WO2019205248A1 - 一种持久高通量油水膜的制备方法 - Google Patents

一种持久高通量油水膜的制备方法 Download PDF

Info

Publication number
WO2019205248A1
WO2019205248A1 PCT/CN2018/091231 CN2018091231W WO2019205248A1 WO 2019205248 A1 WO2019205248 A1 WO 2019205248A1 CN 2018091231 W CN2018091231 W CN 2018091231W WO 2019205248 A1 WO2019205248 A1 WO 2019205248A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
flux
water separation
membrane
water
Prior art date
Application number
PCT/CN2018/091231
Other languages
English (en)
French (fr)
Inventor
姜忠义
贺明睿
张润楠
刘亚楠
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2019205248A1 publication Critical patent/WO2019205248A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes

Definitions

  • the invention relates to a preparation method of a long-lasting high-flux oil-water separation membrane, and belongs to the technical field of preparation of ultrafiltration membranes.
  • Membrane separation is a multi-disciplinary high-tech that covers chemical engineering, materials science, process engineering, etc. It is a separation medium that is selective to a component of a mixture, exerting some driving force on both sides of the membrane to make the mixture The components in the medium are selectively transferred from one side of the membrane to the other.
  • Ultrafiltration membrane is one of the membrane separation technologies aiming at the separation of macromolecules and small molecules by pressure. As a new separation technology, ultrafiltration membranes can effectively retain suspended particles, colloids, macromolecules, algae and bacteria, and thus have been applied in many aspects. Seawater desalination pretreatment is one of the important applications of ultrafiltration technology, but in the actual application process, ultrafiltration technology still faces problems such as low processing flux and serious membrane fouling problems.
  • Membrane fouling usually refers to the phenomenon that the effective pore size of the membrane is gradually reduced due to the physical, chemical, biochemical or mechanical action of particles, micelles, microorganisms, etc. in the treatment liquid due to physical, chemical, biochemical or mechanical action on the surface or pores of the membrane. Blockage, even the formation of a filter cake layer or a gel layer, results in a continuous decrease in the permeation flux of the membrane consistently unusable.
  • There are many ways to improve and mitigate membrane fouling to extend the life of the membrane such as increasing the flow rate of the membrane surface, establishing and optimizing the cleaning scheme, and developing ultrafiltration membranes with anti-pollution properties, among which, anti-pollution is developed. Ultrafiltration membranes are the fundamental way to solve the problem of membrane fouling.
  • hydrophilic anti-contaminant materials capable of exhibiting a good anti-pollution effect and widely recognized mainly include polyoxyethylene-based polymers, zwitterionic polymers, and other hydrophilic anti-contaminating materials.
  • Surface modification methods commonly used today include surface coating, surface grafting, and surface segregation. The result of surface grafting and surface segregation is usually to introduce a linear or brush-like hydrophilic polymer chain on the surface of the membrane. Although the hydrophilicity of the membrane surface is improved, it is difficult for the relatively flexible polymer chain to completely block the pollutant. Migration to the surface of the membrane.
  • the polymer network constructed by the surface coating method has a good effect on the migration of pollutants to the surface of the film, but it is restricted by the coating technology. When the coating is thin, it is difficult to uniformly cover the surface of the film, so that the anti-pollution layer is formed with defects. When the layer is thick, the water permeability resistance is significantly increased, and the permeability of the film is lowered.
  • the object of the present invention is to provide a method for preparing a long-lasting high-throughput oil-water separation membrane which is simple and easy to handle, and the prepared oil-water separation membrane has a long-lasting high-flux and good separation performance.
  • the present invention provides a method for preparing a long-lasting high-throughput oil-water separation membrane, comprising the following steps:
  • Step 1 Configuration of casting solution: Polyvinylidene fluoride, polyvinylpyrrolidone and dimethylformamide were added into the container at a mass ratio of 7:5:38, heated and stirred in a water bath at 70 ° C for 6 h, then defoamed for 4 h at rest. , cooled to room temperature for use;
  • Step 2 the configuration of the coagulation bath: a polyacrylic acid aqueous solution having a molecular weight of 5 to 50 kDa and a mass volume concentration of 1 to 4 g/L is added to the vessel, and stirred at room temperature for 1 hour;
  • Step 3 Preparation of the oil-water separation membrane:
  • the cast film liquid disposed in the first step is poured onto a glass plate and scraped into a 200 ⁇ m thick liquid film, and placed in a coagulation bath disposed in the second step of the thermostat to 25 ° C for 10 minutes.
  • the film was solidified, removed from the glass plate and immersed in deionized water for 24 hours to obtain a long-lasting high-fluid oil-water separation membrane.
  • the polyvinylpyrrolidone has a molecular weight of 10 kDa.
  • the polyvinylidene fluoride is selected from the group consisting of polyvinylidene fluoride of the FR921-2 type.
  • the invention has the advantages that the preparation method can be formed by a one-step method, and the anti-contamination layer structure of the membrane surface can be controlled by the molecular weight and concentration of the polyacrylic acid in the coagulation bath, and the prepared oil-water separation membrane has a long-lasting high-flux.
  • Figure 1 is a five-cycle flux change diagram of a comparative membrane-filtered 1 g/L peanut oil emulsion (containing 0.1 g/L emulsifier sodium dodecyl sulfate) prepared in a comparative example;
  • Example 2 is a five-cycle flux variation diagram of a long-term high-flux oil-water separation membrane 14 prepared according to Example 14 of the present invention for filtering 1 g/L peanut oil emulsion (containing 0.1 g/L emulsifier sodium dodecyl sulfate). .
  • Comparative Example preparing a comparative oil-water separation membrane prepared by adding 140 mg of polyvinylidene fluoride (type FR921-2), 100 mg of polyvinylpyrrolidone (molecular weight 10 kDa) and 760 mg of dimethylformamide to a round bottom flask at 70 The mixture was heated and stirred for 6 hours in a water bath at °C, and then defoamed for 4 hours at rest to obtain a casting solution. After cooling the casting solution to room temperature, it was poured into a glass plate and scraped into a liquid film of about 200 ⁇ m, and placed in a coagulation bath at a constant temperature of 25 ° C in 1 L of deionized water. The film was solidified for 10 minutes and removed from the glass plate. The oil-water separation membrane was prepared by soaking in deionized water for 24 hours.
  • Figure 1 is a five-cycle flux change diagram of a 1 g/L peanut oil emulsion (containing 0.1 g/L emulsifier sodium dodecyl sulfate) filtered by an oil-water separation membrane prepared in a comparative example.
  • the content of each cycle is: pure Water (30 min) - oil-water emulsion (60 min) - wash (20 min, this time not shown in the figure) - pure water (30 min).
  • the ratio of the oil-water separation membrane prepared in the comparative example was 1229Lm -2 h -1 bar -1 in pure water, and the specific oil flux of the separated oil-water emulsion was 224Lm -2 h -1 bar -1 , and the interception of 1g/L emulsified oil was carried out.
  • the rate was 99%.
  • the flux retention rate end flux/initial flux
  • Example 1 Preparation of a long-lasting high-throughput oil-water separation membrane, the steps are as follows:
  • Step 1 Configuration of casting solution: 140 mg of polyvinylidene fluoride (type FR921-2), 100 mg of polyvinylpyrrolidone (molecular weight 10 kDa) and 760 mg of dimethylformamide were added to a round bottom flask, and heated and stirred in a water bath at 70 ° C for 6 h. And then defoamed for 4 h at rest.
  • Step 2 Configuration of coagulation bath: 1 g of polyacrylic acid having a molecular weight of 5 kDa and 1 L of deionized water were added to a beaker, and stirred at room temperature for 1 h. The polyacrylic acid aqueous solution having a mass concentration of 1 g/L was a coagulation bath.
  • Step 3 Preparation of oil-water separation membrane: After cooling the casting solution liquid arranged in the first step to room temperature, the liquid film is scraped into a glass plate and scraped into a liquid film of about 200 ⁇ m, and the coagulation bath disposed in the second step of thermostat to 25 ° C is placed. The film was solidified for 10 minutes, and was taken out from the glass plate and immersed in deionized water for 24 hours to obtain a long-lasting high-fluid oil-water separation membrane, which was recorded as a long-lasting high-fluid oil-water separation membrane.
  • Example 1 High Throughput prepared lasting water separation membrane pure water flux ratio 961Lm -2 h -1 bar -1, emulsion oil-water separation ratio of flux -2 h -1 bar -1 418Lm, for The retention rate of 1g/L emulsified oil is 99.1%. After 60min oil-water separation and cleaning with pure water shear flow, the flux retention rate (end flux/initial flux) is 65%, and the flux retention rate after 5 cycles is 52%. %.
  • Example 2 preparing a long-lasting high-throughput oil-water separation membrane, the preparation process is basically the same as that in the first embodiment, except that in the second step, the coagulation bath is configured to have a mass volume concentration of 2 g/L polyacrylic acid aqueous solution, and finally obtained.
  • Long-lasting high-throughput oil-water separation membrane 2 The coagulation bath is configured to have a mass volume concentration of 2 g/L polyacrylic acid aqueous solution, and finally obtained.
  • Example persistent high throughput separation membrane 2 in water than the pure water flux 593Lm -2 h -1 bar -1 for the separation of oil-water emulsions than the flux -2 h -1 bar -1 390Lm, for
  • the retention rate of 1g/L emulsified oil is 99.6%.
  • the flux retention rate end flux/initial flux
  • the flux retention rate after 5 cycles is 81. %.
  • Example 3 preparing a long-lasting high-throughput oil-water separation membrane, the preparation process is basically the same as that in the first embodiment, except that in the second step, the coagulation bath is configured to have a mass volume concentration of 3 g/L polyacrylic acid aqueous solution, and finally obtained. Long lasting high-throughput oil-water separation membrane 3.
  • the retention rate of 1g/L emulsified oil is 100%.
  • the flux retention rate end flux/initial flux
  • the flux retention rate after 5 cycles is 84%. %.
  • Example 4 preparing a long-lasting high-throughput oil-water separation membrane, the preparation process is basically the same as that in the first embodiment, except that in the second step, the coagulation bath is configured to have a mass volume concentration of 4 g/L polyacrylic acid aqueous solution, and finally obtained. Long lasting high-throughput oil-water separation membrane 4.
  • Example 4 Prepared in Example persistent high throughput separation of oil and water 4 4 than in pure water flux 190Lm -2 h -1 bar -1 for the separation of oil-water emulsions than the flux -2 h -1 bar -1 162Lm, for
  • the retention rate of 1g/L emulsified oil is 100%.
  • the flux retention rate end flux/initial flux
  • the flux retention rate after 5 cycles is 86. %.
  • Example 5 preparing a long-lasting high-throughput oil-water separation membrane, the preparation process is basically the same as that in the first embodiment, except that in the second step, the molecular weight of the polyacrylic acid is 10 kDa, and the coagulation bath is configured to have a mass volume concentration of 1 g/L. An aqueous solution of acrylic acid finally produces a long-lasting high-throughput oil-water separation membrane 5.
  • Example 6 preparing a long-lasting high-throughput oil-water separation membrane, the preparation process of which is basically the same as that of the first embodiment, except that in the second step, the molecular weight of the polyacrylic acid is 10 kDa, and the coagulation bath is configured to have a mass volume concentration of 2 g/L.
  • An aqueous solution of acrylic acid finally produces a durable high-throughput oil-water separation membrane 6.
  • Example 7 preparing a long-lasting high-throughput oil-water separation membrane, the preparation process of which is basically the same as that of the first embodiment, except that in the second step, the molecular weight of the polyacrylic acid is 10 kDa, and the coagulation bath is configured to have a mass volume concentration of 2 g/L.
  • An aqueous solution of acrylic acid finally produces a durable high-throughput oil-water separation membrane 7.
  • Example 7 was prepared lasting high throughput than the pure water flux in the separation membrane 7 312Lm -2 h -1 bar -1 for the separation of oil-water emulsions than the flux -2 h -1 bar -1 212Lm, for The retention rate of 1g/L emulsified oil is 100%. After 60min oil-water separation and cleaning with pure water shear flow, the flux retention rate (end flux/initial flux) is 83%, and the flux retention rate after 5 cycles is 85%. %.
  • Example 8 preparing a long-lasting high-throughput oil-water separation membrane, the preparation process is basically the same as that of the first embodiment, except that in the second step, the molecular weight of the polyacrylic acid is 10 kDa, and the coagulation bath is configured to have a mass volume concentration of 2 g/L. An aqueous solution of acrylic acid finally produces a durable high-throughput oil-water separation membrane 8.
  • Example 8 prepared lasting high throughput embodiment of the separation membrane 8 in water than the pure water flux 202Lm -2 h -1 bar -1, emulsion oil-water separation ratio of flux -2 h -1 bar -1 188Lm, for The retention rate of 1g/L emulsified oil is 100%. After 60min oil-water separation and cleaning with pure water shear flow, the flux retention rate (end flux/initial flux) is 94%, and the flux retention rate after 5 cycles is 86. %.
  • Example 9 preparing a long-lasting high-throughput oil-water separation membrane, the preparation process of which is basically the same as that of the first embodiment, except that in the second step, the molecular weight of the polyacrylic acid is 20 kDa, and the coagulation bath is configured to have a mass volume concentration of 1 g/L.
  • An aqueous solution of acrylic acid finally produces a durable high-throughput oil-water separation membrane 9.
  • Example persistent high throughput separation membrane 9 9 water than pure water flux 1096Lm -2 h -1 bar -1, emulsion oil-water separation ratio of flux -2 h -1 bar -1 514Lm, for The interception rate of 1g/L emulsified oil was 99.4%. After 60min oil-water separation and cleaning with pure water shear flow, the flux retention rate (end flux/initial flux) was 67%, and the flux retention rate after 5 cycles was 53%. %.
  • Example 10 preparing a long-lasting high-throughput oil-water separation membrane, the preparation process of which is basically the same as that of the first embodiment, except that in the second step, the molecular weight of the polyacrylic acid is 20 kDa, and the coagulation bath is configured to have a mass volume concentration of 2 g/L.
  • An aqueous solution of acrylic acid finally produces a durable high-throughput oil-water separation membrane 10.
  • Example 10 prepared lasting high throughput embodiment water separation ratio of 10 in pure water flux 654Lm -2 h -1 bar -1, emulsion oil-water separation ratio of flux -2 h -1 bar -1 445Lm, for The retention rate of 1g/L emulsified oil is 100%. After 60min oil-water separation and cleaning with pure water shear flow, the flux retention rate (end flux/initial flux) is 93%, and the flux retention rate after 5 cycles is 84%. %.
  • Example 11 preparing a long-lasting high-throughput oil-water separation membrane, the preparation process of which is substantially the same as that of Example 1, except that in step 2, the molecular weight of the polyacrylic acid is 20 kDa, and the coagulation bath is configured to have a mass volume concentration of 3 g/L.
  • An aqueous solution of acrylic acid finally produces a durable high-throughput oil-water separation membrane 11.
  • Example 11 prepared lasting high throughput water separation ratio of 11 in pure water flux 344Lm -2 h -1 bar -1, emulsion oil-water separation ratio of flux -2 h -1 bar -1 231Lm, for The interception rate of 1g/L emulsified oil is 100%. After 60min oil-water separation and cleaning with pure water shear flow, the flux retention rate (end flux/initial flux) is 94%, and the flux retention rate after 5 cycles is 87. %.
  • Example 12 preparing a long-lasting high-throughput oil-water separation membrane, the preparation process of which is substantially the same as that of Example 1, except that in step 2, the molecular weight of the polyacrylic acid is 20 kDa, and the coagulation bath is configured to have a mass volume concentration of 4 g/L.
  • An aqueous solution of acrylic acid finally produces a durable high-throughput oil-water separation membrane 12.
  • Example persistent high water flux ratio of 12 in pure water flux of the separation membrane 12 is 224Lm -2 h -1 bar -1, emulsion oil-water separation ratio of flux -2 h -1 bar -1 201Lm, for The retention rate of 1g/L emulsified oil is 100%. After 60min oil-water separation and cleaning with pure water shear flow, the flux retention rate (end flux/initial flux) is 95%, and the flux retention rate after 5 cycles is 88. %.
  • Example 13 preparing a long-lasting high-throughput oil-water separation membrane, the preparation process of which is basically the same as that of the first embodiment, except that in the second step, the molecular weight of the polyacrylic acid is 50 kDa, and the coagulation bath is configured to have a mass volume concentration of 1 g/L.
  • An aqueous solution of acrylic acid finally produces a durable high-throughput oil-water separation membrane 13.
  • Example 13 prepared lasting high throughput than the water separator film 13 in pure water flux 1122Lm -2 h -1 bar -1 for the separation of oil-water emulsions than the flux -2 h -1 bar -1 558Lm, for The retention rate of 1g/L emulsified oil is 99.5%. After 60min oil-water separation and cleaning with pure water shear flow, the flux retention rate (end flux/initial flux) is 69%, and the flux retention rate after 5 cycles is 55. %.
  • Example 14 preparing a long-lasting high-throughput oil-water separation membrane, the preparation process of which is substantially the same as that of Example 1, except that in step 2, the molecular weight of the polyacrylic acid is 50 kDa, and the coagulation bath is configured to have a mass volume concentration of 2 g/L.
  • An aqueous solution of acrylic acid finally produces a durable high-throughput oil-water separation membrane 14.
  • Figure 2 is a diagram showing the five-cycle flux change of a 1 g/L peanut oil emulsion (containing 0.1 g/L emulsifier sodium dodecyl sulfate) in a long-lasting high-throughput oil-water separation membrane 14 prepared in Example 14, each The contents of the secondary cycle were: pure water (30 min) - oil-water emulsion (60 min) - washing (20 min, which is not shown in the figure) - pure water (30 min).
  • Example 14 Prepared in Example persistent high-throughput 14 water separation ratio of 14 in pure water flux 695Lm -2 h -1 bar -1, emulsion oil-water separation ratio of flux -2 h -1 bar -1 472Lm, for The interception rate of 1g/L emulsified oil is 100%. After 60min oil-water separation and cleaning with pure water shear flow, the flux retention rate (end flux/initial flux) is 95%, and the flux retention rate after 5 cycles is 87. %.
  • Example 15 preparing a long-lasting high-throughput oil-water separation membrane, the preparation process of which is substantially the same as that of Example 1, except that in step 2, the molecular weight of the polyacrylic acid is 50 kDa, and the coagulation bath is configured to have a mass volume concentration of 3 g/L.
  • An aqueous solution of acrylic acid finally produces a durable high-throughput oil-water separation membrane 15.
  • the retention rate of 1g/L emulsified oil is 100%.
  • the flux retention rate end flux/initial flux
  • the flux retention rate after 5 cycles is 89%. %.
  • Example 16 preparing a long-lasting high-throughput oil-water separation membrane, the preparation process of which is basically the same as that of the first embodiment, except that in the second step, the molecular weight of the polyacrylic acid is 50 kDa, and the coagulation bath is configured to have a mass volume concentration of 4 g/L.
  • An aqueous solution of acrylic acid finally produces a durable high-throughput oil-water separation membrane 16.
  • Example 16 prepared lasting high throughput water separation ratio of 16 in pure water flux obtained 250Lm -2 h -1 bar -1 for the separation of oil-water emulsions than the flux -2 h -1 bar -1 221Lm, for The retention rate of 1g/L emulsified oil is 100%. After 60min oil-water separation and cleaning with pure water shear flow, the flux retention rate (end flux/initial flux) is 96%, and the flux retention rate after 5 cycles is 90%. %.
  • the method for preparing a long-lasting high-fluid oil-water separation membrane provided by the present invention can be formed by a one-step method, and the anti-contamination layer structure of the membrane surface can be controlled by the molecular weight and concentration of polyacrylic acid in the coagulation bath, thereby improving the molecular weight of the polyacrylic acid.
  • Separation membrane permeability and anti-pollution performance but not conducive to improve retention performance, increase polyacrylic acid concentration is conducive to improve separation membrane retention and anti-pollution performance, but not conducive to improve permeability, polyacrylic acid molecular weight is 50kDa, concentration is 2g / L
  • the prepared high-throughput oil-water separation membrane has good comprehensive performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

一种持久高通量油水分离膜的制备方法。该方法主要包括以下步骤:步骤一、将聚偏氟乙烯、聚乙烯吡咯烷酮和二甲基甲酰胺按质量比7:5:38加入圆底烧瓶,在70℃水浴中加热搅拌6h,然后静止脱泡4h,待用;将分子量5~50kDa,质量体积浓度为1~4g/L聚丙烯酸水溶液作为凝固浴;将铸膜液冷却至室温后倒在玻璃板上刮成约200μm厚的液膜,放入恒温至25℃的凝固浴中持续10分钟固化成膜,从玻璃板上取下后用去离子水浸泡24h,得到持久高通量油水分离膜。优点在于:该制备方法可通过一步法成膜,膜表面抗污染层结构可通过凝固浴中聚丙烯酸分子量和浓度调控,制备的油水分离膜具有持久高通量。

Description

一种持久高通量油水膜的制备方法 技术领域
本发明涉及一种持久高通量油水分离膜的制备方法,属于超滤膜的制备技术领域。
背景技术
膜分离是一门涵盖化学工程学、材料科学、过程工程学等多学科的高新技术,它是对混合物中某组分具有选择性的分离介质,在膜两侧施加某种推动力,使混合物中的组分有选择的从膜的一侧传递到另一侧。超滤膜是一种以压力为推动力以大分子和小分子的分离为目的的膜分离技术之一。作为一种新型分离技术,超滤膜能够有效的截留悬浮颗粒、胶体、大分子以及藻类和细菌等,因此在诸多方面得到应用。海水淡化预处理是超滤技术的重要应用之一,但是在实际应用过程中,超滤技术仍然面临处理通量低、膜污染问题严重等问题。
膜污染通常是指处理料液中的蛋白质、有机物等粒子、胶束、微生物等由于物理、化学、生化或机械作用,在膜表面或孔道内吸附、沉积等现象造成膜有效孔径逐渐减小、堵塞,甚至形成滤饼层或者凝胶层,导致膜的渗透通量持续下降一致无法使用。改善和缓解膜污染以延长膜的使用寿命的方法有很多,例如:增大膜表面料液的流速,建立和优化清洗方案,以及研制具有抗污染性能的超滤膜等,其中,研制抗污染超滤膜是解决膜污染问题的根本途径。
现有的抗污染膜的构建大多遵循Whitesides的抗污染四原则,具有以下四个特点的基团课有效抑制生物污染物(蛋白质)的非特异性吸附:(1)强亲水性;(2)氢键受体;(3)非氢键供体;(4)电中性。尽管进行了大量的研究,但迄今为止,抗污染表面构建的普遍原则,为增加表面的亲水性,即构建强亲水性抗污染表面。
迄今为止,能够起到良好抑制抗污染效果并得到广泛认可的亲水性抗污染材料主要包括聚氧乙烯类聚合物、两性离子类聚合物以及其他亲水性抗污染材料。现在常用的表面改性方法有表面涂覆、表面接枝和表面偏析。表面接枝法和表面偏析法的改性结果通常为在膜表面引入线性或刷状亲水高分子链,虽然提高了膜表面的亲水性,但是较为柔性的高分子链难以完全阻挡污染物向膜表面的迁移。表面涂覆法构建的高分子网络对污染物向膜表面迁移的阻碍效果良好,但受涂覆技术手段的制约,涂层较薄时难以在膜表面均匀覆盖,使抗污染层形成缺陷,涂层较厚时则会显著增加水的透过阻力,使膜的渗透性能降低。
发明内容
本发明的目的在于提供一种持久高通量油水分离膜的制备方法,该制备方法过程简单易操作,所制备的油水分离膜在具有持久高通量和良好的分离性能。
为了解决上述技术问题,本发明提供的一种持久高通量油水分离膜的制备方法,包括以下步骤:
步骤一、铸膜液的配置:将聚偏氟乙烯、聚乙烯吡咯烷酮和二甲基甲酰胺按质量比7:5:38加入容器内,在70℃水浴中加热搅拌6h,然后静止脱泡4h,冷却至室温待用;
步骤二、凝固浴的配置:将分子量为5~50kDa,质量体积浓度为1~4g/L的聚丙烯酸水溶液加入容器中,室温下搅拌1h;
步骤三、油水分离膜的制备:将步骤一中配置的铸膜液倒在玻璃板上刮成200μm厚的液膜,放入恒温至25℃的步骤二中配置的凝固浴中,持续10分钟固化成膜,从玻璃板上取下后用去离子水浸泡24h,得到持久高通量油水分离膜。
本发明中,所述聚乙烯吡咯烷酮的分子量为10kDa。所述聚偏氟乙烯选用FR921-2型的聚偏氟乙烯。
本发明的优点在于:该制备方法可通过一步法成膜,膜表面抗污染层结构可通过凝固浴中聚丙烯酸分子量和浓度调控,制备的油水分离膜具有持久高通量。
附图说明
图1为对比例所制的对比膜过滤1g/L花生油乳化液(含0.1g/L乳化剂十二烷基磺酸钠)的五次循环通量变化图;
图2为本发明实施例14所制的持久高通量油水分离膜14过滤1g/L花生油乳化液(含0.1g/L乳化剂十二烷基磺酸钠)的五次循环通量变化图。
具体实施方式
下面结合具体实施例和附表对本发明技术方案作进一步详细描述,所描述的具体实施例仅对本发明进行解释说明,并不用以限制本发明。
对比例、制备对比例油水分离膜,其制备过程是:将140mg聚偏氟乙烯(FR921-2型)、100mg聚乙烯吡咯烷酮(分子量10kDa)和760mg二甲基甲酰胺加入圆底烧瓶,在70℃水浴中加热搅拌6h,然后静止脱泡4h,制得铸膜液。将铸膜液冷却至室温后倒在玻璃板上刮成约200μm后的液膜,放入恒温至25℃的1L去离子水进行凝固浴,持续10min固化成膜,从玻璃板上取下后用去离子水浸泡24h,制得油水分离膜。
图1为对比例所制的油水分离膜过滤1g/L花生油乳化液(含0.1g/L乳化剂十二烷基磺酸钠)的五次循环通量变化图,每次循环内容为:纯水(30min)-油水乳化液(60min)-清洗(20min,该时间在图中未标出)-纯水(30min)。
对比例所制得的油水分离膜在纯水比通量为1229Lm -2h -1bar -1,分离油水乳化液比通量224Lm -2h -1bar -1,对1g/L乳化油截留率为99%,进行60min油水分离并用纯水剪切流清洗后,通量保有率(末通量/初始通量)34%,5次循环后通量保有率低于20%。
实施例1、制备持久高通量油水分离膜,步骤如下:
步骤一、铸膜液的配置:将140mg聚偏氟乙烯(FR921-2型)、100mg聚乙烯吡咯烷酮(分子量10kDa)和760mg二甲基甲酰胺加入圆底烧瓶,在70℃水浴中加热搅拌6h,然后静止脱泡4h。
步骤二、凝固浴的配置:将1g分子量为5kDa的聚丙烯酸和1L去离子水加入烧杯中,室温下搅拌1h,该质量体积浓度为1g/L的聚丙烯酸水溶液即为凝固浴。
步骤三、油水分离膜的制备:将步骤一中配置的铸膜液冷却至室温后倒在玻璃板上刮成约200μm后的液膜,放入恒温至25℃的步骤二中配置的凝固浴中持续10min固化成膜,从玻璃板上取下后用去离子水浸泡24h,得到持久高通量油水分离膜,记为持久高通量油水分离膜1。
实施例1所制得的持久高通量油水分离膜1在纯水比通量为961Lm -2h -1bar -1,分离油水乳化液比通量418Lm -2h -1bar -1,对1g/L乳化油截留率为99.1%,进行60min油水分离并用纯水剪切流清洗后,通量保有率(末通量/初始通量)65%,5次循环后通量保有率为52%。
实施例2、制备持久高通量油水分离膜,其制备过程与实施例1基本相同,不同仅在于:步骤二中,配置的凝固浴为质量体积浓度为2g/L聚丙烯酸水溶液,最终制得持久高通量油水分离膜2。
实施例2所制得的持久高通量油水分离膜2在纯水比通量为593Lm -2h -1bar -1,分离油水乳化液比通量390Lm -2h -1bar -1,对1g/L乳化油截留率为99.6%,进行60min油水分离并用纯水剪切流清洗后,通量保有率(末通量/初始通量)89%,5次循环后通量保有率为81%。
实施例3、制备持久高通量油水分离膜,其制备过程与实施例1基本相同,不同仅在于:步骤二中,配置的凝固浴为质量体积浓度为3g/L聚丙烯酸水溶液,最终制得持久高通量油水分离膜3。
实施例3所制得的持久高通量油水分离膜3在纯水比通量为284Lm -2h -1bar -1,分离油水乳化液比通量201Lm -2h -1bar -1,对1g/L乳化油截留率为100%,进行60min油水分离并用纯水剪切流清洗后,通量保有率(末通量/初始通量)92%,5次循环后通量保有率为84%。
实施例4、制备持久高通量油水分离膜,其制备过程与实施例1基本相同,不同仅在于:步骤二中,配置的凝固浴为质量体积浓度为4g/L聚丙烯酸水溶液,最终制得持久高通量油水分离膜4。
实施例4所制得的持久高通量油水分离膜4在纯水比通量为190Lm -2h -1bar -1,分离油水乳化液比通量162Lm -2h -1bar -1,对1g/L乳化油截留率为100%,进行60min油水分离并用纯水剪切流清洗后,通量保有率(末通量/初始通量)92%,5次循环后通量保有率为86%。
实施例5、制备持久高通量油水分离膜,其制备过程与实施例1基本相同,不同仅在于:步骤二中,聚丙烯酸分子量为10kDa,配置的凝固浴为质量体积浓度为1g/L聚丙烯酸水溶液,最终制得持久高通量油水分离膜5。
实施例5所制得的持久高通量油水分离膜5在纯水比通量为1012Lm -2h -1bar -1,分离油水乳化液比通量452Lm -2h -1bar -1,对1g/L乳化油截留率为99.2%,进行60min油水分离并用纯水剪切流清洗后,通量保有率(末通量/初始通量)66%,5次循环后通量保有率为53%。
实施例6、制备持久高通量油水分离膜,其制备过程与实施例1基本相同,不同仅在于:步骤二中,聚丙烯酸分子量为10kDa,配置的凝固浴为质量体积浓度为2g/L聚丙烯酸水溶液,最终制得持久高通量油水分离膜6。
实施例6所制得的持久高通量油水分离膜6在纯水比通量为624Lm -2h -1bar -1,分离油水乳化液比通量422Lm -2h -1bar -1,对1g/L乳化油截留率为99.8%,进行60min油水分离并用纯水剪切流清洗后,通量保有率(末通量/初始通量)91%,5次循环后通量保有率为83%。
实施例7、制备持久高通量油水分离膜,其制备过程与实施例1基本相同,不同仅在于:步骤二中,聚丙烯酸分子量为10kDa,配置的凝固浴为质量体积浓度为2g/L聚丙烯酸水溶液,最终制得持久高通量油水分离膜7。
实施例7所制得的持久高通量油水分离膜7在纯水比通量为312Lm -2h -1bar -1,分离油水乳化液比通量212Lm -2h -1bar -1,对1g/L乳化油截留率为100%,进行60min油水分离并用纯水剪切流清洗后,通量保有率(末通量/初始通量)83%,5次循环后通量保有率为85%。
实施例8、制备持久高通量油水分离膜,其制备过程与实施例1基本相同,不同仅在于:步骤二中,聚丙烯酸分子量为10kDa,配置的凝固浴为质量体积浓度为2g/L聚丙烯酸水溶液,最终制得持久高通量油水分离膜8。
实施例8所制得的持久高通量油水分离膜8在纯水比通量为202Lm -2h -1bar -1,分离油水乳化液比通量188Lm -2h -1bar -1,对1g/L乳化油截留率为100%,进行60min油水分离并用纯水剪切流清洗后,通量保有率(末通量/初始通量)94%,5次循环后通量保有率为86%。
实施例9、制备持久高通量油水分离膜,其制备过程与实施例1基本相同,不同仅在于:步骤二中,聚丙烯酸分子量为20kDa,配置的凝固浴为质量体积浓度为1g/L聚丙烯酸水溶液,最终制得持久高通量油水分离膜9。
实施例9所制得的持久高通量油水分离膜9在纯水比通量为1096Lm -2h -1bar -1,分离油水乳化液比通量514Lm -2h -1bar -1,对1g/L乳化油截留率为99.4%,进行60min油水分离并用纯水剪切流清洗后,通量保有率(末通量/初始通量)67%,5次循环后通量保有率为53%。
实施例10、制备持久高通量油水分离膜,其制备过程与实施例1基本相同,不同仅在于:步骤二中,聚丙烯酸分子量为20kDa,配置的凝固浴为质量体积浓度为2g/L聚丙烯酸水溶液,最终制得持久高通量油水分离膜10。
实施例10所制得的持久高通量油水分离膜10在纯水比通量为654Lm -2h -1bar -1,分离油水乳化液比通量445Lm -2h -1bar -1,对1g/L乳化油截留率为100%,进行60min油水分离并用纯水剪切流清洗后,通量保有率(末通量/初始通量)93%,5次循环后通量保有率为84%。
实施例11、制备持久高通量油水分离膜,其制备过程与实施例1基本相同,不同仅在 于:步骤二中,聚丙烯酸分子量为20kDa,配置的凝固浴为质量体积浓度为3g/L聚丙烯酸水溶液,最终制得持久高通量油水分离膜11。
实施例11所制得的持久高通量油水分离膜11在纯水比通量为344Lm -2h -1bar -1,分离油水乳化液比通量231Lm -2h -1bar -1,对1g/L乳化油截留率为100%,进行60min油水分离并用纯水剪切流清洗后,通量保有率(末通量/初始通量)94%,5次循环后通量保有率为87%。
实施例12、制备持久高通量油水分离膜,其制备过程与实施例1基本相同,不同仅在于:步骤二中,聚丙烯酸分子量为20kDa,配置的凝固浴为质量体积浓度为4g/L聚丙烯酸水溶液,最终制得持久高通量油水分离膜12。
实施例12所制得的持久高通量油水分离膜12在纯水比通量为224Lm -2h -1bar -1,分离油水乳化液比通量201Lm -2h -1bar -1,对1g/L乳化油截留率为100%,进行60min油水分离并用纯水剪切流清洗后,通量保有率(末通量/初始通量)95%,5次循环后通量保有率为88%。
实施例13、制备持久高通量油水分离膜,其制备过程与实施例1基本相同,不同仅在于:步骤二中,聚丙烯酸分子量为50kDa,配置的凝固浴为质量体积浓度为1g/L聚丙烯酸水溶液,最终制得持久高通量油水分离膜13。
实施例13所制得的持久高通量油水分离膜13在纯水比通量为1122Lm -2h -1bar -1,分离油水乳化液比通量558Lm -2h -1bar -1,对1g/L乳化油截留率为99.5%,进行60min油水分离并用纯水剪切流清洗后,通量保有率(末通量/初始通量)69%,5次循环后通量保有率为55%。
实施例14、制备持久高通量油水分离膜,其制备过程与实施例1基本相同,不同仅在于:步骤二中,聚丙烯酸分子量为50kDa,配置的凝固浴为质量体积浓度为2g/L聚丙烯酸水溶液,最终制得持久高通量油水分离膜14。
图2为实施例14所制的持久高通量油水分离膜14过滤1g/L花生油乳化液(含0.1g/L乳化剂十二烷基磺酸钠)的五次循环通量变化图,每次循环内容为:纯水(30min)-油水乳化液(60min)-清洗(20min,该时间在图中未标出)-纯水(30min)。
实施例14所制得的持久高通量油水分离膜14在纯水比通量为695Lm -2h -1bar -1,分离油水乳化液比通量472Lm -2h -1bar -1,对1g/L乳化油截留率为100%,进行60min油水分离并用纯水剪切流清洗后,通量保有率(末通量/初始通量)95%,5次循环后通量保有率为87%。
实施例15、制备持久高通量油水分离膜,其制备过程与实施例1基本相同,不同仅在于:步骤二中,聚丙烯酸分子量为50kDa,配置的凝固浴为质量体积浓度为3g/L聚丙烯酸水溶液,最终制得持久高通量油水分离膜15。
实施例15所制得的持久高通量油水分离膜15在纯水比通量为351Lm -2h -1bar -1,分离油水乳化液比通量251Lm -2h -1bar -1,对1g/L乳化油截留率为100%,进行60min油水分离并用纯水剪切流清洗后,通量保有率(末通量/初始通量)95%,5次循环后通量保有率为89%。
实施例16、制备持久高通量油水分离膜,其制备过程与实施例1基本相同,不同仅在 于:步骤二中,聚丙烯酸分子量为50kDa,配置的凝固浴为质量体积浓度为4g/L聚丙烯酸水溶液,最终制得持久高通量油水分离膜16。
实施例16所制得的持久高通量油水分离膜16在纯水比通量为250Lm -2h -1bar -1,分离油水乳化液比通量221Lm -2h -1bar -1,对1g/L乳化油截留率为100%,进行60min油水分离并用纯水剪切流清洗后,通量保有率(末通量/初始通量)96%,5次循环后通量保有率为90%。
本发明实施例1至16制得的持久高通量油水分离膜与对比例制得的油水分离膜的性能比较情况如表1、2、3所示:
表1 分离膜纯水通量/油水乳液通量(Lm -2h -1bar -1)与聚丙烯酸分子量/浓度的关系
Figure PCTCN2018091231-appb-000001
表2 分离膜乳化油截留率(%)与聚丙烯酸分子量/浓度的关系
Figure PCTCN2018091231-appb-000002
表3 分离膜1次循环通量保有率/5次循环通量保有率(%)与聚丙烯酸分子量/浓度的关系
Figure PCTCN2018091231-appb-000003
Figure PCTCN2018091231-appb-000004
综上所述,本发明提供的持久高通量油水分离膜的制备方法可通过一步法成膜,膜表面抗污染层结构可通过凝固浴中聚丙烯酸分子量和浓度调控,提高聚丙烯酸分子量利于提高分离膜渗透性能和抗污染性能,但不利于提高截留性能,提高聚丙烯酸浓度有利于提高分离膜截留性能和抗污染性能,但不利于提高渗透性能,聚丙烯酸分子量为50kDa,浓度为2g/L时,所制备的持久高通量油水分离膜具有较好的综合性能。
尽管上面结合附图、附表对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以做出很多变形,这些均属于本发明的保护之内。

Claims (3)

  1. 一种持久高通量油水分离膜的制备方法,其特征在于,包括以下步骤:
    步骤一、铸膜液的配置:将聚偏氟乙烯、聚乙烯吡咯烷酮和二甲基甲酰胺按质量比7:5:38加入容器内,在70℃水浴中加热搅拌6h,然后静止脱泡4h,冷却至室温待用;
    步骤二、凝固浴的配置:将分子量为5~50kDa,质量体积浓度为1~4g/L的聚丙烯酸水溶液加入容器中,室温下搅拌1h;
    步骤三、油水分离膜的制备:将步骤一中配置的铸膜液倒在玻璃板上刮成200μm厚的液膜,放入恒温至25℃的步骤二中配置的凝固浴中,持续10分钟固化成膜,从玻璃板上取下后用去离子水浸泡24h,得到持久高通量油水分离膜。
  2. 根据权利要求1所述持久高通量油水分离膜的制备方法,其特征在于,步骤一中,所述聚乙烯吡咯烷酮的分子量为10kDa。
  3. 根据权利要求1所述持久高通量油水分离膜的制备方法,其特征在于,步骤一中,所述聚偏氟乙烯选用FR921-2型的聚偏氟乙烯。
PCT/CN2018/091231 2018-04-26 2018-06-14 一种持久高通量油水膜的制备方法 WO2019205248A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810386023.9A CN108579446B (zh) 2018-04-26 2018-04-26 一种持久高通量油水膜的制备方法
CN201810386023.9 2018-04-26

Publications (1)

Publication Number Publication Date
WO2019205248A1 true WO2019205248A1 (zh) 2019-10-31

Family

ID=63610239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091231 WO2019205248A1 (zh) 2018-04-26 2018-06-14 一种持久高通量油水膜的制备方法

Country Status (2)

Country Link
CN (1) CN108579446B (zh)
WO (1) WO2019205248A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114653223B (zh) * 2022-03-15 2024-04-12 天津大学 一种渗透蒸发脱盐异质膜及其制备方法和应用
CN117358065B (zh) * 2023-12-06 2024-09-27 天津大学浙江研究院 基于反应表面偏析的中空纤维膜及制备、应用和膜组件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954381A (en) * 1986-12-30 1990-09-04 The Research Foundation Of The State University Of New York Preparation of porous substrates having well defined morphology
CN1624952A (zh) * 2004-09-30 2005-06-08 浙江大学 制备含氟聚合物锂离子电池隔膜的聚合物模板法
CN101961648A (zh) * 2010-11-05 2011-02-02 天津森诺过滤技术有限公司 有效去除饮用水中重金属离子的膜吸附剂及其制备方法
CN103007775A (zh) * 2012-12-21 2013-04-03 武汉纺织大学 一种聚合物平板微孔膜的制备方法
JP2016183301A (ja) * 2015-03-26 2016-10-20 株式会社クレハ 水処理用ポリフッ化ビニリデン多孔膜及び水処理用ポリフッ化ビニリデン多孔膜の製造方法
CN106432585A (zh) * 2016-09-20 2017-02-22 广州中国科学院先进技术研究所 一种含氟聚合物及其制备方法和应用
CN107855007A (zh) * 2017-07-13 2018-03-30 枫科(北京)膜技术有限公司 一种非对称正渗透膜及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954381A (en) * 1986-12-30 1990-09-04 The Research Foundation Of The State University Of New York Preparation of porous substrates having well defined morphology
CN1624952A (zh) * 2004-09-30 2005-06-08 浙江大学 制备含氟聚合物锂离子电池隔膜的聚合物模板法
CN101961648A (zh) * 2010-11-05 2011-02-02 天津森诺过滤技术有限公司 有效去除饮用水中重金属离子的膜吸附剂及其制备方法
CN103007775A (zh) * 2012-12-21 2013-04-03 武汉纺织大学 一种聚合物平板微孔膜的制备方法
JP2016183301A (ja) * 2015-03-26 2016-10-20 株式会社クレハ 水処理用ポリフッ化ビニリデン多孔膜及び水処理用ポリフッ化ビニリデン多孔膜の製造方法
CN106432585A (zh) * 2016-09-20 2017-02-22 广州中国科学院先进技术研究所 一种含氟聚合物及其制备方法和应用
CN107855007A (zh) * 2017-07-13 2018-03-30 枫科(北京)膜技术有限公司 一种非对称正渗透膜及其制备方法

Also Published As

Publication number Publication date
CN108579446B (zh) 2019-05-03
CN108579446A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
US11421061B2 (en) Zwitterion-containing membranes
JP6132276B2 (ja) 塩除去率及び透過流量特性に優れた逆浸透分離膜の製造方法
CN109316981B (zh) 一种具有破乳功能的超亲水聚合物膜的制备方法
CN110548420B (zh) 一种零通量衰减化学非均相水凝胶超滤膜的制备方法
WO2018201924A1 (zh) 一种复合反渗透膜及其制备方法
KR20140059755A (ko) 술폰화된 폴리아릴에테르를 포함하는 복합 멤브레인 및 정삼투 공정에서의 이의 용도
Zhao et al. Thermostable PPESK/TiO2 nanocomposite ultrafiltration membrane for high temperature condensed water treatment
EA038493B1 (ru) Способ уменьшения загрязнения поверхности, его применение, полимер для уменьшения биозагрязнения мембраны и мембрана
WO2019153946A1 (zh) 一种高性能正渗透膜及其制备方法、应用
WO2019205248A1 (zh) 一种持久高通量油水膜的制备方法
Zuo et al. A review on thermally stable membranes for water treatment: Material, fabrication, and application
Barzin et al. Improved microfiltration and bacteria removal performance of polyethersulfone membranes prepared by modified vapor‐induced phase separation
CN113398777A (zh) 一种具有MXene排水层的三层结构复合正渗透膜及其制备方法
Yi et al. Separation of oil/water emulsion using nano-particle (TiO2/Al2O3) modified PVDF ultrafiltration membranes and evaluation of fouling mechanism
CN106861437B (zh) 一种稳定高通量超滤膜的制备方法
JPH04349927A (ja) 精密濾過膜の製法
Mohd Yatim et al. Fluorosilaned-TiO2/PVDF membrane distillation with improved wetting resistance for water recovery from high solid loading wastewater
CN116371209A (zh) 一种海藻酸钠/壳聚糖复合纳滤膜及其制备方法与应用
Zhang et al. Amphiphilic block copolymer of poly (dimethylsiloxane) and methoxypolyethylene glycols for high-permeable polysulfone membrane preparation
WO2023198214A1 (zh) 一种适用于油田回注水处理聚酰胺纳滤膜的制备方法
Yang et al. Simple fabrication of polyvinylidene fluoride/graphene composite membrane with good lipophilicity for oil treatment
CN113893699B (zh) 一种选择性去除全氟及多氟化合物的纳滤膜绿色制备方法
CN116036881A (zh) 一种基于锂电池隔膜(聚乙烯/聚丙烯)支撑体的反渗透/纳滤复合膜及其制备方法
CN112473398A (zh) 一种高脱盐兼具抗污染的反渗透膜及其制备方法
CN115364683B (zh) 一步法原位组装聚电解质制备抗污染超滤膜的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/02/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18916492

Country of ref document: EP

Kind code of ref document: A1