WO2019205263A1 - 一种改性锂离子电池正极材料的方法及得到的正极材料 - Google Patents

一种改性锂离子电池正极材料的方法及得到的正极材料 Download PDF

Info

Publication number
WO2019205263A1
WO2019205263A1 PCT/CN2018/091993 CN2018091993W WO2019205263A1 WO 2019205263 A1 WO2019205263 A1 WO 2019205263A1 CN 2018091993 W CN2018091993 W CN 2018091993W WO 2019205263 A1 WO2019205263 A1 WO 2019205263A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
conductive layer
electrode material
iron phosphate
Prior art date
Application number
PCT/CN2018/091993
Other languages
English (en)
French (fr)
Inventor
沈志刚
王敬石
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Publication of WO2019205263A1 publication Critical patent/WO2019205263A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to, but is not limited to, the field of electrochemistry, and in particular, relates to, but is not limited to, a method of modifying a positive electrode material of a lithium ion battery and a obtained positive electrode material.
  • Lithium-ion battery is a new generation of green high-energy battery with excellent performance. It has become one of the key points of high-tech development, with high voltage, high capacity and many cycles.
  • the lithium ion battery cathode material includes lithium iron phosphate, ternary materials, lithium cobaltate, lithium manganate, lithium titanate and the like.
  • the cathode material occupies a large proportion in the composition of the lithium battery, and its performance directly affects the performance of the lithium battery, and the cost directly determines the cost of the battery.
  • there are some disadvantages of the positive electrode material such as poor conductivity and slow diffusion rate of lithium ions, which results in a large rate of charge/discharge ratio of the lithium battery positive electrode material.
  • carbon material coating is the main method to improve the performance of the cathode material, such as hydrothermal coating, high temperature carbonization coating and the like.
  • the Chinese invention patent No. CN201210051136.6 discloses a preparation method of a lithium iron phosphate carbon coating, and synthesizes a carbon coated lithium iron phosphate with good electrochemical performance by hydrothermal method.
  • the carbon material coating method has a low preparation cost, the conductivity is not ideal, and the large current charge and discharge capacity is not ideal.
  • the metal coating method is another method for improving the conductivity of the cathode material, and has attracted the attention of researchers, and is currently prepared by electroless plating, chemical vapor deposition, and sol-gel methods.
  • the Chinese invention patent No. CN200910063681.5 discloses a preparation method of a metal-silver-doped lithium iron phosphate lithium synthesized by a sol-gel method, which improves the rate performance of lithium iron phosphate.
  • Magnetron sputtering is a vacuum physical coating method, which has the advantages of high sputtering rate, low substrate temperature rise, good film-based bonding force, stable device performance, convenient operation and control, etc. There have been no reports on the application of positive powder modification. The inventors of the present application have found through extensive research that the positive electrode material modified by the magnetron sputtering method exhibits excellent rate performance and has excellent charge and discharge stability.
  • the present application provides a method for modifying a positive electrode material of a lithium ion battery, the method comprising the steps of: maintaining a movement and dispersion of a positive electrode material of a lithium ion battery in a powder form, and using a magnetron sputtering method to target a conductive material A material is sputtered onto the surface of the positive electrode material to form a conductive layer on the surface of the positive electrode material.
  • the formation of the conductive layer by magnetron sputtering can enhance the bonding force between the conductive layer and the positive electrode material, reduce the problem of the falling off of the conductive layer due to the shrinkage-expansion-shrinkage process of the volume of the positive electrode material during charging and discharging, and improve the charging and discharging of the large current. stability.
  • the positive electrode material can be kept moving to achieve a good dispersion effect, and the conductive material can be better and more uniformly sputtered onto the surface of the positive electrode material.
  • the conductive layer may be a discontinuous conductive layer, and the discontinuous conductive layer may be a dot, a mesh, or an island structure.
  • the discontinuous conductive layer enables the electrolyte to better wet the positive electrode material and improve electrical conductivity.
  • the positive electrode material can be kept moving and dispersed using a particle dispersion device.
  • the particle dispersion device may be selected from any one or more of an ultrasonic dispersion device, a mechanical vibration device, a rotation device, a swing device, a medium impact device, and a gas flow dispersion device.
  • the cathode material may be selected from any one or more selected from the group consisting of lithium iron phosphate, lithium cobalt phosphate, lithium cobaltate, lithium manganese cobalt oxide, lithium nickel cobalt manganese oxide, and lithium nickel cobalt aluminate. .
  • the conductive material may be selected from any one or more of a conductive metal and a metal oxide; the metal may be selected from the group consisting of gold, platinum, chromium, zinc, tin, silver, cobalt, Any one or more of nickel, aluminum, titanium, and iron; the metal oxide may be selected from any one or more of indium tin oxide, aluminum-doped zinc oxide, and fluorine-doped tin dioxide.
  • the power of magnetron sputtering can range from 5W to 500W.
  • the magnetron sputtering time can be from 1 min to 30 min.
  • the magnetron sputtering can be performed in a vacuum chamber of an inert atmosphere
  • the operating temperature of the chamber can be from 10 ° C to 400 ° C
  • the inert atmosphere can be argon.
  • the degree of vacuum in the vacuum chamber during magnetron sputtering may be from 0.1 Pa to 100 Pa, for example, from 0.3 Pa to 0.6 Pa.
  • one or more repeated sputterings may be performed, for example, one to 100 sputterings may be performed.
  • the repeated sputtering is performed by deflation after sputtering to adjust the vibration, and then vacuum is again applied to start sputtering again.
  • the conductive layer may have a mass of 0.1% to 10% of the total mass of the modified positive electrode material.
  • the conductive material used in modifying the positive electrode material of the lithium ion battery is not limited to the specific materials listed above, and materials capable of realizing the action of various reagents can be used in the method for modifying the positive electrode material of the lithium ion battery of the present application;
  • the positive electrode material to which the method for modifying a positive electrode material of a lithium ion battery of the present application is applied is not limited to the specific materials listed above. The specific materials listed above are not intended to limit the scope of the application.
  • the present application also provides a positive electrode material for a lithium ion battery, which is obtained by a modification method as described above.
  • the positive electrode material of the lithium ion battery obtained by the modification method of the present application has a conductive layer formed on the surface, which can greatly improve the electrical conductivity of the positive electrode material. When a discontinuous conductive layer is formed, the electrolyte can better infiltrate the positive electrode. Material, thereby increasing the cyclic specific capacity and rate performance of the positive electrode material;
  • the magnetron sputtering method can enhance the bonding force between the conductive layer and the positive electrode material, and reduce the shrinkage-expansion-shrinkage process due to the volume of the positive electrode material during charge and discharge.
  • the problem of falling off the conductive layer improves the stability of large current charge and discharge;
  • the positive electrode material modified by magnetron sputtering has high controllability, extremely short processing time, and can realize continuous and automated production, and has extremely high application value.
  • FIG. 1 is a schematic view of a magnetron sputtering apparatus according to an embodiment of the present application
  • Example 2 is a scanning electron micrograph and an EDS spectrum of unmodified lithium iron phosphate and the modified lithium iron phosphate of Example 1 of the present application;
  • FIG. 5 is a first charge and discharge capacity diagram of a button battery made of unmodified lithium iron phosphate and modified lithium iron phosphate of Examples 1 to 3 of the present application;
  • FIG. 6 is a graph showing cycle performance of a button cell made of unmodified lithium iron phosphate and modified lithium iron phosphate of Examples 1 to 3 of the present application;
  • FIG. 7 is a graph showing the rate performance of a button cell made of unmodified lithium iron phosphate and modified lithium iron phosphate of Examples 1 to 3 of the present application;
  • Vacuum chamber 1. Sample stage; 3. Heater; 4. Ultrasonic generator; 5. Stepper motor; 6. Sputter target.
  • the positive electrode material of the lithium ion battery is modified by using a magnetron sputtering device, and the magnetron sputtering device may be any existing magnetron sputtering device, for example, as shown in FIG.
  • Magnetron sputtering apparatus comprising a vacuum chamber 1 and a heater 3 and a sputtering target holder 6 installed in the vacuum chamber 1;
  • the particle dispersion device may employ an ultrasonic dispersion device including an ultrasonic generator 4, a progressive motor 5 and the sample stage 2, wherein the ultrasonic transmitter 4 and the progressive motor 5 are located outside the vacuum chamber 1, and the sample stage 2 is located inside the vacuum chamber 1, and the positive material powder can be placed on the sample stage 2, and the stepping motor 5
  • the sample stage 2 can be reciprocated, ultrasonic vibration and reciprocating motion keep the positive material powder on the sample stage 2 moving and uniformly dispersed;
  • the heater 3 provides the temperature required in the vacuum chamber 1 during sputtering; the target of the conductive material Mounted on the sputtering target frame 6.
  • the positive electrode material powder is uniformly placed on the sample stage of the particle dispersing device, and the vacuum chamber 1 is pumped to a certain pressure by a mechanical pump and a molecular pump, and the vacuum degree can be about 0.1 Pa to 0.6 Pa. For example, it may be 0.3 Pa to 0.6 Pa.
  • a certain amount of inert gas is charged into the vacuum chamber 1.
  • the particle dispersing device is opened to keep the positive electrode material moving and dispersed, and sputtered at a certain temperature for a certain time to obtain a modified positive electrode material with a conductive layer on the surface.
  • the inert gas may be argon gas
  • the temperature of magnetron sputtering may be 10 ° C to 400 ° C
  • the sputtering power may be 5 W to 500 W
  • the sputtering time may be 1 min to 30 min.
  • Cathode material lithium iron phosphate (LiFePO 4 , LFP)
  • Conductive material target silver target
  • Particle dispersion device ultrasonic dispersion device
  • Vacuum chamber operating temperature 20 ° C
  • Conductive layer structure point structure
  • the conductive layer accounts for the mass percentage of the modified positive electrode material: 1.24%
  • the ultrasonic dispersing device is installed in a vacuum chamber, and the lithium iron phosphate powder is uniformly placed on the sample stage of the ultrasonic dispersing device, and the vacuum chamber is evacuated to a vacuum of 0.6 Pa by a mechanical pump and a molecular pump, and a part of the argon gas is charged into the vacuum chamber. .
  • the ultrasonic dispersing device was turned on to keep the lithium iron phosphate moving and dispersed.
  • the silver target was selected and treated at a sputtering power of 30 W for 5 min. Then, the vibration was adjusted by degassing, and the vacuum was again applied.
  • the sputtering was repeated under the above conditions, and the sputtering was repeated 3 times to obtain
  • the surface is plated with a modified lithium iron phosphate having a discontinuous silver conductive layer.
  • Cathode material lithium iron phosphate (LiFePO 4 , LFP)
  • Conductive material target cobalt target
  • Particle dispersion device ultrasonic dispersion device
  • Vacuum chamber operating temperature 20 ° C
  • Conductive layer structure point structure
  • the conductive layer accounts for the mass percentage of the modified positive electrode material: 0.38%
  • the ultrasonic dispersing device is installed in a vacuum chamber, and the lithium iron phosphate powder is uniformly placed on the sample stage of the ultrasonic dispersing device, and the vacuum chamber is evacuated to a vacuum of 0.6 Pa by a mechanical pump and a molecular pump, and a part of the argon gas is charged into the vacuum chamber. .
  • the ultrasonic dispersing device was turned on to keep the lithium iron phosphate moving and dispersed.
  • the cobalt target was selected and treated with a sputtering power of 30 W for 5 min, then the gas was vented to adjust the vibration, and the vacuum was again vacuumed and repeatedly sputtered according to the above conditions, and the sputtering was repeated 3 times to obtain
  • the surface is plated with a modified lithium iron phosphate having a discontinuous cobalt conductive layer.
  • Cathode material lithium iron phosphate (LiFePO 4 , LFP)
  • Conductive material target Indium tin oxide (ITO) target
  • Particle dispersion device ultrasonic dispersion device
  • Vacuum chamber operating temperature 200 ° C
  • Conductive layer structure point structure
  • the conductive layer accounts for the mass percentage of the modified positive electrode material: 0.92%
  • the ultrasonic dispersing device is installed in the vacuum chamber, and the lithium iron phosphate powder is uniformly placed on the sample stage of the ultrasonic dispersing device, and the vacuum chamber is pumped to a vacuum of 0.6 Pa by a mechanical pump and a molecular pump to fill a part of the argon gas. Vacuum cabin. Open the ultrasonic dispersing device to keep the lithium iron phosphate moving and dispersing, select the indium tin oxide target, treat it with 30W sputtering power for 5min, then vent the gas to adjust the vibration, and then vacuum again, repeat the sputtering according to the above conditions, repeat the sputtering twice.
  • a modified lithium iron phosphate having a surface-plated discontinuous indium tin oxide conductive layer is obtained.
  • Cathode material lithium iron phosphate (LiFePO 4 , LFP)
  • Conductive material target aluminum target
  • Particle dispersion device ultrasonic dispersion device
  • Vacuum chamber operating temperature 20 ° C
  • Conductive layer structure point structure
  • the conductive layer accounts for the mass percentage of the modified positive electrode material: 1%
  • the ultrasonic dispersing device is installed in a vacuum chamber, and the lithium iron phosphate powder is uniformly placed on the sample stage of the ultrasonic dispersing device, and the vacuum chamber is evacuated to a vacuum of 0.6 Pa by a mechanical pump and a molecular pump, and a part of the argon gas is charged into the vacuum chamber. .
  • the ultrasonic dispersing device was turned on to keep the lithium iron phosphate moving and dispersed.
  • the aluminum target was selected and treated with a sputtering power of 30 W for 5 min, then the gas was vented to adjust the vibration, and the vacuum was again vacuumed and repeatedly sputtered according to the above conditions, and the sputtering was repeated 3 times to obtain
  • the surface is plated with a modified lithium iron phosphate having a discontinuous aluminum conductive layer.
  • Cathode material lithium iron phosphate (LiFePO 4 , LFP)
  • Conductive target material iron target
  • Particle dispersion device ultrasonic dispersion device
  • Vacuum chamber operating temperature 20 ° C
  • Conductive layer structure point structure
  • the conductive layer accounts for the mass percentage of the modified positive electrode material: 1%
  • the ultrasonic dispersing device is installed in a vacuum chamber, and the lithium iron phosphate powder is uniformly placed on the sample stage of the ultrasonic dispersing device, and the vacuum chamber is evacuated to a vacuum of 0.6 Pa by a mechanical pump and a molecular pump, and a part of the argon gas is charged into the vacuum chamber. .
  • Cathode material lithium cobalt oxide (LiCoO 2 , LCO)
  • Conductive target material silver target
  • Particle dispersion device ultrasonic dispersion device
  • Magnetron sputtering power 50W
  • Vacuum chamber operating temperature 40 ° C
  • Conductive layer structure point structure
  • the conductive layer accounts for the mass percentage of the modified positive electrode material: 1.3%
  • the ultrasonic dispersing device is installed in a vacuum chamber, and the lithium cobaltate powder is uniformly placed on the sample stage of the ultrasonic dispersing device, and the vacuum chamber is evacuated to a vacuum of 0.6 Pa by a mechanical pump and a molecular pump, and a part of the argon gas is charged into the vacuum chamber. .
  • the ultrasonic dispersing device was turned on to keep the lithium iron phosphate moving and dispersed.
  • the silver target was selected and treated with a sputtering power of 50 W for 5 min, then the gas was vented to adjust the vibration, and the vacuum was again vacuumed and repeatedly sputtered according to the above conditions, and the sputtering was repeated 3 times to obtain
  • the surface is plated with a modified lithium cobalt oxide having a discontinuous iron conductive layer.
  • Cathode material lithium cobalt oxide (LiCoO 2 , LCO)
  • Conductive target material silver target
  • Particle dispersion device ultrasonic dispersion device
  • Magnetron sputtering power 50W
  • Vacuum chamber operating temperature 40 ° C
  • Conductive layer structure point structure
  • the conductive layer accounts for the mass percentage of the modified positive electrode material: 1.5%
  • the ultrasonic dispersing device is installed in a vacuum chamber, and the lithium cobaltate powder is uniformly placed on the sample stage of the ultrasonic dispersing device, and the vacuum chamber is pumped to a vacuum degree of 0.8 Pa by a mechanical pump and a molecular pump, and a part of the argon gas is charged into the vacuum chamber. .
  • the ultrasonic dispersing device was turned on to keep the lithium iron phosphate moving and dispersed.
  • the iron target was selected and treated at a sputtering power of 50 W for 5 min, then the gas was vented to adjust the vibration, and the vacuum was again vacuumed and repeatedly sputtered according to the above conditions, and the sputtering was repeated 4 times to obtain
  • the surface is plated with a modified lithium iron phosphate having a somewhat discontinuous iron conductive layer.
  • Cathode material lithium iron phosphate (LiFePO 4 , LFP)
  • Conductive material target Indium tin oxide (ITO) target
  • Particle dispersion device ultrasonic dispersion device
  • Vacuum chamber operating temperature 200 ° C
  • Conductive layer structure point structure
  • the conductive layer accounts for the mass percentage of the modified positive electrode material: 0.92%
  • the ultrasonic dispersing device is installed in the vacuum chamber, and the lithium iron phosphate powder is uniformly placed on the sample stage of the ultrasonic dispersing device, and the vacuum chamber is pumped to a vacuum of 0.6 Pa by a mechanical pump and a molecular pump to fill a part of the argon gas. Vacuum cabin. Open the ultrasonic dispersing device to keep the lithium iron phosphate moving and dispersing, select the indium tin oxide target, treat it with 25W sputtering power for 5min, then vent the gas to adjust the vibration, and then vacuum again to repeat the sputtering according to the above conditions, repeat the sputtering twice. A modified lithium iron phosphate having a surface-plated discontinuous indium tin oxide conductive layer is obtained.
  • Cathode material lithium iron phosphate (LiFePO 4 , LFP)
  • Conductive target material iron target
  • Particle dispersion device ultrasonic dispersion device
  • Magnetron sputtering power 50W
  • Vacuum chamber operating temperature 40 ° C
  • Conductive layer structure point structure
  • the conductive layer accounts for the mass percentage of the modified positive electrode material: 1%
  • the ultrasonic dispersing device is installed in the vacuum chamber, and the lithium iron phosphate powder is uniformly placed on the sample stage of the ultrasonic dispersing device, and the vacuum chamber is pumped to a vacuum of 0.6 Pa by a mechanical pump and a molecular pump to fill a part of the argon gas. Vacuum cabin. Open the ultrasonic dispersing device to keep the lithium iron phosphate moving and dispersing, select the indium tin oxide target, treat it with 50W sputtering power for 5min, then vent the gas to adjust the vibration, vacuum again and repeat the sputtering according to the above conditions, repeat the sputtering 3 times.
  • a modified lithium iron phosphate having a surface-plated discontinuous indium tin oxide conductive layer is obtained.
  • FIG. 2 are scanning electron micrographs of unmodified lithium iron phosphate and silver-plated conductive layer-modified lithium iron phosphate of Example 1, respectively. It can be seen from (a) and (b) in Fig. 2 that the lithium iron phosphate particles having an unplated conductive layer have a particle diameter of about 1 ⁇ m, and are still about 1 ⁇ m after the modification, and the silver-plated conductive layer is lithium iron phosphate. The morphology and particle size of the particles did not change significantly.
  • (c) and (d) of Fig. 2 are EDS spectra of unmodified lithium iron phosphate and silver-plated conductive layer-modified lithium iron phosphate of Example 1, respectively.
  • the EDS spectrum can show the content of elements with an atomic number above 6 in a certain region. It can be seen from (c) and (d) of Fig. 2 that the silver percentage of the modified lithium iron phosphate is 1.8%.
  • XPS images can measure the content of conductive layer, and the accuracy of XPS is higher than that of EDS.
  • the silver conductive layer is plated on the surface of the lithium iron phosphate, and the silver percentage of the modified lithium iron phosphate is 1.24%; in the embodiment 2, the cobalt conductive layer is plated on the surface of the lithium iron phosphate.
  • the mass percentage of cobalt to the modified lithium iron phosphate is 0.38%; in the third embodiment, the surface of the lithium iron phosphate particles is plated with an indium tin oxide conductive layer, and the indium tin oxide accounts for 0.92% by mass of the modified lithium iron phosphate.
  • the conductive layer in the embodiment 1-3 of the present application accounts for less than 5% by mass of the modified lithium iron phosphate, and is generally not detected by XRD, so the XRD image before and after plating the conductive layer is substantially absent. difference.
  • the conductive layers of Examples 1 to 3 can significantly increase the specific capacity of lithium iron phosphate, the charge and discharge curves become more gradual, and the voltage platform difference becomes smaller, indicating that the modification method of the present application can increase the iron phosphate.
  • the button cell made of unmodified lithium iron phosphate has a specific capacity of 150 mAh/g and a 2 C discharge capacity of 50 mAh/g; the silver-plated conductive layer modified phosphoric acid of Example 1
  • the button cell made of iron and lithium has a specific capacity of 163 mAh/g and a 2C discharge capacity of 100 mAh/g; the button cell made of the cobalt-plated conductive layer modified lithium iron phosphate of Example 2 has a specific capacity of 155 mAh/g.
  • the 2C discharge capacity was 70 mAh/g; the button cell made of the indium tin oxide-plated conductive layer modified lithium iron phosphate of Example 3 had a specific capacity of 160 mAh/g and a 2C discharge capacity of 120 mAh/g. It can be seen that the specific capacity of the modified lithium iron phosphate is increased, especially the rate performance is significantly improved.
  • the unmodified lithium iron phosphate is tested by the German Zana electrochemical workstation device and the modified lithium iron phosphate plated with silver, cobalt, indium tin oxide, aluminum and iron conductive layers in the examples 1-5 of the present application.
  • the AC impedance of the button battery is a Quest map, and the test results are shown in Figure 8.
  • the ohmic resistance, charge transfer resistance, and lithium ion diffusion rate of batteries made of different materials can be calculated from the Nyquist diagram.
  • the charge transfer resistance is the diameter of the semicircular portion of the Nyquist diagram.
  • the smaller the resistance the better the conductivity and electrochemical performance of the material. It can be seen from FIG. 8 that the impedance of the button cell made of the modified lithium iron phosphate of the present application is greatly reduced; the silver-plated conductive layer of Example 1, the cobalt-plated conductive layer of Example 2, and the indium oxide plated of Example 3.
  • the charge transfer resistance of the button battery made of the lithium iron phosphate modified by the tin conductive layer is only one third of the unmodified lithium iron phosphate, and the lithium iron phosphate modified by the aluminum plating conductive layer of the embodiment 4 is made of
  • the charge transfer resistance of the button cell is one-half of that of the unmodified lithium iron phosphate, and the charge transfer resistance of the button battery made of the lithium iron phosphate modified by the iron-plated conductive layer of Example 5 is slightly reduced. It can be seen that the modification method of the present application can effectively improve the conductivity of lithium iron phosphate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一种改性锂离子电池正极材料的方法及得到的正极材料,所述方法包括以下步骤:使粉体形式的锂离子电池的正极材料保持运动和分散,采用磁控溅射法将导电材料的靶材溅射至所述正极材料的表面,从而在所述正极材料的表面形成导电层。

Description

一种改性锂离子电池正极材料的方法及得到的正极材料 技术领域
本申请涉及但不限于电化学领域,具体地,涉及但不限于一种改性锂离子电池正极材料的方法及得到的正极材料。
背景技术
随着可移动电子和通讯设备的迅速发展,二次电池的需求更为迫切,且越来越倾向于密集型、薄型、小型、轻型和高能量密度的电池的开发。
锂离子电池是性能卓越的新一代绿色高能电池,已经成为高新技术发展的重点之一,具有高电压、高容量、循环次数多等优点。锂离子电池正极材料包括磷酸铁锂、三元材料、钴酸锂、锰酸锂、钛酸锂等。正极材料在锂电池构成中占有很大比例,其性能直接影响锂电池的性能,其成本也直接决定电池成本的高低。目前正极材料存在一些缺点,例如导电性差、锂离子扩散速率慢,这导致了锂电池正极材料的大倍率充放电比容量较低。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
目前,碳材料包覆是改善正极材料性能的主要方法,如采用水热法包覆、高温碳化包覆等。如申请号为CN201210051136.6的中国发明专利公开了一种磷酸铁锂碳包覆的制备方法,用水热法合成了电化学性能良好的碳包覆磷酸铁锂。虽然碳材料包覆方法制备成本较低,但导电性并不理想,大电流充放电容量并不理想。金属包覆方法是另一种提升正极材料导电性的方法,受到研究者的关注,目前常采用化学镀、化学气相沉积方法、溶胶凝胶法来制备。如申请号为CN200910063681.5的中国发明专利公开了一种溶胶凝胶法合成的金属银掺杂的覆碳磷酸铁锂的制备方法,改善了磷酸铁锂的倍率性能。
磁控溅射法是一种真空物理镀膜方法,具有溅射率高、基片温升低、膜- 基结合力好、装置性能稳定、操作控制方便等优点,但目前将磁控溅射法应用于正极粉体改性方面的研究尚无报道。本申请的发明人通过大量研究发现,采用磁控溅射法改性后的正极材料会表现出优异的倍率性能,且具有极强的充放电稳定性。
本申请提供了一种改性锂离子电池正极材料的方法,所述方法包括以下步骤:使粉体形式的锂离子电池的正极材料保持运动和分散,采用磁控溅射法将导电材料的靶材溅射至所述正极材料的表面,从而在所述正极材料的表面形成导电层。
采用磁控溅射法形成导电层可以增强导电层与正极材料的结合力,降低充放电过程中由于正极材料体积的收缩-膨胀-收缩过程导致的导电层的脱落问题,提升大电流充放电的稳定性。改性过程中,可以通过使正极材料保持运动,使其很好的达到分散效果,便于将导电材料更好地、更均匀地溅射至正极材料的表面。
在一些实施方式中,所述导电层可以为不连续导电层,所述不连续导电层可以为点状、网状或岛状结构。
不连续的导电层能够使电解液更好地浸润正极材料,提高导电性。
在一些实施方式中,可以采用颗粒分散装置使所述正极材料保持运动和分散。
在一些实施方式中,所述颗粒分散装置可以选自超声分散装置、机械振动装置、旋转装置、摆动装置、介质撞击装置和气流分散装置中的任意一种或更多种。
在一些实施方式中,所述正极材料可以选自磷酸铁锂、磷酸钴锂、钴酸锂、锰钴酸锂、镍钴锰酸锂和镍钴铝酸锂中的任意一种或更多种。
在一些实施方式中,所述导电材料可以选自导电的金属和金属氧化物中的任意一种或更多种;所述金属可以选自金、铂、铬、锌、锡、银、钴、镍、铝、钛和铁中的任意一种或更多种;所述金属氧化物可以选自氧化铟锡、掺铝氧化锌和掺氟二氧化锡中的任意一种或更多种。
在一些实施方式中,磁控溅射的功率可以为5W至500W。
在一些实施方式中,磁控溅射的时间可以为1min至30min。
在一些实施方式中,磁控溅射可以在惰性气氛的真空室中进行,所述真空室内的工作温度可以为10℃至400℃,所述惰性气氛可以为氩气。
在一些实施方式中,磁控溅射时真空室内的真空度可以为0.1Pa至100Pa,例如,0.3Pa至0.6Pa。
在一些实施方式中,可以进行一次溅射或更多次重复溅射,例如可以进行1次至100次溅射。其中重复溅射为在溅射之后放气调节振动,然后再次抽真空,再次开始溅射。
在一些实施方式中,所述导电层的质量可以占改性得到的正极材料的总质量的0.1%至10%。
应理解,改性锂离子电池正极材料时采用的导电材料并不限于上述所列举的具体材料,能够实现各种试剂的作用的材料均可用于本申请的改性锂离子电池正极材料的方法;同时,本申请的改性锂离子电池正极材料的方法所适用的正极材料也不限于上述所列举的具体材料。上述所列举的具体材料并非对本申请作出任何形式上或实质上的限定。
本申请还提供了一种锂离子电池正极材料,所述锂离子电池正极材料通过如上所述的改性方法得到。
本申请具有的有益效果在于:
1、通过本申请的改性方法得到的锂离子电池正极材料,表面形成导电层,可以大幅提升正极材料的导电性能,当形成的是不连续的导电层时,电解液能够更好地浸润正极材料,从而提高了正极材料的循环比容量和倍率性能;
2、与常用的化学镀或高温碳化包覆方法相比,采用磁控溅射法可以增强导电层与正极材料的结合力,降低充放电过程中由于正极材料体积的收缩-膨胀-收缩过程导致的导电层的脱落问题,提升大电流充放电的稳定性;
3、采用磁控溅射法改性正极材料具有较高的可控性、极短的处理时间,并能够实现连续化和自动化生产,具有极高的应用价值。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得更加清楚,或者通过实施本申请而了解。本申请的目的和其他优 点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图概述
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为本申请实施例的磁控溅射设备示意图;
图2为未改性的磷酸铁锂和本申请实施例1的改性磷酸铁锂的扫描电子显微镜图和EDS能谱图;
图3为未改性的磷酸铁锂和本申请实施例1至3的改性磷酸铁锂的X射线光电子能谱图;
图4为未改性的磷酸铁锂和本申请实施例1至3的改性磷酸铁锂的X射线衍射图;
图5为未改性的磷酸铁锂和本申请实施例1至3的改性磷酸铁锂制成的扣式电池的首次充放电容量图;
图6为未改性的磷酸铁锂和本申请实施例1至3的改性磷酸铁锂制成的扣式电池的循环性能曲线图;
图7为未改性的磷酸铁锂和本申请实施例1至3的改性磷酸铁锂制成的扣式电池的倍率性能曲线图;
图8为未改性的磷酸铁锂和本申请实施例1至5的改性磷酸铁锂制成的扣式电池的交流阻抗乃奎斯特图。
图中:1.真空室;2.样品台;3.加热器;4.超声波发生器;5.步进电机;6.溅射靶架。
详述
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申 请中的实施例及实施例中的特征可以相互任意组合。
在本申请实施例中,使用磁控溅射设备对锂离子电池正极材料进行改性,所述磁控溅射设备可以为现有的任意的磁控溅射设备,例如,如图1所示的磁控溅射设备,其包括真空室1以及安装在真空室1内的加热器3和溅射靶架6;颗粒分散装置可以采用超声分散装置,超声分散装置包括超声波发生器4、进步电机5和样品台2,其中超声波发射器4和进步电机5位于真空室1之外,样品台2位于真空室1之内,可以将正极材料粉体置于样品台2之上,步进电机5使样品台2能够往复运动,超声振动和往复运动使样品台2上的正极材料粉体保持运动和均匀分散;加热器3提供溅射过程中真空室1内需要的温度;导电材料的靶材安装于溅射靶架6上。
对电池正极材料进行改性时,将正极材料粉体均匀放置于颗粒分散装置的样品台上,通过机械泵和分子泵将真空室1抽至一定气压,真空度可以在0.1Pa~0.6Pa左右,例如,可以为0.3Pa至0.6Pa。将一定量的惰性气体充入真空室1中。打开颗粒分散装置使正极材料保持运动和分散,在一定温度条件下,以一定溅射功率溅射一定时间,得到表面镀有导电层的改性正极材料。惰性气体可以为氩气,磁控溅射的温度可以为10℃至400℃,溅射功率可以为5W至500W,溅射时间可以为1min至30min。
实施例1
正极材料:磷酸铁锂(LiFePO 4,LFP)
导电材料靶材:银靶材
颗粒分散装置:超声分散装置
磁控溅射功率:30W
磁控溅射时间:5min
磁控溅射次数:3次
真空室的工作温度:20℃
真空度:0.6Pa
导电层结构:点状结构
导电层占改性正极材料的质量百分比:1.24%
超声分散装置安装在真空室中,将磷酸铁锂粉体均匀放置于超声分散装置的样品台上,通过机械泵和分子泵将真空室抽至真空度0.6Pa,将部分氩气充入真空室。打开超声分散装置使磷酸铁锂保持运动和分散,选用银靶材,以30W溅射功率处理5min;然后放气调节振动,再次抽真空按上述条件进行重复溅射,重复溅射3次,得到表面镀有点状结构不连续银导电层的改性磷酸铁锂。
实施例2
正极材料:磷酸铁锂(LiFePO 4,LFP)
导电材料靶材:钴靶材
颗粒分散装置:超声分散装置
磁控溅射功率:30W
磁控溅射时间:5min
磁控溅射次数:3次
真空室的工作温度:20℃
真空度:0.6Pa
导电层结构:点状结构
导电层占改性正极材料的质量百分比:0.38%
超声分散装置安装在真空室中,将磷酸铁锂粉体均匀放置于超声分散装置的样品台上,通过机械泵和分子泵将真空室抽至真空度0.6Pa,将部分氩气充入真空室。打开超声分散装置使磷酸铁锂保持运动和分散,选用钴靶材,以30W溅射功率处理5min,然后放气调节振动,再次抽真空按上述条件进行重复溅射,重复溅射3次,得到表面镀有点状结构不连续钴导电层的改性磷酸铁锂。
实施例3
正极材料:磷酸铁锂(LiFePO 4,LFP)
导电材料靶材:氧化铟锡(Indium tin oxide,ITO)靶材
颗粒分散装置:超声分散装置
磁控溅射功率:30W
磁控溅射时间:5min
磁控溅射次数:2次
真空室的工作温度:200℃
真空度:0.6Pa
导电层结构:点状结构
导电层占改性正极材料的质量百分比:0.92%
超声分散装置安装在真空室舱中,将磷酸铁锂粉体均匀放置于超声分散装置的样品台上,通过机械泵和分子泵将真空室舱抽至真空度0.6Pa,将部分氩气充入真空舱室。打开超声分散装置使磷酸铁锂保持运动和分散,选用氧化铟锡靶材,以30W溅射功率处理5min,然后放气调节振动,再次抽真空按上述条件进行重复溅射,重复溅射2次,得到表面镀有点状结构不连续氧化铟锡导电层的改性磷酸铁锂。
实施例4
正极材料:磷酸铁锂(LiFePO 4,LFP)
导电材料靶材:铝靶材
颗粒分散装置:超声分散装置
磁控溅射功率:30W
磁控溅射时间:5min
磁控溅射次数:3次
真空室的工作温度:20℃
真空度:0.6Pa
导电层结构:点状结构
导电层占改性正极材料的质量百分比:1%
超声分散装置安装在真空室中,将磷酸铁锂粉体均匀放置于超声分散装 置的样品台上,通过机械泵和分子泵将真空室抽至真空度0.6Pa,将部分氩气充入真空室。打开超声分散装置使磷酸铁锂保持运动和分散,选用铝靶材,以30W溅射功率处理5min,然后放气调节振动,再次抽真空按上述条件进行重复溅射,重复溅射3次,得到表面镀有点状结构不连续铝导电层的改性磷酸铁锂。
实施例5
正极材料:磷酸铁锂(LiFePO 4,LFP)
导电靶材材料:铁靶材
颗粒分散装置:超声分散装置
磁控溅射功率:30W
磁控溅射时间:5min
磁控溅射次数:3次
真空室的工作温度:20℃
真空度:0.6Pa
导电层结构:点状结构
导电层占改性正极材料的质量百分比:1%
超声分散装置安装在真空室中,将磷酸铁锂粉体均匀放置于超声分散装置的样品台上,通过机械泵和分子泵将真空室抽至真空度0.6Pa,将部分氩气充入真空室。打开超声分散装置使磷酸铁锂保持运动和分散,选用铁靶材,以30W溅射功率处理5min,然后放气调节振动,再次抽真空按上述条件进行重复溅射,重复溅射3次,得到表面镀有点状结构不连续铁导电层的改性磷酸铁锂。
实施例6
正极材料:钴酸锂(LiCoO 2,LCO)
导电靶材材料:银靶材
颗粒分散装置:超声分散装置
磁控溅射功率:50W
磁控溅射时间:5min
磁控溅射次数:3次
真空室的工作温度:40℃
真空度:0.6Pa
导电层结构:点状结构
导电层占改性正极材料的质量百分比:1.3%
超声分散装置安装在真空室中,将钴酸锂粉体均匀放置于超声分散装置的样品台上,通过机械泵和分子泵将真空室抽至真空度0.6Pa,将部分氩气充入真空室。打开超声分散装置使磷酸铁锂保持运动和分散,选用银靶材,以50W溅射功率处理5min,然后放气调节振动,再次抽真空按上述条件进行重复溅射,重复溅射3次,得到表面镀有点状结构不连续铁导电层的改性钴酸锂。
实施例7
正极材料:钴酸锂(LiCoO 2,LCO)
导电靶材材料:银靶材
颗粒分散装置:超声分散装置
磁控溅射功率:50W
磁控溅射时间:5min
磁控溅射次数:4次
真空室的工作温度:40℃
真空度:0.8Pa
导电层结构:点状结构
导电层占改性正极材料的质量百分比:1.5%
超声分散装置安装在真空室中,将钴酸锂粉体均匀放置于超声分散装置的样品台上,通过机械泵和分子泵将真空室抽至真空度0.8Pa,将部分氩气充入真空室。打开超声分散装置使磷酸铁锂保持运动和分散,选用铁靶材,以50W溅射功率处理5min,然后放气调节振动,再次抽真空按上述条件进行重 复溅射,重复溅射4次,得到表面镀有点状结构不连续铁导电层的改性磷酸铁锂。
实施例8
正极材料:磷酸铁锂(LiFePO 4,LFP)
导电材料靶材:氧化铟锡(Indium tin oxide,ITO)靶材
颗粒分散装置:超声分散装置
磁控溅射功率:25W
磁控溅射时间:5min
磁控溅射次数:2次
真空室的工作温度:200℃
真空度:0.6Pa
导电层结构:点状结构
导电层占改性正极材料的质量百分比:0.92%
超声分散装置安装在真空室舱中,将磷酸铁锂粉体均匀放置于超声分散装置的样品台上,通过机械泵和分子泵将真空室舱抽至真空度0.6Pa,将部分氩气充入真空舱室。打开超声分散装置使磷酸铁锂保持运动和分散,选用氧化铟锡靶材,以25W溅射功率处理5min,然后放气调节振动,再次抽真空按上述条件进行重复溅射,重复溅射2次,得到表面镀有点状结构不连续氧化铟锡导电层的改性磷酸铁锂。
实施例9
正极材料:磷酸铁锂(LiFePO 4,LFP)
导电靶材材料:铁靶材
颗粒分散装置:超声分散装置
磁控溅射功率:50W
磁控溅射时间:5min
磁控溅射次数:3次
真空室的工作温度:40℃
真空度:0.6Pa
导电层结构:点状结构
导电层占改性正极材料的质量百分比:1%
超声分散装置安装在真空室舱中,将磷酸铁锂粉体均匀放置于超声分散装置的样品台上,通过机械泵和分子泵将真空室舱抽至真空度0.6Pa,将部分氩气充入真空舱室。打开超声分散装置使磷酸铁锂保持运动和分散,选用氧化铟锡靶材,以50W溅射功率处理5min,然后放气调节振动,再次抽真空按上述条件进行重复溅射,重复溅射3次,得到表面镀有点状结构不连续氧化铟锡导电层的改性磷酸铁锂。
性能测试
1、采用扫描电子显微镜(LEO 1530VP)测试未改性的磷酸铁锂和实施例1的镀银导电层改性磷酸铁锂的微观形貌和EDS能谱图,测试结果请见图2。
图2中的(a)图和(b)图分别为未改性的磷酸铁锂和实施例1的镀银导电层改性磷酸铁锂的扫描电子显微镜图。从图2中的(a)图和(b)图可以看出:未镀银导电层的磷酸铁锂颗粒粒径为1μm左右,改性后仍为1μm左右,镀银导电层对磷酸铁锂颗粒的形貌和粒径没有明显改变。
图2中的(c)图和(d)图分别为未改性的磷酸铁锂和实施例1的镀银导电层改性磷酸铁锂的EDS能谱图。EDS能谱图能够显示某一区域内原子序数6以上的元素含量。从图2中的(c)图和(d)图可以看出:银占改性磷酸铁锂的质量百分比为1.8%。
2、采用X射线光电子能谱仪(ESCALAB250)测试未改性的磷酸铁锂和本申请实施例1至3中镀银、钴、氧化铟锡导电层的改性磷酸铁锂的X射线光电子能谱图(XPS),测试结果请见图3。
XPS图像能测出导电层的含量,并且XPS测出的含量准确性高于EDS的测试结果。从图3中可以看出:实施例1中在磷酸铁锂表面镀银导电层,银占改性磷酸铁锂的质量百分比为1.24%;实施例2中在磷酸铁锂表面镀钴 导电层,钴占改性磷酸铁锂的质量百分比为0.38%;实施例3中在磷酸铁锂颗粒表面镀氧化铟锡导电层,氧化铟锡占改性磷酸铁锂的质量百分比为0.92%。
3、采用X射线衍射仪(Bruke,Germany)测试未改性的磷酸铁锂和本申请实施例1-3中镀银、钴、氧化铟锡导电层的改性磷酸铁锂的X射线衍射图像(XRD),测试结果请见图4。图4中(a)代表LFP,(b)代表LFP+Ag,(c)代表LFP+Co,(d)代表LFP+ITO。
由于XRD测试精度有限,本申请中实施例1-3中导电层占改性磷酸铁锂的质量百分比都在5%以下,一般不会被XRD检测到,所以镀导电层前后的XRD图像基本没有差别。
4、利用JADE软件计算晶体的晶胞参数,如表1所示:
表1 晶体的晶胞参数
Figure PCTCN2018091993-appb-000001
从表1可以看出,导电层并未对磷酸铁锂的晶体结构带来改变,说明本申请的改性方法是物理改性。
5、采用蓝电电池测试设备(LAND CT2001A)分别测试未改性的磷酸铁锂和本申请实施例1至3中镀银、钴、氧化铟锡导电层的改性磷酸铁锂制成的扣式电池的首次充放电曲线,测试结果请见图5。
从图5可以看出:实施例1至3的导电层能够明显提高磷酸铁锂的比容量,充放电曲线变得更加平缓,电压平台差变小,说明本申请的改性方法能够提高磷酸铁锂的比容量,并减小电池极化。
6、采用蓝电电池测试设备(LAND CT2001A)分别测试未改性的磷酸铁锂和本申请实施例1至3中镀银、钴、氧化铟锡导电层的改性磷酸铁锂制成的扣式电池的循环性能曲线和倍率性能曲线,测试结果请见图6和图7。
从图6、图7可以看出:未改性的磷酸铁锂制成的扣式电池的比容量为150mAh/g,2C放电容量为50mAh/g;实施例1的镀银导电层改性磷酸铁锂 制成的扣式电池的比容量为163mAh/g,2C放电容量为100mAh/g;实施例2的镀钴导电层改性磷酸铁锂制成的扣式电池的比容量为155mAh/g,2C放电容量为70mAh/g;实施例3的镀氧化铟锡导电层改性磷酸铁锂制成的扣式电池的比容量为160mAh/g,2C放电容量为120mAh/g。可见,改性后的磷酸铁锂比容量增加,特别是倍率性能有较为明显的提升。
7、采用德国扎纳电化学工作站设备测试未改性的磷酸铁锂和本申请实施例1-5中镀银、钴、氧化铟锡、铝、铁导电层的改性磷酸铁锂制成的扣式电池的交流阻抗乃奎斯特图,测试结果请见图8。
由乃奎斯特图可以计算出不同材料制成的电池的欧姆电阻、电荷转移电阻和锂离子扩散速率。电荷转移电阻是乃奎斯特图半圆部分的直径,扣式电池充放电过程中,电阻越小,越有利于提高材料的导电性和电化学性能。从图8可以看出:本申请改性后的磷酸铁锂制成的扣式电池的阻抗大大减小;实施例1镀银导电层、实施例2镀钴导电层和实施例3镀氧化铟锡导电层改性后的磷酸铁锂制成的扣式电池的电荷转移电阻只有未改性的磷酸铁锂的三分之一,实施例4镀铝导电层改性后的磷酸铁锂制成的扣式电池的电荷转移电阻为未改性的磷酸铁锂的二分之一,实施例5镀铁导电层改性后的磷酸铁锂制成的扣式电池的电荷转移电阻稍微减小。可见本申请的改性方法能有效提高磷酸铁锂的导电性。
本公开内容是本申请实施例的原则的示例,并非对本申请作出任何形式上或实质上的限定,或将本申请限定到具体的实施方案。对本领域的技术人员而言,很显然本申请实施例的技术方案的要素、方法和系统等,可以进行变动、改变、改动、演变,而不背离如上所述的本申请的实施例、技术方案的,如权利要求中所定义的原理、精神和范围。这些变动、改变、改动、演变的实施方案均包括在本申请的等同实施例内,这些等同实施例均包括在本申请的由权利要求界定的范围内。虽然可以许多不同形式来使本申请实施例具体化,但此处详细描述的是本申请的一些实施方案。此外,本申请的实施例包括此处所述的各种实施方案的一些或全部的任意可能的组合,也包括在本申请的由权利要求界定的范围内。在本申请中或在任一个引用的专利、引用的专利申请或其它引用的资料中任何地方所提及的所有专利、专利申请和 其它引用资料据此通过引用以其整体并入。
以上公开内容规定为说明性的而不是穷尽性的。对于本领域技术人员来说,本说明书会暗示许多变化和可选择方案。所有这些可选择方案和变化旨在被包括在本权利要求的范围内,其中术语“包括”意思是“包括,但不限于”。
在此完成了对本申请可选择的实施方案的描述。本领域技术人员可认识到此处所述的实施方案的其它等效变换,这些等效变换也为由附于本文的权利要求所包括。

Claims (13)

  1. 一种改性锂离子电池正极材料的方法,所述方法包括以下步骤:使粉体形式的锂离子电池的正极材料保持运动和分散,采用磁控溅射法将导电材料的靶材溅射至所述正极材料的表面,从而在所述正极材料的表面形成导电层。
  2. 根据权利要求1所述的方法,其中,所述导电材料选自导电的金属和金属氧化物中的任意一种或更多种。
  3. 根据权利要求2所述的方法,其中,所述金属选自金、铂、铬、锌、锡、银、钴、镍、铝、钛和铁中的任意一种或更多种。
  4. 根据权利要求2或3所述的方法,其中,所述金属氧化物选自氧化铟锡、掺铝氧化锌和掺氟二氧化锡中的任意一种或更多种。
  5. 根据权利要求1至4中任一项所述的方法,其中,磁控溅射的功率为5W至500W;任选地,磁控溅射的时间为1min至30min。
  6. 根据权利要求1至5中任一项所述的方法,其中,磁控溅射在惰性气氛的真空室中进行,任选地,所述真空室内的工作温度为10℃至400℃,所述惰性气氛为氩气,磁控溅射时真空室内的真空度为0.1Pa至100Pa,还任选地,磁控溅射时真空室内的真空度为0.3Pa至0.6Pa。
  7. 根据权利要求1至6中任一项所述的方法,其中,进行一次溅射或更多次重复溅射;任选地,进行1次至100次溅射。
  8. 根据权利要求1至7中任一项所述的方法,其中,所述导电层为不连续导电层;任选地,所述不连续导电层为点状、网状或岛状结构。
  9. 根据权利要求1至8中任一项所述的方法,其中,采用颗粒分散装置使所述正极材料保持运动和分散。
  10. 根据权利要求9所述的方法,其中,所述颗粒分散装置选自超声分散装置、机械振动装置、旋转装置、摆动装置、介质撞击装置和气流分散装置中的任意一种或更多种。
  11. 根据权利要求1至10中任一项所述的方法,其中,所述正极材料选 自磷酸铁锂、磷酸钴锂、钴酸锂、锰钴酸锂、镍钴锰酸锂和镍钴铝酸锂中的任意一种或更多种。
  12. 根据权利要求1至11中任一项所述的方法,其中,所述导电层的质量占改性得到的正极材料的总质量的0.1%至10%。
  13. 一种锂离子电池正极材料,所述锂离子电池正极材料通过权利要求1至12中任一项所述的方法改性得到。
PCT/CN2018/091993 2018-04-28 2018-06-20 一种改性锂离子电池正极材料的方法及得到的正极材料 WO2019205263A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810408100.6 2018-04-28
CN201810408100.6A CN108649179A (zh) 2018-04-28 2018-04-28 一种改性锂离子电池正极材料的方法

Publications (1)

Publication Number Publication Date
WO2019205263A1 true WO2019205263A1 (zh) 2019-10-31

Family

ID=63748801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091993 WO2019205263A1 (zh) 2018-04-28 2018-06-20 一种改性锂离子电池正极材料的方法及得到的正极材料

Country Status (2)

Country Link
CN (1) CN108649179A (zh)
WO (1) WO2019205263A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449442B (zh) * 2018-10-25 2021-08-27 贵州梅岭电源有限公司 一种热电池正极材料用的复合电子导电剂
CN111313003B (zh) * 2020-02-28 2022-02-08 桂林电子科技大学 快充型改性镍钴锰三元正极材料及其制备方法和应用
CN112864386A (zh) * 2020-12-17 2021-05-28 北京工业大学 一种提高锂离子电池正极材料性能的表面处理方法
CN115332479A (zh) * 2022-10-11 2022-11-11 中创新航科技股份有限公司 一种锂离子电池的正极极片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393984A (zh) * 2008-11-06 2009-03-25 上海交通大学 一种锂离子电池正极材料及其制备方法
US20140106186A1 (en) * 2012-10-12 2014-04-17 Ut-Battelle, Llc LIPON COATINGS FOR HIGH VOLTAGE AND HIGH TEMPERATURE Li-ION BATTERY CATHODES
CN104810512A (zh) * 2015-05-06 2015-07-29 中信国安盟固利电源技术有限公司 一种包覆改性的正极材料及其制备方法
CN107689447A (zh) * 2016-08-03 2018-02-13 三星电子株式会社 复合正极活性材料、包括其的正极、和包括所述正极的锂电池
CN107732222A (zh) * 2017-11-02 2018-02-23 洛阳月星新能源科技有限公司 一种钛酸锂复合材料及其制备方法,钛酸锂电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102779988B (zh) * 2012-08-06 2016-04-27 常州大学 一种锂离子电池复合负极材料镀膜的改性方法
CN106521437B (zh) * 2016-10-28 2018-09-25 北京科技大学 一种粉末颗粒振动式磁控溅射镀膜法
CN106803586B (zh) * 2017-03-01 2020-04-10 深圳市贝特瑞纳米科技有限公司 一种复合正极材料、其制备方法及包含该复合正极材料的锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393984A (zh) * 2008-11-06 2009-03-25 上海交通大学 一种锂离子电池正极材料及其制备方法
US20140106186A1 (en) * 2012-10-12 2014-04-17 Ut-Battelle, Llc LIPON COATINGS FOR HIGH VOLTAGE AND HIGH TEMPERATURE Li-ION BATTERY CATHODES
CN104810512A (zh) * 2015-05-06 2015-07-29 中信国安盟固利电源技术有限公司 一种包覆改性的正极材料及其制备方法
CN107689447A (zh) * 2016-08-03 2018-02-13 三星电子株式会社 复合正极活性材料、包括其的正极、和包括所述正极的锂电池
CN107732222A (zh) * 2017-11-02 2018-02-23 洛阳月星新能源科技有限公司 一种钛酸锂复合材料及其制备方法,钛酸锂电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM, YOONGU: "High Voltage Stability of LiCo02 Particles with A Nano-sca- le Lipon Coating", ELECTROCHIMICA ACTA, 30 July 2011 (2011-07-30), XP028239527 *

Also Published As

Publication number Publication date
CN108649179A (zh) 2018-10-12

Similar Documents

Publication Publication Date Title
WO2019205263A1 (zh) 一种改性锂离子电池正极材料的方法及得到的正极材料
CN109742377B (zh) 一种高镍三元正极材料表面改性的方法
CN107768720B (zh) 基于液态电解液的无负极二次锂电池
CN109616630B (zh) 一种均匀碳膜和垂直石墨烯双重包覆的硅-碳复合材料及其制备方法与锂离子电池应用
CN104247105B (zh) 包含多孔硅氧化物‑碳材料复合物的负极活性材料及其制备方法
CN108232320A (zh) 全固态薄膜锂离子电池的制备方法及全固态薄膜锂离子电池
CN111517374B (zh) 一种Fe7S8/C复合材料的制备方法
CN103956520A (zh) 基于三维石墨烯支架结构的高性能锂离子电池制备方法
CN101222047B (zh) 薄膜锂离子电池的负极材料及其制备方法
CN108365259B (zh) 一种锂离子固体电解质及其制备方法与应用
CN115668534A (zh) 电池及电池的制造方法
Chen et al. Enhancement of the lithium cycling capability using Li–Zn alloy substrate for lithium metal batteries
Javadian et al. Pulsed current electrodeposition parameters to control the Sn particle size to enhance electrochemical performance as anode material in lithium ion batteries
CN102800867A (zh) 一种用于锂离子电池的硅基负极材料
Zhang et al. Carbon-coated SnO 2 thin films developed by magnetron sputtering as anode material for lithium-ion batteries
CN113871620A (zh) 一种超薄界面修饰的锌金属负极材料、其制备及应用
CN109216760A (zh) 全固态锂离子电池及其制备方法
JP2005071655A (ja) 非水電解液二次電池用負極材料及びその製造方法並びにこれを用いた非水電解液二次電池
CN110474037B (zh) 一种多孔硅碳复合负极材料的制备方法
CN108390030A (zh) 一种面向SiO2/C负极的表面修饰方法
CN113151790B (zh) 离子/电子共导体薄膜及其制备方法、固态电池及电动车
KR20160048504A (ko) 나트륨이차전지용 주석계 음극활물질, 음극활물질 제조방법 및 음극활물질을 포함하는 나트륨이차전지
CN115050920A (zh) 一种锑基一体化电极及其制备方法和应用
WO2021179219A1 (zh) 阳极极片及其制备方法、采用该极片的电池及电子装置
CN112909223A (zh) 一种锂离子电池负极及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916350

Country of ref document: EP

Kind code of ref document: A1