WO2019207995A1 - 液体中の金属除去方法及びアニオン交換樹脂混合h型キレート樹脂 - Google Patents

液体中の金属除去方法及びアニオン交換樹脂混合h型キレート樹脂 Download PDF

Info

Publication number
WO2019207995A1
WO2019207995A1 PCT/JP2019/010156 JP2019010156W WO2019207995A1 WO 2019207995 A1 WO2019207995 A1 WO 2019207995A1 JP 2019010156 W JP2019010156 W JP 2019010156W WO 2019207995 A1 WO2019207995 A1 WO 2019207995A1
Authority
WO
WIPO (PCT)
Prior art keywords
anion exchange
resin
type chelate
liquid
exchange resin
Prior art date
Application number
PCT/JP2019/010156
Other languages
English (en)
French (fr)
Inventor
治雄 横田
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Publication of WO2019207995A1 publication Critical patent/WO2019207995A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/07Processes using organic exchangers in the weakly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/14Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J45/00Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/04Mixed-bed processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange

Definitions

  • the present invention relates to a metal removal method in a liquid in which metal impurities in a liquid such as water, an aqueous solution or an organic solvent are removed using a chelate resin.
  • An ester organic solvent such as PGMEA is used as a solvent for dissolving a photoresist or a release agent.
  • PGMEA a solvent for dissolving a photoresist or a release agent.
  • impurities in organic solvents, especially metal impurities can cause deterioration of semiconductor devices made of photoresist and shorten the life of the device. preferable.
  • Patent Document 1 discloses an apparatus for manufacturing a processing liquid for electronic parts, which includes a step of charging and mixing two or more chemicals in a mixing tank, and in the process of charging at least one chemical, an ion exchange resin or a chelate resin
  • An apparatus for producing a treatment liquid for electronic parts which includes an ion exchange resin or chelate resin treatment tower filled with bismuth, is disclosed.
  • Some functional groups of chelate resins have amino groups such as iminodiacetic acid group, aminomethyl phosphate group, iminopropionic acid group.
  • the chelate resin which has an iminodiacetic acid group, an aminomethyl phosphate group, an iminopropionic acid group etc. is normally marketed by Na type and Ca type. Therefore, in applications where leakage of Na and Ca is not preferred, these chelating resins are used after being conditioned with mineral acid and prepared in the H form.
  • an H-type chelate resin having an amino group conditioned with a mineral acid the mineral acid remains in the resin, and therefore the metal in the liquid to be treated is removed using the H-type chelate resin.
  • Mineral acid remaining in the resin leaks little by little. And leakage of acids, such as hydrochloric acid, into the liquid to be treated impairs quality depending on the application. Even if washing with ultrapure water after conditioning with mineral acid, it is difficult to quickly remove residual mineral acid from the resin, and this washing of mineral acid is not possible with washing after conditioning with mineral acid. Does not solve the problem.
  • an object of the present invention is to provide a method for removing a metal in a liquid using an H-type chelate resin, which does not cause a problem of mineral acid leakage.
  • the present invention (1) is a method for removing a metal in a liquid by contacting a liquid to be treated with an H-type chelate resin in which an anion exchange resin is mixed, and removing the metal in the liquid to be treated.
  • the present invention provides a method for removing a metal in a liquid, wherein the mixed amount of the anion exchange resin is 0.10 to 100.0% by volume with respect to the H-type chelate resin.
  • the present invention (2) provides the method for removing a metal in a liquid according to (1), wherein the functional group of the H-type chelate resin has an amino group.
  • the functional group of the H-type chelate resin is an iminodiacetic acid group, an aminomethyl phosphoric acid group, or an iminopropionic acid group, and the liquid according to any one of (1) or (2)
  • the present invention provides a method for removing metal therein.
  • the liquid to be treated contains an ester organic solvent, an ester organic solvent-containing solution, a ketone organic solvent, a ketone organic solvent-containing solution, an alkene organic solvent, or an alkene organic solvent.
  • the present invention (5) is characterized in that the neutral salt decomposition capacity of the free base weakly basic anion exchange resin is 0.25 eq / LR or less, (4) the metal removal in the liquid A method is provided.
  • the present invention (6) is an H-type chelate resin mixed with an anion exchange resin,
  • the mixing amount of the anion exchange resin with respect to the H-type chelate resin is 0.10 to 100.0% by volume;
  • An anion exchange resin mixed H-type chelate resin is provided.
  • the present invention (7) provides the anion exchange resin mixed H-type chelate resin according to (6), wherein the functional group of the H-type chelate resin has an amino group.
  • the functional group of the H-type chelate resin is an iminodiacetic acid group, an aminomethylphosphoric acid group or an iminopropionic acid group.
  • An exchange resin mixed H-type chelate resin is provided.
  • the method for removing a metal in a liquid according to the present invention comprises contacting a liquid to be treated with an H-type chelate resin mixed with an anion exchange resin to remove the metal in the liquid to be treated. This is a metal removal method.
  • the liquid to be treated for metal removal is water such as pure water or ultrapure water, ester organic solvents such as PGMEA (propylene glycol monomethyl ether acetate), isopropyl acetate, etc.
  • ester organic solvents such as PGMEA (propylene glycol monomethyl ether acetate), isopropyl acetate, etc.
  • Ketone organic solvents such as cyclohexanone, methyl isobutyl ketone, acetone, methyl ethyl ketone, alkene organic solvents such as 2,4-diphenyl-4-methyl-1-pentene, 2-phenyl-1-propene, and the like.
  • an ester organic solvent-containing solution such as a mixed solution of an ester organic solvent and an aromatic organic solvent
  • a ketone organic solvent-containing solution such as a mixed solution of a ketone organic solvent and an alcohol organic solvent
  • Alkene organic solvent-containing solutions such as mixed solutions of alkene organic solvents and aromatic organic solvents Etc.
  • the method for removing a metal in a liquid according to the present invention is such that the liquid to be treated is an ester organic solvent, a ketone organic solvent, an alkene organic solvent, a solution containing these organic solvents, for example, an ester organic solvent containing solution, a ketone It is particularly suitable when the strongly acidic cation exchange resin cannot be used because it is reactive in an acid atmosphere such as a solution containing an organic organic solvent or a solution containing an alkene organic solvent.
  • the liquid to be treated according to the method for removing a metal from the liquid of the present invention has very few impurities such as ultrapure water used as cleaning water in a semiconductor manufacturing process, a solvent dissolving or removing agent for photoresist, and a wafer cleaning agent. Is particularly preferred. Further, the content of metal impurities in the liquid to be treated according to the metal removal method of the present invention is not particularly limited, but the metal removal method of the present invention is required to have very few impurities.
  • the coating according to the method for removing a metal in a liquid of the present invention is applicable.
  • the content of metal impurities in the treatment liquid is preferably 10 to 1000 ng / L, particularly preferably 10 to 500 ng / L.
  • metal impurities in the liquid to be treated include metal ions such as Li, Na, Mg, Al, K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, and Pb.
  • the H-type chelate resin has excellent performance in removing polyvalent metal ions such as Fe, Cu, and Ni.
  • the H-type chelate resin according to the method for removing a metal from a liquid according to the present invention is treated with an acid by bringing a metal ion-type chelate resin such as Na-type, Ca-type, or Mg-type into contact with a mineral acid, thereby forming an H-type chelate resin. Converted to. That is, the H-type chelate resin is a mineral acid contact treatment product of a metal ion-type chelate resin.
  • the functional group of the H-type chelate resin according to the method for removing a metal from the liquid of the present invention is not particularly limited as long as it can coordinate to a metal ion to form a chelate.
  • an iminodiacetic acid group functional groups having an amino group such as aminomethyl phosphate group and iminopropionic acid group, and thiol groups.
  • the functional group of the chelate resin is preferably a functional group having an amino group in terms of high removability of a large number of polyvalent metal ions, such as an iminodiacetic acid group, an aminomethylphosphoric acid group, and an iminopropionic acid group. Is particularly preferred.
  • Examples of the base of the H-type chelate resin include styrene-divinylbenzene copolymer.
  • the H-type chelate resin may have any structure of a gel type structure, a macroporous type structure, and a porous type structure.
  • the exchange capacity of the H-type chelate resin is preferably 0.50 to 2.50 eq / LR, particularly preferably 1.00 to 2.50 eq / LR.
  • the average particle diameter (harmonic average diameter) of the H-type chelate resin is not particularly limited, but is preferably 300 to 1000 ⁇ m, particularly preferably 500 to 800 ⁇ m.
  • the average particle size of the H-type chelate resin is a value measured by a laser diffraction particle size distribution measuring device.
  • the H-type chelate resin can be obtained by bringing a metal ion-type chelate resin such as Na-type, Ca-type, or Mg-type into contact with a mineral acid and subjecting it to an acid treatment.
  • metal ion type chelating resin examples include CR-10 and CR-11 manufactured by Mitsubishi Chemical Corporation, Duolite C-467 manufactured by Sumika Chemtex, MC-700 manufactured by Sumitomo Chemical, Levachit TP207 manufactured by LANXESS, Lebatit TP208, Lebatit TP260), and S930 and S950 manufactured by Purolite.
  • Examples of the mineral acid brought into contact with the metal ion type chelate resin include hydrochloric acid, sulfuric acid, and nitric acid.
  • hydrochloric acid and sulfuric acid are preferable from the viewpoint of safety.
  • hydrochloric acid is preferred because of the possibility of precipitation of calcium sulfate.
  • the concentration of the mineral acid is preferably 0.1 to 6.0N, particularly preferably 1.0 to 4.0N.
  • the method for bringing the mineral acid into contact with the metal ion type chelate resin is not particularly limited, and a contact mode, a contact temperature, a contact time, and the like are appropriately selected.
  • the H-type chelate resin converted into the H-type is washed with water to remove excess mineral acid. In this case, excess mineral acid cannot be completely removed by washing with water. Therefore, the mineral acid used for the acid treatment remains in the H-type chelate resin.
  • anion exchange resin examples include OH type strong base anion exchange resin, free base type weak base anion exchange resin, and the like.
  • anion exchange group of the strongly basic anion exchange resin examples include a quaternary ammonium group.
  • strong base anion exchange resin substrates examples include styrene-divinylbenzene copolymers and acrylic acid-divinylbenzene copolymers.
  • the strongly basic anion exchange resin may have any of a gel type structure, a macroporous type structure, and a porous type structure.
  • the anion exchange capacity of the strongly basic anion exchange resin is preferably 0.50 to 2.00 eq / LR, particularly preferably 0.80 to 1.50 eq / LR.
  • the average particle diameter (harmonic average diameter) of the strongly basic anion exchange resin is not particularly limited, but is preferably 300 to 1000 ⁇ m, particularly preferably 500 to 800 ⁇ m.
  • the average particle size of the strongly basic anion exchange resin is a value measured by a laser diffraction particle size distribution analyzer.
  • strongly basic anion exchange resins examples include Diaion SA10A and SA12A manufactured by Mitsubishi Chemical Corporation, Duolite A113OH manufactured by Sumika Chemtex, Lebatit Monoplus M500 manufactured by LANXESS, A400 manufactured by Purolite, and the like.
  • the anion exchange resin is a free base weakly basic anion exchange resin
  • the liquid to be treated is an organic solvent that hydrolyzes in a basic atmosphere, for example, an ester organic When it is a solvent, it is preferable at the point which can make it difficult to hydrolyze a to-be-processed liquid.
  • anion exchange group of the free base type weakly basic anion exchange resin examples include a primary amino group, a secondary amino group, and a tertiary amino group. Of these, the anionic group is preferably a tertiary amino group.
  • Examples of the base of the free base type weakly basic anion exchange resin include styrene-divinylbenzene copolymer and acrylic acid-divinylbenzene copolymer.
  • the free base type weakly basic anion exchange resin may have a gel type structure, a macroporous type structure, or a porous type structure.
  • the anion exchange capacity of the free base weakly basic anion exchange resin is preferably 0.50 to 2.50 eq / LR, particularly preferably 1.00 to 2.00 eq / LR.
  • the neutral salt decomposition capacity of the free base type weakly basic anion exchange resin is preferably 0.25 eq / LR or less, particularly preferably more than 0.01 eq / LR and 0.15 eq / LR or less.
  • the average particle diameter (harmonic average diameter) of the free base type weakly basic anion exchange resin is not particularly limited, but is preferably 300 to 1000 ⁇ m, particularly preferably 500 to 800 ⁇ m.
  • the average particle size of the free base type weakly basic anion exchange resin is a value measured by a laser diffraction particle size distribution analyzer.
  • Diaion WA30 manufactured by Mitsubishi Chemical Corporation, Duolite A368MS manufactured by Sumika Chemtex Co., Ltd. Is mentioned.
  • the treatment liquid is removed by bringing the liquid to be treated into contact with the H-type chelate resin mixed with the anion exchange resin, and the metal impurities are removed.
  • Get a liquid That is, in the metal removal method in the liquid of the present invention, the liquid to be treated is brought into contact with the mixture of the H-type chelate resin and the anion exchange resin.
  • the method of mixing the anion exchange resin with the H-type chelate resin is not particularly limited as long as the anion exchange resin is uniformly dispersed in the mixture of the H-type chelate resin and the anion exchange resin.
  • the mixing amount of the anion exchange resin is 0.10 to 100.0% by volume, preferably 0.10 to 50.0% by volume, more preferably 0.10 to 5.00% by volume with respect to the H-type chelate resin. is there.
  • the amount of the anion exchange resin is within the above range, the effect of removing the mineral acid leaking from the H-type chelate resin is enhanced.
  • the mixing amount of the anion exchange resin is less than the above range, removal of the acid leaking from the H-type chelate resin becomes insufficient, and the mineral acid is mixed in the treatment liquid.
  • the liquid to be treated may be hydrolyzed.
  • the method of bringing the liquid to be treated into contact with the H-type chelate resin mixed with the anion exchange resin is not particularly limited, and a mixture of the H-type chelate resin and the anion exchange resin is filled in a resin packed tower, and the resin is filled. Examples thereof include a method of passing a liquid to be processed through a tower, a method of bringing a mixture and a liquid to be processed into contact in a reaction tank, and the like.
  • the treatment conditions for bringing the liquid to be treated into contact with the H-type chelate resin mixed with the anion exchange resin are appropriately selected, and the liquid flow rate is preferably 1.0 to 20 L / L-resin / hr, particularly Preferably, it is 1.0 to 5.0 L / L-resin / hr, and the liquid passing temperature is preferably 5 to 60 ° C., particularly preferably 10 to 30 ° C.
  • an anion exchange resin is present in the vicinity of the H-type chelate resin, so that the mineral acid leaks from the H-type chelate resin by bringing the liquid to be treated into contact with the H-type chelate resin. Is quickly captured by the anion exchange resin, so that the mineral acid can be prevented from being mixed into the treatment liquid.
  • the anion exchange resin is a free base weakly basic anion exchange resin. This is preferable in that hydrolysis of the liquid to be treated can hardly occur.
  • the anion exchange resin mixed H type chelate resin of the present invention is an H type chelate resin in which an anion exchange resin is mixed, The mixing amount of the anion exchange resin with respect to the H-type chelate resin is 0.10 to 100.0% by volume; An anion exchange resin mixed H-type chelate resin.
  • the H-type chelate resin and anion exchange resin related to the anion exchange resin mixed H-type chelate resin of the present invention are the same as the H-type chelate resin and the anion exchange resin related to the metal removal method in the liquid of the present invention.
  • the anion exchange resin mixed H-type chelate resin of the present invention is an H-type chelate resin mixed with an anion exchange resin. That is, the anion exchange resin mixed H-type chelate resin of the present invention is a mixture of an H-type chelate resin and an anion exchange resin.
  • the mixing amount of the anion exchange resin is 0.10 to 100.0% by volume, preferably 0.10 to 50.0% by volume, based on the H-type chelate resin. More preferably, it is 0.10 to 5.00% by volume.
  • the amount of the anion exchange resin is within the above range, the effect of removing the mineral acid leaking from the H-type chelate resin is enhanced.
  • the mixing amount of the anion exchange resin is less than the above range, the removal of the mineral acid leaking from the H-type chelate resin becomes insufficient, the mineral acid is mixed in the treatment liquid, and if the amount exceeds the above range, When an organic solvent that is hydrolyzed in a basic atmosphere is treated, the liquid to be treated may be hydrolyzed.
  • the anion exchange resin mixed H-type chelate resin of the present invention is an anion exchange resin
  • a free base type weakly basic anion exchange resin is preferable in that hydrolysis of the liquid to be treated can hardly occur.
  • H-type chelate resin Na-type iminodiacetic acid-type chelate resin (Amberlite IRC748 (cation exchange capacity 1.45 eq / L-resin, harmonic mean diameter 550 ⁇ m) manufactured by Dow Chemical Co., Ltd.) 1N hydrochloric acid 4 eq / L- Resin contact-treated free base type weakly basic anion exchange resin: manufactured by Dow Chemical Co., Amberlite IRA96SB, total exchange capacity 1.32 eq / L-resin, neutral salt decomposition capacity 0.20 eq / L-resin ) Test pure water 1: Chloride ion concentration ⁇ 0.1 mg / L
  • Example 3 Free base weakly basic anion exchange resin B1 (200.0 mL) was mixed and dispersed in H type chelate resin A1 (200.0 mL) to prepare anion exchange resin mixed H type chelate resin C3.
  • the mixing amount of the free base type weakly basic anion exchange resin B1 with respect to the H-type chelate resin A1 at this time is 100.0% by volume.
  • 100 mL of an anion exchange resin mixed H-type chelate resin C3 was packed in an acrylic column having an inner diameter of 1.8 cm and a height of 100 cm.
  • the chloride ion concentration in the collected liquid was measured. The results are shown in Table 1.
  • Test solvent 2 PGMEA (polypropylene glycol monomethyl ether acetate), chloride ion concentration ⁇ 0.1 mg / L, acetic acid concentration 20 mg / L, sodium concentration 400 ng / L, moisture 130 ppm
  • OH type strong basic anion exchange resin B2 (0.20 mL) was mixed and dispersed in H type chelate resin A1 (200.0 mL) to prepare anion exchange resin mixed H type chelate resin C5.
  • the mixing amount of the OH-type strongly basic anion exchange resin B2 with respect to the H-type chelate resin A1 is 0.10% by volume.
  • 100.0 mL of an anion exchange resin mixed H-type chelate resin C5 was packed in an acrylic column having an inner diameter of 1.8 cm and a height of 100 cm.
  • the chloride ion concentration, sodium concentration, acetic acid concentration, and moisture in the collected liquid were measured. The results are shown in Table 2.
  • Example 7 Free base weakly basic anion exchange resin B1 (200.0 mL) was mixed and dispersed in H type chelate resin A1 (200.0 mL) to prepare anion exchange resin mixed H type chelate resin C3.
  • the mixing amount of the free base type weakly basic anion exchange resin B1 with respect to the H-type chelate resin A1 at this time is 100.0% by volume.
  • 100 mL of an anion exchange resin mixed H-type chelate resin C3 was packed in an acrylic column having an inner diameter of 1.8 cm and a height of 100 cm.
  • the chloride ion concentration, sodium concentration, acetic acid concentration, and moisture in the collected liquid were measured. The results are shown in Table 2.
  • OH type strongly basic anion exchange resin Amberjet 4002 (OH) -HG manufactured by Organo, total exchange capacity and neutral salt decomposition capacity 1.05 eq / L-resin, harmonic mean diameter 600 ⁇ m.
  • the H-type chelate resin A1 is mixed with the free base type weakly basic anion exchange tree B1 or the OH type strong base anion exchange resin B2, and the amount of the anion exchange tree with respect to the H type chelate resin A1 is within the scope of the present invention.
  • Examples 4 to 7 show that chloride ions were below the detection limit and leakage of mineral acids could be prevented. In Examples 4 to 7, since the acetic acid concentration is not changed or the change is small, the hydrolysis of the solvent does not occur, or even if it occurs, the amount remains small.
  • Comparative Example 3 in which only the H-type chelate resin A1 and the free base form weakly basic anion exchange tree B1 are not mixed, there are a lot of chloride ions and a large amount of mineral acid leakage.
  • Comparative Example 4 where the free base type weakly basic anion exchange tree B1 is mixed with the H type chelate resin A1, the amount of the free base type weakly basic anion exchange tree B1 with respect to the H type chelate resin A1 is small. Since the amount of chloride ions was detected, the effect of preventing the leakage of mineral acids would be insufficient if the amount of the free base form weakly basic anion exchange tree B1 with respect to the H-type chelate resin A1 is small. Indicates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

アニオン交換樹脂が混合されているH型キレート樹脂に、被処理液体を接触させて、該被処理液体中の金属を除去する液体中の金属除去方法であり、該アニオン交換樹脂の混合量が、該H型キレート樹脂に対し、0.10~100.0体積%であることを特徴とする液体中の金属除去方法。 本発明によれば、H型キレート樹脂を用いる液体中の金属除去方法であって、鉱酸の漏洩の問題が生じない方法を提供することができる。

Description

液体中の金属除去方法及びアニオン交換樹脂混合H型キレート樹脂
 本発明は、水、水溶液又は有機溶媒等の液体中の金属不純物を、キレート樹脂を用いて除去する液体中の金属除去方法に関する。
 PGMEA等のエステル系有機溶剤は、フォトレジストの溶解溶媒や剥離剤等として用いられている。フォトレジストの溶解溶媒や剥離剤として使用される場合、有機溶剤中の不純物、特に、金属不純物は、フォトレジストによって作られる半導体デバイスの劣化を招き、デバイスの寿命を短くするので、極力少ない方が好ましい。
 そのような、エステル系有機溶剤中の金属不純物を除去する方法として、キレート樹脂に金属除去対象液体を接触させる方法がある。例えば、特許文献1には、混合槽内に二以上の薬品を投入し混合する工程を含む電子部品用処理液の製造装置であって、少なくとも一の薬品の投入過程においてイオン交換樹脂又はキレート樹脂が充填されたイオン交換樹脂又はキレート樹脂処理塔が含まれている電子部品用処理液の製造装置が開示されている。
 キレート樹脂の官能基には、イミノジ酢酸基、アミノメチルリン酸基、イミノプロピオン酸基等のアミノ基を有するものがある。そして、イミノジ酢酸基、アミノメチルリン酸基、イミノプロピオン酸基等を有するキレート樹脂は、通常、Na型やCa型で市販されている。そのため、NaやCaの漏出が好ましくない用途では、これらのキレート樹脂は、鉱酸でコンディショニングされてH型に調製された後、用いられている。
特開2001-228635号公報
 鉱酸でコンディショニングされたアミノ基を有するH型キレート樹脂だと、樹脂中に鉱酸が残留してしまうため、H型キレート樹脂を用いて被処理液体中の金属除去を行っていると、キレート樹脂中に残留した鉱酸が、少しずつ漏出してくる。そして、被処理液体への塩酸等の酸の漏出は、用途によっては品質を損ねてしまう。鉱酸でのコンディショニングの後、超純水等で洗浄を行ったとしても、樹脂から残留鉱酸を速やかに除去することは難しく、鉱酸でのコンディショニングの後の洗浄では、この鉱酸の漏出の問題は解決しない。
 また、被処理液体中の金属除去の際に、金属との交換により、プロトンが放出されて、酸が生成する可能性がある。被処理液体が、エステル系有機溶剤等の場合、加水分解が起きてしまう。
 従って、本発明の目的は、H型キレート樹脂を用いる液体中の金属除去方法であって、鉱酸の漏洩の問題が生じない方法を提供することにある。
 このような上記課題は、以下の本発明によって解決される。
 すなわち、本発明(1)は、アニオン交換樹脂が混合されているH型キレート樹脂に、被処理液体を接触させて、該被処理液体中の金属を除去する液体中の金属除去方法であり、該アニオン交換樹脂の混合量が、該H型キレート樹脂に対し、0.10~100.0体積%であることを特徴とする液体中の金属除去方法を提供するものである。
 また、本発明(2)は、前記H型キレート樹脂の官能基がアミノ基を有すること特徴とする(1)の液体中の金属除去方法を提供するものである。
 また、本発明(3)は、前記H型キレート樹脂の官能基が、イミノジ酢酸基、アミノメチルリン酸基又はイミノプロピオン酸基であること特徴とする(1)又は(2)いずれかの液体中の金属除去方法を提供するものである。
 また、本発明(4)は、前記被処理液体が、エステル系有機溶剤、エステル系有機溶剤含有溶液、ケトン系有機溶剤、ケトン系有機溶剤含有溶液、アルケン系有機溶剤、又はアルケン系有機溶剤含有溶液であり、且つ、前記アニオン交換樹脂が、遊離塩基形弱塩基性アニオン交換樹脂であることを特徴とする(1)~(3)いずれか1の液体中の金属除去方法を提供するものである。
 また、本発明(5)は、前記遊離塩基形弱塩基性アニオン交換樹脂の中性塩分解容量が0.25eq/L-R以下であることを特徴とする(4)の液体中の金属除去方法を提供するものである。
 また、本発明(6)は、アニオン交換樹脂が混合されているH型キレート樹脂であり、
 該H型キレート樹脂に対する該アニオン交換樹脂の混合量が0.10~100.0体積%であること、
を特徴とするアニオン交換樹脂混合H型キレート樹脂を提供するものである。
 また、本発明(7)は、前記H型キレート樹脂の官能基がアミノ基を有すること特徴とする(6)のアニオン交換樹脂混合H型キレート樹脂を提供するものである。
 また、本発明(8)は、前記H型キレート樹脂の官能基が、イミノジ酢酸基、アミノメチルリン酸基又はイミノプロピオン酸基であること特徴とする(6)又は(7)いずれかのアニオン交換樹脂混合H型キレート樹脂を提供するものである。
 本発明によれば、H型キレート樹脂を用いる液体中の金属除去方法であって、鉱酸の漏洩の問題が生じない方法を提供することができる。
 本発明の液体中の金属除去方法は、アニオン交換樹脂が混合されているH型キレート樹脂に、被処理液体を接触させて、該被処理液体中の金属を除去することを特徴とする液体中の金属除去方法である。
 本発明の液体中の金属除去方法において、金属除去の処理対象となる被処理液体は、純水、超純水等の水、PGMEA(プロピレングリコールモノメチルエーテルアセテート)、酢酸イソプロピル等のエステル系有機溶剤、シクロヘキサノン、メチルイソブチルケトン、アセトン、メチルエチルケトン等のケトン系有機溶剤、2,4-ジフェニル-4-メチル-1-ペンテン、 2-フェニル-1-プロペン等のアルケン系有機溶剤、これらの有機溶剤を含有する溶液、例えば、エステル系有機溶剤と芳香族有機溶剤との混合溶液等のエステル系有機溶剤含有溶液、ケトン系有機溶剤とアルコール系有機溶剤との混合溶液等のケトン系有機溶剤含有溶液、アルケン系有機溶剤と芳香族有機溶剤との混合溶液等のアルケン系有機溶剤含有溶液などが挙げられる。
 本発明の液体中の金属除去方法は、被処理液体が、エステル系有機溶剤、ケトン系有機溶剤、アルケン系有機溶剤、これらの有機溶剤を含有する溶液、例えば、エステル系有機溶剤含有溶液、ケトン系有機溶剤含有溶液、アルケン系有機溶剤含有溶液などの酸雰囲気下で反応性があるため、強酸性カチオン交換樹脂が使用できない溶剤である場合に、特に適している。
 本発明の液体中の金属除去方法に係る被処理液体としては、半導体製造プロセスの洗浄水として用いられる超純水、フォトレジストの溶解溶剤又は剥離剤、ウエハーの洗浄剤等の不純物が極めて少ないことが要求される液体が、特に好ましい。また、本発明の液体中の金属除去方法に係る被処理液体中の金属不純物の含有量は、特に制限されないが、本発明の液体中の金属除去方法は、不純物が極めて少ないことが要求される用途、例えば、使用する液体中の金属不純物含有量が10ng/L以下であることが要求される用途に用いられる液体中の金属除去に好適なので、本発明の液体中の金属除去方法に係る被処理液体中の金属不純物の含有量は、好ましくは10~1000ng/L、特に好ましくは10~500ng/Lである。
 被処理液体の金属不純物としては、Li、Na、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Cd、Pb等の金属イオンが挙げられる。H型のキレート樹脂は、Fe、Cu、Ni等の多価の金属イオンの除去に優れた性能を有する。
 本発明の液体中の金属除去方法に係るH型キレート樹脂は、Na型、Ca型、Mg型等の金属イオン型のキレート樹脂を、鉱酸と接触させることにより、酸処理されて、H型に変換されたものである。つまり、H型キレート樹脂は、金属イオン型のキレート樹脂の鉱酸接触処理物である。
 本発明の液体中の金属除去方法に係るH型キレート樹脂が有する官能基は、金属イオンに配位してキレートを形成することができるものであれば、特に制限されず、例えば、イミノジ酢酸基、アミノメチルリン酸基、イミノプロピオン酸基等のアミノ基を有する官能基、チオール基等が挙げられる。これらのうち、キレート樹脂の官能基としては、多数の多価金属イオンの除去性が高くなる点で、アミノ基を有する官能基が好ましく、イミノジ酢酸基、アミノメチルリン酸基、イミノプロピオン酸基が特に好ましい。
 H型キレート樹脂の基体としては、スチレン-ジビニルベンゼン共重合体が挙げられる。
 H型キレート樹脂は、ゲル型構造、マクロポーラス型構造、ポーラス型構造のいずれの構造でもよい。
 H型キレート樹脂の交換容量は、好ましくは0.50~2.50eq/L-R、特に好ましくは1.00~2.50eq/L-Rである。H型キレート樹脂の平均粒径(調和平均径)は、特に制限されないが、好ましくは300~1000μm、特に好ましくは500~800μmである。なお、H型キレート樹脂の平均粒径は、レーザ回折式粒度分布測定装置により測定される値である。
 H型キレート樹脂は、Na型、Ca型、Mg型等の金属イオン型のキレート樹脂を鉱酸と接触させて酸処理することにより、得られる。
 金属イオン型のキレート樹脂としては、三菱化学社製のCR-10、CR-11、住化ケムテックス社製のデュオライトC-467、住友化学社製のMC-700、ランクセス社製のレバチットTP207、レバチットTP208、レバチットTP260)、ピュロライト社製のS930、S950が挙げられる。
 金属イオン型のキレート樹脂に接触させる鉱酸としては、塩酸、硫酸、硝酸が挙げられる。これらのうち、鉱酸としては、安全性の点で、塩酸、硫酸が好ましい。また、Ca型からの変換の場合は、硫酸カルシウムの析出の恐れがあるので塩酸が好ましい。鉱酸の濃度は、好ましくは0.1~6.0N、特に好ましくは1.0~4.0Nである。
 金属イオン型のキレート樹脂に鉱酸を接触させる方法としては、特に制限されず、接触様式、接触温度、接触時間等は適宜選択される。
 金属イオン型のキレート樹脂に鉱酸を接触させた後、H型に変換されたH型キレート樹脂を水洗し、余分な鉱酸の除去を行うが、キレート樹脂中の官能基が、鉱酸との水素結合等により結合しているため、水洗では余分な鉱酸を完全に除去することができない。そのため、H型キレート樹脂中には、酸処理に用いた鉱酸が残留している。
 本発明の液体中の金属除去方法に係るアニオン交換樹脂としては、OH型強塩基性アニオン交換樹脂、遊離塩基型弱塩基性アニオン交換樹脂等が挙げられる。
 強塩基性アニオン交換樹脂のアニオン交換基としては、四級アンモニウム基が挙げられる。
 強塩基性アニオン交換樹脂の基体としては、スチレン-ジビニルベンゼン共重合体、アクリル酸-ジビニルベンゼン共重合体が挙げられる。
 強塩基性アニオン交換樹脂は、ゲル型構造、マクロポーラス型構造、ポーラス型構造のいずれの構造でもよい。
 強塩基性アニオン交換樹脂のアニオン交換容量は、好ましくは0.50~2.00eq/L-R、特に好ましくは0.80~1.50eq/L-Rである。強塩基性アニオン交換樹脂の平均粒径(調和平均径)は、特に制限されないが、好ましくは300~1000μm、特に好ましくは500~800μmである。なお、強塩基性アニオン交換樹脂の平均粒径は、レーザ回折式粒度分布測定装置により測定される値である。
 強塩基性アニオン交換樹脂としては、三菱化学社製のダイヤイオンSA10A、SA12A、住化ケムテックス社製のデュオライトA113OH、ランクセス社製のレバチットモノプラスM500、ピュロライト社製のA400等が挙げられる。
 本発明の液体中の金属除去方法では、アニオン交換樹脂が、遊離塩基型弱塩基性アニオン交換樹脂であることが、被処理液体が、塩基性雰囲気で加水分解する有機溶剤、例えば、エステル系有機溶剤である場合に、被処理液体の加水分解を起こり難くすることができる点で、好ましい。
 遊離塩基型弱塩基性アニオン交換樹脂のアニオン交換基としては、一級アミノ基、二級アミノ基、三級アミノ基が挙げられる。これらのうち、アニオン基としては、三級アミノ基が好ましい。
 遊離塩基型弱塩基性アニオン交換樹脂の基体としては、スチレン-ジビニルベンゼン共重合体、アクリル酸-ジビニルベンゼン共重合体が挙げられる。
 遊離塩基型弱塩基性アニオン交換樹脂は、ゲル型構造、マクロポーラス型構造、ポーラス型構造のいずれの構造でもよい。
 遊離塩基型弱塩基性アニオン交換樹脂のアニオン交換容量は、好ましくは0.50~2.50eq/L-R、特に好ましくは1.00~2.00eq/L-Rである。遊離塩基型弱塩基性アニオン交換樹脂の中性塩分解容量は、好ましくは0.25eq/L-R以下、特に好ましくは0.01eq/L-Rを超え0.15eq/L-R以下である。遊離塩基型弱塩基性アニオン交換樹脂の平均粒径(調和平均径)は、特に制限されないが、好ましくは300~1000μm、特に好ましくは500~800μmである。なお、遊離塩基型弱塩基性アニオン交換樹脂の平均粒径は、レーザ回折式粒度分布測定装置により測定される値である。
 遊離塩基型弱塩基性アニオン交換樹脂としては、三菱化学社製のダイヤイオンWA30、住化ケムテックス社製のデュオライトA368MS、ランクセス社製のレバチットMP62、レバチットモノプラスMP64、ピュロライト社製のA100等が挙げられる。
 そして、本発明の液体中の金属除去方法では、アニオン交換樹脂が混合されているH型キレート樹脂に、被処理液体を接触させて、液体中の金属を除去し、金属不純物が除去された処理液体を得る。つまり、本発明の液体中の金属除去方法では、H型キレート樹脂とアニオン交換樹脂の混合物に、被処理液体を接触させる。
 H型キレート樹脂にアニオン交換樹脂を混合する方法としては、H型キレート樹脂とアニオン交換樹脂の混合物中に、アニオン交換樹脂を均一に分散させる方法であれば、特に制限されない。
 アニオン交換樹脂の混合量は、H型キレート樹脂に対し、0.10~100.0体積%、好ましくは0.10~50.0体積%、より好ましくは0.10~5.00体積%である。アニオン交換樹脂の混合量が、上記範囲にあることにより、H型キレート樹脂から漏出する鉱酸の除去効果が高くなる。一方、アニオン交換樹脂の混合量が、上記範囲未満だと、H型キレート樹脂から漏出する酸の除去が不十分となり、処理液体中に鉱酸が混入し、また、上記範囲を超えると、塩基性雰囲気で加水分解する有機溶剤を処理する場合に、被処理液体の加水分解が生じるおそれがある。
 アニオン交換樹脂が混合されているH型キレート樹脂に、被処理液体を接触させる方法としては、特に制限されず、H型キレート樹脂とアニオン交換樹脂の混合物を、樹脂充填塔に充填し、樹脂充填塔に被処理液体を通液する方法、反応槽内で混合物と被処理液体を接触させる方法等が挙げられる。
 アニオン交換樹脂が混合されているH型キレート樹脂に、被処理液体を接触させるときの処理条件は、適宜選択され、通液速度は、好ましくは1.0~20L/L-樹脂/hr、特に好ましくは1.0~5.0L/L-樹脂/hrであり、また、通液温度は、好ましくは5~60℃、特に好ましくは10~30℃である。
 本発明の液体中の金属除去方法では、H型キレート樹脂の近傍にアニオン交換樹脂が存在しているので、被処理液体をH型キレート樹脂に接触させることによりH型キレート樹脂から漏出する鉱酸を、速やかにアニオン交換樹脂が捕捉するので、処理液体中への鉱酸の混入を防ぐことができる。
 本発明の液体中の金属除去方法では、被処理液体が塩基性雰囲気で加水分解する有機溶剤、例えば、エステル系有機溶剤の場合、アニオン交換樹脂が、遊離塩基型弱塩基性アニオン交換樹脂であることにより、被処理液体の加水分解を起こり難くすることができる点で、好ましい。
 本発明のアニオン交換樹脂混合H型キレート樹脂は、アニオン交換樹脂が混合されているH型キレート樹脂であり、
 該H型キレート樹脂に対する該アニオン交換樹脂の混合量が0.10~100.0体積%であること、
を特徴とするアニオン交換樹脂混合H型キレート樹脂である。
 本発明のアニオン交換樹脂混合H型キレート樹脂に係るH型キレート樹脂、アニオン交換樹脂は、本発明の液体中の金属除去方法に係るH型キレート樹脂、アニオン交換樹脂と同様である。
 本発明のアニオン交換樹脂混合H型キレート樹脂は、アニオン交換樹脂が混合されているH型キレート樹脂である。つまり、本発明のアニオン交換樹脂混合H型キレート樹脂は、H型キレート樹脂とアニオン交換樹脂の混合物である。
 本発明のアニオン交換樹脂混合H型キレート樹脂中、アニオン交換樹脂の混合量は、H型キレート樹脂に対し、0.10~100.0体積%、好ましくは0.10~50.0体積%、より好ましくは0.10~5.00体積%である。アニオン交換樹脂の混合量が、上記範囲にあることにより、H型キレート樹脂から漏出する鉱酸の除去効果が高くなる。一方、アニオン交換樹脂の混合量が、上記範囲未満だと、H型キレート樹脂から漏出する鉱酸の除去が不十分となり、処理液体中に鉱酸が混入し、また、上記範囲を超えると、塩基性雰囲気で加水分解する有機溶剤を処理する場合に、被処理液体の加水分解が生じるおそれがある。
 エステル系有機溶剤、例えば、PGMEA、酢酸イソプロピル等の塩基性雰囲気で加水分解する有機溶剤中の金属を除去する用途の場合、本発明のアニオン交換樹脂混合H型キレート樹脂は、アニオン交換樹脂が、遊離塩基形弱塩基性アニオン交換樹脂であることが、被処理液体の加水分解を起こり難くすることができる点で、好ましい。
 以下、本発明を実施例に基づき詳細に説明する。ただし、本発明は、以下の実施例に制限されるものではない。
(実施例1) 
 H型キレート樹脂A1(200.0mL)に、遊離塩基形弱塩基性アニオン交換樹脂B1(0.20mL)を混合及び分散させて、アニオン交換樹脂混合H型キレート樹脂C1を調製した。このときのH型キレート樹脂A1に対する遊離塩基形弱塩基性アニオン交換樹脂B1の混合量は、0.10体積%である。
 次いで、100.0mLのアニオン交換樹脂混合H型キレート樹脂C1を、内径1.8cm、高さ100cmのアクリルカラムに充填した。
 次いで、カラム内に、試験用純水1を、通液速度1L/hr(SV=10)で通液し、流出初期の1Lを採取した。
 次いで、採取液中の塩化物イオン濃度を測定した。その結果を表1に示す。
・H型キレート樹脂:Na型のイミノジ酢酸形キレート樹脂(ダウ・ケミカル社製、アンバーライト IRC748(カチオン交換容量1.45eq/L-樹脂、調和平均径550μm))を、1N塩酸4eq/L-樹脂で接触処理したもの
・遊離塩基形弱塩基性アニオン交換樹脂:ダウ・ケミカル社製、アンバーライト IRA96SB、総交換容量1.32eq/L-樹脂、中性塩分解容量0.20eq/L-樹脂)
・試験用純水1:塩化物イオン濃度<0.1mg/L
(実施例2)
 H型キレート樹脂A1(200.0mL)に、遊離塩基形弱塩基性アニオン交換樹脂B1(10.0mL)を混合及び分散させて、アニオン交換樹脂混合H型キレート樹脂C2を調製した。このときのH型キレート樹脂A1に対する遊離塩基形弱塩基性アニオン交換樹脂B1の混合量は、5.00体積%である。
 次いで、100.0mLのアニオン交換樹脂混合H型キレート樹脂C2を、内径1.8cm、高さ100cmのアクリルカラムに充填した。
 次いで、カラム内に、試験用純水1を、通水速度1L/hr(SV=10)で通液し、流出初期の1Lを採取した。
 次いで、採取液中の塩化物イオン濃度を測定した。その結果を表1に示す。
(実施例3)
 H型キレート樹脂A1(200.0mL)に、遊離塩基形弱塩基性アニオン交換樹脂B1(200.0mL)を混合及び分散させて、アニオン交換樹脂混合H型キレート樹脂C3を調製した。このときのH型キレート樹脂A1に対する遊離塩基形弱塩基性アニオン交換樹脂B1の混合量は、100.0体積%である。
 次いで、100mLのアニオン交換樹脂混合H型キレート樹脂C3を、内径1.8cm、高さ100cmのアクリルカラムに充填した。
 次いで、カラム内に、試験用純水1を、通水速度1L/hr(SV=10)で通液し、流出初期の1Lを採取した。
 次いで、採取液中の塩化物イオン濃度を測定した。その結果を表1に示す。
(比較例1)
 100mLのH型キレート樹脂A1を、内径1.8cm、高さ100cmのアクリルカラムに充填した。
 次いで、カラム内に、試験用純水1を、通液速度1L/hr(SV=10)で通液し、流出初期の1Lを採取した。
 次いで、採取液中の塩化物イオン濃度を測定した。その結果を表1に示す。
(比較例2)
 H型キレート樹脂A1(200.0mL)に、遊離塩基形弱塩基性アニオン交換樹脂B1(0.10mL)を混合及び分散させて、アニオン交換樹脂混合H型キレート樹脂C4を調製した。このときのH型キレート樹脂A1に対する遊離塩基形弱塩基性アニオン交換樹脂B1の混合量は、0.05体積%である。
 次いで、100mLのアニオン交換樹脂混合H型キレート樹脂C4を、内径1.8cm、高さ100cmのアクリルカラムに充填した。
 次いで、カラム内に、試験用純水1を、通液速度1L/hr(SV=10)で通液し、流出初期の1Lを採取した。
 次いで、採取液中の塩化物イオン濃度を測定した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 H型キレート樹脂A1に遊離塩基形弱塩基性アニオン交換樹B1を混合し、且つ、H型キレート樹脂A1に対する遊離塩基形弱塩基性アニオン交換樹B1の混合量が、本発明の範囲である実施例1~3は、塩化物イオンは検出下限界以下であり、鉱酸の漏洩を防ぐことができたことを示す。
 一方、H型キレート樹脂A1のみで、遊離塩基形弱塩基性アニオン交換樹B1を混合しない比較例1では、塩化物イオンが多く、鉱酸の漏洩量が多かったことを示す。また、H型キレート樹脂A1に遊離塩基形弱塩基性アニオン交換樹B1を混合しているものの、H型キレート樹脂A1に対する遊離塩基形弱塩基性アニオン交換樹B1の混合量が少ない比較例2では、塩化物イオンが少ないながらも検出されたことから、H型キレート樹脂A1に対する遊離塩基形弱塩基性アニオン交換樹B1の混合量が少ないと、鉱酸の漏洩を防ぐ効果が不十分となることを示す。
(実施例4)
 H型キレート樹脂A1(200.0mL)に、遊離塩基形弱塩基性アニオン交換樹脂B1(0.20mL)を混合及び分散させて、アニオン交換樹脂混合H型キレート樹脂C1を調製した。このときのH型キレート樹脂A1に対する遊離塩基形弱塩基性アニオン交換樹脂B1の混合量は、0.10体積%である。
 次いで、100.0mLのアニオン交換樹脂混合H型キレート樹脂C1を、内径1.8cm、高さ100cmのアクリルカラムに充填した。
 次いで、カラム内に、試験用溶剤2を、通液速度1L/hr(SV=10)で通液し、流出初期の1Lを採取した。
 次いで、採取液中の塩化物イオン濃度、ナトリウム濃度、酢酸濃度、水分を測定した。その結果を表2に示す。
・試験用溶剤2:PGMEA(ポリプロピレングリコールモノメチルエーテルアセテート)、塩化物イオン濃度<0.1mg/L、酢酸濃度20mg/L、ナトリウム濃度400ng/L、水分130ppm
(実施例5)
 H型キレート樹脂A1(200.0mL)に、遊離塩基形弱塩基性アニオン交換樹脂B1(10.0mL)を混合及び分散させて、アニオン交換樹脂混合H型キレート樹脂C2を調製した。このときのH型キレート樹脂A1に対する遊離塩基形弱塩基性アニオン交換樹脂B1の混合量は、5.00体積%である。
 次いで、100mLのアニオン交換樹脂混合H型キレート樹脂C2を、内径1.8cm、高さ100cmのアクリルカラムに充填した。
 次いで、カラム内に、試験用溶剤2を、通液速度1L/hr(SV=10)で通液し、流出初期の1Lを採取した。
 次いで、採取液中の塩化物イオン濃度、ナトリウム濃度、酢酸濃度、水分を測定した。その結果を表2に示す。
(実施例6)
 H型キレート樹脂A1(200.0mL)に、OH形強塩基性アニオン交換樹脂B2(0.20mL)を混合及び分散させて、アニオン交換樹脂混合H型キレート樹脂C5を調製した。このときのH型キレート樹脂A1に対するOH形強塩基性アニオン交換樹脂B2の混合量は、0.10体積%である。
 次いで、100.0mLのアニオン交換樹脂混合H型キレート樹脂C5を、内径1.8cm、高さ100cmのアクリルカラムに充填した。
 次いで、カラム内に、試験用溶剤2を、通液速度1L/hr(SV=10)で通液し、流出初期の1Lを採取した。
 次いで、採取液中の塩化物イオン濃度、ナトリウム濃度、酢酸濃度、水分を測定した。その結果を表2に示す。
(実施例7)
 H型キレート樹脂A1(200.0mL)に、遊離塩基形弱塩基性アニオン交換樹脂B1(200.0mL)を混合及び分散させて、アニオン交換樹脂混合H型キレート樹脂C3を調製した。このときのH型キレート樹脂A1に対する遊離塩基形弱塩基性アニオン交換樹脂B1の混合量は、100.0体積%である。
 次いで、100mLのアニオン交換樹脂混合H型キレート樹脂C3を、内径1.8cm、高さ100cmのアクリルカラムに充填した。
 次いで、カラム内に、試験用溶剤2を、通液速度1L/hr(SV=10)で通液し、流出初期の1Lを採取した。
 次いで、採取液中の塩化物イオン濃度、ナトリウム濃度、酢酸濃度、水分を測定した。その結果を表2に示す。
・OH形強塩基性アニオン交換樹脂:オルガノ社製アンバージェット4002(OH)-HG、総交換容量及び中性塩分解容量1.05eq/L-樹脂、調和平均径600μm。
(比較例3)
 100mLのH型キレート樹脂A1を、内径1.8cm、高さ100cmのアクリルカラムに充填した。
 次いで、カラム内に、試験用溶剤2を、通液速度1L/hr(SV=10)で通液し、流出初期の1Lを採取した。
 次いで、採取液中の塩化物イオン濃度、ナトリウム濃度、酢酸濃度、水分を測定した。その結果を表2に示す。
(比較例4)
 H型キレート樹脂A1(200.0mL)に、遊離塩基形弱塩基性アニオン交換樹脂B1(0.10mL)を混合及び分散させて、アニオン交換樹脂混合H型キレート樹脂C4を調製した。このときのH型キレート樹脂A1に対する遊離塩基形弱塩基性アニオン交換樹脂B1の混合量は、0.05体積%である。
 次いで、100.0mLのアニオン交換樹脂混合H型キレート樹脂C4を、内径1.8cm、高さ100cmのアクリルカラムに充填した。
 次いで、カラム内に、試験用溶剤2を、通液速度1L/hr(SV=10)で通液し、流出初期の1Lを採取した。
 次いで、採取液中の塩化物イオン濃度、ナトリウム濃度、酢酸濃度、水分を測定した。その結果を表2に示す。
(比較例5)
 H型キレート樹脂A1(200.0mL)に、遊離塩基形弱塩基性アニオン交換樹脂B1(250.0mL)を混合及び分散させて、アニオン交換樹脂混合H型キレート樹脂C6を調製した。このときのH型キレート樹脂A1に対する遊離塩基形弱塩基性アニオン交換樹脂B1の混合量は、125.0体積%である。
 次いで、100.0mLのアニオン交換樹脂混合H型キレート樹脂C6を、内径1.8cm、高さ100cmのアクリルカラムに充填した。
 次いで、カラム内に、試験用溶剤2を、通液速度1L/hr(SV=10)で通液し、流出初期の1Lを採取した。
 次いで、採取液中の塩化物イオン濃度、ナトリウム濃度、酢酸濃度、水分を測定した。その結果を表2に示す。
(比較例6)
 100.0mLの強酸性カチオン交換樹脂D1を、内径1.8cm、高さ100cmのアクリルカラムに充填した。
 次いで、カラム内に、試験用溶剤2を、通液速度1L/hr(SV=10)で通液し、流出初期の1Lを採取した。
 次いで、採取液中の塩化物イオン濃度、ナトリウム濃度、酢酸濃度、水分を測定した。その結果を表2に示す。
・強酸性カチオン交換樹脂D1:ダウ・ケミカル社製、アンバージェット 1024H、総交換容量:2.25eq/L-樹脂、調和平均径650μm
Figure JPOXMLDOC01-appb-T000002
 H型キレート樹脂A1に遊離塩基形弱塩基性アニオン交換樹B1又はOH形強塩基性アニオン交換樹脂B2を混合し、且つ、H型キレート樹脂A1に対するアニオン交換樹の混合量が、本発明の範囲である実施例4~7は、塩化物イオンは検出下限界以下であり、鉱酸の漏洩を防ぐことができたことを示す。また、実施例4~7では、酢酸濃度に変化が無いか、あるいは、変化が小さいことから、溶剤の加水分解が起こらないか、あるいは、起こったとしても少なく留まっていることを示す。
 一方、H型キレート樹脂A1のみで、遊離塩基形弱塩基性アニオン交換樹B1を混合しない比較例3では、塩化物イオンが多く、鉱酸の漏洩量が多かったことを示す。また、H型キレート樹脂A1に遊離塩基形弱塩基性アニオン交換樹B1を混合しているものの、H型キレート樹脂A1に対する遊離塩基形弱塩基性アニオン交換樹B1の混合量が少ない比較例4では、塩化物イオンが少ないながらも検出されたことから、H型キレート樹脂A1に対する遊離塩基形弱塩基性アニオン交換樹B1の混合量が少ないと、鉱酸の漏洩を防ぐ効果が不十分となることを示す。また、H型キレート樹脂A1に対する遊離塩基形弱塩基性アニオン交換樹B1の混合量が多い比較例5、及び強酸性カチオン交換樹脂D1のみを用いる比較例6では、塩化物イオンは検出されなかったものの、酢酸濃度が2~5倍になっており、溶剤の加水分解が多く起こったことを示す。

Claims (8)

  1.  アニオン交換樹脂が混合されているH型キレート樹脂に、被処理液体を接触させて、該被処理液体中の金属を除去する液体中の金属除去方法であり、該アニオン交換樹脂の混合量が、該H型キレート樹脂に対し、0.10~100.0体積%であることを特徴とする液体中の金属除去方法。
  2.  前記H型キレート樹脂の官能基がアミノ基を有すること特徴とする請求項1記載の液体中の金属除去方法。
  3.  前記H型キレート樹脂の官能基が、イミノジ酢酸基、アミノメチルリン酸基又はイミノプロピオン酸基であること特徴とする請求項1又は2いずれか1項記載の液体中の金属除去方法。
  4.  前記被処理液体が、エステル系有機溶剤、エステル系有機溶剤含有溶液、ケトン系有機溶剤、ケトン系有機溶剤含有溶液、アルケン系有機溶剤、又はアルケン系有機溶剤含有溶液であり、且つ、前記アニオン交換樹脂が、遊離塩基形弱塩基性アニオン交換樹脂であることを特徴とする請求項1~3いずれか1項記載の液体中の金属除去方法。
  5.  前記遊離塩基形弱塩基性アニオン交換樹脂の中性塩分解容量が0.25eq/L-R以下であることを特徴とする請求項4記載の液体中の金属除去方法。
  6.  アニオン交換樹脂が混合されているH型キレート樹脂であり、
     該H型キレート樹脂に対する該アニオン交換樹脂の混合量が0.10~100.0体積%であること、
    を特徴とするアニオン交換樹脂混合H型キレート樹脂。
  7.  前記H型キレート樹脂の官能基がアミノ基を有すること特徴とする請求項6記載のアニオン交換樹脂混合H型キレート樹脂。
  8.  前記H型キレート樹脂の官能基が、イミノジ酢酸基、アミノメチルリン酸基又はイミノプロピオン酸基であること特徴とする請求項6又は7いずれか1項記載のアニオン交換樹脂混合H型キレート樹脂。
PCT/JP2019/010156 2018-04-23 2019-03-13 液体中の金属除去方法及びアニオン交換樹脂混合h型キレート樹脂 WO2019207995A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018082243A JP7213023B2 (ja) 2018-04-23 2018-04-23 液体中の金属除去方法及びアニオン交換樹脂混合h型キレート樹脂
JP2018-082243 2018-04-23

Publications (1)

Publication Number Publication Date
WO2019207995A1 true WO2019207995A1 (ja) 2019-10-31

Family

ID=68293972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010156 WO2019207995A1 (ja) 2018-04-23 2019-03-13 液体中の金属除去方法及びアニオン交換樹脂混合h型キレート樹脂

Country Status (3)

Country Link
JP (1) JP7213023B2 (ja)
TW (1) TWI827592B (ja)
WO (1) WO2019207995A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7437276B2 (ja) 2020-09-18 2024-02-22 オルガノ株式会社 イオン交換体の分析方法及びイオン交換体の前処理装置
JPWO2022209233A1 (ja) 2021-03-31 2022-10-06
JP2023059066A (ja) * 2021-10-14 2023-04-26 オルガノ株式会社 酸性溶液の精製方法
JP7421019B1 (ja) 2022-10-06 2024-01-23 オルガノ株式会社 カチオン交換樹脂の製造方法および有機酸溶液の精製方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123554A (en) * 1976-04-06 1977-10-17 Bayer Ag Method of selectively removing heavy metal
JP2001228635A (ja) * 2000-02-16 2001-08-24 Sumitomo Chem Co Ltd 電子部品用処理液の製造装置及び製造方法
JP2005215627A (ja) * 2004-02-02 2005-08-11 Japan Organo Co Ltd レジスト剥離廃液の再生処理方法及び装置
JP2010254841A (ja) * 2009-04-27 2010-11-11 Nippon Filcon Co Ltd 金属吸着性焼結多孔体およびその製造方法
JP2014237131A (ja) * 2011-09-06 2014-12-18 三菱レイヨン株式会社 浄水カートリッジ及び浄水器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225689A (ja) * 1984-04-23 1985-11-09 Japan Organo Co Ltd ほう酸排液の処理方法
JP2001269664A (ja) * 2000-01-20 2001-10-02 Godo Shigen Sangyo Kk 汚染物質の難溶化処理方法
US9589690B2 (en) * 2010-12-15 2017-03-07 Electric Power Research Institute, Inc. Light water reactor primary coolant activity cleanup

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123554A (en) * 1976-04-06 1977-10-17 Bayer Ag Method of selectively removing heavy metal
JP2001228635A (ja) * 2000-02-16 2001-08-24 Sumitomo Chem Co Ltd 電子部品用処理液の製造装置及び製造方法
JP2005215627A (ja) * 2004-02-02 2005-08-11 Japan Organo Co Ltd レジスト剥離廃液の再生処理方法及び装置
JP2010254841A (ja) * 2009-04-27 2010-11-11 Nippon Filcon Co Ltd 金属吸着性焼結多孔体およびその製造方法
JP2014237131A (ja) * 2011-09-06 2014-12-18 三菱レイヨン株式会社 浄水カートリッジ及び浄水器

Also Published As

Publication number Publication date
JP2019188300A (ja) 2019-10-31
TW201943650A (zh) 2019-11-16
JP7213023B2 (ja) 2023-01-26
TWI827592B (zh) 2024-01-01

Similar Documents

Publication Publication Date Title
WO2019207995A1 (ja) 液体中の金属除去方法及びアニオン交換樹脂混合h型キレート樹脂
CA3009750C (en) Purification process for hydrolysable organic solvent
US11759774B2 (en) Purification process for hydrophilic organic solvent
CN111699040B (zh) 被处理液的精制方法
TW202225131A (zh) 有機溶劑之精製方法
WO2020217911A1 (ja) 有機溶媒の精製方法及び有機溶媒の精製装置
KR20190080193A (ko) 음이온 교환수지와 양이온 교환수지를 이용한 과산화수소수의 정제 방법
US5702611A (en) Process for removing heavy metal ions by ion exchange
TWI423836B (zh) 自含氫氧化四烷基銨之廢液回收及純化其之方法
JP2024005489A (ja) アニオン界面活性剤の精製方法
WO2022030380A1 (ja) 極性有機溶媒の精製方法、極性有機溶媒の精製装置、分析方法及び精製極性有機溶媒の製造方法
JP2000126766A (ja) テトラアルキルアンモニウムイオン含有液の処理方法
CN114072232A (zh) 纯化有机溶剂的方法
WO2022209392A1 (ja) 加水分解性有機溶媒の精製方法および加水分解性有機溶媒精製用の樹脂の製造方法
JP4561967B2 (ja) テトラアルキルアンモニウムイオン含有排水から水を回収する方法及び装置
US20240018020A1 (en) Purification method and purification apparatus for liquid to be processed containing tetraalkylammonium ions
WO2023062925A1 (ja) 酸性溶液の精製方法
JP7248090B1 (ja) 有機溶媒の不純物除去方法
TW202402370A (zh) 有機溶劑之精製方法及精製裝置
TW202306646A (zh) 非水液體的精製方法及精製裝置,以及離子交換樹脂的製造方法及前處理裝置
TW202341863A (zh) 精製四級銨化合物水溶液之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793703

Country of ref document: EP

Kind code of ref document: A1