WO2019206291A9 - 有机电致发光器件及包括其的显示器 - Google Patents

有机电致发光器件及包括其的显示器 Download PDF

Info

Publication number
WO2019206291A9
WO2019206291A9 PCT/CN2019/084628 CN2019084628W WO2019206291A9 WO 2019206291 A9 WO2019206291 A9 WO 2019206291A9 CN 2019084628 W CN2019084628 W CN 2019084628W WO 2019206291 A9 WO2019206291 A9 WO 2019206291A9
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
alkyl
atom
branched
Prior art date
Application number
PCT/CN2019/084628
Other languages
English (en)
French (fr)
Other versions
WO2019206291A1 (zh
Inventor
李崇
张兆超
王芳
唐丹丹
Original Assignee
江苏三月光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏三月光电科技有限公司 filed Critical 江苏三月光电科技有限公司
Publication of WO2019206291A1 publication Critical patent/WO2019206291A1/zh
Publication of WO2019206291A9 publication Critical patent/WO2019206291A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing

Definitions

  • the present invention relates to the field of semiconductor technology, and more particularly, to an organic electroluminescent device and a display including the same.
  • Organic electroluminescence device technology can be used to manufacture both new display products and new lighting products. It is expected to replace the existing liquid crystal display and fluorescent lamp lighting, and has a wide application prospect.
  • An organic electroluminescent device is a current device. When a voltage is applied to the electrodes at both ends and an electric field is applied to the positive and negative charges in the functional material film layer of the organic layer, the positive and negative charges are further recombined in the organic light emitting layer, resulting in Electroluminescence.
  • Organic electroluminescent devices generally have a multi-layer structure, and various auxiliary function layers other than the light-emitting layer also play a vital role in device performance.
  • Reasonable device structures can effectively improve device performance. Electron injection layers, electron transport layers, hole blocking layers, light emitting layers, electron blocking layers, hole transport layers, and hole injection layers are widely used to improve device performance.
  • Carriers (holes and electrons) in an organic electroluminescent device are injected into the device by two electrodes of the device under the driving of an electric field, respectively, and the composite light is emitted when the light emitting layer meets.
  • Hole transport and electron blocking layer materials used in existing organic electroluminescence devices are known, such as There is a large difference between the HOMO energy level and the HOMO energy level of the light-emitting layer host material, which is likely to form an accumulated charge at the material interface and affect the life of the OLED device.
  • the present invention aims to provide an organic electroluminescence device having improved luminous efficiency, heat resistance and service life, and a display including the same.
  • An object of the present invention is achieved by providing an organic electroluminescence device, which is provided with a substrate, a first electrode, an organic functional material layer, and a second electrode in this order from bottom to top.
  • the organic functional material layer includes:
  • a light-emitting layer which is located on the hole-transporting region and includes a host material and a guest material;
  • An electron-transporting region located above the light-emitting layer,
  • the hole transporting region includes a hole injection layer, a hole transporting layer, and an electron blocking layer in this order from bottom to top.
  • the hole transport layer includes first and second organic materials, wherein the HOMO energy level of the first organic material of the hole transport layer is -5.2eV to -5.6eV, preferably -5.3eV to -5.5eV, and the first The HOMO energy level of the two organic materials is -5.4eV to -5.7eV, preferably -5.4eV to -5.6eV, and
  • the electron blocking layer includes first and second organic materials, wherein the HOMO energy level of the first organic material of the electron blocking layer is -5.4eV to -5.75eV, preferably -5.5eV to -5.65eV, and the second organic material is The HOMO energy level of the material is -5.6eV to -6.0eV, preferably -5.6eV to -5.9eV, and
  • the LUMO energy level of the material is ⁇ -2.6eV.
  • the absolute value of the difference between the HOMO energy levels of the second organic material of the electron blocking layer material and the light emitting layer host material is ⁇ 0.4ev.
  • the HOMO of the first and second organic materials is defined, and this energy level matching
  • the potential barrier between the anode and the light-emitting layer is reduced, which facilitates the injection of holes from the anode into the light-emitting layer, improves the efficiency of hole injection, reduces the driving voltage of the device, and reduces the accumulated charge at the interface contact.
  • the material of the hole transport layer and the electron blocking layer may have both a hole transport function and an electron blocking function.
  • the higher triplet excitation energy levels of the hole transport layer and electron blocking layer materials can block excitons generated in the light emitting layer in the light emitting layer, thereby improving the light emitting efficiency of the device.
  • the high glass transition temperature of the material of the hole transport layer and the electron blocking layer of the present invention improves the heat resistance of the device.
  • the organic film layer composed of two different materials can effectively improve the molecular arrangement and the interaction force between the molecules, making the film layer more stable, reducing the leakage current of the device and increasing the service life of the device.
  • Another object of the present invention is achieved by providing a display including the above-mentioned organic electroluminescent device.
  • FIG. 1 schematically illustrates a cross-sectional view of an organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 2 schematically illustrates an energy transfer mechanism of an organic electroluminescent device according to an embodiment of the present invention.
  • 3-7 schematically illustrate a combined structure of a light emitting layer in an organic electroluminescent device including a hole transport layer and an electron blocking layer according to the present invention.
  • any numerical range listed herein is meant to include all sub-ranges with the same numerical precision included in the listed range.
  • "1.0 to 10.0" means all subranges (and including 1.0 and 10.0) included between the listed minimum value 1.0 and the listed maximum value 10.0, that is, having a minimum value equal to or greater than 1.0 and equal to Or all subranges of the maximum value less than 10.0.
  • Any maximum numerical limitation listed herein is intended to include all smaller numerical limitations incorporated herein, and any minimum numerical limitation listed herein is intended to include all larger numerical limitations incorporated herein. Accordingly, the applicant reserves the right to modify this specification, including the claims, to explicitly describe any sub-scope that falls within the scope explicitly described herein.
  • EBI and EBII refer to the organic materials constituting the electron blocking layer, for example, EBI means the first organic material and EBII means the second organic material; "HTI and HTII” means forming the electron blocking layer Organic materials, for example HTI means the first organic material and HTII means the second organic material.
  • FIG. 1 schematically illustrates a cross-sectional view of an organic electroluminescent device according to an embodiment of the present invention.
  • an organic electroluminescent device according to an embodiment of the present invention is provided with a substrate 1, a first electrode 2, a hole transport region A, a light emitting layer 6, an electron transport region B, and a second electrode 10 in this order from bottom to top.
  • the hole transporting region A includes a hole injection layer 3, the hole transporting layer 4, and an electron blocking layer 5 in order from bottom to top
  • the electron transporting region B includes a hole blocking layer 7, electron transporting layer 8, and electrons in order from bottom to top.
  • Injected layer 9 is provided with a substrate 1, a first electrode 2, a hole transport region A, a light emitting layer 6, an electron transport region B, and a second electrode 10 in this order from bottom to top.
  • the hole transporting region A includes a hole injection layer 3, the hole transporting layer 4, and an electron blocking layer 5 in order from bottom to top
  • the electron transporting region B includes a
  • any substrate commonly used in organic electroluminescent devices can be selected.
  • transparent substrates such as glass or transparent plastic substrates; opaque substrates such as silicon substrates; flexible PI film substrates.
  • Different substrates have different mechanical strength, thermal stability, transparency, surface smoothness, and water resistance. Depending on the nature, the direction of use is different.
  • a transparent substrate is preferably used.
  • the thickness of the substrate is not particularly limited.
  • a first electrode is formed on the substrate, and the first electrode and the second electrode may face each other.
  • the first electrode may be an anode.
  • the first electrode may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.
  • the first electrode may be formed using a transparent metal oxide, such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), or indium tin zinc oxide ( ITZO) and so on.
  • the first electrode may include Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, or a metal mixture.
  • the thickness of the first electrode layer depends on the material used, and is usually 50-500 nm, preferably 70-300 nm, and more preferably 100-200 nm.
  • the organic functional material layer provided between the first electrode and the second electrode includes a hole transport region, a light emitting layer, and an electron transport region in this order from bottom to top.
  • the hole transporting region may be disposed between the first electrode and the light emitting layer.
  • the hole transport region may include, but is not limited to, a hole injection layer, a hole transport layer, and an electron blocking layer.
  • the hole transporting region may include a hole injection layer, a hole transporting layer, and an electron blocking layer disposed on the first electrode in this order from bottom to top.
  • organic materials having p-type properties which are easily oxidized and electrochemically stable when they are oxidized, are mainly used as hole injection materials or hole transport materials.
  • organic materials with n-type properties which are easily reduced and electrochemically stable when reduced, are used as electron injection materials or electron transport materials.
  • the light-emitting layer material a material having both p-type and n-type properties is preferred, which is stable when it is oxidized and reduced, and also preferably has high luminescence for converting excitons into light when excitons are formed. Efficient materials.
  • the material of the hole injection layer is generally a material that preferably has a high work function, so that holes are easily injected into the organic material layer.
  • the material of the hole injection layer contains at least one of the materials represented by the general formulae (17), (18) or (19):
  • F1-F3 each independently represents a substituted or unsubstituted C6-30 aryl group, a substituted or unsubstituted 3 to 30 membered heteroaryl group, and F1-F3 may be the same or different;
  • G1-G6 each independently represent hydrogen, nitrile, halogen, amido, alkoxy, ester, nitro, CR 11 , substituted or unsubstituted C6 -30 aryl, 3- to 30-membered heteroaryl, in which R 11 is a linear or branched C1-20 alkyl, provided that G 1 -G 6 are not hydrogen at the same time;
  • heteroatom is selected from at least one of N, O, and S atoms.
  • the material of the hole injection layer used is selected from one of the following (a) to (j):
  • the thickness of the hole injection layer of the present invention may be 5 to 100 nm, preferably 5 to 50 nm, and more preferably 5 to 20 nm.
  • the hole transporting layer of the present invention may be provided on the hole injection layer.
  • the hole transport layer material includes a first organic material and a second organic material, wherein a ratio of the first organic material to the second organic material is 1:99 to 99: 1, preferably 10:90 to 90:10, more It is preferably 30:70 to 70:30, based on mass.
  • the HOMO energy level of the first organic material of the hole transport layer is -5.2eV to -5.6eV, preferably -5.3eV to -5.5eV, and the HOMO energy level of the second organic material thereof is -5.4eV.
  • the electron blocking layer layer of the present invention may be provided on the hole transporting layer layer.
  • the electron blocking layer material includes a first organic material and a second organic material, wherein a ratio of the first organic material to the second organic material is 1:99 to 99: 1, preferably 10:90 to 90:10, and more preferably 30:70 to 70:30, based on mass.
  • the HOMO energy level of the first organic material of the electron blocking layer is -5.4eV to -5.75eV, preferably -5.5eV to -5.65eV
  • the HOMO energy level of the second organic material thereof is -5.6eV to -6.0 eV, preferably -5.6 eV to -5.9 eV
  • FIG. 2 schematically illustrates an energy transfer mechanism of an organic electroluminescent device according to an embodiment of the present invention, where a represents a hole transport layer, b represents an electron blocking layer, c represents a guest of the light emitting layer, and d represents a light emitting layer. , And e stands for the electron transport layer.
  • the absolute value of the difference between the HOMO energy levels of the second organic material of the electron blocking layer and the host material of the light-emitting layer is ⁇ 0.4ev.
  • the smaller energy barrier between the electron blocking layer material and the light-emitting layer material allows holes to be easily injected into the light-emitting layer via the hole-transporting region.
  • the difference between the LUMO energy levels of the first and second organic materials of the electron blocking layer and the LUMO energy levels of the host and guest materials of the light-emitting layer is ⁇ 0.2ev, preferably ⁇ 0.3 ev and more preferably 0.5 ev, which can effectively prevent electrons from being injected into the hole transporting region from the light emitting layer. Therefore, the electron blocking layer has both a hole transporting function and an electron blocking function.
  • the first and second organic materials of the hole transport layer and the electron blocking layer of the present invention are each independently selected from the general formula (1), the general formula (2), and the general formula (3 )one:
  • X, X 1 are each independently selected from a single bond, a carbon atom, N- (R 5 ), a sulfur atom, an oxygen atom, a vinylidene group, a linear or branched C1-20 alkyl-substituted alkylene group, a linear group One of a chain or branched C1-20 alkyl-substituted silylene group, or a C6-20 aryl-substituted alkylene group;
  • R 5 may be the same or differently selected from a hydrogen atom, a tritium atom, a deuterium atom, a tritium atom, a fluorine atom, a phosphoric acid or a salt thereof, a linear or branched C1-20 alkyl-substituted alkyl group, A straight or branched C1-20 alkyl-substituted silylene group, an aryl group having 5 to 30 carbon atoms, a hetero group having 5 to 30 carbon atoms, and at least one heteroatom selected from N, O, and S Aryl, wherein in the case of the latter two, the group may be optionally substituted with a linear or branched C1-20 alkyl group, a C6-20 aryl group, and a C5-20 heteroaryl group;
  • Z represents a nitrogen atom or CR 6 , wherein R 6 may be the same or differently selected from a hydrogen atom, a tritium atom, a deuterium atom, a tritium atom, a fluorine atom, a cyano group, a phosphoric acid or a salt thereof, a linear or branched C1-20 Alkyl substituted alkyl, straight or branched C1-20 alkyl substituted silylene, aryl having 5 to 30 carbon atoms, 5 to 30 carbon atoms and at least one selected from N, O And heteroaryl groups of S, wherein in the case of the latter two, the group may be optionally a linear or branched C1-20 alkyl, C6-20 aryl, C5-20 heteroaryl Group substitution in which two or more R6 groups may be connected to each other and may form a ring structure;
  • Ar 1 , Ar 2 , Ar 3 , and Ar 4 each independently represent a single bond, a linear or branched C1-20 alkylene group, an arylene group having 5 to 30 carbon atoms, a linear or branched C1 -20 alkyl-substituted silylene, heteroarylene having 5 to 30 carbon atoms and at least one heteroatom selected from N, O, and S, wherein in the case of the latter two, the group may be Optionally substituted by straight or branched C1-20 alkyl, C6-20 aryl, C5-20 heteroaryl, wherein the Ar 1 and Ar 2 groups can also be linked to form a ring;
  • n, p, q, s, and t are equal to 0 or 1; and m + n + p + q ⁇ 1 and m + n + s + t ⁇ 1;
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a structure represented by the general formula (4), the general formula (5) or the general formula (6), provided that R 1 , R 2 , R 3 and R4 is not a hydrogen atom at the same time;
  • X 2 and X 3 each independently represent a single bond, an oxygen atom, a sulfur atom, a vinylidene group, a linear or branched C1-20 alkyl-substituted alkylene group, a linear or branched C1-20 alkyl group
  • X 2 and X 3 each independently represent a single bond, an oxygen atom, a sulfur atom, a vinylidene group, a linear or branched C1-20 alkyl-substituted alkylene group, a linear or branched C1-20 alkyl group
  • substituted silyl C6-20 aryl substituted alkylene, C1-20 alkyl substituted imine, C6-20 aryl substituted imine, C5-20 heteroaryl substituted imine
  • Y 1 may identically or differently represent an N atom or CR, wherein R may identically or differently represent a hydrogen atom, a tritium atom, a deuterium atom, a tritium atom, a fluorine atom, a cyano group, a phosphoric acid or a salt thereof, a linear or branched C1-20 alkyl substituted alkyl, straight or branched C1-20 alkyl substituted silyl, aryl having 5 to 30 carbon atoms, 5 to 30 carbon atoms, and at least one selected from N , Heteroaryl of heteroatoms of O, S, wherein in the case of the latter two, the group may be optionally a straight or branched C1-20 alkyl, C6-20 aryl, C5-20 Heteroaryl substitution; wherein two or more R groups may be connected to each other and may form a ring structure;
  • R 6 and R 7 each independently represent a hydrogen atom, a tritium atom, a deuterium atom, a tritium atom, a fluorine atom, a phosphoric acid or a salt thereof, a linear or branched C1-20 alkyl-substituted alkyl group, a straight chain or a branched chain C1-20 alkyl-substituted silyl groups, aryl groups having 5 to 30 carbon atoms, heteroaryl groups having 5 to 30 carbon atoms and at least one heteroatom selected from N, O and S, the general formula ( 7) or a structure represented by the general formula (6); wherein in the case of an aryl group and a heteroaryl group, the group may be optionally a linear or branched C1-20 alkyl group, a C6-20 aryl group, C5-20 heteroaryl substitution;
  • Y 2 may identically or differently represent an N atom or CR 10 , wherein R 10 may identically or differently represent a hydrogen atom, a tritium atom, a deuterium atom, a tritium atom, a fluorine atom, a cyano group, a phosphoric acid or a salt thereof, straight chain or branch Chain C1-20 alkyl substituted alkyl, linear or branched C1-20 alkyl substituted silyl, aryl having 5 to 30 carbon atoms, 5 to 30 carbon atoms and at least one selected from Heteroaryl of heteroatoms of N, O and S, wherein in the case of the latter two, the group may optionally be a straight or branched C1-20 alkyl, C6-20 aryl, C5- 20 heteroaryl substitutions;
  • X 4 and X 5 each independently represent a single bond, an oxygen atom, a sulfur atom, a vinylidene group, a linear or branched C1-20 alkyl-substituted alkylene group, a linear or branched C1-20 alkyl group
  • X 4 and X 5 each independently represent a single bond, an oxygen atom, a sulfur atom, a vinylidene group, a linear or branched C1-20 alkyl-substituted alkylene group, a linear or branched C1-20 alkyl group
  • substituted silyl C6-20 aryl substituted alkylene, C1-20 alkyl substituted imine, C6-20 aryl substituted imine, C5-20 heteroaryl substituted imine
  • the general formula (7) is connected to the general formula (4) or the general formula (5) by a ring method, and * indicates a connection site. When connected, only two adjacent sites can be taken.
  • the connection site Y 1 is represented as a carbon atom;
  • R 8 and R 9 each independently represent an aryl group having 5 to 30 carbon atoms, a heteroaryl group having 5 to 30 carbon atoms, and at least one hetero atom selected from N, O, and S, and the group may be Optionally substituted by straight or branched C1-20 alkyl, C6-20 aryl, C5-20 heteroaryl; R 8 and R 9 can also be linked to form a ring;
  • L 1 , L 2 , and L 3 each independently represent a single bond, an arylene group having 5 to 30 carbon atoms, a sub-heterocycle having 5 to 30 carbon atoms, and at least one hetero atom selected from N, O, and S Aryl, wherein in the case of the latter two, the group may be optionally substituted by a linear or branched C1-20 alkyl group, C6-20 aryl group, C5-20 heteroaryl group; L 1 , L 2.
  • L 3 can be connected to each other and form a ring structure;
  • Ar 5 , Ar 6 , and Ar 7 each independently represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms, and at least one hetero atom selected from N, O, and S, Imine having 5 to 30 carbon atoms, the group may be optionally substituted with a linear or branched C1-20 alkyl group, C6-20 aryl group, C5-20 heteroaryl group; Ar 5 , Ar 6 Ar 7 can be connected to each other and can form a ring structure;
  • Ar5, Ar6, and Ar7 can also be represented as one of the general formula (4), the general formula (5), and the general formula (6), wherein the groups X 2 , X 3 , Y 1 , and R 6 , R 7 and * have the meanings described above;
  • D 1 , D 2 , and D 3 each independently represent a single bond, an arylene group having 5 to 30 carbon atoms, a sub-heterocycle having 5 to 30 carbon atoms, and at least one hetero atom selected from N, O, and S Aryl, wherein in the case of the latter two, the group may be optionally substituted by a linear or branched C1-20 alkyl group, C6-20 aryl group, C5-20 heteroaryl group; L 1 , L 2.
  • L 3 can be connected to each other and form a ring structure;
  • Ar 8 , Ar 9 , and Ar 10 each independently represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms, and at least one hetero atom selected from N, O, and S, Imine having 5 to 30 carbon atoms, the group may be optionally substituted by a linear or branched C1-20 alkyl group, C6-20 aryl group, C5-20 heteroaryl group; Ar 8 , Ar 9 Ar 10 can be connected to each other and form a ring structure;
  • At least one of Ar 8 , Ar 9 , and Ar 10 is one of the general formula (4), the general formula (5), and the general formula (6); wherein the groups on the general formula are X 2 , X 3 , and Y 1 , R 6 , R 7 and * each have the meanings described above.
  • the general formula (2) is represented as one of the general formula (9) to the general formula (12):
  • Ar 5 to Ar 7 represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O, and S, and 5 to 30 carbon atoms
  • An imino group the group may be optionally substituted with a linear or branched C1-20 alkyl group, a C6-20 aryl group, and a C5-20 heteroaryl group;
  • L 1 -L 3 , R 6 -R 9 , Y 1 and X 2 -X 3 all have the meanings described above.
  • the general formula (3) is represented as one of the general formula (13) to the general formula (16):
  • Ar 8 and Ar 10 represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O, and S, and 5 to 30 carbon atoms
  • An imino group the group may be optionally substituted with a linear or branched C1-20 alkyl group, a C6-20 aryl group, and a C5-20 heteroaryl group;
  • D 1 -D 3 , R 6 -R 9 , Y 1 and X 2 -X 3 all have the meanings described above.
  • the first organic material of the hole transport layer is selected from one of the following compounds:
  • the second organic material of the hole transport layer is selected from one of the following compounds:
  • the first organic material of the electron blocking layer is selected from one of the following compounds:
  • the second organic material of the electron blocking layer is selected from one of the following compounds:
  • a hole transport layer and the hole mobility of the electron blocking layer material of the present invention is 1 ⁇ 10 -5 to 1 ⁇ 10 -2 cm 2 / ( V ⁇ s), preferably 1 ⁇ 10 -4 to 1 ⁇ 10 - 2 cm 2 / (V ⁇ s) and more preferably 1 ⁇ 10 -4 to 1 ⁇ 10 -3 cm 2 / (V ⁇ s).
  • the glass transition temperature of the hole transport layer and electron blocking layer materials of the present invention is ⁇ 120 ° C., preferably ⁇ 130 ° C., and more preferably ⁇ 140 ° C.
  • the thickness of the electron blocking layer of the present invention may be 1 to 200 nm, and preferably 10 to 100 nm.
  • the thickness of the hole transporting layer of the present invention may be 1 to 200 nm, and preferably 10 to 100 nm.
  • the light emitting layer may be disposed on the hole transport region.
  • the material of the light emitting layer is a material capable of emitting visible light by receiving holes and electrons from the hole transport layer and the electron transport layer, respectively, and combining the received holes and electrons. Specific examples thereof include metal complexes of hydroxyquinoline derivatives, various metal complexes, anthracene derivatives, bisstyrene benzene derivatives, fluorene derivatives, oxazole derivatives, and poly-p-styrene derivatives, etc. , But not limited to this.
  • the light emitting layer may include a host material and a guest material.
  • a light-emitting layer material for an organic electroluminescence device known in the prior art can be used.
  • the guest material may be, for example, quinacridone, coumarin, red fluorescent Alkenes, pyrenes and their derivatives, benzopyran derivatives, rhodamine derivatives or aminostyrene derivatives.
  • the light-emitting layer host material used is selected from a combination of one or more of the following EMH-1 to EMH-22:
  • the light emitting material may further include a phosphorescent or fluorescent material.
  • the phosphorescent material include phosphorescent materials of metal complexes such as iridium, platinum, and the like.
  • green phosphorescent materials such as Ir (ppy) 3 [fac-tris (2-phenylpyridine) iridium]
  • blue phosphorescent materials such as FIrpic and FIr6, and red phosphorescent materials such as Btp2Ir (acac)
  • the fluorescent material those commonly used in the art may be used.
  • the light-emitting layer guest material used is selected from one of the following EMD-1 to EMD-23:
  • the ratio of the host material to the guest material used is 99: 1-70: 30, preferably 99: 1-85: 15 and more preferably 97: 3-87: 13, based on mass meter.
  • the light-emitting layer may use another guest material, or a variety of guest materials.
  • the guest material may be simple Fluorescent materials, delayed fluorescence (TADF) materials, or phosphorescent materials, or a combination of different fluorescent materials, TADF materials, and phosphorescence.
  • the light-emitting layer can be a single light-emitting layer material, or it can be a composite light-emitting layer superimposed horizontally or vertically. material.
  • the light-emitting layers constituting the above-mentioned organic electroluminescent device are exemplified by the following various structures:
  • the organic light emitting functional layer includes a light emitting layer including one or a combination of at least two of blue, green, red, and yellow organic light emitting layer materials.
  • G represents light
  • 6 represents a light emitting layer
  • EM1, EM2, and EM3 represent different materials of the light emitting layer.
  • 6 represents a light-emitting layer
  • 300 represents an organic light-emitting functional layer
  • 610, 620, and 630 represent connection layers.
  • the film thickness of the light-emitting layer 6 constituting the OLED light-emitting body described above can be arbitrarily adjusted as required, or light-emitting layers of different colors can be alternately superimposed and combined as required, and can also emit light in adjacent In the organic layer of the layer, a charge blocking layer for different functional purposes is added.
  • the thickness of the light emitting layer of the present invention may be 5-60 nm, preferably 10-50 nm, and more preferably 20-45 nm.
  • the electron transporting region includes a hole blocking layer, an electron transporting layer, and an electron injection layer disposed on the light emitting layer in order from bottom to top, but is not limited thereto.
  • the hole blocking layer is a layer that blocks holes injected from the anode from passing through the light emitting layer and entering the cathode, thereby extending the life of the device and improving the efficiency of the device.
  • the hole blocking layer of the present invention may be provided on the light emitting layer.
  • a compound having a hole blocking effect known in the prior art can be used, for example, phenanthroline derivatives such as bath copper spirit (called BCP), aluminum (III) metal complexes of hydroxyquinoline derivatives such as bis (2-methyl-8-quinoline) -4-phenylphenate (BAlq), various rare earth complexes, oxazole derivatives, Triazole derivatives, triazine derivatives, and the like.
  • BCP bath copper spirit
  • BAlq aluminum (III) metal complexes of hydroxyquinoline derivatives
  • BAlq aluminum (III) metal complexes of hydroxyquinoline derivatives
  • BAlq aluminum (III) metal complexes of hydroxyquinoline derivatives
  • BAlq aluminum (III) metal complexes of hydroxyquinoline derivatives
  • BAlq aluminum (III) metal complexes of hydroxyquinoline derivatives
  • BAlq aluminum (III) metal complexes of hydroxyquinoline derivatives
  • BAlq aluminum (III) metal complexes of hydroxyquinoline
  • the electron transport layer may be disposed on the light emitting layer or, if present, the hole blocking layer.
  • the electron transport layer material is a material that easily receives electrons from the cathode and transfers the received electrons to the light emitting layer. Materials having high electron mobility are preferred.
  • an electron transport layer material known in the prior art for an organic electroluminescence device can be used, for example, a metal of a hydroxyquinoline derivative represented by Alq3 and BAlq Complexes, various metal complexes, triazole derivatives, triazine derivatives, oxadiazole derivatives, thiadiazole derivatives, carbodiimide derivatives, quinoxaline derivatives, and phenanthroline derivatives Compounds, silicon-based compound derivatives, and the like.
  • the thickness of the electron transport layer of the present invention may be 10-80 nm, preferably 20-60 nm, and more preferably 25-45 nm.
  • the electron injection layer may be disposed on the electron transport layer.
  • the material of the electron injection layer is generally a material which preferably has a low work function, so that electrons are easily injected into the organic functional material layer.
  • an electron injecting layer material for an organic electroluminescent device known in the prior art can be used, for example, lithium; a lithium salt, such as lithium 8-hydroxyquinoline, Lithium fluoride, lithium carbonate, or lithium azide; or cesium salt, cesium fluoride, cesium carbonate, or cesium azide.
  • the thickness of the electron injection layer of the present invention may be 0.1-5 nm, preferably 0.5-3 nm, and more preferably 0.8-1.5 nm.
  • the second electrode may be disposed above the electron transport region.
  • the second electrode may be a cathode.
  • the second electrode EL2 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.
  • the second electrode may include, for example, Li, Yb, Ca, LiF / Ca, LiF / Al, Al, Mg, BaF, Ba, Ag, or a compound or mixture thereof; when the second electrode is a half electrode
  • the second electrode may include Ag, Mg, Yb, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Li, Ca, LiF / Ca, LiF / Al, Mo, Ti, or Its compounds or mixtures.
  • the organic electroluminescent device of the present invention may be a top emission type, a bottom emission type, or a double-sided emission type.
  • the first electrode may be a reflective electrode, and the second electrode may be a transmissive electrode or a semi-transmissive electrode.
  • the first electrode may be a transmissive electrode or a semi-transmissive electrode, and the second electrode may be a reflective electrode.
  • the organic electroluminescent device may further include a packaging structure.
  • the packaging structure may be a protective structure that prevents foreign substances such as moisture and oxygen from entering the organic layer of the organic electroluminescent device.
  • the packaging structure may be, for example, a can, such as a glass can or a metal can; or a film covering the entire surface of the organic layer.
  • the organic electroluminescent device of the present invention can be prepared by sequentially laminating a first electrode, an organic functional material layer, and a second electrode on a substrate.
  • a physical vapor deposition method such as a sputtering method or an electron beam vapor method, or a vacuum evaporation method may be used, but is not limited thereto.
  • the above-mentioned compound can be used to form an organic functional material layer by, for example, a vacuum deposition method, a vacuum evaporation method, or a solution coating method.
  • the solution coating method means, but is not limited to, a spin coating method, a dip coating method, a jet printing method, a screen printing method, a spray method, and a roll coating method.
  • Vacuum evaporation means heating and plating a material onto a substrate in a vacuum environment.
  • the respective layers are preferably formed using a vacuum evaporation method.
  • each layer according to the present invention may be formed into a single layer and used as a single layer, or may be mixed with other materials and formed into a film and used as a single layer.
  • a display including one or more organic electroluminescence devices of the present invention, and in the case of including a plurality of devices, the devices are combined horizontally or vertically in combination.
  • the display may include one or more combinations of devices each having an organic light-emitting material layer of three colors of blue, green, and red, and the devices have the same film thickness and material. Hole transport layer and electron blocking layer.
  • the display is composed of a combination of one or more of devices that may each include an organic light emitting material layer of three colors of blue, green, and red, and the devices have the same material but a film thickness Different hole transport layers and electron blocking layers.
  • the display may include one or more combinations of devices each having an organic light emitting material layer of three colors of blue, green, and red, and the devices have the same film thickness but the same material. There are at least two combinations of a hole transporting layer and an electron blocking layer.
  • the display may include one or more combinations of devices each having an organic light emitting material layer of three colors of blue, green, and red, and the devices have different film thicknesses and Its material has at least two kinds of combined hole transport layer and electron blocking layer.
  • Glass transition temperature Tg measured by differential scanning calorimetry (DSC, DSC204F1 Differential Scanning Calorimeter, Germany), heating rate 10 ° C / min;
  • HOMO level There are many methods or instrumental methods for testing the HOMO level of organic optoelectronic materials, including CV (cyclic voltammetry), UPS (ultraviolet photoelectron spectroscopy), and AC series equipment manufactured by Riken Instrument Co., Ltd. ( Atmospheric photoelectron spectroscopy), IPS series equipment (vacuum photoelectron spectroscopy) produced by Xindi Tianyi Co., Ltd., in addition to the above methods, can also determine the level of HOMO energy level by Gaussian calculation and combined with semi-empirical judgment, and accurately measure The HOMO energy level is very important for studying the structural matching of OLED devices.
  • the CV method is affected by solvents, and the data accuracy and reproducibility are relatively poor.
  • Others include the UPS method, AC method, and IPS method. Fundamentally, they are measurements of ultraviolet photoelectron spectroscopy. Principle, in which UPS measurement not only requires ultra-high vacuum, the equipment value is expensive, but because of the person who measures, and the instrument settings, the data analysis results vary greatly.
  • the AC method requires the sample to be placed in an aerobic dry air environment. The oxygen element has a certain effect on the sample. The data reproducibility and consistency are relatively poor.
  • the IPS method measures the HOMO energy level.
  • IPS measurement method In a vacuum environment, UV monochromatic light is directly applied to the surface of the sample, and the HOMO energy level is determined by measuring the photoelectron current, which is a direct measurement. Based on the above analysis and practice, the inventors believe that the IPS measurement method has the highest reproducibility, consistency, and accuracy when measuring the HOMO energy level of OLED materials.
  • the HOMO energy levels of all materials involved in the present invention are IPS measurement methods. The specific measurement method is as follows:
  • the evaporation rate is controlled to The material is vapor-deposited on the ITO substrate with a film thickness of 60-80 nm, and then the HOMO energy level of the sample film is measured by using an IPS3 measurement device, and the measurement environment is a vacuum environment below 10-2Pa;
  • Eg energy level Based on the ultraviolet spectrophotometry (UV absorption) baseline of the single film of the material and the rising side of the first absorption peak, a tangent line is drawn, and the value of the tangent line and the baseline crossing point are used to calculate.
  • UV absorption ultraviolet spectrophotometry
  • LUMO energy level calculated based on the difference between the aforementioned HOMO energy level and Eg energy level.
  • Hole mobility The material was made into a single charge device and measured by the SCLC method.
  • Elemental analysis structure (Molecular formula C42H25NO3): Theoretical value: C, 85.26; H, 4.26; N, 2.37; Test value: C, 85.27; H, 4.25; N, 2.41.
  • Elemental analysis structure (Molecular formula C60H42N4): Theoretical value: C, 87.99; H, 5.17; N, 6.84; Test value: C, 87.96; H, 5.19; N, 6.86.
  • Elemental analysis structure (molecular formula C52H37N): Theoretical value: C, 92.41; H, 5.52; N, 2.07; Test value: C, 92.40; H, 5.51; N, 2.09.
  • Elemental analysis structure (Molecular formula C60H49N3): Theoretical value: C, 88.74; H, 6.08; N, 5.17; Test value: C, 88.76; H, 6.07; N, 5.19.
  • Elemental analysis structure (molecular formula C54H35NO2): Theoretical value: C, 88.86; H, 4.83; N, 1.92; Test value: C, 88.88; H, 4.81; N, 1.95.
  • Elemental analysis structure (molecular formula C45H32N2O): Theoretical value: C, 87.63; H, 5.23; N, 4.54; Test value: C, 87.65; H, 5.21; N, 4.56.
  • Elemental analysis structure (molecular formula C46H31NO): Theoretical value: C, 90.02; H, 5.09; N, 2.28; Test value: C, 90.04; H, 5.11; N, 2.25 ;.
  • Elemental analysis structure (molecular formula C52H37N): Theoretical value: C, 92.41; H, 5.52; N, 2.07; Test value: C, 92.40; H, 5.51; N, 2.09.
  • Elemental analysis structure (molecular formula C48H32N2O2): Theoretical value: C, 86.20; H, 4.82; N, 4.19; Test value: C, 86.22; H, 4.81; N, 4.17.
  • Elemental analysis structure (molecular formula C48H32N2): Theoretical value: C, 90.54; H, 5.07; N, 4.40; Test value: C, 90.55; H, 5.06; N, 4.39.
  • Elemental analysis structure (molecular formula C46H33NO): Theoretical value: C, 89.73; H, 5.40; N, 2.27; Test value: C, 89.71; H, 5.43; N, 2.26.
  • Elemental analysis structure (molecular formula C52H37N): Theoretical value: C, 92.41; H, 5.52; N, 2.07; Test value: C, 92.44; H, 5.51; N, 2.05.
  • Elemental analysis structure (molecular formula C40H27NO2): Theoretical value C, 86.78; H, 4.92; N, 2.53; Test value: C, 86.76; H, 4.93; N, 2.54.
  • Elemental analysis structure (molecular formula C40H27N): Theoretical value: C, 92.10; H, 5.22; N, 2.69; Test value: C, 92.11; H, 5.23; N, 2.66.
  • Elemental analysis structure (molecular formula C46H31N): theoretical value C, 92.43; H, 5.23; N, 2.34; test value: C, 92.45; H, 5.22; N, 2.33.
  • Elemental analysis structure (Molecular formula C46H31NO): Theoretical value: C, 90.02; H, 5.09; N, 2.28; Test value: C, 90.01; H, 5.08; N, 2.29.
  • Elemental analysis structure (molecular formula C56H33NO): Theoretical value: C, 91.40; H, 4.52; N, 1.90; Test value: C, 91.41; H, 4.51; N, 1.92.
  • Elemental analysis structure (molecular formula C52H35NO): Theoretical value: C, 90.54; H, 5.11; N, 2.03; Test value: C, 90.55; H, 5.10; N, 2.02.
  • Elemental analysis structure (molecular formula C45H31NO2): Theoretical value: C, 87.49; H, 5.06; N, 2.27; Test value: C, 87.47; H, 5.07; N, 2.26.
  • Table 1 shows the prepared hole transporting layer first and second organic materials, the electron blocking layer first and second organic materials, the light emitting material host materials (EMH-1, EMH-7, and EMH-13), and the guest materials. (EMD-1, EMD-8 and EMD-13) test results of each energy level.
  • the HOMO energy level of the first organic material of the hole transport layer of the present invention is between -5.2eV and -5.6eV
  • the HOMO energy level of the second organic material is between -5.4eV and -5.7eV
  • the HOMO energy level of the first organic material of the electron blocking layer of the present invention is between -5.4eV and -5.75eV
  • the HOMO energy level of the second organic material is -5.6eV to- 6.0 eV
  • the first organic material HTI-1 and the second organic material HTII-14 of the hole transport layer were placed in two evaporation sources at a vacuum degree of 1.0E-5Pa Under pressure, control the evaporation rate of the first organic material 1 to Control the evaporation rate of the second organic material 1 to Co-mixing to obtain the hole transport layer material 1 of the present invention.
  • Example 2 The preparation process of Example 1 was repeated, except that the evaporation rate of the first organic material HTI-1 was The evaporation rate of the second organic material HTII-14 is A hole transport layer material 2 was obtained.
  • Example 1 The preparation process of Example 1 was repeated, except that the evaporation rate of the first organic material HTI-1 was The evaporation rate of the second organic material HTII-14 is A hole transport layer material 3 was obtained.
  • Example 1 The preparation process of Example 1 was repeated, except that the evaporation rate of the first organic material HTI-1 was The evaporation rate of the second organic material HTII-14 is A hole transport layer material 4 is obtained.
  • Example 1 The preparation process of Example 1 was repeated, except that the evaporation rate of the first organic material HTI-1 was The evaporation rate of the second organic material HTII-14 is A hole transport layer material 5 is obtained.
  • Example 1 The preparation process of Example 1 was repeated, except that the first organic material HTI-29 and the second organic material HTII-27 were used to obtain the hole transport layer material 6.
  • Example 2 The preparation process of Example 2 was repeated, except that the first organic material HTI-31 and the second organic material HTII-37 were used to obtain the hole transport layer material 7.
  • Example 3 The preparation process of Example 3 was repeated, except that the first organic material HTI-34 and the second organic material HTII-85 were used to obtain the hole transport layer material 8.
  • Example 4 The preparation process of Example 4 was repeated, except that the first organic material HTI-66 and the second organic material HTII-148 were used to obtain the hole transport material 9.
  • Example 5 The preparation process of Example 5 was repeated, except that the first organic material HTI-92 and the second organic material HTII-101 were used to obtain the hole transport layer material 10.
  • the first organic material EBI-36 and the second organic material EBII-39 of the hole transport layer were placed in two evaporation sources at a vacuum of 1.0E-5Pa Under pressure, control the evaporation rate of the first organic material 1 to Control the evaporation rate of the second organic material 1 to Co-mixing to obtain the electron blocking layer material 1 of the present invention.
  • Example 2 The preparation process of Example 1 was repeated, except that the evaporation rate of the first organic material EBI-36 was The evaporation rate of the second organic material EBII-39 is An electron blocking layer material 2 was obtained.
  • Example 1 The preparation process of Example 1 was repeated, except that the evaporation rate of the first organic material EBI-36 was The evaporation rate of the second organic material EBII-39 is An electron blocking layer material 3 was obtained.
  • Example 1 The preparation process of Example 1 was repeated, except that the evaporation rate of the first organic material EBI-36 was The evaporation rate of the second organic material EBII-39 is An electron blocking layer material 4 is obtained.
  • Example 1 The preparation process of Example 1 was repeated, except that the evaporation rate of the first organic material EBI-36 was The evaporation rate of the second organic material EBII-39 is An electron blocking layer material 5 is obtained.
  • Example 1 The preparation process of Example 1 was repeated, except that the first organic material EBI-9 and the second organic material EBII-66 were used to obtain the electron blocking layer material 6.
  • Example 2 The preparation process of Example 2 was repeated, except that the first organic material EBI-83 and the second organic material EBII-99 were used to obtain the electron blocking layer material 7.
  • Example 3 The preparation process of Example 3 was repeated, except that the first organic material EBI-96 and the second organic material EBII-109 were used to obtain the electron blocking layer material 8.
  • Example 4 The preparation process of Example 4 was repeated, except that the first organic material EBI-99 and the second organic material EBII-160 were used to obtain the electron blocking layer material 9.
  • Example 5 The preparation process of Example 5 was repeated, except that the first organic material HTI-136 and the second organic material HTI-84 were used to obtain the electron blocking layer material 10.
  • the vacuum evaporation is performed under the following conditions: using a CIC evaporation equipment (manufactured by Changzhou Industry), and controlling the evaporation rate at a pressure of 1.0E-5Pa
  • HAT-CN is evaporated by a vacuum evaporation method to a thickness of 10 nm, and this layer is used as a hole injection layer;
  • the hole transport layer material 1 obtained in Example 1 for preparing the hole transport layer material by vacuum evaporation is deposited in a thickness of 90 nm, and this layer is a hole transport layer;
  • the electron-blocking layer material 1 obtained in Example 1 for preparing the electron-blocking layer material is evaporated by vacuum evaporation to a thickness of 20 nm, and this layer is an electron-blocking layer;
  • the light-emitting layer material is evaporated by vacuum evaporation.
  • the host material is EMH-7 and EMH-9, and the guest material is EMD-8.
  • the mass ratio of EMH-7, EMH-9 and EMD-8 45:45:10, thickness is 40nm;
  • LG201 and Liq are vapor-deposited on the light-emitting layer by vacuum evaporation.
  • the mass ratio of LG201 and Liq is 50:50 and the thickness is 40nm. This layer is used as an electron transport layer.
  • LiF is deposited by vacuum evaporation to a thickness of 1 nm, and this layer is an electron injection layer;
  • Al is vacuum evaporated to a thickness of 100 nm, and this layer is a second electrode layer.
  • the difference is that in step c) the film thickness of the hole transport layer is 160 nm; in step e), the host material is EMH-13, and the guest material is EMD-8, EMH-13.
  • the mass ratio to EMD-8 is 96: 4, and the thickness is 40 nm.
  • the difference is that in step c) the film thickness of the hole transport layer is 50 nm; in step e), the host material is EMH-1, and the guest material is EMD-1, EMH-1 and EMD-1 has a mass ratio of 95: 5 and a thickness of 25 nm.
  • Tables 8-10 show the results of measuring the performance of the produced organic electroluminescence device at a current density of 10 mA / cm2.
  • Table 8 Performance results of organic electroluminescent devices prepared in inventive examples 1-10 and comparative examples 1-12
  • LT95 refers to the time it takes for a device's brightness to decay to 95% at a current density of 10 mA / cm2.
  • the life test system is an OLED device life tester which is jointly researched by the owner of the present invention and Shanghai University.
  • Table 10 shows the results of measuring the performance of the produced organic electroluminescence device at a current density of 10 mA / cm2.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及有机电致发光器件,由下至上依次包括基板、第一电极、有机功能材料层和第二电极,有机功能材料层包括:空穴传输区域,位于第一电极之上;发光层,位于空穴传输区域之上,包括主体和客体材料;电子传输区域,位于发光层之上;空穴传输区域由下至上依次包括空穴注入层、空穴传输层和电子阻挡层,其中空穴传输层和电子阻挡层分别包括第一和第二有机材料,关于HOMO能级,空穴传输层第一有机材料的为-5.2至-5.6eV,其第二有机材料的为-5.4至-5.7eV,电子阻挡层第一有机材料的为-5.4至-5.75eV,其第二有机材料的为-5.6至-6.0eV,并且|HOMO第一有机材料|<|HOMO第二有机材料|。

Description

有机电致发光器件及包括其的显示器
本发明涉及半导体技术领域,更具体而言,涉及一种有机电致发光器件及包括其的显示器。
有机电致发光器件技术既可以用于制造新型显示产品,也可以用于制备新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。有机电致发光器件作为电流器件,当对其两端电极施加电压,并通过电场作用于有机层功能材料膜层中的正负电荷上,正负电荷进一步在有机发光层中复合,即产生有机电致发光。
有机电致发光器件一般为多层结构,除了发光层之外的各种辅助功能层对器件性能同样起着至关重要的作用。合理的器件结构能够有效提高器件的性能,电子注入层、电子传输层、空穴阻挡层、发光层、电子阻挡层、空穴传输层和空穴注入层被广泛用来提高器件的性能。
目前对有机电致发光器件提高性能的研究包括:降低器件的驱动电压、提高器件的发光效率、提高器件的使用寿命等。为了实现有机电致发光器件的性能的不断提升,不但需要有机电致发光器件结构和制备工艺的创新,更需要有机电致发光功能材料的不断研究和创新,制造出更高性能的有机电致发光功能材料。
有机电致发光器件中的载流子(空穴和电子)在电场的驱动下分别由器件的两个电极注入到器件中,并在发光层相遇复合发光。已知现有的有机电致发光器件中使用的空穴传输和电子阻挡层材料,例如
Figure PCTCN2019084628-appb-000001
等,都存在HOMO能级和发光层主体材料HOMO能级差较大,易在材料界面处形成集聚电荷,影响OLED器件寿命。
此外,在有机电致发光器件中,并不是所有材料的能级都能很好地匹配,它们之间的势垒严重阻碍空穴的有效注入。合理的能级结构有利于器件各层中的能级形成阶梯势垒,能够降低空穴注入的势垒,降低器件的驱动电压,从而改善器件的发光效率和寿命。
因此,不断需要开发具有优异的发光效率和寿命的有机电致发光器件。
本发明旨在提供一种具有改善的发光效率、耐热性和使用寿命的有机电致发光器件及包括其的显示器。
本发明的一个目的通过提供一种下述的有机电致发光器件而实现,所述有机电致发光器件由下至上依次设置有基板、第一电极、有机功能材料层和第二电极,所述有机功能材料层包括:
空穴传输区域,位于所述第一电极之上;
发光层,位于所述空穴传输区域之上,其包括主体材料和客体材料;
电子传输区域,位于所述发光层之上,
其中,所述空穴传输区域由下至上依次包括空穴注入层、空穴传输层和电子阻挡层,
所述空穴传输层包括第一和第二有机材料,其中空穴传输层的第一有机材料的HOMO能级为-5.2eV至-5.6eV,优选为-5.3eV至-5.5eV,且第二有机材料的HOMO能级为-5.4eV至-5.7eV,优选为-5.4eV至-5.6eV,并且|HOMO第一有机材料|<|HOMO第二有机材料|;并且
所述电子阻挡层包括第一和第二有机材料,其中电子阻挡层的第一有机材料的HOMO能级为-5.4eV至-5.75eV,优选为-5.5eV至-5.65eV,且第二有机材料的HOMO能级为-5.6eV至-6.0eV,优选为-5.6eV至-5.9eV,并且|HOMO第一有机材料|<|HOMO第二有机材料|;并且第一有机材料和第二有机材料的LUMO能级≥-2.6eV。
优选地,所述电子阻挡层材料的第二有机材料与发光层主体材料的HOMO能级之间差值的绝对值≤0.4ev。
在包括含本发明的第一和第二有机材料的空穴传输层和电子阻挡层材料的有机电致发光器件中,限定了所述第一和第二有机材料的HOMO,这种能级匹配使阳极与发光层界面间的势垒减小,这有利于空穴从阳极注入到发光层中,提高了空穴的注入效率,并降低了器件的驱动电压,降低界面接触处的积聚电荷,提高器件的稳定性和使用寿命。因此,所述空穴传输层和电子阻挡层材料可同时具有空穴传输功能和电子阻挡功能。同时,所述空穴传输层和电子阻挡层材料的较高的三重态激发能级可将在发光层中产生的激子封锁在发光层中,从而改善器件的发光效率。此外,本发明空穴传输层和电子阻挡层材料的较高的玻璃化转变温度,提高了器件的耐热性。并且由两种不同材料组合成的有机膜层,可有效改善分子排列和分子间相互作用力,使得膜层稳定性更高,降低了器件的漏电流,提高器件的使用寿命。
本发明的另一目的通过提供一种包括上述有机电致发光器件的显示器而实现。
图1示意性地示出了本发明的一个实施方案的有机电致发光器件的剖视图。
图2示意性地示出了本发明的一个实施方案的有机电致发光器件的能量转移机制。
图3-7示意性地示出了包含本发明空穴传输层和电子阻挡层的有机电致发光器件中发光层组合结构图。
下文中将参照附图更详细地描述本发明,但不意欲限制本发明。
本文中所列出的任何数值范围意指包括纳入所列范围内具有相同数值精度的全部子范围。例如,“1.0至10.0”意指包括在所列最小值1.0和所列最大值10.0之间的全部子范围(且包括1.0和10.0),也就是说,具有等于或大于1.0的最小值和等于或小于10.0的最大值的全部子范围。本文所列出的任何最大数值限制意指包括纳入本文的全部更小的数值限制,并且本文所列出的任何最小数值限制意指包括纳入本文的全部更大的数值限制。因此,申请人保留修改包括权利要求书的本说明书的权利,以明确描述落入本文明确描述的范围内的任何子范围。
在本文中所使用的缩写“EBI和EBII”意指构成电子阻挡层的有机材料,例如EBI意指第一有机材料,EBII意指第二有机材料;“HTI和HTII”意指构成电子阻挡层的有机材料,例如HTI意指第一有机材料,HTII意指第二有机材料。
在附图中,为了清楚起见,层和区域的尺寸可被夸大。还将理解,当层或元件称为在另一层或者基板“之上”时,该层或元件可直接位于该另一层或者基板之上,或者也可存在中间层。此外,还将理解,当层称为在两个层“之间”时,该层可以是这两个层之间的唯一的层,或者也可存在一个或者多个中间层。全文中相同的附图标记表示相同的元件。
下文中,将描述根据实施方案的有机电致发光器件。
图1示意性地示出了本发明的一个实施方案的有机电致发光器件的剖视图。参照图1,本发明的一个实施方案的有机电致发光器件由下至上依次设置有基板1、第一电极2、空穴传输区域A、发光层6、电子传输区域B和第二电极10,其中空穴传输区域A由下至上依次包括空穴注入层3、空穴传输层4和电子阻挡层5,并且电子传输区域B由下至上依次包括空穴阻挡层7、电子传输层8和电子注入层9。
作为本发明有机电致发光器件的基板,可选用任何常用于有机电致发光器件的基板。实例为透明基板,如玻璃或透明塑料基板;不透明基板,如硅基板;柔性PI膜基板。不同基板具有不同的机械强度、热稳定性、透明性、表面光滑度、防水性,根据性质不同,使用方向不同。在本发明中,优选使用透明基板。基板的厚度没有特别限制。
在基板上形成第一电极,第一电极与第二电极可彼此相对。第一电极可以是阳极。第一电极可以是透射电极、半透射电极或者反射电极。当第一电极是透射电极时,第一电极可使用透明金属氧化物来形成,例如铟锡氧化物(ITO)、铟锌氧化物(IZO)、氧化锌(ZnO)或铟锡锌氧化物(ITZO)等。当第一电极是半透射电极或反射电极时,第一电极可包括Ag、Mg、Al、Pt、Pd、Au、Ni、Nd、Ir、Cr或金属混合物。第一电极层的厚度取决于所使用的材料,通常为50-500nm,优选为70-300nm且更优选为100-200nm。
设置于第一电极和第二电极之间的有机功能材料层由下至上依次包括空穴传输区域、发光层和电子传输区域。
空穴传输区域可设置在第一电极与发光层之间。空穴传输区域可包括空穴注入层、空穴传输层和电子阻挡层,但不限于此。例如,参照图1,空穴传输区域可包括由下至上依次设置在第一电极之上的空穴注入层、空穴传输层和电子阻挡层。
通常,具有p型性质的有机材料——其易被氧化且当其被氧化时电化学稳定——主要用作空穴注入材料或空穴传输材料。同时,具有n型性质的有机材料——其易被还原且当被还原时电化学稳定——用作电子注入材料或电子传输材料。作为发光层材料,优选既具有p型性质又具有n型性质的材料,当其被氧化和还原时均稳定,还优选当形成激子时具有较高的用于将激子转化为光的发光效率的材料。
空穴注入层的材料通常是优选具有高功函数的材料,使得空穴容易地注入有机材料层中。在本发明中,空穴注入层的材料至少含有通式(17)、(18)或(19)所示材料中的一种:
Figure PCTCN2019084628-appb-000002
其中,在通式(17)中,F1-F3各自独立地代表取代或未取代的C6-30芳基、取代或未取代的3至30元杂芳基,并且F1-F3可以相同或不同;
在通式(18)和通式(19)中,G1-G6各自独立地代表氢、腈基、卤素、酰胺基、烷氧基、酯基、 硝基、C-R 11、取代或未取代的C6-30芳基、3至30元杂芳基,其中R 11为直链或支链的C1-20烷基,条件是G 1-G 6不同时为氢;
其中在杂芳基的情况下,所述杂原子选自N、O和S原子中的至少一个。
在本发明的一个优选实施方案中,所使用的空穴注入层的材料选自下述(a)至(j)之一:
Figure PCTCN2019084628-appb-000003
本发明的空穴注入层的厚度可以是5-100nm、优选是5-50nm且更优选是5-20nm。
本发明的空穴传输层可设置在空穴注入层之上。所述空穴传输层材料包括第一有机材料和第二有机材料,其中第一有机材料与第二有机材料的比例为1∶99至99∶1,优选为10∶90至90∶10,更优选为30∶70至70∶30,基于质量计。此外,所述空穴传输层的第一有机材料的HOMO能级为-5.2eV至-5.6eV,优选为-5.3eV至-5.5eV,且其第二有机材料的HOMO能级为-5.4eV至-5.7eV,优选为-5.4eV至-5.6eV,并且|HOMO第一有机材料|<|HOMO第二有机材料|;以及所述传输层第一有机材料和空穴注入层材料HOMO能级差值的绝对值≤0.4ev。
本发明的电子阻挡层层可设置在空穴传输层层之上。所述电子阻挡层材料包括第一有机材料和第二有机材料,其中第一有机材料与第二有机材料的比例为1∶99至99∶1,优选为10∶90至90∶10,更优选为30∶70至70∶30,基于质量计。此外,所述电子阻挡层的第一有机材料的HOMO能级为-5.4eV至-5.75eV,优选为-5.5eV至-5.65eV,且其第二有机材料的HOMO能级为-5.6eV至-6.0eV,优选为-5.6eV至-5.9eV,并且|HOMO 第一有机材料|<|HOMO 第二有机材料|;并且第一有机材料和第二有机材料的LUMO能级≥-2.6eV。
图2示意性地示出了本发明的一个实施方案的有机电致发光器件的能量转移机制,其中a代表空穴传输层,b代表电子阻挡层,c代表发光层的客体,d代表发光层的主体,以及e代表电子传输层。
在一个实施方案中,所述电子阻挡层第二有机材料和发光层主体材料的HOMO能级之间差值的绝对值为≤0.4ev。所述电子阻挡层材料与发光层材料之间较小的能量势垒使得空穴可容易地经由空穴传输区域注入至发光层中。在一个实施方案中,所述电子阻挡层的第一和第二有机材料的LUMO能级与所述发光层主、客体材料的LUMO能级之间的差值为≥0.2ev、优选为≥0.3ev且更优选为≥0.5ev,这可有效地防止电子从发光层注入至空穴传输区域中。因此,所述电子阻挡层既具有空穴传输功能又具有电子阻挡功能。
在本发明一个优选的实施方案中,本发明的空穴传输层和电子阻挡层的第一和第二有机材料各自独立地选自通式(1)、通式(2)和通式(3)之一:
Figure PCTCN2019084628-appb-000004
其中,在通式(1)中
X、X 1各自独立地选自单键、碳原子、N-(R 5)、硫原子、氧原子、亚乙烯基、直链或支链的C1-20烷基取代的亚烷基、直链或支链的C1-20烷基取代的亚硅烷基、C6-20芳基取代的亚烷基中的一种;
如果存在R 5,则其可相同或不同地选自氢原子、氕原子、氘原子、氚原子、氟原子、磷酸或其盐、直链或支链的C1-20烷基取代的烷基、直链或支链的C1-20烷基取代的亚硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代;
Z代表氮原子或C-R 6,其中R 6可相同或不同地选自氢原子、氕原子、氘原子、氚原子、氟原子、氰基、磷酸或其盐、直链或支链的C1-20烷基取代的烷基、直链或支链的C1-20烷基取代的亚硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代,其中两个或更多个R6基团可彼此连接并且可形成环结构;
Ar 1、Ar 2、Ar 3、Ar 4各自独立地代表单键、直链或支链的C1-20亚烷基、具有5至30个碳原子的亚芳基、直链或支链的C1-20烷基取代的亚硅烷基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代,其中Ar 1、Ar 2基团还可连接成环;
m、n、p、q、s和t等于0或1;且m+n+p+q≥1且m+n+s+t≥1;
R 1、R 2、R 3和R 4各自独立地代表氢原子、通式(4)、通式(5)或通式(6)所示的结构,条件是R 1、R 2、R3和R4不同时为氢原子;
Figure PCTCN2019084628-appb-000005
其中,在通式(4)和通式(5)中:
X 2、X 3各自独立地代表单键、氧原子、硫原子、亚乙烯基、直链或支链的C1-20烷基取代的亚烷基、直链或支链的C1-20烷基取代的硅烷基、C6-20芳基取代的亚烷基、C1-20烷基取代的亚胺基、C6-20芳基取代的亚胺基、C5-20杂芳基取代的亚胺基中的一种;
Y 1可相同或不同地代表N原子或C-R,其中R可相同或不同地代表氢原子、氕原子、氘原子、氚原子、氟原子、氰基、磷酸或其盐、直链或支链的C1-20烷基取代的烷基、直链或支链的C1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代;其中两个或更多个R基团可彼此连接并且可形成环结构;
R 6、R 7各自独立地代表氢原子、氕原子、氘原子、氚原子、氟原子、磷酸或其盐、直链或支链的C1-20烷基取代的烷基、直链或支链的C1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基、通式(7)或通式(6)所示结构;其中在芳基和杂芳基的情况下,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代;
Figure PCTCN2019084628-appb-000006
其中,在通式(7)中:
Y 2可相同或不同地代表N原子或C-R 10,其中,R10可相同或不同地代表氢原子、氕原子、氘原子、氚原子、氟原子、氰基、磷酸或其盐、直链或支链C1-20烷基取代的烷基、直链或支链的C1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代;
X 4、X 5各自独立地代表单键、氧原子、硫原子、亚乙烯基、直链或支链的C1-20烷基取代的亚烷基、直链或支链的C1-20烷基取代的硅烷基、C6-20芳基取代的亚烷基、C1-20烷基取代的亚胺基、C6-20芳基取代的亚胺基、C5-20杂芳基取代的亚胺基中的一种;
通式(7)通过并环方式和通式(4)或通式(5)相连,*表示为连接位点,相连时,只能取相邻的两个位点,通式(7)和通式(4)或通式(5)并环连接时,连接位点Y 1表示为碳原子;
在通式(6)中:
R 8、R 9各自独立地代表具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代;R 8、R 9还可连接成环;
在通式(2)中:
L 1、L 2、L 3各自独立地代表单键、具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代;L 1、L 2、L 3可两两彼此连接并且可形成环结构;
Ar 5、Ar 6、Ar 7各自独立地代表具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代;Ar 5、Ar 6、Ar 7可两两彼此连接并且可形成环结构;
Ar5、Ar6、Ar7还可以表示为通式(4)、通式(5)、通式(6)中的一个,其中所述通式上的基团X 2、X 3、Y 1、R 6、R 7和*具有如上所述的含义;
在通式(3)中:
D 1、D 2、D 3各自独立地代表单键、具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代;L 1、L 2、L 3可两两彼此连接并且可形成环结构;
Ar 8、Ar 9、Ar 10各自独立地代表具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代;Ar 8、Ar 9、Ar 10可两两彼此连接并且可形成环结构;
Ar 8、Ar 9、Ar 10中至少一个为通式(4)、通式(5)、通式(6)中的一个;其中所述通式上的基团X 2、X 3、Y 1、R 6、R 7和*各自具有如上所述的含义。
在本发明一个优选的实施方案中,通式(2)表示为通式(9)至通式(12)之一:
Figure PCTCN2019084628-appb-000007
其中
Ar 5至Ar 7表示具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代;
并且L 1-L 3、R 6-R 9、Y 1和X 2-X 3均具有上文所述的含义。
在本发明一个优选的实施方案中,通式(3)表示为通式(13)至通式(16)之一:
Figure PCTCN2019084628-appb-000008
Figure PCTCN2019084628-appb-000009
其中
Ar 8和Ar 10表示具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代;
并且D 1-D 3、R 6-R 9、Y 1和X 2-X 3均具有上文所述的含义。
在本发明一个优选的实施方案中,所述空穴传输层第一有机材料选自下述化合物之一:
Figure PCTCN2019084628-appb-000010
Figure PCTCN2019084628-appb-000011
Figure PCTCN2019084628-appb-000012
Figure PCTCN2019084628-appb-000013
在本发明一个优选的实施方案中,所述空穴传输层第二有机材料选自下述化合物之一:
Figure PCTCN2019084628-appb-000014
Figure PCTCN2019084628-appb-000015
Figure PCTCN2019084628-appb-000016
Figure PCTCN2019084628-appb-000017
Figure PCTCN2019084628-appb-000018
在一个优选的实施方案中,所述电子阻挡层第一有机材料选自以下化合物之一:
Figure PCTCN2019084628-appb-000019
Figure PCTCN2019084628-appb-000020
Figure PCTCN2019084628-appb-000021
Figure PCTCN2019084628-appb-000022
Figure PCTCN2019084628-appb-000023
在一个优选的实施方案中,所述电子阻挡层第二有机材料选自以下化合物之一:
Figure PCTCN2019084628-appb-000024
Figure PCTCN2019084628-appb-000025
Figure PCTCN2019084628-appb-000026
Figure PCTCN2019084628-appb-000027
Figure PCTCN2019084628-appb-000028
Figure PCTCN2019084628-appb-000029
本发明的空穴传输层和电子阻挡层材料的空穴迁移率为1×10 -5至1×10 -2cm 2/(V·s)、优选为1×10 -4至1×10 -2cm 2/(V·s)且更优选为1×10 -4至1×10 -3cm 2/(V·s)。
本发明的空穴传输层和电子阻挡层材料的玻璃化转变温度为≥120℃,优选为≥130℃且更优选为≥140℃。
本发明的电子阻挡层的厚度可为1-200nm、优选为10-100nm。
本发明的空穴传输层的厚度可为1-200nm、优选为10-100nm。
发光层可设置在空穴传输区域之上。发光层的材料是一种通过分别接收来自空穴传输层和电子传输层的空穴和电子,并将所接收的空穴和电子结合而能发出可见光的材料。其具体的实例包括羟基喹啉衍生物的金属络合物、各种金属络合物、蒽衍生物、双苯乙烯苯衍生物、芘衍生物、噁唑衍生物和聚对苯乙烯衍生物等,但不限于此。此外,发光层可以包含主体材料和客体材料。作为本发明有机电致发光器件发光层的主体材料和客体材料,均可以使用现有技术中公知的用于有机电致发光器件的发光层材料,所述主体材料可为例如噻唑衍生物、苯并咪唑衍生物、聚二烷基芴衍生物或4,4′-双(9-咔唑基)联苯(CBP);所述客体材料可为例如喹吖啶酮、香豆素、红荧烯、苝及其衍生物、苯并吡喃衍生物、罗丹明衍生物或氨基苯乙烯衍生物。在本发明的一个优选实施方案中,所使用的发光层主体材料选自下述EMH-1至EMH-22中的一种或多种的组合:
Figure PCTCN2019084628-appb-000030
Figure PCTCN2019084628-appb-000031
此外,为了改进荧光或磷光特性,发光材料还可包括磷光或荧光材料。磷光材料的具体实例包括铱、铂等的金属络合物的磷光材料。例如,可以使用Ir(ppy)3[fac-三(2-苯基吡啶)铱]等绿色磷光材料,FIrpic、FIr6等蓝色磷光材料和Btp2Ir(acac)等红色磷光材料。对于荧光材料,可使用本领域中通常使用的那些。在本发明的一个优选实施方案中,所使用的发光层客体材料选自下述EMD-1至EMD-23之一:
Figure PCTCN2019084628-appb-000032
Figure PCTCN2019084628-appb-000033
在本发明的发光层中,所使用的主体材料与客体材料的比例为99∶1-70∶30,优选为99∶1-85∶15且更优选为97∶3-87∶13,基于质量计。
此外,为了得到高效率的有机电致发光器件,除了上述所使用的荧光或磷光主客体材料之外,发光层还可采用另外的客体材料,或采用多种客体材料,客体材料可为单纯的荧光材料、延迟荧光(TADF)材料或磷光材料,或由不同的荧光材料、TADF材料、磷光搭配组合,发光层可为单一的发光层材料,也可以为横向或纵向叠加在一起的复合发光层材料。构成上述有机电致发光器件的发光层列举出如下多种构造:
(1)单一有机发光层材料;
(2)蓝色有机发光层材料和绿色、黄色或红色发光层材料的任一种组合,并且不分前后顺序,如图3所示;
(3)蓝色有机发光层材料和绿色、黄色或红色发光层材料的任两种组合,并且不分前后顺序,如图4所示;
(4)蓝色有机发光层材料、绿色有机发光层材料、红色有机发光层材料横向排布,如图5所示;
(5)蓝色有机发光层材料和绿色、黄色或红色发光层材料的的任一种组合,并通过连接层进行电荷传输,形成两叠层装置结构,如图6所示;
(6)蓝色有机发光层材料和绿色、黄色或红色发光层材料的任两种组合,并通过连接层进行电荷传输,形成三叠层装置结构,如图7所示。
优选地,所述有机发光功能层包括这样的发光层,其包括蓝色、绿色、红色、黄色有机发光层材料中的1种或至少2种的组合。
如上所述,在图3至图5中,G代表光,6代表发光层,EM1、EM2和EM3代表不同的发光层材料。
在图6和7中,6代表发光层,300代表有机发光功能层,610、620和630代表连接层。
为了调节载流子电荷在发光层中的有效结合,上述构成OLED发光体的发光层6的膜厚可根据需要任意调节,或根据需要将不同色彩的发光层交替叠加组合,还可以在邻接发光层的有机层里添加不同功能用途的电荷阻挡层等。优选地,本发明的发光层的厚度可以为5-60nm,优选为10-50nm,更优选为20-45nm。
在本发明中,电子传输区域可由下至上依次包括设置在发光层之上的空穴阻挡层、电子传输层和电子注入层,但不限于此。
空穴阻挡层为阻挡从阳极注入的空穴穿过发光层而进入阴极,由此延长器件的寿命并提高器件的效能的层。本发明的空穴阻挡层可设置在发光层之上。作为本发明有机电致发光器件的空穴阻挡层材料,可以使用现有技术中公共知的具有空穴阻挡作用的化合物,例如,浴铜灵(称为BCP)等菲咯啉衍生物、铝(III)双(2-甲基-8-喹啉)-4-苯基酚盐(BAlq)等羟基喹啉衍生物的金属络合物、各种稀土类络合物、噁唑衍生物、三唑衍生物、三嗪衍生物等。本发明的空穴阻挡层的厚度可为2-200nm、优选为5-150nm且更优选为10-100nm。
电子传输层可设置在发光层或(若存在的话)空穴阻挡层之上。电子传输层材料是一种容易接收阴极的电子并将接收的电子转移至发光层的材料。优选具有高的电子迁移率的材料。作为本发明有机电致发光器件的电子传输层,可以使用现有技术中公知的用于有机电致发光器件的电子传输层材料,例如,以Alq3、BAlq为代表的羟基喹啉衍生物的金属络合物、各种金属络合物、三唑衍生物、三嗪衍生物、噁二唑衍生物、噻二唑衍生物、碳化二亚胺衍生物、喹喔啉衍生物、菲咯啉衍生物、硅基化合物衍生物等。本发明的电子传输层的厚度可以为10-80nm、优选为20-60nm且更优选为25-45nm。
电子注入层可设置在电子传输层之上。电子注入层材料通常是优选具有低功函数的材料,使得电子 容易地注入有机功能材料层中。作为本发明有机电致发光器件的电子注入层材料,可以使用现有技术中公知的用于有机电致发光器件的电子注入层材料,例如,锂;锂盐,如8-羟基喹啉锂、氟化锂、碳酸锂或叠氮化锂;或铯盐,氟化铯、碳酸铯或叠氮化铯。本发明的电子注入层的厚度可以是0.1-5nm、优选为0.5-3nm且更优选为0.8-1.5nm。
第二电极可设置在电子传输区域之上。第二电极可以是阴极。第二电极EL2可以是透射电极、半透射电极或者反射电极。当第二电极是透射电极时,第二电极可以包括例如Li、Yb、Ca、LiF/Ca、LiF/Al、Al、Mg、BaF、Ba、Ag或者其化合物或混合物;当第二电极是半透射电极或者反射电极时,第二电极可包括Ag、Mg、Yb、Al、Pt、Pd、Au、Ni、Nd、Ir、Cr、Li、Ca、LiF/Ca、LiF/Al、Mo、Ti或者其化合物或混合物。
取决于所用的材料,本发明的有机电致发光器件可为顶部发光型、底部发光型或双面发光型。
在有机电致发光器件是顶部发光类型的情况下,第一电极可以是反射电极,而第二电极可以是透射电极或者半透射电极。在有机电致发光器件是底部发光类型的情况下,第一电极可以是透射电极或者半透射电极,而第二电极可以是反射电极。
有机电致发光器件还可包括封装结构。所述封装结构可为防止外界物质例如湿气和氧气进入有机电致发光器件的有机层的保护结构。所述封装结构可为例如罐,如玻璃罐或金属罐;或覆盖有机层整个表面的薄膜。
在制备有机电致发光器件的过程中,例如可通过在基板上相继层压第一电极、有机功能材料层和第二电极来制备本发明的有机电致发光器件。关于此点,可使用物理气相沉积方法,如溅射法或电子束蒸汽法,或者真空蒸镀法,但不限于此。并且,可通过例如真空沉积法、真空蒸镀法或溶液涂覆法将上述化合物用于形成有机功能材料层。关于此点,溶液涂覆法意指旋涂法、浸涂法、喷射印刷法、筛网印刷法、喷雾法和辊涂法,但不限于此。真空蒸镀意指在真空环境中,将材料加热并镀到基材上。在本发明中,优选使用真空蒸镀法来形成所述各个层。
另外,需要说明的是,本发明所述的用于形成各个层的材料均可以单独成膜而作为单层使用,也可以与其他材料混合后成膜而作为单层使用,还可以为单独成膜的层之间的层叠结构、混合后成膜的层之间的层叠结构或者单独成膜的层与混合后成膜的层的层叠结构。
在本发明的另一方面,涉及一种显示器,其包括一个或多个本发明的有机电致发光器件,并且在包括多个器件的情况下,所述器件横向或纵向叠加组合。
在一个优选的实施方案中,显示器可包括各自具有蓝、绿、红三种颜色的有机发光材料层的器件中的一种或多种的组合,并且所述器件具有膜厚和材料均相同的空穴传输层和电子阻挡层。在另一个优选的实施方案中,显示器由可包括各自具有蓝、绿、红三种颜色的有机发光材料层的器件中的一种或多种的组合,并且所述器件具有材料相同但膜厚各不相同的空穴传输层和电子阻挡层。
在另一个优选的实施方案中,显示器可包括各自具有蓝、绿、红三种颜色的有机发光材料层的器件中的一种或多种的组合,并且所述器件具有膜厚相同但其材料至少有两种组合的空穴传输层和电子阻挡层。在又一个优选的实施方案中,显示器可包括各自具有蓝、绿、红三种颜色的有机发光材料层的器件中的一种或多种的组合,并且所述器件具有膜厚各不相同并且其材料至少有两种组合的空穴传输层和电子阻挡层。
需要说明的是,本文中已经公开了示例性的实施方案,虽然其中使用了特定的术语,但是这些术语仅用于且仅解释为一般和描述性含义,而并非出于限制的目的。在一些情况下,如随着本申请的递交而对本领域普通技术人员所显而易见的,除非具体地表示,否则结合特定实施方案描述的特征、特性和/或元件可单独地使用或者与结合其他实施方案描述的特征、特性和/或元件组合使用。相应地,本领域技术人员将理解,在不背离本发明的精神和范围的前提下,可在形式和细节方面作出多种变化。
以下实施例旨在更好地解释本发明,但本发明的范围不限于此。
实施例
本文中所使用的检测方法如下:
玻璃化转变温度Tg:通过示差扫描量热法(DSC,德国耐驰公司DSC204F1示差扫描量热仪)测定,升温速率10℃/min;
HOMO能级:对于有机光电子材料的HOMO能级的测试有多种方法或仪器手段,包括CV(循环伏安法),UPS(紫外光电子能谱),日本理研计器公司生产的AC系列设备(大气光电子能谱),心地天益公司生产的IPS系列设备(真空光电子能谱)等,除了上述手段以外,还可以通过高斯计算,并结合半经验的判断,确定HOMO能级的水平,准确测量HOMO能级对于研究OLED器件结构搭配非常重要。上述所有HOMO能级确定的手段中,CV法受溶剂影响,数据准确度和再现性比较差,其他包括UPS法,AC法,IPS法,从根本原理来说,都是紫外光电子能谱的测量原理,其中UPS测量 不仅需要超高真空,设备价值昂贵,而且因为测量的人,以及仪器设置的不同,数据解析结果存在较大差异。AC法从原理上来说,需要将样品置于有氧的干燥空气环境,氧元素对样品存在一定影响,数据再现性和一致性都比较差,IPS法测量HOMO能级,是将膜材料放置在真空环境中,紫外单色光直接施加在样品表面,通过测量光电子电流,从而确定HOMO能级的大小,属于直接测量。基于以上分析和实践,发明人认为IPS测量法在测量OLED材料的HOMO能级时,再现性、一致性和准确性也最高。本发明所有涉及材料的HOMO能级均为IPS的测量手段。具体测量方法如下:
利用真空蒸镀设备,在真空度1.0E-5Pa压力下,控制蒸镀速率为
Figure PCTCN2019084628-appb-000034
将材料蒸镀到ITO基板上,其膜厚为60-80nm,然后利用用IPS3测量设备,对样品膜的HOMO能级水平进行测量,测量环境为10-2Pa以下的真空环境;
Eg能级:基于材料单膜的紫外分光光度(UV吸收)基线与第一吸收峰的上升侧画切线,用切线和基线交叉点数值算出。
LUMO能级:基于前述HOMO能级与Eg能级的差值计算得出。
电极材料的功函数:使用上海大学研发的表面功函数测试仪在大气环境下测试。
空穴迁移率:将材料制作成单电荷器件,用SCLC方法测定。
制备空穴传输层材料
I.制备所使用的空穴传输层第一有机材料:
制备化合物HTI-1
Figure PCTCN2019084628-appb-000035
在氮气气氛下,向500ml三口瓶中加入0.01mol原料I-1、0.03mol原料II-1,用混合溶剂(90ml甲苯,45ml乙醇)溶解,然后加入0.04mol Na2CO3水溶液(2M)。将混合物搅拌1小时,然后加入1×10-4mol Pd(PPh3)4,加热回流15小时。利用TLC观察反应,直至反应完全。自然冷却,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱(石油醚作为洗脱剂)纯化,得到目标产物,纯度99.5%,收率72.9%。
元素分析结构(分子式C42H25NO3):理论值:C,85.26;H,4.26;N,2.37;测试值:C,85.27;H,4.25;N,2.41。
ESI-MS(m/z)(M+):理论值为591.18,实测值为591.34。
制备化合物HT1-29
Figure PCTCN2019084628-appb-000036
在氮气气氛下,向500ml三口烧瓶中加入0.01mol原料I-2、0.03mol原料II-2、0.03mol叔丁醇钠、5×10-5mol Pd2(dba)3和5×10-5mol三叔丁基磷,然后加入150ml甲苯将其溶解,加热至100℃,回流24小时,利用TLC观察反应,直至反应完全。自然冷却至室温,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱(石油醚作为洗脱剂)纯化,得到目标产物,纯度99.6%,收率70.4%。
元素分析结构(分子式C60H42N4):理论值:C,87.99;H,5.17;N,6.84;测试值:C,87.96;H,5.19;N,6.86。
ESI-MS(m/z)(M+):理论值为818.34,实测值为818.59。
制备化合物HTI-31
Figure PCTCN2019084628-appb-000037
按化合物HTI-1的合成方法制备,不同在于用原料I-3代替原料I-1,用原料II-3代替原料II-3,所得目标产物的纯度为99.91%,收率为73.7%。
元素分析结构(分子式C52H37N):理论值:C,92.41;H,5.52;N,2.07;测试值:C,92.40;H,5.51;N,2.09。
ESI-MS(m/z)(M+):理论值为675.29,实测值为675.45。
制备化合物HTI-92
Figure PCTCN2019084628-appb-000038
按化合物HTI-1的合成方法制备,不同在于用原料I-6代替原料I-1,用原料II-6代替原料II-1,所得目标产物的纯度为99.5%,收率为74.1%。
元素分析结构(分子式C60H49N3):理论值:C,88.74;H,6.08;N,5.17;测试值:C,88.76;H,6.07;N,5.19。
ESI-MS(m/z)(M+):理论值为811.39,实测值为811.57。
II.制备所使用的空穴传输层第二有机材料:
制备化合物HTII-101
Figure PCTCN2019084628-appb-000039
在氮气气氛下,向500ml三口烧瓶中加入0.03mol原料III-1、0.01mol原料IV-1、0.04mol叔丁醇钠、5×10-5mol Pd2(dba)3和5×10-5mol三叔丁基磷,然后加入150ml甲苯将其溶解,加热至100℃,回流24小时,利用TLC观察反应,直至反应完全。自然冷却至室温,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱(石油醚作为洗脱剂)纯化,得到目标产物,纯度99.5%,收率76.3%。
元素分析结构(分子式C54H35NO2):理论值:C,88.86;H,4.83;N,1.92;测试值:C,88.88;H,4.81;N,1.95。
制备化合物HTII-37
Figure PCTCN2019084628-appb-000040
按化合物HTII-101的合成方法制备,不同在于用原料III-4代替原料III-1,用原料IV-4代替原料IV-1,所得目标产物的纯度为99.2%,收率为73.2%。
元素分析结构(分子式C45H32N2O):理论值:C,87.63;H,5.23;N,4.54;测试值:C,87.65;H,5.21;N,4.56。
ESI-MS(m/z)(M+):理论值为616.25,实测值为616.48。
制备化合物HTII-27
Figure PCTCN2019084628-appb-000041
按化合物HTII-101的合成方法制备,不同在于用原料III-5代替原料III-1,用原料IV-5代替原料IV-1,所得目标产物的纯度为99.6%,收率为75.9%。
元素分析结构(分子式C46H31NO):理论值:C,90.02;H,5.09;N,2.28;测试值:C,90.04;H,5.11;N,2.25;。
ESI-MS(m/z)(M+):理论值为613.24,实测值为613.47。
制备化合物HTII-112
Figure PCTCN2019084628-appb-000042
按化合物HTI-1的合成方法制备,不同在于用原料I-3代替原料I-1,用原料II-3代替原料II-3,所得目标产物的纯度为99.91%,收率为73.7%。
元素分析结构(分子式C52H37N):理论值:C,92.41;H,5.52;N,2.07;测试值:C,92.40;H,5.51; N,2.09。
ESI-MS(m/z)(M+):理论值为675.29,实测值为675.45。
制备电子阻挡层材料
III.制备所使用的电子阻挡层第一有机材料:
制备化合物EBI-36
Figure PCTCN2019084628-appb-000043
在氮气气氛下,向500ml三口瓶中加入0.015mol原料V-1、0.01mol原料VI-1,用混合溶剂(90ml甲苯,45ml乙醇)溶解,然后加入0.03mol Na2CO3水溶液(2M)。将混合物搅拌1小时,然后加入1×10-4mol Pd(PPh3)4,加热回流15小时。利用TLC观察反应,直至反应完全。自然冷却,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱(石油醚作为洗脱剂)纯化,得到目标产物,纯度99.8%,收率79.4%。
元素分析结构(分子式C48H32N2O2):理论值:C,86.20;H,4.82;N,4.19;测试值:C,86.22;H,4.81;N,4.17。
ESI-MS(m/z)(M+):理论值为668.25,实测值为668.44。
制备化合物EBI-96
Figure PCTCN2019084628-appb-000044
按化合物EBI-19的合成方法制备,不同在于用原料V-5代替原料V-1,用原料VI-5代替原料VI-1,所得目标产物的纯度为99.9%,收率为77.2%。
元素分析结构(分子式C48H32N2):理论值:C,90.54;H,5.07;N,4.40;测试值:C,90.55;H,5.06;N,4.39。
ESI-MS(m/z)(M+):理论值为636.26,实测值为636.48。
制备化合物EBI-99
Figure PCTCN2019084628-appb-000045
按化合物EBI-101的合成方法制备,不同在于用原料V-6代替原料V-1,用原料原料IV-6代替原料VI-1,所得目标产物的纯度为99.5%,收率为73.4%。
元素分析结构(分子式C46H33NO):理论值:C,89.73;H,5.40;N,2.27;测试值:C,89.71;H,5.43;N,2.26。
ESI-MS(m/z)(M+):理论值为615.26,实测值为615.55。
IV.制备所使用的电子阻挡层第二有机材料:
制备化合物EBII-99
Figure PCTCN2019084628-appb-000046
在氮气气氛下,向500mL三口瓶中加入0.01mol原料VII-1和0.015mol原料VIII-1,用混合溶剂(90ml甲苯,45ml乙醇)将其溶解。然后加入0.03mol Na2CO3水溶液(2M),搅拌该混合物1小时。然后加入1×10-4mol Pd(PPh3)4,加热至110℃,回流15小时。利用TLC观察反应,直至反应完全。自然冷却至室温,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱(石油醚作为洗脱剂)纯化,得到目标产物,纯度99.7%,收率73.7%。
元素分析结构(分子式C52H37N):理论值:C,92.41;H,5.52;N,2.07;测试值:C,92.44;H,5.51; N,2.05。
ESI-MS(m/z)(M+):理论值为675.29,实测值为675.59。
制备化合物EBII-109
步骤1)
Figure PCTCN2019084628-appb-000047
在氮气气氛下,向500mL三口瓶中加入0.05mol原料E-1、0.075mol原料F-1,用混合溶剂(90ml甲苯,45ml乙醇)将其溶解。然后加入0.15mol Na2CO3水溶液(2M),搅拌该混合物1小时。然后加入5×10-4mol Pd(PPh3)4,加热至100℃,回流15小时。利用TLC观察反应,直至反应完全。自然冷却至室温,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱(石油醚作为洗脱剂)纯化,得到中间体G-1,纯度99.4%,收率76.3%。
元素分析结构(分子式C40H27NO2):理论值C,86.78;H,4.92;N,2.53;测试值:C,86.76;H,4.93;N,2.54。
ESI-MS(m/z)(M+):理论值为553.20,实测值为553.44。
步骤2)
Figure PCTCN2019084628-appb-000048
在氮气气氛下,向100mL三口瓶中加入0.03mol来自步骤1)的中间体G-1、0.036mol三苯基膦,然后用50ml邻二氯苯将其溶解。将混合物加热至170℃,回流反应15小时。利用TLC观察反应,直至反应完全。自然冷却至室温,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱(石油醚作为洗脱剂)纯化,得到中间体H-1,纯度99.4%,收率78.8%。
元素分析结构(分子式C40H27N):理论值:C,92.10;H,5.22;N,2.69;测试值:C,92.11;H,5.23;N,2.66。
ESI-MS(m/z)(M+):理论值为521.21,实测值为521.44。
步骤3)
Figure PCTCN2019084628-appb-000049
在氮气气氛下,向500mL三口瓶中加入0.01mol来自步骤2)的中间体H-1、0.012mol溴苯、0.03mol叔丁醇钠、5×10-5mol Pd2(dba)3、5×10-5mol三叔丁基磷,然后用150ml甲苯将其溶解,加热至120℃,回流反应24小时。利用TLC观察反应,直至反应完全。自然冷却至室温,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱(石油醚作为洗脱剂)纯化,得到目标产物,纯度99.7%,收率75.6%。
元素分析结构(分子式C46H31N):理论值C,92.43;H,5.23;N,2.34;测试值:C,92.45;H,5.22;N,2.33。
ESI-MS(m/z)(M+):理论值为597.25,实测值为597.58。
制备化合物EBII-67
Figure PCTCN2019084628-appb-000050
按化合物EBII-99的合成方法制备,不同在于用原料VII-2代替原料VII-1,在于用原料VIII-2代替原料VII-1,所得目标产物的纯度为99.9%,收率为78.5%。
元素分析结构(分子式C46H31NO):理论值:C,90.02;H,5.09;N,2.28;测试值:C,90.01;H,5.08;N,2.29。
ESI-MS(m/z)(M+):理论值为613.24,实测值为613.65。
制备化合物EBII-39
Figure PCTCN2019084628-appb-000051
按化合物EBII-99的合成方法制备,不同在于用原料VII-4代替原料VII-1,在于用原料VIII-4代替原料VII-1,所得目标产物的纯度为99.7%,收率为76.2%。
元素分析结构(分子式C56H33NO):理论值:C,91.40;H,4.52;N,1.90;测试值:C,91.41;H,4.51;N,1.92。
ESI-MS(m/z)(M+):理论值为735.26,实测值为735.64。
元素分析结构(分子式C52H35NO):理论值:C,90.54;H,5.11;N,2.03;测试值:C,90.55;H,5.10;N,2.02。
ESI-MS(m/z)(M+):理论值为689.27,实测值为689.47。
制备化合物EBII-84
Figure PCTCN2019084628-appb-000052
按化合物EBII-99的合成方法制备,不同在于用原料VII-6代替原料VII-1,在于用原料VIII-6代替原料VII-1,所得目标产物的纯度为99.8%,收率为78.1%。
元素分析结构(分子式C45H31NO2):理论值:C,87.49;H,5.06;N,2.27;测试值:C,87.47;H,5.07;N,2.26。ESI-MS(m/z)(M+):理论值为617.24,实测值为617.65。
表1示出了制备的空穴传输层第一和第二有机材料、电子阻挡层第一和第二有机材料以及发光材料主体材料(EMH-1、EMH-7和EMH-13)、客体材料(EMD-1、EMD-8和EMD-13)的各能级测试结果。
表1
Figure PCTCN2019084628-appb-000053
Figure PCTCN2019084628-appb-000054
由表1的结果可以看出,本发明的空穴传输层的第一有机材料的HOMO能级在-5.2eV至-5.6eV之间,并且第二有机材料的HOMO能级在-5.4eV至-5.7eV,并且|HOMO第一有机材料|<|HOMO第二有机材料|。
由表1的结果可以看出,本发明的电子阻挡层的第一有机材料的HOMO能级在-5.4eV至-5.75eV之间,并且第二有机材料的HOMO能级在-5.6eV至-6.0eV,并且|HOMO第一有机材料|<|HOMO第二有机材料|;且所述电子阻挡层第二有机材料和发光层主体材料的HOMO能级之间差值的绝对值≤0.4ev。
实施例1
使用CIC蒸镀设备(长州产业制造),分别将空穴传输层的第一有机材料HTI-1和第二有机材料HTII-14放在两个蒸镀源中,在真空度1.0E-5Pa压力下,控制第一有机材料1蒸镀速率为
Figure PCTCN2019084628-appb-000055
控制第二有机材料1蒸镀速率为
Figure PCTCN2019084628-appb-000056
共同混蒸得到本发明的空穴传输层材料1。
实施例2
重复实施例1的制备过程,不同之处在于第一有机材料HTI-1的蒸镀速率为
Figure PCTCN2019084628-appb-000057
第二有机材料HTII-14的蒸镀速率为
Figure PCTCN2019084628-appb-000058
得到空穴传输层材料2。
实施例3
重复实施例1的制备过程,不同之处在于第一有机材料HTI-1的蒸镀速率为
Figure PCTCN2019084628-appb-000059
第二有机材料HTII-14的蒸镀速率为
Figure PCTCN2019084628-appb-000060
得到空穴传输层材料3。
实施例4
重复实施例1的制备过程,不同之处在于第一有机材料HTI-1的蒸镀速率为
Figure PCTCN2019084628-appb-000061
第二有机材料HTII-14的蒸镀速率为
Figure PCTCN2019084628-appb-000062
得到空穴传输层材料4。
实施例5
重复实施例1的制备过程,不同之处在于第一有机材料HTI-1的蒸镀速率为
Figure PCTCN2019084628-appb-000063
第二有机材料HTII-14的蒸镀速率为
Figure PCTCN2019084628-appb-000064
得到空穴传输层材料5。
实施例6
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-29和第二有机材料HTII-27,得到空穴传输层材料6。
实施例7
重复实施例2的制备过程,不同之处在于使用第一有机材料HTI-31和第二有机材料HTII-37,得到空穴传输层材料7。
实施例8
重复实施例3的制备过程,不同之处在于使用第一有机材料HTI-34和第二有机材料HTII-85,得到空穴传输层材料8。
实施例9
重复实施例4的制备过程,不同之处在于使用第一有机材料HTI-66和第二有机材料HTII-148,得到空穴传输材料9。
实施例10
重复实施例5的制备过程,不同之处在于使用第一有机材料HTI-92和第二有机材料HTII-101,得到空穴传输层材料10。
实施例11
使用CIC蒸镀设备(长州产业制造),分别将空穴传输层的第一有机材料EBI-36和第二有机材料EBII-39放在两个蒸镀源中,在真空度1.0E-5Pa压力下,控制第一有机材料1蒸镀速率为
Figure PCTCN2019084628-appb-000065
控制第二有机材料1蒸镀速率为
Figure PCTCN2019084628-appb-000066
共同混蒸得到本发明的电子阻挡层材料1。
实施例12
重复实施例1的制备过程,不同之处在于第一有机材料EBI-36的蒸镀速率为
Figure PCTCN2019084628-appb-000067
第二有机材料EBII-39的蒸镀速率为
Figure PCTCN2019084628-appb-000068
得到电子阻挡层材料2。
实施例13
重复实施例1的制备过程,不同之处在于第一有机材料EBI-36的蒸镀速率为
Figure PCTCN2019084628-appb-000069
第二有机材料EBII-39的蒸镀速率为
Figure PCTCN2019084628-appb-000070
得到电子阻挡层材料3。
实施例14
重复实施例1的制备过程,不同之处在于第一有机材料EBI-36的蒸镀速率为
Figure PCTCN2019084628-appb-000071
第二有机材 料EBII-39的蒸镀速率为
Figure PCTCN2019084628-appb-000072
得到电子阻挡层材料4。
实施例15
重复实施例1的制备过程,不同之处在于第一有机材料EBI-36的蒸镀速率为
Figure PCTCN2019084628-appb-000073
第二有机材料EBII-39的蒸镀速率为
Figure PCTCN2019084628-appb-000074
得到电子阻挡层材料5。
实施例16
重复实施例1的制备过程,不同之处在于使用第一有机材料EBI-9和第二有机材料EBII-66,得到电子阻挡层材料6。
实施例17
重复实施例2的制备过程,不同之处在于使用第一有机材料EBI-83和第二有机材料EBII-99,得到电子阻挡层材料7。
实施例18
重复实施例3的制备过程,不同之处在于使用第一有机材料EBI-96和第二有机材料EBII-109,得到电子阻挡层材料8。
实施例19
重复实施例4的制备过程,不同之处在于使用第一有机材料EBI-99和第二有机材料EBII-160,得到电子阻挡层材料9。
实施例20
重复实施例5的制备过程,不同之处在于使用第一有机材料HTI-136和第二有机材料HTI-84,得到电子阻挡层材料10。
制备有机电致发光器件
需要说明的是,真空蒸镀在下述条件下进行:使用CIC蒸镀设备(长州产业制造),在真空度1.0E-5Pa压力下,控制蒸镀速率为
Figure PCTCN2019084628-appb-000075
器件制备实施例1
按照以下过程进行:
a)使用透明玻璃作为基板,在其上涂覆厚度为150nm的ITO,作为阳极层,然后分别用去离子水、丙酮、乙醇超声清洗各15分钟,然后在等离子体清洗器中处理2分钟;
b)在经洗涤的第一电极层上,通过真空蒸镀方法蒸镀HAT-CN,厚度为10nm,这层作为空穴注入层;
c)在空穴注入层上,通过真空蒸镀方式蒸镀在制备空穴传输层材料的实施例1中获得的空穴传输层材料1,厚度为90nm,该层为空穴传输层;
d)在空穴传输层层上,通过真空蒸镀方式蒸镀在制备电子阻挡层材料的实施例1中获得的电子阻挡层材料1,厚度为20nm,该层为电子阻挡层;
e)在电子阻挡层上,通过真空蒸镀方式蒸镀发光层材料,主体材料为EMH-7和EMH-9,客体材料为EMD-8,EMH-7、EMH-9和EMD-8质量比为45∶45∶10,厚度为40nm;
f)在发光层上,通过真空蒸镀方式蒸镀LG201和Liq,LG201和Liq质量比为50∶50,厚度为40nm,该层作为电子传输层;
g)在电子传输层上,通过真空蒸镀方式蒸镀LiF,厚度为1nm,该层为电子注入层;
g)在电子注入层之上,真空蒸镀Al,厚度为100nm,该层为第二电极层。
器件制备实施例2-10
按照器件制备实施例1的过程进行,不同之处在于在步骤c)和d)中分别使用来自上述制备空穴传输层材料和电子阻挡层材料实施例中的下述材料,具体如下表2所示:
表2:
Figure PCTCN2019084628-appb-000076
器件制备实施例11
按照器件制备实施例1的过程进行,不同之处在于在步骤c)中空穴传输层层的膜厚为160nm;步骤e)中主体材料为EMH-13,客体材料为EMD-8,EMH-13和EMD-8质量比为96∶4,厚度为40nm。
器件制备实施例12-16
按照器件制备实施例11的过程进行,不同之处在于在步骤c)和d)中分别使用来自上述制备空穴传输层材料和电子阻挡层材料实施例中的下述材料,具体如下表3所示:
表3:
Figure PCTCN2019084628-appb-000077
器件制备实施例17
按照器件制备实施例1的过程进行,不同之处在于在步骤c)中空穴传输层的膜厚为50nm;步骤e)中主体材料为EMH-1,客体材料为EMD-1,EMH-1和EMD-1质量比为95∶5,厚度为25nm。
器件制备实施例18-23
按照器件制备实施例17的过程进行,不同之处在于在步骤c)和d)中分别使用来自上述制备空穴传输层材料和电子阻挡层材料实施例中的下述材料,具体如下表4所示:
表4:
Figure PCTCN2019084628-appb-000078
比较实施例1-12
按照器件制备实施例1的过程进行,不同之处在于使用下表5中所列的材料作为空穴传输层和电子阻挡层材料。
表5:
Figure PCTCN2019084628-appb-000079
比较实施例13-20
按照器件制备实施例11的过程进行,不同之处在于使用下表6中所列的材料作为空穴传输层和电子阻挡层材料。
表6:
Figure PCTCN2019084628-appb-000080
比较实施例21-28
按照器件制备实施例17的过程进行,不同之处在于使用下表7中所列的材料作为空穴传输层和电子阻挡层材料。
表7:
Figure PCTCN2019084628-appb-000081
表8-10示出了在10mA/cm2电流密度下测定所制作的有机电致发光器件的性能结果。
表8:发明实施例1-10和比较实施例1-12所制备的有机电致发光器件的性能结果
表8
Figure PCTCN2019084628-appb-000082
Figure PCTCN2019084628-appb-000083
注:*代表比较实施例
LT95指的是在电流密度为10mA/cm2情况下,器件亮度衰减到95%所用时间。
寿命测试系统为本发明所有权人与上海大学共同研究的OLED器件寿命测试仪。
所述注释也适用于下表9和10。
表9:发明实施例11-16和比较实施例13-20所制备的有机电致发光器件的性能结果
表9
Figure PCTCN2019084628-appb-000084
表10示出了在10mA/cm2电流密度下测定所制作的有机电致发光器件的性能结果。
表10
Figure PCTCN2019084628-appb-000085
由表8的结果可以看出,与单独使用有机材料作为空穴传输层或电子阻挡层的比较实施例1至12相比,本发明的器件制备实施例1至10所制得的器件的驱动电压明显降低,并且发光亮度、发光效率(即电流效率)和寿命均显著提高。由表9的结果可以看出,与比较实施例13至20相比,本发明的器件制备实施例11至16所制得的器件的驱动电压也明显降低,并且发光亮度、发光效率(即电流效率)和寿命均显著提高。由表10的结果可以看出,与比较实施例21至28相比,本发明的器件制备实施例17至23所制得的器件的驱动电压也明显降低,并且发光亮度、发光效率(即电流效率)和寿命均显著提高。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制。本领域技术人员在不脱离本发明技术方案的宗旨和范围的情况下,对本发明的技术方案进行的修改或者等同替换,均应涵盖在本发明的权利要求范围当中。

Claims (15)

  1. 一种有机电致发光器件,其由下至上依次设置有基板、第一电极、有机功能材料层和第二电极,所述有机功能材料层包括:
    空穴传输区域,位于所述第一电极之上;
    发光层,位于所述空穴传输区域之上,其包括主体材料和客体材料;
    电子传输区域,位于所述发光层之上,
    其中,所述空穴传输区域由下至上依次包括空穴注入层、空穴传输层和电子阻挡层,
    所述空穴传输层包括第一和第二有机材料,其中空穴传输层的第一有机材料的HOMO能级为-5.2eV至-5.6eV,优选为-5.3eV至-5.5eV,且第二有机材料的HOMO能级为-5.4eV至-5.7eV,优选为-5.4eV至-5.6eV,并且|HOMO 第一有机材料|<|HOMO 第二有机材料|;并且
    所述电子阻挡层包括第一和第二有机材料,其中电子阻挡层的第一有机材料的HOMO能级为-5.4eV至-5.75eV,优选为-5.5eV至-5.65eV,且第二有机材料的HOMO能级为-5.6eV至-6.0eV,优选为-5.6eV至-5.9eV,并且|HOMO 第一有机材料|<|HOMO 第二有机材料|;并且第一有机材料和第二有机材料的LUMO能级≥-2.6eV。
  2. 根据权利要求1所述的有机电致发光器件,其中所述电子阻挡层第二有机材料和发光层主体材料的HOMO能级之间差值的绝对值≤0.4ev。
  3. 根据权利要求1或2所述的有机电致发光器件,其中所述空穴传输层的第一和第二有机材料的比例为1∶99至99∶1,优选为10∶90至90∶10,更优选为30∶70至70∶30,基于质量计。
  4. 根据权利要求1至3中任一项所述的有机电致发光器件,其中所述电子阻挡层第一和第二有机材料的比例为1∶99至99∶1,优选为10∶90至90∶10,更优选为30∶70至70∶30,基于质量计。
  5. 根据权利要求1至4中任一项所述的有机电致发光器件,其中空穴传输层和电子阻挡层的第一和第二有机材料各自独立地选自通式(1)、通式(2)或通式(3)之一:
    Figure PCTCN2019084628-appb-100001
    其中,在通式(1)中
    X、X 1各自独立地选自单键、碳原子、N-(R 5)、硫原子、氧原子、亚乙烯基、直链或支链的C1-20烷基取代的亚烷基、直链或支链的C1-20烷基取代的亚硅烷基、C6-20芳基取代的亚烷基中的一种;
    如果存在R 5,则其可相同或不同地选自氢原子、氕原子、氘原子、氚原子、氟原子、磷酸或其盐、直链或支链的C1-20烷基取代的烷基、直链或支链的C1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代;
    Z代表氮原子或C-R 6,其中R 6可相同或不同地选自氢原子、氕原子、氘原子、氚原子、氟原子、氰基、磷酸或其盐、直链或支链的C1-20烷基取代的烷基、直链或支链的C1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代,其中两个或更多个R 6基团可彼此连接并且可形成环结构;
    Ar 1、Ar 2、Ar 3、Ar 4各自独立地代表单键、直链或支链的C1-20亚烷基、直链或支链的C1-20烷基取代的亚硅烷基、具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代,其中Ar 1、Ar 2基团还可直接连接成环或通过C、O、S、N连接成环;
    m、n、p、q、s和t等于0或1;且m+n+p+q≥1且m+n+s+t≥1;
    R 1、R 2、R 3和R 4各自独立地代表氢原子、通式(4)、通式(5)或通式(6)所示的结构,条件是R 1、R 2、R 3和R 4不同时为氢原子;
    Figure PCTCN2019084628-appb-100002
    其中,在通式(4)和通式(5)中:
    X 2、X 3各自独立地代表单键、氧原子、硫原子、亚乙烯基、直链或支链的C1-20烷基取代的亚烷基、直链或支链的C1-20烷基取代的硅烷基、C6-20芳基取代的亚烷基、C1-20烷基取代的亚胺基、C6-20芳基取代的亚胺基、C5-20杂芳基取代的亚胺基中的一种;
    Y 1可相同或不同地代表N原子或C-R 7,其中R7可相同或不同地代表氢原子、氕原子、氘原子、氚原子、氟原子、氰基、磷酸或其盐、直链或支链C1-20烷基取代的烷基、直链或支链C1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代;其中两个或更多个R 7基团可彼此连接并且可形成环结构;
    R 8、R 9各自独立地代表氢原子、氕原子、氘原子、氚原子、氟原子、磷酸或其盐、直链或支链的C1-20烷基取代的烷基、直链或支链的C1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基、通式(7)或通式(6)所示结构;其中在芳基和杂芳基的情况下,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代;
    Figure PCTCN2019084628-appb-100003
    其中,在通式(7)中:
    Y 2可相同或不同地代表N原子或C-R 14,其中,R 14可相同或不同地代表氢原子、氕原子、氘原子、氚原子、氟原子、氰基、磷酸或其盐、直链或支链C1-20烷基取代的烷基、直链或支链的C1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代;其中两个或更多个R 12基团可彼此连接并且可形成环结构;
    X 4、X 5各自独立地代表单键、氧原子、硫原子、亚乙烯基、直链或支链的C1-20烷基取代的亚烷基、直链或支链的C1-20烷基取代的亚硅烷基、C6-20芳基取代的亚烷基、C1-20烷基取代的亚胺基、C6-20芳基取代的亚胺基、C5-20杂芳基取代的亚胺基中的一种;
    通式(7)通过并环方式和通式(4)或通式(5)相连,*表示为连接位点,相连时,只能取相邻的两个位点,通式(7)和通式(4)或通式(5)并环连接时,连接位点Y 1表示为碳原子;
    在通式(8)中:
    R 12、R 13各自独立地代表具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代;R 12、R 13还可连接成环;
    在通式(2)中:
    L 1、L 2、L 3各自独立地代表单键、具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代;L 1、L 2、L 3可两两彼此连接并且可形成环结构;
    Ar 5、Ar 6、Ar 7各自独立地代表具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代;Ar 5、Ar 6、Ar 7可两两彼此连接并且可形成环结构;
    Ar 5、Ar 6、Ar 7还可以表示为通式(4)、通式(5)、通式(6)中的一个,其中所述通式上的基团X 2、X 3、Y 1、R 8、R 9、R 10、R 11和*具有如上所述的含义;
    在通式(3)中:
    D 1、D 2、D 3各自独立地代表单键、具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代;D 1、D 2、D 3可两两彼此连接并且可形成环结构;
    Ar 8、Ar 9、Ar 10各自独立地代表氢原子、具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代;Ar 8、Ar 9、Ar 10可两两彼此连接并且可形成环结构;
    Ar 8、Ar 9、Ar 10中至少一个为通式(4)、通式(5)、通式(6)中的一个;其中所述通式上的基团X 2、X 3、Y 1、R 8、R 9、R 10、R 11和*各自具有如上所述的含义。
  6. 根据权利要求5所述的有机电致发光器件,其中通式(2)表示为通式(9)至通式(12)之一:
    Figure PCTCN2019084628-appb-100004
    其中
    Ar 5至Ar 7表示具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代;
    并且L 1-L 3、R 6-R 9、Y 1和X 2-X 3均具有权利要求4所述的含义。
  7. 根据权利要求4或5所述的有机电致发光器件,其中所述通式(3)表示为通式(13)至通式(16)之一:
    Figure PCTCN2019084628-appb-100005
    其中
    Ar 8和Ar 10表示具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C1-20烷基、C6-20芳基、C5-20杂芳基取代;并且
    并且D 1-D 3、R 6-R 9、Y 1和X 2-X 3均具有权利要求4所述的含义。
  8. 根据权利要求1至7中任一项所述的有机电致发光器件,其中所述空穴传输层第一有机材料选自下述化合物之一:
    Figure PCTCN2019084628-appb-100006
    Figure PCTCN2019084628-appb-100007
    Figure PCTCN2019084628-appb-100008
    Figure PCTCN2019084628-appb-100009
  9. 根据权利要求1-7中任一项所述的有机电致发光器件,其中所述空穴传输层第二有机材料选自以下化合物之一:
    Figure PCTCN2019084628-appb-100010
    Figure PCTCN2019084628-appb-100011
    Figure PCTCN2019084628-appb-100012
    Figure PCTCN2019084628-appb-100013
    Figure PCTCN2019084628-appb-100014
  10. 根据权利要求1-7中任一项所述的有机电致发光器件,其中所述电子阻挡层第一有机材料选自以下化合物之一:
    Figure PCTCN2019084628-appb-100015
    Figure PCTCN2019084628-appb-100016
    Figure PCTCN2019084628-appb-100017
    Figure PCTCN2019084628-appb-100018
    Figure PCTCN2019084628-appb-100019
  11. 根据权利要求1-7中任一项所述的有机电致发光器件,其中所述电子阻挡层第二有机材料选自以下化合物之一:
    Figure PCTCN2019084628-appb-100020
    Figure PCTCN2019084628-appb-100021
    Figure PCTCN2019084628-appb-100022
    Figure PCTCN2019084628-appb-100023
    Figure PCTCN2019084628-appb-100024
    Figure PCTCN2019084628-appb-100025
  12. 根据权利要求1-11中任一项所述的有机电致发光器件,其特征在于,所述空穴传输层和电子阻挡层的第一有机材料和第二有机材料均可以混合后用于电致发光器件制作,也可以在制作有机电致发光器件过程中混合。
  13. 根据权利要求1-12中任一项所述的有机电致发光器件,其中所述器件包括蓝色、绿色、红色或黄色有机发光材料层中的一种或多种组合;不同有机发光材料层横向或纵向叠加组合。
  14. 一种显示器,包括一个或多个如权利要求1-13中任一项所述的有机电致发光器件;并且在包括多个器件的情况下,所述器件横向或纵向叠加组合。
  15. 根据权利要求14所述的显示器,其特征在于,所述显示器包括各自具有蓝、绿、红三种颜色的有机发光材料层的器件中的一种或多种组合,所述器件各自具有相同或不同膜厚的空穴传输层和电子阻挡层,并且所述空穴传输层和电子阻挡层的材料相同或不同。
PCT/CN2019/084628 2018-04-28 2019-04-26 有机电致发光器件及包括其的显示器 WO2019206291A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810401806.XA CN110416418B (zh) 2018-04-28 2018-04-28 有机电致发光器件及包括其的显示器
CN201810401806.X 2018-04-28

Publications (2)

Publication Number Publication Date
WO2019206291A1 WO2019206291A1 (zh) 2019-10-31
WO2019206291A9 true WO2019206291A9 (zh) 2019-11-28

Family

ID=68294406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084628 WO2019206291A1 (zh) 2018-04-28 2019-04-26 有机电致发光器件及包括其的显示器

Country Status (2)

Country Link
CN (1) CN110416418B (zh)
WO (1) WO2019206291A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110504373A (zh) * 2018-05-18 2019-11-26 江苏三月光电科技有限公司 一种高稳定性有机电致发光器件
CN110504375A (zh) * 2018-05-18 2019-11-26 江苏三月光电科技有限公司 一种复合空穴传输材料及其oled器件
CN113227083A (zh) 2018-11-30 2021-08-06 出光兴产株式会社 化合物、有机电致发光元件用材料、有机电致发光元件和电子设备
WO2020241826A1 (ja) 2019-05-31 2020-12-03 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
CN112952010B (zh) * 2019-11-22 2022-11-18 陕西莱特光电材料股份有限公司 发光器件及电子装置
CN113328042A (zh) * 2020-02-28 2021-08-31 固安鼎材科技有限公司 一种有机电致发光元件及其制备方法
CN113363396B (zh) * 2020-03-03 2024-04-16 合肥鼎材科技有限公司 一种有机电致发光器件
EP4129972A4 (en) 2020-03-31 2024-04-17 Idemitsu Kosan Co.,Ltd. COMPOUND, MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENTS, ORGANIC ELECTROLUMINESCENT ELEMENT AND ELECTRONIC DEVICE
CN113571641B (zh) * 2020-04-28 2024-09-27 杭州纤纳光电科技有限公司 一种具有复合传输层的钙钛矿太阳能电池及其制备方法
CN114075113B (zh) * 2020-08-20 2024-07-05 江苏三月科技股份有限公司 一种双芳胺类化合物及包含该化合物的有机电致发光器件

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007058005B4 (de) * 2007-09-25 2018-05-17 Osram Oled Gmbh Strahlungsemittierende Vorrichtung und Verfahren zu deren Herstellung
JP5243972B2 (ja) * 2008-02-28 2013-07-24 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子
EP2695213B1 (de) * 2011-04-05 2019-11-13 Merck Patent GmbH Organische elektrolumineszenzvorrichtung
CN104934544A (zh) * 2014-03-21 2015-09-23 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN104966786B (zh) * 2015-07-03 2017-12-22 固安鼎材科技有限公司 一种有机电致发光器件
CN105244451B (zh) * 2015-10-16 2018-08-14 Tcl集团股份有限公司 一种具有混合htl的量子点发光二极管及其制备方法
CN105576146B (zh) * 2016-03-23 2017-09-26 京东方科技集团股份有限公司 发光器件及其制造方法和显示装置
CN107068880B (zh) * 2016-04-25 2018-12-28 中节能万润股份有限公司 一种含有二芳基酮类化合物的有机电致发光器件及其应用
CN106531769B (zh) * 2016-12-16 2019-06-25 上海天马有机发光显示技术有限公司 一种有机发光显示面板、电子设备及其制作方法

Also Published As

Publication number Publication date
CN110416418A (zh) 2019-11-05
CN110416418B (zh) 2020-07-21
WO2019206291A1 (zh) 2019-10-31

Similar Documents

Publication Publication Date Title
WO2019206292A9 (zh) 有机电致发光器件及包括其的显示器
WO2019206291A9 (zh) 有机电致发光器件及包括其的显示器
Xie et al. tert-Butyl substituted hetero-donor TADF compounds for efficient solution-processed non-doped blue OLEDs
Kim et al. Exceedingly efficient deep-blue electroluminescence from new anthracenes obtained using rational molecular design
KR101311934B1 (ko) 유기광전소자용 조성물 및 이를 이용한 유기광전소자
Deng et al. Simple bipolar host materials incorporating CN group for highly efficient blue electrophosphorescence with slow efficiency roll-off
JP6357422B2 (ja) 有機電界発光素子
JP2024028704A (ja) 有機電界発光素子
CN105837498B (zh) 一种含有二甲基蒽结构的有机化合物及其应用
WO2020034805A1 (zh) 一种基于激基复合物和激基缔合物体系的有机电致发光器件
Moonsin et al. Novel bis (fluorenyl) benzothiadiazole-cored carbazole dendrimers as highly efficient solution-processed non-doped green emitters for organic light-emitting diodes
Chen et al. Naphthyridine-based thermally activated delayed fluorescence emitters for multi-color organic light-emitting diodes with low efficiency roll-off
KR101297162B1 (ko) 유기광전소자용 조성물 및 이를 이용한 유기광전소자
KR20190065277A (ko) 유기 발광 소자와, 그에 이용하는 발광 재료 및 화합물
Kotchapradist et al. N-coumarin derivatives as hole-transporting emitters for high efficiency solution-processed pure green electroluminescent devices
Zhan et al. New AIEgens containing dibenzothiophene-S, S-dioxide and tetraphenylethene moieties: similar structures but very different hole/electron transport properties
CN110416256B (zh) 有机电致发光器件及包括其的显示器
Huang et al. Construction of deep-blue AIE luminogens with TPE and oxadiazole units
JP5252880B2 (ja) オリゴフルオレン化合物及びそれを用いた有機el素子
Xu et al. Synthesis and characterization of a quinoxaline compound containing polyphenylphenyl and strong electron-accepting groups, and its multiple applications in electroluminescent devices
Usluer New spirobifluorene-based hole-transporting semiconductors for electroluminescent devices
CN112490376B (zh) 一种新型hit、eb材料搭配的有机电致发光器件
JP2014208602A (ja) 新規イミダゾール化合物、電子デバイス用材料、発光素子、電子デバイス及びその製造方法
CN110504374A (zh) 一种复合空穴传输/电子阻挡层及其oled器件
CN112490390B (zh) 一种新型hit、eb材料搭配的有机电致发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793083

Country of ref document: EP

Kind code of ref document: A1