WO2019206216A1 - 预拉伸基底及其制作方法、电子器件及其制作方法 - Google Patents

预拉伸基底及其制作方法、电子器件及其制作方法 Download PDF

Info

Publication number
WO2019206216A1
WO2019206216A1 PCT/CN2019/084225 CN2019084225W WO2019206216A1 WO 2019206216 A1 WO2019206216 A1 WO 2019206216A1 CN 2019084225 W CN2019084225 W CN 2019084225W WO 2019206216 A1 WO2019206216 A1 WO 2019206216A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film layer
stress
film
carrier
Prior art date
Application number
PCT/CN2019/084225
Other languages
English (en)
French (fr)
Inventor
王品凡
谢明哲
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/617,854 priority Critical patent/US11315962B2/en
Publication of WO2019206216A1 publication Critical patent/WO2019206216A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • H01L27/1266Multistep manufacturing methods with a particular formation, treatment or coating of the substrate the substrate on which the devices are formed not being the final device substrate, e.g. using a temporary substrate
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/144Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers using layers with different mechanical or chemical conditions or properties, e.g. layers with different thermal shrinkage, layers under tension during bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate

Definitions

  • the present disclosure relates to the technical field of substrate pre-stretching, and more particularly to a pre-stretched substrate, a method of fabricating the same, an electronic device, and a method of fabricating the same.
  • a flexible display is a variable-flexible display device made of a flexible material. Flexible displays are widely used in various fields due to their low power consumption, diversity of display modes, small size, and light weight.
  • the related art In order to ensure good bending performance of the flexible display, the related art generally uses a flexible material with good deformability to make a flexible substrate, and then forms other functional layers on the flexible substrate, so that the manufactured flexible display can withstand large Bending, stretching or torsional deformation.
  • a first aspect of the present disclosure provides a method of fabricating a pre-stretched substrate, comprising:
  • the first temperature threshold is between 100 ° C and 300 ° C.
  • a coefficient of thermal expansion of the film layer adjacent to the carrier layer is greater than a coefficient of thermal expansion of the film layer away from the carrier.
  • forming the at least two film layers sequentially on the carrier plate comprises: forming a first film layer on the carrier plate, and forming a second film on the surface of the first film layer facing away from the carrier plate Floor.
  • the separating the at least two film layers from the carrier sheet to obtain a pre-stretched substrate comprises: separating the first film layer from the carrier sheet, the pre-stretching substrate comprising the first film a layer and a second film layer on the first film layer.
  • the manufacturing method further includes: facing the second layer in the first film layer in an environment higher than a second temperature threshold The surface of the film layer forms a third film layer, and the coefficient of thermal expansion of the third film layer is different from the coefficient of thermal expansion of the first film layer.
  • the first film layer includes a flexible substrate
  • the second film layer includes a stress layer
  • the third film layer includes a stress adjustment layer.
  • forming the first film layer on the carrier plate comprises: forming a flexible substrate on the carrier plate by using an organic material, the carrier plate having a coefficient of thermal expansion equal to or similar to a coefficient of thermal expansion of the organic material; or Providing a flexible film layer; attaching the flexible film layer to the carrier, the flexible film layer thermally expanding under the environment above the first temperature threshold to form the flexible substrate.
  • the organic material is one of polyimide, silica gel material, polymethyl methacrylate, polycarbonate, acrylonitrile-butadiene-styrene copolymer, polyethylene, and polystyrene.
  • forming the second film layer on the surface of the first film layer facing away from the carrier plate comprises: depositing a stress layer forming an entire layer on the flexible substrate by using an inorganic material; or providing an inorganic layer a thin film layer; the inorganic thin film layer is attached to the flexible substrate, and the inorganic thin film layer thermally expands in an environment higher than a first temperature threshold to form an entire layer of stress layers.
  • the inorganic material is SiN, SiO or metal.
  • the manufacturing method further comprises: patterning the entire stress layer to form a plurality of independent stress layer patterns.
  • the forming the second film layer on the surface of the first film layer facing away from the carrier plate comprises: forming a stress adjustment layer on the surface of the flexible substrate facing away from the stress layer by using a metal material; or Providing an inorganic metal thin film layer; the inorganic metal thin film layer is attached to a surface of the flexible substrate facing away from the stress layer, and the inorganic metal thin film layer occurs in an environment higher than a second temperature threshold Thermal expansion forms a stress-regulating layer.
  • the flexible substrate has a thermal expansion coefficient of between 10 ppm/° C. and 50000 ppm/° C.; and the stress layer has a thermal expansion coefficient of between 10 ppm/° C. and 1000 ppm/° C.
  • the flexible substrate has a thermal expansion coefficient of between 3 ppm/° C. and 250 ppm/° C; the stress layer has a thermal expansion coefficient of between 3 ppm/° C. and 100 ppm/° C.; and the stress adjustment layer has a thermal expansion coefficient of 3 ppm/ °C-100ppm/°C.
  • a second aspect of the present disclosure provides a method of fabricating an electronic device, including:
  • the pre-stretched electronic device Separating a film layer in contact with the carrier plate from the carrier plate to obtain pre-stretched electronic devices, the pre-stretched electronic device comprising the at least two film layers, and the at least two film layers
  • forming the at least two film layers sequentially on the carrier plate comprises: forming a first film layer on the carrier plate, and forming a second film on the surface of the first film layer facing away from the carrier plate Floor.
  • Forming the driving circuit on the film layer farthest from the carrier in the at least two film layers includes forming a driving circuit on the second film layer.
  • Separating the film layer in contact with the carrier plate from the carrier plate to obtain a pre-stretched electronic device comprising: separating the first film layer from the carrier plate, the pre-stretched electronic device
  • the method includes a first film layer, a second film layer on the first film layer, and a driving circuit on the second film layer.
  • the manufacturing method further includes: facing the first film layer in the environment above the second temperature threshold The surface of the second film layer forms a third film layer, and the coefficient of thermal expansion of the third film layer is different from the coefficient of thermal expansion of the first film layer.
  • the first film layer includes a flexible substrate
  • the second film layer includes a stress layer
  • the third film layer includes a stress adjustment layer.
  • forming the stress layer on the flexible substrate comprises: forming a full layer of stress layer on the flexible substrate; or forming a plurality of independent stress layer patterns on the flexible substrate.
  • a third aspect of the present disclosure provides a method of fabricating an electronic device, including:
  • the driving circuit comprises a second flexible substrate layer attached to the pre-stretched substrate, a component and a wiring layer for implementing a driving function;
  • the second flexible substrate layer comprises a thinner soft body portion and In the thick rigid body portion, the components are disposed on the thicker rigid body portion, and the components are connected by the wiring layer.
  • FIG. 1 is a flow chart of making a pre-stretched substrate according to an embodiment of the present disclosure
  • FIG. 2 is a schematic view showing a first structure of a pre-stretched substrate according to an embodiment of the present disclosure
  • FIG. 3 is a schematic view showing a second structure of a pre-stretched substrate according to an embodiment of the present disclosure
  • FIG. 4 is a schematic view showing a third structure of a pre-stretched substrate according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of an unstretched electronic device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a stretched electronic device according to an embodiment of the present disclosure.
  • a flexible film is generally formed by using an organic material, and then an outward pulling force is applied to the periphery of the flexible film to pre-stretch the flexible film in a manner similar to a web.
  • an outward pulling force is applied to the periphery of the flexible film to pre-stretch the flexible film in a manner similar to a web.
  • the embodiments of the present disclosure provide a pre-stretched substrate, a manufacturing method thereof, an electronic device, and a manufacturing method thereof, and the method for fabricating a pre-stretched substrate in the related art cannot form a large area and is pre-pulled.
  • the preset temperature (which may also be referred to as a first temperature threshold) may be selected as a normal temperature, for example, 25 ° C, and the temperature in an environment higher than a preset temperature may be based on thermal expansion of at least two layers actually formed.
  • the coefficient is set, for example, the temperature in the environment above the preset temperature can be set between 100 ° C and 300 ° C.
  • At least two film layers formed under an environment higher than a preset temperature can be uniformly extended, and at least two film layers are provided with different thermal expansion coefficients, so that at least the same temperature is higher than the preset temperature.
  • the degree of expansion of the two layers varies. It is to be noted that at least two film layers sequentially formed on the carrier are laminated.
  • At least two film layers may be separated from the carrier plate, that is, the film layer in contact with the carrier plate is separated from the carrier plate, thereby obtaining A pre-stretched substrate composed of at least two film layers.
  • the pre-stretched substrate since at least two film layers have different thermal expansion coefficients, when the pre-stretched substrate is placed in a normal temperature environment, at least two film layers have different degrees of shrinkage, thereby making at least two layers Stress is generated between each of the film layers in the film layer to achieve pre-stretching properties of the pre-stretched substrate.
  • the pre-stretched substrate provided by the embodiment of the present disclosure is formed by sequentially forming at least two different thermal expansion coefficients on the carrier in an environment higher than a preset temperature. a film layer, and in the process of forming each film layer, each film layer can undergo uniform thermal expansion; then at least two formed film layers are separated from the carrier to form a pre-compound comprising at least two film layers Stretch the substrate.
  • each film layer is The degree of contraction is different, so that stress acts between the layers to form a pre-stretched substrate. It can be seen that when the pre-stretched substrate is fabricated by the manufacturing method provided by the embodiment of the present disclosure, at least two film layers included in the pre-stretched substrate are uniformly thermally expanded in an environment higher than a preset temperature, thereby being excellent. The uniformity of the pre-stretching amount of the pre-stretched substrate is ensured; and the size of the pre-stretched substrate produced is not limited, and the preparation of the large-area pre-stretched substrate can be satisfied.
  • the pre-stretched substrate produced by using the embodiment of the present disclosure includes at least two film layers
  • the prepared pre-stretched substrate has better water blocking and oxygen barrier properties
  • the display device is fabricated using the pre-stretched substrate.
  • the printed display device has better sealing performance, thereby effectively extending the service life of the display device.
  • the method of fabricating the pre-stretched substrate provided by the embodiments of the present disclosure can be used for mass production of pre-stretched substrates.
  • the step of sequentially forming at least two film layers on the carrier specifically comprises: forming a first film layer on the carrier, and forming a second film layer on the surface of the first film layer facing away from the carrier.
  • the step of separating at least two film layers from the carrier sheet to obtain a pre-stretched substrate comprises: separating the first film layer from the carrier layer, the pre-stretching substrate comprising the first film layer and the first film layer Two layers.
  • the temperature in the environment higher than the preset temperature may be according to the first film layer and the second film layer to be actually fabricated.
  • the coefficient of thermal expansion is set.
  • the first film layer may be separated from the carrier layer, thereby obtaining the first film layer and the first film layer.
  • a pre-stretched substrate composed of a second film layer.
  • the degree of shrinkage of the first film layer and the second film layer when the pre-stretched substrate is placed in a normal temperature environment Different, thereby causing stress between the first film layer and the second film layer, achieving pre-stretching properties of the pre-stretched substrate.
  • the method for fabricating the pre-stretched substrate provided by the above embodiment further includes: facing the second film in the first film layer in an environment higher than a preset temperature The surface of the layer forms a third film layer, and the coefficient of thermal expansion of the third film layer is different from the coefficient of thermal expansion of the first film layer.
  • the third film may be formed different from the first film layer by a coefficient of thermal expansion from the surface of the first film layer facing away from the second film layer
  • the layer is used to further adjust the amount of pre-stretching of the pre-stretched substrate.
  • the pre-stretched substrate produced is not limited to including the first film layer, the second film layer and the third film layer, and may further include more film layers, that is, the plurality of layers may have different thermal expansion coefficients according to actual needs.
  • the film layer is used to adjust the amount of pre-stretching of the formed pre-stretched substrate.
  • the first film layer, the second film layer, and the third film layer are various in kind, for example, the first film layer includes a flexible substrate, the second film layer includes a stress layer, and the third film layer includes a stress adjustment layer.
  • the first film layer is a flexible substrate
  • the second film layer is a stress layer
  • the third film layer is a stress adjustment layer.
  • the step of sequentially forming at least two film layers on the carrier 1 comprises: forming a flexible substrate 2 on the carrier 1 and forming a stress layer 3 on the surface of the flexible substrate 2 facing away from the carrier 1 .
  • the temperature in the environment higher than the preset temperature may be set according to the thermal expansion coefficient of the flexible substrate 2 to be actually produced, and the thermal expansion coefficient of the stress layer 3.
  • the flexible substrate 2 and the stress layer 3 formed under an environment higher than the preset temperature can be uniformly extended.
  • the coefficient of thermal expansion of the stress layer 3 is set to be different from the coefficient of thermal expansion of the flexible substrate 2 such that the degree of expansion of the stress layer 3 and the flexible substrate 2 which are produced under the same environment higher than the preset temperature is different.
  • the step of separating at least two film layers from the carrier sheet 1 to obtain a pre-stretched substrate comprises: separating the flexible substrate 2 from the carrier sheet 1, the pre-stretched substrate comprising the flexible substrate 2 and the stress layer 3 on the flexible substrate 2. .
  • the flexible substrate 2 can be separated from the carrier 1 to obtain the stress from the flexible substrate 2 and the flexible substrate 2.
  • the pre-stretched substrate since the thermal expansion coefficient of the flexible substrate 2 is different from the thermal expansion coefficient of the stress layer 3, when the pre-stretched substrate is placed in a normal temperature environment, the degree of shrinkage of the flexible substrate 2 and the stress layer 3 is different, thereby Stress is generated between the flexible substrate 2 and the stress layer 3 to achieve pre-stretching properties of the pre-stretched substrate.
  • the thermal expansion coefficient of the stress layer 3 is smaller than the thermal expansion coefficient of the flexible substrate 2 since the thermal expansion coefficient of the stress layer 3 is smaller than the thermal expansion coefficient of the flexible substrate 2, the flexible substrate is formed in an environment higher than the preset temperature. 2 and the stress layer 3, the degree of thermal expansion of the stress layer 3 is less than the degree of thermal expansion of the flexible substrate 2, and the degree of shrinkage of the stress layer 3 when the prepared flexible substrate 2 and the stress layer 3 are placed in a normal temperature environment. It will be smaller than the degree of shrinkage of the flexible substrate 2, thereby causing stress between the flexible substrate 2 and the stress layer 3, achieving pre-stretching properties of the pre-stretched substrate.
  • the length between the two broken lines without arrows in FIG. 1 is the length of the pre-stretched substrate in a normal temperature environment; the two dotted lines with arrows in FIG. 1 indicate the direction of the pre-stretched substrate.
  • Pre-stretching direction; the solid line with arrows in Fig. 1 represents the manufacturing process of the pre-stretched substrate; the length of the flexible substrate 2 and the stress layer 3 shown in Fig. 1 is thermal expansion under an environment higher than a preset temperature The length of the flexible substrate 2 and the stress layer 3 after.
  • FIG. 2 indicates the length of the flexible substrate 2 and the stress layer 3 after thermal expansion in an environment higher than a preset temperature; the direction indicated by the two broken lines with arrows in Fig. 2 is The pre-stretching direction of the substrate is stretched; the lengths of the flexible substrate 2 and the stress layer 3 shown in Fig. 2 are the lengths of the contracted flexible substrate 2 and the stress layer 3 in a normal temperature environment.
  • the pre-stretched substrate provided by the above embodiment is formed by forming a flexible substrate 2 on the carrier 1 in an environment higher than a preset temperature, so that the flexible substrate 2 can be uniformly thermally expanded, and then on the flexible substrate 2.
  • the stress layer 3 is formed, and the thermal expansion coefficient of the formed stress layer 3 is different from that of the flexible substrate 2, and then the flexible substrate 2 is separated from the carrier 1 to form a pre-stretched substrate including the flexible substrate 2 and the stress layer 3.
  • the degree of expansion of the two is different in an environment higher than a preset temperature, and when the prepared pre-stretched substrate is applied in a normal temperature environment, the stress layer 3 and The degree of contraction between the flexible substrates 2 is different, so that stress acts between the stress layer 3 and the flexible substrate 2 to form a pre-stretched substrate. It can be seen that when the pre-stretched substrate is fabricated by the manufacturing method provided by the above embodiments, the flexible substrate 2 and the stress layer 3 included in the pre-stretched substrate are uniformly thermally expanded in an environment higher than a preset temperature, thereby being good.
  • the uniformity of the pre-stretching amount of the pre-stretched substrate is ensured; and the size of the pre-stretched substrate produced is not limited, and the preparation of the large-area pre-stretched substrate can be satisfied. Further, since the pre-stretched substrate produced by the above embodiment includes the flexible substrate 2 and the stress layer 3, the fabricated pre-stretched substrate has better water blocking and oxygen barrier properties.
  • the method for manufacturing the pre-stretched substrate provided by the above embodiments further includes:
  • a stress adjustment layer 4 is formed on the surface of the flexible substrate 2 facing away from the stress layer 3, and the thermal expansion coefficient of the stress adjustment layer 4 It differs from the thermal expansion coefficient of the flexible substrate 2.
  • the stress adjustment layer 4 different from the thermal expansion coefficient of the flexible substrate 2 may be formed on the surface of the flexible substrate 2 facing away from the stress layer 3 to further The amount of pre-stretch of the pre-stretched substrate is adjusted.
  • the stress adjustment layer 4 having a coefficient of thermal expansion greater than that of the flexible substrate 2 when the formed pre-stretched substrate including the flexible substrate 2 and the stress layer 3 is excessively stretched, the stress adjustment layer 4 having a thermal expansion coefficient larger than the thermal expansion coefficient of the flexible substrate 2 can be formed on the surface of the flexible substrate 2 facing away from the stress layer 3, so that the degree of expansion of the stress adjustment layer 4 in the preset temperature environment is Greater than the degree of expansion of the flexible substrate 2, correspondingly, when the pre-stretched substrate including the flexible substrate 2, the stress layer 3, and the stress adjustment layer 4 is applied in a normal temperature environment, the stress adjustment layer 4 has a larger relationship with respect to the flexible substrate 2.
  • the degree of shrinkage such that the stress-adjusting layer 4 can change the stress between the flexible substrate 2 and the stress layer 3, and achieve adjustment of the pre-stretching amount of the pre-stretched substrate.
  • the first temperature threshold and the second temperature threshold may be the same or different, and the values may be between 100 ° C and 300 ° C.
  • a flexible substrate 2 is formed on the carrier 1 by using an organic material, and the coefficient of thermal expansion of the carrier 1 is the same as or similar to the coefficient of thermal expansion of the organic material.
  • the thermal expansion coefficient of the carrier plate is similar to the thermal expansion coefficient of the organic material, which means that in an environment higher than the first temperature threshold or in a normal temperature environment, the degree of shrinkage of the carrier and the organic material are similar, so that the carrier plate does not.
  • the flexible substrate 2 can be formed on the carrier 1 by a coating process using an organic material.
  • the thermal expansion coefficient of the carrier 1 may be set to be the same as or similar to the thermal expansion coefficient of the organic material, so that when the flexible substrate 2 is formed on the carrier, the carrier 1 does not restrict the extension of the flexible substrate 2, so that the formed flexible substrate 2 enables a more uniform pre-stretching.
  • the organic material may be polyimide PI/silica material/polymethyl methacrylate PMMA/polycarbonate PC/acrylonitrile-butadiene-styrene copolymer ABS/polyethylene Polyethylene. / Polystyrene Polystyrene based material.
  • the second method provides a flexible film layer; the flexible film layer is attached to the carrier 1 and the flexible film layer thermally expands in an environment above a preset temperature to form the flexible substrate 2.
  • a flexible film layer can be formed by using an organic material in a normal temperature environment, and then the flexible film layer is attached to the carrier 1 through a glue material in an environment higher than a preset temperature, so that the flexible film layer can be Thermal expansion occurs in an environment higher than a preset temperature to form a flexible substrate 2 having a uniform pre-stretching amount.
  • the thermal expansion coefficient of the carrier 1 used is the same as or similar to the thermal expansion coefficient of the flexible film layer, thereby preventing the carrier 1 from restricting the extension of the flexible film layer.
  • an entire layer of the stress layer 3 may be formed on the flexible substrate 2 by physical or chemical deposition using an inorganic material.
  • the thermal expansion coefficient of the inorganic material selected is different from the thermal expansion coefficient of the flexible substrate 2 to enable stress to be generated between the stress layer 3 and the flexible substrate 2.
  • an inorganic material such as SiN or SiO or the like may be deposited on the flexible substrate 2 by a chemical vapor deposition method, or an inorganic material such as an aluminum/titanium/molybdenum/copper metal material may be deposited on the flexible substrate 2 by a sputtering method. Thereby, a stress layer 3 forming an entire layer is deposited on the flexible substrate 2.
  • the second method provides an inorganic thin film layer; the inorganic thin film layer is attached to the flexible substrate 2, and the inorganic thin film layer thermally expands in an environment higher than a preset temperature to form an entire stress layer 3.
  • an inorganic thin film layer is first formed by using an inorganic material in a normal temperature environment, and then the inorganic thin film layer is attached to the flexible substrate 2 through a rubber material in an environment higher than a preset temperature, so that the inorganic thin film layer can be high. Thermal expansion occurs in a preset temperature environment to form a uniformly stretched entire stress layer 3 .
  • the method for fabricating the pre-stretched substrate provided by the above embodiment further includes: patterning the entire layer of the stress layer 3 as shown in FIG. 4 to form a plurality of independent stress layers.
  • the entire stress layer 3 may also be patterned to form a plurality of independent stress layer patterns 31.
  • the distribution of the stress layer pattern 31 can be set according to actual needs, so that the prepared pre-stretched substrate can achieve local pre-stretching performance of the sub-region.
  • the first method using a metal material, forming a stress adjustment layer 4 on the surface of the flexible substrate 2 facing away from the stress layer 3;
  • the stress adjustment layer 4 may be formed on the surface of the flexible substrate 2 facing away from the stress layer 3 by a sputtering or evaporation process using an inorganic metal material such as Cu or the like, and the position and size of the stress adjustment layer 4 are formed. It can be set according to actual needs, thereby realizing stress adjustment of the designated area of the pre-stretched substrate by the stress adjustment layer 4, so that the adjusted pre-stretched substrate satisfies the pre-stretching requirement.
  • the second method provides an inorganic metal thin film layer; the inorganic metal thin film layer is attached to the surface of the flexible substrate 2 facing away from the stress layer 3, and the inorganic metal thin film layer thermally expands under an environment higher than a preset temperature to form a stress adjustment Layer 4.
  • an inorganic metal thin film layer may be formed by using an inorganic metal material in a normal temperature environment, and then the inorganic metal thin film layer is attached to the flexible substrate 2 back to the stress layer 3 through the adhesive material in an environment higher than a preset temperature.
  • the surface enables the inorganic metal thin film layer to thermally expand at an environment higher than a preset temperature to form a uniformly stretched stress adjustment layer 4.
  • the flexible substrate has a thermal expansion coefficient of between 10 ppm/° C. and 50000 ppm/° C.; and the thermal expansion coefficient of the stress layer is between 10 ppm/° C. and 1000 ppm/° C.
  • the thermal expansion coefficient of the flexible substrate 2 and the stress layer 3 is set to satisfy the above range, not only can the flexible substrate 2 and the stress layer 3 be uniformly extended even in an environment higher than the preset temperature, and the formed pre-stretching is ensured.
  • the flexibility of the substrate, and also the large amount of pre-stretching of the formed pre-stretched substrate enables the formation of a pre-stretched substrate to achieve a wider range of applications.
  • the flexible substrate has a coefficient of thermal expansion between 3 ppm/° C. and 250 ppm/° C; the thermal expansion coefficient of the stress layer is between 3 ppm/° C. and 100 ppm/° C., and the thermal expansion coefficient of the stress adjustment layer is 3 ppm/° C. -100ppm / °C.
  • the embodiment of the present disclosure further provides a pre-stretched substrate, which is fabricated by the method for fabricating the pre-stretched substrate provided by the above embodiments.
  • the pre-stretched substrate comprises at least two film layers stacked in a stack, and at least two film layers have different coefficients of thermal expansion.
  • the pre-stretched substrate provided by the embodiment of the present disclosure is fabricated by the manufacturing method provided by the above embodiments, the pre-stretched substrate provided by the embodiment of the present disclosure can generate stress between the film layers.
  • the pre-stretched substrate is not only provided with a uniform pre-stretching amount, but also the size of the pre-stretched substrate is not limited, and a large-sized pre-stretched substrate can be formed.
  • the pre-stretched substrate provided by the embodiment of the present disclosure includes at least two film layers, the pre-stretched substrate has better water blocking and oxygen barrier properties, and is produced when the display device is fabricated by using the pre-stretched substrate.
  • the display device has better sealing performance and can effectively extend the life of the display device.
  • the embodiment of the present disclosure further provides a method for fabricating an electronic device, including the method for fabricating a pre-stretched substrate provided by the above embodiments, and the method for fabricating the electronic device includes the following steps:
  • the preset temperature may be set to a normal temperature, for example, 25 ° C, and the temperature in an environment higher than the preset temperature may be set according to a thermal expansion coefficient of at least two layers to be actually formed, for example, may be set higher than
  • the temperature in the environment of the preset temperature is between 100 ° C and 300 ° C.
  • At least two film layers formed under an environment higher than a preset temperature can be uniformly extended, and at least two film layers are provided with different thermal expansion coefficients, so that at least the same temperature is higher than the preset temperature.
  • the degree of expansion of the two layers varies. It is to be noted that at least two film layers sequentially formed on the carrier are laminated.
  • the driving circuit 5 formed on the uppermost film layer includes a second flexible substrate layer, a component 53 and a wiring layer 54.
  • the second flexible substrate layer comprises a thinner soft body portion 51 and a thicker rigid body portion 52, wherein the thinner soft body portion 51 has good elasticity and is elastically deformable under tension.
  • a thicker rigid body portion 52 is formed with a component 53 for realizing a driving function, and each of the components 53 can be connected by a wiring layer 54.
  • the thick rigid body portion 52 is less likely to be elastically deformed under tension. The working performance of the driving circuit 5 is well ensured.
  • the driving circuit 5 and the at least two film layers may be separately fabricated, and then the driving circuit 5 and the at least two film layers are bonded together.
  • the film layer in contact with the carrier plate can be separated from the carrier plate, thereby obtaining at least two film layers.
  • a pre-stretched electronic device consisting of a drive circuit 5 on at least two of the film layers that are furthest from the carrier.
  • the pre-stretched electronic device since at least two film layers have different thermal expansion coefficients, when the pre-stretched electronic device is placed in a normal temperature environment, at least two of the film layers have different degrees of shrinkage. Therefore, stress is generated between the respective film layers, and the pre-stretching property of the electronic device is achieved.
  • the stretched state of the soft body portion 51 in the driving circuit 5 changes in accordance with the tensile state of the pre-stretched substrate (including at least two film layers described above). As shown in Figure 5.
  • the step of sequentially forming at least two film layers on the carrier plate comprises: forming a first film layer on the carrier plate, and forming a second film layer on the surface of the first film layer facing away from the carrier plate;
  • the step of forming a driving circuit on the film layer farthest from the carrier in the at least two film layers comprises: forming a driving circuit on the second film layer;
  • the step of separating the film layer in contact with the carrier plate from the carrier plate to obtain the pre-stretched electronic device comprises: separating the first film layer from the carrier plate, and the pre-stretched electronic device comprises: a first film layer, located at a second film layer on the first film layer and a driving circuit on the second film layer.
  • the method for fabricating the electronic device further includes: forming a third surface on the surface of the first film layer facing away from the second film layer in an environment higher than a preset temperature The thermal expansion coefficient of the film layer and the third film layer is different from the thermal expansion coefficient of the first film layer.
  • the first film layer, the second film layer and the third film layer are various in kind, for example, the first film layer comprises a flexible substrate, the second film layer comprises a stress layer, and the third film layer comprises a stress adjustment layer;
  • the first film layer is a flexible substrate, the second film layer is a stress layer, and the third film layer is a stress adjustment layer as an example, and the manufacturing process of the electronic device is described in detail.
  • the step of sequentially forming at least two film layers on the carrier 1 comprises: forming a flexible substrate 2 on the carrier 1 and forming a stress layer 3 on the surface of the flexible substrate 2 facing away from the carrier 1 , stress The coefficient of thermal expansion of layer 3 is different from the coefficient of thermal expansion of flexible substrate 2;
  • the temperature in the environment higher than the preset temperature may be set according to the thermal expansion coefficient of the flexible substrate 2 to be actually produced, and the thermal expansion coefficient of the stress layer 3, for example, the preset temperature is between 100 ° C and 300 ° C.
  • the preset temperature is set higher than the normal temperature so that the flexible substrate 2 and the stress layer 3 formed under an environment higher than the preset temperature can be uniformly extended.
  • the coefficient of thermal expansion of the stress layer 3 is set to be different from the coefficient of thermal expansion of the flexible substrate 2 such that the degree of expansion of the stress layer 3 and the flexible substrate 2 which are produced under the same environment higher than the preset temperature is different.
  • the step of forming a driving circuit on the film layer farthest from the carrier in at least two film layers specifically includes: forming a driving circuit 5 on the stress layer 3, as shown in FIG. 5 and FIG. 6;
  • the step of separating the film layer in contact with the carrier 1 from the carrier 1 to obtain the pre-stretched electronic device comprises: separating the flexible substrate 2 from the carrier 1 , the pre-stretched electronic device comprising: the flexible substrate 2 The stress layer 3 on the flexible substrate 2 and the drive circuit 5 on the stress layer 3.
  • the flexible substrate 2 can be separated from the carrier 1 to obtain the flexible substrate 2 and the stress layer 3 A pre-stretched electronic device composed of a drive circuit 5.
  • the pre-stretched electronic device since the thermal expansion coefficient of the flexible substrate 2 is different from the thermal expansion coefficient of the stress layer 3, the degree of shrinkage of the flexible substrate 2 and the stress layer 3 when the pre-stretched electronic device is placed in a normal temperature environment Differently, stress is generated between the flexible substrate 2 and the stress layer 3, and the pre-stretching performance of the electronic device is achieved.
  • the thermal expansion coefficient of the stress layer 3 is smaller than the thermal expansion coefficient of the flexible substrate 2 since the thermal expansion coefficient of the stress layer 3 is smaller than the thermal expansion coefficient of the flexible substrate 2, the flexible substrate is formed in an environment higher than the preset temperature. 2 and the stress layer 3, the degree of thermal expansion of the stress layer 3 is less than the degree of thermal expansion of the flexible substrate 2, and the degree of shrinkage of the stress layer 3 when the prepared flexible substrate 2 and the stress layer 3 are placed in a normal temperature environment.
  • the stretched state of the soft body portion 51 in the drive circuit 5 changes in synchronization with the stretched state of the pre-stretched substrate (including the flexible substrate 2 and the stress layer 3) as shown in FIG.
  • the electronic device provided by the above embodiment is formed by forming the flexible substrate 2 on the carrier 1 in an environment higher than the preset temperature, so that the flexible substrate 2 can be uniformly thermally expanded, and then the stress is formed on the flexible substrate 2.
  • Layer 3, and the thermal expansion coefficient of the formed stress layer 3 is different from that of the flexible substrate 2, and then the driving circuit 5 is formed on the stress layer 3, and finally the flexible substrate 2 is separated from the carrier 1 to form a flexible substrate 2. Prestressed electronic components of stress layer 3 and drive circuit 5.
  • the degree of expansion of the two is different in an environment higher than a preset temperature, and when the prepared pre-stretched substrate is applied in a normal temperature environment, the stress layer 3 and The degree of contraction between the flexible substrates 2 is different, so that stress acts between the stress layer 3 and the flexible substrate 2 to form a pre-stretched substrate; and the driving circuit 5 formed on the pre-stretched substrate includes the soft body portion 51 and the rigid body portion. 52, such that the degree of stretching of the soft body portion 51 in the drive circuit 5 can be changed in accordance with the degree of stretching of the pre-stretched substrate, as shown in Figs. 5 and 6, thereby realizing that the electronic device has pre-stretching properties.
  • the pre-stretched substrate comprises the flexible substrate 2 and the stress layer 3 both occurring in an environment higher than a preset temperature.
  • the formed electronic device (including the pre-stretched substrate 2, the stress layer 3 and the driving circuit 5) can achieve a uniform pre-stretching amount, so that the electronic device is in practical application. It has stronger stress tolerance and better improves the tensile properties of electronic devices.
  • the prepared pre-stretched substrate includes the flexible substrate 2 and the stress layer 3 to have better water blocking and oxygen barrier properties, after the driving circuit 5 is fabricated on the pre-stretched substrate, the formed pre-formed The tensile properties of the electronic device have better sealing properties, which effectively extend the life of the electronic device.
  • the manufacturing method of the electronic device provided by the above embodiment further includes:
  • the stress adjustment layer 4 is formed on the surface of the flexible substrate 2 facing away from the stress layer 3 in an environment higher than the preset temperature, and the coefficient of thermal expansion of the stress adjustment layer 4 is different from the coefficient of thermal expansion of the flexible substrate 2.
  • the stress adjustment layer 4 different from the thermal expansion coefficient of the flexible substrate 2 may be formed on the surface of the flexible substrate 2 facing away from the stress layer 3 to further adjust the electronic device. Pre-stretching amount.
  • the flexible substrate 2 can be used.
  • the surface of the back stress layer 3 forms a stress adjustment layer 4 having a thermal expansion coefficient greater than that of the flexible substrate 2, such that in a preset temperature environment, the degree of expansion of the stress adjustment layer 4 is greater than that of the flexible substrate 2, correspondingly
  • the stress adjustment layer 4 has a greater degree of shrinkage relative to the flexible substrate 2, so that the stress adjustment layer 4 can change the stress between the flexible substrate 2 and the stress layer 3, thereby realizing the pair of electronic devices. Adjustment of the amount of pre-stretching.
  • the flexible substrate 2 can be subjected to stress interaction with the entire layer of the stress layer 3, so that the entire area of the formed electronic device has pre-stretching properties. .
  • a plurality of independent stress layer patterns are formed on the flexible substrate.
  • the distribution of the stress layer patterns 31 can be set according to actual needs, so that the prepared pre-stretched substrate can realize partial portions of the sub-regions. Pre-stretching properties.
  • the embodiment of the present disclosure further provides an electronic device fabricated by the method for fabricating the electronic device provided by the above embodiments.
  • the electronic device provided by the embodiment of the present disclosure is fabricated by using the manufacturing method of the electronic device provided by the above embodiments, in the electronic device provided by the embodiment of the present disclosure, stress and electrons can be generated between the flexible substrate and the stress layer.
  • the device not only has a uniform pre-stretching amount, but also the size of the electronic device is not limited, and can form a large-sized electronic device.
  • the pre-stretched substrate includes a flexible substrate and a stress layer. The electronic device provided by the embodiment of the present disclosure has better sealing performance and can effectively extend the service life of the display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

一种预拉伸基底及其制作方法、电子器件及其制作方法。预拉伸基底的制作方法包括:在高于第一温度阈值的环境下,在载板(1)上依次形成至少两层膜层,至少两层膜层的热膨胀系数各不相同;将至少两层膜层与载板(1)分离,得到预拉伸基底;其中,至少两层膜层在常温环境中的收缩程度不同。

Description

预拉伸基底及其制作方法、电子器件及其制作方法
相关申请的交叉引用
本申请主张在2018年4月25日在中国提交的中国专利申请号No.201810379393.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及基底预拉伸的技术领域,尤其涉及一种预拉伸基底及其制作方法、电子器件及其制作方法。
背景技术
柔性显示器是一种由柔性材料制成,可变型可弯曲的显示器件。柔性显示器以其低功耗、显示方式多样性、体积小、轻便等优点被广泛的应用在各个领域。
为了保证柔性显示器良好的弯曲性能,相关技术在制作柔性显示器时,通常选用具有良好变形能力的柔性材料制作柔性基底,然后在柔性基底上形成其它功能层,从而使得制作的柔性显示器能够承受较大的弯曲、拉伸或扭转变形。
发明内容
本公开的第一方面提供一种预拉伸基底的制作方法,包括:
在高于第一温度阈值的环境下,在载板上依次形成至少两层膜层,所述至少两层膜层的热膨胀系数各不相同;
将所述至少两层膜层与所述载板分离,得到所述预拉伸基底;其中,所述至少两层膜层在常温环境中的收缩程度不同。
进一步地,所述第一温度阈值为100℃-300℃之间。
进一步地,在所述至少两层膜层中,靠近所述载板的膜层的热膨胀系数大于远离所述载板的膜层的热膨胀系数。
进一步地,所述在载板上依次形成至少两层膜层包括:在所述载板上形 成第一膜层,并在所述第一膜层背向所述载板的表面形成第二膜层。所述将所述至少两层膜层与所述载板分离,得到预拉伸基底包括:将所述第一膜层与所述载板分离,所述预拉伸基底包括所述第一膜层和位于所述第一膜层上的第二膜层。
进一步地,在将所述第一膜层与所述载板分离之后,所述制作方法还包括:在高于第二温度阈值的环境下,在所述第一膜层背向所述第二膜层的表面形成第三膜层,所述第三膜层的热膨胀系数与所述第一膜层的热膨胀系数不同。
进一步地,所述第一膜层包括柔性基底,所述第二膜层包括应力层,所述第三膜层包括应力调节层。
进一步地,在所述载板上形成第一膜层包括:利用有机材料,在所述载板上形成柔性基底,所述载板的热膨胀系数与所述有机材料的热膨胀系数相同或相近;或,提供一柔性薄膜层;将所述柔性薄膜层贴附在所述载板上,所述柔性薄膜层在所述高于所述第一温度阈值的环境下发生热膨胀,形成所述柔性基底。
进一步地,所述有机材料为聚酰亚胺、硅胶材料、聚甲基丙烯酸甲酯、聚碳酸酯、丙烯腈-丁二烯-苯乙烯共聚物、聚乙烯和聚苯乙烯中的一种。
进一步地,所述在所述第一膜层背向所述载板的表面形成第二膜层包括:利用无机材料,在所述柔性基底上沉积形成整层的应力层;或,提供一无机薄膜层;将所述无机薄膜层贴附在所述柔性基底上,所述无机薄膜层在所述高于第一温度阈值的环境下发生热膨胀,形成整层的应力层。
进一步地,所述无机材料为SiN、SiO或金属。
进一步地,在形成整层的应力层之后,所述制作方法还包括:对所述整层的应力层进行构图,形成多个独立的应力层图形。
进一步地,所述在所述第一膜层背向所述载板的表面形成第二膜层包括:利用金属材料,在所述柔性基底背向所述应力层的表面形成应力调节层;或,提供一无机金属薄膜层;将所述无机金属薄膜层贴附在所述柔性基底背向所述应力层的表面,所述无机金属薄膜层在所述高于第二温度阈值的环境下发 生热膨胀,形成应力调节层。
进一步地,所述柔性基底的热膨胀系数在10ppm/℃-50000ppm/℃之间;所述应力层的热膨胀系数在10ppm/℃-1000ppm/℃之间。
进一步地,所述柔性基底的热膨胀系数在3ppm/℃-250ppm/℃之间;所述应力层的热膨胀系数在3ppm/℃-100ppm/℃之间;所述应力调节层的热膨胀系数在3ppm/℃-100ppm/℃之间。
本公开的第二方面提供一种电子器件的制作方法,包括:
在高于第一温度阈值的环境下,在载板上依次形成至少两层膜层,所述至少两层膜层的热膨胀系数各不相同;其中,所述至少两层膜层在常温环境中的收缩程度不同;
在所述至少两层膜层中距所述载板最远的膜层上形成驱动电路;
将与所述载板接触的膜层与所述载板分离,得到预拉伸的电子器件,所述预拉伸的电子器件包括所述至少两层膜层,和位于所述至少两层膜层中距所述载板最远的膜层上的所述驱动电路。
进一步地,所述在载板上依次形成至少两层膜层包括:在所述载板上形成第一膜层,并在所述第一膜层背向所述载板的表面形成第二膜层。所述在所述至少两层膜层中距所述载板最远的膜层上形成驱动电路包括:在所述第二膜层上形成驱动电路。所述将与所述载板接触的膜层与所述载板分离,得到预拉伸的电子器件包括:将所述第一膜层与所述载板分离,所述预拉伸的电子器件包括:第一膜层、位于所述第一膜层上的第二膜层以及位于所述第二膜层上的驱动电路。
进一步地,在将所述第一膜层与所述载板分离之后,所述制作方法还包括:在所述高于第二温度阈值的环境下,在所述第一膜层背向所述第二膜层的表面形成第三膜层,所述第三膜层的热膨胀系数与所述第一膜层的热膨胀系数不同。
进一步地,所述第一膜层包括柔性基底,所述第二膜层包括应力层,所述第三膜层包括应力调节层。
进一步地,在所述柔性基底上形成应力层包括:在所述柔性基底上形成 整层的应力层;或,在所述柔性基底上形成多个独立的应力层图形。
本公开的第三方面提供一种电子器件的制作方法,包括:
在高于第一温度阈值的环境下,在载板上依次形成至少两层膜层,所述至少两层膜层的热膨胀系数各不相同;
将所述至少两层膜层与所述载板分离,得到所述预拉伸基底;其中,所述至少两层膜层在常温环境中的收缩程度不同;
将驱动电路贴合在所述预拉伸基底上;
其中,所述驱动电路包括贴合在所述预拉伸基底上的第二柔性基底层、用于实现驱动功能的元器件和布线层;所述第二柔性基底层包括较薄软体部分和较厚的刚体部分,所述元器件设置在所述较厚的刚体部分,所述元器件之间通过所述布线层连接。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例提供的预拉伸基底的制作流程图;
图2为本公开实施例提供的预拉伸基底的第一结构示意图;
图3为本公开实施例提供的预拉伸基底的第二结构示意图;
图4为本公开实施例提供的预拉伸基底的第三结构示意图;
图5为本公开实施例提供的未拉伸的电子器件的结构示意图;
图6为本公开实施例提供的拉伸后的电子器件的结构示意图。
具体实施方式
为了进一步说明本公开实施例提供的预拉伸基底及其制作方法、电子器件及其制作方法,下面结合说明书附图进行详细描述。
为了进一步提升柔性显示器承受应力的能力,目前越来越多的厂商利用预拉伸的柔性基底来制作柔性显示器,这样所形成的柔性显示器在受到较大 力的拉伸时,预拉伸的基板能够释放掉应力,从而避免柔性显示器中的其他功能层在较大应力的作用下损坏,保证了柔性显示器的使用良率。
相关技术中在制作预拉伸的柔性基底时,一般是先采用有机材料形成柔性薄膜,然后再在柔性薄膜的周边施加向外的拉力,以类似张网的方式将柔性薄膜做预拉伸,从而形成预拉伸的基底,但是这种制作预拉伸基底的方法无法做到形成大面积且预拉伸量均匀的预拉伸基底,使得应用该预拉伸基底制作的显示器件的拉伸性能欠佳。
有鉴于此,本公开实施例提供一种预拉伸基底及其制作方法、电子器件及其制作方法,用于解决相关技术中的制作预拉伸基底的方法无法做到形成大面积且预拉伸量均匀的预拉伸基底。
本公开实施例提供的预拉伸基底的制作方法包括:
S11、在高于预设温度的环境下,在载板上依次形成至少两层膜层,该至少两层膜层的热膨胀系数各不相同;
具体地,上述预设温度(也可称为第一温度阈值)可选为常温,例如:25℃,高于预设温度的环境中的温度可根据实际要制作的至少两层膜层的热膨胀系数来设置,例如:可设置高于预设温度的环境中的温度在100℃-300℃之间。在高于预设温度的环境下形成的至少两层膜层能够均匀的延伸,而且设置至少两层膜层的热膨胀系数各不相同,使得在相同的高于预设温度的环境下制作的至少两层膜层的膨胀程度各不相同。值得注意,在载板上依次形成的至少两层膜层为层叠设置。
S12、将至少两层膜层与载板分离,得到预拉伸基底。
具体地,在高于预设温度的环境下,完成至少两层膜层的制作后,可将至少两层膜层与载板分离,即将与载板接触的膜层与载板分离,从而得到由至少两层膜层组成的预拉伸基底。该预拉伸基底中,由于至少两层膜层的热膨胀系数各不相同,在将预拉伸基底放置在常温环境中时,至少两层膜层的收缩程度各不相同,从而使得至少两层膜层中的各膜层之间产生应力,实现预拉伸基底的预拉伸性能。
根据上述制作预拉伸基底的具体过程可知,本公开实施例提供的预拉伸 基底的制作方法是在高于预设温度的环境下,在载板上依次形成热膨胀系数各不相同的至少两层膜层,且在形成各膜层的过程中,每一层膜层均能够发生均匀的热膨胀;然后再将形成的至少两层膜层与载板分离,形成包括至少两层膜层的预拉伸基底。由于至少两层膜层的热膨胀系数各不相同,使得在高于预设温度的环境下各膜层的膨胀程度不同,在将制作的预拉伸基底应用在常温环境中时,各膜层之间的收缩程度不同,从而使得各膜层之间产生应力作用,形成预拉伸基底。可见,采用本公开实施例提供的制作方法制作预拉伸基底时,预拉伸基底中包括的至少两层膜层均是在高于预设温度的环境下发生均匀的热膨胀,从而很好的保证了预拉伸基底的预拉伸量的均匀性;而且制作的预拉伸基底的尺寸不会受到限制,能够满足大面积的预拉伸基底的制作。
此外,由于采用本公开实施例制作的预拉伸基底包括至少两层膜层,使得制作的预拉伸基底具有更好的阻水和阻氧性能,在利用该预拉伸基底制作显示器件时,制作的显示器件具有更好的密封性能,从而有效延长了显示器件的使用寿命。另外,本公开实施例提供的预拉伸基底的制作方法能够用于预拉伸基底的大量制造。
进一步地,上述在载板上依次形成至少两层膜层的步骤具体包括:在载板上形成第一膜层,并在第一膜层背向载板的表面形成第二膜层。
上述将至少两层膜层与载板分离,得到预拉伸基底的步骤具体包括:将第一膜层与载板分离,预拉伸基底包括第一膜层和位于第一膜层上的第二膜层。
具体地,在高于预设温度的环境中制作第一膜层和第二膜层时,该高于预设温度的环境中的温度可根据实际要制作的第一膜层和第二膜层的热膨胀系数来设置。在高于预设温度的环境下,完成第一膜层和第二膜层的制作后,可将第一膜层与载板分离,从而得到由第一膜层和位于第一膜层上的第二膜层组成的预拉伸基底。该预拉伸基底中,由于第一膜层的热膨胀系数与第二膜层的热膨胀系数不同,在将预拉伸基底放置在常温环境中时,第一膜层与第二膜层的收缩程度不同,从而使得第一膜层与第二膜层之间产生应力,实 现预拉伸基底的预拉伸性能。
进一步地,在将第一膜层与载板分离之后,上述实施例提供的预拉伸基底的制作方法还包括:在高于预设温度的环境下,在第一膜层背向第二膜层的表面形成第三膜层,第三膜层的热膨胀系数与第一膜层的热膨胀系数不同。
具体地,在形成包括第一膜层和第二膜层的预拉伸基底后,可通过在第一膜层背向第二膜层的表面形成与第一膜层的热膨胀系数不同第三膜层,来进一步调节预拉伸基底的预拉伸量。
需要说明,所制作的预拉伸基底不仅限于包括第一膜层、第二膜层和第三膜层,还可以包括更多的膜层,即可以根据实际需要,设置多层具有不同热膨胀系数的膜层来对形成的预拉伸基底的预拉伸量进行调节。
上述第一膜层、第二膜层和第三膜层的种类多种多样,例如:第一膜层包括柔性基底,第二膜层包括应力层,第三膜层包括应力调节层。下面以第一膜层为柔性基底,第二膜层为应力层,第三膜层为应力调节层为例,对预拉伸基底的制作过程进行详细说明。
请参阅图1和图2,在载板1上依次形成至少两层膜层的步骤具体包括:在载板1上形成柔性基底2,并在柔性基底2背离载板1的表面形成应力层3。
具体地,高于预设温度的环境中的温度可根据实际要制作的柔性基底2的热膨胀系数,以及应力层3的热膨胀系数来设置。在高于预设温度的环境下形成的柔性基底2和应力层3能够均匀的延伸。而且设置应力层3的热膨胀系数与柔性基底2的热膨胀系数不同,使得在相同的高于预设温度的环境下制作的应力层3和柔性基底2的膨胀程度不同。
将至少两层膜层与载板1分离,得到预拉伸基底的步骤具体包括:将柔性基底2与载板1分离,预拉伸基底包括柔性基底2和位于柔性基底2上的应力层3。
具体地,在高于预设温度的环境下,完成柔性基底2和应力层3的制作后,可将柔性基底2与载板1分离,从而得到由柔性基底2和位于柔性基底2上的应力层3组成的预拉伸基底。该预拉伸基底中,由于柔性基底2的热膨胀系数与应力层3的热膨胀系数不同,在将预拉伸基底放置在常温环境中 时,柔性基底2与应力层3的收缩程度不同,从而使得柔性基底2与应力层3之间产生应力,实现预拉伸基底的预拉伸性能。更详细地说,以应力层3的热膨胀系数小于柔性基底2的热膨胀系数为例,由于应力层3的热膨胀系数小于柔性基底2的热膨胀系数,使得在高于预设温度的环境下形成柔性基底2和应力层3时,应力层3发生热膨胀的程度小于柔性基底2发生热膨胀的程度,相应的在将制作好的柔性基底2和应力层3放置在常温环境中时,应力层3的收缩程度就会小于柔性基底2的收缩程度,从而使得柔性基底2与应力层3之间产生应力,实现预拉伸基底的预拉伸性能。
需要说明,附图1中不带箭头的两条虚线之间的长度为预拉伸基底在常温环境中的长度;附图1中带箭头的两条虚线所指的方向为预拉伸基底的预拉伸方向;附图1中带箭头的实线代表预拉伸基底的制作流程;图1中显示的柔性基底2和应力层3的长度为在高于预设温度的环境下,发生热膨胀后的柔性基底2和应力层3的长度。附图2中虚线框所表示的是在高于预设温度的环境下,发生热膨胀后的柔性基底2和应力层3的长度;附图2中带箭头的两条虚线所指的方向为预拉伸基底的预拉伸方向;附图2中显示的柔性基底2和应力层3的长度为在常温环境中,收缩后的柔性基底2和应力层3的长度。
上述实施例提供的预拉伸基底的制作方法是在高于预设温度的环境下,先在载板1上形成柔性基底2,使柔性基底2能够发生均匀的热膨胀,然后在柔性基底2上形成应力层3,且形成的应力层3的热膨胀系数与柔性基底2的热膨胀系数不同,然后再将柔性基底2与载板1分离,形成包括柔性基底2和应力层3的预拉伸基底。由于柔性基底2和应力层3具有不同的热膨胀系数,使得在高于预设温度的环境下二者的膨胀程度不同,在将制作的预拉伸基底应用在常温环境中时,应力层3与柔性基底2之间的收缩程度不同,从而使得应力层3与柔性基底2之间产生应力作用,形成预拉伸基底。可见,采用上述实施例提供的制作方法制作预拉伸基底时,预拉伸基底中包括的柔性基底2和应力层3均是在高于预设温度的环境下发生均匀的热膨胀,从而很好的保证了预拉伸基底的预拉伸量的均匀性;而且制作的预拉伸基底的尺 寸不会受到限制,能够满足大面积的预拉伸基底的制作。此外,由于采用上述实施例制作的预拉伸基底包括柔性基底2和应力层3,使得制作的预拉伸基底具有更好的阻水和阻氧性能。
进一步地,在将柔性基底2与载板1分离之后,上述实施例提供的预拉伸基底的制作方法还包括:
如图3所示,在高于预设温度(也可称为第二温度阈值)的环境下,在柔性基底2背向应力层3的表面形成应力调节层4,应力调节层4的热膨胀系数与柔性基底2的热膨胀系数不同。
具体地,在形成包括柔性基底2和应力层3的预拉伸基底后,可通过在柔性基底2背向应力层3的表面形成与柔性基底2的热膨胀系数不同的应力调节层4,来进一步调节预拉伸基底的预拉伸量。更详细地说,以形成热膨胀系数大于柔性基底2的热膨胀系数的应力调节层4为例,当形成的包括柔性基底2和应力层3的预拉伸基底的预拉伸量过大,而不能够满足实际需求时,可在柔性基底2背向应力层3的表面形成热膨胀系数大于柔性基底2的热膨胀系数的应力调节层4,这样在预设温度环境中,应力调节层4的膨胀程度就大于柔性基底2的膨胀程度,相应的在将包括柔性基底2、应力层3和应力调节层4的预拉伸基底应用在常温环境中时,应力调节层4相对于柔性基底2具有更大的收缩程度,这样应力调节层4就能够改变柔性基底2与应力层3之间的应力,实现对预拉伸基底的预拉伸量的调节。
在一些实施例中,第一温度阈值和第二温度阈值可以相同或不同,二者的取值可以为100℃-300℃之间。
进一步地,在载板1上形成柔性基底2的方法有多种,下面举例两种具体的形成柔性基底的方法。
第一种方法,利用有机材料,在载板1上形成柔性基底2,载板1的热膨胀系数与有机材料的热膨胀系数相同或相近。此处,载板的热膨胀系数与有机材料的热膨胀系数相近是指,在高于第一温度阈值的环境中或在常温环境中,载板和有机材料的收缩程度相近,从而载板不会对柔性基底的延展产生限制,使形成的柔性基底能够实现更均匀的预拉伸。
具体地,可利用有机材料,通过涂布工艺在载板1上形成柔性基底2。另外,可设置载板1的热膨胀系数与有机材料的热膨胀系数相同或相近,这样在载板上形成柔性基底2时,载板1不会对柔性基底2的延展产生限制,使形成的柔性基底2能够实现更均匀的预拉伸。在一些实施例中,所述有机材料可以为聚酰亚胺PI/硅胶材料/聚甲基丙烯酸甲酯PMMA/聚碳酸酯PC/丙烯腈-丁二烯-苯乙烯共聚物ABS/聚乙烯Polyethylene/聚苯乙烯Polystyrene为主的材料。
第二种方法,提供一柔性薄膜层;将柔性薄膜层贴附在载板1上,柔性薄膜层在高于预设温度的环境下发生热膨胀,形成柔性基底2。
具体地,可先在常温环境中,利用有机材料制作一柔性薄膜层,然后在高于预设温度的环境下,将柔性薄膜层通过胶材贴附在载板1上,使得柔性薄膜层能够在高于预设温度的环境下发生热膨胀,形成具有均匀预拉伸量的柔性基底2。值得注意,所利用的载板1的热膨胀系数与柔性薄膜层的热膨胀系数相同或相近,从而避免载板1对柔性薄膜层的延展产生限制。
进一步地,在柔性基底2上形成应力层3的方法有多种,下面举例两种具体的形成应力层3的方法。
第一种方法,利用无机材料,在柔性基底2上沉积形成整层的应力层3;
具体地,可利用无机材料,通过物理或化学方式沉积在柔性基底2上形成整层的应力层3。值得注意,所选用的无机材料的热膨胀系数与柔性基底2的热膨胀系数不同,以实现应力层3与柔性基底2之间能够产生应力。在一些实施例中,可通过化学气相沉积方法在柔性基底2上沉积无机材料如SiN或SiO等,或通过溅射方法在柔性基底2上沉积无机材料如铝/钛/钼/铜等金属材料,从而在柔性基底2上沉积形成整层的应力层3。
第二种方法,提供一无机薄膜层;将无机薄膜层贴附在柔性基底2上,无机薄膜层在高于预设温度的环境下发生热膨胀,形成整层的应力层3。
具体地,先利用无机材料在常温环境中形成一无机薄膜层,然后在高于预设温度的环境下,将无机薄膜层通过胶材贴附在柔性基底2上,使得无机薄膜层能够在高于预设温度的环境下发生热膨胀,形成均匀延展的整层应力 层3。
进一步地,在形成整层的应力层之后,上述实施例提供的预拉伸基底的制作方法还包括:如图4所示,对整层的应力层3进行构图,形成多个独立的应力层图形31。
具体地,在形成整层的应力层3之后,还可以对整层应力层3进行构图,以形成多个独立的应力层图形31。在对整层的应力层3进行构图时,可根据实际需要,设定应力层图形31的分布情况,以使得所制作的预拉伸基底能够实现分区域的局部预拉伸性能。
进一步地,在柔性基底2背向应力层3的表面形成应力调节层4的方法有多种,下面举例两种具体的形成应力调节层4的方法。
第一种方法,利用金属材料,在柔性基底2背向应力层3的表面形成应力调节层4;
具体地,可利用无机金属材料,例如:Cu等,通过溅射或蒸镀工艺在柔性基底2背向应力层3的表面形成应力调节层4,该应力调节层4所形成的位置和尺寸均可以根据实际需求设置,从而实现通过应力调节层4对预拉伸基底的指定区域进行应力调节,使调节后的预拉伸基底满足预拉伸需求。
第二种方法,提供一无机金属薄膜层;将无机金属薄膜层贴附在柔性基底2背向应力层3的表面,无机金属薄膜层在高于预设温度的环境下发生热膨胀,形成应力调节层4。
具体地,可先利用无机金属材料在常温环境中形成一无机金属薄膜层,然后在高于预设温度的环境下,将无机金属薄膜层通过胶材贴附在柔性基底2背向应力层3的表面,使得无机金属薄膜层能够在高于预设温度的环境下发生热膨胀,形成均匀延展的应力调节层4。
进一步地,上述柔性基底的热膨胀系数在10ppm/℃-50000ppm/℃之间;应力层的热膨胀系数在10ppm/℃-1000ppm/℃之间。设置柔性基底2和应力层3的热膨胀系数满足上述范围时,不仅能够保证在高于预设温度的环境下,柔性基底2和应力层3能够更好的均匀延展,保证了形成的预拉伸基底的柔韧性,而且还使得形成的预拉伸基底的预拉伸量具有较大的范围,形成的预 拉伸基底能够实现更加广泛的应用。
在另外一些实施例中,柔性基底的热膨胀系数在3ppm/℃-250ppm/℃之间;应力层的热膨胀系数在3ppm/℃-100ppm/℃之间,且应力调节层的热膨胀系数在3ppm/℃-100ppm/℃之间。
本公开实施例还提供一种预拉伸基底,采用上述实施例提供的预拉伸基底的制作方法制作。该预拉伸基底包括:层叠设置的至少两层膜层,且至少两层膜层的热膨胀系数各不相同。
具体地,由于本公开实施例提供的预拉伸基底是采用上述实施例提供的制作方法制作,因此,本公开实施例提供的预拉伸基底中,包括的各膜层之间能够产生应力,使得预拉伸基底不仅具有均匀的预拉伸量,而且预拉伸基底的尺寸不受限制,能够形成大尺寸的预拉伸基底。此外,由于本公开实施例提供的预拉伸基底包括至少两层膜层,使得该预拉伸基底具有更好的阻水和阻氧性能,在利用该预拉伸基底制作显示器件时,制作的显示器件具有更好的密封性能,能够有效延长显示器件的使用寿命。
本公开实施例还提供一种电子器件的制作方法,包括上述实施例提供的预拉伸基底的制作方法,所述电子器件的制作方法包括如下步骤:
S21、在高于预设温度的环境下,在载板上依次形成至少两层膜层,至少两层膜层的热膨胀系数各不相同;
具体地,上述预设温度可选为常温,例如:25℃,高于预设温度的环境中的温度可根据实际要制作的至少两层膜层的热膨胀系数来设置,例如:可设置高于预设温度的环境中的温度在100℃-300℃之间。在高于预设温度的环境下形成的至少两层膜层能够均匀的延伸,而且设置至少两层膜层的热膨胀系数各不相同,使得在相同的高于预设温度的环境下制作的至少两层膜层的膨胀程度各不相同。值得注意,在载板上依次形成的至少两层膜层为层叠设置。
S22、在至少两层膜层中距载板最远的膜层上形成驱动电路;
具体地,如图5和图6所示,在最上层的膜层上形成的驱动电路5包括第二柔性基底层、元器件53和布线层54。其中,第二柔性基底层包括较薄 的软体部分51和较厚的刚体部分52,其中较薄的软体部分51具有良好的弹性,能够在拉伸作用下发生弹性形变。较厚的刚体部分52上形成有用于实现驱动功能的元器件53,各元器件53之间能够通过布线层54实现连接,较厚的刚体部分52在拉伸作用下不容易发生弹性形变,从而很好的保证了驱动电路5的工作性能。
在一些实施例中,驱动电路5和所述至少两层膜层可以分别单独制作,然后将驱动电路5和所述至少两层膜层贴合在一起。
S23、将与载板接触的膜层与载板分离,得到预拉伸的电子器件,预拉伸的电子器件包括至少两层膜层,和位于至少两层膜层中距所述载板最远的膜层上的驱动电路。
具体地,在高于预设温度的环境下,完成至少两层膜层和驱动电路5的制作后,可将与载板接触的膜层与载板分离,从而得到由至少两层膜层,和位于至少两层膜层中距所述载板最远的膜层上的驱动电路5组成的预拉伸的电子器件。该预拉伸的电子器件中,由于至少两层膜层的热膨胀系数各不相同,在将预拉伸的电子器件放置在常温环境中时,至少两层膜层中的各膜层收缩程度不同,从而使得各膜层之间产生应力,实现电子器件的预拉伸性能。值得注意的是,在形成驱动电路5后,在常温环境中,驱动电路5中的软体部分51的拉伸状态会跟随预拉伸基底(包括上述至少两层膜层)的拉伸状态同步变化,如图5所示。
进一步地,上述在载板上依次形成至少两层膜层的步骤具体包括:在载板上形成第一膜层,并在第一膜层背向载板的表面形成第二膜层;
上述在至少两层膜层中距载板最远的膜层上形成驱动电路步骤具体包括:在第二膜层上形成驱动电路;
上述将与载板接触的膜层与载板分离,得到预拉伸的电子器件的步骤具体包括:将第一膜层与载板分离,预拉伸的电子器件包括:第一膜层、位于第一膜层上的第二膜层以及位于第二膜层上的驱动电路。
进一步地,在将第一膜层与载板分离之后,上述电子器件的制作方法还包括:在高于预设温度的环境下,在第一膜层背向第二膜层的表面形成第三 膜层,第三膜层的热膨胀系数与第一膜层的热膨胀系数不同。
上述第一膜层、第二膜层和第三膜层的种类多种多样,例如:第一膜层包括柔性基底,第二膜层包括应力层,第三膜层包括应力调节层;下面以第一膜层为柔性基底,第二膜层为应力层,第三膜层为应力调节层为例,对电子器件的制作过程进行详细说明。
如图1所示,在载板1上依次形成至少两层膜层的步骤具体包括:在载板1上形成柔性基底2,并在柔性基底2背离载板1的表面形成应力层3,应力层3的热膨胀系数与柔性基底2的热膨胀系数不同;
具体地,高于预设温度的环境中的温度可根据实际要制作的柔性基底2的热膨胀系数,以及应力层3的热膨胀系数来设置,例如:预设温度在100℃-300℃之间。设置预设温度高于常温,使得在高于预设温度的环境下形成的柔性基底2和应力层3能够均匀的延伸。而且设置应力层3的热膨胀系数与柔性基底2的热膨胀系数不同,使得在相同的高于预设温度的环境下制作的应力层3和柔性基底2的膨胀程度不同。
在至少两层膜层中距载板最远的膜层上形成驱动电路的步骤具体包括:在应力层3上形成驱动电路5,如图5和图6所示;
将与载板1接触的膜层与载板1分离,得到预拉伸的电子器件的步骤具体包括:将柔性基底2与所述载板1分离,预拉伸的电子器件包括:柔性基底2、位于柔性基底2上的应力层3以及位于应力层3上的驱动电路5。
具体地,在高于预设温度的环境下,完成柔性基底2、应力层3和驱动电路5的制作后,可将柔性基底2与载板1分离,从而得到由柔性基底2、应力层3和驱动电路5组成的预拉伸的电子器件。该预拉伸的电子器件中,由于柔性基底2的热膨胀系数与应力层3的热膨胀系数不同,在将预拉伸的电子器件放置在常温环境中时,柔性基底2与应力层3的收缩程度不同,从而使得柔性基底2与应力层3之间产生应力,实现电子器件的预拉伸性能。更详细地说,以应力层3的热膨胀系数小于柔性基底2的热膨胀系数为例,由于应力层3的热膨胀系数小于柔性基底2的热膨胀系数,使得在高于预设温度的环境下形成柔性基底2和应力层3时,应力层3发生热膨胀的程度小 于柔性基底2发生热膨胀的程度,相应的在将制作好的柔性基底2和应力层3放置在常温环境中时,应力层3的收缩程度就会小于柔性基底2的收缩程度,从而使得柔性基底2与应力层3之间产生应力,实现预拉伸基底的预拉伸性能;而在应力层3上形成驱动电路5后,在常温环境中,驱动电路5中的软体部分51的拉伸状态会跟随预拉伸基底(包括柔性基底2和应力层3)的拉伸状态同步变化,如图5所示。
上述实施例提供的电子器件的制作方法是在高于预设温度的环境下,先在载板1上形成柔性基底2,使柔性基底2能够发生均匀的热膨胀,然后在柔性基底2上形成应力层3,且形成的应力层3的热膨胀系数与柔性基底2的热膨胀系数不同,然后再在应力层3上形成驱动电路5,最后将柔性基底2与载板1分离,形成包括柔性基底2、应力层3和驱动电路5的预拉伸的电子器件。由于柔性基底2和应力层3具有不同的热膨胀系数,使得在高于预设温度的环境下二者的膨胀程度不同,在将制作的预拉伸基底应用在常温环境中时,应力层3与柔性基底2之间的收缩程度不同,从而使得应力层3与柔性基底2之间产生应力作用,形成预拉伸基底;而在预拉伸基底上形成的驱动电路5包括软体部分51和刚体部分52,使得驱动电路5中的软体部分51的拉伸程度能够跟随预拉伸基底的拉伸程度变化,如图5和图6所示,从而实现电子器件具有预拉伸性能。
可见,采用上述实施例提供的电子器件的制作方法制作的具有预拉伸性能的电子器件中,预拉伸基底包括的柔性基底2和应力层3均是在高于预设温度的环境下发生均匀的热膨胀,从而很好的保证了预拉伸基底的预拉伸量的均匀性;而且制作的预拉伸基底的尺寸不会受到限制,能够满足大面积的预拉伸基底的制作;因此,在预拉伸基底上制作驱动电路5后,所形成的电子器件(包括预拉伸基底2、应力层3和驱动电路5)能够实现均匀的预拉伸量,使得电子器件在实际应用中具有更强的应力承受能力,更好的提升了电子器件的拉伸性能。
此外,由于所制作的预拉伸基底包括柔性基底2和应力层3,使其具有更好的阻水和阻氧性能,因此,在预拉伸基底上制作驱动电路5后,形成的 具有预拉伸性能的电子器件具有更好的密封性能,从而有效延长了电子器件的使用寿命。
进一步地,在将柔性基底2与载板1分离之后,上述实施例提供的电子器件的制作方法还包括:
在高于预设温度的环境下,在柔性基底2背向应力层3的表面形成应力调节层4,应力调节层4的热膨胀系数与柔性基底2的热膨胀系数不同。
具体地,在形成上述具有预拉伸性能的电子器件后,可通过在柔性基底2背向应力层3的表面形成与柔性基底2的热膨胀系数不同的应力调节层4,来进一步调节电子器件的预拉伸量。更详细地说,以形成热膨胀系数大于柔性基底2的热膨胀系数的应力调节层4为例,当形成的电子器件的预拉伸量过大,而不能够满足实际需求时,可在柔性基底2背向应力层3的表面形成热膨胀系数大于柔性基底2的热膨胀系数的应力调节层4,这样在预设温度环境中,应力调节层4的膨胀程度就大于柔性基底2的膨胀程度,相应的在将电子器件应用在常温环境中时,应力调节层4相对于柔性基底2具有更大的收缩程度,这样应力调节层4就能够改变柔性基底2与应力层3之间的应力,实现对电子器件的预拉伸量的调节。
进一步地,在柔性基底2上形成应力层3的方法有多种,下面举例两种方法,但不仅限于此。
第一种方法,在柔性基底2上形成整层的应力层3;
具体地,当在柔性基底2上形成整层的应力层3时,柔性基底2能够与整层的应力层3之间产生应力作用,从而使得形成的电子器件的全部区域均具有预拉伸性能。
第二种方法,在柔性基底上形成多个独立的应力层图形。
具体地,当在柔性基底2上形成对个独立的应力层图形31时,可根据实际需要,设定应力层图形31的分布情况,以使得所制作的预拉伸基底能够实现分区域的局部预拉伸性能。
本公开实施例还提供一种电子器件,采用上述实施例提供的电子器件的制作方法制作。
具体地,由于本公开实施例提供的电子器件是采用上述实施例提供的电子器件的制作方法制作,因此,本公开实施例提供的电子器件中,柔性基底和应力层之间能够产生应力,电子器件不仅具有均匀的预拉伸量,而且电子器件的尺寸不受限制,能够形成大尺寸的电子器件,此外,由于本公开实施例提供的电子器件中,预拉伸基底包括柔性基底和应力层,使得该预拉伸基底具有更好的阻水和阻氧性能,因此本公开实施例提供的电子器件具有更好的密封性能,能够有效延长显示器件的使用寿命。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种预拉伸基底的制作方法,包括:
    在高于第一温度阈值的环境下,在载板上依次形成至少两层膜层,所述至少两层膜层的热膨胀系数各不相同;
    将所述至少两层膜层与所述载板分离,得到所述预拉伸基底;其中,所述至少两层膜层在常温环境中的收缩程度不同。
  2. 根据权利要求1所述的预拉伸基底的制作方法,其中,所述第一温度阈值为100℃-300℃之间。
  3. 根据权利要求1所述的预拉伸基底的制作方法,其中,在所述至少两层膜层中,靠近所述载板的膜层的热膨胀系数大于远离所述载板的膜层的热膨胀系数。
  4. 根据权利要求1所述的预拉伸基底的制作方法,其中,所述在载板上依次形成至少两层膜层包括:在所述载板上形成第一膜层,并在所述第一膜层背向所述载板的表面形成第二膜层;
    所述将所述至少两层膜层与所述载板分离,得到预拉伸基底包括:
    将所述第一膜层与所述载板分离,所述预拉伸基底包括所述第一膜层和位于所述第一膜层上的第二膜层。
  5. 根据权利要求4所述的预拉伸基底的制作方法,其中,在将所述第一膜层与所述载板分离之后,所述制作方法还包括:
    在高于第二温度阈值的环境下,在所述第一膜层背向所述第二膜层的表面形成第三膜层,所述第三膜层的热膨胀系数与所述第一膜层的热膨胀系数不同。
  6. 根据权利要求5所述的预拉伸基底的制作方法,其中,所述第一膜层包括柔性基底,所述第二膜层包括应力层,所述第三膜层包括应力调节层。
  7. 根据权利要求6所述的预拉伸基底的制作方法,其中,在所述载板上形成第一膜层包括:
    利用有机材料,在所述载板上形成柔性基底,所述载板的热膨胀系数与 所述有机材料的热膨胀系数相同或相近;
    或,
    提供一柔性薄膜层;
    将所述柔性薄膜层贴附在所述载板上,所述柔性薄膜层在所述高于所述第一温度阈值的环境下发生热膨胀,形成所述柔性基底。
  8. 根据权利要求7所述的预拉伸基底的制作方法,其中,所述有机材料为聚酰亚胺、硅胶材料、聚甲基丙烯酸甲酯、聚碳酸酯、丙烯腈-丁二烯-苯乙烯共聚物、聚乙烯和聚苯乙烯中的一种。
  9. 根据权利要求6所述的预拉伸基底的制作方法,其中,所述在所述第一膜层背向所述载板的表面形成第二膜层包括:
    利用无机材料,在所述柔性基底上沉积形成整层的应力层;
    或,
    提供一无机薄膜层;
    将所述无机薄膜层贴附在所述柔性基底上,所述无机薄膜层在所述高于第一温度阈值的环境下发生热膨胀,形成整层的应力层。
  10. 根据权利要求9所述的预拉伸基底的制作方法,其中,所述无机材料为SiN、SiO或金属。
  11. 根据权利要求9所述的预拉伸基底的制作方法,其中,在形成整层的应力层之后,所述制作方法还包括:
    对所述整层的应力层进行构图,形成多个独立的应力层图形。
  12. 根据权利要求6所述的预拉伸基底的制作方法,其中,所述在所述第一膜层背向所述载板的表面形成第二膜层包括:
    利用金属材料,在所述柔性基底背向所述应力层的表面形成应力调节层;
    或,
    提供一无机金属薄膜层;
    将所述无机金属薄膜层贴附在所述柔性基底背向所述应力层的表面,所述无机金属薄膜层在所述高于第二温度阈值的环境下发生热膨胀,形成应力调节层。
  13. 根据权利要求6所述的预拉伸基底的制作方法,其中,
    所述柔性基底的热膨胀系数在10ppm/℃-50000ppm/℃之间;
    所述应力层的热膨胀系数在10ppm/℃-1000ppm/℃之间。
  14. 根据权利要求6所述的预拉伸基底的制作方法,其中,
    所述柔性基底的热膨胀系数在3ppm/℃-250ppm/℃之间;
    所述应力层的热膨胀系数在3ppm/℃-100ppm/℃之间;
    所述应力调节层的热膨胀系数在3ppm/℃-100ppm/℃之间。
  15. 一种电子器件的制作方法,包括:
    在高于第一温度阈值的环境下,在载板上依次形成至少两层膜层,所述至少两层膜层的热膨胀系数各不相同;其中,所述至少两层膜层在常温环境中的收缩程度不同;
    在所述至少两层膜层中距所述载板最远的膜层上形成驱动电路;
    将与所述载板接触的膜层与所述载板分离,得到预拉伸的电子器件,所述预拉伸的电子器件包括所述至少两层膜层,和位于所述至少两层膜层中距所述载板最远的膜层上的所述驱动电路。
  16. 根据权利要求15所述的电子器件的制作方法,其中,所述在载板上依次形成至少两层膜层包括:在所述载板上形成第一膜层,并在所述第一膜层背向所述载板的表面形成第二膜层;
    所述在所述至少两层膜层中距所述载板最远的膜层上形成驱动电路包括:在所述第二膜层上形成驱动电路;
    所述将与所述载板接触的膜层与所述载板分离,得到预拉伸的电子器件包括:
    将所述第一膜层与所述载板分离,所述预拉伸的电子器件包括:第一膜层、位于所述第一膜层上的第二膜层以及位于所述第二膜层上的驱动电路。
  17. 根据权利要求16所述的电子器件的制作方法,其中,在将所述第一膜层与所述载板分离之后,所述制作方法还包括:
    在所述高于第二温度阈值的环境下,在所述第一膜层背向所述第二膜层的表面形成第三膜层,所述第三膜层的热膨胀系数与所述第一膜层的热膨胀 系数不同。
  18. 根据权利要求17所述的电子器件的制作方法,其中,所述第一膜层包括柔性基底,所述第二膜层包括应力层,所述第三膜层包括应力调节层。
  19. 根据权利要求18所述的电子器件的制作方法,其中,在所述柔性基底上形成应力层包括:
    在所述柔性基底上形成整层的应力层;或,
    在所述柔性基底上形成多个独立的应力层图形。
  20. 根据权利要求15所述的电子器件的制作方法,其中,所述在所述至少两层膜层中距所述载板最远的膜层上形成驱动电路包括:
    将驱动电路贴合在所述至少两层膜层上;
    其中,所述驱动电路包括贴合在所述预拉伸基底上的第二柔性基底层、用于实现驱动功能的元器件和布线层;所述第二柔性基底层包括较薄软体部分和较厚的刚体部分,所述元器件设置在所述较厚的刚体部分,所述元器件之间通过所述布线层连接。
PCT/CN2019/084225 2018-04-25 2019-04-25 预拉伸基底及其制作方法、电子器件及其制作方法 WO2019206216A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/617,854 US11315962B2 (en) 2018-04-25 2019-04-25 Pre-stretched substrate and method for manufacturing the same, electronic device and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810379393.XA CN108597376B (zh) 2018-04-25 2018-04-25 预拉伸基底及其制作方法、电子器件及其制作方法
CN201810379393.X 2018-04-25

Publications (1)

Publication Number Publication Date
WO2019206216A1 true WO2019206216A1 (zh) 2019-10-31

Family

ID=63609271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084225 WO2019206216A1 (zh) 2018-04-25 2019-04-25 预拉伸基底及其制作方法、电子器件及其制作方法

Country Status (3)

Country Link
US (1) US11315962B2 (zh)
CN (1) CN108597376B (zh)
WO (1) WO2019206216A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108597376B (zh) 2018-04-25 2020-12-01 京东方科技集团股份有限公司 预拉伸基底及其制作方法、电子器件及其制作方法
CN109671869B (zh) * 2018-12-12 2020-06-16 武汉华星光电半导体显示技术有限公司 复合膜层的制作方法及显示器件
CN111326662B (zh) * 2018-12-14 2022-06-24 昆山工研院新型平板显示技术中心有限公司 可拉伸衬底及其制备方法、可拉伸显示装置
CN109765718A (zh) * 2019-03-26 2019-05-17 京东方科技集团股份有限公司 一种调光膜的制备方法及调光膜
CN110992832B (zh) * 2019-12-18 2021-10-08 厦门天马微电子有限公司 一种可拉伸显示面板和可拉伸显示装置
CN111047991B (zh) * 2019-12-23 2021-12-07 厦门天马微电子有限公司 一种显示面板、显示装置及其制作方法
CN110972047A (zh) * 2019-12-31 2020-04-07 歌尔股份有限公司 防尘结构、麦克风封装结构以及电子设备
CN112908985B (zh) * 2021-01-27 2023-10-31 Tcl华星光电技术有限公司 一种阵列基板及显示面板
CN113345918B (zh) * 2021-05-25 2022-07-29 武汉华星光电半导体显示技术有限公司 光学透明的柔性背板、显示装置及显示装置的制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068406A (ja) * 2006-09-12 2008-03-27 Tomoegawa Paper Co Ltd フレキシブル金属積層体およびフレキシブルプリント基板
CN101470278A (zh) * 2007-12-27 2009-07-01 Lg电子株式会社 柔性膜和包括该柔性膜的显示设备
KR20160036154A (ko) * 2014-09-24 2016-04-04 엘지디스플레이 주식회사 플렉서블 표시장치
CN106094300A (zh) * 2016-06-03 2016-11-09 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
CN106222619A (zh) * 2016-08-16 2016-12-14 京东方科技集团股份有限公司 一种基底、基板及其制作方法、电子器件
CN108597376A (zh) * 2018-04-25 2018-09-28 京东方科技集团股份有限公司 预拉伸基底及其制作方法、电子器件及其制作方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7491892B2 (en) 2003-03-28 2009-02-17 Princeton University Stretchable and elastic interconnects
US7521292B2 (en) 2004-06-04 2009-04-21 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
EP2255378B1 (en) 2008-03-05 2015-08-05 The Board of Trustees of the University of Illinois Stretchable and foldable electronic devices
US8372726B2 (en) * 2008-10-07 2013-02-12 Mc10, Inc. Methods and applications of non-planar imaging arrays
US9123614B2 (en) * 2008-10-07 2015-09-01 Mc10, Inc. Methods and applications of non-planar imaging arrays
CN102244015B (zh) 2011-06-17 2012-12-19 华中科技大学 一种在预拉伸的弹性基板上进行柔性电子图案化的方法
KR101411022B1 (ko) * 2011-12-30 2014-06-24 제일모직주식회사 편광판 및 이를 포함하는 광학 표시 장치
CN104538556B (zh) * 2014-12-03 2017-01-25 深圳市华星光电技术有限公司 柔性oled衬底及柔性oled封装方法
CN104568556B (zh) 2015-01-28 2017-07-21 成都市农林科学院 一种纤毛虫的染色方法
TWI559827B (zh) 2015-03-31 2016-11-21 財團法人工業技術研究院 可撓式電子模組及其製造方法
CN106229419A (zh) * 2016-07-29 2016-12-14 华南理工大学 一种残余应力可控的复合柔性衬底及其制备工艺与应用
CN107204343B (zh) * 2017-04-25 2019-10-29 上海天马微电子有限公司 柔性显示器及其形成方法
JP2018192634A (ja) * 2017-05-12 2018-12-06 株式会社ダイセル カールが抑制されたハードコートフィルム及びその製造方法
CN107369385B (zh) * 2017-08-18 2019-09-13 武汉华星光电半导体显示技术有限公司 柔性显示装置
CN107564415B (zh) * 2017-08-28 2019-06-21 上海天马有机发光显示技术有限公司 柔性显示面板、显示装置及其制作方法
CN107706156A (zh) * 2017-11-13 2018-02-16 京东方科技集团股份有限公司 一种柔性显示基板及其制备方法、柔性显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068406A (ja) * 2006-09-12 2008-03-27 Tomoegawa Paper Co Ltd フレキシブル金属積層体およびフレキシブルプリント基板
CN101470278A (zh) * 2007-12-27 2009-07-01 Lg电子株式会社 柔性膜和包括该柔性膜的显示设备
KR20160036154A (ko) * 2014-09-24 2016-04-04 엘지디스플레이 주식회사 플렉서블 표시장치
CN106094300A (zh) * 2016-06-03 2016-11-09 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
CN106222619A (zh) * 2016-08-16 2016-12-14 京东方科技集团股份有限公司 一种基底、基板及其制作方法、电子器件
CN108597376A (zh) * 2018-04-25 2018-09-28 京东方科技集团股份有限公司 预拉伸基底及其制作方法、电子器件及其制作方法

Also Published As

Publication number Publication date
US20200168641A1 (en) 2020-05-28
CN108597376A (zh) 2018-09-28
US11315962B2 (en) 2022-04-26
CN108597376B (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
WO2019206216A1 (zh) 预拉伸基底及其制作方法、电子器件及其制作方法
US7465678B2 (en) Deformable organic devices
TWI321241B (en) Flexible pixel array substrate and method of fabricating the same
CN109004099B (zh) 一种柔性显示面板及其制备方法
KR101603771B1 (ko) 2차원 시트 물질을 이용한 전자 소자 및 그 제조 방법
TWI432835B (zh) 可撓性顯示面板及其製造方法
JP2011520248A5 (zh)
WO2018054118A1 (zh) 柔性显示面板及其制造方法以及柔性显示装置
US20120024722A1 (en) Package of environmental sensitive element and encapsulation method of the same
US20160049614A1 (en) Optical thin film laminate for organic electroluminescent display element, production method thereof, organic electroluminescent display element and display device
US10517196B2 (en) Flexible display device
CN110155961B (zh) 一种制备层状材料褶皱的方法
US9324968B2 (en) Method of manufacturing an organic light emitting display device
US11316136B2 (en) Manufacturing method of flexible display device and flexible display device
TW201113147A (en) Process for producing flexible glass substrate, and flexible glass substrate
WO2015043165A1 (zh) 一种柔性基板及其制作方法、以及显示装置
TW201413819A (zh) 元件基板及其製造方法
KR20160095308A (ko) 유기 발광 표시 장치 및 그 제조 방법
US11157717B2 (en) Thermally conductive and protective coating for electronic device
WO2019091009A1 (zh) 柔性显示模组及其制作方法
WO2019095406A1 (zh) 柔性基板及其制作方法
JP2018530032A (ja) タッチフィルム、有機発光ダイオードディスプレイパネル及びタッチフィルムの製造方法
KR20170066572A (ko) 플렉시블 oled 기판 및 플렉시블 oled 패키징 방법
TW201415618A (zh) 軟性顯示器及其製備方法
KR20160082011A (ko) 플렉서블 전도성 패브릭 기판 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792820

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 16/12/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 19792820

Country of ref document: EP

Kind code of ref document: A1