供給する。すなわち、第2のリザーバ10は、流出口を介して貯留したオイルOをモータ2の各部に上側から供給する。
 第2のリザーバ10は、主樋12と一対の側樋11A、11Bとを有する。主樋12および一対の側樋11A、11Bは、それぞれ上側に開口する横断面略U字状の樋状である。すなわち、第2のリザーバ10は、樋状である。第2のリザーバ10は、樹脂材料から構成される。
 (主樋)
 主樋12は、ステータコア32の直上に位置する。主樋12は、第3の流路92cのモータ室81への供給口92caの直下に位置する。このため、主樋12は、第2の油路92の上流側から供給されるオイルOを受ける。
 なお、本明細書において、「直上に位置する」とは、対象物の上側に位置し、上下方向から見て対象物と重なることを意味する。同様に、本明細書において、「直下に位置する」とは、対象物の下側に位置し、上下方向から見て重なることを意味する。
 主樋12は、軸方向に沿って延びる。上下方向から見て、第3の流路92cの供給口92caは、主樋12の長さ方向中程に位置する。したがって、第3の流路92cから主樋12に供給されたオイルOは、主樋12の長さ方向両側に分岐して流れる。
 主樋12は、主樋底部(底部)12aと、一対の主樋壁部(壁部)12b、12cと、を有する。すなわち、第2のリザーバ10は、主樋底部12aおよび主樋壁部12b、12cを有する。
 (主樋底部)
 主樋底部12aは、水平平面に沿って延びる。本実施形態において、主樋底部12aは、水平平面と略平行である。また、主樋底部12aは、軸方向を長さ方向とする略矩形状である。すなわち、主樋底部12aは、主樋12の長さ方向に沿って延びる。
 (主樋壁部)
 一対の主樋壁部12b、12cは、それぞれ主樋底部12aから上側に突出する。一対の主樋壁部12b、12cは、主樋底部12aの幅方向両側に位置する。一対の主樋壁部12b、12cは、周方向において互いに対向する。
 なお、本明細書において、底部(主樋底部12aおよび側樋底部11a)の幅方向とは、底部が延びる平面内において各樋部(主樋12および一対の側樋11A、11B)の長さ方向と直交する方向を意味する。また、底部の幅寸法とは、幅方向の寸法を意味する。
 一対の主樋壁部12b、12cは、第1の主樋壁部12bと第2の主樋壁部12cとに分類される。第1の主樋壁部12bは、主樋底部12aの周方向一方側の端部に位置する。第2の主樋壁部12cは、主樋底部12aの周方向他方側の端部に位置する。
 主樋12に溜るオイルOは、一対の主樋壁部12b、12cにより周方向に向かう流動が制限される。主樋12は、軸方向の両側において開放され、軸方向の両側においてそれぞれ側樋11A、11Bに繋がる。このため、主樋12に溜るオイルOは、軸方向両側に流れて側樋11A、11Bに流入する。
 (側樋)
 一対の側樋11A、11Bは、それぞれ主樋12の軸方向両側の端部に繋がる。一対の側樋11A、11Bは、それぞれ主樋12の軸方向両側の端部からそれぞれ周方向一方側に向かって樋状に延びる。
 一対の側樋11A、11Bは、ステータコア32の軸方向一方側および他方側に位置する。一対の側樋11A、11Bのうち軸方向一方側に位置する側樋11Aは、第1のコイルエンド31aの直上に位置する。一方で、一対の側樋11A、11Bのうち軸方向他方側に位置する側樋11Bは、第2のコイルエンド31bの直上に位置する。
 以下の説明において、一対の側樋11A、11Bのうち軸方向一方側に位置する一方を第1の側樋11Aと呼び、軸方向他方側に位置する他方を第2の側樋11Bと呼ぶ場合がある。なお、本実施形態において、第1の側樋11Aと第2の側樋11Bとは、ステータコア32に対し互いに軸方向の逆側に配置される点を除き、互いに略同様の構成を有する。
 一対の側樋11A、11Bは、それぞれ側樋底部(底部)11aと、一対の側樋壁部(壁部)11b、11cと、閉塞壁部11dと、を有する。すなわち、第2のリザーバ10は、側樋底部11a、側樋壁部11b、11cおよび閉塞壁部11dを有する。
 また、一対の側樋11A、11Bには、流出口10aと、複数(本実施形態では2つ)の凹部18と、複数(本実施形態では2つ)の第1の吐出孔(吐出孔)19と、凹溝部(凹部)16と、第2の吐出孔(ベアリング供給孔)17と、が設けられる。すなわち、第2のリザーバ10には、流出口10a、凹部18、第1の吐出孔19、凹溝部16および第2の吐出孔17が設けられる。
 (側樋底部)
 側樋底部11aは、水平平面に沿って延びる。側樋底部11aは、軸方向と直交する方向を長さ方向とする略矩形状である。すなわち、側樋底部11aは、側樋11A、11Bの長さ方向に沿って延びる。
 図3に示すように、側樋底部11aは、第1の領域11aaと、第2の領域11abと、を有する。
 第1の領域11aaは、側樋底部11aにおいて主樋底部12aと連続する領域である。第1の領域11aaは、水平平面と略平行である。第1の領域11aaは、第2の領域11abに対してオイルOの流動方向上流側に位置する。
 第2の領域11abは、第1の領域11aaに対して周方向一方側に位置する。第2の領域11abは、周方向一方側に向かうに従い上側に傾斜する。第2の領域11abは、ステータコア32の外周面に沿って湾曲する。第2の領域11abは、周方向一方側に向かうに従い幅寸法が小さくなる。第2の領域11abの周方向一方側の先端には、流出口10aが設けられる。流出口10aは、第2のリザーバ10内に溜ったオイルOを流出させ、モータ2に供給する。
 本実施形態によれば、第2の領域11abの周方向一方側には、流出口10aが設けられる。第2の領域11abは、流出口10aに向かうに従い上側に傾斜する。したがって、流出口10aは、主樋底部12aおよび第1の領域11aaより上側に位置する。第2のリザーバ10内のオイルOは、液位が流出口10aの高さに達した後に、流出口10aから流出する。
 本実施形態の第2のリザーバ10は、オイルOの流路を構成する樋としての機能と、オイルOを貯留する貯留部としての機能と、を併せ持つ。第2の油路92の上流側からのオイルOの供給量が十分に多い場合、第2のリザーバ10は、樋として機能してオイルOを流し流出口10aからオイルOを流出させる。一方で、第2の油路92の上流側からオイルOの供給量が少なく、オイルOの液位が流出口10aより下側である場合、第2のリザ
ーバ10は、オイルOを貯留する。すなわち、第2のリザーバ10内のオイルOは、一方向に流動しない。なお、第2のリザーバ10がオイルOを貯留する場合であっても、後段に説明する第1の吐出孔19および第2の吐出孔17からは、単位時間当たり一定量のオイルOが流出する。
 (側樋壁部)
 図2に示すように、一対の側樋壁部11b、11cは、それぞれ側樋底部11aから上側に突出する。一対の側樋壁部11b、11cは、側樋底部11aの幅方向両側に位置する。一対の側樋壁部11b、11cは、軸方向において互いに対向する。
 一対の側樋壁部11b、11cは、第1の側樋壁部11bと第2の側樋壁部11cとに分類される。
 第1の側樋壁部11bは、側樋底部11aのステータコア32側の端部に位置する。一方で、第2の側樋壁部11cは、側樋底部11aのステータコア32の反対側の端部に位置する。すなわち、一対の側樋壁部11b、11cのうち第2の側樋壁部11cは、主樋12の反対側に位置する一方であり、第1の側樋壁部11bは、主樋12側に位置する他方である。
 第1の側樋壁部11bは、主樋12の第1の主樋壁部12bと繋がる。一方で、第2の側樋壁部11cは、主樋12の第2の主樋壁部12cと繋がる。第2の側樋壁部11cは、第2の主樋壁部12cに向かって湾曲して滑らかに繋がる湾曲部11caを有する。本実施形態において、湾曲部11caは、上下方向から見て一様な曲率半径で湾曲する。
 本実施形態において、主樋12の全幅は、軸方向から見て、湾曲部11caに重なる。このため、主樋12の幅方向の何れの位置を流れるオイルOであっても、側樋11A、11Bに流入して湾曲部11caにあたる。これにより、オイルOは、湾曲部11caの湾曲に沿って周方向一方側にスムーズに流れを変える。すなわち、本実施形態によれば、第2の側樋壁部11cに主樋12の全幅の寸法より大きい湾曲部11caが設けられることで、主樋12から側樋11A、11Bに流入するオイルOの流れを、軸方向から周方向にスムーズに変えることができる。
 なお、本実施形態において、湾曲部11caの曲率半径は、一様である。しかしながら、湾曲部11caが第2の主樋壁部12cに滑らかに繋がり湾曲方向が一様であれば、湾曲部11caの曲率半径は、必ずしも一様でなくてもよい。
 閉塞壁部11dは、側樋底部11aの周方向一方側の端部のうち主樋12の反対側の一部の領域に設けられる。閉塞壁部11dは、側樋底部11aから上側に突出する。閉塞壁部11dは、側樋11A、11Bの周方向一方側の開口の一部を閉塞する。閉塞壁部11dは、側樋11A、11Bに設けられた凹溝部16の周方向一方側の端部を塞ぐ。側樋11A、11Bの周方向一方側の端部のうち、閉塞壁部11dに塞がれない領域には、流出口10aが構成される。
 (流出口)
 流出口10aは、側樋11A、11Bの周方向一方側の端部に位置する。流出口10aは、上下方向からみて一対のコイルエンド31a、31bのうち何れか一方に重なる。本実施形態において、第2の側樋11Aの流出口10aは、第1のコイルエンド31aの直上に位置する。また、第2の側樋11Bの流出口10aは、第2のコイルエンド31bの直上に位置する。
 流出口10aは、第2のリザーバ10内のオイルOをモータ2に供給する。より具体的には、第1の側樋11Aの流出口10aは、一対のコイルエンド31a、31bのうち一方(第1のコイルエンド31a)にオイルOを供給する。また、第2の側樋11Bの流出口10aは、一対のコイルエンド31a、31bのうち他方(第2のコイルエンド31b)にオイルOを供給する。
 本実施形態の第2のリザーバ10には、第1のコイルエンド31aにオイルOを供給する流出口10aを備えた側樋11Aと、第2のコイルエンド31bにオイルOを供給する流出口10aを備えた側樋11Bと、が設けられる。このため、本実施形態によれば、ステータ30の一対のコイルエンド31a、31bをそれぞれ個別に冷却することができ、ステータ30の冷却効率を高めることができる。
 本実施形態の流出口10aは、周方向一方側に開口する。第2のリザーバ10内のオイルOのオイルの量が増加すると、流出口10aから流出するオイルOの流量が増加する。したがって、本実施形態によれば、オイルポンプ96を用いて、第2のリザーバ10へのオイルOの供給量を調整することで、モータ2へのオイルOの供給量を制御することができる。このため、本実施形態によれば、オイルポンプ96を制御することで、モータ2の負荷に応じてモータ2の冷却を行うことができる。また、モータ2の温度を測定する場合には、モータ2の温度に応じた冷却を行うことができる。
 (凹部および第1の吐出孔)
 図2に示すように、側樋底部11aの第1の領域11aaには、2つの凹部18と、2つの第1の吐出孔19と、が設けられる。凹部18は、上側から見て略矩形である。2つの凹部18は、側樋底部11aの長さ方向(周方向)に沿って並んで配置される。第1の吐出孔19は、側樋底部11aを貫通する。第1の吐出孔19は、上側から見て円形である。2つの第1の吐出孔19は、上側から見て、それぞれ異なる凹部18の内側に位置する。
 図4は、側樋底部11aの断面模式図である。
 凹部18は、側樋底部11aの上面において下側に凹む。凹部18の上面18aは、水平平面に沿って延びる。
 第1の吐出孔19は、側樋底部11aを上下方向に貫通する。第1の吐出孔19は、上側において凹部18の上面18aに開口する。第1の吐出孔19は、下側において、一対のコイルエンド31a、31bのうち何れか一方の直上で開口する。本実施形態において、第1の側樋11Aの第1の吐出孔19は、第1のコイルエンド31aの直上に位置する。また、第2の側樋11Bの第1の吐出孔19は、第2のコイルエンド31bの直上に位置する。
 第1の吐出孔19は、第2のリザーバ10内のオイルOを、通過させ、さらに下側に滴下させモータ2に供給する。より具体的には、第1の吐出孔19は、第2のリザーバ10内のオイルOをコイルエンド31a、31bに供給する。コイル31に供給されたオイルOは、コイル31を構成する導線同士の隙間から浸み込む。コイル31に浸みこんだオイルOは、導線間に作用する毛細管力および重力によってコイル31の全体に浸透しながらコイルから熱を奪う。さらに、オイルOは、ステータコア32の内周面の最下部に溜り、コイル31の軸方向両端より滴り落ちる。
 側樋11A、11B内のオイルOは、側樋11A、11Bの長さ方向に沿って流れる。第2のリザーバ10へのオイルOの供給量が増加すると、側樋11A、11B内を流れるオイルOの流速が高まる。一般的に、第1の吐出孔19の上側を流れるオイルOの流速が高まると、第1の吐出孔19からオイルOが流出しづらくなる。本実施形態によれば、第1の吐出孔19は、側樋底部11aに設けられた凹部18の上面18aに開口する。側樋11A、11Bを流れるオイルOは、凹部18に達すると、凹部18の段差から、凹部18内に注ぎ込まれる。凹部18内に注ぎ込まれたオイルOは、段差を昇ることなく凹部18内で一時的に滞留する。また、凹部18内で滞留するオイルOは、第1の吐出孔19からしか流出できない。このため、第1の吐出孔19からオイルOが流出しやすくなる。結
果的に、第2のリザーバ10へのオイルOの供給量の増減に関わらず、オイルOを第1の吐出孔19から定常的に流出させることができ、コイル31の冷却効率が高まる。
 本実施形態によれば、2つの凹部18は、側樋11A、11Bの長さ方向に沿って並んで配置される。すなわち、複数の凹部18は、第2のリザーバ10内のオイルOの流動方向に沿って並ぶ。2つの凹部18内には、それぞれオイルOが注ぎ込まれる。
 なお、本明細書において、オイルOの流動方向とは、第2のリザーバ10の各樋(主樋12および側樋11A、11B)の長さ方向を意味する。
 本実施形態において、第2のリザーバ10は、流出口10aと第1の吐出孔19においてオイルOをモータ2に供給する。上下方向から見て、流出口10aと第1の吐出孔19とは、モータ軸J2を挟んで一方側の領域と他方側の領域とにそれぞれオイルを供給する。これにより、モータ2の表面を伝って下側に流れるオイルOにより、モータ2全体を冷却することができる。
 (凹溝部および第2の吐出孔)
 図2に示すように、側樋底部11aには、凹溝部16と、第2の吐出孔17と、が設けられる。
 凹溝部16は、上側に開口する溝である。凹溝部16は、周方向に沿って直線状に延びる。凹溝部16は、傾斜する第2の領域11abの軸方向一方側に位置するが、傾斜することなく水平方向に延びる。
 凹溝部16は、側樋底部11aの主樋12と反対側の端部に位置する。すなわち、凹溝部16は、一対の側樋壁部11b、11cのうち、主樋12と反対側の側樋壁部11bに沿って延びる。
 第1の側樋11Aに設けられた凹溝部16は、第1のベアリング26の直上に位置する。また、第2の側樋11Bに設けられた凹溝部16は、第2のベアリング27の直上に位置する。
 凹溝部16の周方向一方側の端部は、閉塞壁部11dにより塞がれる。このため、凹溝部16に溜ったオイルOは、側樋11A、11Bの周方向一方側の開口から流出することがない。
 第2の吐出孔17は、側樋底部11aを上下方向に貫通する。第2の吐出孔17は、凹溝部16に設けられる。すなわち、第2の吐出孔17は、上側において凹溝部16に開口する。また、第2の吐出孔17は、下側において、一対のベアリング26、27のうち、いずれか一方の直上で開口する。第1の側樋11Aの第2の吐出孔17は、第1のベアリング26の直上で開口し、第2のリザーバ10内のオイルOを第1のベアリング26に供給する。一方で、第2の側樋11Bの第2の吐出孔17は、第2のベアリング27の直上で開口し、第2のリザーバ10内のオイルOを第2のベアリング27に供給する。すなわち、一方の側樋(第1の側樋11A)に設けられる第2の吐出孔17は、オイルOを一方のベアリング(第1のベアリング26)に供給し、他方の側樋(第2の側樋11B)に設けられる第2の吐出孔17は、オイルOを他方のベアリング(第2のベアリング27)に供給する。
 図5は、軸方向と直交する平面に沿って見たモータユニット1の断面図である。
 ここでは、図5を基に、第2の側樋11Bの第2の吐出孔17から第2のベアリング27に供給されるオイルの経路について説明する。第1の側樋11Aの第2の吐出孔17から第1のベアリング26に供給されるオイルの経路については、これと同様であるため、説明を省略する。
 第2のベアリング27は、内輪27aと、外輪27bと、径方向において内輪27aと外輪27bとの間に配置される複数の鋼球27cと、を有する。第2のベアリング27は、内輪27aにおいてシャフト21を保持する。また、第2のベアリング27は、外輪27bにおいてハウジング6に保持される。
 ハウジング6は、軸方向に沿って筒状に延びるベアリング保持部69を有する。ベアリング保持部69は、ハウジング6の隔壁61cに設けられる。ベアリング保持部69は、第2のベアリング27を径方向外側から囲む。ベアリング保持部69は、第2のベアリング27の外輪27bを保持する。
 ベアリング保持部69には、貫通孔69aが設けられる。貫通孔69aは、ベアリング保持部69を径方向に貫通する。また、貫通孔69aは、上側に開口する。貫通孔69aは、第2のベアリング27の外輪27bの外周面の一部を上側に露出させる。
 なお、本実施形態の貫通孔69aは、一様な断面で軸方向に沿って延びてベアリング保持部69の軸方向端部に開口する切欠である。
 第2のリザーバ10の第2の吐出孔17は、貫通孔69aの上側に位置する。第2の吐出孔17を通過したオイルOは、貫通孔69aに達する。すなわち、第2の吐出孔17は、貫通孔69aにオイルOを供給する。貫通孔69aに達したオイルOは、ベアリングの外輪27bの表面を伝って鋼球27cおよび内輪27aに達し第2のベアリング27の潤滑性を高める。すなわち、本実施形態によれば、第2のリザーバ10から第2のベアリング27にオイルOを供給して、第2のベアリング27の回転効率を高めることができる。
 本実施形態によれば、第2のリザーバ10の側壁底部を貫通する第2の吐出孔17からオイルOを第1のベアリング26および第2のベアリング27に供給する。第2の吐出孔17は、上下方向に沿って貫通する貫通孔である。このため、第2の吐出孔17は、周方向に開口する流出口10aと比較して、第2のリザーバ10内のオイルOの液位に関わらず、オイルOを略一定の流量で流出させる。したがって、本実施形態によれば、第2のリザーバ10から第1のベアリング26および第2のベアリング27に単位時間当たり略一定量のオイルOを供給することができる。
 なお、本実施形態の第2の吐出孔17は、貫通孔69aの直上に位置し、オイルOを貫通孔69aに滴下して直接的に供給する。しかしながら、第2の吐出孔17は、滴下したオイルOをハウジング6の内壁面に伝わせて、貫通孔69aにオイルOを供給するものであってもよい。
 本実施形態の第2の吐出孔17は、凹溝部16に設けられる。凹溝部16は、第2のリザーバ10の底部から下側に凹んで形成されるため、第2のリザーバ10にオイルOが供給された場合に、オイルOが溜り易い。本実施形態によれば、第2の吐出孔17が凹溝部16に設けられるため、第2のリザーバ10の他の流出口(例えば流出口10a)よりも先に、オイルOを吐出する。これにより、モータユニット1の起動時に、第1のベアリング26および第2のベアリング27の潤滑性を高めることができる。
 本実施形態によれば、凹溝部16の周方向一方側の端部は、閉塞壁部11dにより塞がれる。このため、凹溝部16には、オイルOが滞留する。このため、第2の吐出孔17は、第2のリザーバ10に溜るオイルOの量が少なくなり、他の流出口(例えば流出口10a)からのオイルOの流出が停止した後においても、第1のベアリング26および第2のベアリング27に供給することができる。
 本実施形態の第2の吐出孔17は、閉塞壁部11dの近傍に位置する。凹溝部16内において側樋11A、11Bの長さ方向に流動するオイルOは、閉塞壁部11dにせき止められる。このため、オイルOの流速は、閉塞壁部11dの近傍で低減される。本実施形態によれば、第2の吐出孔17が閉塞壁部11dの近傍に位置することで、第2の吐出孔17の上側でオイルOの流速を低減させ、第2の吐出孔17から定常的にオイルOを滴下させることができる。
 本実施形態によれば、凹溝部16は、側樋11A、11Bの主樋12と反対側の端部に位置し第2の側樋壁部11cに沿って延びる。主樋12から側樋11A、11Bに流入したオイルは、第2の側樋壁部11cにあたって流動方向を周方向一方側に変化させ、第2の側樋壁部11cに沿って流れる。このため、第2のリザーバ10へのオイルOの供給量が少ない場合であっても、凹溝部16には、オイルOが溜り易い。すなわち、凹溝部16には、第2のリザーバ10の他の領域にオイルOが行き渡る前に、オイルOが溜まる。本実施形態によれば、第2の吐出孔17から、他の流出口(流出口10aおよび第1の吐出孔19)よりも先にオイルOを吐出させることができる。
 本実施形態において、運転者がモータユニット1を搭載する車両を起動させると、モータユニット1は、モータ2を駆動させる前にオイルポンプ96を駆動させる。すなわち、オイルポンプ96は、モータ2のロータ20が回転を始める前に第2のリザーバ10にオイルOを供給する。また、上述したように、第2の吐出孔17は、他の流出口10aより先に、オイルOを吐出する。本実施形態によれば、オイルOによって、第1のベアリング26および第2のベアリング27の潤滑性を高めた後に、モータ2を駆動させることができる。
 モータユニット1を長期間使用しないと、オイルOが循環しないため、シャフト21を支持する第1のベアリング26および第2のベアリング27のオイルOが抜けて、第1のベアリング26および第2のベアリング27の潤滑性が低下する虞がある。本実施形態によれば、モータユニット1が長期間起動されなかった後の最初の駆動においても、第1のベアリング26および第2のベアリング27にオイルOを供給した後にロータ20を回転させることができる。
 (第2のリザーバ10の保持構造)
 次に、第2のリザーバ10をハウジング6の内部で保持させる構造について説明する。本実施系の第2のリザーバ10は、ステータコア32に保持される。
 図2に示すように、側樋11A、11Bの第1の側樋壁部11bは、ステータコア32側を向く対向面11baを有する。対向面11baは、ステータコア32の軸方向を向く端面に対向する。第1の側樋11Aの対向面11baは、ステータコア32の軸方向一方側を向く端面32aに対向する。また、第2の側樋11Bの対向面11baは、ステータコア32の軸方向他方側を向く端面32bに対向する。すなわち、一対の側樋11A、11Bは、ステータコア32の軸方向一方側および他方側を向く端面32a、32bにそれぞれ対向する対向面11baを有する。
 一対の側樋11A、11Bのそれぞれの対向面11baには、ステータコア32側に突出する突起部(第1の突出部)15が設けられる。それぞれの突起部15は、先端面において、ステータコア32に接触する。
 本実施形態によれば、第1の側樋11Aは、突起部15においてステータコア32の軸方向一方側を向く端面32aに接触する。同様に、第2の側樋11Bは、突起部15においてステータコア32の軸方向他方側を向く端面32bに接触する。すなわち、一対の側樋11A、11Bは、ステータコア32の軸方向一方側を向く端面32aおよび他方側を向く端面32bにそれぞれ接触する。これにより、第2のリザーバ10は、側樋11A、11Bによってステータコア32を軸方向両側から挟み込み、ステータコア32に保持させることができる。
 本実施形態によれば、側樋11A、11Bは、それぞれ突起部15においてステータコア32に接触する。側樋11A、11Bに突起部15が設けられることで、側樋11A、11Bとステータコア32との接触位置を突起部15の先端に制限できる。このため、第2のリザーバ10の成形において、突起部15の先端面の寸法精度を管理することで、側樋11A、11Bとステータコア32とを確実に接触させることができる。
 図3に示すように、主樋12の主樋底部12aは、下側に突出する複数の支持リブ(第2の突出部)14を有する。すなわち、第2のリザーバ10は、下側に突出する支持リブ14を有する。支持リブ14は、周方向に沿ってリブ状に延びる。支持リブ14は、下側を向く支持面14aを有する。支持面14aは、周方向に沿って湾曲する。支持リブ14は、支持面14aにおいて、ステータコア32の外周面に接触する。
 本実施形態によれば、第2のリザーバ10は、支持リブ14においてステータコア32の外周面に接触する。したがって、第2のリザーバ10が、ステータコア32に対して突起部15を中心として回転することを抑制できる。すなわち、本実施形態によれば、ステータコア32によって第2のリザーバ10を周方向に保持させることができる。
 本実施形態によれば、支持リブ14は、周方向に沿ってリブ状に延びる。また、ステータコア32の外周面に接触する支持リブ14の支持面14aは、ステータコア32の外周面に沿って湾曲する。したがって、本実施形態によれば、支持リブ14とステータコア32の外周面との接触面が、周方向に長く確保され、ステータコア32による第2のリザーバ10の保持の安定性を高めることができる。
 図2に示すように、側樋11A、11Bの第2の側樋壁部11cに設けられた湾曲部11caには、接触リブ(第3の突出部)13が設けられる。すなわち、第2のリザーバ10は、接触リブ13を有する。接触リブ13は、湾曲部11caに対して周方向他方側に突出する。接触リブ13は、軸方向に沿ってリブ状に延びる。
 第2の側樋11Bの湾曲部11caに設けられた接触リブ13は、周方向他方側の先端においてハウジング6の内壁面6aに接触する。上述したように、第2のリザーバ10は、支持リブ14においてステータコア32の外周面と接触する。したがって、第2のリザーバ10は、ステータコア32の外周面とハウジング6の内壁面6aとの間に挟み込まれ、ステータコア32およびハウジング6によって保持される。本実施形態によれば、第2のリザーバ10をハウジング6内に安定的に保持させることができる。
 本実施形態において、ハウジング6は、ダイカスト等の鋳造により成形される。このため、接触リブ13と接触するハウジング6の内壁面6aは、軸方向一方側(閉塞部63側)から他方側(隔壁61c側)に向かうに従い径方向内側に傾斜するテーパ面となる。また、本実施形態のモータユニット1の製造工程において、第2のリザーバ10はモータ2に組み付けられて保持させた状態で、モータ2とともに軸方向に移動されてハウジング6のモータ室81内に収容される。したがって、第2のリザーバ10をモータ室81内へ収容する工程において、第2の側樋11Bの接触リブ13には、内壁面6aから軸方向一方側に向かう応力を受ける。
 本実施形態によれば、接触リブ13は、軸方向に沿ってリブ状に延びる。このため、接触リブ13は、軸方向に沿う剛性が高い。接触リブ13は、第2のリザーバ10をモータ室81内へ収容する工程において、内壁面6aから軸方向の応力を受けても、損傷が抑制される。また、接触リブ13は、軸方向に沿ってリブ状に延びることで、内壁面6aに接触した際に径方向において適度に変形する。これにより、接触リブ13が内壁面6aに接触した状たで、主樋12および側樋11A、11Bが変形することを抑制できる。
 (凹部および第1の吐出孔の変形例)
 図6は、上述の第2のリザーバ10に採用可能な変形例の凹部118および第1の吐出孔119の断面図である。なお、なお、上述の実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
 上述の実施形態と同様に、本変形例の凹部118および第1の吐出孔119は、側樋底部11aに設けられる。凹部118は、側樋底部11aの上面において下側に凹む。本変形例において、凹部118の上面118aは、水平面部118aaとテーパ面部118abとを有する。
 水平面部118aaは、水平平面に沿って延びる。テーパ面部118abは、上側に向かうに従い周方向一方側に傾斜する。テーパ面部118abは、周方向一方側に対向して傾斜する。オイルOは、周方向一方側を流動方向として側樋11A、11Bを流れる。したがって、テーパ面部118abは、第2のリザーバ10内のオイルOの流動方向の上流側に対向して傾斜する。
 第1の吐出孔119は、側樋底部11aを貫通する。本変形例において、第1の吐出孔119は、テーパ面部118abの板厚方向に延びる。第1の吐出孔119は、上側において凹部118のテーパ面部118abに開口する。第1の吐出孔119は、下側において、一対のコイルエンド31a、31bのうち何れか一方の直上で開口する。第1の吐出孔119は、第2のリザーバ10内のオイルOを通過および下側に滴下させ、一対のコイルエンド31a、31bのうち何れか一方に供給する。
 本変形例によれば、第1の吐出孔119は、側樋底部11aに設けられた凹部118の上面118aに開口する。側樋11A、11Bを流れるオイルOが、凹部118に達すると、凹部118の段差から凹部118内に注ぎ込まれる。凹部118内に注ぎ込まれたオイルOは、段差を昇ることなく凹部118内で一時的に滞留する。また、凹部18内で滞留するオイルOは、第1の吐出孔19からしか流出できない。このため、第1の吐出孔119からオイルOが流出しやすくなる。結果的に、第2のリザーバ10へのオイルOの供給量の増減に関わらず、オイルOを第1の吐出孔119から定常的に流出させることができ、コイル31の冷却効率が高まる。
 また、本変形例の第1の吐出孔119は、テーパ面部118abに開口する。テーパ面部118abは、オイルOの流動方向上流側に対向する。したがって本変形例によれば、オイルOの流速が高まった場合に、オイルOの流速を利用して、オイルOを第1の吐出孔119からスムーズに流出させることができる。これにより、第2の油路92の上流側から第2のリザーバ10へのオイルOの供給量が増加した場合に、モータ2を効果的に冷却することができる。
 以上に、本発明の実施形態およびその変形例を説明したが、実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。
 1…モータユニット、2…モータ、6…ハウジング、6a…内壁面、10a…流出口、11A,11B…側樋、11a…側樋底部(底部)、11b,11c…側樋壁部(壁部)、11d…閉塞壁部、12…主樋、12a…主樋底部(底部)、12b,12c…主樋壁部(壁部)、13…接触リブ(第3の突出部)、14…支持リブ(第2の突出部)、14a…支持面、15…突起部(第1の突出部)、16…凹溝部(凹部)、17…第2の吐出孔(ベアリング供給孔)、18,118…凹部、18a,118a…上面、19…第1の吐出孔(吐出孔)、20…ロータ、21…シャフト、26,27…ベアリング、27b…外輪、30…ステータ、31…コイル、31a,31b…コイルエンド、32…ステータコア、32a,32b…端面、69…ベアリング保持部、69a…貫通孔、92…第2の油路(油路)、98…第2のリザーバ(リザーバ)、11ba…対向面、11ca…湾曲部、118ab…テーパ面部、J2…モータ軸、O…オイル

Claims (8)

  1.  水平方向に延びるモータ軸を中心として回転するロータおよび前記ロータの径方向外側に位置するステータを有するモータと、
     前記モータを収容するハウジングと、
     前記ハウジング内に収容されるオイルと、を備え、
     前記ステータは、
      ステータコアと、
      前記ステータコアに巻き付けられるコイルと、を有し、
     前記コイルは、前記ステータコアから軸方向両側にそれぞれ突出する一対のコイルエンドを有し、
     前記ハウジングには、前記オイルを循環させ前記オイルを前記モータの上側から前記モータに供給する油路が設けられ、
     前記油路には、前記モータの上側に位置し前記オイルを貯留するリザーバが設けられ、
     前記リザーバは、
      軸方向に沿って延び前記油路の上流側から供給される前記オイルを受ける主樋と、
      前記主樋の軸方向両側の端部からそれぞれ周方向一方側に向かって延びる一対の側樋と、を有し、
     一対の前記側樋のうち一方には、前記リザーバ内の前記オイルを一対の前記コイルエンドのうち一方に供給する流出口が設けられ、
     一対の前記側樋のうち他方には、前記リザーバ内の前記オイルを一対の前記コイルエンドのうち他方に供給する流出口が設けられる、
    モータユニット。
  2.  一対の前記側樋は、前記ステータコアの軸方向一方側を向く端面および他方側を向く端面にそれぞれ接触する、
    請求項1に記載のモータユニット。
  3.  一対の前記側樋は、前記ステータコアの軸方向一方側および他方側を向く端面にそれぞれ対向する対向面を有し、
     一対の前記側樋のそれぞれの前記対向面には、前記ステータコア側に突出し前記ステータコアに接触する第1の突出部が設けられる、
    請求項1又は2に記載のモータユニット。
  4.  前記リザーバは、下側に突出する第2の突出部を有し、
     前記第2の突出部は、前記ステータコアの外周面に接触する、
    請求項1~3の何れか一項に記載のモータユニット。
  5.  前記第2の突出部は、周方向に沿ってリブ状に延び、
     前記第2の突出部は、前記ステータコアの外周面に沿って湾曲し前記ステータコアの外周面に接触する支持面を有する、
    請求項4に記載のモータユニット。
  6.  前記リザーバは、周方向他方側に突出する第3の突出部を有し、
     前記第3の突出部は、前記ハウジングの内壁面に接触する、
    請求項1~5のいずれか一項に記載のモータユニット。
  7.  前記第3の突出部は、軸方向に沿ってリブ状に延びる、
    請求項6に記載のモータユニット。
  8.  前記主樋および前記側樋は、
      それぞれの長さ方向に沿って延びる底部と、
      前記底部の幅方向両側に位置する一対の壁部と、をそれぞれ有し、
     前記側樋の一対の前記壁部のうち前記主樋の反対側に位置する一方は、前記主樋の一対の前記壁部のうち周方向他方側に位置する一方に向かって湾曲して滑らかに繋がる湾曲部
    を有し、
     前記主樋の全幅は、軸方向から見て、前記湾曲部に重なる、
    請求項1~7の何れか一項に記載のモータユニット。
PCT/JP2019/012646 2018-04-25 2019-03-26 モータユニット WO2019208063A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201990000666.3U CN213817494U (zh) 2018-04-25 2019-03-26 马达单元

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-084481 2018-04-25
JP2018084481 2018-04-25

Publications (1)

Publication Number Publication Date
WO2019208063A1 true WO2019208063A1 (ja) 2019-10-31

Family

ID=68295161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012646 WO2019208063A1 (ja) 2018-04-25 2019-03-26 モータユニット

Country Status (2)

Country Link
CN (1) CN213817494U (ja)
WO (1) WO2019208063A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113346679A (zh) * 2020-02-18 2021-09-03 日本电产株式会社 马达以及驱动装置
CN113346681A (zh) * 2020-02-18 2021-09-03 日本电产株式会社 马达以及驱动装置
CN113346680A (zh) * 2020-02-18 2021-09-03 日本电产株式会社 马达以及驱动装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072881A (ja) * 2006-09-15 2008-03-27 Toyota Motor Corp モータ
JP2016174443A (ja) * 2015-03-16 2016-09-29 株式会社デンソー 回転電機
JP2018027003A (ja) * 2016-08-09 2018-02-15 日本電産株式会社 モータユニット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072881A (ja) * 2006-09-15 2008-03-27 Toyota Motor Corp モータ
JP2016174443A (ja) * 2015-03-16 2016-09-29 株式会社デンソー 回転電機
JP2018027003A (ja) * 2016-08-09 2018-02-15 日本電産株式会社 モータユニット

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113346679A (zh) * 2020-02-18 2021-09-03 日本电产株式会社 马达以及驱动装置
CN113346681A (zh) * 2020-02-18 2021-09-03 日本电产株式会社 马达以及驱动装置
CN113346680A (zh) * 2020-02-18 2021-09-03 日本电产株式会社 马达以及驱动装置

Also Published As

Publication number Publication date
CN213817494U (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
WO2019208421A1 (ja) モータユニット
WO2019208063A1 (ja) モータユニット
US11502579B2 (en) Motor unit comprising oil flow passages
CN111512526B (zh) 马达单元
WO2019098166A1 (ja) モータユニット
CN111557070B (zh) 马达单元
JP7243637B2 (ja) モータユニット
WO2019131417A1 (ja) モータユニット
JP7424106B2 (ja) 駆動装置
US20220158522A1 (en) Motor and drive device
JP7281639B2 (ja) モータユニット
JP2020137405A (ja) モータユニット
CN112152384A (zh) 马达单元
WO2019208065A1 (ja) モータユニット
JP2022136508A (ja) 駆動装置
JP7400291B2 (ja) モータユニット
CN211456844U (zh) 马达和驱动装置
JP2014225970A (ja) 電動機
CN112865392A (zh) 马达单元
TWI810661B (zh) 馬達單元以及電動汽車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP