WO2019207824A1 - エレベータ、その懸架体、及びその製造方法 - Google Patents
エレベータ、その懸架体、及びその製造方法 Download PDFInfo
- Publication number
- WO2019207824A1 WO2019207824A1 PCT/JP2018/039508 JP2018039508W WO2019207824A1 WO 2019207824 A1 WO2019207824 A1 WO 2019207824A1 JP 2018039508 W JP2018039508 W JP 2018039508W WO 2019207824 A1 WO2019207824 A1 WO 2019207824A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- core
- strength fiber
- strength
- suspension body
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B7/00—Other common features of elevators
- B66B7/06—Arrangements of ropes or cables
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B7/00—Other common features of elevators
- B66B7/06—Arrangements of ropes or cables
- B66B7/062—Belts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B9/00—Kinds or types of lifts in, or associated with, buildings or other structures
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/16—Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/22—Flat or flat-sided ropes; Sets of ropes consisting of a series of parallel ropes
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/20—Organic high polymers
- D07B2205/2046—Polyamides, e.g. nylons
- D07B2205/205—Aramides
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/20—Organic high polymers
- D07B2205/2096—Poly-p-phenylenebenzo-bisoxazole [PBO]
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/30—Inorganic materials
- D07B2205/3003—Glass
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/30—Inorganic materials
- D07B2205/3007—Carbon
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2501/00—Application field
- D07B2501/20—Application field related to ropes or cables
- D07B2501/2007—Elevators
Definitions
- the present invention relates to an elevator in which a car is suspended by a belt-like suspension, a structure of the suspension, and a method of manufacturing the suspension.
- the load support portion is composed of a polymer matrix and reinforcing fibers. Carbon fiber or glass fiber is used as the reinforcing fiber. Further, the reinforcing fibers are uniformly dispersed in the polymer matrix and are arranged in parallel to the longitudinal direction of the rope (see, for example, Patent Document 1).
- a rope using such a reinforcing fiber has a higher breaking strength per weight than a wire rope twisted steel wire. Therefore, in a high-rise elevator that requires a particularly long rope, the weight of the entire rope can be reduced, and the driving load of the hoisting machine can be reduced.
- the present invention has been made to solve the above-described problems, and an elevator capable of reducing stress generated in a load support layer of a suspension when bent, the suspension, and a method of manufacturing the same The purpose is to obtain.
- the elevator suspension according to the present invention includes a core having a load supporting layer including an impregnating resin and a plurality of high-strength fiber bundles, and a covering layer covering at least a part of the outer periphery of the core,
- the plurality of high-strength fiber bundles include a plurality of first high-strength fiber bundles twisted in the same direction and a plurality of second high-strength fibers twisted in the direction opposite to the first high-strength fiber bundle.
- the first high-strength fiber bundle and the second high-strength fiber bundle are alternately arranged as seen from a cross section perpendicular to the length direction of the core.
- the elevator suspension manufacturing method includes a feeding step of feeding a plurality of high-strength fiber bundles from corresponding bobbins, and a plurality of fiber bundle passage holes provided in the fiber bundle positioning device.
- a positioning step for positioning a plurality of high strength fiber bundles through the corresponding high strength fiber bundles, an impregnation step for impregnating a plurality of high strength fiber bundles with an impregnation resin, and heating a plurality of high strength fiber bundles impregnated with resin A heat forming step of forming a load supporting layer by molding, and a covering step of forming a covering layer covering at least a part of the outer periphery of the load supporting layer.
- the elevator of the present invention, the suspension body thereof, and the manufacturing method thereof can reduce the stress generated in the load support layer of the suspension body when bent.
- FIG. 1 It is a block diagram which shows the elevator by Embodiment 1 of this invention. It is sectional drawing which shows typically the cross section orthogonal to the length direction of the suspension body of FIG. It is sectional drawing which shows the state which bent the fragment
- FIG. 1 It is sectional drawing which shows typically the cross section orthogonal to the length direction of the suspension body of FIG. It is sectional drawing which shows the state which bent the fragment
- FIG. 10 is a cross-sectional view showing a first modification of the fourth embodiment.
- FIG. 10 is a cross-sectional view showing a second modification of the fourth embodiment. It is sectional drawing of the suspension body of the elevator by Embodiment 5 of this invention. It is sectional drawing of the suspension body of the elevator by Embodiment 6 of this invention. It is sectional drawing of the suspension body of the elevator by Embodiment 7 of this invention. It is sectional drawing of the suspension body of the elevator by Embodiment 8 of this invention.
- FIG. 29 is a cross sectional view showing a first modification of the eighth embodiment.
- FIG. 29 is a cross sectional view showing a second modification of the eighth embodiment. It is sectional drawing of the suspension body of the elevator by Embodiment 9 of this invention.
- FIG. 29 is a cross sectional view showing a first modification of the eighth embodiment.
- FIG. 29 is a cross sectional view showing a second modification of the eighth embodiment. It is sectional drawing of the suspension body of the elevator
- FIG. 38 is a cross-sectional view showing a modification of the ninth embodiment. It is sectional drawing of the suspension body of the elevator by Embodiment 10 of this invention. It is sectional drawing of the suspension body of the elevator by Embodiment 11 of this invention. It is sectional drawing of the suspension body of the elevator by Embodiment 12 of this invention. It is sectional drawing of the suspension body of the elevator by Embodiment 13 of this invention. It is sectional drawing of the suspension body of the elevator by Embodiment 14 of this invention. It is sectional drawing of the suspension body of the elevator by Embodiment 15 of this invention.
- FIG. 38 is a cross sectional view showing a first modification of the fifteenth embodiment.
- FIG. 38 is a cross sectional view showing a second modification of the fifteenth embodiment.
- FIG. 38 is a cross sectional view showing a first modification of the sixteenth embodiment.
- FIG. 38 is a cross sectional view showing a second modification of the sixteenth embodiment.
- FIG. 38 is a cross sectional view showing a third modification of the sixteenth embodiment. It is sectional drawing of the suspension body of the elevator by Embodiment 17 of this invention. It is sectional drawing of the suspension body of the elevator by Embodiment 18 of this invention. It is sectional drawing of the suspension body of the elevator by Embodiment 19 of this invention.
- FIG. 38 is a cross sectional view showing a modified example of the nineteenth embodiment.
- FIG. 38 is a cross sectional view showing a first modification of the twenty-second embodiment.
- FIG. 38 is a cross sectional view showing a second modification of the twenty-second embodiment.
- FIG. 38 is a cross sectional view showing a first modification of the twenty-third embodiment.
- FIG. 38 is a cross sectional view showing a second modification of the twenty-third embodiment.
- FIG. 38 is a cross-sectional view showing a modified example of the non-adhesive portion of the twenty-sixth embodiment. It is a block diagram which shows the principal part of the elevator by Embodiment 27 of this invention. It is sectional drawing of the terminal holding
- FIG. 30 It is a block diagram which shows the principal part of the elevator by Embodiment 30 of this invention. It is a block diagram which shows the principal part of the elevator by Embodiment 31 of this invention. It is a block diagram which shows the principal part of the elevator by Embodiment 32 of this invention. It is a block diagram which shows the principal part of the elevator by Embodiment 33 of this invention. It is a block diagram which shows the principal part of the elevator by Embodiment 34 of this invention. It is sectional drawing which shows the state in the middle of manufacture of the suspension body of the elevator by Embodiment 35 of this invention. It is sectional drawing which expands and shows the high strength fiber layer of FIG. 64 partially.
- FIG. 64 It is a block diagram which shows the principal part of the elevator by Embodiment 30 of this invention. It is a block diagram which shows the principal part of the elevator by Embodiment 31 of this invention. It is a block diagram which shows the principal part of the elevator by Embodiment 32 of this invention. It is
- FIG. 38 is a schematic configuration diagram showing a first manufacturing apparatus for a suspension body according to a thirty-fifth embodiment.
- FIG. 67 is a cross-sectional view of a suspension core manufactured by the first manufacturing apparatus of FIG. 66.
- FIG. 38 is a schematic configuration diagram showing a second manufacturing apparatus for a suspension body according to a thirty-fifth embodiment.
- FIG. 69 is a cross-sectional view showing a pressurized state of a core and a thermoplastic sheet by the pressure molding apparatus of FIG. 68.
- FIG. 70 is a cross-sectional view of a suspension body that has been pressure-molded by the pressure-molding apparatus of FIG. 69 before completion.
- FIG. 74 is a cross-sectional view showing a state in the middle of manufacturing the suspension body of FIG. 73. It is a schematic block diagram which shows a part of suspension manufacturing apparatus of Embodiment 38 of this invention. It is sectional drawing which shows the state in the middle of manufacture of the suspension body by the manufacturing method of Embodiment 39 of this invention.
- FIG. 78 is a cross-sectional view of the unidirectional FRP plate of FIG. 77.
- FIG. 78 is a cross-sectional view of a suspension body that has been pressure-formed by the pressure-forming process of FIG. 77 before completion.
- 42 is a cross-sectional view of a suspension body manufactured by a manufacturing method according to Embodiment 40.
- FIG. It is sectional drawing which shows the state in the middle of manufacture of the suspension body by the manufacturing method of Embodiment 41 of this invention.
- 42 is a side view showing a step of preheating the end portion of the suspension body in the forty-first embodiment.
- FIG. 83 is a side view showing a second example of the step of pressure-molding the end portion of the suspension body after the preheating in FIG. 82.
- FIG. 87 is a side view showing a state in which an end of the suspension body is sandwiched between the first mold and the second mold of FIG. 86.
- FIG. 45 is a schematic configuration diagram showing a suspension body manufacturing apparatus according to a forty-third embodiment.
- FIG. 94 is a cross-sectional view of a principal part of FIG. 93.
- FIG. 49 is an enlarged sectional view showing an end portion in the thickness direction of a load support layer according to a forty-fourth embodiment. It is sectional drawing of the suspension body of the elevator by Embodiment 45 of this invention. It is sectional drawing which expands and shows the 101c part of FIG. It is sectional drawing which expands and shows the 101d part of FIG. It is sectional drawing of the suspension body of the elevator by Embodiment 46 of this invention. It is sectional drawing which expands and shows the 101e part of FIG. It is sectional drawing of the suspension body of the elevator by Embodiment 47 of this invention.
- FIG. 120 is an enlarged cross-sectional view showing a portion 113 in FIG. 119; It is a top view which shows the 1st high strength fiber bundle of FIG. It is a top view which shows the 2nd high strength fiber bundle of FIG. It is sectional drawing of the suspension body of the elevator by Embodiment 59 of this invention. It is sectional drawing which expands and shows 124 parts of FIG. It is sectional drawing which expands and shows 125 parts of FIG. It is a schematic diagram which shows three-dimensionally the fiber direction at the time of making two 1st high strength fiber bundles adjoin. It is a schematic diagram which shows three-dimensionally the fiber direction at the time of making the 1st high strength fiber bundle and the 2nd high strength fiber bundle adjoin.
- FIG. 60 is a schematic configuration diagram showing a main part of a suspension body manufacturing apparatus according to an embodiment 59.
- 129 is a cross-sectional view of the fiber bundle positioning device of FIG. It is sectional drawing which expands and shows a part of elevator suspension body by Embodiment 60 of this invention. It is sectional drawing which expands and shows a part of elevator suspension body by Embodiment 61 of this invention.
- FIG. 1 is a block diagram showing an elevator according to Embodiment 1 of the present invention.
- a machine room 2 is provided in the upper part of the hoistway 1.
- a hoisting machine 3 is installed in the machine room 2.
- the hoisting machine 3 includes a drive sheave 6, a hoisting machine motor (not shown) that rotates the driving sheave 6, and a hoisting machine brake (not shown) that brakes the rotation of the driving sheave 6. Yes.
- a plurality of suspension bodies 7 are wound around the driving sheave 6 and the deflecting wheel 4.
- Each suspension body 7 has a first end portion 7a connected to a car 8 as a lifting body and a second end portion 7b connected to a counterweight 9 as a lifting body. .
- the car 8 and the counterweight 9 are suspended by the suspension body 7 in a 1: 1 roping method.
- the car 8 and the counterweight 9 are moved up and down in the hoistway 1 by rotating the drive sheave 6.
- the elevator control device 5 controls the operation of the car 8 by controlling the hoisting machine 3.
- a pair of car guide rails (not shown) and a pair of counterweight guide rails (not shown) are installed.
- the car guide rail guides the raising and lowering of the car 8.
- the counterweight guide rail guides the lifting and lowering of the counterweight 9.
- the car 8 has a car frame 10 and a car room 11.
- the suspension body 7 is connected to the car frame 10.
- the car room 11 is supported by the car frame 10.
- FIG. 2 is a cross-sectional view schematically showing a cross section perpendicular to the length direction (Z-axis direction in FIG. 2) of the suspension body 7 in FIG.
- the suspension body 7 has a belt shape in which the dimension in the thickness direction (Y-axis direction in FIG. 2) is smaller than the dimension in the width direction (X-axis direction in FIG. 2). That is, the suspension body 7 is a so-called flat belt.
- the suspension body 7 has a sheave contact surface 7c which is one of end surfaces in the thickness direction.
- the sheave contact surface 7 c comes into contact with the outer peripheral surface of the drive sheave 6 when the suspension body 7 is wound around the drive sheave 6. That is, the suspension body 7 is bent along the outer peripheral surface of the drive sheave 6 so that the sheave contact surface 7c is inside when passing through the drive sheave 6.
- the suspension body 7 has a belt-like core 21 and a coating layer 22 covering the entire circumference of the core 21.
- thermoplastic resins such as polyethylene, polypropylene, polyamide 6 (PA6), polyamide 12 (PA12), polyamide 66 (PA66), polycarbonate, polyetheretherketone, polyphenylene sulfide, and the like can be used.
- an olefin-based, styrene-based, vinyl chloride-based, urethane-based, polyester-based, polyamide-based, fluorine-based, or butadiene-based thermoplastic elastomer can be used as the material of the coating layer 22 as the material of the coating layer 22.
- thermosetting elastomer such as butadiene rubber, styrene / butadiene rubber, chloroprene rubber, acrylic rubber, urethane rubber, or silicone rubber may be used as the material of the coating layer 22.
- carbon fiber, glass fiber, aramid fiber, PBO (poly-paraphenylene benzobisoxazole) fiber, or basalt fiber may be used as the material of the coating layer 22.
- the composite material of a fiber and resin may be sufficient.
- the material of the coating layer 22 is preferably a material having high heat resistance and wear resistance. By changing the material of the covering layer 22, the coefficient of friction between the suspension body 7 and the drive sheave 6 can be adjusted.
- the core 21 has a load support layer 23 and a plurality of intermediate layers 24.
- the load support layer 23 is divided into a plurality of parts in the thickness direction of the core 21, that is, in the thickness direction of the suspension body 7. That is, the load support layer 23 is composed of a plurality of divided layers 25 that are arranged at intervals in the thickness direction of the core 21.
- the intermediate layer 24 is made of a material different from that of the covering layer 22 and the load supporting layer 23.
- the intermediate layer 24 is interposed between the divided layers 25 adjacent to each other in the thickness direction of the core 21. That is, the divided layers 25 and the intermediate layers 24 are alternately stacked in the thickness direction of the core 21.
- the load support layer 23 is divided into three divided layers 25. For this reason, two intermediate layers 24 are used.
- the intermediate layer 24 may be interposed between the divided layers 25 adjacent in the thickness direction of the core 21 or may be interposed only in the bent portion. Thereby, the adjacent divided layers 25 are not in direct contact with each other, and the coating layer 22 does not enter between the adjacent divided layers 25.
- the load support layer 23 is a layer that mainly supports the load acting on the suspension body 7.
- the load support layer 23 includes an impregnating resin and a group of high strength fibers provided in the impregnating resin.
- the high-strength fiber group includes a plurality of high-strength fibers arranged along the length direction of the core 21 (Z-axis direction in FIG. 2).
- the high-strength fiber group may be a woven fabric or braid of high-strength fibers including high-strength fibers arranged along the length direction of the core 21.
- High-strength fibers are lightweight and high-strength fibers.
- the high-strength fiber for example, carbon fiber, glass fiber, aramid fiber, PBO (poly-paraphenylene benzobisoxazole) fiber, or basalt fiber can be used.
- PBO poly-paraphenylene benzobisoxazole
- basalt fiber can be used.
- thermosetting resin such as polyurethane, epoxy, unsaturated polyester, vinyl ester, phenol, or silicone can be used.
- thermoplastic resins such as polyethylene, polypropylene, polyamide 6 (PA6), polyamide 12 (PA12), polyamide 66 (PA66), polycarbonate, polyetheretherketone, polyphenylene sulfide can be used.
- the impregnating resin can contain a lubricant such as grease or oil.
- a lubricant such as grease may be used instead of the impregnating resin.
- the impregnating resin a resin having good adhesion to high-strength fibers is preferable. If a resin having a low elastic modulus is used as the impregnating resin, the bending rigidity of the suspension body 7 can be further reduced. On the other hand, if a resin having a high elastic modulus is used as the impregnating resin, the high-strength fibers can be firmly integrated to reduce the strength variation of the suspension body 7.
- the shear rigidity of the intermediate layer 24 is lower than the shear rigidity of the divided layer 25.
- a thermosetting resin such as polyurethane, epoxy, unsaturated polyester, vinyl ester, phenol, or silicone can be used.
- thermoplastic resin such as polyethylene, polypropylene, polyamide 6 (PA6), polyamide 12 (PA12), polyamide 66 (PA66), polycarbonate, polyetheretherketone, polyphenylene sulfide can be used. .
- the load support layer 23 is divided in the thickness direction of the core 21, and the intermediate layer 24 is interposed between the adjacent divided layers 25. This makes it possible to improve the bendability of the core 21. Moreover, when the core 21 is bent, the stress of the divided layer 25 located in the innermost layer and the divided layer 25 located in the outermost layer can be relaxed. Thereby, the diameter of the drive sheave 6 can be reduced.
- the intermediate layer 24 is easily deformed in the shear direction (Z-axis direction in FIG. 2) when the core 21 is bent. Thereby, when the core 21 is bent, the stress of the divided layer 25 located in the innermost layer and the divided layer 25 located in the outermost layer can be more reliably relaxed.
- FIG. 3 is a sectional view showing a state in which a fragment of the suspension body 7 having the sectional structure of FIG. 2 is bent, and shows a section (YZ section) along the length direction of the suspension body 7.
- FIG. 4 is an enlarged sectional view showing a portion IV in FIG. As shown in FIG. 4, when the suspension body 7 is bent, the intermediate layer 24 undergoes shear deformation in the length direction of the core 21, and the flexibility of the suspension body 7 is improved.
- the number of division layers 25 is not limited to three, and may be four as shown in FIG. 5, for example. That is, the number of divided layers 25 may be any number as long as it is two or more. Assuming that the number of division layers 25 is n, the number of intermediate layers 24 is n-1.
- the shear modulus of the intermediate layer 24 be lower than the shear modulus of the coating layer 22. Therefore, it becomes easy to carry out the shear deformation between the division layers 25, and the flexibility of the suspension body 7 further improves. Further, the stress generated in the load support layer 23 when the core 21 is bent can be further reduced.
- the intermediate layer 24 may be made of an elastomer material having a lower elastic modulus than the divided layer 25.
- the elastomer material for example, an olefin-based, styrene-based, vinyl chloride-based, urethane-based, polyester-based, polyamide-based, fluorine-based, or butadiene-based thermoplastic elastomer can be used.
- thermosetting elastomers such as butadiene rubber, styrene / butadiene rubber, chloroprene rubber, acrylic rubber, urethane rubber, and silicone rubber can be used as the elastomer material.
- a polymer gel having an intermediate property between a solid and a liquid may be used as the material of the intermediate layer 24 as the material of the intermediate layer 24.
- a lubricant such as a liquid lubricant, a semi-solid lubricant, or a solid lubricant may be used as the material for the intermediate layer 24.
- the liquid lubricant include lubricating oil.
- An example of the semi-solid lubricant is grease.
- Examples of the solid lubricant include graphite, tungsten disulfide, molybdenum disulfide, and polytetrafluoroethylene.
- the intermediate layer 24 may be composed of a low friction sheet that is not bonded to the load support layer 23.
- a low friction sheet for example, an olefin sheet, a fluorine sheet, a polyester sheet, or a polyamide sheet can be used.
- Examples of the material for the olefin-based sheet include polyethylene and polypropylene. Examples of the material for the fluorine-based sheet include polytetrafluoroethylene. Examples of the material for the polyester sheet include polyethylene terephthalate. Examples of the material for the polyamide-based sheet include 6 polyamide.
- the sheets can be arranged in a plurality of layers, and further, a liquid lubricant, a semi-solid lubricant, and a solid lubricant can be used in combination.
- a liquid lubricant is arranged on the surface of a solid lubricant sheet is conceivable.
- the shear resistance in the intermediate layer 24 can be reduced, and the flexibility of the suspension body 7 is improved.
- a material that is more flexible and has a cushioning property in the compression direction than the divided layer 25 may be used as the material of the intermediate layer 24, a material that is more flexible and has a cushioning property in the compression direction than the divided layer 25 may be used.
- An example of such a material is a polymer foam.
- the polymer foam include polyurethane foam, polyethylene foam, polyethylene terephthalate foam, polypropylene foam, acrylic foam, polystyrene foam, phenol foam, silicone foam, and EVA foam.
- the intermediate layer 24 may include fibers (hereinafter referred to as intermediate layer fibers).
- the form of the intermediate layer fiber in this case is preferably a continuous fiber continuous in the length direction of the core 21, but may be a long fiber or a short fiber.
- the fiber density or elastic modulus of the high strength fiber arranged along the length direction of the core 21 in the load supporting layer 23 is larger in the intermediate layer 24. It is preferable to lower the fiber density or elastic modulus of the intermediate layer fibers arranged along the length direction of the core 21.
- the bending rigidity in the length direction of the core 21 can be made lower than that of the load support layer 23 while suppressing the compressive deformation of the intermediate layer 24, and the flexibility of the suspension body 7 is improved.
- a method of reducing the fiber density for example, there are a method of reducing the fiber diameter or a method of reducing the fiber content.
- a method for reducing the elastic modulus of the fiber for example, when the high-strength fiber of the load support layer 23 is carbon fiber, glass fiber, polyester fiber, polyarylate fiber, polyethylene fiber, or aramid fiber is used as the intermediate layer fiber. There is a way.
- the intermediate layer fiber when the intermediate layer fiber is put in the intermediate layer 24, the intermediate layer fiber may include an inclined fiber inclined with respect to the length direction of the core 21, for example, inclined by 45 degrees. With this configuration, it is possible to improve the rigidity against twisting while lowering the rigidity against bending of the core 21 in the longitudinal direction.
- the intermediate layer fibers when the intermediate layer fibers are put into the intermediate layer 24, the intermediate layer fibers may include orthogonal fibers arranged along the direction perpendicular to the length direction of the core 21, that is, along the width direction of the suspension body 7. Good. With this configuration, the bending rigidity of the core 21 in the width direction can be improved while the rigidity of the core 21 with respect to the bending in the length direction is lowered.
- the load support layer 23 of Embodiment 1 may be composed of a high-strength fiber group without including the impregnating resin. With this configuration, the bending rigidity can be further reduced.
- each of the covering layer 22, the load supporting layer 23, and the intermediate layer 24 may include a portion that includes the lubricant and a portion that does not include the lubricant depending on the position in the length direction.
- FIG. 6 is a sectional view of an elevator suspension 7 according to Embodiment 2 of the present invention.
- the core 21 according to the second embodiment is divided into a plurality of core divided bodies 26 arranged at intervals in the width direction of the suspension body 7.
- the core 21 is divided into three core divided bodies 26.
- the covering layer 22 enters between the core divided bodies 26 adjacent to each other in the width direction of the suspension body 7.
- Other configurations are the same as those in the first embodiment.
- the number of divisions of the core 21 may be any number as long as it is two or more. Also in the configuration in which the core 21 is divided, the number of division layers 25 and the configuration of the intermediate layer 24 can be changed in the same manner as in the first embodiment.
- FIG. 7 is a sectional view of an elevator suspension 7 according to Embodiment 3 of the present invention.
- two cores 21 that are spaced apart from each other in the thickness direction of the suspension 7 are provided in the coating layer 22.
- a covering layer 22 enters between the cores 21 adjacent to each other in the thickness direction of the suspension body 7.
- Each core 21 has three divided layers 25 and two intermediate layers 24. Other configurations are the same as those in the first embodiment.
- both the intermediate layer 24 in each core 21 and the resin of the coating layer 22 entering between the cores 21 are deformed in the shear direction, thereby dividing the layer 25. Can be reduced.
- the number of cores 21 is not limited as long as it is two or more. Also in the configuration in which two or more cores 21 are arranged in the coating layer 22, the number of division layers 25 and the configuration of the intermediate layer 24 can be changed in the same manner as in the first embodiment. Furthermore, in the configuration in which two or more cores 21 are arranged in the coating layer 22, at least a part of the cores 21 may be divided into a plurality of core divided bodies 26 as in the second embodiment. That is, the second and third embodiments may be combined.
- FIG. 8 is a sectional view of an elevator suspension 7 according to Embodiment 4 of the present invention.
- each intermediate layer 24 is provided with a plurality of deformation suppressing members 27.
- Each deformation suppressing member 27 suppresses deformation of the intermediate layer 24 in the thickness direction of the core 21, that is, in the compression direction. For this reason, the deformation suppressing member 27 is made of a material having higher compression rigidity than the intermediate layer 24.
- the deformation suppressing member 27 of the fourth embodiment is interposed between the divided layers 25 adjacent to each other in the thickness direction of the core 21 and functions as a spacer for maintaining the interval between the divided layers 25.
- the cross-sectional shape of the deformation suppressing member 27 is circular.
- Other configurations are the same as those in the first embodiment.
- the core 21 is positioned in the innermost layer when receiving a compressive load in the thickness direction.
- the stress concentration of the divided layer 25 and the divided layer 25 located in the outermost layer can be relaxed.
- FIG. 9 is a cross-sectional view showing a first modification of the fourth embodiment.
- a deformation suppressing member 28 having a rectangular cross section is used.
- the cross-sectional shape of the deformation suppressing member is not limited to a circle.
- FIG. 10 is a cross-sectional view showing a second modification of the fourth embodiment, and shows a cross section (YZ cross section) along the length direction of the suspension body 7.
- a corrugated deformation suppressing member 29 is used.
- the deformation suppressing member may be arranged continuously in the length direction of the core 21 or may be divided into a plurality of pieces in the length direction. Further, the granular deformation suppressing members may be arranged in a distributed manner in the length direction of the core 21.
- the deformation suppression member is disposed only on a portion where the compressive load acts on the suspension body 7 such as an end portion of the suspension body 7 and a portion in contact with the drive sheave 6. Also good.
- the deformation suppressing member may be embedded in the intermediate layer so as not to directly contact the divided layer. Furthermore, a deformation suppressing member may be provided in the intermediate layer of the second and third embodiments.
- FIG. 11 is a sectional view of an elevator suspension 7 according to a fifth embodiment of the present invention.
- the core 21 of the fifth embodiment does not have the intermediate layer 24 and is configured only by the load support layer 23.
- the load support layer 23 includes a pair of outer support layers, an outermost layer 31 and an innermost layer 32, and an intermediate support layer 33.
- the outermost layer 31 is a layer disposed on the outermost side in the radial direction of the drive sheave 6 in the core 21 when the suspension body 7 is bent along the drive sheave 6.
- the innermost layer 32 is a layer disposed on the innermost side in the radial direction of the drive sheave 6 in the core 21 when the suspension body 7 is bent along the drive sheave 6.
- the intermediate support layer 33 is evenly interposed between the outermost layer 31 and the innermost layer 32 over the entire length direction and width direction of the core 21.
- the outermost layer 31, the innermost layer 32, and the intermediate support layer 33 all include an impregnation resin and a group of high-strength fibers provided in the impregnation resin, as in the first embodiment.
- the bending rigidity of the outermost layer 31 and the innermost layer 32 is lower than the bending rigidity of the intermediate support layer 33.
- the bending rigidity of each layer can be adjusted, for example, by changing the density of high-strength fibers, the material of high-strength fibers, or the material of impregnating resin included in the high-strength fiber group.
- the bending rigidity of the outermost layer 31 and the innermost layer 32 can be increased. It can be made lower than the bending rigidity.
- the elastic modulus of the outermost layer 31 and the innermost layer 32 lower than the elastic modulus of the intermediate support layer 33, the bending rigidity of the outermost layer 31 and the innermost layer 32 is made higher than the bending rigidity of the intermediate support layer 33. Can be lowered.
- Other configurations are the same as those in the first embodiment.
- the bending rigidity of the outermost layer 31 and the innermost layer 32 that are located away from the neutral surface C that is a surface that does not expand and contract when bent is lower than the bending rigidity of the intermediate support layer 33. Therefore, the flexibility in the length direction of the core 21 is improved. Thereby, when the suspension body 7 is bent, the stress generated in the load support layer 23 can be reduced.
- FIG. 12 is a sectional view of an elevator suspension 7 according to a sixth embodiment of the present invention.
- the same intermediate layer 24 as in the first embodiment is interposed between the outermost layer 31 and the intermediate support layer 33 and between the innermost layer 32 and the intermediate support layer 33. That is, the outermost layer 31, the innermost layer 32, and the intermediate support layer 33 can also be viewed as the divided layers 25 of the first embodiment.
- FIG. 13 is a sectional view of an elevator suspension 7 according to Embodiment 7 of the present invention.
- the thickness dimension of the outermost layer 31 and the innermost layer 32 is smaller than the thickness dimension of the intermediate support layer 33.
- the bending rigidity of the outermost layer 31 and the innermost layer 32 is lower than the bending rigidity of the intermediate support layer 33.
- Other configurations are the same as those of the sixth embodiment.
- the bending rigidity of the outermost layer 31 and the innermost layer 32 can be made lower than the bending rigidity of the intermediate support layer 33, and the flexibility of the suspension body 7 is improved. Moreover, when the suspension body 7 is wound around the drive sheave 6, the stress generated in the outermost layer 31 and the innermost layer 32 can be reduced.
- FIG. 14 is a sectional view of an elevator suspension 7 according to an eighth embodiment of the present invention.
- the width dimension of each of the outermost layer 31 and the innermost layer 32 is smaller than the width dimension of the intermediate support layer 33.
- the bending rigidity of the outermost layer 31 and the innermost layer 32 is lower than the bending rigidity of the intermediate support layer 33.
- Other configurations are the same as those of the sixth embodiment.
- the bending rigidity of the outermost layer 31 and the innermost layer 32 can be made smaller than the bending rigidity of the intermediate support layer 33, and the flexibility of the suspension body 7 is improved.
- FIG. 15 is a cross-sectional view showing a first modification of the eighth embodiment.
- both ends in the width direction of the core 21 continuously project from the both ends in the thickness direction toward the middle and gradually protrude outward in the width direction.
- the width dimension of each of the outermost layer 31 and the innermost layer 32 is smaller than the width dimension of the intermediate support layer 33.
- the bending rigidity of the load support layer 23 gradually decreases gradually from the neutral plane C toward both ends of the core 21 in the thickness direction.
- FIG. 16 is a cross-sectional view showing a second modification of the eighth embodiment.
- the core 21 of the first modified example is divided into a plurality of core divided bodies 26 arranged at intervals in the width direction of the suspension body 7 as in the second embodiment. Is.
- each core divided body 26 are projected gradually outward in the width direction continuously from the both ends in the thickness direction toward the middle. Thereby, the width dimension of each of the outermost layer 31 and the innermost layer 32 is smaller than the width dimension of the intermediate support layer 33.
- FIG. 17 is a sectional view of an elevator suspension 7 according to Embodiment 9 of the present invention.
- the thickness dimension of the outermost layer 31 and the innermost layer 32 is smaller than the thickness dimension of the intermediate support layer 33.
- the width dimension of each of the outermost layer 31 and the innermost layer 32 is smaller than the width dimension of the intermediate support layer 33.
- the bending rigidity of the outermost layer 31 and the innermost layer 32 is lower than the bending rigidity of the intermediate support layer 33.
- the ninth embodiment is a combination of the seventh and eighth embodiments, and the other configuration is the same as that of the seventh or eighth embodiment.
- FIG. 18 is a sectional view showing a modification of the ninth embodiment. This modification is a combination of the first modification of the eighth embodiment and the seventh embodiment.
- the configurations of the fifth to eighth embodiments for making the bending rigidity of the outermost layer 31 and the innermost layer 32 lower than the bending rigidity of the intermediate support layer 33 may be appropriately combined.
- FIG. 19 is a sectional view of an elevator suspension 7 according to a tenth embodiment of the present invention, showing a section along the length direction of the suspension 7 (YZ section).
- the high-strength fibers 34 included in the outermost layer 31 and the innermost layer 32 are arranged in a wave shape along the length direction of the core 21.
- a plurality of rod-shaped guide members 35 for guiding the high-strength fibers 34 are provided in the outermost layer 31 and the innermost layer 32.
- the guide members 35 are arranged at intervals in the length direction of the core 21. Further, the guide member 35 is disposed in parallel with the width direction of the core 21.
- the high-strength fibers contained in the intermediate support layer 33 are arranged in parallel to the length direction of the core 21 although not shown. Thereby, the bending rigidity of the outermost layer 31 and the innermost layer 32 is lower than the bending rigidity of the intermediate support layer 33.
- Other configurations are the same as those of the seventh embodiment.
- the bending rigidity of the outermost layer 31 and the innermost layer 32 can be made lower than the bending rigidity of the intermediate support layer 33, and the flexibility of the suspension body 7 is improved.
- the guide member 35 may be a weft or a bundle of wefts. Further, the guide member 35 may be omitted if the high-strength fibers 34 can be arranged in a wave shape. For example, a woven fabric of high-strength fibers 34 woven in a wave shape in advance may be used. Furthermore, the wavy high-strength fiber 34 of the tenth embodiment may be applied to the outermost layer 31 and the innermost layer 32 of the fifth to ninth embodiments.
- the intermediate layer 24 is used in FIGS. 12 to 19, the intermediate layer 24 may be omitted.
- Embodiments 5 to 10 may be implemented in combination with Embodiments 2, 3, and 4 as appropriate, and the effects of the respective embodiments can be obtained.
- the load support layer 23 has a three-layer structure, but the load support layer 23 may be configured by four or more layers by further dividing the intermediate support layer 33 into a plurality of layers.
- FIG. 20 is a sectional view of elevator suspension 7 according to Embodiment 11 of the present invention.
- the load support layer 23 is composed of a plurality of layers divided in the thickness direction of the core, that is, the outermost layer 31, the innermost layer 32, and the intermediate support layer 33.
- the bending rigidity of the outermost layer 31 and the bending rigidity of the innermost layer 32 are different.
- the bending rigidity of the outermost layer 31 is lower than the bending rigidity of the other layers constituting the load supporting layer 23, that is, the innermost layer 32 and the intermediate supporting layer 33.
- the bending rigidity of the innermost layer 32 is lower than the bending rigidity of the intermediate support layer 33 or the same as the bending rigidity of the intermediate support layer 33.
- the density of high-strength fibers in the outermost layer 31 is made lower than the density of high-strength fibers in the innermost layer 32 and the intermediate support layer 33.
- the bending rigidity of the outermost layer 31 can be made lower than the bending rigidity of the innermost layer 32 and the intermediate support layer 33.
- the bending rigidity of the outermost layer 31 is made to be higher than the bending rigidity of the innermost layer 32 and the intermediate support layer 33. Can be lowered.
- Other configurations are the same as those of the sixth embodiment.
- Such a suspension 7 can reduce the stress generated in the outermost layer 31 when the suspension 7 is wound around the drive sheave 6. Further, since there is a difference in rigidity between one side in the thickness direction of the core 21 and the other side, the core 21 is easily bent when wound around the drive sheave 6. Furthermore, when the suspension body 7 receives a compressive load in the length direction due to a hoisting machine brake or the like, the suspension body 7 can be easily bent in one direction.
- FIG. 21 is a sectional view of a suspension body 7 for an elevator according to Embodiment 12 of the present invention.
- the thickness dimension of the outermost layer 31 is different from the thickness dimension of the innermost layer 32, and the thickness dimension of the outermost layer 31 is smaller than the thickness dimension of the innermost layer 32. Further, the thickness dimension of the outermost layer 31 and the innermost layer 32 is smaller than the thickness dimension of the intermediate support layer 33. Thereby, the bending rigidity of the outermost layer 31 is lower than the bending rigidity of the innermost layer 32 and the intermediate support layer 33.
- Other configurations are the same as those of the eleventh embodiment.
- the bending rigidity of the outermost layer 31 and the innermost layer 32 is smaller than the bending rigidity of the intermediate support layer 33, and a difference in rigidity occurs between the outermost layer 31 and the innermost layer 32. It becomes easy to bend when wound around the sheave 6. Moreover, when the suspension body 7 receives a compressive load in the length direction due to a hoisting machine brake or the like, the suspension body 7 can be easily bent in one direction.
- FIG. 22 is a sectional view of an elevator suspension 7 according to a thirteenth embodiment of the present invention.
- the width dimension of the outermost layer 31 is smaller than the width dimension of the innermost layer 32.
- the bending rigidity of the outermost layer 31 is lower than the bending rigidity of the innermost layer 32.
- the width dimension of the innermost layer 32 is smaller than the width dimension of the intermediate support layer 33. Thereby, the bending rigidity of the innermost layer 32 is lower than the bending rigidity of the intermediate support layer 33.
- Other configurations are the same as those of the eleventh embodiment.
- the bending rigidity of the outermost layer 31 and the innermost layer 32 is smaller than the bending rigidity of the intermediate support layer 33, and a difference in rigidity occurs between the outermost layer 31 and the innermost layer 32. It becomes easy to bend when wound around the sheave 6. Moreover, when the suspension body 7 receives a compressive load in the length direction due to a hoisting machine brake or the like, the suspension body 7 can be easily bent in one direction.
- FIG. 23 is a sectional view of an elevator suspension 7 according to a fourteenth embodiment of the present invention.
- both ends in the width direction of the core 21 continuously and gradually protrude outward in the width direction from both ends in the thickness direction toward the boundary between the innermost layer 32 and the intermediate layer 24 adjacent thereto.
- the thickness dimension of the outermost layer 31 is smaller than the thickness dimension of each of the innermost layer 32 and the intermediate support layer 33. Thereby, the bending rigidity of the outermost layer 31 is lower than the bending rigidity of the innermost layer 32 and the intermediate support layer 33.
- Other configurations are the same as those of the eleventh embodiment.
- the bending rigidity of the outermost layer 31 and the innermost layer 32 is smaller than the bending rigidity of the intermediate support layer 33, and a difference in rigidity occurs between the outermost layer 31 and the innermost layer 32. It becomes easy to bend when wound around the sheave 6. Moreover, when the suspension body 7 receives a compressive load in the length direction due to a hoisting machine brake or the like, the suspension body 7 can be easily bent in one direction.
- the configurations of the eleventh to fourteenth embodiments for making the bending rigidity of the outermost layer 31 lower than the bending rigidity of the innermost layer 32 and the intermediate support layer 33 may be appropriately combined. 21 to 23, the intermediate layer 24 is used, but the intermediate layer 24 may be omitted. Furthermore, Embodiments 11 to 14 may be implemented in appropriate combination with the embodiments described before Embodiment 11, and the effects of the respective embodiments can be obtained. Furthermore, in Embodiments 11 to 14, the load support layer 23 has a three-layer structure. However, the load support layer 23 may be configured by four or more layers by further dividing the intermediate support layer 33 into a plurality of layers.
- FIG. 24 is a sectional view of an elevator suspension 7 according to a fifteenth embodiment of the present invention.
- the width dimension of the intermediate support layer 33 is smaller than the width dimension of the innermost layer 32.
- the width dimension of the outermost layer 31 is smaller than the width dimension of the intermediate support layer 33.
- the bending rigidity of the layers constituting the load supporting layer 23 gradually decreases from the innermost layer 32 toward the outermost layer 31. That is, the bending rigidity of the intermediate support layer 33 is lower than the bending rigidity of the innermost layer 32, and the bending rigidity of the outermost layer 31 is lower than the bending rigidity of the intermediate support layer 33.
- Other configurations are the same as those in the first embodiment.
- the suspension body 7 since there is a difference in rigidity between one side in the thickness direction of the core 21 and the other side, when the suspension body 7 receives a compressive load in the length direction by a hoisting machine brake or the like, the suspension body 7 It becomes easy to bend in one direction and can be made difficult to buckle.
- FIG. 25 is a cross-sectional view showing a first modification of the fifteenth embodiment.
- the width dimension of the core 21 is gradually decreased from the radially inner end to the outer end of the drive sheave 6 when bent along the drive sheave 6. ing.
- the bending rigidity of the layer which comprises the load support layer 23 is gradually lowered gradually from the inner diameter side toward the outer diameter side.
- FIG. 26 is a cross-sectional view showing a second modification of the fifteenth embodiment.
- the width dimension of the core 21 is gradually decreased from the boundary between the innermost layer 32 and the intermediate layer 24 adjacent thereto to the outer diameter side.
- the bending rigidity of the layer which comprises the load support layer 23 is gradually lowered gradually from the inner diameter side toward the outer diameter side.
- the intermediate layer 24 is used, but the intermediate layer 24 may be omitted.
- the fifteenth embodiment may be implemented in combination with the second, third, fourth, tenth, etc. as appropriate, and the effects of the respective embodiments can be obtained.
- the load support layer 23 may be configured by four or more layers by further dividing the intermediate support layer 33 into a plurality of layers.
- the bending rigidity of the outermost layer 31 is made smaller than that of the innermost layer 32.
- the bending rigidity of the innermost layer 32 may be made smaller than the bending rigidity of the outermost layer 31. That is, a configuration in which the top and bottom of FIGS.
- the bending rigidity of the load support layer 23 is gradually decreased from the inner diameter side toward the outer diameter side, but may be gradually decreased from the outer diameter side toward the inner diameter side. That is, a configuration in which the top and bottom of FIGS. 24 to 26 are reversed may be employed.
- FIG. 27 is a sectional view of a suspension body 7 for an elevator according to a sixteenth embodiment of the present invention.
- the core 21 is constituted only by the load support layer 23.
- the cross section perpendicular to the length direction of the core 21 of the load support layer 23 is configured by combining the first region 23a and the plurality of second regions 23b.
- the fiber density of the high strength fiber in the second region 23b is lower than the fiber density of the high strength fiber in the first region 23a.
- the first region 23 a and the second region 23 b are such that E ⁇ W, which is a product of the elastic modulus E and the width W of the load supporting layer 23 at both ends in the thickness direction of the core 21, is a neutral surface of the core 21.
- the load supporting layer 23 in C is combined so as to be smaller than E ⁇ W, which is the product of the elastic modulus E and the width W of the load supporting layer 23.
- the load support layer 23 has a rectangular cross section with a constant width dimension.
- the width dimension of the first region 23 a is gradually decreased from the neutral surface C toward both ends in the thickness direction of the core 21.
- the first region 23a is continuously and gradually narrowed, and the second region 23b is continuously and gradually widened.
- Other configurations are the same as those in the first embodiment.
- FIG. 28 is a cross-sectional view showing a first modification of the sixteenth embodiment.
- a recess is provided in the center in the width direction of both end faces of the load support layer 23 in the thickness direction of the core 21 in a cross section perpendicular to the length direction of the core 21.
- the inside of these recessed parts becomes the 2nd area
- FIG. 29 is a sectional view showing a second modification of the sixteenth embodiment.
- the entire intermediate portion of the load support layer 23 in the thickness direction of the core 21 is the first region 23a.
- both end portions of the load supporting layer 23 in the thickness direction of the core 21 are second regions 23b.
- FIG. 30 is a sectional view showing a third modification of the sixteenth embodiment.
- the load support layer inside the core 21 is the first region 23a, and the second region 23b is configured to cover the first region 23a.
- the region 23b may be configured not to include high-strength fibers.
- a lubricant or a low friction sheet that is not bonded to the first region 23a may be used.
- the sheets can be arranged in a plurality of layers, and further, a liquid lubricant, a semi-solid lubricant, and a solid lubricant can be used in combination.
- a configuration in which a liquid lubricant is arranged on the surface of a solid lubricant sheet is conceivable. With this configuration, the bending rigidity of the suspension body 7 can be further reduced.
- the E ⁇ W of the load support layer 23 at both ends in the thickness direction of the core 21 is smaller than the E ⁇ W of the load support layer 23 at the neutral surface C of the core 21.
- the fiber density of the second region 23b is set lower than the fiber density of the first region 23a.
- the elastic modulus in the length direction of the second region 23b is lower than that of the first region 23a. You may make it lower than the elasticity modulus of a length direction.
- FIG. 31 is a sectional view of a suspension body 7 for an elevator according to Embodiment 17 of the present invention.
- the core 21 is constituted only by the load support layer 23. Further, in the cross section perpendicular to the length direction of the core 21, the material and the fiber density of the load support layer 23 are the same as a whole. However, the width dimension of the load support layer 23 is gradually reduced from the neutral plane C toward both ends of the core 21 in the thickness direction.
- the E ⁇ W of the load support layer 23 at both ends in the thickness direction of the core 21 is smaller than the E ⁇ W of the load support layer 23 at the neutral surface C of the core 21.
- the neutral surface C is at the center in the thickness direction of the core 21, but the neutral surface C may be shifted from the center to any one of the thickness directions.
- 27 to 31 show, in a cross section perpendicular to the length direction of the core 21, E ⁇ W of the load support layer 23 at both ends in the thickness direction of the core 21, and the load support layer at the neutral plane C of the core 21.
- 23 is an example of a method of making it smaller than E ⁇ W of 23, and the cross-sectional configuration is not limited to these.
- the E ⁇ W of the load support layer 23 at both ends in the thickness direction of the core 21 is smaller than the E ⁇ W of the load support layer 23 at the neutral surface C of the core 21.
- only E ⁇ W of the load support layer 23 at either one of both ends in the thickness direction of the core 21 may be smaller than E ⁇ W of the load support layer 23 at the neutral surface C of the core 21. .
- FIG. 32 is a sectional view of an elevator suspension 7 according to an eighteenth embodiment of the present invention.
- the core 21 is constituted only by the load support layer 23.
- the load support layer 23 includes an outermost layer 31, an innermost layer 32, and an intermediate support layer 33.
- the fiber density of the high strength fiber in the outermost layer 31 is lower than the fiber density of the high strength fiber in the innermost layer 32. Thereby, E ⁇ W of the load support layer 23 at both ends of the core 21 in the thickness direction is different from each other.
- E ⁇ B of the end surface of the load support layer 23 on the radially outer side of the drive sheave 6 when bent along the drive sheave 6 is E ⁇ B of the end surface of the load support layer 23 on the radially inner side.
- the bending rigidity per unit thickness of the end portion of the load support layer 23 on the radially outer side of the drive sheave 6 is equal to that of the end portion of the load support layer 23 on the radially inner side.
- the bending rigidity per unit thickness is smaller.
- Other configurations are the same as those in the sixteenth embodiment.
- Such a suspension body 7 can reduce the compressive stress generated in the core 21 when the suspension body 7 is bent along the drive sheave 6.
- the suspension body 7 since there is a difference in rigidity between one side in the thickness direction of the core 21 and the other side, when the suspension body 7 receives a compressive load in the length direction by a hoisting machine brake or the like, the suspension body 7 is It can be easily bent in one direction.
- the fiber density of the outermost layer 31 is made lower than the fiber density of the innermost layer 32, but the elastic modulus of the outermost layer 31 may be made lower than the elastic modulus of the innermost layer 32.
- FIG. 33 is a sectional view of an elevator suspension 7 according to a nineteenth embodiment of the present invention.
- the material and fiber density of the load support layer 23 are the same as a whole.
- the width dimension of the end face of the load support layer 23 on the radially outer side of the drive sheave 6 when the suspension body 7 is bent along the drive sheave 6 is larger than the width dimension of the end face of the load support layer 23 on the radially inner side. Is also getting smaller. Thereby, E ⁇ B of the end face of the load support layer 23 on the radially outer side is smaller than E ⁇ B of the end face of the load support layer 23 on the radially inner side.
- the bending rigidity per unit thickness of the end portion of the load support layer 23 on the radially outer side of the drive sheave 6 is equal to that of the end portion of the load support layer 23 on the radially inner side.
- the bending rigidity per unit thickness is smaller.
- the width dimension of the load support layer 23 continuously changes in the thickness direction of the core 21.
- Other configurations are the same as those in the eighteenth embodiment.
- the flexibility of the core 21 in the length direction can be improved. And since there is a difference in rigidity between one side and the other side in the thickness direction of the core 21, when the suspension body 7 receives a compressive load in the length direction by a hoisting machine brake or the like, the suspension body 7 is It can be easily bent in one direction.
- FIG. 34 is a sectional view showing a modification of the nineteenth embodiment.
- the width dimension of the load supporting layer 23 is gradually reduced from the radially inner side to the radially outer side. Even with such a cross-sectional shape, E ⁇ B of both end faces of the load support layer 23 in the thickness direction of the core 21 can be made different.
- cross-sectional shape of the load support layer 23 is not limited to FIGS.
- FIG. 35 is a cross-sectional view of elevator suspension 7 according to Embodiment 20 of the present invention.
- the twentieth embodiment is a combination of the eighteenth and nineteenth embodiments. That is, the load support layer 23 of the twentieth embodiment includes the outermost layer 31, the innermost layer 32, and the intermediate support layer 33. Further, the width dimension of the load support layer 23 changes in the same manner as in FIG. Other configurations are the same as those in the eighteenth embodiment.
- the load support layer 23 may be composed of two layers or four or more layers. Further, when the load supporting layer 23 is composed of a plurality of layers, the intermediate layer 24 as shown in the first to fourth embodiments may be interposed.
- the E ⁇ B of the end surface of the load support layer 23 on the radially outer side is made smaller than the E ⁇ B of the end surface of the load support layer 23 on the radially inner side. Also good. That is, a configuration in which the top and bottom of FIGS. 32 to 35 are reversed may be employed. For this reason, in the cross section perpendicular to the length direction of the core 21, the bending rigidity per unit thickness of the end portion of the load support layer 23 on the radially inner side of the drive sheave 6 is set to the end portion of the load support layer 23 on the radially outer side. The bending rigidity per unit thickness may be smaller. Thereby, when the suspension body 7 is bent along the drive sheave 6, the tensile stress generated in the core 21 can be reduced.
- FIG. 36 is a sectional view of the elevator suspension 7 according to the twenty-first embodiment of the present invention.
- the core 21 is constituted only by the load support layer 23.
- the core 21 is divided into three core divided bodies 26 as in the second modification of the eighth embodiment.
- the coating layer 22 enters between the core divided bodies 26 adjacent to each other in the width direction of the suspension body 7.
- the shape and other configurations of each core divided body 26 are the same as those of the second modification of the eighth embodiment.
- the number of divisions of the core 21 may be any number as long as it is two or more. Also, in the embodiments other than Embodiments 2 and 8, the core 21 can be divided into a plurality of core divided bodies 26.
- FIG. 37 is a sectional view of an elevator suspension 7 according to a twenty-second embodiment of the present invention.
- the core 21 is constituted only by the load support layer 23.
- the cross section perpendicular to the length direction of the core 21 of the load support layer 23 is configured by combining a plurality of first regions 23a and second regions 23b.
- the elastic modulus in the length direction in the second region 23b is lower than the elastic modulus in the length direction in the first region 23a.
- E ⁇ W which is the product of the elastic modulus E and the width W of the second region 23 b at both ends in the thickness direction of the core 21, is a plane D where the first region 23 a on the inner side in the thickness direction of the core 21 exists.
- the second region 23b may be configured not to include high-strength fibers.
- a thermoplastic resin a thermosetting resin, an elastomer material, a lubricant that is not bonded to the first region 23a or a low friction sheet may be used.
- the sheets can be arranged in a plurality of layers, and further, a liquid lubricant, a semi-solid lubricant, and a solid lubricant can be used in combination.
- a configuration in which a liquid lubricant is arranged on the surface of a solid lubricant sheet is conceivable. With this configuration, the bending rigidity of the suspension body 7 can be further reduced.
- first region 23a of the twenty-second embodiment shown in FIG. 37 is composed of two layers, but may be three or more layers.
- FIG. 38 is a sectional view showing a first modification of the twenty-second embodiment.
- the first region 23a has a configuration in which the elastic modulus in the length direction on the outermost layer side is smaller than the elastic modulus in the length direction on the innermost layer side.
- the bending rigidity on the outermost layer side of the first region 23a is smaller than the bending rigidity on the innermost layer side, and a difference in rigidity occurs between one side in the thickness direction of the core 21 and the other side. Therefore, when the suspension body 7 receives a compressive load in the length direction due to a hoisting machine brake or the like, the suspension body 7 can be easily bent in one direction.
- FIG. 39 is a cross-sectional view showing a second modification of the twenty-second embodiment.
- the first region 23a has a configuration in which the width dimension on the outermost layer side is smaller than the width dimension on the innermost layer side.
- FIGS. 38 and 39 may be used. 38 and 39, the bending rigidity on the outermost layer side of the first region 23a is made smaller than that on the innermost layer side, but the bending rigidity on the innermost layer side may be made smaller than the bending rigidity on the outermost layer side. . That is, a configuration in which the top and bottom of FIGS. 38 and 39 are reversed may be employed.
- FIG. 40 is a sectional view of elevator suspension 7 according to Embodiment 23 of the present invention.
- the first regions 23a that support the load are interspersed inside the core 21, and the second regions 23b are configured to cover the first regions 23a.
- E ⁇ W which is the product of the elastic modulus E and the width W of the second region 23 b at both ends in the thickness direction of the core 21, is the elastic modulus in the plane D where the first region 23 a inside the core 21 exists. They are combined so as to be smaller than E ⁇ W, which is the product of E and width W.
- the second region 23b may be configured not to include high-strength fibers.
- you may be comprised with the lubricant which is not adhere
- the structure which does not contain the coating layer 22 may be sufficient.
- the shape of the first region 23a may be a rectangle or an ellipse other than a circle.
- the high-strength fibers constituting the first region 23a may be arranged along the length direction, or may be knitted like a stranded wire.
- the number of the first regions 23 a can be arbitrarily set according to the specifications of the suspension body 7.
- FIG. 41 is a sectional view showing a first modification of the twenty-third embodiment.
- the number of the first regions 23a arranged in the width direction on the outermost layer side is smaller than that arranged in the width direction on the innermost layer side.
- the bending rigidity on the outermost layer side of the first region 23a is smaller than the bending rigidity on the innermost layer side, and a difference in rigidity occurs between one side in the thickness direction of the core 21 and the other side. Therefore, when the suspension body 7 receives a compressive load in the length direction due to a hoisting machine brake or the like, the suspension body 7 can be easily bent in one direction.
- the bending rigidity on the outermost layer side of the first region 23a is made smaller than that on the innermost layer side, but the bending rigidity on the innermost layer side may be made smaller than the bending rigidity on the outermost layer side. That is, a configuration in which the top and bottom of FIG.
- the region 23b may be configured not to include high-strength fibers.
- you may be comprised with the lubricant which is not adhere
- FIG. 42 is a cross-sectional view showing a second modification of the twenty-third embodiment.
- the first region 23 a that is a load supporting layer is present in the central portion in the thickness direction of the cross section of the suspension body 7, and the second region 23 b is scattered on the surface side of the suspension body 7. It is configured.
- FIG. 43 is a sectional view of an elevator suspension 7 according to a twenty-fourth embodiment of the present invention.
- a plurality of surface protrusions 7 d arranged in the width direction of the suspension body 7 are provided on the surface of the suspension body 7 that is in contact with the drive sheave 6.
- the cross-sectional shape of the surface protrusion 7d is V-shaped, specifically, a trapezoidal shape in which the lower base in contact with the drive sheave 6 is shorter than the upper base.
- the drive sheave 6 is provided with a groove 6a that meshes with the surface protrusion 7d.
- the core 21 that supports the load includes a plurality of load support layers 23.
- the load support layer 23 is divided into two layers in the thickness direction of the suspension body 7.
- the load support layer 23 located on the radially outer side of the drive sheave 6 is continuously arranged in the width direction of the suspension body 7.
- the load support layer 23 located on the radially inner side of the drive sheave 6 is divided into a plurality of parts in the width direction of the suspension body 7, and each of the load support layers 23 is distributed in the surface protrusion 7d.
- the suspension 7 can be prevented from shifting in the width direction of the drive sheave 6.
- the presence of the core 21 in the surface protrusion 7d improves the rigidity of the surface protrusion 7d against the displacement in the width direction.
- the suspension body 7 since there is a difference in rigidity between one side in the thickness direction of the core 21 and the other side, when the suspension body 7 receives a compressive load in the length direction by a hoisting machine brake or the like, the suspension body 7 Can be easily bent in one direction.
- the core 21 is present in the surface protrusion 7d, but the same effect can be obtained even if the core 21 is not present in the surface protrusion 7d.
- the number of surface protrusions 7d is not limited to three.
- the cross-sectional shape of the surface protrusion 7d is not limited to the V shape.
- the load support layer 23 is not limited to two layers.
- the core 21 of FIG. 43 is comprised only from the load support layer 23, you may implement in combination with any of said embodiment suitably, and can acquire the effect of each embodiment.
- FIG. 44 is a sectional view of an elevator suspension 7 according to a twenty-fifth embodiment of the present invention.
- the suspension body 7 includes a core 21 that supports a load therein and a coating layer 22.
- a plurality of grooves 22a having different depths are provided on the inner peripheral surface of the coating layer 22 that contacts the drive sheave 6.
- the groove 22 a is provided along the length direction of the suspension body 7.
- the depth of the groove 22a is two types, but the number of types of the depth of the groove 22a is not limited to two, and may be one type or three or more types.
- the direction of the groove 22a is not limited to the direction parallel to the length direction of the suspension body 7, and may be, for example, a 45 ° direction or a 90 ° direction with respect to the length direction.
- the cross-sectional shape of the groove 22a is not limited to a rectangle, and may be, for example, a V shape or a semicircular shape. However, if the cross-sectional shape of the groove 22a is rectangular as shown in FIG. 44, even if wear progresses, the area that contacts the drive sheave 6 is the same, so wear progresses at a constant speed. Therefore, it becomes easy to predict the progress of wear.
- FIG. 45 is a side view showing a state in which the suspension body 7 according to the twenty-sixth embodiment of the present invention is hung on the drive sheave 6.
- the suspension body 7 according to the twenty-sixth embodiment is characterized in that the internal bonding state differs depending on the position of the suspension body 7 in the length direction. That is, the suspension body 7 has a plurality of bonded portions 7e and a plurality of non-bonded portions 7f.
- FIG. 46 is a cross-sectional view of the non-bonding portion 7f
- FIG. 47 is a cross-sectional view of the bonding portion 7e.
- the non-bonding portion 7f includes a core covering layer 22c interposed between the core 21a and the covering layer 22 in addition to the core 21a having the three load supporting layers 23 and the two intermediate layers 24a. Have.
- the intermediate layer 24a and the core coating layer 22c are made of a lubricant, and are easily slipped between adjacent layers.
- a lubricant for example, in addition to a thermoplastic resin, a thermosetting resin, an elastomer material, a lubricant that is not bonded to the load support layer 23 or a low friction sheet may be used.
- the sheets can be arranged in a plurality of layers, and further, a liquid lubricant, a semi-solid lubricant, and a solid lubricant can be used in combination. For example, a configuration in which a liquid lubricant is arranged on the surface of a solid lubricant sheet is conceivable.
- the adhesive portion 7e includes a core covering layer 22b interposed between the core 21b and the covering layer 22 in addition to the core 21b having the three load supporting layers 23 and the two intermediate layers 24b. have.
- the intermediate layer 24b and the core coating layer 22b are both solid materials that adhere the layers.
- the solid material may be the same material as the load support layer 23 or the coating layer 22 or may be a separate material.
- the entire suspension body 7 can be made to be a solid and integral structure by the bonding portion 7e, and at the same time, a deviation between the load support layers 23 can be allowed in a portion bent by the drive sheave 6, so Ease can be realized.
- FIG. 48 is a cross-sectional view showing a modification of the non-bonding portion 7f of the twenty-sixth embodiment.
- the core coating layer 22b is provided on both surfaces in the thickness direction of the core 21a
- the core coating layer 22c is provided on both surfaces in the width direction of the core 21a. That is, the upper and lower surfaces of the core 21a are bonded, and the both side surfaces of the core 21a are not bonded.
- the neutral surface C which is a surface that does not expand and contract when bent, is formed at the center in the thickness direction of the core 21, as shown in FIGS. 12 to 18, FIGS. 27 to 31, FIGS. 37 to 42, and FIGS.
- the suspension body 7 when the rigidity difference is provided between one end and the other end of the core 21 in the thickness direction, the suspension body 7 is connected to the outer periphery of the drive sheave 6. It is preferable that the suspension body 7 is wound around the drive sheave 6 in such a direction that the suspension body 7 bends in a direction in which the suspension body 7 can be easily bent. Thereby, the workability at the time of winding the suspension body 7 around the drive sheave 6 can be improved.
- the structure of the elevator to which the suspension body 7 of the above embodiment is applied is not limited to the structure of FIG. 1.
- a machine room-less elevator, a 2: 1 roping elevator, a double deck elevator It can also be applied to multi-car elevators.
- the multi-car elevator is an elevator of a type in which an upper car and a lower car arranged directly below the upper car are independently raised and lowered on a common hoistway.
- Embodiment 27 FIG. Next, an embodiment 27 of the invention will be described.
- the overall configuration of the elevator of the twenty-seventh embodiment is the same as that in FIG.
- a belt-like suspension body having a belt-like core and a resin coating layer covering the core is used as the suspension body 7 in FIG.
- the core has a load support layer including an impregnating resin and a plurality of high-strength fibers.
- Such a cross-sectional structure of the suspension 7 may be any of the structures of Embodiments 1 to 26, or may be another structure.
- a pair of terminal holding devices 41 are provided at both ends of the suspension body 7.
- the terminal holding device 41 restrains and holds both ends of the suspension body 7 so as to prevent the load support layer from shifting in the length direction of the suspension body 7 inside the suspension body 7.
- FIG. 50 is a cross-sectional view of the terminal holding device 41 of FIG.
- the terminal holding device 41 has a socket 42 and a pair of wedges 43a and 43b.
- the end of the suspension body 7 is passed through the socket 42.
- the wedges 43 a and 43 b are driven between the socket 42 and the end of the suspension body 7. In this state, the suspension body 7 is connected to the car 8 and the counterweight 9.
- the radius of the drive sheave 6 is set so as to satisfy the following conditions.
- Condition 1 The tensile force in the length direction of the suspension 7 generated in the load support layer in a state where the load of the car 8 and the counterweight 9 is applied to the suspension 7 and the suspension 7 is bent along the drive sheave 6. The maximum stress is smaller than the tensile strength in the length direction of the suspension body 7.
- Condition 2 A longitudinal compression of the suspension 7 generated in the load support layer in a state where the load of the car 8 and the counterweight 9 is applied to the suspension 7 and the suspension 7 is bent along the drive sheave 6. The maximum stress is smaller than the compressive strength in the length direction of the suspension body 7.
- the thickness of the suspension body 7 wound around the drive sheave 6 is t, and the distance from the center of the drive sheave 6 to the center of the suspension body 7 in the thickness direction is R.
- FIG. 51 is an explanatory view showing a change in the shape of a portion wound around the drive sheave 6 of the suspension body 7 in FIG. If the cross-sectional structure of the suspension body 7 is symmetric with respect to the center in the thickness direction and there is no tensile load, the position of the distance R from the center of the drive sheave 6 is pulled in the length direction of the suspension body 7. It corresponds to the position of a so-called neutral surface (or neutral axis) where no force or compressive force acts.
- the difference between the length of the inner peripheral surface that contacts the drive sheave 6 and the length of the outer peripheral surface that does not contact the driving sheave 6 is determined by thickness t ⁇ unit winding angle d ⁇ .
- the shear strain is determined by the unit winding angle d ⁇ .
- FIG. 52 is an explanatory view showing the stress state in the length direction of the portion wound around the drive sheave 6 of the suspension body 7 of FIG.
- the Young's modulus of the strength member of the suspension body 7 is E
- the sectional area of the load support layer perpendicular to the length direction of the suspension body 7 is A
- the tensile load acting on the suspension body 7 is T.
- the stress due to the shape change shown in FIG. 51 is determined by the product of strain t / (2.R) and Young's modulus E, and it is necessary to consider that stress T / A due to tensile load is applied. Assuming that the stress in the pulling direction is positive, the portion of the suspension 7 that is in contact with the drive sheave 6 is ⁇ E ⁇ t / (2 ⁇ R) + T / A. Further, the portion of the suspension 7 that does not contact the drive sheave 6 is E ⁇ t / (2 ⁇ R) + T / A.
- the load support layer in the suspension body 7 is not allowed to deviate from the stress generated in the suspension body 7. For this reason, it is desirable to determine the radius of the drive sheave 6 by strictly considering the cross-sectional area A, the thickness t, and the maximum tension load of the suspension body 7.
- the compressive strength of the load supporting layer becomes Spress ⁇ E ⁇ t / (2 ⁇ R) + T / A (Condition 1), and the tensile strength of the load supporting layer is Spull> E. It is desirable to determine the radius of the drive sheave 6 so that xt / (2 ⁇ R) + T / A (condition 2).
- the thickness dimension of the divided layer 25 having the largest thickness dimension may be t.
- the maximum load weight of the user is added to the weight of the car 8, and T is determined in consideration of the load applied to the suspension body 7 when the vehicle is suddenly decelerated at 1G which is the maximum acceleration of the traction drive elevator. And it is preferable to determine the radius of the drive sheave 6 in such a range that the maximum tensile stress does not exceed the tensile strength.
- the tensile strength and the compressive strength are preferably set to 1 ⁇ 2 or less of the ideal strength in consideration of a decrease in strength of the load supporting layer over time.
- the drive torque of the hoist motor can be reduced, which is economical.
- the thickness t of the suspension body 7 is determined in consideration of the tensile load T so that the radius of the drive sheave 6 can be 200 mm or less. It is preferable.
- FIG. 53 is a cross-sectional view showing a modification of the terminal holding device 41 of FIG.
- a double wedge type device using two wedges 43a and 43b is shown, but the terminal holding device 41 of FIG. 53 is a single wedge type device using only one wedge 43a.
- the wedge 43a is driven between the socket 42 and the surface located on the outer side in the radial direction of the drive sheave 6 among the both ends of the suspension body 7 in the thickness direction.
- FIG. 54 is a block diagram showing the main part of an elevator according to Embodiment 28 of the present invention
- FIG. 55 is a sectional view of terminal holding device 41 in FIG.
- the terminal holding device 41 according to the twenty-eighth embodiment restrains and holds both ends of the suspension 7 in a state where one end and the other end in the thickness direction of the suspension 7 are shifted in the length direction of the suspension 7. .
- the terminal holding device 41 restrains both ends of the suspension body 7. In other words, the terminal holding device 41 constrains both ends of the suspension body 7 so that the outer surface of the suspension body 7 approaches the drive sheave 6 in the radial direction of the drive sheave 6.
- Other configurations are the same as those in the twenty-seventh embodiment.
- the stress generated in the suspension 7 on the outer periphery of the drive sheave 6 due to a tensile load can be reduced.
- the bending radius of the suspension body 7 can be reduced and the diameter of the drive sheave 6 can be reduced as long as the tensile stress and the compressive stress generated in the suspension body 7 do not exceed the limit strength.
- FIG. 56 is a sectional view showing a modification of the terminal holding device 41 of FIG. 55 shows a double wedge type device using two wedges 43a and 43b, the terminal holding device 41 of FIG. 56 is a single wedge type device using only one wedge 43a.
- the wedge 43a is driven between the socket 42 and the surface located on the outer side in the radial direction of the drive sheave 6 among the both ends of the suspension body 7 in the thickness direction.
- Embodiment 28 one end and the other end in the thickness direction of the suspension body 7 are shifted in the length direction of the suspension body 7 at both ends of the suspension body 7. Good.
- Embodiment 29 FIG. Next, an embodiment 29 of the invention will be explained.
- the overall configuration of the elevator of Embodiment 29 is the same as that in FIG.
- FIG. 57 is a sectional view of the terminal holding device 41 according to the twenty-ninth embodiment.
- the terminal holding device 41 according to the twenty-ninth embodiment has the same configuration as that shown in FIG. 53, but is connected to the car 8 and the counterweight 9 so as to be rotatable around an axis 44 parallel to the width direction of the suspension 7. . That is, the terminal holding device 41 can be inclined in the thickness direction of the suspension body 7.
- the stress generated in the suspension 7 on the outer periphery of the drive sheave 6 due to the tensile load can be reduced.
- the bending radius of the suspension body 7 can be reduced and the diameter of the drive sheave 6 can be reduced as long as the tensile stress and the compressive stress generated in the suspension body 7 do not exceed the limit strength.
- the terminal holding device 41 can be tilted when the bending moment M is large, only the deviation transmitted to the end of the suspension body 7 can be efficiently eliminated.
- the configuration of the twenty-ninth embodiment may be applied to only one of the car 8 side and the counterweight 9 side.
- FIG. 59 is a block diagram showing a main part of an elevator according to Embodiment 30 of the present invention.
- Cylindrical guide bodies 46 are fixed to the car 8 and the counterweight 9, respectively.
- the first end portion 7 a and the second end portion 7 b of the suspension body 7 are bent along an arc 46 a on the outer peripheral surface of the guide body 46.
- the tip of the first end 7a and the tip of the second end 7b are fixed to the guide body 46 by a gripping tool (not shown) or the like.
- the radius of curvature of the arc 46a is the same as the radius of curvature of the surface with which the suspension 7 of the drive sheave 6 is in contact. Further, the bending direction of the suspension body 7 in the thickness direction of the arc 46 a is opposite to the bending direction of the drive sheave 6.
- the winding angle range of the suspension body 7 with respect to each guide body 46 is half of the winding angle range of the suspension body 7 with respect to the drive sheave 6. That is, the sum of the winding angle range of the suspension body 7 with respect to both guide bodies 46 is the same as the winding angle range of the suspension body 7 with respect to the drive sheave 6.
- Other configurations are the same as those in the twenty-seventh embodiment.
- the total of the winding angle range of the suspension 7 with respect to the arc 46a is the drive sheave 6 It may be somewhat smaller than the wrapping angle range of the suspension body 7 with respect to.
- FIG. 60 is a block diagram showing a main part of an elevator according to Embodiment 31 of the present invention.
- the guide body 46 is provided only in the car 8.
- the winding angle range of the first end portion 7 a with respect to the guide body 46 is the same as the winding angle range of the suspension body 7 with respect to the drive sheave 6.
- the second end 7b is restrained and held by the terminal holding device 41 as in the twenty-seventh embodiment. That is, in the thirty-first embodiment, all the shift amount due to the suspension body 7 being bent by the drive sheave 6 is brought close to the first end portion 7a. Other configurations are the same as those in the twenty-seventh embodiment.
- FIG. 61 is a block diagram showing a main part of an elevator according to Embodiment 32 of the present invention.
- a 2: 1 roping elevator is shown in the thirty-second embodiment.
- a car suspension wheel 47 is provided in the car 8.
- the counterweight 9 is provided with a counterweight suspension wheel 48.
- the suspension body 7 is wound around the car suspension wheel 47, the drive sheave 6, and the counterweight suspension wheel 48 in this order from the first end 7a side.
- the first end portion 7a is restrained and held by the terminal holding device 41 in the upper part of the hoistway 1 in the same manner as in the twenty-seventh embodiment.
- a guide body 46 is provided at the upper part of the hoistway 1.
- the second end 7 b is bent along an arc 46 a on the outer peripheral surface of the guide body 46. The tip of the second end 7 b is stopped by the guide body 46.
- the bending direction in the thickness direction of the suspension body 7 in the arc 46 a is the opposite direction to the bending direction in the counterweight suspension wheel 48.
- Other configurations are the same as those in the thirty-first embodiment.
- the car suspension wheel 47 and the counterweight suspension wheel 48 are bent in a total direction of 360 ° with respect to 180 ° bent by the drive sheave 6. Therefore, as a total, the suspension body 7 is bent by the guide body 46 by 180 ° in the direction opposite to the direction bent by the drive sheave 6.
- the guide body 46 only needs to be provided with the arc 46a around the portion around which the suspension body 7 is wound, and may not be cylindrical.
- FIG. 62 is a block diagram showing a main part of an elevator according to Embodiment 33 of the present invention.
- a terminal holding device 41 as in the twenty-eighth embodiment is provided at the second end 7b.
- Other configurations are the same as those in the thirty-second embodiment.
- the first end 7a and the second end 7b may be interchanged.
- the cross-sectional structure of the suspension 7 may be any of the structures of Embodiments 1 to 26 or another structure.
- FIG. FIG. 63 is a block diagram showing a main part of an elevator according to Embodiment 34 of the present invention.
- the suspension body 7 has a ring shape without an end, that is, a loop shape.
- Two drive sheaves 6A and 6B are used.
- a car suspension wheel 47 is provided in the car 8.
- the counterweight 9 is provided with a counterweight suspension wheel 48.
- the suspension body 7 is wound around a car suspension wheel 47, drive sheaves 6A and 6B, and a counterweight suspension wheel 48.
- the suspension body 7 is wound with a bending angle of 360 °.
- FIG. FIG. 64 is a cross-sectional view showing a state in the middle of manufacturing the elevator suspension 7 according to Embodiment 35 of the present invention, and shows a cross-section corresponding to a cross-section perpendicular to the length direction of the suspension 7.
- a plurality of high-strength fiber layers 51 and at least one low-elastic fiber layer 52 are alternately laminated in the thickness direction of the suspension body to form a laminate 53.
- Each high-strength fiber layer 51 is formed by laminating a plurality of high-strength fiber fabrics 54 made of high-strength fibers as shown in the first embodiment.
- the high-strength fiber layer 51 may be composed of only one high-strength fiber fabric 54.
- Each high-strength fiber fabric 54 is a unidirectional fiber fabric configured by passing a weft 56 through a plurality of high-strength fiber yarns 55 in a bundle.
- the fiber type of the weft 56 is not specified.
- FIG. 65 shows a state in which the high-strength fiber yarns 55 are aligned in a line, but they may be displaced from each other.
- the low elastic fiber layer 52 is configured by laminating a plurality of low elastic fiber fabrics having a lower elastic modulus than the high strength fiber fabric 54.
- the low elastic fiber layer 52 may be composed of only one low elastic fiber fabric.
- Examples of the fiber used in the low elastic fiber fabric that is, the intermediate layer fiber of Embodiment 35, include, for example, glass fiber or polyester fiber.
- the form of the low elastic fiber fabric is, for example, a woven fabric, a nonwoven fabric, or a knitted fabric.
- FIG. 66 is a schematic configuration diagram showing a first manufacturing apparatus for the suspension body 7 according to the thirty-fifth embodiment, which is an apparatus for manufacturing the core 21 according to the first embodiment.
- the manufacturing apparatus shown in FIG. 66 includes a laminated portion 57, a resin tank 58, a thermoforming device 59, a drawing device 60, and a winding device 61.
- FIG. 66 only two high-strength fiber layers 51 and one low-elastic fiber layer 52 are shown for simplicity.
- the high-strength fiber layer 51 and the low-elasticity fiber layer 52 drawn out from the roll are laminated at the lamination part 57, and the laminated body 53 is formed.
- the laminate 53 formed by the laminate portion 57 is drawn into the resin tank 58 by the drawing device 60.
- An uncured thermosetting resin is placed in the resin tank 58.
- the thermosetting resin the thermosetting resin used for the intermediate layer 24 and the divided layer 25 in the first embodiment is used.
- the laminate 53 is impregnated with uncured thermosetting resin. Since it is necessary to impregnate between narrow fibers, it is desirable that the thermosetting resin in the resin tank 58 has a low viscosity.
- the laminate 53 is drawn into the heat forming device 59 by the drawing device 60.
- the thermosetting resin is cured by heating the laminate 53.
- the high-strength fiber layer 51 and the low-elasticity fiber layer 52 are integrated, and the core 21 of Embodiment 1 is formed.
- the core 21 is wound around the winding device 61.
- FIG. 67 is a cross-sectional view of the core 21 of the suspended body 7 manufactured by the first manufacturing apparatus of FIG. 66, and shows a cross section perpendicular to the length direction of the core 21.
- FIG. The divided layers 25 of the thirty-fifth embodiment are each made of FRP that includes a high-strength fiber fabric 54.
- middle layer 24 is comprised by FRP containing a low elastic fiber fabric, respectively.
- the resin contained in the divided layer 25 is the same as the resin contained in the intermediate layer 24.
- the suspension body 7 is completed by covering the outer periphery of the core 21 as shown in FIG. 67 with the resin coating layer 22.
- the resin constituting the covering layer 22 the resin described in the first embodiment can be used.
- the coating layer 22 is formed by coating the outer periphery of the core 21 with resin by continuous press molding, intermittent press molding, or laminate molding, and trimming unnecessary portions.
- FIG. 68 is a schematic configuration diagram showing a second manufacturing apparatus of the suspension body 7 according to the thirty-fifth embodiment, and shows an apparatus for forming the coating layer 22.
- the second manufacturing apparatus has a sheet placement unit 62 and a pressure forming apparatus 63.
- a plurality of thermoplastic sheets 64 made of a thermoplastic resin constituting the coating layer 22 are arranged so as to surround the periphery of the core 21.
- the core 21 and the thermoplastic sheet 64 are sent to the pressure molding device 63 and subjected to pressure molding.
- a double belt press is shown as the pressure molding device 63, but the pressure molding device 63 is not limited to this, and the pressure necessary for the integration of the thermoplastic sheet 64 and the core 21 is continuously or
- an intermittent press or a laminator may be used as long as it can be added intermittently.
- thermoplastic sheet 64 is a cross-sectional view showing a state where the core 21 and the thermoplastic sheet 64 are pressed by the pressure molding apparatus 63 of FIG. 68, and shows a cross section perpendicular to the length direction of the core 21.
- the thermoplastic sheets 64 are disposed on both sides of the core 21 in the thickness direction (vertical direction in FIG. 69) and on both sides in the width direction of the core 21 (horizontal direction in FIG. 69).
- the pressure molding apparatus 63 has a pair of molding dies 63 a and 63 b that sandwich the core 21 and the thermoplastic sheet 64 from both sides in the thickness direction of the core 21. By these molds 63a and 63b, pressure is applied in the direction of the arrow in FIG.
- FIG. 70 is a cross-sectional view of the suspended body 7 before completion, which is pressure-formed by the pressure-forming device 63 of FIG.
- the coating layer 22 protrudes more than necessary on both sides in the width direction of the suspension body 7. For this reason, unnecessary portions are trimmed along broken lines in FIG. Thereby, the suspension body 7 is completed.
- the suspension body 7 in which the load supporting layer 23 is divided in the thickness direction of the core 21 and the intermediate layer 24 is interposed between the adjacent divided layers 25 is easily manufactured. be able to. Thereby, the bending ease of the core 21 can be improved, and the stress concentration of the divided layer 25 located in the innermost layer and the divided layer 25 located in the outermost layer can be reduced.
- FIG. 71 is a sectional view showing a state in the middle of manufacturing the elevator suspension 7 according to the thirty-sixth embodiment of the present invention, and shows a section corresponding to a section perpendicular to the length direction of the suspension 7.
- FIG. . In the method for manufacturing the suspension body 7 according to the thirty-sixth embodiment, a plurality of high-strength fiber layers 51 are laminated on one side in the thickness direction of the suspension body, and at least one low-elastic fiber layer 52 is laminated on the other side to form a laminate 53. Form. Other manufacturing methods are the same as those in the thirty-fifth embodiment.
- FIG. 73 is a cross-sectional view of the suspension body 7 manufactured by the manufacturing method according to Embodiment 37 of the present invention
- FIG. 74 is a cross-sectional view showing a state during the manufacture of the suspension body 7 of FIG. A cross section perpendicular to the length direction of 21 is shown.
- the laminated body 53 is integrated by stitching after the laminated body 53 is formed and before the uncured thermosetting resin is impregnated. That is, the high-strength fiber layer 51 and the low-elasticity fiber layer 52 are bundled with a stitch material 65 such as a thread.
- Other manufacturing methods are the same as those in the thirty-fifth embodiment.
- the manufacturing method it is possible to prevent the lateral displacement of the high-strength fiber layer 51 and the low-elastic fiber layer 52 and improve the moldability. If there is a warp in the fiber, a load is not borne in the warp portion, and the strength of the suspension body 7 may be reduced. Suspension 7 having sufficient strength can be obtained by suppressing the warping of the fibers. Further, the fiber kinking can be suppressed by stitching. Further, in the resin impregnation step, the thermosetting resin is easily impregnated in the thickness direction of the laminate 53 via the stitch material 65.
- FIG. 75 is a schematic configuration diagram showing a part of an apparatus for manufacturing a suspension body 7 according to Embodiment 38 of the present invention.
- the manufacturing apparatus of FIG. 75 corresponds to the second manufacturing apparatus of the thirty-fifth embodiment, but the point that the heating apparatus 66 is disposed between the sheet arranging unit 62 and the pressure forming apparatus 63 is implemented. Different from Form 35.
- the heating device 66 a device capable of rapid heating within a predetermined time, such as an ultrasonic heating device, a radical heater, or a far infrared heater, is used.
- thermoplastic sheet 64 is disposed around the core 21
- the thermoplastic sheet 64 is preheated by the heating device 66 and then the core 21 and the thermoplastic sheet 64 are pressure-molded.
- Other manufacturing methods are the same as those in the embodiment 35 or 30.
- thermoplastic sheet 64 can be softened before the pressure molding step, and the moldability can be improved.
- FIG. 76 is a cross-sectional view showing a state in the process of manufacturing the suspension body 7 by the manufacturing method according to Embodiment 39 of the present invention, and shows a cross section corresponding to FIG. 69 of Embodiment 35.
- a unidirectional FRP plate 71 is used as the material of the dividing layer 25.
- the thermosetting resin and a plurality of high-strength fibers shown in the first embodiment are used.
- thermoplastic sheets 72 made of the thermoplastic resin or the thermoplastic elastomer shown in the first embodiment are used.
- covering layer 22 a plurality of covering layer thermoplastic sheets 73 made of the thermoplastic resin shown in the first embodiment are used.
- Each unidirectional FRP plate 71 is manufactured by pultrusion. And as shown in FIG. 76, the one-way FRP board 71 and the 1 or more intermediate
- the covering layer thermoplastic sheet 73 is disposed so as to surround the periphery of the laminate 70, and the laminate 70 and the covering layer thermoplastic sheet 73 are pressure-molded. Thereby, the laminated body 70 is integrated to form the core 21, and the covering layer thermoplastic sheet 73 is integrated to form the covering layer 22. Then, as shown in FIG. 70, unnecessary portions of the coating layer 22 are trimmed. Thereby, the suspension body 7 is completed.
- Other manufacturing methods are the same as those in the thirty-fifth embodiment.
- the suspension body 7 in which the load supporting layer 23 is divided in the thickness direction of the core 21 and the intermediate layer 24 is interposed between the adjacent divided layers 25 is easily manufactured. be able to. Thereby, the bending ease of the core 21 can be improved, and the stress concentration of the divided layer 25 located in the innermost layer and the divided layer 25 located in the outermost layer can be reduced.
- the unidirectional FRP plate 71 is preliminarily molded and the thermosetting resin is cured, so that the high-strength fiber layer in the divided layer 25 can be prevented from swaying. Furthermore, by using the intermediate layer thermoplastic sheet 72 having a lower elasticity than that of the low elastic fiber layer 52 of the thirty-fifth embodiment, the effect of shear deformation of the intermediate layer 24 can be improved.
- FIG. 77 is a cross-sectional view showing a state in the middle of manufacturing suspension 7 by the manufacturing method according to Embodiment 40 of the present invention, and shows a cross section corresponding to FIG. 69 of Embodiment 35.
- the difference between the fortieth embodiment and the forty-ninth embodiment is that the one-way FRP plate 71 has irregularities in the width direction.
- the unidirectional FRP plate 71 is formed with triangular wave-shaped irregularities.
- the uneven shape may be any shape that meshes with each other, and is not limited thereto. For example, it may be sinusoidal, trapezoidal or rectangular.
- FIG. 79 is a cross-sectional view of the suspension body 7 before completion, which is pressure-formed by the pressure-forming process of FIG. 77. From the state shown in FIG. 79, by trimming an excess portion of the coating layer 22, the suspension body 7 shown in FIG. 80 is manufactured.
- the unidirectional FRP plates 71 are engaged with each other through the intermediate layer thermoplastic sheet 72 with the unevenness in the width direction. Deviation can be prevented. Thereby, the width dimension of the suspension body 7 can be stored in an appropriate range.
- FIG. 81 is a cross-sectional view showing a state in the process of manufacturing the suspension body 7 by the manufacturing method according to Embodiment 41 of the present invention, and shows a cross section corresponding to FIG. 69 of Embodiment 35.
- the resin is a thermosetting resin.
- the FRP plate 74 of the thirty-first embodiment a part is used.
- These high-strength fibers may be oriented obliquely with respect to the length direction, and a thermoplastic resin is used as the resin.
- Other manufacturing methods are the same as those in the thirty-ninth embodiment.
- the affinity between the FRP plate 74 and the intermediate layer thermoplastic sheet 72 at the time of pressure molding is high.
- the interlayer strength between the divided layer 25 and the intermediate layer 24 can be improved.
- the interlayer strength can be further improved by using the same kind of resin as the intermediate layer thermoplastic sheet 72 as the thermoplastic resin of the FRP plate 74.
- the end portions 7a and 7b of the suspension body 7 are preheated after the coating layer 22 is formed, and are suitable for gripping any shape, for example, the end portions 7a and 7b. Can be processed into different shapes.
- FIG. 82 is a side view showing a step of preheating the ends 7a and 7b of the suspension body 7 according to the forty-first embodiment.
- the heating device 75 similarly to the heating device 66, an apparatus capable of rapid heating within a predetermined time, such as an ultrasonic heating device, a radical heater, or a far infrared heater, is used.
- FIG. 83 is a side view showing a first example of a step of pressure-molding the end portions 7a and 7b of the suspension body 7 after the preheating shown in FIG.
- the first example between the first molding die 76 having the first molding surface 76a recessed in an arc shape and the second molding die 77 having the second molding surface 77a projecting in an arc shape. Ends 7a and 7b are arranged.
- FIG. 84 is a side view showing a state in which the end portions 7a and 7b are sandwiched between the first mold 76 and the second mold 77 of FIG.
- the ends 7 a and 7 b are taken out from the molds 76 and 77.
- end part 7a, 7b can be curved in circular arc shape.
- FIG. 86 is a side view showing a second example of the step of pressure-molding the end portions 7a and 7b of the suspension body 7 after the preheating shown in FIG.
- a first mold 78 having a first molding surface 78a that is a corrugated uneven surface
- a second mold 79 having a second molding surface 79a that is a corrugated uneven surface.
- the end portions 7a and 7b are disposed between them.
- FIG. 87 is a side view showing a state in which the end portions 7a and 7b are sandwiched between the first molding die 78 and the second molding die 79 in FIG.
- the ends 7a and 7b are taken out from the molds 78 and 79.
- end part 7a, 7b can be deform
- preheating may be performed as in Embodiment 38. That is, after the covering layer thermoplastic sheet 73 is disposed around the laminate 70, the covering layer thermoplastic sheet 73 may be preheated and then the laminate 70 and the covering layer thermoplastic sheet 73 may be pressure-molded. . Thereby, a moldability can be improved. Moreover, when performing preheating, you may preheat including the laminated body 70. FIG. Further, the manufacturing methods of the thirty-fifth to thirty-first embodiments can be applied to the suspension body 7 as shown in the second to fourth and sixth to fifteenth embodiments.
- FIG. 89 is a schematic configuration diagram showing a first manufacturing apparatus for elevator suspension 7 according to Embodiment 42 of the present invention, which is an apparatus for manufacturing core 21 of Embodiment 34.
- the manufacturing apparatus of FIG. 89 corresponds to the first manufacturing apparatus of the thirty-fifth embodiment, but differs from the thirty-fifth embodiment in that the winding device 61 is not provided.
- the high-strength fiber yarn 81 drawn from the bobbin 80 is returned to the converging unit 82 after passing through the drawing device 60, and is formed in a state where a necessary amount of fiber is converging.
- the body is formed.
- the bundling body is impregnated with uncured thermosetting resin, and the uncured thermosetting resin is heated and cured to form the core 21.
- Other manufacturing methods are the same as those in the embodiment 35 or 37.
- the high-strength fiber yarn 81 that has passed through the drawing device 60 is returned to the converging unit 82, it is desirable to apply a constant tension to the high-strength fiber yarn 81 via a pulley or the like in order to maintain a constant circumferential length.
- the circumferential length is maintained at the length of the shortest path from the converging unit 82 to the converging unit 82 via the drawing device 60.
- the ring-shaped suspension body 7 having no end portion shown in the thirty-fourth embodiment can be manufactured. Since the end portion of the high-strength fiber yarn 81 is integrally formed as a bundling body of the high-strength fiber yarn, the end portion as the suspension 7 does not exist.
- FIG. 90 is a sectional view of an elevator suspension according to Embodiment 43 of the present invention
- FIG. 91 is an enlarged sectional view of 101a portion of FIG. 90
- FIG. 92 is an enlarged view of 101b portion of FIG. It is sectional drawing shown.
- 90a is located at the center of the load support layer 23 in the thickness direction.
- 90b is located at the end of the load support layer 23 in the thickness direction.
- the core 21 of the forty-third embodiment is configured only by the load support layer 23.
- the load support layer 23 is composed of an impregnating resin 103 and a plurality of high-strength fibers 102. Further, the density of the high-strength fibers 102 at the center portion in the thickness direction of the load support layer 23 is higher than the density of the high-strength fibers 102 at both ends in the thickness direction of the load support layer 23.
- the density of the high-strength fibers 102 means the ratio of the high-strength fibers contained in the load support layer 23. That is, the volume content of the high-strength fibers 102 included in a certain amount of the load support layer 23 or the ratio of the cross-sectional area of the high-strength fibers 102 occupying a cross section perpendicular to the length direction of the core 21 corresponds to this. .
- the density of the high-strength fibers 102 continuously decreases from the center portion in the thickness direction of the load support layer 23 toward both end portions in the thickness direction of the load support layer 23.
- the density of the high-strength fibers 102 is changed by changing the number of the high-strength fibers 102 occupying the cross-sectional area perpendicular to the length direction of the core 21.
- Other configurations are the same as those of the eleventh embodiment.
- the tensile rigidity in the Z-axis direction of the high-strength fiber 102 is higher than the tensile rigidity in the Z-axis direction of the impregnating resin 103. This is because, in the entire FRP, the high-strength fibers 102 mainly play a role of increasing strength and rigidity, and the impregnating resin 103 mainly plays a role of integrating the high-strength fibers 102.
- the load support layer 23 in the present embodiment has a characteristic that the tensile rigidity in the Z-axis direction is high in the central part in the Y-axis direction, and the tensile rigidity decreases as the distance from the central part in the Y-axis direction increases. For this reason, if the cross section of the load support layer 23 is the same shape and the content of the high-strength fibers 102 is the same, X is higher than when the high-strength fibers 102 are uniformly dispersed in the impregnating resin 103. The cross-sectional second moment is reduced for bending about the axis, that is, bending about the X axis.
- the central portion in the thickness direction of the load support layer 23 is a portion close to a position on the neutral shaft that is not compressed or pulled when hung on the drive sheave 6. It is desirable that For this reason, since tension acts on the suspension when applied to the elevator, the central portion of the load support layer 23 is positioned closer to the contact surface with the drive sheave 6 than the central portion in the thickness direction. Is desirable.
- the contact surface between the surface of the suspension and the drive sheave 6 can be increased, the drive force that can be transmitted by the frictional force acting on the contact surface can be increased.
- the suspension body is easy to bend, handling in operations such as storage, transportation, installation, and replacement becomes easy.
- the Young's modulus of the impregnating resin 103 also affects the ease of bending of the load support layer 23 as a whole. That is, when the Young's modulus of the impregnating resin 103 is lowered, the ease of bending is improved. Ideally, the Young's modulus of the impregnating resin 103 is preferably 6 GPa or less.
- the high strength fiber 102 when the bending is applied to the load support layer 23 with respect to the X axis, the high strength fiber 102 has a portion that receives tensile in the Z axis direction and a portion that receives compression in the Z axis direction.
- the Young's modulus of the impregnating resin 103 is excessively decreased, the high strength fiber 102 is easily moved in a direction perpendicular to the Z-axis direction when compressed. Then, peeling occurs between the high-strength fibers 102 and the impregnating resin 103, and the load supporting layer 23 is easily broken. For this reason, it is desirable that the Young's modulus of the impregnating resin 103 is 0.1 GPa or more.
- the Young's modulus of the impregnating resin 103 is 6 GPa or less and preferably 0.1 GPa or more.
- the volume content of the high-strength fibers 102 is 60% or more, more preferably 70. % Or better.
- the volume content of the high-strength fibers 102 is 50% or less, more preferably 40%. % Or less is preferable.
- the central portion in the thickness direction where the stress due to the bending of the core 21 in the longitudinal direction is small is composed of a high carbon fiber density that can be impregnated in production, while the end portion where the stress change due to bending is large has a sufficient integration effect.
- FIG. 93 is a schematic configuration diagram showing a suspension manufacturing apparatus in the present embodiment
- FIG. 94 is a cross-sectional view of the main part of FIG. 93, the first high-strength fiber group 111 and the plurality of second high-strength fiber groups 112 are fed out from the corresponding bobbins.
- the fiber density of the first high-strength fiber group 111 is higher than the fiber density of the second high-strength fiber group 112.
- FIG. 93 for the sake of simplicity, two types of high-strength fiber groups 111 and 112 are shown. However, by arranging more bobbins and feeding out three or more types of high-strength fiber groups having different fiber densities, The density of the strength fibers 102 can be continuously changed.
- the high-strength fiber groups 111 and 112 fed out from the bobbin are passed through the fiber positioning unit 110.
- the fiber positioning portion 110 is provided with a plurality of holes 110b through which the high-strength fiber groups 111 and 112 are individually passed.
- a guide wall 110a for individually guiding the high-strength fiber group 111 is formed.
- the high-strength fiber groups 111 and 112 are brought close to each other while maintaining their relative positions by being passed through the fiber positioning unit 110. Further, the high-strength fiber groups 111 and 112 are passed through the fiber positioning unit 110 and then passed through the injection device 109.
- a bundle of high-strength fiber groups 111 and 112 is impregnated with the impregnation resin 103.
- the configuration of other manufacturing apparatuses and the manufacturing method are the same as in the thirty-fifth embodiment.
- the suspension body manufacturing method of the forty-third embodiment includes the first to fifth steps.
- the first step is a step of feeding out a plurality of high-strength fiber groups 111 and 112 having different fiber densities from the corresponding bobbins.
- the second step is a step in which the high-strength fiber groups 111 and 112 are brought close to each other while maintaining their relative positions to form a bundle of the high-strength fiber groups 111 and 112.
- the third step is a step of impregnating the bundle of high strength fiber groups 111 and 112 with the impregnating resin 103.
- the fourth step is a step of forming the core 21 by thermoforming a bundle of high-strength fiber groups 111 and 112 impregnated with resin.
- the fifth step is a step of forming a covering layer 22 that covers at least a part of the outer periphery of the core 21.
- Such a manufacturing method can efficiently manufacture a suspension body having a cross-sectional structure as shown in FIG.
- FIG. 95 is an enlarged sectional view showing a central portion in the thickness direction of the load support layer 23 according to Embodiment 44 of the present invention
- FIG. 96 is a view in the thickness direction of the load support layer 23 according to Embodiment 44. It is sectional drawing which expands and shows an edge part.
- FIG. 95 shows a portion corresponding to the portion 101a in FIG.
- FIG. 96 shows a portion corresponding to the portion 101b in FIG.
- a plurality of types of high-strength fibers 102 having different diameters are used. That is, as the high-strength fibers 102, a plurality of first high-strength fibers 102a and a plurality of second high-strength fibers 102b are used.
- the diameter of the second high strength fiber 102b is larger than the diameter of the first high strength fiber 102a.
- the material of the second high strength fiber 102b is the same as the material of the first high strength fiber 102a.
- the first high-strength fibers 102a are arranged between the second high-strength fibers 102b at the center in the thickness direction of the load support layer 23. On the other hand, at both ends in the thickness direction of the load support layer 23, the first high-strength fibers 102a are not disposed at all between the second high-strength fibers 102b, or the second high-strength fibers The number of first high-strength fibers 102a disposed between 102b is reduced.
- the density of the high-strength fibers 102 at the center portion in the thickness direction of the load support layer 23 is higher than the density of the high-strength fibers 102 at both ends in the thickness direction of the load support layer 23.
- the density of the high-strength fibers 102 is changed to the central portion in the thickness direction of the load support layer 23. To the both ends of the load supporting layer 23 in the thickness direction.
- Other configurations are the same as those in the forty-third embodiment.
- the density of the first high-strength fibers 102a in the high-strength fiber group 112 fed out from the upper and lower bobbins in FIG. 93 is lowered and fed out from the central bobbin. What is necessary is just to make the density of the 1st high strength fiber 102a in the high strength fiber group 111 high.
- the same effect as in the forty-third embodiment can be obtained. Further, since the high strength fibers 102a and 102b having different thicknesses are used, it is difficult for the high strength fibers 102a and 102b to be gathered together during resin impregnation, and the target density distribution can be realized with higher accuracy. .
- FIG. 97 is a sectional view of an elevator suspension according to Embodiment 45 of the present invention
- FIG. 98 is an enlarged sectional view of the portion 101c in FIG. 97
- FIG. 99 is an enlarged portion of 101d in FIG. It is sectional drawing shown.
- 97c of FIG. 97 is located in the 1st edge part of the thickness direction of the load support layer 23.
- FIG. The portion 101d in FIG. 97 is located at the second end of the load support layer 23 in the thickness direction.
- the density of the high-strength fibers 102 at the first end in the thickness direction of the load support layer 23 is the density of the high-strength fibers 102 at the second end in the thickness direction of the load support layer 23. Higher than. Further, the density of the high-strength fibers 102 continuously decreases from the first end portion in the thickness direction of the load support layer 23 toward the second end portion.
- the volume content of the high-strength fibers 102 is 60% or more. Preferably it is 70% or more.
- the volume content of the high-strength fibers 102 is 50% or less. Preferably it is 40% or less.
- Other configurations and manufacturing methods are the same as those in the forty-third embodiment.
- the neutral plane of the bending section can be shifted, and the ease of bending can be improved.
- the same method as that in the 44th embodiment may be applied.
- FIG. 100 is a cross-sectional view of an elevator suspension according to Embodiment 46 of the present invention
- FIG. 101 is an enlarged cross-sectional view of the portion 101e of FIG.
- the portion 101e in FIG. 100 is located at the end of the load support layer 23 in the thickness direction.
- the density of the high-strength fibers 102 at the center portion in the thickness direction of the load support layer 23 is higher than the density of the high-strength fibers 102 at both ends in the thickness direction of the load support layer 23. Further, layers made only of the impregnating resin 103 are formed at both ends in the thickness direction of the load support layer 23. Other configurations and manufacturing methods are the same as those in the embodiment 43 or 44.
- a layer made only of the impregnating resin 103 of the 46th embodiment may be provided at the second end of the 45th embodiment.
- the density of the high-strength fibers 102 may be made uniform in the thickness direction of the load support layer 23.
- FIG. 102 is a cross-sectional view of the elevator suspension according to Embodiment 47 of the present invention.
- the width dimension of the covering layer 22 is smaller than the width dimension of the load supporting layer 23. That is, the coating layer 22 covers only both surfaces in the thickness direction of the load support layer 23 and does not cover both end surfaces in the width direction of the load support layer 23.
- Other configurations and manufacturing methods are the same as those in the forty-third embodiment.
- the load support layer 23 can be inspected directly from both ends in the width direction of the load support layer 23.
- FIG. 103 is a sectional view of the elevator suspension according to Embodiment 48 of the present invention.
- the core 21 is configured only by the load support layer 23.
- the core 21 is divided into a plurality of core divided bodies 26.
- the core divided bodies 26 are arranged at intervals in the width direction of the core 21. Between the adjacent core divided bodies 26, the coating layer 22 enters.
- the density of the high-strength fibers at the center portion in the thickness direction (Y-axis direction) of each core segment 26 is higher than the density of the high-strength fibers at both ends in the thickness direction of each core segment 26. Further, the density of the high-strength fibers in each core divided body 26 continuously decreases from the central portion in the thickness direction toward both end portions.
- the volume content of the high-strength fibers 102 is 60% or more, more preferably 70. % Or better.
- the volume content of the high-strength fibers 102 is 50% or less, more preferably 40. % Or less is preferable.
- each core divided body 26 is a rectangle.
- Other configurations and manufacturing methods are the same as those in the embodiment 43 or 44.
- the cross section of the 101a part of FIG. 103 is the same as that of FIG. 91 or FIG. 103 is the same as FIG. 92, FIG. 96, or FIG.
- FIG. 104 is a sectional view of the elevator suspension according to Embodiment 49 of the present invention.
- the cross-sectional shape of each core split body 26 is circular.
- Other configurations and manufacturing methods are the same as those in the forty-eighth embodiment.
- the cross section of the 101a part of FIG. 104 is the same as that of FIG. 91 or FIG.
- the cross section of 101b part of FIG. 104 is the same as that of FIG. 92, FIG. 96 or FIG.
- FIG. 105 is a cross-sectional view of an elevator suspension according to Embodiment 50 of the present invention.
- the core 21 is divided not only in the width direction but also in the thickness direction.
- the core division body 26 is arrange
- the cross section of the 101a part of FIG. 105 is the same as that of FIG. 91 or FIG.
- the cross section of the 101b part of FIG. 105 is the same as that of FIG. 92, FIG. 96 or FIG.
- Such a suspended body can further reduce the scale of equipment for manufacturing the load support layer 23.
- the suspension body is more easily bent.
- FIG. 106 is a cross sectional view of the elevator suspension according to Embodiment 51 of the present invention.
- the core 21 of the embodiment 51 has six first core divided body rows and five second core divided body rows.
- Each first core divided body row includes three core divided bodies 26 arranged in the thickness direction (Y-axis direction) of the core 21. Further, the first core divided body rows are arranged at intervals in the width direction (X-axis direction) of the core 21.
- the second core divided body row is arranged between the adjacent first core divided body rows.
- Each second core divided body row includes two core divided bodies 26 arranged in the thickness direction of the core 21.
- the core divided body 26 of the second core divided body row is arranged so as to be shifted in the thickness direction of the core 21 with respect to the core divided body 26 of the first core divided body row.
- each core divided body 26 is circular. Other configurations and manufacturing methods are the same as those in the embodiment 50.
- the cross section of the 101a part of FIG. 106 is the same as that of FIG. 91 or FIG.
- the cross section of 101b part of FIG. 106 is the same as that of FIG. 92, FIG. 96 or FIG.
- FIG. 107 is a cross-sectional view of an elevator suspension according to Embodiment 52 of the present invention
- FIG. 108 is an enlarged cross-sectional view of 101f portion of FIG. 107
- FIG. 109 is an enlarged view of 101g portion of FIG. It is sectional drawing shown.
- the portion 101f in FIG. 107 is located at the center in the width direction of the load support layer 23.
- a 101 g portion in FIG. 108 is located at an end portion in the width direction of the load support layer 23.
- the density of the high-strength fibers 102 at the center in the width direction of the load support layer 23 is higher than the density of the high-strength fibers 102 at both ends in the width direction of the load support layer 23. Further, the density of the high-strength fibers 102 continuously decreases from the center portion in the width direction of the load support layer 23 toward both end portions in the width direction of the load support layer 23.
- the volume content of the high-strength fibers 102 is 60% or more, more preferably 70%. It is good to be above.
- the volume content of the high-strength fibers 102 is 50% or less, more preferably 40%.
- the following is preferable.
- Other configurations and manufacturing methods are the same as those in the forty-third embodiment.
- Embodiment 52 may be combined with the embodiment 43. That is, in Embodiment 52, the density of the high-strength fibers 102 at both ends in the thickness direction of the load support layer 23 may be lower than the density of the high-strength fibers 102 at the center in the thickness direction.
- a layer made of only the impregnating resin 103 may be provided at both ends in the width direction of the load support layer 23.
- FIG. 110 is an enlarged cross-sectional view showing a center portion in the width direction of the load support layer 23 according to Embodiment 53 of the present invention
- FIG. 111 shows an end portion in the width direction of the load support layer 23 according to Embodiment 53. It is sectional drawing which expands and shows. The cross section of the entire suspension is the same as that shown in FIG.
- the density of the high-strength fibers 102 at the center portion in the width direction of the load support layer 23 is changed to the high-strength fibers 102 at both ends in the width direction of the load support layer 23 by the same method as in the embodiment 44. It is higher than the density.
- Other configurations and manufacturing methods are the same as those in the embodiment 52.
- FIG. 112 is a sectional view of an elevator suspension according to Embodiment 12 of the present invention.
- the core 21 of the embodiment 54 is divided into a plurality of first core divided bodies 26a and a plurality of second core divided bodies 26b.
- the cross-sectional shape of each core division body 26a, 26b is circular.
- the cross-sectional areas of the core divided bodies 26a and 26b are the same.
- the high-strength fibers in the core divided bodies 26a and 26b are arranged in a spirally twisted state.
- a step of twisting a bundle of high-strength fiber groups in the circumferential direction around the center of the cross section perpendicular to the length direction may be added before the core 21 is formed.
- FIG. 113 is a plan view showing the first core divided body 26a of FIG. 112
- FIG. 114 is a plan view showing the second core divided body 26b of FIG.
- the twist directions of the high-strength fibers are opposite.
- the first core divided bodies 26a and the second core divided bodies 26b are alternately arranged in the width direction of the core 21.
- the density of the high-strength fibers in the cross section perpendicular to the length direction of each core divided body 26a, 26b may be uniform or may decrease from the central portion toward the radially outer side.
- Other configurations and manufacturing methods are the same as those in the forty-ninth embodiment.
- the strength and rigidity in the oblique direction can be improved, and a structure that is more resistant to twisting can be obtained.
- the first core divided bodies 26a and the second core divided bodies 26b are alternately arranged, but the first core is located on one side in the width direction with respect to the center in the width direction of the core 21.
- the divided body 26a may be arranged, and the second core divided body 26b may be arranged on the other side in the width direction.
- the number of the first core divided bodies 26a and the number of the second core divided bodies 26b are preferably the same.
- FIG. 115 is a cross-sectional view of an elevator suspension according to Embodiment 55 of the present invention
- FIG. 116 is a plan view showing the core divided body 26 of FIG.
- the high-strength fibers in the interior 105a of the load support layer 23 in each core divided body 26 are arranged in parallel to the length direction of the core 21.
- the density of the high-strength fibers in the interior 105a may be uniform or may be changed as in any of the above embodiments.
- the high-strength fibers in the outer peripheral portion 105 b of the load support layer 23 in each core divided body 26 are arranged in a direction intersecting with the length direction of the core 21.
- the high-strength fibers in the outer peripheral portion 105b are arranged in a woven shape. That is, the high-strength fibers in the outer peripheral portion 105 b are arranged obliquely with respect to the length direction of the core 21.
- Other configurations and manufacturing methods are the same as those in the forty-eighth embodiment.
- the high-strength fibers in the interior 105a occupying most of the cross-sectional area are arranged along the Z-axis direction.
- high-strength fibers are arranged in a woven shape.
- the strength in the oblique direction can be improved. Further, by wrapping the high-strength fibers in the interior 105a aligned in one direction with the high-strength fibers arranged in a woven shape, the entire high-strength fibers can be integrated and passed through the manufacturing process. Thereby, shaping becomes relatively easy.
- FIG. 117 is a cross-sectional view of an elevator suspension according to Embodiment 56 of the present invention.
- the cross-sectional shape of the core divided body 26 of the embodiment 55 is made circular.
- Other configurations and manufacturing methods are the same as those in the embodiment 55.
- the high-strength fibers in the interior 105a of the core split body 26 of the 56th embodiment can be arranged in a spirally twisted state as in the 54th embodiment.
- FIG. 118 is a sectional view of a suspension body for an elevator according to Embodiment 57 of the present invention.
- the first resin layer 107 and the second resin layer 108 are interposed between the adjacent core divided bodies 26.
- the first resin layer 107 is made of the same material as the impregnating resin of the load support layer 23.
- the second resin layer 107 is made of the same material as the coating layer 22.
- the first plate made of the same material as the impregnating resin and the second plate made of the same material as the covering layer 22 are arranged between the adjacent core divided bodies 26. It arranges continuously along the direction. And the 1st resin layer 107 and the 2nd resin layer 108 are formed by integrating the core division body 26 and the 1st and 2nd plate.
- the density of the high-strength fibers in each core divided body 26 may be uniform or may be changed as in any of the above embodiments. Other configurations and manufacturing methods are the same as those in the forty-eighth embodiment.
- the core divided body 26 is integrated via the first and second resin layers 107 and 108, the core 21 is easily bent in the Z-axis rotation direction, and the surface of the drive sheave 6 is It becomes easier to adhere.
- the core split body 26 of the 57th embodiment may be configured in the same manner as the 55th embodiment.
- FIG. 119 is a cross-sectional view of an elevator suspension according to Embodiment 58 of the present invention
- FIG. 120 is an enlarged cross-sectional view of a portion 113 in FIG. Core 21 of the embodiment 58 is constituted only by load support layer 23.
- the load support layer 23 includes an impregnating resin 103, a plurality of first high-strength fiber bundles 114a, and a plurality of second high-strength fiber bundles 114b.
- the first and second high-strength fiber bundles 114 a and 114 b are arranged along the length direction of the core 21.
- FIG. 121 is a plan view showing the first high-strength fiber bundle 114a in FIG. 119
- FIG. 122 is a plan view showing the second high-strength fiber bundle 114b in FIG.
- a plurality of high strength fibers are arranged in a spiral state.
- the twist direction of the high-strength fibers in the first high-strength fiber bundle 114a is opposite to the twist direction of the high-strength fibers in the second high-strength fiber bundle 114b.
- the number of the first high-strength fiber bundles 114a and the number of the second high-strength fiber bundles 114b are the same. Further, it is preferable that the first high-strength fiber bundle 114 a and the second high-strength fiber bundle 114 b are evenly distributed in a cross section perpendicular to the length direction of the core 21. 120, the layers of the first high-strength fiber bundle 114a and the layers of the second high-strength fiber bundle 114b are alternately arranged in the thickness direction of the core 21.
- the suspension body of Embodiment 58 can be manufactured by winding high-strength fiber bundles 114a and 114b twisted around a plurality of bobbins shown in FIG. Further, the suspension body of the embodiment 58 can also be manufactured by twisting the high-strength fiber bundles coming out of the plurality of bobbins and collecting them. In this case, the high-strength fiber bundle may be twisted by rotating the bobbin. Other configurations and manufacturing methods are the same as those in the forty-third embodiment.
- the high-strength fibers are also arranged obliquely with respect to the length direction of the core 21, the strength against torsional deformation can be improved.
- the twist directions of the first and second high-strength fiber bundles 114a and 114b are different from each other, the strength of the suspension body against torsional deformation in both directions can be improved.
- the impregnating resin 103 is interposed between the adjacent first high-strength fiber bundle 114a and the second high-strength fiber bundle 114b, the first high-strength fiber bundle 114a and the second high-strength fiber bundle 114b are interposed.
- the strength fiber bundle 114b rarely comes into contact with each other. However, even if impregnated resin 103 is impregnated, some high-strength fiber bundles 114a and 114b may contact each other.
- the suspension applied to the elevator is repeatedly bent, the impregnated resin 103 is fatigued, and contact between the first high-strength fiber bundle 114a and the second high-strength fiber bundle 114b occurs.
- the high-strength fibers on the respective surfaces do not intersect but contact each other in a parallel or almost parallel state. For this reason, the contact stress which arises in the high strength fiber of a surface can be lowered
- twist directions of all high-strength fiber bundles may be the same.
- a high-strength fiber bundle or high-strength fiber that is not twisted and a high-strength fiber bundle that is twisted may be mixed.
- the core 21 of the 58th embodiment may be divided into a plurality of core divided bodies 26 as shown in FIG. 103, 104, 105, or 106.
- each core divided body 26 is divided into a plurality of core divided bodies 26, a twist is applied to each core divided body 26 as shown in FIG. 112, or the outer peripheral portion 105b as shown in FIG. 115 or 117.
- a high-strength fiber in the form of a woven fabric may be disposed, or the first and second resin layers 107 and 108 may be interposed between the core divided bodies 26 as shown in FIG.
- FIG. 123 is a cross sectional view of the elevator suspension according to Embodiment 59 of the present invention.
- the core 21 of the 59th embodiment is constituted only by the load support layer 23.
- the load support layer 23 includes an impregnating resin 103, a plurality of first high-strength fiber bundles 114a, and a plurality of second high-strength fiber bundles 114b.
- the high-strength fiber bundles 114 a and 114 b are arranged along the length direction of the core 21.
- Each high-strength fiber bundle 114a, 114b is formed by twisting a plurality of high-strength fibers 115. Impregnating resin 103 is impregnated between adjacent high-strength fibers 115.
- the cross-sectional shape perpendicular to the length direction of each high-strength fiber bundle 114a, 114b is a rectangle.
- All the first high-strength fiber bundles 114a are twisted in the same direction as shown in FIG.
- All the second high-strength fiber bundles 114b are twisted in the same direction as shown in FIG.
- All the second high-strength fiber bundles 114b are twisted in the opposite direction to the first high-strength fiber bundle 114a.
- the plurality of high-strength fiber bundles 114 a and 114 b are arranged adjacent to each other in the cross section of the load support layer 23.
- the first high-strength fiber bundle 114a and the second high-strength fiber bundle 114b are alternately arranged in the width direction and the thickness direction of the core 21. . That is, the high-strength fiber bundles 114a and 114b adjacent to each other have twist directions opposite to each other.
- Other configurations are the same as in the 58th embodiment.
- Such an elevator suspension can also reduce the stress generated in the load support layer 23 when bent.
- first high-strength fiber bundles 114a and the second high-strength fiber bundles 114b are alternately arranged, the twists of the adjacent high-strength fiber bundles 114a and 114b are in opposite directions at any location. . For this reason, the strength reduction by the intersection of the high-strength fibers 115 can be suppressed.
- FIG. 126 is a schematic diagram three-dimensionally showing the fiber direction when two first high-strength fiber bundles 114a are adjacent to each other.
- the fiber directions intersect at the surface where the first high-strength fiber bundles 114a contact each other.
- the strength of the high-strength fibers 115 decreases at the intersection, leading to a decrease in the strength of the suspension itself.
- the strength of the high-strength fibers 115 decreases at the intersection.
- FIG. 127 is a schematic diagram three-dimensionally showing the fiber direction when the first high-strength fiber bundle 114a and the second high-strength fiber bundle 114b are adjacent to each other.
- the fiber directions are parallel on the surface where the first high-strength fiber bundle 114a and the second high-strength fiber bundle 114b are in contact. Therefore, the high strength fibers 115 do not intersect with each other, and the strength reduction of the high strength fibers 115 can be suppressed.
- each high-strength fiber bundle 114a, 114b is a rectangle. For this reason, the volume content of the high-strength fibers 115 can be increased, and the strength of the load support layer 23 as a whole can be improved.
- the first high-strength fiber bundle 114a and the second high-strength fiber bundle 114b are alternately arranged in the width direction and the thickness direction of the core 21. For this reason, the intersection of the high-strength fibers 115 does not occur on all the contact surfaces of the first high-strength fiber bundle 114a and the second high-strength fiber bundle 114b. Therefore, the strength reduction of the high strength fiber 115 can be more effectively suppressed.
- each of the high-strength fiber bundles 114a and 114b has a rectangular cross section, but the corners of the cross section strictly have a certain curvature. For this reason, the area
- the region 116 can be reduced and the volume content of the high-strength fibers 115 can be improved.
- FIG. 129 is a schematic configuration diagram showing a main part of the suspension body manufacturing apparatus according to the 59th embodiment.
- the manufacturing apparatus of the embodiment 59 has a fiber bundle positioning device 67, a resin impregnation device 68, a thermoforming device 59, a drawing device 60, and a winding device 61.
- FIG. 129 shows only two first high-strength fiber bundles 114a and one second high-strength fiber bundle 114b for simplicity.
- the plurality of first high-strength fiber bundles 114 a and the plurality of second high-strength fiber bundles 114 b drawn from the bobbin are drawn into the fiber bundle positioning device 67 and the resin impregnation device 68 by the drawing device 60.
- the fiber bundle positioning device 67 is disposed on the upstream side of the resin impregnation device 68. Further, the fiber bundle positioning device 67 and the resin impregnation device 68 are integrated.
- the fiber bundle positioning device 67 is provided with a plurality of fiber bundle passage holes 67a.
- the plurality of fiber bundle passage holes 67a are arranged in a lattice pattern.
- the plurality of first high-strength fiber bundles 114a and the plurality of second high-strength fiber bundles 114b are passed through the corresponding fiber bundle passage holes 67a so as to be arranged as shown in FIG. Further, only one of the plurality of high-strength fiber bundles 114a and 114b is passed through one fiber bundle passage hole 67a.
- the plurality of first high-strength fiber bundles 114 a and the plurality of second high-strength fiber bundles 114 b positioned by the fiber bundle positioning device 67 are impregnated in the impregnation mold of the resin impregnation device 68. At this time, since it is necessary to sufficiently impregnate the impregnating resin 103 between the narrow high-strength fibers 115, it is desirable that the impregnating resin 103 has a low viscosity.
- thermoforming device 59 the plurality of first high-strength fiber bundles 114 a and the plurality of second high-strength fiber bundles 114 b are drawn into the thermoforming device 59 by the drawing device 60.
- the impregnating resin 103 is cured by being heated.
- the load support layer 23 is formed.
- the load support layer 23 is wound around the winding device 61.
- the outer periphery of the load support layer 23 is covered with the coating layer 22 to complete the suspension.
- the resin constituting the covering layer 22 the resin described in the first embodiment can be used.
- the fiber bundle positioning device 67 and the resin impregnation device 68 may be independent as separate jigs.
- the suspension body manufacturing method according to Embodiment 59 includes a feeding process, a positioning process, an impregnation process, a thermoforming process, and a coating process.
- the feeding process is a process of feeding a plurality of high-strength fiber bundles 114a and 114b from the corresponding bobbins.
- the positioning step is a step of positioning the plurality of high-strength fiber bundles 114a and 114b through the corresponding high-strength fiber bundles 114a and 114b through the plurality of fiber bundle passage holes 67a.
- the plurality of high-strength fiber bundles 114a and 114b and the plurality of fiber bundle passage holes 67a are associated with each other at a ratio of 1: 1.
- the second high-strength fiber bundle 114b is passed through the fiber bundle passage hole 67a located next to the fiber bundle passage hole 67a through which the first high-strength fiber bundle 114a is passed.
- the first high-strength fiber bundle 114a is passed through the fiber bundle passage hole 67a located next to the fiber bundle passage hole 67a through which the second high-strength fiber bundle 114b is passed.
- the impregnation step is a step of impregnating a plurality of high-strength fiber bundles 114a and 114b with an impregnation resin.
- the thermoforming process is a process of forming the load support layer 23 by thermoforming a plurality of high-strength fiber bundles 114a and 114b impregnated with resin.
- the covering step is a step of forming a covering layer 22 that covers at least a part of the outer periphery of the load support layer 23.
- the plurality of high-strength fiber bundles 114a and 114b are positioned by passing the plurality of fiber bundle passage holes 67a. For this reason, the plurality of first high-strength fiber bundles 114a and the plurality of second high-strength fiber bundles 114b can be easily arranged at desired positions.
- the plurality of fiber bundle passage holes 67a are arranged in a lattice shape, the plurality of high-strength fiber bundles 114a and 114b can be stably arranged in the lattice shape.
- each of the plurality of high-strength fiber bundles 114a and 114b and the plurality of fiber bundle passage holes 67a are associated with each other at 1: 1, each of the plurality of high-strength fiber bundles 114a and 114b can be easily placed at a desired position. Can be arranged.
- first high-strength fiber bundle 114a is passed through one of the fiber bundle passage holes 67a adjacent to each other, and the second high-strength fiber bundle 114b is passed through the other. For this reason, the first high-strength fiber bundle 114a and the second high-strength fiber bundle 114b can be easily arranged alternately.
- FIG. FIG. 131 is an enlarged cross-sectional view showing a part of the elevator suspension according to the sixty-sixth embodiment of the present invention.
- the entire suspension has the same cross section as FIG. 131 shows a cross section of a portion corresponding to the portion 124 in FIG.
- the cross-sectional shapes perpendicular to the length direction of the plurality of high-strength fiber bundles 114a and 114b are rhombuses, respectively.
- one of the two diagonal lines having a cross section perpendicular to the length direction of each of the high strength fiber bundles 114 a and 114 b is parallel to the thickness direction of the core 21.
- each first high-strength fiber bundle 114a and the second high-strength fiber bundle 114b adjacent thereto is inclined with respect to the thickness direction and the width direction of the core 21.
- Other configurations and manufacturing methods are the same as those in the embodiment 59.
- a shearing force acts on a plane perpendicular to the thickness direction of the suspension, that is, a plane parallel to the XZ plane in FIG.
- the driving sheave 6 is provided with a crowning, the suspension body is bent in the width direction, and a shearing force acts on a plane perpendicular to the width direction, that is, a plane parallel to the YZ plane in FIG.
- the load supporting layer 23 is configured by bundling a plurality of twisted high-strength fiber bundles 114a and 114b, compared to the inside of each high-strength fiber bundle 114a and 114b, between each high-strength fiber bundle 114a and 114b.
- the boundary surface is easier to break.
- the boundary surface between the high-strength fiber bundles 114a and 114b and the working surface of the shearing force are different.
- shear failure at the interface between the high-strength fiber bundles 114a and 114b hardly occurs, and the strength against bending can be improved.
- FIG. 132 is an enlarged cross-sectional view showing a part of the elevator suspension according to Embodiment 61 of the present invention, and the entire suspension is similar in cross section to FIG.
- FIG. 132 shows a cross section of a portion corresponding to part 124 in FIG.
- the cross-sectional shapes perpendicular to the length direction of the plurality of high-strength fiber bundles 114a and 114b are each circular.
- Other configurations and manufacturing methods are the same as those in the embodiment 59.
- each high-strength fiber bundle 114a, 114b shown in FIG. 132 is when the aspect ratio is 1, and the radius of curvature of the corner shown in FIG. 128 is half the width of each high-strength fiber bundle 114a, 114b. Equivalent to.
- each high-strength fiber bundle 114a, 114b is circular
- the curvature of the high-strength fiber 115 by twisting is constant over the entire length direction of each high-strength fiber bundle 114a, 114b.
- the bending degree of the high-strength fiber 115 does not become extremely large at a specific location, and damage to the high-strength fiber 115 due to bending can be suppressed.
- Embodiments 59 to 61 may be appropriately combined with the configurations of the other embodiments.
- the core 21 of the embodiments 59 to 61 may be divided into a plurality of core divided bodies 26 as shown in FIG. 103, 104, 105, or 106.
- the core 21 of the embodiments 59 to 61 is divided into a plurality of core divided bodies 26, as shown in FIG. 115 or 117, woven high-strength fibers are arranged on the outer peripheral portion 105b, or as shown in FIG. In this manner, the first and second resin layers 107 and 108 may be interposed between the core divided bodies 26.
- a lubricant may be included in at least one of the coating layer 22 and the load support layer 23 of the embodiments 59 to 61. In this case, depending on the position in the length direction of the suspension body, there may be a portion including the lubricant and a portion not including the lubricant.
- both end portions in the width direction of the core 21 of Embodiments 59 to 61 may be exposed from the coating layer 22 to the outside.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Structural Engineering (AREA)
- Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
- Ropes Or Cables (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
エレベータの懸架体は、コアと、コアの外周の少なくとも一部を覆っている被覆層とを有している。コアは、荷重支持層を有している。荷重支持層は、含浸樹脂と、複数の高強度繊維束とを含んでいる。複数の高強度繊維束は、同じ方向に撚られている複数の第1の高強度繊維束と、第1の高強度繊維束とは反対方向に撚られている複数の第2の高強度繊維束とを含んでいる。コアの長さ方向に直角な断面を見て、第1の高強度繊維束と第2の高強度繊維束とは、交互に配置されている。
Description
この発明は、かごがベルト状の懸架体により吊り下げられているエレベータ、及びその懸架体の構造、及びその懸架体の製造方法に関するものである。
従来の強化繊維を用いた巻上機のロープでは、荷重支持部は、ポリママトリックス及び強化繊維により構成されている。強化繊維としては、炭素繊維又はガラス繊維が用いられている。また、強化繊維は、ポリママトリックス内に均一に分散されており、かつロープの長手方向に平行に配置されている(例えば、特許文献1参照)。
このような強化繊維を用いたロープは、鋼線を撚ったワイヤロープに比べて、重量あたりの破断強度が高い。そのため、特に長いロープが必要となる高層エレベータでは、ロープ全体の重量を低減でき、巻上機の駆動負担を低減することができる。
しかし、上記のような従来のロープは、柔軟性に乏しいため、巻上機の駆動シーブに沿って曲げ難いだけでなく、曲げられることで内部の応力が高くなり、破断する恐れがある。これを避けるためには、駆動シーブの直径を大きくする必要がある。
この発明は、上記のような課題を解決するためになされたものであり、曲げられたときに懸架体の荷重支持層に生じる応力を低減することができるエレベータ、その懸架体、及びその製造方法を得ることを目的とする。
この発明に係るエレベータの懸架体は、含浸樹脂と、複数の高強度繊維束とを含む荷重支持層を有しているコア、及びコアの外周の少なくとも一部を覆っている被覆層を備え、複数の高強度繊維束は、同じ方向に撚られている複数の第1の高強度繊維束と、第1の高強度繊維束とは反対方向に撚られている複数の第2の高強度繊維束とを含んでおり、コアの長さ方向に直角な断面を見て、第1の高強度繊維束と第2の高強度繊維束とが交互に配置されている。
また、この発明に係るエレベータの懸架体の製造方法は、複数の高強度繊維束を、それぞれ対応するボビンから繰り出す繰り出し工程、繊維束位置決め装置に設けられている複数の繊維束通過孔のそれぞれに、対応する高強度繊維束を通し、複数の高強度繊維束の位置決めを行う位置決め工程、複数の高強度繊維束に含浸樹脂を含浸させる含浸工程、樹脂含浸された複数の高強度繊維束を加熱成形して荷重支持層を形成する加熱成形工程、及び荷重支持層の外周の少なくとも一部を覆う被覆層を形成する被覆工程を含む。
また、この発明に係るエレベータの懸架体の製造方法は、複数の高強度繊維束を、それぞれ対応するボビンから繰り出す繰り出し工程、繊維束位置決め装置に設けられている複数の繊維束通過孔のそれぞれに、対応する高強度繊維束を通し、複数の高強度繊維束の位置決めを行う位置決め工程、複数の高強度繊維束に含浸樹脂を含浸させる含浸工程、樹脂含浸された複数の高強度繊維束を加熱成形して荷重支持層を形成する加熱成形工程、及び荷重支持層の外周の少なくとも一部を覆う被覆層を形成する被覆工程を含む。
この発明のエレベータ、その懸架体、及びその製造方法は、曲げられたときに懸架体の荷重支持層に生じる応力を低減することができる。
以下、この発明を実施するための形態について、図面を参照して説明する。
実施の形態1.
図1はこの発明の実施の形態1によるエレベータを示す構成図である。図において、昇降路1の上部には、機械室2が設けられている。機械室2には、巻上機3、そらせ車4、及びエレベータ制御装置5が設置されている。巻上機3は、駆動シーブ6と、駆動シーブ6を回転させる巻上機モータ(図示せず)と、駆動シーブ6の回転を制動する巻上機ブレーキ(図示せず)とを有している。
実施の形態1.
図1はこの発明の実施の形態1によるエレベータを示す構成図である。図において、昇降路1の上部には、機械室2が設けられている。機械室2には、巻上機3、そらせ車4、及びエレベータ制御装置5が設置されている。巻上機3は、駆動シーブ6と、駆動シーブ6を回転させる巻上機モータ(図示せず)と、駆動シーブ6の回転を制動する巻上機ブレーキ(図示せず)とを有している。
駆動シーブ6及びそらせ車4には、複数本(図1では1本のみ示す)の懸架体7が巻き掛けられている。各懸架体7は、昇降体としてのかご8に接続されている第1の端部7aと、昇降体としての釣合おもり9に接続されている第2の端部7bとを有している。
かご8及び釣合おもり9は、1:1ローピング方式で懸架体7により吊り下げられている。また、かご8及び釣合おもり9は、駆動シーブ6を回転させることにより昇降路1内を昇降する。エレベータ制御装置5は、巻上機3を制御することにより、かご8の運行を制御する。
昇降路1内には、一対のかごガイドレール(図示せず)及び一対の釣合おもりガイドレール(図示せず)が設置されている。かごガイドレールは、かご8の昇降を案内する。釣合おもりガイドレールは、釣合おもり9の昇降を案内する。
かご8は、かご枠10及びかご室11を有している。懸架体7は、かご枠10に接続されている。かご室11は、かご枠10に支持されている。
図2は図1の懸架体7の長さ方向(図2のZ軸方向)に直角な断面を模式的に示す断面図である。懸架体7は、厚さ方向(図2のY軸方向)の寸法が幅方向(図2のX軸方向)の寸法よりも小さいベルト状である。即ち、懸架体7は、いわゆるフラットベルトである。
また、懸架体7は、厚さ方向のいずれか一方の端面であるシーブ接触面7cを有している。シーブ接触面7cは、懸架体7が駆動シーブ6に巻き掛けられたときに駆動シーブ6の外周面に接触する。即ち、懸架体7は、駆動シーブ6を通過する際、シーブ接触面7cが内側となるように駆動シーブ6の外周面に沿って曲げられる。
懸架体7は、ベルト状のコア21と、コア21の全周を覆っている被覆層22とを有している。
被覆層22の材料としては、ポリエチレン、ポリプロピレン、ポリアミド6(PA6)、ポリアミド12(PA12)、ポリアミド66(PA66)、ポリカーボネート、ポリエーテルエーテルケトン、ポリフェニレンサルファイドなどの熱可塑性樹脂を用いることができる。
また、被覆層22の材料として、オレフィン系、スチレン系、塩ビ系、ウレタン系、ポリエステル系、ポリアミド系、フッ素系、又はブタジエン系の熱可塑性エラストマーを用いることもできる。
さらに、被覆層22の材料として、ブタジエンゴム、スチレン・ブタジエンゴム、クロロプレンゴム、アクリルゴム、ウレタンゴム、シリコーンゴムなとの熱硬化性エラストマー(ゴム)を用いてもよい。
さらにまた、被覆層22の材料として、炭素繊維、ガラス繊維、アラミド繊維、PBO(ポリ-パラフェニレンベンゾビスオキサゾール)繊維、又は玄武岩繊維を用いてもよい。また、繊維と樹脂との複合材料であってもよい。
被覆層22の材料としては、耐熱性及び耐摩耗性が高い材料が好ましい。被覆層22の材料を変更することで、懸架体7と駆動シーブ6との間の摩擦係数を調整することができる。
コア21は、荷重支持層23と、複数の中間層24とを有している。荷重支持層23は、コア21の厚さ方向、即ち懸架体7の厚さ方向に複数に分割されている。即ち、荷重支持層23は、コア21の厚さ方向に互いに間隔をおいて配置されている複数の分割層25により構成されている。
中間層24は、被覆層22及び荷重支持層23とは異なる材料からなっている。また、中間層24は、コア21の厚さ方向に隣り合う分割層25の間に介在している。即ち、分割層25及び中間層24は、コア21の厚さ方向に交互に積層されている。この例では、荷重支持層23が3層の分割層25に分割されている。このため、2層の中間層24が用いられている。
また、中間層24は、コア21の厚さ方向に隣り合う分割層25の間の全体に介在していてもよいし、屈曲部のみに介在してもよい。これにより、隣り合う分割層25同士は直接接しておらず、また隣り合う分割層25の間には被覆層22が入り込んでいない。
荷重支持層23は、懸架体7に作用する荷重を主として支持する層である。また、荷重支持層23は、含浸樹脂と、含浸樹脂内に設けられている高強度繊維群とを含んでいる。
高強度繊維群は、コア21の長さ方向(図2のZ軸方向)に沿って配置された複数の高強度繊維を含んでいる。また、高強度繊維群は、コア21の長さ方向に沿って配置された高強度繊維を含む高強度繊維の織物又は組み紐であってもよい。
高強度繊維は、軽量で高強度な繊維である。高強度繊維としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、PBO(ポリ-パラフェニレンベンゾビスオキサゾール)繊維、又は玄武岩繊維を用いることができる。また、高強度繊維として、これらの繊維を組み合わせた複合繊維を用いてもよい。
荷重支持層23の含浸樹脂としては、ポリウレタン、エポキシ、不飽和ポリエステル、ビニルエステル、フェノール、シリコーンなどの熱硬化性樹脂を用いることができる。
また、含浸樹脂として、ポリエチレン、ポリプロピレン、ポリアミド6(PA6)、ポリアミド12(PA12)、ポリアミド66(PA66)、ポリカーボネート、ポリエーテルエーテルケトン、ポリフェニレンサルファイドなどの熱可塑性樹脂を用いることもできる。
さらに、含浸樹脂は、グリース、油などの潤滑材を含むことができる。また、含浸樹脂の代わりにグリースなどの潤滑材を用いてもよい。
特に、含浸樹脂としては、高強度繊維との接着性が良い樹脂が好ましい。含浸樹脂として弾性率の低い樹脂を用いれば、懸架体7の曲げ剛性をより低くすることができる。一方、含浸樹脂として弾性率の高い樹脂を用いれば、高強度繊維を強固に一体化して懸架体7の強度のばらつきを低減することができる。
中間層24のせん断剛性は、分割層25のせん断剛性よりも低い。中間層24の材料としては、ポリウレタン、エポキシ、不飽和ポリエステル、ビニルエステル、フェノール、シリコーンなどの熱硬化性樹脂を用いることができる。
また、中間層24の材料として、ポリエチレン、ポリプロピレン、ポリアミド6(PA6)、ポリアミド12(PA12)、ポリアミド66(PA66)、ポリカーボネート、ポリエーテルエーテルケトン、ポリフェニレンサルファイドなどの熱可塑性樹脂を用いることもできる。
このようなエレベータの懸架体7では、荷重支持層23がコア21の厚さ方向に分割されており、隣り合う分割層25の間に中間層24が介在しているので、中間層24の材料の選択により、コア21の曲げ易さを改善することができる。また、コア21が曲げられたときに最内層に位置する分割層25及び最外層に位置する分割層25の応力を緩和することができる。これにより、駆動シーブ6の直径を小さくすることもできる。
また、中間層24のせん断剛性を分割層25のせん断剛性よりも低くしたので、コア21が曲げられたときに中間層24がせん断方向(図2のZ軸方向)へ変形し易くなる。これにより、コア21が曲げられたときに最内層に位置する分割層25及び最外層に位置する分割層25の応力をより確実に緩和することができる。
図3は図2の断面構造を有する懸架体7の断片を折り曲げた状態を示す断面図であり、懸架体7の長さ方向に沿う断面(YZ断面)を示している。また、図4は図3のIV部を拡大して示す断面図である。図4に示すように、懸架体7が曲げられたとき、中間層24がコア21の長さ方向にせん断変形し、懸架体7の屈曲性が向上する。
なお、分割層25の層数は、3層に限定されるものではなく、例えば図5に示すように4層であってもよい。即ち、分割層25の層数は、2層以上であれば何層であってもよい。分割層25の層数をnとすると、中間層24の層数はn-1となる。
また、中間層24のせん断弾性率は、被覆層22のせん断弾性率よりも低くすることが望ましい。これにより、分割層25間がよりせん断変形し易くなり、懸架体7の屈曲性がさらに向上する。また、コア21が曲げられたときに荷重支持層23に生じる応力をさらに低減することができる。
さらに、中間層24の材料の圧縮剛性は、荷重支持層23の材料の圧縮剛性よりも低くすると、懸架体7が駆動シーブ6を通過する際に、断面を圧縮する方向の荷重を懸架体7が受け、圧縮荷重を受けた部分の厚みが薄くなり、懸架体7が曲がり易くなる。
さらにまた、中間層24は、分割層25よりも弾性率の低い特性を持つエラストマー材料で構成してもよい。エラストマー材料としては、例えば、オレフィン系、スチレン系、塩ビ系、ウレタン系、ポリエステル系、ポリアミド系、フッ素系、又はブタジエン系の熱可塑性エラストマーを用いることができる。また、エラストマー材料として、ブタジエンゴム、スチレン・ブタジエンゴム、クロロプレンゴム、アクリルゴム、ウレタンゴム、シリコーンゴムなどの熱硬化性エラストマー(ゴム)を用いることもできる。
また、中間層24の材料として、固体と液体との中間的な性質を併せ持つ高分子ゲルを用いてもよい。
さらに、中間層24の材料として、液体潤滑材、半固体潤滑材、固体潤滑材等の潤滑材を用いてもよい。液体潤滑材としては、例えば潤滑油が挙げられる。半固体潤滑材としては、例えばグリースが挙げられる。固体潤滑材としては、例えば、グラファイト、二硫化タングステン、二硫化モリブデン、又はポリテトラフルオロエチレンが挙げられる。
さらにまた、中間層24は、荷重支持層23と接着されない低摩擦のシートで構成されていてもよい。シートとしては、例えば、オレフィン系シート、フッ素系シート、ポリエステル系シート、又はポリアミド系シートを用いることができる。
オレフィン系シートの材料としては、例えばポリエチレン又はポリプロピレンが挙げられる。フッ素系シートの材料としては、例えばポリテトラフルオロエチレンが挙げられる。ポリエステル系シートの材料としては、例えばポリエチレンテレフタレートが挙げられる。ポリアミド系シートの材料としては、例えば6ポリアミドが挙げられる。
また、シートは、複数層重ねて配置することができ、さらには、液体潤滑材、半固体潤滑材、及び、固体潤滑材を併用して使用することができる。例えば、固体潤滑材のシートの表面に液体潤滑材を配置した構成が考えられる。このような潤滑材を用いることにより、中間層24におけるせん断抵抗を低下させることができ、懸架体7の屈曲性が向上する。
さらに、中間層24の材料として、分割層25に比べて、柔軟かつ圧縮方向のクッション性に富んだ材料を用いてもよい。このような材料としては、例えば、高分子発泡体が挙げられる。高分子発泡体としては、例えば、ポリウレタン発泡体、ポリエチレン発泡体、ポリエチレンテレフタレート発泡体、ポリプロピレン発泡体、アクリル発泡体、ポリスチレン発泡体、フェノール発泡体、シリコーン発泡体、又はEVA発泡体が挙げられる。
このような圧縮方向のクッション性に富んだ材料を用いることにより、かご8の運転時の振動及び衝撃を吸収することができる。また、懸架体7が張力を受けた際、懸架体7の駆動シーブ6に接する部分が厚み方向に圧縮され、その部分の厚みが薄くなるため、懸架体7が曲げ変形し易くなる。
また、中間層24内に繊維(以下、中間層繊維と称する)を含んでもよい。この場合の中間層繊維の形態は、コア21の長さ方向に連続した連続繊維が好ましいが、長繊維又は短繊維でも構わない。中間層24内に中間層繊維を入れることで、中間層24の圧縮方向、即ち厚さ方向の変形を抑制できるため、圧縮荷重を受けたときの分割層25の屈曲による応力集中を緩和することができる。
さらに、中間層24内に中間層繊維を入れる場合、荷重支持層23内でコア21の長さ方向に沿って配置されている高強度繊維の繊維密度又は弾性率よりも、中間層24内でコア21の長さ方向に沿って配置されている中間層繊維の繊維密度又は弾性率を低くするのが好適である。
これにより、中間層24の圧縮変形を抑制しつつ、荷重支持層23よりもコア21の長さ方向の曲げ剛性を低くすることができ、懸架体7の屈曲性が向上する。
繊維密度を低くする方法としては、例えば、繊維径を細くする方法、又は繊維の含有率を低くする方法がある。繊維の弾性率を低くする方法として、例えば、荷重支持層23の高強度繊維が炭素繊維の場合、中間層繊維には、ガラス繊維、ポリエステル繊維、ポリアリレート繊維、ポリエチレン繊維、又はアラミド繊維を用いる方法がある。
また、中間層24内に中間層繊維を入れる場合、中間層繊維は、コア21の長さ方向に対して傾斜、例えば45度傾斜した傾斜繊維を含んでもよい。この構成により、コア21の長さ方向の曲げに対する剛性を下げつつ、捻りに対する剛性を向上させることができる。
さらに、中間層24内に中間層繊維を入れる場合、中間層繊維は、コア21の長さ方向に対して直交する方向、即ち懸架体7の幅方向に沿って配置された直交繊維を含んでもよい。この構成により、コア21の長さ方向の曲げに対する剛性を下げつつ、コア21の幅方向の曲げ剛性を向上させることができる。
さらにまた、実施の形態1の荷重支持層23は、含浸樹脂を含まずに高強度繊維群から構成されていてもよい。この構成により、さらに曲げ剛性を低減することができる。
また、被覆層22に潤滑材を含ませてもよい。
さらに、被覆層22、荷重支持層23、及び中間層24のそれぞれについて、長さ方向の位置により前記潤滑材が含まれている部分と含まれていない部分とがあってもよい。
さらに、被覆層22、荷重支持層23、及び中間層24のそれぞれについて、長さ方向の位置により前記潤滑材が含まれている部分と含まれていない部分とがあってもよい。
実施の形態2.
次に、図6はこの発明の実施の形態2によるエレベータの懸架体7の断面図である。実施の形態2のコア21は、懸架体7の幅方向に互いに間隔をおいて配置されている複数のコア分割体26に分割されている。この例では、コア21が3つのコア分割体26に分割されている。懸架体7の幅方向に隣り合うコア分割体26の間には、被覆層22が入り込んでいる。他の構成は、実施の形態1と同様である。
次に、図6はこの発明の実施の形態2によるエレベータの懸架体7の断面図である。実施の形態2のコア21は、懸架体7の幅方向に互いに間隔をおいて配置されている複数のコア分割体26に分割されている。この例では、コア21が3つのコア分割体26に分割されている。懸架体7の幅方向に隣り合うコア分割体26の間には、被覆層22が入り込んでいる。他の構成は、実施の形態1と同様である。
このような懸架体7では、コア分割体26間に被覆層22の樹脂が介在しているため、懸架体7がその幅方向にも曲げ易くなる。このため、駆動シーブ6の懸架体7に接する面が懸架体7の幅方向に湾曲している場合に、懸架体7を駆動シーブ6に沿って曲げ易くなる。
なお、コア21の分割数は、2つ以上であればいくつでもよい。
また、コア21を分割する構成においても、分割層25の層数及び中間層24の構成について実施の形態1と同様の変更が可能である。
また、コア21を分割する構成においても、分割層25の層数及び中間層24の構成について実施の形態1と同様の変更が可能である。
実施の形態3.
次に、図7はこの発明の実施の形態3によるエレベータの懸架体7の断面図である。実施の形態3では、懸架体7の厚さ方向に互いに間隔をおいて配置された2つのコア21が、被覆層22内に設けられている。懸架体7の厚さ方向に隣り合うコア21の間には、被覆層22が入り込んでいる。各コア21は、3層の分割層25と2層の中間層24とを有している。他の構成は、実施の形態1と同様である。
次に、図7はこの発明の実施の形態3によるエレベータの懸架体7の断面図である。実施の形態3では、懸架体7の厚さ方向に互いに間隔をおいて配置された2つのコア21が、被覆層22内に設けられている。懸架体7の厚さ方向に隣り合うコア21の間には、被覆層22が入り込んでいる。各コア21は、3層の分割層25と2層の中間層24とを有している。他の構成は、実施の形態1と同様である。
このような懸架体7では、曲げられた際に、各コア21内の中間層24と、コア21間に入り込んでいる被覆層22の樹脂との両方のせん断方向への変形により、分割層25に生じる応力を低減することができる。
なお、コア21の数は、2つ以上であればいくつでもよい。
また、被覆層22内に2つ以上のコア21を配置する構成においても、分割層25の層数及び中間層24の構成について実施の形態1と同様の変更が可能である。
さらに、被覆層22内に2つ以上のコア21を配置する構成において、少なくとも一部のコア21を実施の形態2のように複数のコア分割体26に分割してもよい。即ち、実施の形態2、3を組み合わせて実施してもよい。
また、被覆層22内に2つ以上のコア21を配置する構成においても、分割層25の層数及び中間層24の構成について実施の形態1と同様の変更が可能である。
さらに、被覆層22内に2つ以上のコア21を配置する構成において、少なくとも一部のコア21を実施の形態2のように複数のコア分割体26に分割してもよい。即ち、実施の形態2、3を組み合わせて実施してもよい。
実施の形態4.
次に、図8はこの発明の実施の形態4によるエレベータの懸架体7の断面図である。実施の形態4では、各中間層24に複数の変形抑制部材27が設けられている。各変形抑制部材27は、コア21の厚さ方向、即ち圧縮方向への中間層24の変形を抑制する。このため、変形抑制部材27は、中間層24よりも圧縮剛性の高い材料により構成されている。
次に、図8はこの発明の実施の形態4によるエレベータの懸架体7の断面図である。実施の形態4では、各中間層24に複数の変形抑制部材27が設けられている。各変形抑制部材27は、コア21の厚さ方向、即ち圧縮方向への中間層24の変形を抑制する。このため、変形抑制部材27は、中間層24よりも圧縮剛性の高い材料により構成されている。
また、実施の形態4の変形抑制部材27は、コア21の厚さ方向に隣り合う分割層25の間に介在し、分割層25の間隔を保持するスペーサとして機能する。図8では、変形抑制部材27の断面形状は円形である。他の構成は、実施の形態1と同様である。
このような懸架体7では、懸架体7の圧縮強度が向上し、中間層24の圧縮方向の変形が抑制されるため、コア21が厚み方向に圧縮荷重を受けたときに最内層に位置する分割層25及び最外層に位置する分割層25の応力集中を緩和することができる。
図9は実施の形態4の第1の変形例を示す断面図である。第1の変形例では、断面矩形の変形抑制部材28が用いられている。このように、変形抑制部材の断面形状は、円形に限定されない。
図10は実施の形態4の第2の変形例を示す断面図であり、懸架体7の長さ方向に沿う断面(YZ断面)を示している。第2の変形例では、波板状の変形抑制部材29が用いられている。
なお、変形抑制部材は、コア21の長さ方向に連続して配置しても、長さ方向に複数に分割して配置してもよい。また、粒状の変形抑制部材をコア21の長さ方向に分散して配置してもよい。
また、変形抑制部材は、懸架体7の全長に渡って配置しても、懸架体7の端部及び駆動シーブ6に接する部分など、懸架体7に圧縮荷重が作用する部分のみに配置してもよい。
さらに、変形抑制部材は、分割層に直接接触しないように中間層に埋設してもよい。
さらにまた、実施の形態2、3の中間層に変形抑制部材を設けてもよい。
さらにまた、実施の形態2、3の中間層に変形抑制部材を設けてもよい。
実施の形態5.
次に、図11はこの発明の実施の形態5によるエレベータの懸架体7の断面図である。実施の形態5のコア21は、中間層24を有しておらず、荷重支持層23のみにより構成されている。荷重支持層23は、一対の外側支持層である最外層31及び最内層32と、中間支持層33とを有している。
次に、図11はこの発明の実施の形態5によるエレベータの懸架体7の断面図である。実施の形態5のコア21は、中間層24を有しておらず、荷重支持層23のみにより構成されている。荷重支持層23は、一対の外側支持層である最外層31及び最内層32と、中間支持層33とを有している。
最外層31は、懸架体7が駆動シーブ6に沿って曲げられたときに、コア21の中で駆動シーブ6の径方向の最も外側に配置される層である。最内層32は、懸架体7が駆動シーブ6に沿って曲げられたときに、コア21の中で駆動シーブ6の径方向の最も内側に配置される層である。
中間支持層33は、コア21の長さ方向及び幅方向の全体に渡って最外層31と最内層32との間に均等に介在している。最外層31、最内層32及び中間支持層33は、いずれも実施の形態1と同様に、含浸樹脂と、含浸樹脂内に設けられている高強度繊維群とを含んでいる。
但し、実施の形態5では、最外層31及び最内層32の曲げ剛性が、中間支持層33の曲げ剛性よりも低くなっている。各層の曲げ剛性は、例えば、高強度繊維群に含まれる高強度繊維の密度、高強度繊維の材料、又は含浸樹脂の材料を変えることにより調整することができる。
即ち、最外層31及び最内層32における高強度繊維の密度を、中間支持層33における高強度繊維の密度よりも低くすることにより、最外層31及び最内層32の曲げ剛性を、中間支持層33の曲げ剛性よりも低くすることができる。
また、最外層31及び最内層32の弾性率を、中間支持層33の弾性率よりも低くすることによっても、最外層31及び最内層32の曲げ剛性を、中間支持層33の曲げ剛性よりも低くすることができる。他の構成は、実施の形態1と同様である。
このような懸架体7では、曲げられたときに伸縮しない面である中立面Cから離れた位置にある最外層31及び最内層32の曲げ剛性が、中間支持層33の曲げ剛性よりも低いため、コア21の長さ方向の屈曲性が向上する。これにより、懸架体7が曲げられたときに、荷重支持層23に生じる応力を低減することができる。
実施の形態6.
次に、図12はこの発明の実施の形態6によるエレベータの懸架体7の断面図である。実施の形態6では、最外層31と中間支持層33との間、及び最内層32と中間支持層33との間に、実施の形態1と同様の中間層24が介在している。即ち、最外層31、最内層32及び中間支持層33は、それぞれ実施の形態1の分割層25として見ることもできる。
次に、図12はこの発明の実施の形態6によるエレベータの懸架体7の断面図である。実施の形態6では、最外層31と中間支持層33との間、及び最内層32と中間支持層33との間に、実施の形態1と同様の中間層24が介在している。即ち、最外層31、最内層32及び中間支持層33は、それぞれ実施の形態1の分割層25として見ることもできる。
このような懸架体7では、実施の形態1で説明したように、中間層24がせん断方向へ変形し易いため、コア21の長さ方向の屈曲性がより向上する。特に、中間層24をせん断剛性の低い材料で構成することで、懸架体7が曲げられたときに、荷重支持層23に生じる応力をより緩和することができる。
実施の形態7.
次に、図13はこの発明の実施の形態7によるエレベータの懸架体7の断面図である。実施の形態7では、最外層31及び最内層32のそれぞれの厚さ寸法が、中間支持層33の厚さ寸法よりも小さくなっている。これにより、最外層31及び最内層32の曲げ剛性が、中間支持層33の曲げ剛性よりも低くなっている。他の構成は、実施の形態6と同様である。
次に、図13はこの発明の実施の形態7によるエレベータの懸架体7の断面図である。実施の形態7では、最外層31及び最内層32のそれぞれの厚さ寸法が、中間支持層33の厚さ寸法よりも小さくなっている。これにより、最外層31及び最内層32の曲げ剛性が、中間支持層33の曲げ剛性よりも低くなっている。他の構成は、実施の形態6と同様である。
このような構成によっても、最外層31及び最内層32の曲げ剛性を、中間支持層33の曲げ剛性よりも低くすることができ、懸架体7の屈曲性が向上する。また、懸架体7が駆動シーブ6に巻き付けられたときに、最外層31及び最内層32に生じる応力を低減することができる。
実施の形態8.
次に、図14はこの発明の実施の形態8によるエレベータの懸架体7の断面図である。実施の形態8では、最外層31及び最内層32のそれぞれの幅寸法が、中間支持層33の幅寸法よりも小さくなっている。これにより、最外層31及び最内層32の曲げ剛性が、中間支持層33の曲げ剛性よりも低くなっている。他の構成は、実施の形態6と同様である。
次に、図14はこの発明の実施の形態8によるエレベータの懸架体7の断面図である。実施の形態8では、最外層31及び最内層32のそれぞれの幅寸法が、中間支持層33の幅寸法よりも小さくなっている。これにより、最外層31及び最内層32の曲げ剛性が、中間支持層33の曲げ剛性よりも低くなっている。他の構成は、実施の形態6と同様である。
このような構成によっても、最外層31及び最内層32の曲げ剛性を、中間支持層33の曲げ剛性よりも小さくすることができ、懸架体7の屈曲性が向上する。
図15は実施の形態8の第1の変形例を示す断面図である。第1の変形例では、コア21の幅方向両端が、厚さ方向の両端から中間へ向けて連続して徐々に幅方向外側へ突出している。これにより、最外層31及び最内層32のそれぞれの幅寸法が、中間支持層33の幅寸法よりも小さくなっている。また、荷重支持層23の曲げ剛性が、中立面Cからコア21の厚さ方向の両端へ向けて連続的に徐々に低くなっている。
このような構成では、曲げ剛性の不連続な変化がないため、強度を安定させることができる。
図16は実施の形態8の第2の変形例を示す断面図である。第2の変形例は、第1の変形例のコア21を、実施の形態2と同様に、懸架体7の幅方向に互いに間隔をおいて配置されている複数のコア分割体26に分割したものである。
各コア分割体26の幅方向両端は、厚さ方向の両端から中間へ向けて連続して徐々に幅方向外側へ突出している。これにより、最外層31及び最内層32のそれぞれの幅寸法が、中間支持層33の幅寸法よりも小さくなっている。
実施の形態9.
次に、図17はこの発明の実施の形態9によるエレベータの懸架体7の断面図である。実施の形態9では、最外層31及び最内層32のそれぞれの厚さ寸法が、中間支持層33の厚さ寸法よりも小さくなっている。また、最外層31及び最内層32のそれぞれの幅寸法が、中間支持層33の幅寸法よりも小さくなっている。これにより、最外層31及び最内層32の曲げ剛性が、中間支持層33の曲げ剛性よりも低くなっている。
次に、図17はこの発明の実施の形態9によるエレベータの懸架体7の断面図である。実施の形態9では、最外層31及び最内層32のそれぞれの厚さ寸法が、中間支持層33の厚さ寸法よりも小さくなっている。また、最外層31及び最内層32のそれぞれの幅寸法が、中間支持層33の幅寸法よりも小さくなっている。これにより、最外層31及び最内層32の曲げ剛性が、中間支持層33の曲げ剛性よりも低くなっている。
即ち、実施の形態9は、実施の形態7、8を組み合わせたものであり、他の構成は実施の形態7又は8と同様である。
また、図18は実施の形態9の変形例を示す断面図である。この変形例は、実施の形態8の第1の変形例と実施の形態7とを組み合わせたものである。
このように、最外層31及び最内層32の曲げ剛性を中間支持層33の曲げ剛性よりも低くするための実施の形態5~8の構成は、適宜組み合わせて実施してもよい。
実施の形態10.
次に、図19はこの発明の実施の形態10によるエレベータの懸架体7の断面図であり、懸架体7の長さ方向に沿う断面(YZ断面)を示している。実施の形態10では、最外層31及び最内層32に含まれる高強度繊維34が、コア21の長さ方向に沿って波状に配置されている。
次に、図19はこの発明の実施の形態10によるエレベータの懸架体7の断面図であり、懸架体7の長さ方向に沿う断面(YZ断面)を示している。実施の形態10では、最外層31及び最内層32に含まれる高強度繊維34が、コア21の長さ方向に沿って波状に配置されている。
最外層31内及び最内層32内には、高強度繊維34を案内する複数の棒状のガイド部材35がそれぞれ設けられている。ガイド部材35は、コア21の長さ方向に互いに間隔をおいて配置されている。また、ガイド部材35は、コア21の幅方向に平行に配置されている。
中間支持層33に含まれる高強度繊維は、図示しないが、コア21の長さ方向に平行に配置されている。これにより、最外層31及び最内層32の曲げ剛性が、中間支持層33の曲げ剛性よりも低くなっている。他の構成は、実施の形態7と同様である。
このような構成によっても、最外層31及び最内層32の曲げ剛性を、中間支持層33の曲げ剛性よりも低くすることができ、懸架体7の屈曲性が向上する。
なお、ガイド部材35は、横糸、又は横糸の束であってもよい。
また、高強度繊維34を波状に配置することができれば、ガイド部材35は省略してもよい。例えば、予め波状に織られた高強度繊維34の織物を用いてもよい。
さらに、実施の形態5~9の最外層31及び最内層32に、実施の形態10の波状の高強度繊維34を適用してもよい。
また、高強度繊維34を波状に配置することができれば、ガイド部材35は省略してもよい。例えば、予め波状に織られた高強度繊維34の織物を用いてもよい。
さらに、実施の形態5~9の最外層31及び最内層32に、実施の形態10の波状の高強度繊維34を適用してもよい。
さらにまた、図12~19では中間層24が用いられているが、中間層24は省略してもよい。
また、実施の形態5~10を実施の形態2、3、4と適宜組み合わせて実施してもよく、それぞれの実施の形態の効果を得ることができる。
さらに、実施の形態5~10では、荷重支持層23を3層構造としたが、中間支持層33をさらに複数層に分割して4層以上で荷重支持層23を構成してもよい。
また、実施の形態5~10を実施の形態2、3、4と適宜組み合わせて実施してもよく、それぞれの実施の形態の効果を得ることができる。
さらに、実施の形態5~10では、荷重支持層23を3層構造としたが、中間支持層33をさらに複数層に分割して4層以上で荷重支持層23を構成してもよい。
実施の形態11.
次に、図20はこの発明の実施の形態11によるエレベータの懸架体7の断面図である。実施の形態11では、実施の形態6と同様に、荷重支持層23がコアの厚さ方向に分割された複数の層、即ち最外層31、最内層32及び中間支持層33により構成されている。但し、最外層31の曲げ剛性と最内層32の曲げ剛性とは異なっている。
次に、図20はこの発明の実施の形態11によるエレベータの懸架体7の断面図である。実施の形態11では、実施の形態6と同様に、荷重支持層23がコアの厚さ方向に分割された複数の層、即ち最外層31、最内層32及び中間支持層33により構成されている。但し、最外層31の曲げ剛性と最内層32の曲げ剛性とは異なっている。
実施の形態11では、最外層31の曲げ剛性が、荷重支持層23を構成する他の層、即ち最内層32及び中間支持層33の曲げ剛性よりも低くなっている。最内層32の曲げ剛性は、中間支持層33の曲げ剛性よりも低いか、又は中間支持層33の曲げ剛性と同じである。
最外層31と最内層32との間に剛性差を生じさせる方法として、例えば、最外層31における高強度繊維の密度を、最内層32及び中間支持層33における高強度繊維の密度よりも低くすることにより、最外層31の曲げ剛性を、最内層32及び中間支持層33の曲げ剛性よりも低くすることができる。
また、最外層31の弾性率を、最内層32及び中間支持層33の弾性率よりも低くすることによっても、最外層31の曲げ剛性を、最内層32及び中間支持層33の曲げ剛性よりも低くすることができる。他の構成は、実施の形態6と同様である。
このような懸架体7では、懸架体7が駆動シーブ6に巻き付けられたときに、最外層31に生じる応力を低減することができる。また、コア21の厚さ方向の一側と他側とに剛性差が生じているため、駆動シーブ6に巻き付ける際に曲げ易くなる。さらに、巻上機ブレーキなどにより懸架体7が長さ方向の圧縮荷重を受けた場合に、懸架体7を一方向に曲がり易くすることができる。
実施の形態12.
次に、図21はこの発明の実施の形態12によるエレベータの懸架体7の断面図である。実施の形態12では、最外層31の厚さ寸法が、最内層32の厚さ寸法と異なっており、最外層31の厚さ寸法が最内層32の厚さ寸法よりも小さくなっている。また、最外層31及び最内層32の厚さ寸法が中間支持層33の厚さ寸法よりも小さい。これにより、最外層31の曲げ剛性が、最内層32及び中間支持層33の曲げ剛性よりも低くなっている。他の構成は、実施の形態11と同様である。
次に、図21はこの発明の実施の形態12によるエレベータの懸架体7の断面図である。実施の形態12では、最外層31の厚さ寸法が、最内層32の厚さ寸法と異なっており、最外層31の厚さ寸法が最内層32の厚さ寸法よりも小さくなっている。また、最外層31及び最内層32の厚さ寸法が中間支持層33の厚さ寸法よりも小さい。これにより、最外層31の曲げ剛性が、最内層32及び中間支持層33の曲げ剛性よりも低くなっている。他の構成は、実施の形態11と同様である。
このような構成によっても、最外層31及び最内層32の曲げ剛性が中間支持層33の曲げ剛性よりも小さく、最外層31及び最内層32に剛性差が生じているため、懸架体7を駆動シーブ6に巻き付ける際に曲げ易くなる。また、巻上機ブレーキなどにより懸架体7が長さ方向の圧縮荷重を受けた場合に、懸架体7を一方向に曲がり易くすることができる。
実施の形態13.
次に、図22はこの発明の実施の形態13によるエレベータの懸架体7の断面図である。実施の形態13では、最外層31の幅寸法が、最内層32の幅寸法よりも小さくなっている。これにより、最外層31の曲げ剛性が、最内層32の曲げ剛性よりも低くなっている。
次に、図22はこの発明の実施の形態13によるエレベータの懸架体7の断面図である。実施の形態13では、最外層31の幅寸法が、最内層32の幅寸法よりも小さくなっている。これにより、最外層31の曲げ剛性が、最内層32の曲げ剛性よりも低くなっている。
また、最内層32の幅寸法が、中間支持層33の幅寸法よりも小さくなっている。これにより、最内層32の曲げ剛性が、中間支持層33の曲げ剛性よりも低くなっている。他の構成は、実施の形態11と同様である。
このような構成によっても、最外層31及び最内層32の曲げ剛性が中間支持層33の曲げ剛性よりも小さく、最外層31及び最内層32に剛性差が生じているため、懸架体7を駆動シーブ6に巻き付ける際に曲げ易くなる。また、巻上機ブレーキなどにより懸架体7が長さ方向の圧縮荷重を受けた場合に、懸架体7を一方向に曲がり易くすることができる。
実施の形態14.
次に、図23はこの発明の実施の形態14によるエレベータの懸架体7の断面図である。実施の形態14では、コア21の幅方向両端が、厚さ方向の両端から、最内層32とそれに隣接する中間層24との境界へ向けて連続して徐々に幅方向外側へ突出している。
次に、図23はこの発明の実施の形態14によるエレベータの懸架体7の断面図である。実施の形態14では、コア21の幅方向両端が、厚さ方向の両端から、最内層32とそれに隣接する中間層24との境界へ向けて連続して徐々に幅方向外側へ突出している。
また、最外層31の厚さ寸法が、最内層32及び中間支持層33のそれぞれの厚さ寸法よりも小さくなっている。これにより、最外層31の曲げ剛性が、最内層32及び中間支持層33の曲げ剛性よりも低くなっている。他の構成は、実施の形態11と同様である。
このような構成によっても、最外層31及び最内層32の曲げ剛性が中間支持層33の曲げ剛性よりも小さく、最外層31及び最内層32に剛性差が生じているため、懸架体7を駆動シーブ6に巻き付ける際に曲げ易くなる。また、巻上機ブレーキなどにより懸架体7が長さ方向の圧縮荷重を受けた場合に、懸架体7を一方向に曲がり易くすることができる。
なお、最外層31の曲げ剛性を最内層32及び中間支持層33の曲げ剛性よりも低くするための実施の形態11~14の構成は、適宜組み合わせて実施してもよい。
また、図21~23では中間層24が用いられているが、中間層24は省略してもよい。
さらに、実施の形態11~14を実施の形態11よりも前に記載した実施の形態と適宜組み合わせて実施してもよく、それぞれの実施の形態の効果を得ることができる。
さらに、実施の形態11~14では、荷重支持層23を3層構造としたが、中間支持層33をさらに複数層に分割して4層以上で荷重支持層23を構成してもよい。
また、図21~23では中間層24が用いられているが、中間層24は省略してもよい。
さらに、実施の形態11~14を実施の形態11よりも前に記載した実施の形態と適宜組み合わせて実施してもよく、それぞれの実施の形態の効果を得ることができる。
さらに、実施の形態11~14では、荷重支持層23を3層構造としたが、中間支持層33をさらに複数層に分割して4層以上で荷重支持層23を構成してもよい。
実施の形態15.
次に、図24はこの発明の実施の形態15によるエレベータの懸架体7の断面図である。実施の形態15では、中間支持層33の幅寸法が、最内層32の幅寸法よりも小さくなっている。また、最外層31の幅寸法が、中間支持層33の幅寸法よりも小さくなっている。
次に、図24はこの発明の実施の形態15によるエレベータの懸架体7の断面図である。実施の形態15では、中間支持層33の幅寸法が、最内層32の幅寸法よりも小さくなっている。また、最外層31の幅寸法が、中間支持層33の幅寸法よりも小さくなっている。
これにより、荷重支持層23を構成する層の曲げ剛性が、最内層32から最外層31へ向けて徐々に低くなっている。即ち、中間支持層33の曲げ剛性が最内層32の曲げ剛性よりも低く、最外層31の曲げ剛性が中間支持層33の曲げ剛性よりも低くなっている。他の構成は、実施の形態1と同様である。
このような懸架体7では、最外層31と最内層32とに剛性差が生じているため、懸架体7を駆動シーブ6に巻き付ける際に曲げ易くなる。
また、コア21の厚さ方向の一側と他側とに剛性差が生じているため、巻上機ブレーキなどにより懸架体7が長さ方向の圧縮荷重を受けた場合に、懸架体7が一方向に曲がり易くなり、座屈し難くすることができる。
図25は実施の形態15の第1の変形例を示す断面図である。第1の変形例では、コア21の幅寸法が、駆動シーブ6に沿って曲げられたときの駆動シーブ6の径方向内側の端部から外側の端部へ向けて連続して徐々に小さくなっている。これにより、荷重支持層23を構成する層の曲げ剛性が内径側から外径側へ向けて連続して徐々に低くなっている。
図26は実施の形態15の第2の変形例を示す断面図である。第2の変形例では、コア21の幅寸法が、最内層32とそれに隣接する中間層24との境界から、外径側へ向けて連続して徐々に小さくなっている。これにより、荷重支持層23を構成する層の曲げ剛性が内径側から外径側へ向けて連続して徐々に低くなっている。
図25及び図26に示したような構成では、曲げ剛性の不連続な変化がないため、強度を安定させることができる。
なお、図24~26では中間層24が用いられているが、中間層24は省略してもよい。
また、実施の形態15を実施の形態2、3、4、10等と適宜組み合わせて実施してもよく、それぞれの実施の形態の効果を得ることができる。
さらに、実施の形態15では、荷重支持層23を3層構造としたが、中間支持層33をさらに複数層に分割して4層以上で荷重支持層23を構成してもよい。
さらにまた、実施の形態11~14では、最外層31の曲げ剛性を最内層32よりも小さくしたが、最内層32の曲げ剛性を最外層31の曲げ剛性より小さくしてもよい。即ち、図20~23の上下を逆にした構成としてもよい。
また、実施の形態15では、荷重支持層23の曲げ剛性を内径側から外径側へ向けて徐々に小さくしたが、外径側から内径側へ向けて徐々に小さくしてもよい。即ち、図24~図26の上下を逆にした構成としてもよい。
また、実施の形態15を実施の形態2、3、4、10等と適宜組み合わせて実施してもよく、それぞれの実施の形態の効果を得ることができる。
さらに、実施の形態15では、荷重支持層23を3層構造としたが、中間支持層33をさらに複数層に分割して4層以上で荷重支持層23を構成してもよい。
さらにまた、実施の形態11~14では、最外層31の曲げ剛性を最内層32よりも小さくしたが、最内層32の曲げ剛性を最外層31の曲げ剛性より小さくしてもよい。即ち、図20~23の上下を逆にした構成としてもよい。
また、実施の形態15では、荷重支持層23の曲げ剛性を内径側から外径側へ向けて徐々に小さくしたが、外径側から内径側へ向けて徐々に小さくしてもよい。即ち、図24~図26の上下を逆にした構成としてもよい。
実施の形態16.
次に、図27はこの発明の実施の形態16によるエレベータの懸架体7の断面図である。実施の形態16では、コア21が荷重支持層23のみにより構成されている。荷重支持層23のコア21の長さ方向に直角な断面は、第1の領域23aと複数の第2の領域23bとを組み合わせて構成されている。
次に、図27はこの発明の実施の形態16によるエレベータの懸架体7の断面図である。実施の形態16では、コア21が荷重支持層23のみにより構成されている。荷重支持層23のコア21の長さ方向に直角な断面は、第1の領域23aと複数の第2の領域23bとを組み合わせて構成されている。
第2の領域23bにおける高強度繊維の繊維密度は、第1の領域23aにおける高強度繊維の繊維密度よりも低い。
第1の領域23aと第2の領域23bとは、コア21の厚さ方向の両端における荷重支持層23の弾性率Eと幅Wとの積であるE×Wが、コア21の中立面Cにおける荷重支持層23の弾性率Eと幅Wとの積であるE×Wよりも小さくなるように組み合わせられている。
図27では、荷重支持層23は、幅寸法が一定の矩形断面を有している。そして、コア21の長さ方向に直角な断面において、第1の領域23aの幅寸法が、中立面Cからコア21の厚さ方向の両端へ向けて連続して徐々に小さくなっている。
これにより、中立面Cからコアの厚さ方向へ向けて、第1の領域23aが連続して徐々に狭くなり、第2の領域23bが連続して徐々に広くなっている。他の構成は、実施の形態1と同様である。
このような懸架体7では、中立面Cから離れたコア21の表面側の曲げ剛性が小さくなるので、コア21の長さ方向の屈曲性が向上する。
図28は実施の形態16の第1の変形例を示す断面図である。第1の変形例では、コア21の長さ方向に直角な断面において、コア21の厚さ方向の荷重支持層23の両端面の幅方向中央に凹部が設けられている。そして、これらの凹部内が第2の領域23b、他の部分が第1の領域23aとなっている。
図29は実施の形態16の第2の変形例を示す断面図である。第2の変形例では、コア21の厚さ方向の荷重支持層23の中間部全体が第1の領域23aとなっている。そして、コア21の厚さ方向の荷重支持層23の両端部が第2の領域23bとなっている。
図30は実施の形態16の第3の変形例を示す断面図である。第3の変形例では、コア21の内部の荷重支持層が第1の領域23aとなっており、第1の領域23aを覆うように第2の領域23bが構成されている。
また、領域23bは高強度繊維を含まない構成であってもよい。例えば、熱可塑性樹脂、熱硬化性樹脂、エラストマー材料のほか、第1の領域23aと接着されない潤滑材又は低摩擦のシートで構成されていてもよい。また、シートは、複数層重ねて配置することができ、さらには、液体潤滑材、半固体潤滑材、及び、固体潤滑材を併用して使用することができる。例えば、固体潤滑材のシートの表面に液体潤滑材を配置した構成が考えられる。この構成により、懸架体7の曲げ剛性がさらに低減できる。
これら図28~30のような構成によっても、コア21の厚さ方向の両端における荷重支持層23のE×Wが、コア21の中立面Cにおける荷重支持層23のE×Wよりも小さくなる。
なお、実施の形態16では、第2の領域23bの繊維密度を第1の領域23aの繊維密度よりも低くしたが、第2の領域23bの長さ方向の弾性率を第1の領域23aの長さ方向の弾性率よりも低くしてもよい。
実施の形態17.
次に、図31はこの発明の実施の形態17によるエレベータの懸架体7の断面図である。実施の形態17では、コア21が荷重支持層23のみにより構成されている。また、コア21の長さ方向に直角な断面において、荷重支持層23の材料及び繊維密度は全体で同じである。但し、荷重支持層23の幅寸法は、中立面Cからコア21の厚さ方向の両端へ向けて連続して徐々に小さくなっている。
次に、図31はこの発明の実施の形態17によるエレベータの懸架体7の断面図である。実施の形態17では、コア21が荷重支持層23のみにより構成されている。また、コア21の長さ方向に直角な断面において、荷重支持層23の材料及び繊維密度は全体で同じである。但し、荷重支持層23の幅寸法は、中立面Cからコア21の厚さ方向の両端へ向けて連続して徐々に小さくなっている。
これにより、コア21の厚さ方向の両端における荷重支持層23のE×Wが、コア21の中立面Cにおける荷重支持層23のE×Wよりも小さくなっている。
なお、図27~31では中立面Cがコア21の厚さ方向の中央にあるが、中立面Cが中央から厚さ方向のいずれか一方にずれていてもよい。
また、図27~31は、コア21の長さ方向に直角な断面において、コア21の厚さ方向の両端における荷重支持層23のE×Wを、コア21の中立面Cにおける荷重支持層23のE×Wよりも小さくする方法の一例であり、断面構成はこれらに限定されるものではない。
さらに、実施の形態16、17では、コア21の厚さ方向の両端における荷重支持層23のE×Wが、コア21の中立面Cにおける荷重支持層23のE×Wよりも小さくなっているが、コア21の厚さ方向の両端のいずれか一方における荷重支持層23のE×Wのみを、コア21の中立面Cにおける荷重支持層23のE×Wよりも小さくしてもよい。
また、図27~31は、コア21の長さ方向に直角な断面において、コア21の厚さ方向の両端における荷重支持層23のE×Wを、コア21の中立面Cにおける荷重支持層23のE×Wよりも小さくする方法の一例であり、断面構成はこれらに限定されるものではない。
さらに、実施の形態16、17では、コア21の厚さ方向の両端における荷重支持層23のE×Wが、コア21の中立面Cにおける荷重支持層23のE×Wよりも小さくなっているが、コア21の厚さ方向の両端のいずれか一方における荷重支持層23のE×Wのみを、コア21の中立面Cにおける荷重支持層23のE×Wよりも小さくしてもよい。
実施の形態18.
次に、図32はこの発明の実施の形態18によるエレベータの懸架体7の断面図である。実施の形態18では、コア21が荷重支持層23のみにより構成されている。荷重支持層23は、最外層31、最内層32及び中間支持層33を有している。
次に、図32はこの発明の実施の形態18によるエレベータの懸架体7の断面図である。実施の形態18では、コア21が荷重支持層23のみにより構成されている。荷重支持層23は、最外層31、最内層32及び中間支持層33を有している。
最外層31における高強度繊維の繊維密度は、最内層32における高強度繊維の繊維密度よりも低い。これにより、コア21の厚さ方向の両端における荷重支持層23のE×Wが互いに異なっている。
具体的には、駆動シーブ6に沿って曲げられたときの駆動シーブ6の径方向外側の荷重支持層23の端面のE×Bが、径方向内側の荷重支持層23の端面のE×Bよりも小さくなっている。従って、コア21の長さ方向に直角な断面において、駆動シーブ6の径方向外側の荷重支持層23の端部の単位厚みあたりの曲げ剛性が、径方向内側の荷重支持層23の端部の単位厚みあたりの曲げ剛性よりも小さくなっている。他の構成は、実施の形態16と同様である。
このような懸架体7では、懸架体7が駆動シーブ6に沿って曲げられたときに、コア21に生じる圧縮応力を低減することができる。
さらに、コア21の厚さ方向の一側と他側とに剛性差が生じているため、巻上機ブレーキなどにより懸架体7が長さ方向の圧縮荷重を受けた場合に、懸架体7を一方向に曲がり易くすることができる。
なお、実施の形態18では、最外層31の繊維密度を最内層32の繊維密度よりも低くしたが、最外層31の弾性率を最内層32の弾性率よりも低くしてもよい。
実施の形態19.
次に、図33はこの発明の実施の形態19によるエレベータの懸架体7の断面図である。実施の形態19では、コア21の長さ方向に直角な断面において、荷重支持層23の材料及び繊維密度は全体で同じである。
次に、図33はこの発明の実施の形態19によるエレベータの懸架体7の断面図である。実施の形態19では、コア21の長さ方向に直角な断面において、荷重支持層23の材料及び繊維密度は全体で同じである。
但し、懸架体7が駆動シーブ6に沿って曲げられたときの駆動シーブ6の径方向外側の荷重支持層23の端面の幅寸法が、径方向内側の荷重支持層23の端面の幅寸法よりも小さくなっている。これにより、径方向外側の荷重支持層23の端面のE×Bが、径方向内側の荷重支持層23の端面のE×Bよりも小さくなっている。
従って、コア21の長さ方向に直角な断面において、駆動シーブ6の径方向外側の荷重支持層23の端部の単位厚みあたりの曲げ剛性が、径方向内側の荷重支持層23の端部の単位厚みあたりの曲げ剛性よりも小さくなっている。
また、荷重支持層23の幅寸法は、コア21の厚さ方向に連続して変化している。他の構成は、実施の形態18と同様である。
このような構成によっても、コア21の長さ方向の屈曲性を向上させることができる。そして、コア21の厚さ方向の一側と他側とに剛性差が生じているため、巻上機ブレーキなどにより懸架体7が長さ方向の圧縮荷重を受けた場合に、懸架体7を一方向に曲がり易くすることができる。
図34は実施の形態19の変形例を示す断面図である。この変形例では、荷重支持層23の幅寸法が、径方向内側から径方向外側へ向けて連続して徐々に小さくなっている。このような断面形状としても、コア21の厚さ方向の荷重支持層23の両端面のE×Bを異ならせることができる。
なお、荷重支持層23の断面形状は、図33、34に限定されるものではない。
実施の形態20.
次に、図35はこの発明の実施の形態20によるエレベータの懸架体7の断面図である。実施の形態20は、実施の形態18、19を組み合わせたものである。即ち、実施の形態20の荷重支持層23は、最外層31、最内層32及び中間支持層33を有している。また、荷重支持層23の幅寸法は、図33と同様に変化している。他の構成は、実施の形態18と同様である。
次に、図35はこの発明の実施の形態20によるエレベータの懸架体7の断面図である。実施の形態20は、実施の形態18、19を組み合わせたものである。即ち、実施の形態20の荷重支持層23は、最外層31、最内層32及び中間支持層33を有している。また、荷重支持層23の幅寸法は、図33と同様に変化している。他の構成は、実施の形態18と同様である。
このように、実施の形態18、19を組み合わせることにより、実施の形態18、19よりも大きな効果を得ることができる。
なお、実施の形態19と実施の形態18の変形例とを組み合わせてもよい。
また、実施の形態18~20において、荷重支持層23を2層又は4層以上で構成してもよい。
さらに、荷重支持層23を複数層で構成する場合、実施の形態1~4で示したような中間層24を介在させてもよい。
また、実施の形態18~20において、荷重支持層23を2層又は4層以上で構成してもよい。
さらに、荷重支持層23を複数層で構成する場合、実施の形態1~4で示したような中間層24を介在させてもよい。
さらに、実施の形態18~20では、径方向外側の荷重支持層23の端面のE×Bを、径方向内側の荷重支持層23の端面のE×Bよりも小さくしたが、逆であってもよい。即ち、図32~35の上下を逆にした構成としてもよい。このため、コア21の長さ方向に直角な断面において、駆動シーブ6の径方向内側の荷重支持層23の端部の単位厚みあたりの曲げ剛性を、径方向外側の荷重支持層23の端部の単位厚みあたりの曲げ剛性よりも小さくしてもよい。これにより、懸架体7が駆動シーブ6に沿って曲げられたときに、コア21に生じる引張応力を低減することができる。
実施の形態21.
次に、図36はこの発明の実施の形態21によるエレベータの懸架体7の断面図である。実施の形態21では、コア21が荷重支持層23のみにより構成されている。但し、コア21は、実施の形態8の第2の変形例と同様に、3つのコア分割体26に分割されている。また、懸架体7の幅方向に隣り合うコア分割体26の間には、被覆層22が入り込んでいる。各コア分割体26の形状及び他の構成は、実施の形態8の第2の変形例と同様である。
次に、図36はこの発明の実施の形態21によるエレベータの懸架体7の断面図である。実施の形態21では、コア21が荷重支持層23のみにより構成されている。但し、コア21は、実施の形態8の第2の変形例と同様に、3つのコア分割体26に分割されている。また、懸架体7の幅方向に隣り合うコア分割体26の間には、被覆層22が入り込んでいる。各コア分割体26の形状及び他の構成は、実施の形態8の第2の変形例と同様である。
このような懸架体7では、コア分割体26間に被覆層22の樹脂が介在しているため、懸架体7がその幅方向に曲げ易くなる。このため、駆動シーブ6の懸架体7に接する面が懸架体7の幅方向に湾曲している場合に、懸架体7を駆動シーブ6に沿って曲げ易くなる。このため、懸架体7が曲げられたときに、荷重支持層23に生じる応力を低減することができる。
なお、コア21の分割数は、2つ以上であればいくつでもよい。
また、実施の形態2、8以外の実施の形態についても、コア21を複数のコア分割体26に分割することが可能である。
また、実施の形態2、8以外の実施の形態についても、コア21を複数のコア分割体26に分割することが可能である。
実施の形態22.
次に、図37はこの発明の実施の形態22によるエレベータの懸架体7の断面図である。実施の形態22では、コア21が荷重支持層23のみにより構成されている。荷重支持層23のコア21の長さ方向に直角な断面は、複数の第1の領域23aと第2の領域23bとを組み合わせて構成されている。第2の領域23bにおける長さ方向の弾性率は、第1の領域23aにおける長さ方向の弾性率よりも低い。
次に、図37はこの発明の実施の形態22によるエレベータの懸架体7の断面図である。実施の形態22では、コア21が荷重支持層23のみにより構成されている。荷重支持層23のコア21の長さ方向に直角な断面は、複数の第1の領域23aと第2の領域23bとを組み合わせて構成されている。第2の領域23bにおける長さ方向の弾性率は、第1の領域23aにおける長さ方向の弾性率よりも低い。
コア21の厚さ方向の両端における第2の領域23bの弾性率Eと幅Wとの積であるE×Wが、コア21の厚さ方向内側にある第1の領域23aの存在する平面Dにおける弾性率Eと幅Wとの積であるE×Wよりも小さくなるように組み合わせられている。
このような懸架体7では、中立面Cから離れたコア21の表面側の曲げ剛性が小さくなるので、コア21の長さ方向の屈曲性が向上する
また、第2の領域23bは高強度繊維を含まない構成であってもよい。例えば、熱可塑性樹脂、熱硬化性樹脂、エラストマー材料のほか第1の領域23aと接着されない潤滑材又は低摩擦のシートで構成されていてもよい。また、シートは、複数層重ねて配置することができ、さらには、液体潤滑材、半固体潤滑材、及び、固体潤滑材を併用して使用することができる。例えば、固体潤滑材のシートの表面に液体潤滑材を配置した構成が考えられる。この構成により、懸架体7の曲げ剛性がさらに低減できる。
なお、図37に示す実施の形態22の第1の領域23aは2層からなるが、3層以上であってもよい。
図38は実施の形態22の第1の変形例を示す断面図である。第1の変形例では、第1の領域23aは、最外層側の長さ方向の弾性率が最内層側の長さ方向の弾性率よりも小さい構成である。
このような構成によれば、第1の領域23aの最外層側の曲げ剛性が最内層側の曲げ剛性よりも小さくなり、コア21の厚さ方向の一側と他側とに剛性差が生じているため、巻上機ブレーキなどにより懸架体7が長さ方向の圧縮荷重を受けた場合に、懸架体7を一方向に曲がり易くすることができる。
図39は実施の形態22の第2の変形例を示す断面図である。第2の変形例では、第1の領域23aは、最外層側の幅寸法が最内層側の幅寸法よりも小さい構成である。
なお、図38及び図39の組み合わせの構成でもよい。
また、図38及び図39では、第1の領域23aの最外層側の曲げ剛性を最内層側よりも小さくしたが、最内層側の曲げ剛性を最外層側の曲げ剛性より小さくしてもよい。即ち、図38及び図39の上下を逆にした構成としてもよい。
また、図38及び図39では、第1の領域23aの最外層側の曲げ剛性を最内層側よりも小さくしたが、最内層側の曲げ剛性を最外層側の曲げ剛性より小さくしてもよい。即ち、図38及び図39の上下を逆にした構成としてもよい。
実施の形態23.
次に、図40はこの発明の実施の形態23によるエレベータの懸架体7の断面図である。実施の形態23では、コア21の内部に荷重を支持する第1の領域23aが点在しており、第1の領域23aを覆うように第2の領域23bが構成されている。
次に、図40はこの発明の実施の形態23によるエレベータの懸架体7の断面図である。実施の形態23では、コア21の内部に荷重を支持する第1の領域23aが点在しており、第1の領域23aを覆うように第2の領域23bが構成されている。
コア21の厚さ方向の両端における第2の領域23bの弾性率Eと幅Wとの積であるE×Wが、コア21の内側にある第1の領域23aの存在する平面Dにおける弾性率Eと幅Wとの積であるE×Wよりも小さくなるように組み合わせられている。
このような懸架体7では、荷重を支持する第1の領域23aが小さい円形状に分離されているため、コア21の長さ方向の屈曲性が向上する
また、第2の領域23bは高強度繊維を含まない構成であってもよい。例えば、熱可塑性樹脂、熱硬化性樹脂、エラストマー材料のほか第1の領域23aと接着されない潤滑材で構成されていてもよい。この構成により、懸架体7の曲げ剛性がさらに低減できる。
なお、被覆層22を含まない構成であってもよい。
また、第1の領域23aの形状は、円形以外にも矩形又は楕円形状でもよい。また、第1の領域23aを構成する高強度繊維は、長さ方向に沿って配置されていてもよいし、撚り線のように編んであってもよい。
さらに、第1の領域23aの本数は、懸架体7の仕様に応じて、任意に設定できる。
また、第1の領域23aの形状は、円形以外にも矩形又は楕円形状でもよい。また、第1の領域23aを構成する高強度繊維は、長さ方向に沿って配置されていてもよいし、撚り線のように編んであってもよい。
さらに、第1の領域23aの本数は、懸架体7の仕様に応じて、任意に設定できる。
図41は実施の形態23の第1の変形例を示す断面図である。第2の変形例では、第1の領域23aは、最外層側の幅方向に並ぶ本数が最内層側の幅方向に並ぶよりも少ない構成である。
このような構成によれば、第1の領域23aの最外層側の曲げ剛性が最内層側の曲げ剛性よりも小さくなり、コア21の厚さ方向の一側と他側とに剛性差が生じているため、巻上機ブレーキなどにより懸架体7が長さ方向の圧縮荷重を受けた場合に、懸架体7を一方向に曲がり易くすることができる。
また、図41では、第1の領域23aの最外層側の曲げ剛性を最内層側よりも小さくしたが、最内層側の曲げ剛性を最外層側の曲げ剛性より小さくしてもよい。即ち、図41の上下を逆にした構成としてもよい。
また、領域23bは高強度繊維を含まない構成であってもよい。例えば、熱可塑性樹脂、熱硬化性樹脂、エラストマー材料のほか第1の領域23aと接着されない潤滑材で構成されていてもよい。この構成により、懸架体7の曲げ剛性がさらに低減できる。
図42は実施の形態23の第2の変形例を示す断面図である。第2の変形例では、懸架体7の断面の厚み方向の中央部に荷重支持層である第1の領域23aが存在し、懸架体7の表面側に第2の領域23bが点在して構成されている。
このような構成によれば、中立面Cにおける第1の領域23aの曲げ剛性よりも表層側の領域23bが存在する平面Dにおける曲げ剛性が小さくなるため、懸架体7の屈曲性が向上する。
実施の形態24.
次に、図43はこの発明の実施の形態24によるエレベータの懸架体7の断面図である。実施の形態24では、懸架体7の駆動シーブ6に接する側の面には、懸架体7の幅方向に並んだ複数の表面突起7dが設けられている。表面突起7dの断面形状は、V字型、詳細には駆動シーブ6に接する下底が上底よりも短い台形形である。駆動シーブ6には、表面突起7dと噛み合う溝6aが設けられている。
次に、図43はこの発明の実施の形態24によるエレベータの懸架体7の断面図である。実施の形態24では、懸架体7の駆動シーブ6に接する側の面には、懸架体7の幅方向に並んだ複数の表面突起7dが設けられている。表面突起7dの断面形状は、V字型、詳細には駆動シーブ6に接する下底が上底よりも短い台形形である。駆動シーブ6には、表面突起7dと噛み合う溝6aが設けられている。
荷重を支持するコア21は、複数の荷重支持層23により構成されている。荷重支持層23は、懸架体7の厚さ方向に2層に分割されている。駆動シーブ6の径方向外側に位置する荷重支持層23は、懸架体7の幅方向に連続して配置されている。駆動シーブ6の径方向内側に位置する荷重支持層23は、懸架体7の幅方向に複数に分割されており、それぞれ表面突起7d内に分散して配置されている。
このような懸架体7では、表面突起7dと溝6aとが噛み合った状態で懸架体7に張力が作用することで、接触摩擦力が増加するため、懸架体7の表面が平坦な場合よりも大きな動力を伝達することができる。
また、懸架体7の表面突起7dと駆動シーブ6の溝6aとが噛み合っているため、駆動シーブ6の幅方向への懸架体7のずれを防止できる。
さらに、表面突起7d内にコア21が存在することで、幅方向のずれに対する表面突起7dの剛性が向上する。
さらにまた、コア21の厚さ方向の一側と他側とに剛性差が生じているため、巻上機ブレーキなどにより懸架体7が長さ方向の圧縮荷重を受けた場合に、懸架体7を一方向に曲がり易くすることができる。
なお、図43の例では、表面突起7d内にコア21が存在しているが、表面突起7d内にコア21がなくても同様の効果を得ることができる。
また、表面突起7dの数は3つに限定されない。
さらに、表面突起7dの断面形状もV字型に限定されない。
さらにまた、荷重支持層23は、2層に限定されない。
また、図43のコア21は荷重支持層23のみから構成されているが、上記の実施の形態のいずれかと適宜組み合わせて実施してもよく、それぞれの実施の形態の効果を得ることができる。
また、表面突起7dの数は3つに限定されない。
さらに、表面突起7dの断面形状もV字型に限定されない。
さらにまた、荷重支持層23は、2層に限定されない。
また、図43のコア21は荷重支持層23のみから構成されているが、上記の実施の形態のいずれかと適宜組み合わせて実施してもよく、それぞれの実施の形態の効果を得ることができる。
実施の形態25.
次に、図44はこの発明の実施の形態25によるエレベータの懸架体7の断面図である。実施の形態25では、懸架体7は、内部に荷重を支持するコア21と、被覆層22とから構成されている。被覆層22の駆動シーブ6に接触する内周側表面には、深さの異なる複数の溝22aが設けられている。溝22aは、懸架体7の長さ方向に沿って設けられている。
次に、図44はこの発明の実施の形態25によるエレベータの懸架体7の断面図である。実施の形態25では、懸架体7は、内部に荷重を支持するコア21と、被覆層22とから構成されている。被覆層22の駆動シーブ6に接触する内周側表面には、深さの異なる複数の溝22aが設けられている。溝22aは、懸架体7の長さ方向に沿って設けられている。
このような懸架体7では、駆動シーブ6の比較的平坦な表面と懸架体7の内周側表面とが接触することで、懸架体7の内周側表面の摩耗を目視で確認することができる。特に、深さの異なる溝22aを組み合わせることで、摩耗の経過状態をより確認し易くなる。
なお、図44では溝22aの深さを2種類としたが、溝22aの深さの種類数は2種類に限定されず、1種類又は3種類以上であってもよい。
また、溝22aの方向は、懸架体7の長さ方向に平行な方向に限らず、例えば、長さ方向に対して45°の方向又は90°の方向であってもよい。
さらに、溝22aの断面形状は矩形に限定されず、例えばV字形又は半円形状であってもよい。但し、図44に示すように溝22aの断面形状を矩形とすれば、摩耗が進行しても駆動シーブ6と接触する面積が同じであるため、一定の速度で摩耗が進行する。そのため、摩耗の進行の予測が容易となる。
また、溝22aの方向は、懸架体7の長さ方向に平行な方向に限らず、例えば、長さ方向に対して45°の方向又は90°の方向であってもよい。
さらに、溝22aの断面形状は矩形に限定されず、例えばV字形又は半円形状であってもよい。但し、図44に示すように溝22aの断面形状を矩形とすれば、摩耗が進行しても駆動シーブ6と接触する面積が同じであるため、一定の速度で摩耗が進行する。そのため、摩耗の進行の予測が容易となる。
実施の形態26.
次に、図45はこの発明の実施の形態26による懸架体7が駆動シーブ6に掛けられた状態を示す側面図である。実施の形態26の懸架体7は、懸架体7の長さ方向の位置により内部の接着状態が異なることが特徴である。即ち、懸架体7は、複数の接着部7eと、複数の非接着部7fとを有している。
次に、図45はこの発明の実施の形態26による懸架体7が駆動シーブ6に掛けられた状態を示す側面図である。実施の形態26の懸架体7は、懸架体7の長さ方向の位置により内部の接着状態が異なることが特徴である。即ち、懸架体7は、複数の接着部7eと、複数の非接着部7fとを有している。
非接着部7fの断面図を図46、接着部7eの断面図を図47にそれぞれ示す。図46において、非接着部7fは、3層の荷重支持層23と2層の中間層24aとを有するコア21aに加えて、コア21aと被覆層22との間に介在するコア被覆層22cを有している。
特にこの例では、中間層24a及びコア被覆層22cは潤滑材で構成されており、隣接する層の間が滑り易い構成となっている。例えば、熱可塑性樹脂、熱硬化性樹脂、エラストマー材料のほか荷重支持層23と接着されない潤滑材又は低摩擦のシートで構成されていてもよい。また、シートは、複数層重ねて配置することができ、さらには、液体潤滑材、半固体潤滑材、及び、固体潤滑材を併用して使用することができる。例えば、固体潤滑材のシートの表面に液体潤滑材を配置した構成が考えられる。
一方、図47において、接着部7eは、3層の荷重支持層23と2層の中間層24bとを有するコア21bに加えて、コア21bと被覆層22との間に介在するコア被覆層22bを有している。
中間層24b及びコア被覆層22bは共に層間を接着するする固体材料となっている。固体材料は、荷重支持層23又は被覆層22と同じ材料であってもよいし、別途の材料としてもよい。
このような構成では、接着部7eにより懸架体7全体が硬固な一体構造とできると同時に、駆動シーブ6で曲げられる部分においては荷重支持層23間のずれを許容することができるので、曲がり易さを実現できる。
図48は実施の形態26の非接着部7fの変形例を示す断面図である。この例では、コア21aの厚さ方向の両面にはコア被覆層22bを設け、コア21aの幅方向の両面にはコア被覆層22cを設けている。即ち、コア21aの上下面は接着し、コア21aの両側面は接着しない構成としている。
このような構造においては、被覆層22と荷重支持層23との間に滑りが生じないため、より外形形状を維持しつつ、駆動シーブ6で曲げられる部分においては荷重支持層23間のずれを許容することで曲がり易さも実現できる。
なお、曲げられたときに伸縮しない面である中立面Cを、図12~18、図27~31、図37~42、図46~48に示すように、コア21の厚さ方向の中心に位置させることにより、懸架体7に張力が作用したときの懸架体7の挙動を安定させることができる。
さらにまた、上記のいくつかの実施の形態で示したように、コア21の厚さ方向の一端と他端との間に剛性差が付けられている場合、懸架体7を駆動シーブ6の外周面に沿わせたときに懸架体7が曲がり易い方向に曲がる向きで、懸架体7を駆動シーブ6に巻き掛けられるのが好適である。これにより、懸架体7を駆動シーブ6に巻き掛ける際の施工性を向上させることができる。
また、以上の実施の形態の懸架体7を適用するエレベータの構成は、図1の構成に限定されるものではなく、例えば、機械室レスエレベータ、2:1ローピング方式のエレベータ、ダブルデッキエレベータ、及びマルチカー式エレベータにも適用できる。マルチカー式エレベータは、上かごと、上かごの真下に配置された下かごとが、それぞれ独立して共通の昇降路を昇降する方式のエレベータである。
実施の形態27.
次に、この発明の実施の形態27について説明する。実施の形態27のエレベータの全体構成は、図1と同様である。実施の形態27では、図1の懸架体7として、ベルト状のコアと、コアを覆っている樹脂製の被覆層とを有しているベルト状の懸架体が用いられる。コアは、含浸樹脂と複数の高強度繊維とを含む荷重支持層を有している。このような懸架体7の断面構造は、実施の形態1~26のいずれかの構造であっても、他の構造であってもよい。
次に、この発明の実施の形態27について説明する。実施の形態27のエレベータの全体構成は、図1と同様である。実施の形態27では、図1の懸架体7として、ベルト状のコアと、コアを覆っている樹脂製の被覆層とを有しているベルト状の懸架体が用いられる。コアは、含浸樹脂と複数の高強度繊維とを含む荷重支持層を有している。このような懸架体7の断面構造は、実施の形態1~26のいずれかの構造であっても、他の構造であってもよい。
また、実施の形態27では、図49に示すように、懸架体7の両端部に一対の端末保持装置41が設けられている。端末保持装置41は、懸架体7の内部で荷重支持層が懸架体7の長さ方向へずれるのを阻止するように懸架体7の両端部を拘束し保持している。
図50は図49の端末保持装置41の断面図である。端末保持装置41は、ソケット42と一対の楔43a,43bとを有している。懸架体7の端部は、ソケット42に通されている。楔43a,43bは、ソケット42と懸架体7の端部との間に打ち込まれている。このような状態で、懸架体7は、かご8及び釣合おもり9に接続されている。
さらに、実施の形態27では、駆動シーブ6の半径が、以下の条件を満たすように設定されている。
条件1:懸架体7にかご8及び釣合おもり9の荷重がかかり、懸架体7が駆動シーブ6に沿って曲げられた状態で、荷重支持層に発生する懸架体7の長さ方向の引張最大応力が、懸架体7の長さ方向の引張強度よりも小さい。
条件2:懸架体7にかご8及び釣合おもり9の荷重がかかり、懸架体7が駆動シーブ6に沿って曲げられた状態で、荷重支持層に発生する懸架体7の長さ方向の圧縮最大応力が懸架体7の長さ方向の圧縮強度よりも小さい。
条件1:懸架体7にかご8及び釣合おもり9の荷重がかかり、懸架体7が駆動シーブ6に沿って曲げられた状態で、荷重支持層に発生する懸架体7の長さ方向の引張最大応力が、懸架体7の長さ方向の引張強度よりも小さい。
条件2:懸架体7にかご8及び釣合おもり9の荷重がかかり、懸架体7が駆動シーブ6に沿って曲げられた状態で、荷重支持層に発生する懸架体7の長さ方向の圧縮最大応力が懸架体7の長さ方向の圧縮強度よりも小さい。
ここで、駆動シーブ6に巻き掛けられた状態での懸架体7の厚さをt、駆動シーブ6の中心から懸架体7の厚さ方向の中心までの距離をRとする。
図51は図49の懸架体7の駆動シーブ6に巻き掛けられている部分の形状変化を示す説明図である。懸架体7の断面構造が厚さ方向の中心に対して対称であり、かつ引張負荷がない状態であれば、駆動シーブ6の中心から距離Rの位置は、懸架体7の長さ方向に引張力及び圧縮力が作用しないいわゆる中立面(又は中立軸)の位置にあたる。
これに対して、引張負荷が加わった場合、単位巻付角dθあたりで見ると、懸架体7の駆動シーブ6に接触している側の部分は、圧縮されて(R-t/2)dθとなる。一方、懸架体7の駆動シーブ6に接触していない側の部分は、(R+t/2)dθとなる。
従って、駆動シーブ6と接触する内周面の長さと接触しない外周面の長さとの差分は、厚さt×単位巻付角dθで決まることとなる。また、せん断歪みは、単位巻付角dθで定められる。
図52は図49の懸架体7の駆動シーブ6に巻き掛けられた部分の長さ方向の応力状態を示す説明図である。懸架体7の強度部材のヤング率をE、懸架体7の長さ方向に直角な荷重支持層の断面積をA、懸架体7に作用する引張負荷をTとする。
図51で示した形状変化による応力は、歪みt/(2・R)とヤング率Eとの積で定められ、さらに引張負荷による応力T/Aがかかることを考慮する必要がある。それぞれ、引っ張り方向の応力を正とすると、懸架体7の駆動シーブ6に接する側の部分は、-E×t/(2・R)+T/Aとなる。また、懸架体7の駆動シーブ6に接触しない側の部分は、E×t/(2・R)+T/Aとなる。
実施の形態27では、懸架体7の両端部が端末保持装置41により保持されているので、懸架体7に生じる応力に対して、懸架体7内での荷重支持層のずれが許容されない。このため、懸架体7の断面積A、厚さt、及び最大張力負荷を厳密に考慮して駆動シーブ6の半径を定めることが望ましい。
即ち、荷重支持層が破壊されないためには、荷重支持層の圧縮強度がSpress<-E×t/(2・R)+T/A(条件1)となり、荷重支持層の引張強度がSpull>E×t/(2・R)+T/A(条件2)となるように、駆動シーブ6の半径を定めることが望ましい。
実施の形態1~4に示したように、荷重支持層23が複数の分割層25に分割されている場合、最も厚さ寸法の大きい分割層25の厚さ寸法をtとしてもよい。
このような構成とすることにより、懸架体7が曲げられたときに荷重支持層23に過大な応力が生じるのを防止して、荷重支持層の破壊を防止しつつ、懸架体7の曲げ半径を小さくし、駆動シーブ6の径を小さくすることができる。
なお、引張負荷Tは、静的な状態だけでなく、かご8内に利用者が乗ったり、急制動で衝撃的に負荷が大きくなったりするケースも想定して、高く見積もることが好ましい。
具体的には、かご8の重量に利用者の最大積載重量を加え、トラクション駆動式エレベータの最大加速度である1Gで急減速した場合に懸架体7にかかる負荷を見込んでTを定める。そして、その際の最大引張応力が引張強度を超えない範囲で駆動シーブ6の半径を定めることが好ましい。
また、この場合、引張強度及び圧縮強度には、荷重支持層の経年的な強度低下を考慮して、理想強度の1/2以下とするのが好ましい。
さらに、一般的に、駆動シーブ6の半径が小さくなれば、巻上機モータの駆動トルクが小さくて済むため、経済的である。特に、駆動シーブ6の半径が200mm以下であれば汎用のモータが利用できるため、駆動シーブ6の半径を200mm以下とできるように、引張負荷Tを考慮して懸架体7の厚さtを定めることが好ましい。
図53は図49の端末保持装置41の変形例を示す断面図である。図50では、2つの楔43a,43bを用いた両楔式の装置を示したが、図53の端末保持装置41は、1つの楔43aのみを用いた片楔式の装置である。楔43aは、懸架体7の厚さ方向の両端のうち、駆動シーブ6の径方向の外側に位置する面とソケット42との間に打ち込まれている。
実施の形態28.
次に、図54はこの発明の実施の形態28によるエレベータの要部を示す構成図、図55は図54の端末保持装置41の断面図である。実施の形態28の端末保持装置41は、懸架体7の厚さ方向の一端と他端とが懸架体7の長さ方向にずれた状態で懸架体7の両端部を拘束し保持している。
次に、図54はこの発明の実施の形態28によるエレベータの要部を示す構成図、図55は図54の端末保持装置41の断面図である。実施の形態28の端末保持装置41は、懸架体7の厚さ方向の一端と他端とが懸架体7の長さ方向にずれた状態で懸架体7の両端部を拘束し保持している。
具体的には、懸架体7の両端部において、懸架体7の厚さ方向の一端、即ち駆動シーブ6に接する側の端部が、懸架体7の厚さ方向の他端よりも突出するように、端末保持装置41が懸架体7の両端部を拘束している。言い換えると、端末保持装置41は、駆動シーブ6の径方向について懸架体7の外側の面が駆動シーブ6に寄るように、懸架体7の両端部を拘束している。他の構成は、実施の形態27と同様である。
このようなエレベータでは、引張負荷により駆動シーブ6の外周で懸架体7に生じる応力を低減することができる。このため、懸架体7に生じる引張応力と圧縮応力とが限界強度を超えない範囲で、懸架体7の曲げ半径を小さくし、駆動シーブ6の径を小さくすることができる。
図56は図54の端末保持装置41の変形例を示す断面図である。図55では、2つの楔43a,43bを用いた両楔式の装置を示したが、図56の端末保持装置41は、1つの楔43aのみを用いた片楔式の装置である。楔43aは、懸架体7の厚さ方向の両端のうち、駆動シーブ6の径方向の外側に位置する面とソケット42との間に打ち込まれている。
なお、実施の形態28では、懸架体7の両端部で、懸架体7の厚さ方向の一端と他端とが懸架体7の長さ方向にずらしたが、いずれか一方の端部のみでもよい。
実施の形態29.
次に、この発明の実施の形態29について説明する。実施の形態29のエレベータの全体構成は、図1と同様である。図57は実施の形態29の端末保持装置41の断面図である。実施の形態29の端末保持装置41は、図53と同様の構成であるが、懸架体7の幅方向に平行な軸44を中心として回転可能にかご8及び釣合おもり9に連結されている。即ち、端末保持装置41は、懸架体7の厚さ方向へ傾斜可能になっている。
次に、この発明の実施の形態29について説明する。実施の形態29のエレベータの全体構成は、図1と同様である。図57は実施の形態29の端末保持装置41の断面図である。実施の形態29の端末保持装置41は、図53と同様の構成であるが、懸架体7の幅方向に平行な軸44を中心として回転可能にかご8及び釣合おもり9に連結されている。即ち、端末保持装置41は、懸架体7の厚さ方向へ傾斜可能になっている。
懸架体7の駆動シーブ6に巻き掛けられた部分に引張負荷による応力が発生すると、懸架体7の両端部に曲げモーメントMが作用する。このとき、端末保持装置41は、図58に示すように、応力を逃がす方向へ回転する。かご8及び釣合おもり9には、応力を逃がす方向とは反対側への端末保持装置41の回転を阻止するストッパ45が設けられている。他の構成は、実施の形態27と同様である。
このような構成によっても、引張負荷により駆動シーブ6の外周で懸架体7に生じる応力を低減することができる。このため、懸架体7に生じる引張応力と圧縮応力とが限界強度を超えない範囲で、懸架体7の曲げ半径を小さくし、駆動シーブ6の径を小さくすることができる。
また、曲げモーメントMが大きくかかった場合に端末保持装置41が傾くことができるため、懸架体7の端部に伝達されたずれ分だけを効率的に解消することができる。
なお、実施の形態29の構成は、かご8側及び釣合おもり9側のいずれか一方のみに適用してもよい。
実施の形態30.
次に、図59はこの発明の実施の形態30によるエレベータの要部を示す構成図である。かご8及び釣合おもり9には、円筒状のガイド体46がそれぞれ固定されている。懸架体7の第1の端部7a及び第2の端部7bは、ガイド体46の外周面の円弧46aに沿って曲げられている。また、第1の端部7aの先端及び第2の端部7bの先端は、把持具(図示せず)等によりガイド体46に止められている。
次に、図59はこの発明の実施の形態30によるエレベータの要部を示す構成図である。かご8及び釣合おもり9には、円筒状のガイド体46がそれぞれ固定されている。懸架体7の第1の端部7a及び第2の端部7bは、ガイド体46の外周面の円弧46aに沿って曲げられている。また、第1の端部7aの先端及び第2の端部7bの先端は、把持具(図示せず)等によりガイド体46に止められている。
この例では、円弧46aの曲率半径は、駆動シーブ6の懸架体7が接している面の曲率半径と同じである。また、円弧46aにおける懸架体7の厚さ方向への曲げ方向は、駆動シーブ6における曲げ方向と反対の方向である。
さらに、各ガイド体46に対する懸架体7の巻き付け角度範囲は、駆動シーブ6に対する懸架体7の巻き付け角度範囲の半分である。即ち、両ガイド体46に対する懸架体7の巻き付け角度範囲の合計は、駆動シーブ6に対する懸架体7の巻き付け角度範囲と同じである。他の構成は、実施の形態27と同様である。
このような構成によっても、引張負荷により駆動シーブ6の外周で懸架体7に生じる応力を低減することができる。
なお、懸架体7の端部に伝達されるずれは、最大でも駆動シーブ6に対する懸架体7の巻き付け角度範囲分であるため、円弧46aに対する懸架体7の巻き付け角度範囲の合計は、駆動シーブ6に対する懸架体7の巻き付け角度範囲よりもある程度小さくてもよい。
実施の形態31.
次に、図60はこの発明の実施の形態31によるエレベータの要部を示す構成図である。実施の形態31では、かご8のみにガイド体46が設けられている。ガイド体46に対する第1の端部7aの巻き付け角度範囲は、駆動シーブ6に対する懸架体7の巻き付け角度範囲と同じである。
次に、図60はこの発明の実施の形態31によるエレベータの要部を示す構成図である。実施の形態31では、かご8のみにガイド体46が設けられている。ガイド体46に対する第1の端部7aの巻き付け角度範囲は、駆動シーブ6に対する懸架体7の巻き付け角度範囲と同じである。
第2の端部7bは、実施の形態27と同様に端末保持装置41により拘束され保持されている。即ち、実施の形態31では、懸架体7が駆動シーブ6で曲げられることによるずれ量の全てを第1の端部7aに寄せている。他の構成は、実施の形態27と同様である。
このような構成によっても、引張負荷により駆動シーブ6の外周で懸架体7に生じる応力を低減することができる。
実施の形態32.
次に、図61はこの発明の実施の形態32によるエレベータの要部を示す構成図である。実施の形態32では、2:1ローピング方式のエレベータの場合を示す。かご8には、かご吊り車47が設けられている。釣合おもり9には、釣合おもり吊り車48が設けられている。
次に、図61はこの発明の実施の形態32によるエレベータの要部を示す構成図である。実施の形態32では、2:1ローピング方式のエレベータの場合を示す。かご8には、かご吊り車47が設けられている。釣合おもり9には、釣合おもり吊り車48が設けられている。
懸架体7は、第1の端部7a側から順に、かご吊り車47、駆動シーブ6、及び釣合おもり吊り車48の順に巻き掛けられている。
第1の端部7aは、昇降路1の上部で、実施の形態27と同様に端末保持装置41により拘束され保持されている。昇降路1の上部には、ガイド体46が設けられている。第2の端部7bは、ガイド体46の外周面の円弧46aに沿って曲げられている。第2の端部7bの先端は、ガイド体46に止められている。
円弧46aにおける懸架体7の厚さ方向への曲げ方向は、釣合おもり吊り車48における曲げ方向と反対の方向である。他の構成は、実施の形態31と同様である。
このような構成によっても、引張負荷により駆動シーブ6の外周で懸架体7に生じる応力を低減することができる。
2:1ローピング方式では、懸架体7が逆向きに曲げられることによりずれ量が解消されるため、差し引きを考慮して、懸架体7の端部でのずれ量を定めるのが望ましい。図61の例では、駆動シーブ6で曲げられた180°分に対して、かご吊り車47及び釣合おもり吊り車48では反対方向に合計360°曲げられている。このため、合計として、駆動シーブ6で曲げられる方向とは反対の方向に180°分だけ懸架体7をガイド体46で曲げている。
なお、実施の形態30~33において、ガイド体46は、懸架体7を巻き掛ける部分に円弧46aが設けられていればよく、円筒状でなくてもよい。
実施の形態33.
次に、図62はこの発明の実施の形態33によるエレベータの要部を示す構成図である。実施の形態33では、実施の形態32のガイド体46の代わりに、実施の形態28のような端末保持装置41が第2の端部7bに設けられている。他の構成は、実施の形態32と同様である。
次に、図62はこの発明の実施の形態33によるエレベータの要部を示す構成図である。実施の形態33では、実施の形態32のガイド体46の代わりに、実施の形態28のような端末保持装置41が第2の端部7bに設けられている。他の構成は、実施の形態32と同様である。
このような構成によっても、引張負荷により駆動シーブ6の外周で懸架体7に生じる応力を低減することができる。
なお、実施の形態32、33において、第1の端部7aと第2の端部7bとを入れ替えてもよい。
また、実施の形態28~33において、懸架体7の断面構造は、実施の形態1~26のいずれかの構造であっても、他の構造であってもよい。
また、実施の形態28~33において、懸架体7の断面構造は、実施の形態1~26のいずれかの構造であっても、他の構造であってもよい。
実施の形態34.
図63はこの発明の実施の形態34によるエレベータの要部を示す構成図である。実施の形態34では、懸架体7が端部のない輪状、即ちループ状となっている。また、2つの駆動シーブ6A,6Bが用いられている。かご8には、かご吊り車47が設けられている。釣合おもり9には、釣合おもり吊り車48が設けられている。
図63はこの発明の実施の形態34によるエレベータの要部を示す構成図である。実施の形態34では、懸架体7が端部のない輪状、即ちループ状となっている。また、2つの駆動シーブ6A,6Bが用いられている。かご8には、かご吊り車47が設けられている。釣合おもり9には、釣合おもり吊り車48が設けられている。
懸架体7は、かご吊り車47、駆動シーブ6A,6B、及び釣合おもり吊り車48に巻き掛けられている。
このような構成によって、端末保持による懸架体7の端部への応力集中を解消することができる。予め輪状に製造した懸架体7を使用するため、360°分の曲げ角度がついた状態で巻き掛けることとなる。駆動シーブ6A、かご吊り車47、釣合おもり吊り車48と、駆動シーブ6Bとでは、懸架体7が反対方向に曲げられており、前者の曲げ角度が180°×3=540°分、後者が180°分となる。初期状態の曲げ角度360°を考慮すると、差し引きで曲げによるずれ量は解消される。
以下、実施の形態1~4、6~15に示したような中間層24を有する懸架体7の製造方法について説明する。
実施の形態35.
図64はこの発明の実施の形態35によるエレベータの懸架体7の製造途中の状態を示す断面図であり、懸架体7の長さ方向に直角な断面に相当する断面を示している。実施の形態35の製造方法では、複数の高強度繊維層51と、少なくとも1層の低弾性繊維層52とを、懸架体の厚さ方向に交互に積層して積層体53を形成する。
図64はこの発明の実施の形態35によるエレベータの懸架体7の製造途中の状態を示す断面図であり、懸架体7の長さ方向に直角な断面に相当する断面を示している。実施の形態35の製造方法では、複数の高強度繊維層51と、少なくとも1層の低弾性繊維層52とを、懸架体の厚さ方向に交互に積層して積層体53を形成する。
図65は図64の高強度繊維層51を部分的に拡大して示す断面図である。各高強度繊維層51は、実施の形態1で示したような高強度繊維により構成された高強度繊維織物54を複数枚積層して構成されている。なお、高強度繊維層51は、1枚の高強度繊維織物54のみで構成してもよい。
各高強度繊維織物54は、複数本の束になった高強度繊維糸55に横糸56を通して構成された一方向繊維織物である。横糸56の繊維種類は問わない。また、図65では、高強度繊維糸55が一列に揃った状態を示しているが、互いにずれていてもよい。
低弾性繊維層52は、高強度繊維織物54よりも弾性率の低い低弾性繊維織物を複数層積層して構成されている。なお、低弾性繊維層52は、1枚の低弾性繊維織物のみで構成してもよい。
低弾性繊維織物に用いられる繊維、即ち実施の形態35の中間層繊維としては、例えばガラス繊維又はポリエステル繊維が挙げられる。また、低弾性繊維織物の形態は、例えば、織物、不織布又は編み布である。
図66は実施の形態35の懸架体7の第1の製造装置を示す概略の構成図であり、実施の形態1のコア21を製造する装置である。図66の製造装置は、積層部57、樹脂槽58、加熱成形装置59、引抜装置60及び巻取装置61を有している。図66では、簡単のため、2層の高強度繊維層51及び1層の低弾性繊維層52のみを示している。
ロールから引き出された高強度繊維層51及び低弾性繊維層52が積層部57で積層され、積層体53が形成される。なお、各高強度繊維層51を構成する高強度繊維織物54の積層、及び各低弾性繊維層52を構成する低弾性繊維織物の積層を、積層部57で行ってもよい。
積層部57で形成された積層体53は、引抜装置60により樹脂槽58に引き入れられる。樹脂槽58には、未硬化の熱硬化性樹脂が入れられている。熱硬化性樹脂としては、実施の形態1で中間層24及び分割層25に用いられる熱硬化性樹脂が用いられる。樹脂槽58では、未硬化の熱硬化性樹脂が積層体53に含浸される。狭い繊維間へ含浸させる必要があるため、樹脂槽58内の熱硬化性樹脂の粘度は低い方が望ましい。
この後、積層体53は、引抜装置60により加熱成形装置59に引き入れられる。加熱成形装置59では、積層体53が加熱されることにより、熱硬化性樹脂が硬化する。これにより、高強度繊維層51と低弾性繊維層52とが一体化し、実施の形態1のコア21が形成される。コア21は、巻取装置61に巻き取られる。
図67は図66の第1の製造装置で製造された懸架体7のコア21の断面図であり、コア21の長さ方向に直角な断面を示している。実施の形態35の分割層25は、それぞれ高強度繊維織物54を含むFRPで構成されている。また、中間層24は、それぞれ低弾性繊維織物を含むFRPで構成されている。さらに、分割層25に含まれる樹脂は、中間層24に含まれる樹脂と同じである。
図67に示すようなコア21の外周を樹脂製の被覆層22で覆うことにより、懸架体7が完成する。被覆層22を構成する樹脂としては、実施の形態1で挙げた樹脂を用いることができる。
被覆層22は、連続プレス成形、間欠プレス成形、又はラミネート成形によりコア21の外周を樹脂で被覆し、不要部分をトリミングすることにより形成される。
図68は実施の形態35の懸架体7の第2の製造装置を示す概略の構成図であり、被覆層22を形成するための装置を示している。第2の製造装置は、シート配置部62及び加圧成形装置63を有している。シート配置部62では、被覆層22を構成する熱可塑性樹脂からなる複数の熱可塑シート64がコア21の周囲を囲むように配置される。
この後、コア21及び熱可塑シート64は、加圧成形装置63に送られて加圧成形される。図68では、加圧成形装置63としてダブルベルトプレスを示したが、加圧成形装置63はこれに限定されるものではなく、熱可塑シート64及びコア21の一体化に必要な圧力を連続又は断続的に加えることができれば、例えば間欠プレス又はラミネータであってもよい。
図69は図68の加圧成形装置63によるコア21及び熱可塑シート64の加圧状態を示す断面図であり、コア21の長さ方向に直角な断面を示している。熱可塑シート64は、コア21の厚さ方向(図69の上下方向)の両側、及びコア21の幅方向(図69の左右方向)の両側にそれぞれ配置されている。
加圧成形装置63は、コア21の厚さ方向両側からコア21及び熱可塑シート64を挟み込む一対の成形型63a,63bを有している。これらの成形型63a,63bにより、図69の矢印方向に圧力が加えられる。
図70は図69の加圧成形装置63により加圧成形された完成前の懸架体7の断面図である。加圧成形装置63を通過した状態では、懸架体7の幅方向の両側に必要以上に被覆層22が突出している。このため、不要部分を図70の破線に沿ってトリミングする。これにより、懸架体7が完成する。
このような製造方法によれば、荷重支持層23がコア21の厚さ方向に分割されており、隣り合う分割層25の間に中間層24が介在している懸架体7を容易に製造することができる。これにより、コア21の曲げ易さを改善することができ、最内層に位置する分割層25及び最外層に位置する分割層25の応力集中を緩和することができる。
実施の形態36.
次に、図71はこの発明の実施の形態36によるエレベータの懸架体7の製造途中の状態を示す断面図であり、懸架体7の長さ方向に直角な断面に相当する断面を示している。実施の形態36の懸架体7の製造方法では、懸架体の厚さ方向の一方に複数の高強度繊維層51を、他方に少なくとも1層の低弾性繊維層52を積層して積層体53を形成する。他の製造方法は、実施の形態35と同様である。
次に、図71はこの発明の実施の形態36によるエレベータの懸架体7の製造途中の状態を示す断面図であり、懸架体7の長さ方向に直角な断面に相当する断面を示している。実施の形態36の懸架体7の製造方法では、懸架体の厚さ方向の一方に複数の高強度繊維層51を、他方に少なくとも1層の低弾性繊維層52を積層して積層体53を形成する。他の製造方法は、実施の形態35と同様である。
このような製造方法によれば、樹脂の硬化により硬化収縮が生じたとき、高強度繊維層51と低弾性繊維層52との間で長さ方向の収縮率に差が生じ、低弾性繊維層52の方が高強度繊維層51より大きく収縮する。これにより、図72に示すように、懸架体7は低弾性繊維層52の方へ屈曲して成形される。予め懸架体7を屈曲させて製造することにより、屈曲性を向上させることができる。
実施の形態37.
次に、図73はこの発明の実施の形態37による製造方法により製造された懸架体7の断面図、図74は図73の懸架体7の製造途中の状態を示す断面図であり、それぞれコア21の長さ方向に直角な断面を示している。
次に、図73はこの発明の実施の形態37による製造方法により製造された懸架体7の断面図、図74は図73の懸架体7の製造途中の状態を示す断面図であり、それぞれコア21の長さ方向に直角な断面を示している。
実施の形態37の懸架体7の製造方法では、積層体53の形成後、未硬化の熱硬化性樹脂を含浸する前に、積層体53をスティッチングにより一体化する。即ち、高強度繊維層51及び低弾性繊維層52を糸等のスティッチ材65で纏める。他の製造方法は、実施の形態35と同様である。
このような製造方法によれば、高強度繊維層51及び低弾性繊維層52の横ずれを防止し、成形性を向上することができる。繊維のよれがあると、よれの部分では荷重を負担せず、懸架体7の強度が低下する恐れがある。繊維のよれを抑制することにより、十分な強度を有する懸架体7を得ることができる。また、スティッチングにより繊維のよれを抑制することができる。さらに、樹脂含浸工程において、熱硬化性樹脂がスティッチ材65を介して積層体53の厚み方向に含浸し易くなる。
実施の形態38.
次に、図75はこの発明の実施の形態38の懸架体7の製造装置の一部を示す概略の構成図である。図75の製造装置は、実施の形態35の第2の製造装置に対応しているが、シート配置部62と加圧成形装置63との間に加熱装置66が配置されている点が実施の形態35と異なっている。
次に、図75はこの発明の実施の形態38の懸架体7の製造装置の一部を示す概略の構成図である。図75の製造装置は、実施の形態35の第2の製造装置に対応しているが、シート配置部62と加圧成形装置63との間に加熱装置66が配置されている点が実施の形態35と異なっている。
加熱装置66としては、超音波加熱装置、ラジカルヒータ、又は遠赤外線ヒータなど、一定時間内に急速加熱が可能な装置が用いられる。
実施の形態38の製造方法では、コア21の周囲に熱可塑シート64を配置した後、加熱装置66により熱可塑シート64を予備加熱してから、コア21及び熱可塑シート64を加圧成形する。他の製造方法は、実施の形態35又は30と同様である。
このような製造方法では、加圧成形工程の前に熱可塑シート64を軟化させ、成形性を向上させることができる。
実施の形態39.
次に、図76はこの発明の実施の形態39の製造方法による懸架体7の製造途中の状態を示す断面図であり、実施の形態35の図69に相当する断面を示している。実施の形態39の製造方法では、分割層25の材料として、一方向FRP板71が用いられている。一方向FRP板71の材料としては、実施の形態1で示した熱硬化性樹脂と複数の高強度繊維が用いられている。
次に、図76はこの発明の実施の形態39の製造方法による懸架体7の製造途中の状態を示す断面図であり、実施の形態35の図69に相当する断面を示している。実施の形態39の製造方法では、分割層25の材料として、一方向FRP板71が用いられている。一方向FRP板71の材料としては、実施の形態1で示した熱硬化性樹脂と複数の高強度繊維が用いられている。
また、中間層24の材料として、実施の形態1で示した熱可塑性樹脂又は熱可塑性エラストマーからなる複数の中間層熱可塑シート72が用いられている。さらに、被覆層22の材料として、実施の形態1で示した熱可塑性樹脂からなる複数の被覆層熱可塑シート73が用いられている。
各一方向FRP板71は、引抜成形により製造する。そして、図76に示すように、一方向FRP板71と1枚以上の中間層熱可塑シート72とを交互に積層して積層体70を形成する。
この後、積層体70の周囲を囲むように被覆層熱可塑シート73を配置し、積層体70及び被覆層熱可塑シート73を加圧成形する。これにより、積層体70を一体化してコア21を形成するとともに、被覆層熱可塑シート73を一体化して被覆層22を形成する。そして、図70に示したように、被覆層22の不要部分をトリミングする。これにより、懸架体7が完成する。他の製造方法は、実施の形態35と同様である。
このような製造方法によれば、荷重支持層23がコア21の厚さ方向に分割されており、隣り合う分割層25の間に中間層24が介在している懸架体7を容易に製造することができる。これにより、コア21の曲げ易さを改善することができ、最内層に位置する分割層25及び最外層に位置する分割層25の応力集中を緩和することができる。
また、一方向FRP板71を予め成形して熱硬化性樹脂を硬化させておくことにより、分割層25内での高強度繊維層のよれを防止することができる。さらに、実施の形態35の低弾性繊維層52よりもさらに低弾性な中間層熱可塑シート72を用いることで、中間層24のせん断変形の効果を向上させることができる。
実施の形態40.
次に、図77はこの発明の実施の形態40の製造方法による懸架体7の製造途中の状態を示す断面図であり、実施の形態35の図69に相当する断面を示している。実施の形態40の実施の形態39との相違点は、一方向FRP板71が幅方向に凹凸を有している点である。
次に、図77はこの発明の実施の形態40の製造方法による懸架体7の製造途中の状態を示す断面図であり、実施の形態35の図69に相当する断面を示している。実施の形態40の実施の形態39との相違点は、一方向FRP板71が幅方向に凹凸を有している点である。
実施の形態40では、一方向FRP板71を成形する際に、幅方向に凹凸のある断面形状の成形型を使用する。他の製造方法は、実施の形態39と同様である。
図78は図77の一方向FRP板71の断面図である。図78では、一方向FRP板71に三角波状の凹凸が形成されている。凹凸の形状は、互いに噛み合う形状であればよく、これに限定されるものではない。例えば、正弦波状、台形波状又は矩形波状であってもよい。
図79は図77の加圧成形工程により加圧成形された完成前の懸架体7の断面図である。図79の状態から、被覆層22の余分な部分をトリミングすることにより、図80に示す懸架体7が製造される。
図80では、コア21の長さ方向に直角な断面において、分割層25及び中間層24の接合面に凹凸が形成されている。
このような製造方法では、積層体70及び被覆層熱可塑シート73を加圧成形する最、幅方向の凹凸で一方向FRP板71同士が中間層熱可塑シート72を介して噛み合い、幅方向のずれを防止することができる。これにより、懸架体7の幅寸法を適正な範囲内に収めることができる。
実施の形態41.
次に、図81はこの発明の実施の形態41の製造方法による懸架体7の製造途中の状態を示す断面図であり、実施の形態35の図69に相当する断面を示している。実施の形態39の一方向FRP板71では、高強度繊維は全て長さ方向に沿っており、樹脂は熱硬化性樹脂が用いられていたが、実施の形態41のFRP板74では、一部の高強度繊維が長さ方向に対して斜め方向に配向していてもよく、樹脂は熱可塑性樹脂が用いられている。他の製造方法は、実施の形態39と同様である。
次に、図81はこの発明の実施の形態41の製造方法による懸架体7の製造途中の状態を示す断面図であり、実施の形態35の図69に相当する断面を示している。実施の形態39の一方向FRP板71では、高強度繊維は全て長さ方向に沿っており、樹脂は熱硬化性樹脂が用いられていたが、実施の形態41のFRP板74では、一部の高強度繊維が長さ方向に対して斜め方向に配向していてもよく、樹脂は熱可塑性樹脂が用いられている。他の製造方法は、実施の形態39と同様である。
このような製造方法では、FRP板74の材料として熱可塑性樹脂が用いられているため、加圧成形する際のFRP板74と中間層熱可塑シート72との親和性が高い。このため、分割層25と中間層24との層間強度を向上させることができる。特に、FRP板74の熱可塑性樹脂として、中間層熱可塑シート72と同種の樹脂を用いることにより、層間強度をさらに向上させることができる。
また、懸架体7全体で熱可塑性樹脂を用いているため、被覆層22の形成後に懸架体7の端部7a,7bを予備加熱して任意の形状、例えば端部7a,7bの把持に適した形状に加工することができる。
図82は実施の形態41の懸架体7の端部7a,7bを予備加熱する工程を示す側面図である。加熱装置75としては、加熱装置66と同様に、超音波加熱装置、ラジカルヒータ、又は遠赤外線ヒータなど、一定時間内に急速加熱が可能な装置が用いられる。
図83は図82の予備加熱の後に懸架体7の端部7a,7bを加圧成形する工程の第1の例を示す側面図である。第1の例では、円弧状に窪んだ第1の成形面76aを有する第1の成形型76と、円弧状に突出した第2の成形面77aを有する第2の成形型77との間に端部7a,7bが配置される。
図84は図83の第1の成形型76と第2の成形型77との間に端部7a,7bを挟んだ状態を示す側面図である。図84のように、第1の成形型76と第2の成形型77とによって端部7a,7bを加圧した後、成形型76,77から端部7a,7bを取り出す。これにより、図85に示すように、端部7a,7bを円弧状に湾曲させることができる。
図86は図82の予備加熱の後に懸架体7の端部7a,7bを加圧成形する工程の第2の例を示す側面図である。第2の例では、波形の凹凸面である第1の成形面78aを有する第1の成形型78と、波形の凹凸面である第2の成形面79aを有する第2の成形型79との間に端部7a,7bが配置される。
図87は図86の第1の成形型78と第2の成形型79との間に端部7a,7bを挟んだ状態を示す側面図である。図87のように、第1の成形型78と第2の成形型79とによって端部7a,7bを加圧した後、成形型78,79から端部7a,7bを取り出す。これにより、図88に示すように、端部7a,7bを波形に変形させることができる。
なお、実施の形態39~41の製造方法において、実施の形態38と同様に予備加熱を行ってもよい。即ち、積層体70の周囲に被覆層熱可塑シート73を配置した後、被覆層熱可塑シート73を予備加熱してから、積層体70及び被覆層熱可塑シート73を加圧成形してもよい。これにより、成形性を向上させることができる。
また、予備加熱を行う場合、積層体70も含めて予備加熱してもよい。
また、実施の形態35~41の製造方法は、実施の形態2~4、6~15に示したような懸架体7にも適用できる。
また、予備加熱を行う場合、積層体70も含めて予備加熱してもよい。
また、実施の形態35~41の製造方法は、実施の形態2~4、6~15に示したような懸架体7にも適用できる。
実施の形態42.
次に、実施の形態34に示したような中間層24を有する懸架体7の製造方法について説明する。図89はこの発明の実施の形態42によるエレベータの懸架体7の第1の製造装置を示す概略の構成図であり、実施の形態34のコア21を製造する装置である。図89の製造装置は、実施の形態35の第1の製造装置に対応しているが、巻取装置61がない点が実施の形態35と異なっている。
次に、実施の形態34に示したような中間層24を有する懸架体7の製造方法について説明する。図89はこの発明の実施の形態42によるエレベータの懸架体7の第1の製造装置を示す概略の構成図であり、実施の形態34のコア21を製造する装置である。図89の製造装置は、実施の形態35の第1の製造装置に対応しているが、巻取装置61がない点が実施の形態35と異なっている。
実施の形態42の製造方法では、ボビン80から引き出された高強度繊維糸81は、引抜装置60を通過した後に集束部82へ戻され、必要な繊維量が集束された状態で成形された集束体が形成される。そして、集束体に未硬化の熱硬化性樹脂を含浸させ、未硬化の熱硬化性樹脂を加熱硬化させてコア21を形成する。他の製造方法は、実施の形態35又は37と同様である。
引抜装置60を通過した高強度繊維糸81が集束部82へ戻される際、一定の周長を保つため、プーリなどを介して高強度繊維糸81に一定の張力を加えることが望ましい。高強度繊維糸81に一定の張力を加え続けることにより、周長は集束部82から引抜装置60を経て集束部82へ戻るまでの最短経路の長さに保たれる。
このような製造方法によれば、実施の形態34に示す端部のない輪状の懸架体7を製造することができる。高強度繊維糸81の端部は、高強度繊維糸の集束体として一体に成形されるため、懸架体7としての端部は存在しない。
実施の形態43.
次に、図90はこの発明の実施の形態43によるエレベータの懸架体の断面図、図91は図90の101a部を拡大して示す断面図、図92は図90の101b部を拡大して示す断面図である。図90の101a部は、荷重支持層23の厚さ方向の中央部に位置している。また、図90の101b部は、荷重支持層23の厚さ方向の端部に位置している。
次に、図90はこの発明の実施の形態43によるエレベータの懸架体の断面図、図91は図90の101a部を拡大して示す断面図、図92は図90の101b部を拡大して示す断面図である。図90の101a部は、荷重支持層23の厚さ方向の中央部に位置している。また、図90の101b部は、荷重支持層23の厚さ方向の端部に位置している。
実施の形態43のコア21は、荷重支持層23のみにより構成されている。荷重支持層23は、含浸樹脂103と、複数の高強度繊維102とから構成されている。また、荷重支持層23の厚さ方向の中央部における高強度繊維102の密度は、荷重支持層23の厚さ方向の両端部における高強度繊維102の密度よりも高い。
なお、全ての実施の形態において、高強度繊維102の密度とは、荷重支持層23中に含まれる高強度繊維の割合を意味する。即ち、一定量の荷重支持層23に含まれる高強度繊維102の体積含有率、又はコア21の長さ方向に対して直角な断面に占める高強度繊維102の断面積の割合がこれに該当する。
実施の形態43では、高強度繊維102の密度が、荷重支持層23の厚さ方向の中央部から荷重支持層23の厚さ方向の両端部へ向けて連続的に低下している。また、実施の形態43では、コア21の長さ方向に直角な断面積に占める高強度繊維102の本数を変えることで、高強度繊維102の密度を変化させている。他の構成は、実施の形態11と同様である。
ここで、高強度繊維102のZ軸方向の引張剛性は、含浸樹脂103のZ軸方向の引張剛性よりも高い。これは、FRP全体の中で、高強度繊維102が主に強度及び剛性を高める役割を担い、含浸樹脂103が主に高強度繊維102を一体化させる役割を担っているためである。
本実施の形態における荷重支持層23は、Y軸方向中央部分におけるZ軸方向の引張剛性が高く、Y軸方向中央部分から離れるにつれて引張剛性が低下する特性を具備している。このため、荷重支持層23の断面が同形状で、かつ高強度繊維102の含有量も同一であれば、高強度繊維102が含浸樹脂103中に均一に分散している場合に比べて、X軸に関する曲げ、即ちX軸周りの曲げについて断面二次モーメントが低くなる。
これにより、懸架体がX軸に関して曲がり易くなり、駆動シーブ6への懸架体の巻き付け始め及び巻き付け終わりの部分が浮きにくくなる。このため、駆動シーブ6で送られる際に、懸架体が駆動シーブ6から外れにくくなる。
また、実施の形態43の荷重支持層23において、荷重支持層23の厚さ方向の中央部とは、駆動シーブ6に掛けられた状態で圧縮も引っ張りも受けない中立軸上の位置に近い部分であることが望ましい。このため、エレベータに適用された状態では懸架体に張力が作用するため、荷重支持層23の中央部は、厚さ方向の中心部分よりも駆動シーブ6との接触面に近い側に位置させるのが望ましい。
また、懸架体の表面と駆動シーブ6との接触面を大きくできるため、接触面に働く摩擦力により伝達できる駆動力を大きくすることができる。また、懸架体が曲がり易いため、保管、運搬、据付、交換等の作業での取り扱いが容易となる。
ここで、荷重支持層23全体としての曲がり易さには、含浸樹脂103のヤング率も影響している。即ち、含浸樹脂103のヤング率を低くすると、曲がり易さは改善される。理想的には、含浸樹脂103のヤング率は、6GPa以下とするのが好ましい。
一方、荷重支持層23にX軸に関して曲げを作用させた場合、高強度繊維102には、Z軸方向の引っ張りを受ける部分と、Z軸方向の圧縮を受ける部分とが発生する。これに対して、含浸樹脂103のヤング率を低下させ過ぎると、高強度繊維102が圧縮された場合にZ軸方向に垂直な方向へ動き易くなる。そして、高強度繊維102と含浸樹脂103との間に剥離が生じて、荷重支持層23が破断する現象が発生し易くなる。このため、含浸樹脂103のヤング率は、0.1GPa以上とすることが望ましい。
このように、含浸樹脂103のヤング率は、6GPa以下で、0.1GPa以上とすることが好ましい。特に、曲がり易さと破断し難さとをよりバランス良く両立させる特性としては、2GPa以下のヤング率、より好ましくは1.5GPa以下のヤング率の含浸樹脂103を選定するのが良い。これは、含浸樹脂103を用いる懸架体に関する他の全ての実施の形態についても、同様に言えることである。
また、荷重支持層23内で高強度繊維102の密度が最も高い部分、即ち荷重支持層23の厚さ方向の中央部では、高強度繊維102の体積含有率を60%以上、より好ましくは70%以上とすることが良い。
また、荷重支持層23内で高強度繊維102の密度が最も低い部分、即ち荷重支持層23の厚さ方向の両端部では、高強度繊維102の体積含有率を50%以下、より好ましくは40%以下とすることが良い。
これは、高強度繊維102の密度が高過ぎると、含浸樹脂103により高強度繊維102同士を一体化する効果が低下して、曲げによる疲労が進み易くなるためである。コア21が長手方向に曲げられることによる応力が小さい厚さ方向の中央部は、製造上含浸できる高い炭素繊維密度で構成する一方、曲げによる応力変化が大きい端部は、一体化効果が十分に得られる炭素繊維密度とすることで、疲労と強度との最適化を図ることができる。
図93は、本実施の形態における懸架体の製造装置を示す概略の構成図、図94は図93の要部断面図である。図93の装置では、第1の高強度繊維群111と、複数の第2の高強度繊維群112とが、それぞれ対応するボビンから繰り出される。第1の高強度繊維群111の繊維密度は、第2の高強度繊維群112の繊維密度よりも高い。
図93では、簡単のため、2種類の高強度繊維群111,112を示しているが、さらに多くのボビンを配置し、繊維密度の異なる3種類以上の高強度繊維群を繰り出すことにより、高強度繊維102の密度を連続的に変化させることができる。
ボビンから繰り出された高強度繊維群111,112は、繊維位置決め部110に通される。図94に示すように、繊維位置決め部110には、高強度繊維群111,112を個別に通す複数の孔110bが設けられている。孔110bの周囲には、高強度繊維群111を個別に案内するガイド壁110aが形成されている。
高強度繊維群111,112は、繊維位置決め部110を通されることにより、互いの相対位置を維持しつつ、互いに近付けられる。また、高強度繊維群111,112は、繊維位置決め部110を通過した後、インジェクション装置109に通される。
インジェクション装置109では、高強度繊維群111,112の束に含浸樹脂103が含浸される。他の製造装置の構成及び製造方法は、実施の形態35と同様である。
このように、実施の形態43の懸架体の製造方法は、第1ないし第5の工程を含んでいる。第1の工程は、繊維密度が異なる複数の高強度繊維群111,112を対応するボビンから繰り出す工程である。第2の工程は、高強度繊維群111,112を、互いの相対位置を維持しつつ、互いに近付け、高強度繊維群111,112の束を形成する工程である。
第3の工程は、高強度繊維群111,112の束に含浸樹脂103を含浸させる工程である。第4の工程は、樹脂含浸された高強度繊維群111,112の束を加熱成形してコア21を形成する工程である。第5の工程は、コア21の外周の少なくとも一部を覆う被覆層22を形成する工程である。
このような製造方法により、図90に示したような断面構造を持つ懸架体を効率的に製造することができる。
実施の形態44.
次に、図95はこの発明の実施の形態44による荷重支持層23の厚さ方向の中央部を拡大して示す断面図、図96は実施の形態44による荷重支持層23の厚さ方向の端部を拡大して示す断面図である。なお、図95は、図90の101a部に相当する部分を示している。図96は、図90の101b部に相当する部分を示している。
次に、図95はこの発明の実施の形態44による荷重支持層23の厚さ方向の中央部を拡大して示す断面図、図96は実施の形態44による荷重支持層23の厚さ方向の端部を拡大して示す断面図である。なお、図95は、図90の101a部に相当する部分を示している。図96は、図90の101b部に相当する部分を示している。
実施の形態44では、径が異なる複数種類の高強度繊維102が用いられている。即ち、高強度繊維102として、複数の第1の高強度繊維102aと、複数の第2の高強度繊維102bとが用いられている。第2の高強度繊維102bの径は、第1の高強度繊維102aの径よりも大きい。第2の高強度繊維102bの材料は、第1の高強度繊維102aの材料と同じである。
荷重支持層23の厚さ方向の中央部では、第2の高強度繊維102bの間に第1の高強度繊維102aが配置されている。これに対して、荷重支持層23の厚さ方向の両端部では、第2の高強度繊維102bの間に第1の高強度繊維102aが全く配置されていないか、又は第2の高強度繊維102bの間に配置される第1の高強度繊維102aの数が削減されている。
これにより、荷重支持層23の厚さ方向の中央部における高強度繊維102の密度は、荷重支持層23の厚さ方向の両端部における高強度繊維102の密度よりも高い。
また、第1の高強度繊維102aの数を荷重支持層23の厚さ方向に沿って連続的に変化させることにより、高強度繊維102の密度を、荷重支持層23の厚さ方向の中央部から荷重支持層23の厚さ方向の両端部へ向けて連続的に低下させることができる。他の構成は、実施の形態43と同様である。
また、実施の形態44の荷重支持層23を製造する場合、図93の上下のボビンから繰り出される高強度繊維群112における第1の高強度繊維102aの密度を低くし、中央のボビンから繰り出される高強度繊維群111における第1の高強度繊維102aの密度を高くすればよい。
このような構成によっても、実施の形態43と同様の効果を得ることができる。また、太さの異なる高強度繊維102a,102bを用いるため、樹脂含浸時に高強度繊維102a,102bが寄せ集められるようなことが起こりにくく、目標とする密度分布をより精度良く実現することができる。
実施の形態45.
次に、図97はこの発明の実施の形態45によるエレベータの懸架体の断面図、図98は図97の101c部を拡大して示す断面図、図99は図97の101d部を拡大して示す断面図である。図97の101c部は、荷重支持層23の厚さ方向の第1の端部に位置している。図97の101d部は、荷重支持層23の厚さ方向の第2の端部に位置している。
次に、図97はこの発明の実施の形態45によるエレベータの懸架体の断面図、図98は図97の101c部を拡大して示す断面図、図99は図97の101d部を拡大して示す断面図である。図97の101c部は、荷重支持層23の厚さ方向の第1の端部に位置している。図97の101d部は、荷重支持層23の厚さ方向の第2の端部に位置している。
実施の形態45では、荷重支持層23の厚さ方向の第1の端部における高強度繊維102の密度が、荷重支持層23の厚さ方向の第2の端部における高強度繊維102の密度よりも高い。また、高強度繊維102の密度は、荷重支持層23の厚さ方向の第1の端部から第2の端部へ向けて連続的に低下している。
また、荷重支持層23内で高強度繊維102の密度が最も高い部分、即ち荷重支持層23の厚さ方向の第1の端部では、高強度繊維102の体積含有率を60%以上、より好ましくは70%以上とすることが良い。
また、荷重支持層23内で高強度繊維102の密度が最も低い部分、即ち荷重支持層23の厚さ方向の第2の端部では、高強度繊維102の体積含有率を50%以下、より好ましくは40%以下とすることが良い。他の構成及び製造方法は、実施の形態43と同様である。
このような懸架体では、曲げ断面の中立面をずらすことができ、曲がり易さを向上させることができる。
なお、実施の形態45のように高強度繊維102の密度を変化させるために、実施の形態44と同様の方法を適用してもよい。
実施の形態46.
次に、図100はこの発明の実施の形態46によるエレベータの懸架体の断面図、図101は図100の101e部を拡大して示す断面図である。図100の101e部は、荷重支持層23の厚さ方向の端部に位置している。
次に、図100はこの発明の実施の形態46によるエレベータの懸架体の断面図、図101は図100の101e部を拡大して示す断面図である。図100の101e部は、荷重支持層23の厚さ方向の端部に位置している。
実施の形態46では、荷重支持層23の厚さ方向の中央部における高強度繊維102の密度が、荷重支持層23の厚さ方向の両端部における高強度繊維102の密度よりも高い。また、荷重支持層23の厚さ方向の両端部には、含浸樹脂103のみによる層が形成されている。他の構成及び製造方法は、実施の形態43又は44と同様である。
このような懸架体の構成によっても、曲げ易さを向上させることができる。また、荷重支持層23の表面に含浸樹脂103のみによる層があることにより、被覆層22との接着性を向上させることができる。これにより、曲げによって荷重支持層23と被覆層22との間に剥離が発生することを抑制することができる。
なお、実施の形態45の第2の端部に、実施の形態46の含浸樹脂103のみによる層を設けてもよい。
また、含浸樹脂103のみによる層以外の部分では、高強度繊維102の密度を荷重支持層23の厚さ方向に均等としてもよい。
実施の形態47.
次に、図102はこの発明の実施の形態47によるエレベータの懸架体の断面図である。実施の形態47では、被覆層22の幅寸法が、荷重支持層23の幅寸法よりも小さくなっている。即ち、被覆層22は、荷重支持層23の厚さ方向の両面のみを覆っており、荷重支持層23の幅方向の両端面を覆っていない。
次に、図102はこの発明の実施の形態47によるエレベータの懸架体の断面図である。実施の形態47では、被覆層22の幅寸法が、荷重支持層23の幅寸法よりも小さくなっている。即ち、被覆層22は、荷重支持層23の厚さ方向の両面のみを覆っており、荷重支持層23の幅方向の両端面を覆っていない。
これにより、コア21の幅方向の両端部、即ち荷重支持層23の幅方向両端部は、被覆層22から外部に突出しており、被覆層22から外部に露出している。他の構成及び製造方法は、実施の形態43と同様である。
このような懸架体では、荷重支持層23に対する検査を、荷重支持層23の幅方向の両端部から直接実施することができる。
なお、荷重支持層23の幅方向の両端面は、被覆層22の幅方向の両端面と面一であっても、被覆層22の幅方向の両端面よりも幅方向の中心側に引っ込んでいてもよい。
また、実施の形態47のようにコア21の幅方向の両端部を被覆層22の外部に露出させる構成は、懸架体の構成に関する他の全ての実施の形態にも適用することができる。
実施の形態48.
次に、図103はこの発明の実施の形態48によるエレベータの懸架体の断面図である。実施の形態48では、コア21が荷重支持層23のみにより構成されている。また、コア21は、複数のコア分割体26に分割されている。コア分割体26は、コア21の幅方向に互いに間隔をおいて配置されている。隣り合うコア分割体26の間には、被覆層22が入り込んでいる。
次に、図103はこの発明の実施の形態48によるエレベータの懸架体の断面図である。実施の形態48では、コア21が荷重支持層23のみにより構成されている。また、コア21は、複数のコア分割体26に分割されている。コア分割体26は、コア21の幅方向に互いに間隔をおいて配置されている。隣り合うコア分割体26の間には、被覆層22が入り込んでいる。
各コア分割体26の厚さ方向(Y軸方向)の中央部における高強度繊維の密度は、各コア分割体26の厚さ方向の両端部における高強度繊維の密度よりも高い。また、各コア分割体26における高強度繊維の密度は、厚さ方向の中央部から両端部へ向けて連続的に低下している。
また、荷重支持層23内で高強度繊維102の密度が最も高い部分、即ちコア分割体26の厚さ方向の中央部では、高強度繊維102の体積含有率を60%以上、より好ましくは70%以上とすることが良い。
また、荷重支持層23内で高強度繊維102の密度が最も低い部分、即ちコア分割体26の厚さ方向の両端部では、高強度繊維102の体積含有率を50%以下、より好ましくは40%以下とすることが良い。
各コア分割体26の長さ方向(Z軸方向)に直角な断面形状は、矩形である。他の構成及び製造方法は、実施の形態43又は44と同様である。図103の101a部の断面は、図91又は図95と同様である。図103の101b部の断面は、図92、図96又は図101と同様である。
このような懸架体では、コア21がコア分割体26に分割されているため、荷重支持層23を製造するための設備の規模を小さくすることができる。
実施の形態49.
次に、図104はこの発明の実施の形態49によるエレベータの懸架体の断面図である。実施の形態49では、各コア分割体26の断面形状が円形となっている。他の構成及び製造方法は、実施の形態48と同様である。図104の101a部の断面は、図91又は図95と同様である。図104の101b部の断面は、図92、図96又は図101と同様である。
次に、図104はこの発明の実施の形態49によるエレベータの懸架体の断面図である。実施の形態49では、各コア分割体26の断面形状が円形となっている。他の構成及び製造方法は、実施の形態48と同様である。図104の101a部の断面は、図91又は図95と同様である。図104の101b部の断面は、図92、図96又は図101と同様である。
このような懸架体では、荷重支持層23を製造するための設備の規模を小さくできる効果に加えて、コア分割体26の断面の角部への応力集中を回避することができるという効果が得られる。このため、高強度繊維間の剥離を抑制することができる。
実施の形態50.
次に、図105はこの発明の実施の形態50によるエレベータの懸架体の断面図である。実施の形態50では、コア21が、幅方向だけではなく、厚さ方向にも分割されている。これにより、コア分割体26は、コア21の幅方向及び厚さ方向に互いに間隔をおいて配置されている。他の構成及び製造方法は、実施の形態48と同様である。図105の101a部の断面は、図91又は図95と同様である。図105の101b部の断面は、図92、図96又は図101と同様である。
次に、図105はこの発明の実施の形態50によるエレベータの懸架体の断面図である。実施の形態50では、コア21が、幅方向だけではなく、厚さ方向にも分割されている。これにより、コア分割体26は、コア21の幅方向及び厚さ方向に互いに間隔をおいて配置されている。他の構成及び製造方法は、実施の形態48と同様である。図105の101a部の断面は、図91又は図95と同様である。図105の101b部の断面は、図92、図96又は図101と同様である。
このような懸架体では、荷重支持層23を製造するための設備の規模をさらに小さくすることができる。また、懸架体がより曲がり易くなる。
実施の形態51.
次に、図106はこの発明の実施の形態51によるエレベータの懸架体の断面図である。実施の形態51のコア21は、6つの第1のコア分割体列と、5つの第2のコア分割体列とを有している。各第1のコア分割体列は、コア21の厚さ方向(Y軸方向)に並んだ3つのコア分割体26からなっている。また、第1のコア分割体列は、コア21の幅方向(X軸方向)に互いに間隔をおいて配置されている。
次に、図106はこの発明の実施の形態51によるエレベータの懸架体の断面図である。実施の形態51のコア21は、6つの第1のコア分割体列と、5つの第2のコア分割体列とを有している。各第1のコア分割体列は、コア21の厚さ方向(Y軸方向)に並んだ3つのコア分割体26からなっている。また、第1のコア分割体列は、コア21の幅方向(X軸方向)に互いに間隔をおいて配置されている。
第2のコア分割体列は、隣り合う第1のコア分割体列間に配置されている。各第2のコア分割体列は、コア21の厚さ方向に並んだ2つのコア分割体26からなっている。第2のコア分割体列のコア分割体26は、第1のコア分割体列のコア分割体26に対して、コア21の厚さ方向にずらして配置されている。
各コア分割体26の断面形状は、円形である。他の構成及び製造方法は、実施の形態50と同様である。図106の101a部の断面は、図91又は図95と同様である。図106の101b部の断面は、図92、図96又は図101と同様である。
このような懸架体では、より多くのコア分割体26を配置することができるため、同じ強度を持つ1つの懸架体として構成する場合、曲がり易さを向上させることができる。
実施の形態52.
次に、図107はこの発明の実施の形態52によるエレベータの懸架体の断面図、図108は図107の101f部を拡大して示す断面図、図109は図107の101g部を拡大して示す断面図である。図107の101f部は、荷重支持層23の幅方向の中央部に位置している。また、図108の101g部は、荷重支持層23の幅方向の端部に位置している。
次に、図107はこの発明の実施の形態52によるエレベータの懸架体の断面図、図108は図107の101f部を拡大して示す断面図、図109は図107の101g部を拡大して示す断面図である。図107の101f部は、荷重支持層23の幅方向の中央部に位置している。また、図108の101g部は、荷重支持層23の幅方向の端部に位置している。
実施の形態52では、荷重支持層23の幅方向の中央部における高強度繊維102の密度が、荷重支持層23の幅方向の両端部における高強度繊維102の密度よりも高い。また、高強度繊維102の密度が、荷重支持層23の幅方向の中央部から荷重支持層23の幅方向の両端部へ向けて連続的に低下している。
また、荷重支持層23内で高強度繊維102の密度が最も高い部分、即ち荷重支持層23の幅方向の中央部では、高強度繊維102の体積含有率を60%以上、より好ましくは70%以上とすることが良い。
また、荷重支持層23内で高強度繊維102の密度が最も低い部分、即ち荷重支持層23の幅方向の両端部では、高強度繊維102の体積含有率を50%以下、より好ましくは40%以下とすることが良い。他の構成及び製造方法は、実施の形態43と同様である。
このような懸架体では、コア21の幅方向の両端部の剛性が低くなるため、コア21がZ軸に関して曲がり易くなり、駆動シーブ6との接着性が向上する。
なお、実施の形態52を実施の形態43と組み合わせてもよい。即ち、実施の形態52において、荷重支持層23の厚さ方向の両端部における高強度繊維102の密度を厚さ方向の中央部における高強度繊維102の密度よりも低くしてもよい。
また、荷重支持層23の幅方向両端部に、含浸樹脂103のみによる層を設けてもよい。
実施の形態53.
次に、図110はこの発明の実施の形態53による荷重支持層23の幅方向の中央部を拡大して示す断面図、図111は実施の形態53による荷重支持層23の幅方向の端部を拡大して示す断面図である。懸架体全体の断面は、図107と同様である。
次に、図110はこの発明の実施の形態53による荷重支持層23の幅方向の中央部を拡大して示す断面図、図111は実施の形態53による荷重支持層23の幅方向の端部を拡大して示す断面図である。懸架体全体の断面は、図107と同様である。
実施の形態53では、実施の形態44と同様の方法により、荷重支持層23の幅方向の中央部における高強度繊維102の密度が、荷重支持層23の幅方向の両端部における高強度繊維102の密度よりも高くしている。他の構成及び製造方法は、実施の形態52と同様である。
このような懸架体では、太さの異なる高強度繊維102a,102bを用いるため、樹脂含浸時に高強度繊維102a,102bが寄せ集められるようなことが起こりにくく、目標とする密度分布をより精度良く実現することができる。
実施の形態54.
次に、図112はこの発明の実施の形態12によるエレベータの懸架体の断面図である。実施の形態54のコア21は、複数の第1のコア分割体26aと、複数の第2のコア分割体26bとに分割されている。各コア分割体26a,26bの断面形状は、円形である。各コア分割体26a,26bの断面積は、同じである。
次に、図112はこの発明の実施の形態12によるエレベータの懸架体の断面図である。実施の形態54のコア21は、複数の第1のコア分割体26aと、複数の第2のコア分割体26bとに分割されている。各コア分割体26a,26bの断面形状は、円形である。各コア分割体26a,26bの断面積は、同じである。
各コア分割体26a,26bにおける高強度繊維は、螺旋状に捻られた状態で配置されている。高強度繊維を螺旋状に配置するためには、コア21の成形前に、長さ方向に直角な断面の中心を中心として、高強度繊維群の束を周方向へ捻る工程を加えればよい。
図113は図112の第1のコア分割体26aを示す平面図、図114は図112の第2のコア分割体26bを示す平面図である。図113及び図114に示すように、第1のコア分割体26aと第2のコア分割体26bとでは、高強度繊維の捻り方向が反対になっている。
また、図112では、第1のコア分割体26aと第2のコア分割体26bとが、コア21の幅方向に交互に配置されている。各コア分割体26a,26bの長さ方向に直角な断面における高強度繊維の密度は、均等であっても、中央部から径方向外側へ向けて低くなっていてもよい。また、各コア分割体26a,26bの外周に、含浸樹脂のみによる層を設けてもよい。他の構成及び製造方法は、実施の形態49と同様である。
このように、高強度繊維を螺旋状に捻られた状態で配置することで、斜め方向に対する強度と剛性とを向上させることができ、より捩りに強い構造とすることができる。
なお、図112では、第1のコア分割体26aと第2のコア分割体26bとを交互に配置したが、コア21の幅方向の中心に対して、幅方向の一側に第1のコア分割体26aを配置し、幅方向の他側に第2のコア分割体26bを配置してもよい。第1のコア分割体26aの本数と第2のコア分割体26bの本数とは、同じであることが好ましい。
実施の形態55.
次に、図115はこの発明の実施の形態55によるエレベータの懸架体の断面図、図116は図115のコア分割体26を示す平面図である。
次に、図115はこの発明の実施の形態55によるエレベータの懸架体の断面図、図116は図115のコア分割体26を示す平面図である。
実施の形態55では、各コア分割体26における荷重支持層23の内部105aの高強度繊維が、コア21の長さ方向に平行に配置されている。内部105aにおける高強度繊維の密度は、均等であっても、上記のいずれかの実施の形態のように変化させてもよい。
また、各コア分割体26における荷重支持層23の外周部105bの高強度繊維は、コア21の長さ方向に対して交差する方向に配置されている。この例では、外周部105bの高強度繊維は、織物状に配置されている。即ち、外周部105bの高強度繊維は、コア21の長さ方向に対して斜めに配置されている。他の構成及び製造方法は、実施の形態48と同様である。
荷重支持層23の主な役割は、Z軸方向の荷重を負担することであるため、断面積の大部分を占める内部105aの高強度繊維は、Z軸方向に沿って配置されている。一方、荷重支持層23の表面では、高強度繊維が織物状に配置されている。
このため、実施の形態55の構成によれば、斜め方向の強度を向上させることが可能である。また、一方向に揃えられた内部105aの高強度繊維を、織物状に配置した高強度繊維によって包むことで、高強度繊維全体を一体化して製造工程に通すことができる。これにより、成形が比較的容易になる。
実施の形態56.
次に、図117はこの発明の実施の形態56によるエレベータの懸架体の断面図である。実施の形態56は、実施の形態55のコア分割体26の断面形状を円形にしたものである。他の構成及び製造方法は、実施の形態55と同様である。
次に、図117はこの発明の実施の形態56によるエレベータの懸架体の断面図である。実施の形態56は、実施の形態55のコア分割体26の断面形状を円形にしたものである。他の構成及び製造方法は、実施の形態55と同様である。
このような懸架体では、コア分割体26の断面の角部への応力集中を回避することができる。これにより、高強度繊維間の剥離を抑制することができる。
なお、実施の形態56のコア分割体26の内部105aの高強度繊維を、実施の形態54のように螺旋状に捻られた状態で配置することもできる。
実施の形態57.
次に、図118はこの発明の実施の形態57によるエレベータの懸架体の断面図である。実施の形態57では、隣り合うコア分割体26間に、第1の樹脂層107と第2の樹脂層108とが介在している。第1の樹脂層107は、荷重支持層23の含浸樹脂と同材料からなっている。第2の樹脂層107は、被覆層22と同材料からなっている。
次に、図118はこの発明の実施の形態57によるエレベータの懸架体の断面図である。実施の形態57では、隣り合うコア分割体26間に、第1の樹脂層107と第2の樹脂層108とが介在している。第1の樹脂層107は、荷重支持層23の含浸樹脂と同材料からなっている。第2の樹脂層107は、被覆層22と同材料からなっている。
懸架体の製造時には、隣り合うコア分割体26の間に、含浸樹脂と同材料からなる第1のプレートと、被覆層22と同材料からなる第2のプレートとが、コア分割体26の長さ方向に沿って連続して配置される。そして、コア分割体26と第1及び第2のプレートとを一体化することで、第1の樹脂層107及び第2の樹脂層108が形成される。
各コア分割体26における高強度繊維の密度は、均等であっても、上記のいずれかの実施の形態のように変化させてもよい。他の構成及び製造方法は、実施の形態48と同様である。
このような懸架体では、第1及び第2の樹脂層107,108を介してコア分割体26が一体化されているので、コア21がZ軸回転方向に曲がり易くなり、駆動シーブ6の表面とより密着し易くなる。
なお、実施の形態57のコア分割体26を実施の形態55と同様に構成してもよい。
実施の形態58.
次に、図119はこの発明の実施の形態58によるエレベータの懸架体の断面図、図120は図119の113部を拡大して示す断面図である。実施の形態58のコア21は、荷重支持層23のみにより構成されている。荷重支持層23は、含浸樹脂103と、複数の第1の高強度繊維束114aと、複数の第2の高強度繊維束114bとを有している。第1及び第2の高強度繊維束114a,114bは、コア21の長さ方向に沿って配置されている。
次に、図119はこの発明の実施の形態58によるエレベータの懸架体の断面図、図120は図119の113部を拡大して示す断面図である。実施の形態58のコア21は、荷重支持層23のみにより構成されている。荷重支持層23は、含浸樹脂103と、複数の第1の高強度繊維束114aと、複数の第2の高強度繊維束114bとを有している。第1及び第2の高強度繊維束114a,114bは、コア21の長さ方向に沿って配置されている。
図121は図119の第1の高強度繊維束114aを示す平面図、図122は図119の第2の高強度繊維束114bを示す平面図である。各高強度繊維束114a,114bには、複数の高強度繊維が螺旋状に捻られた状態で配置されている。第1の高強度繊維束114aにおける高強度繊維の捻り方向と、第2の高強度繊維束114bにおける高強度繊維の捻り方向とは、逆向きである。
また、第1の高強度繊維束114aの本数と第2の高強度繊維束114bの本数とは、同じであることが好ましい。また、第1の高強度繊維束114aと第2の高強度繊維束114bとは、コア21の長さ方向に直角な断面内に均等に分布させることが好ましい。図120の例では、第1の高強度繊維束114aの層と第2の高強度繊維束114bの層とが、コア21の厚さ方向に交互に配置されている。
実施の形態58の懸架体は、図93に示された複数のボビンに、予め捻られた高強度繊維束114a,114bを巻き付けておくことにより、製造することができる。また、実施の形態58の懸架体は、複数のボビンから出た高強度繊維束に捻りを加えてからまとめることによっても、製造することができる。この場合、ボビンを回転させることで、高強度繊維束に捻りを加えてもよい。他の構成及び製造方法は、実施の形態43と同様である。
このような懸架体では、高強度繊維が、コア21の長さ方向に対して斜め方向にも配置されているため、捩り変形に対する強度を向上させることができる。
また、第1及び第2の高強度繊維束114a,114bの撚り方向が互いに異なっているため、両方向への捩り変形に対する懸架体の強度を向上させることができる。
また、隣り合う第1の高強度繊維束114aと第2の高強度繊維束114bとの間には、含浸樹脂103が介在しているため、第1の高強度繊維束114aと第2の高強度繊維束114bとが互いに接触することは少ない。しかし、含浸樹脂103を含浸しても、一部の高強度繊維束114a,114bは互いに接触することがある。また、エレベータに適用された懸架体は、繰り返し曲げられるため、含浸樹脂103が疲労して、第1の高強度繊維束114aと第2の高強度繊維束114bとの接触が発生する。
このように、第1の高強度繊維束114aと第2の高強度繊維束114bとが接触した場合、それぞれの表面における高強度繊維は、交差せず、平行又はほぼ平行な状態で接触する。このため、表面の高強度繊維に生じる接触応力を下げることができ、耐疲労性及び強度を向上させることができる。
なお、全ての高強度繊維束の捻り方向を同じにしてもよい。
また、捻り加えていない高強度繊維束又は高強度繊維と、捻りを加えた高強度繊維束とを混在させてもよい。
また、実施の形態58のコア21を図103、104、105、又は106に示すように、複数のコア分割体26に分割してもよい。
また、実施の形態58のコア21を複数のコア分割体26に分割する場合、図112に示したようにコア分割体26毎に捻りを加えたり、図115又は117に示すように外周部105bに織物状の高強度繊維を配置したり、図118に示すようにコア分割体26間に第1及び第2の樹脂層107,108を介在させたりしてもよい。
実施の形態59.
次に、図123は、この発明の実施の形態59によるエレベータの懸架体の断面図である。実施の形態59のコア21は、荷重支持層23のみにより構成されている。
次に、図123は、この発明の実施の形態59によるエレベータの懸架体の断面図である。実施の形態59のコア21は、荷重支持層23のみにより構成されている。
図124は、図123の124部を拡大して示す断面図、図125は図124の125部を拡大して示す断面図である。荷重支持層23は、含浸樹脂103と、複数の第1の高強度繊維束114aと、複数の第2の高強度繊維束114bとを有している。各高強度繊維束114a,114bは、コア21の長さ方向に沿って配置されている。
また、各高強度繊維束114a,114bは、複数の高強度繊維115を撚り合わせて構成されている。含浸樹脂103は、隣り合う高強度繊維115間に含浸されている。各高強度繊維束114a,114bの長さ方向に直角な断面の形状は、矩形である。
全ての第1の高強度繊維束114aは、図121に示したように同じ方向に撚られている。全ての第2の高強度繊維束114bは、図122に示したように同じ方向に撚られている。また、全ての第2の高強度繊維束114bは、第1の高強度繊維束114aとは反対方向に撚られている。
また、複数の高強度繊維束114a,114bは、荷重支持層23の断面内で互いに隣接して配列されている。
コア21の長さ方向に直角な断面を見て、第1の高強度繊維束114aと第2の高強度繊維束114bとは、コア21の幅方向及び厚さ方向に交互に配置されている。即ち、互いに隣り合う高強度繊維束114a,114bは、撚りの方向が互いに逆方向である。他の構成は、実施の形態58と同様である。
このようなエレベータの懸架体によっても、曲げられたときに荷重支持層23に生じる応力を低減することができる。
また、予め撚られている複数の高強度繊維束114a,114bを使用しているので、捻りに対する耐久性を向上させることができる。
また、第1の高強度繊維束114aと第2の高強度繊維束114bが交互に配列されているため、隣り合う高強度繊維束114a,114bの撚りは、何れの箇所においても逆方向である。このため、高強度繊維115同士の交差による強度低下を抑制することができる。
図126は、2本の第1の高強度繊維束114aを隣接させた場合の繊維方向を3次元的に示す模式図である。この場合、第1の高強度繊維束114a同士が接する面において、繊維方向が交差する。繊維方向が交差すると、交差点で高強度繊維115の強度が低下し、懸架体自体の強度低下に繋がる。同様に、2本の第2の高強度繊維束114bを隣接させた場合も、交差点で高強度繊維115の強度が低下する。
隣り合う第1の高強度繊維束114aの間に隙間を設ける方法もあるが、この場合、隣り合う第1の高強度繊維束114aの間に含浸樹脂103のみの領域ができる。このため、高強度繊維115の体積含有率が低下し、荷重支持層23全体としての強度が低下する。
図127は、第1の高強度繊維束114aと第2の高強度繊維束114bとを隣接させた場合の繊維方向を3次元的に示す模式図である。この場合、第1の高強度繊維束114aと第2の高強度繊維束114bとが接する面において、繊維方向が平行になる。従って、高強度繊維115同士の交差は生じず、高強度繊維115の強度低下を抑制することができる。
また、実施の形態59では、各高強度繊維束114a,114bの断面形状が矩形である。このため、高強度繊維115の体積含有率を増大させ、荷重支持層23全体としての強度を向上させることができるる
実施の形態59では、第1の高強度繊維束114aと第2の高強度繊維束114bとは、コア21の幅方向及び厚さ方向に交互に配置されている。このため、第1の高強度繊維束114aと第2の高強度繊維束114bとの全ての接触面において、高強度繊維115同士の交差が生じない。従って、高強度繊維115の強度低下を、より効果的に抑制することができる。
図128は、図124の128部を拡大して示す断面図である。各高強度繊維束114a,114bの断面は矩形であるが、断面の角部は、厳密には一定の曲率を有している。このため、4本の高強度繊維束114a,114bが隣接する交点部分には、含浸樹脂103のみの領域116が生じる。
これに対して、各高強度繊維束114a,114bの角部の曲率半径を小さくすることで、領域116を小さくし、高強度繊維115の体積含有率を向上させることができる。
一方で、各高強度繊維束114a,114bの角部の曲率半径を小さくすると、角部での高強度繊維115の屈曲度合いが大きくなり、高強度繊維115が損傷し易くなる恐れがある。このため、各高強度繊維束114a,114bの角部の曲率半径は、上記の関係を考慮して決定することが望ましい。
次に、実施の形態59の懸架体の製造方法について説明する。図129は、実施の形態59の懸架体の製造装置の要部を示す概略の構成図である。実施の形態59の製造装置は、繊維束位置決め装置67、樹脂含浸装置68、加熱成形装置59、引抜装置60及び巻取装置61を有している。
図129では、簡単のため、2本の第1の高強度繊維束114a及び1本の第2の高強度繊維束114bのみを示している。
ボビンから引き出された複数の第1の高強度繊維束114a及び複数の第2の高強度繊維束114bは、引抜装置60により繊維束位置決め装置67及び樹脂含浸装置68に引き入れられる。繊維束位置決め装置67は、樹脂含浸装置68の上流側に配置されている。また、繊維束位置決め装置67と樹脂含浸装置68とは、一体化されている。
図130に示すように、繊維束位置決め装置67には、複数の繊維束通過孔67aが設けられている。複数の繊維束通過孔67aは、格子状に配列されている。複数の第1の高強度繊維束114a及び複数の第2の高強度繊維束114bは、図124に示したような配置となるように、対応する繊維束通過孔67aに通される。また、1つの繊維束通過孔67aには、複数の高強度繊維束114a,114bのうちの1本のみが通される。
繊維束位置決め装置67で位置決めされた複数の第1の高強度繊維束114a及び複数の第2の高強度繊維束114bには、樹脂含浸装置68の含浸型内で含浸樹脂103が含浸される。このとき、狭い高強度繊維115間に含浸樹脂103を十分に含浸させる必要があるため、含浸樹脂103の粘度は低い方が望ましい。
この後、複数の第1の高強度繊維束114a及び複数の第2の高強度繊維束114bは、引抜装置60により加熱成形装置59に引き入れられる。加熱成形装置59では、含浸樹脂103が加熱されることにより硬化する。これにより、荷重支持層23が形成される。続いて、荷重支持層23は、巻取装置61に巻き取られる。
この後、荷重支持層23の外周を被覆層22で覆うことにより、懸架体が完成する。被覆層22を構成する樹脂としては、実施の形態1で挙げた樹脂を用いることができる。
なお、繊維束位置決め装置67と樹脂含浸装置68とは、それぞれ別々の冶具として独立していてもよい。
このように、実施の形態59の懸架体の製造方法は、繰り出し工程、位置決め工程、含浸工程、加熱成形工程、及び被覆工程を含んでいる。
繰り出し工程は、複数の高強度繊維束114a,114bを、それぞれ対応するボビンから繰り出す工程である。
位置決め工程は、複数の繊維束通過孔67aのそれぞれに、対応する高強度繊維束114a,114bを通し、複数の高強度繊維束114a,114bの位置決めを行う工程である。
また、位置決め工程では、複数の高強度繊維束114a,114bと複数の繊維束通過孔67aとを、1:1で対応させる。また、位置決め工程では、第1の高強度繊維束114aを通す繊維束通過孔67aの隣に位置する繊維束通過孔67aに第2の高強度繊維束114bを通す。そして、第2の高強度繊維束114bを通す繊維束通過孔67aの隣に位置する繊維束通過孔67aに第1の高強度繊維束114aを通す。
含浸工程は、複数の高強度繊維束114a,114bに含浸樹脂を含浸させる工程である。加熱成形工程は、樹脂含浸された複数の高強度繊維束114a,114bを加熱成形して荷重支持層23を形成する工程である。被覆工程は、荷重支持層23の外周の少なくとも一部を覆う被覆層22を形成する工程である。
このような懸架体の製造方法では、複数の繊維束通過孔67aを通すことにより、複数の高強度繊維束114a,114bの位置決めが行われる。このため、複数の第1の高強度繊維束114aと複数の第2の高強度繊維束114bとを、容易に所望の位置に配置することができる。
また、複数の繊維束通過孔67aが格子状に配列されているので、複数の高強度繊維束114a,114bを安定して格子状に配置することができる。
また、複数の高強度繊維束114a,114b複数の繊維束通過孔67aとを、1:1で対応させるので、複数の高強度繊維束114a,114bの1本ずつを、容易に所望の位置に配置することができる。
また、互いに隣り合う繊維束通過孔67aの一方に第1の高強度繊維束114aが通され、他方に第2の高強度繊維束114bが通される。このため、第1の高強度繊維束114aと第2の高強度繊維束114bとを、容易に交互に配置することができる。
また、予め撚られている複数の高強度繊維束114a,114bを使用することにより、製造装置を複雑にすることなく、曲げ及び捩りに対して高い耐久性を持つ懸架体を容易に得ることができる。
実施の形態60.
次に、図131は、この発明の実施の形態60によるエレベータの懸架体の一部を拡大して示す断面図であり、懸架体全体の断面は図123と同様である。また、図131は、図123の124部に相当する部分の断面を示している。
次に、図131は、この発明の実施の形態60によるエレベータの懸架体の一部を拡大して示す断面図であり、懸架体全体の断面は図123と同様である。また、図131は、図123の124部に相当する部分の断面を示している。
実施の形態60では、複数の高強度繊維束114a,114bの長さ方向に直角な断面の形状は、それぞれ菱形である。また、各高強度繊維束114a,114bの長さ方向に直角な断面の2本の対角線のうちの一方は、コア21の厚さ方向に平行である。
これにより、各第1の高強度繊維束114aとそれに隣接する第2の高強度繊維束114bとの間の境界面は、コア21の厚さ方向及び幅方向に対して傾斜している。他の構成及び製造方法は、実施の形態59と同様である。
懸架体を駆動シーブ6に巻き掛けた際、懸架体の厚さ方向に対して垂直な面、即ち図123のXZ面に平行な面にせん断力が作用する。また、駆動シーブ6にクラウニングが設けられている場合、懸架体は幅方向に曲げられ、幅方向に対して垂直な面、即ち図123のYZ面に平行な面にせん断力が作用する。
また、撚られている複数の高強度繊維束114a,114bを束ねて荷重支持層23を構成する場合、各高強度繊維束114a,114bの内部に比べて、各高強度繊維束114a,114b間の境界面の方が破壊し易い。
これに対して、実施の形態60では、各高強度繊維束114a,114b間の境界面とせん断力の作用面とが異なっている。これにより、各高強度繊維束114a,114b間の境界面におけるせん断破壊が生じにくく、曲げに対する強度を向上させることができる。
実施の形態61.
次に、図132は、この発明の実施の形態61によるエレベータの懸架体の一部を拡大して示す断面図であり、懸架体全体の断面は図123と同様である。また、図132は、図123の124部に相当する部分の断面を示している。
次に、図132は、この発明の実施の形態61によるエレベータの懸架体の一部を拡大して示す断面図であり、懸架体全体の断面は図123と同様である。また、図132は、図123の124部に相当する部分の断面を示している。
実施の形態61では、複数の高強度繊維束114a,114bの長さ方向に直角な断面の形状は、それぞれ円形である。他の構成及び製造方法は、実施の形態59と同様である。
図132に示す各高強度繊維束114a,114bの断面形状は、縦横比が1で、図128に示した角部の曲率半径が各高強度繊維束114a,114bの幅の半分である場合に相当する。
このように、各高強度繊維束114a,114bの断面形状を円形とした場合、撚りによる高強度繊維115の曲率は、各高強度繊維束114a,114bの長さ方向全体に渡って一定となる。これにより、特定の箇所で高強度繊維115の屈曲度合いが極端に大きくなることがなく、屈曲による高強度繊維115の損傷を抑制することができる。
なお、実施の形態59~61の構成は、他の実施の形態の構成と適宜組み合わせてもよい。
例えば、実施の形態59~61のコア21を、図103、104、105、又は106に示すように、複数のコア分割体26に分割してもよい。
また、実施の形態59~61のコア21を複数のコア分割体26に分割する場合、図115又は117に示すように外周部105bに織物状の高強度繊維を配置したり、図118に示すようにコア分割体26間に第1及び第2の樹脂層107,108を介在させたりしてもよい。
また、実施の形態59~61の被覆層22及び荷重支持層23の少なくともいずれか一方に潤滑材を含ませてもよい。この場合、懸架体の長さ方向の位置により、記潤滑材が含まれている部分と含まれていない部分とがあってもよい。
また、実施の形態59~61のコア21の幅方向の両端部を、被覆層22から外部に露出させてもよい。
7 懸架体、8 かご、21 コア、22 被覆層、23 荷重支持層、67 繊維束位置決め装置、67a 繊維束通過孔、103 含浸樹脂、114a 第1の高強度繊維束、114b 第2の高強度繊維束。
Claims (9)
- 含浸樹脂と、複数の高強度繊維束とを含む荷重支持層を有しているコア、及び
前記コアの外周の少なくとも一部を覆っている被覆層
を備え、
前記複数の高強度繊維束は、同じ方向に撚られている複数の第1の高強度繊維束と、前記第1の高強度繊維束とは反対方向に撚られている複数の第2の高強度繊維束とを含んでおり、
前記コアの長さ方向に直角な断面を見て、前記第1の高強度繊維束と前記第2の高強度繊維束とが交互に配置されているエレベータの懸架体。 - 前記複数の高強度繊維束の長さ方向に直角な断面の形状は、それぞれ矩形である請求項1記載のエレベータの懸架体。
- 前記複数の高強度繊維束の長さ方向に直角な断面の形状は、それぞれ菱形であり、
各前記第1の高強度繊維束とそれに隣接する前記第2の高強度繊維束との間の境界面は、前記コアの厚さ方向及び幅方向に対して傾斜している請求項1記載のエレベータの懸架体。 - 前記複数の高強度繊維束の長さ方向に直角な断面の形状は、それぞれ円形である請求項1記載のエレベータの懸架体。
- かご、及び
前記かごを吊り下げる請求項1から請求項4までのいずれか1項に記載の懸架体
を備えているエレベータ。 - 複数の高強度繊維束を、それぞれ対応するボビンから繰り出す繰り出し工程、
繊維束位置決め装置に設けられている複数の繊維束通過孔のそれぞれに、対応する前記高強度繊維束を通し、前記複数の高強度繊維束の位置決めを行う位置決め工程、
前記複数の高強度繊維束に含浸樹脂を含浸させる含浸工程、
樹脂含浸された前記複数の高強度繊維束を加熱成形して荷重支持層を形成する加熱成形工程、及び
前記荷重支持層の外周の少なくとも一部を覆う被覆層を形成する被覆工程
を含むエレベータの懸架体の製造方法。 - 前記複数の繊維束通過孔は、格子状に配列されている請求項6記載のエレベータの懸架体の製造方法。
- 前記位置決め工程では、前記複数の高強度繊維束と前記複数の繊維束通過孔とを、1:1で対応させる請求項7に記載のエレベータの懸架体の製造方法。
- 前記複数の高強度繊維束は、同じ方向に撚られている複数の第1の高強度繊維束と、前記第1の高強度繊維束とは反対方向に撚られている複数の第2の高強度繊維束とを含んでおり、
前記位置決め工程では、前記第1の高強度繊維束を通す前記繊維束通過孔の隣に位置する前記繊維束通過孔に前記第2の高強度繊維束を通し、前記第2の高強度繊維束を通す前記繊維束通過孔の隣に位置する前記繊維束通過孔に前記第1の高強度繊維束を通す請求項8記載のエレベータの懸架体の製造方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/016598 WO2018198240A1 (ja) | 2017-04-26 | 2017-04-26 | エレベータ、その懸架体、及びその製造方法 |
PCT/JP2018/017047 WO2018199256A2 (ja) | 2017-04-26 | 2018-04-26 | エレベータ、その懸架体、及びその製造方法 |
JPPCT/JP2018/017047 | 2018-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019207824A1 true WO2019207824A1 (ja) | 2019-10-31 |
Family
ID=63918470
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/016598 WO2018198240A1 (ja) | 2017-04-26 | 2017-04-26 | エレベータ、その懸架体、及びその製造方法 |
PCT/JP2018/017047 WO2018199256A2 (ja) | 2017-04-26 | 2018-04-26 | エレベータ、その懸架体、及びその製造方法 |
PCT/JP2018/039508 WO2019207824A1 (ja) | 2017-04-26 | 2018-10-24 | エレベータ、その懸架体、及びその製造方法 |
PCT/JP2018/039509 WO2019207825A1 (ja) | 2017-04-26 | 2018-10-24 | エレベータ、その懸架体、及びその製造方法 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/016598 WO2018198240A1 (ja) | 2017-04-26 | 2017-04-26 | エレベータ、その懸架体、及びその製造方法 |
PCT/JP2018/017047 WO2018199256A2 (ja) | 2017-04-26 | 2018-04-26 | エレベータ、その懸架体、及びその製造方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/039509 WO2019207825A1 (ja) | 2017-04-26 | 2018-10-24 | エレベータ、その懸架体、及びその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US11370640B2 (ja) |
EP (3) | EP3617121A4 (ja) |
JP (3) | JP6641528B2 (ja) |
KR (1) | KR102326640B1 (ja) |
CN (2) | CN110573447B (ja) |
WO (4) | WO2018198240A1 (ja) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2458001B (en) | 2008-01-18 | 2010-12-08 | Kone Corp | An elevator hoist rope, an elevator and method |
AU2018202655B2 (en) * | 2017-04-20 | 2023-12-07 | Otis Elevator Company | Tension member for elevator system belt |
WO2018198240A1 (ja) * | 2017-04-26 | 2018-11-01 | 三菱電機株式会社 | エレベータ、その懸架体、及びその製造方法 |
KR102623974B1 (ko) * | 2017-11-10 | 2024-01-11 | 오티스 엘리베이터 컴파니 | 엘리베이터 시스템 벨트 |
US11584619B2 (en) * | 2018-01-15 | 2023-02-21 | Otis Elevator Company | Reinforced jacket for belt |
US11591186B2 (en) * | 2018-08-06 | 2023-02-28 | Otis Elevator Company | Belt with layered load bearing elements |
WO2020200430A1 (en) * | 2019-04-02 | 2020-10-08 | Thyssenkrupp Elevator Innovation And Operations Ag | A method of producing a composite elevator belt comprising one or more fiber layer |
WO2020255335A1 (ja) * | 2019-06-20 | 2020-12-24 | 三菱電機株式会社 | 懸架体及びその製造方法 |
CN114787067B (zh) * | 2019-12-13 | 2023-08-08 | 三菱电机株式会社 | 悬挂体、悬挂体的制造方法、电梯的组装方法和电梯 |
WO2022162946A1 (ja) * | 2021-02-01 | 2022-08-04 | 三菱電機株式会社 | エレベーターの設計方法およびエレベーター |
US20240309159A1 (en) * | 2021-03-02 | 2024-09-19 | Lintec Corporation | Preform structure, fiber-reinforced plastic, and production method for preform structure |
CN113326824B (zh) * | 2021-08-03 | 2021-10-29 | 山东中都机器有限公司 | 基于图像处理的推车机异常检测方法 |
CN114855484A (zh) * | 2022-05-20 | 2022-08-05 | 湖北三江航天江北机械工程有限公司 | 合股机冷却装置及冷却方法 |
KR102672422B1 (ko) | 2023-08-28 | 2024-06-07 | 미르이엔지 주식회사 | 선박 및 해양구조물용 초크 보호 커버 |
JP7537595B1 (ja) | 2023-12-14 | 2024-08-21 | 三菱電機ビルソリューションズ株式会社 | エレベーター用の移動ケーブル |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008111549A (ja) * | 2006-09-29 | 2008-05-15 | Inventio Ag | 張力キャリヤを備えた平ベルト状の支持駆動手段 |
WO2010072690A1 (de) * | 2008-12-22 | 2010-07-01 | Inventio Ag | Aufzugtragmittel, herstellungsverfahren für ein solches tragmittel und aufzugsanlage mit einem solchen aufzugstragmittel |
JP2013504695A (ja) * | 2009-09-11 | 2013-02-07 | エスゲーエル カーボン ソシエタス ヨーロピア | ロープ |
JP2015507706A (ja) * | 2012-01-05 | 2015-03-12 | ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニムN V Bekaert Societe Anonyme | 吊り上げ用ロープおよびそのロープを備えたエレベータ |
JP2015074871A (ja) * | 2013-10-10 | 2015-04-20 | コネ コーポレイションKone Corporation | 巻上機のロープおよびエレベータ |
Family Cites Families (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2237173A (en) * | 1939-10-26 | 1941-04-01 | Lee Rubber And Tire Corp | Conveyer belt |
DE3813338A1 (de) * | 1988-04-21 | 1989-11-02 | Lachmann Hans Peter Dr Ing | Zugfestes element fuer dynamisch beanspruchte elastische gegenstaende, verfahren zur herstellung derartiger zugfester elemente und mit derartigen elementen versehenen gegenstand |
DE69720044T2 (de) * | 1996-12-30 | 2003-09-11 | Kone Corp., Helsinki | Seileinrichtung für aufzug |
ES2252933T5 (es) * | 1998-02-26 | 2015-02-05 | Otis Elevator Company | Sistemas de ascensor |
KR100697742B1 (ko) * | 1999-08-26 | 2007-03-22 | 오티스 엘리베이터 컴파니 | 엘리베이터용 인장 부재 |
US6695098B1 (en) * | 2000-01-21 | 2004-02-24 | Otis Elevator Company | Self-locking wrap termination for tension member |
CN1189380C (zh) * | 2000-07-27 | 2005-02-16 | 三菱电机株式会社 | 电梯装置及电梯装置主缆绳的制造方法 |
JP2002060163A (ja) * | 2000-08-21 | 2002-02-26 | Tesac Seni Rope Kk | エレベータ用繊維ロープ |
US20030024770A1 (en) * | 2001-08-03 | 2003-02-06 | O'donnell Hugh James | Elevator belt assembly with waxless coating |
US20130101845A9 (en) * | 2002-04-23 | 2013-04-25 | Clement Hiel | Aluminum conductor composite core reinforced cable and method of manufacture |
ES2341743B1 (es) * | 2007-08-03 | 2011-04-28 | Orona, S. Coop. | Cable para aparattos elevadores y aparato elevador que comprende dicho cable. |
GB2458001B (en) | 2008-01-18 | 2010-12-08 | Kone Corp | An elevator hoist rope, an elevator and method |
JP4862844B2 (ja) * | 2008-02-28 | 2012-01-25 | トヨタ自動車株式会社 | ベルト組立装置およびベルト組立方法 |
WO2010143249A1 (ja) * | 2009-06-08 | 2010-12-16 | 三菱電機株式会社 | エレベータ用ロープ及びその製造方法 |
FI125142B (fi) * | 2009-07-08 | 2015-06-15 | Kone Corp | Nostolaitteen köysi, köysijärjestely, hissi ja menetelmä |
CN102110491B (zh) | 2009-12-28 | 2013-01-16 | 江苏源盛复合材料技术股份有限公司 | 一种用于增强电缆的复合材料芯及增强电缆 |
US9944493B2 (en) * | 2010-04-22 | 2018-04-17 | Thyssenkrupp Elevator Ag | Elevator suspension and transmission strip |
FI20100223A0 (fi) * | 2010-05-28 | 2010-05-28 | Kone Corp | Menetelmä ja hissijärjestely |
WO2012025278A1 (de) * | 2010-08-27 | 2012-03-01 | Sgl Carbon Se | Lastzugsystem |
CN102002872B (zh) * | 2010-10-28 | 2013-06-05 | 西子电梯集团有限公司 | 升降机用纤维编织挠性复合牵引带及制作方法 |
DE102011005323A1 (de) * | 2011-03-10 | 2012-09-13 | Sgl Carbon Se | Verfahren zur Herstellung eines mit einer Polymerschicht ummantelten Zugträgers |
EP2718219B1 (en) * | 2011-06-10 | 2016-05-11 | Otis Elevator Company | Elevator tension member and method of production |
FI20125078L (fi) * | 2012-01-25 | 2013-07-26 | Kone Corp | Hissi |
FI123534B (fi) | 2012-02-13 | 2013-06-28 | Kone Corp | Nostolaitteen köysi, hissi ja menetelmä köyden valmistamiseksi |
FI124582B (fi) * | 2012-03-22 | 2014-10-31 | Kone Corp | Hissin korikaapeli ja hissi |
PL2841642T3 (pl) * | 2012-04-24 | 2017-01-31 | Bekaert Sa Nv | Lina hybrydowa lub splotka hybrydowa |
KR101636194B1 (ko) * | 2012-06-18 | 2016-07-04 | 미쓰비시덴키 가부시키가이샤 | 엘리베이터, 및 엘리베이터의 개수 방법 |
CN203325558U (zh) * | 2012-06-19 | 2013-12-04 | 戚景赞 | 一种混杂纤维复合绳芯增强导线 |
SG11201502064QA (en) * | 2012-10-05 | 2015-05-28 | Bekaert Sa Nv | Hybrid rope |
ES2541327T3 (es) * | 2013-04-30 | 2015-07-17 | Kone Corporation | Un método para fabricar un cable, un cable y un ascensor |
JP5995793B2 (ja) * | 2013-06-26 | 2016-09-21 | 東京製綱株式会社 | ストリップ状スチールコード |
EP2821357B1 (en) * | 2013-07-04 | 2015-09-16 | KONE Corporation | An elevator system |
CN104008798B (zh) * | 2013-10-23 | 2017-11-24 | 远东电缆有限公司 | 一种改性的复合芯棒及其制造方法 |
EP2905250B1 (en) * | 2014-02-11 | 2016-10-19 | KONE Corporation | An elevator |
US10710842B2 (en) * | 2014-03-06 | 2020-07-14 | Otis Elevator Company | Fiber reinforced elevator belt and method of manufacture |
DE102014206326A1 (de) * | 2014-04-02 | 2015-10-08 | Contitech Antriebssysteme Gmbh | Tragmittel für eine Fördereinrichtung, insbesondere Tragriemen für Aufzüge |
DE102014208223A1 (de) * | 2014-04-30 | 2015-11-05 | Contitech Antriebssysteme Gmbh | Antriebs- oder Tragriemen mit hoher Zugsteifigkeit, insbesondere für die Aufzugtechnik |
EP3009390B1 (en) * | 2014-10-16 | 2018-12-05 | KONE Corporation | Method for manufacturing a hoisting rope, hoisting rope and elevator using the same |
EP3015413B1 (en) * | 2014-11-03 | 2017-08-09 | KONE Corporation | Hoisting rope and hoisting apparatus |
EP3233702B1 (en) * | 2014-12-19 | 2023-06-07 | Bekaert Advanced Cords Aalter NV | Elevator rope and method of manufacturing said elevator rope |
CN104528468B (zh) | 2014-12-24 | 2017-03-15 | 江门市华威塑印有限公司 | 一种薄膜回收装置 |
CN104552988B (zh) * | 2014-12-30 | 2017-05-17 | 天津高盛钢丝绳有限公司 | 一种超轻质复合材料曳引带的制备方法及制备系统 |
CN104528498A (zh) * | 2014-12-30 | 2015-04-22 | 天津高盛钢丝绳有限公司 | 一种复合材料的曳引带 |
EP3242849B1 (en) * | 2015-01-09 | 2020-07-01 | Otis Elevator Company | Load-bearing member for elevator system |
EP3127850A1 (en) * | 2015-08-07 | 2017-02-08 | Kone Corporation | A method a rope terminal arrangement and an elevator |
CN105672009A (zh) | 2016-04-12 | 2016-06-15 | 日立电梯(中国)有限公司 | 电梯曳引带及电梯 |
WO2018131203A1 (ja) * | 2017-01-10 | 2018-07-19 | 三菱電機株式会社 | ロープ、及びそれを用いたエレベータ |
EP3392184B1 (en) * | 2017-04-20 | 2020-07-01 | Otis Elevator Company | Hybrid fiber tension member for elevator system belt |
AU2018202655B2 (en) * | 2017-04-20 | 2023-12-07 | Otis Elevator Company | Tension member for elevator system belt |
AU2018202597B2 (en) * | 2017-04-20 | 2023-11-16 | Otis Elevator Company | Tension member for elevator system belt |
WO2018198240A1 (ja) * | 2017-04-26 | 2018-11-01 | 三菱電機株式会社 | エレベータ、その懸架体、及びその製造方法 |
US10882719B2 (en) * | 2018-03-29 | 2021-01-05 | Thyssenkrupp Elevator Ag | Composite elevator belt |
US20210229956A1 (en) * | 2018-06-06 | 2021-07-29 | Thyssenkrupp Elevator Innovation And Operations Ag | Composite elevator belt and method for making the same |
US11279594B2 (en) * | 2019-11-14 | 2022-03-22 | Otis Elevator Company | Sound absorbing panels for elevator |
-
2017
- 2017-04-26 WO PCT/JP2017/016598 patent/WO2018198240A1/ja active Application Filing
-
2018
- 2018-04-26 EP EP18792156.4A patent/EP3617121A4/en active Pending
- 2018-04-26 KR KR1020197030410A patent/KR102326640B1/ko active IP Right Grant
- 2018-04-26 JP JP2019514635A patent/JP6641528B2/ja active Active
- 2018-04-26 EP EP23175125.6A patent/EP4219377B1/en active Active
- 2018-04-26 CN CN201880026372.8A patent/CN110573447B/zh active Active
- 2018-04-26 US US16/604,584 patent/US11370640B2/en active Active
- 2018-04-26 WO PCT/JP2018/017047 patent/WO2018199256A2/ja unknown
- 2018-10-24 WO PCT/JP2018/039508 patent/WO2019207824A1/ja active Application Filing
- 2018-10-24 WO PCT/JP2018/039509 patent/WO2019207825A1/ja active Application Filing
- 2018-10-24 US US16/977,470 patent/US11738972B2/en active Active
- 2018-10-24 CN CN201880092528.2A patent/CN111989284B/zh active Active
- 2018-10-24 JP JP2020516007A patent/JP6872295B2/ja active Active
- 2018-10-24 EP EP18916751.3A patent/EP3786097B1/en active Active
-
2019
- 2019-12-26 JP JP2019236497A patent/JP7069104B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008111549A (ja) * | 2006-09-29 | 2008-05-15 | Inventio Ag | 張力キャリヤを備えた平ベルト状の支持駆動手段 |
WO2010072690A1 (de) * | 2008-12-22 | 2010-07-01 | Inventio Ag | Aufzugtragmittel, herstellungsverfahren für ein solches tragmittel und aufzugsanlage mit einem solchen aufzugstragmittel |
JP2013504695A (ja) * | 2009-09-11 | 2013-02-07 | エスゲーエル カーボン ソシエタス ヨーロピア | ロープ |
JP2015507706A (ja) * | 2012-01-05 | 2015-03-12 | ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニムN V Bekaert Societe Anonyme | 吊り上げ用ロープおよびそのロープを備えたエレベータ |
JP2015074871A (ja) * | 2013-10-10 | 2015-04-20 | コネ コーポレイションKone Corporation | 巻上機のロープおよびエレベータ |
Also Published As
Publication number | Publication date |
---|---|
EP3786097A1 (en) | 2021-03-03 |
CN111989284B (zh) | 2022-06-07 |
EP3786097B1 (en) | 2024-06-26 |
EP3617121A2 (en) | 2020-03-04 |
WO2018199256A3 (ja) | 2019-01-03 |
JP6641528B2 (ja) | 2020-02-05 |
KR20190129943A (ko) | 2019-11-20 |
JPWO2019207825A1 (ja) | 2020-12-03 |
JP2020073408A (ja) | 2020-05-14 |
US20210198081A1 (en) | 2021-07-01 |
EP3617121A4 (en) | 2020-09-09 |
US11738972B2 (en) | 2023-08-29 |
JP6872295B2 (ja) | 2021-05-19 |
EP4219377A1 (en) | 2023-08-02 |
KR102326640B1 (ko) | 2021-11-15 |
JPWO2018199256A1 (ja) | 2019-08-08 |
US20200122971A1 (en) | 2020-04-23 |
JP7069104B2 (ja) | 2022-05-17 |
CN111989284A (zh) | 2020-11-24 |
WO2018199256A2 (ja) | 2018-11-01 |
WO2019207825A1 (ja) | 2019-10-31 |
WO2018198240A1 (ja) | 2018-11-01 |
CN110573447B (zh) | 2021-07-20 |
US11370640B2 (en) | 2022-06-28 |
CN110573447A (zh) | 2019-12-13 |
EP3786097A4 (en) | 2021-06-16 |
EP4219377B1 (en) | 2024-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019207824A1 (ja) | エレベータ、その懸架体、及びその製造方法 | |
US9828215B2 (en) | Rope for a hoisting device and elevator | |
US9988241B2 (en) | Hoisting rope and hoisting apparatus | |
US11866300B2 (en) | Overbraided non-metallic tension members | |
AU2017233850B2 (en) | Load bearing member including lateral layer | |
KR20180051399A (ko) | 엘리베이터 시스템 서스펜션 부재 종단 | |
JP7170901B2 (ja) | エレベータの懸架体およびエレベータ | |
WO2023223474A1 (ja) | ロープシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18916710 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18916710 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |