WO2019202635A1 - 保温材下腐食の抑制方法、及び保温材下腐食抑制用ペースト - Google Patents

保温材下腐食の抑制方法、及び保温材下腐食抑制用ペースト Download PDF

Info

Publication number
WO2019202635A1
WO2019202635A1 PCT/JP2018/015704 JP2018015704W WO2019202635A1 WO 2019202635 A1 WO2019202635 A1 WO 2019202635A1 JP 2018015704 W JP2018015704 W JP 2018015704W WO 2019202635 A1 WO2019202635 A1 WO 2019202635A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
airgel
paste
binder resin
mass
Prior art date
Application number
PCT/JP2018/015704
Other languages
English (en)
French (fr)
Inventor
寛之 泉
竜也 牧野
智彦 小竹
慧 高安
直義 佐藤
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to EP18915090.7A priority Critical patent/EP3783076B1/en
Priority to US17/047,391 priority patent/US12110414B2/en
Priority to PCT/JP2018/015704 priority patent/WO2019202635A1/ja
Priority to CN201880092501.3A priority patent/CN112041402A/zh
Priority to JP2020514804A priority patent/JP7196907B2/ja
Publication of WO2019202635A1 publication Critical patent/WO2019202635A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/10Coatings characterised by the materials used by rubber or plastics
    • F16L58/1054Coatings characterised by the materials used by rubber or plastics the coating being placed outside the pipe
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • F16L59/16Arrangements specially adapted to local requirements at flanges, junctions, valves or the like
    • F16L59/18Arrangements specially adapted to local requirements at flanges, junctions, valves or the like adapted for joints
    • F16L59/184Flanged joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • F16L59/16Arrangements specially adapted to local requirements at flanges, junctions, valves or the like
    • F16L59/22Arrangements specially adapted to local requirements at flanges, junctions, valves or the like adapted for bends

Definitions

  • the present invention relates to a method for inhibiting corrosion under a heat insulating material and a paste for inhibiting corrosion under a heat insulating material.
  • the heat insulating material is generally a heat-insulating member having water permeability formed from an inorganic porous body or an inorganic fiber body. Therefore, in order to suppress corrosion of the piping, studies have been made to suppress the penetration of moisture into the heat insulating material by providing multiple metal exterior materials, repair materials, etc. outside the heat insulating material (for example, Patent Document 1).
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a method for suppressing such corrosion under a heat insulating material. Another object of the present invention is to provide a paste for inhibiting corrosion under a heat insulating material for use in the method.
  • the present invention provides a method for inhibiting corrosion under a heat insulating material, which includes a step of applying a paste containing airgel particles and a liquid medium to a target surface to form a coating film.
  • a method for inhibiting corrosion under a heat insulating material which includes a step of applying a paste containing airgel particles and a liquid medium to a target surface to form a coating film.
  • the content of the airgel particles can be 5% by mass or more based on the total amount of the paste.
  • the present invention also provides a paste for inhibiting corrosion under a heat insulating material, comprising airgel particles and a liquid medium.
  • the paste can be applied to not only a straight pipe portion of piping but also a portion having a complicated shape such as a flange portion or a bent portion without any particular limitation. Therefore, corrosion under the heat insulating material can be suppressed over the entire pipe.
  • the paste of the present invention may contain a binder resin.
  • the binder resin may include a first binder resin and a second binder resin whose solubility in a liquid medium is lower than that of the first binder resin. According to such a paste, a coating film excellent in coating film strength and adhesiveness can be obtained.
  • the content of the second binder resin may be greater than the content of the first binder resin.
  • the first binder resin may be a cellulose resin or an acrylic resin.
  • the second binder resin may be a thermoplastic resin. Thereby, it becomes easy to obtain the coating film which was further excellent in adhesiveness.
  • the second binder resin may be an acrylic resin.
  • the second binder resin may be a thermosetting resin. Thereby, it becomes easy to obtain a coating film having further excellent coating film strength.
  • the second binder resin may be a silicone resin.
  • the paste of the present invention may further contain a fibrous substance. Thereby, it becomes easy to obtain a coating film having further excellent coating film strength.
  • the liquid medium may be an aqueous solvent containing water.
  • the dispersibility of the airgel particles is improved, and a uniform coating film is easily obtained.
  • the present invention includes a step of applying a paste containing porous particles and a liquid medium to a target surface to form a coating film, and includes a method of suppressing corrosion under a heat insulating material, and porous particles and a liquid medium.
  • a paste for inhibiting corrosion under a heat insulating material can also be provided.
  • the present invention it is possible to provide a method for suppressing corrosion under a heat insulating material.
  • the present invention can also provide a paste for inhibiting corrosion under a heat insulating material for use in the method.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • “A or B” only needs to include one of A and B, and may include both.
  • the materials exemplified in this embodiment can be used singly or in combination of two or more unless otherwise specified.
  • ⁇ Aerogel> dry gel obtained by using supercritical drying method for wet gel is aerogel, dry gel obtained by drying under atmospheric pressure is xerogel, dry gel obtained by freeze-drying is cryogel and
  • the obtained low-density dried gel is referred to as “aerogel” regardless of the drying method of the wet gel. That is, in this embodiment, “aerogel” is a gel in a broad sense, “Gel composed of a microporous solid in which the dispersed phase is a gas” (a gel composed of a microporous solid in which the dispersed phase is a gas). "Means.
  • the inside of the airgel has a network-like fine structure, and has a cluster structure in which particulate airgel components of about 2 to 20 nm are combined. There are pores less than 100 nm between the skeletons formed by these clusters. As a result, the airgel has a three-dimensionally fine porous structure.
  • the airgel which concerns on this embodiment is a silica airgel which has a silica as a main component, for example.
  • the silica airgel include so-called organic-inorganic hybrid silica airgel into which an organic group (such as a methyl group) or an organic chain is introduced.
  • Examples of the airgel according to the present embodiment include the following modes. By adopting these aspects, it becomes easy to obtain an airgel excellent in heat insulation, flame retardancy, heat resistance and flexibility. By employ
  • the airgel according to the present embodiment can have a structure represented by the following general formula (1).
  • the airgel which concerns on this embodiment can have a structure represented by the following general formula (1a) as a structure containing the structure represented by Formula (1).
  • R 1 and R 2 each independently represent an alkyl group or an aryl group
  • R 3 and R 4 each independently represent an alkylene group.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • p represents an integer of 1 to 50.
  • two or more R 1 s may be the same or different, and similarly, two or more R 2 s may be the same or different.
  • two R 3 s may be the same or different, and similarly, two R 4 s may be the same or different.
  • R 1 and R 2 each independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group, and the like. Groups and the like.
  • R 3 and R 4 each independently include an alkylene group having 1 to 6 carbon atoms, and examples of the alkylene group include an ethylene group and a propylene group. It is done.
  • p can be 2 to 30, and can be 5 to 20.
  • the airgel which concerns on this embodiment can have a ladder type structure provided with a support
  • the “ladder structure” has two struts and bridges connecting the struts (having a so-called “ladder” form). It is.
  • the skeleton of the airgel may have a ladder structure, but the airgel may partially have a ladder structure.
  • R 5 and R 6 each independently represents an alkyl group or an aryl group, and b represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • b is an integer of 2 or more
  • two or more R 5 s may be the same or different, and similarly two or more R 6 s are each the same. May be different.
  • the airgel skeleton As an airgel component, for example, it has a structure derived from a conventional ladder-type silsesquioxane (that is, has a structure represented by the following general formula (X)) It becomes the airgel which has the softness
  • Silsesquioxane is a polysiloxane having a composition formula: (RSiO 1.5 ) n and can have various skeleton structures such as a cage type, a ladder type, and a random type.
  • the structure of the bridge portion is —O—, but the airgel according to the present embodiment
  • the structure of a bridge part is a structure (polysiloxane structure) represented by the said General formula (2).
  • the airgel of this aspect may have a structure derived from silsesquioxane in addition to the structure represented by the general formula (2).
  • R represents a hydroxy group, an alkyl group or an aryl group.
  • the ladder structure has the following general formula ( It may have a ladder structure represented by 3).
  • R 5 , R 6 , R 7 and R 8 each independently represents an alkyl group or an aryl group
  • a and c each independently represents an integer of 1 to 3000
  • b is 1 to 50 Indicates an integer.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • b is an integer of 2 or more
  • two or more R 5 s may be the same or different
  • similarly two or more R 6 s are each the same. May be different.
  • when a is an integer of 2 or more
  • two or more R 7 s may be the same or different.
  • when c is an integer of 2 or more, 2 or more R 8 may be the same or different.
  • R 5 , R 6 , R 7 and R 8 (however, R 7 and R 8 are only in formula (3)) Each independently includes an alkyl group having 1 to 6 carbon atoms, a phenyl group, and the like, and examples of the alkyl group include a methyl group.
  • a and c can be independently 6 to 2000, but may be 10 to 1000.
  • b can be 2 to 30, but may be 5 to 20.
  • the airgel according to the present embodiment is at least selected from the group consisting of a hydrolyzable functional group or a silicon compound having a condensable functional group, and a hydrolysis product of the silicon compound having a hydrolyzable functional group. It may be a dried product of a wet gel that is a condensate of a sol containing one kind (a product obtained by drying a wet gel generated from the sol: a dried product of a wet gel derived from a sol). In addition, the airgel described so far may also be obtained by drying a wet gel generated from a sol containing a silicon compound or the like.
  • a polysiloxane compound As the silicon compound having a hydrolyzable functional group or a condensable functional group, a polysiloxane compound can be used. That is, the sol is at least selected from the group consisting of a polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of a polysiloxane compound having a hydrolyzable functional group.
  • One kind of compound hereinafter sometimes referred to as “polysiloxane compound group” may be contained.
  • the functional group in the polysiloxane compound is not particularly limited, but may be a group that reacts with the same functional group or reacts with another functional group.
  • Examples of the hydrolyzable functional group include an alkoxy group.
  • Examples of the condensable functional group include a hydroxyl group, a silanol group, a carboxyl group, and a phenolic hydroxyl group.
  • the hydroxyl group may be contained in a hydroxyl group-containing group such as a hydroxyalkyl group.
  • a polysiloxane compound having a hydrolyzable functional group or a condensable functional group is a reactive group (hydrolyzable functional group and condensable functional group) different from the hydrolyzable functional group and the condensable functional group.
  • the reactive group include an epoxy group, a mercapto group, a glycidoxy group, a vinyl group, an acryloyl group, a methacryloyl group, and an amino group.
  • the epoxy group may be contained in an epoxy group-containing group such as a glycidoxy group.
  • These polysiloxane compounds having a functional group and a reactive group may be used alone or in combination of two or more.
  • groups that improve the flexibility of the airgel include alkoxy groups, silanol groups, hydroxyalkyl groups, etc.
  • alkoxy groups and hydroxyalkyl groups are:
  • the compatibility of the sol can be further improved.
  • the number of carbon atoms of the alkoxy group and hydroxyalkyl group can be 1 to 6, but the flexibility of the airgel is further improved. It may be 2 to 4 from the viewpoint.
  • Examples of the polysiloxane compound having a hydroxyalkyl group in the molecule include those having a structure represented by the following general formula (A).
  • A a polysiloxane compound having a structure represented by the following general formula (A)
  • the structures represented by the general formula (1) and the formula (1a) can be introduced into the skeleton of the airgel.
  • R 1a represents a hydroxyalkyl group
  • R 2a represents an alkylene group
  • R 3a and R 4a each independently represents an alkyl group or an aryl group
  • n represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • two R 1a s may be the same or different, and similarly, two R 2a s may be the same or different.
  • two or more R 3a s may be the same or different, and similarly two or more R 4a s may be the same or different.
  • R 1a includes a hydroxyalkyl group having 1 to 6 carbon atoms, and examples of the hydroxyalkyl group include a hydroxyethyl group, a hydroxypropyl group, and the like.
  • examples of R 2a include an alkylene group having 1 to 6 carbon atoms, and examples of the alkylene group include an ethylene group and a propylene group.
  • R 3a and R 4a each independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group, and the like, and examples of the alkyl group include a methyl group.
  • n can be 2 to 30, but may be 5 to 20.
  • polysiloxane compound having the structure represented by the general formula (A) a commercially available product can be used, and compounds such as X-22-160AS, KF-6001, KF-6002, and KF-6003 (all of them) , Manufactured by Shin-Etsu Chemical Co., Ltd.), compounds such as XF42-B0970, Fluid OFOH 702-4% (all manufactured by Momentive).
  • Examples of the polysiloxane compound having an alkoxy group in the molecule include those having a structure represented by the following general formula (B).
  • a polysiloxane compound having a structure represented by the following general formula (B) By using a polysiloxane compound having a structure represented by the following general formula (B), a ladder structure having a bridge portion represented by the general formula (2) or (3) is introduced into the skeleton of the airgel. can do.
  • R 1b represents an alkyl group, an alkoxy group or an aryl group
  • R 2b and R 3b each independently represent an alkoxy group
  • R 4b and R 5b each independently represent an alkyl group or an aryl group.
  • M represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • two R 1b s may be the same or different from each other, and two R 2b s may be the same or different from each other, and similarly two R 1b s. 3b may be the same or different.
  • m is an integer of 2 or more
  • two or more R 4b s may be the same or different
  • similarly two or more R 5b s are each the same. May be different.
  • R 1b includes an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and the like. , A methoxy group, an ethoxy group, and the like.
  • R 2b and R 3b each independently include an alkoxy group having 1 to 6 carbon atoms, and examples of the alkoxy group include a methoxy group and an ethoxy group.
  • R 4b and R 5b each independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group, and the like, and examples of the alkyl group include a methyl group and the like.
  • m can be 2 to 30, but may be 5 to 20.
  • the polysiloxane compound having the structure represented by the general formula (B) can be obtained by appropriately referring to the production methods reported in JP-A Nos. 2000-26609 and 2012-233110. . Further, XR31-B1410 (manufactured by Momentive) can be used as the polysiloxane compound.
  • the polysiloxane compound having an alkoxy group may exist as a hydrolysis product in the sol, and the polysiloxane compound having an alkoxy group and the hydrolysis product are mixed. It may be. In the polysiloxane compound having an alkoxy group, all of the alkoxy groups in the molecule may be hydrolyzed or partially hydrolyzed.
  • polysiloxane compounds having hydrolyzable functional groups or condensable functional groups and the hydrolysis products of polysiloxane compounds having hydrolyzable functional groups may be used alone or in combination of two or more. May be used.
  • the sol containing the silicon compound includes a silicon compound having a hydrolyzable functional group or a condensable functional group (excluding a polysiloxane compound) and a silicon compound having a hydrolyzable functional group.
  • a silicon compound having a hydrolyzable functional group or a condensable functional group excluding a polysiloxane compound
  • a silicon compound having a hydrolyzable functional group Contains at least one selected from the group consisting of hydrolysis products (hereinafter sometimes referred to as “silicon compound group”) in addition to or in place of the above polysiloxane compound group. be able to.
  • the number of silicon atoms in the molecule of the silicon compound can be 1 or 2.
  • the silicon compound having a hydrolyzable functional group in the molecule is not particularly limited, and examples thereof include alkyl silicon alkoxides.
  • Alkyl silicon alkoxide can make the number of hydrolyzable functional groups 3 or less from the viewpoint of improving water resistance.
  • alkyl silicon alkoxides include monoalkyltrialkoxysilanes, monoalkyldialkoxysilanes, dialkyldialkoxysilanes, monoalkylmonoalkoxysilanes, dialkylmonoalkoxysilanes, and trialkylmonoalkoxysilanes.
  • Examples thereof include methyltrimethoxysilane, methyldimethoxysilane, dimethyldiethoxysilane, dimethyldimethoxysilane, ethyltrimethoxysilane, and hexyltrimethoxysilane.
  • examples of the hydrolyzable functional group include alkoxy groups such as a methoxy group and an ethoxy group.
  • the silicon compound having a condensable functional group is not particularly limited, but silanetetraol, methylsilanetriol, dimethylsilanediol, phenylsilanetriol, phenylmethylsilanediol, diphenylsilanediol, n-propylsilanetriol, hexylsilane Examples include triol, octylsilanetriol, decylsilanetriol, trifluoropropylsilanetriol and the like.
  • the silicon compound having a hydrolyzable functional group or a condensable functional group has the above-mentioned reactive group (hydrolyzable functional group and condensable functional group) different from the hydrolyzable functional group and the condensable functional group. It may further have a functional group not corresponding to the group.
  • the number of hydrolyzable functional groups is 3 or less, and silicon compounds having reactive groups include vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3 -Methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, N-phenyl-3-aminopropyl Trimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, and the like can also be used.
  • vinylsilane triol 3-glycidoxypropylsilanetriol, 3-glycidoxypropylmethylsilanediol, 3-methacryloxypropylsilanetriol, 3-methacryloxypropylmethylsilanediol, 3-acryloxypropylsilanetriol, 3-mercaptopropylsilanetriol, 3-mercaptopropylmethylsilanediol, N-phenyl-3-aminopropylsilanetriol, N-2- (aminoethyl ) -3-Aminopropylmethylsilanediol and the like can also be used.
  • bistrimethoxysilylmethane, bistrimethoxysilylethane, bistrimethoxysilylhexane, ethyltrimethoxysilane, vinyltrimethoxysilane, etc., which are silicon compounds having 3 or less hydrolyzable functional groups at the molecular ends can also be used.
  • a silicon compound having a hydrolyzable functional group or a condensable functional group (excluding a polysiloxane compound) and a hydrolysis product of the silicon compound having a hydrolyzable functional group may be used alone or in two kinds You may mix and use the above.
  • the structures represented by the following general formulas (4) to (6) can be introduced into the skeleton of the airgel.
  • the airgel which concerns on this embodiment can have either of these structures independently or 2 or more types.
  • R 9 represents an alkyl group.
  • examples of the alkyl group include an alkyl group having 1 to 6 carbon atoms, and examples of the alkyl group include a methyl group.
  • R 10 and R 11 each independently represent an alkyl group.
  • examples of the alkyl group include an alkyl group having 1 to 6 carbon atoms, and examples of the alkyl group include a methyl group.
  • R 12 represents an alkylene group.
  • examples of the alkylene group include an alkylene group having 1 to 10 carbon atoms, and examples of the alkylene group include an ethylene group and a hexylene group.
  • the airgel according to the present embodiment may further contain silica particles in addition to the airgel component from the viewpoint of further toughening and further achieving excellent heat insulation and flexibility.
  • An airgel containing an airgel component and silica particles can also be referred to as an airgel composite.
  • the airgel composite has a cluster structure that is characteristic of an airgel, even though the airgel component and silica particles are combined, and is considered to have a three-dimensionally fine porous structure. .
  • An airgel containing an airgel component and silica particles is composed of the above-mentioned silicon compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of the silicon compound having a hydrolyzable functional group. It can be said that it is a dried product of a wet gel that is a condensate of a sol containing at least one selected from the group and silica particles. Therefore, the description relating to the first to third aspects can be applied mutatis mutandis to the airgel according to this embodiment.
  • the silica particles can be used without particular limitation, and examples thereof include amorphous silica particles.
  • examples of the amorphous silica particles include fused silica particles, fumed silica particles, colloidal silica particles, and the like.
  • colloidal silica particles have high monodispersibility and are easy to suppress aggregation in the sol.
  • the silica particle which has a hollow structure, a porous structure, etc. may be sufficient.
  • the shape of the silica particles is not particularly limited, and examples thereof include a spherical shape, a cage shape, and an association type. Among these, by using spherical particles as silica particles, it becomes easy to suppress aggregation in the sol.
  • the average primary particle size of the silica particles may be 1 nm or more, or 5 nm or more from the viewpoint of easily providing an airgel with appropriate strength and flexibility and excellent shrinkage resistance during drying. Or 20 nm or more.
  • the average primary particle size of the silica particles may be 500 nm or less, may be 300 nm or less, may be 300 nm or less, and may be 100 nm or less from the viewpoint that it is easy to suppress the solid heat conduction of the silica particles and easily obtain an airgel excellent in heat insulation. It may be the following. From these viewpoints, the average primary particle diameter of the silica particles may be 1 to 500 nm, 5 to 300 nm, or 20 to 100 nm.
  • the average particle diameter of the airgel component and the average primary particle diameter of the silica particles can be obtained by directly observing the airgel using a scanning electron microscope (hereinafter abbreviated as “SEM”).
  • SEM scanning electron microscope
  • the term “diameter” as used herein means the diameter when the cross section of the particle exposed on the cross section of the airgel is regarded as a circle.
  • the “diameter when the cross section is regarded as a circle” is the diameter of the true circle when the area of the cross section is replaced with a true circle having the same area.
  • the average particle diameter the diameter of a circle is obtained for 100 particles, and the average is taken.
  • the average particle diameter of the silica particles can also be measured from the raw material.
  • the biaxial average primary particle diameter is calculated as follows from the result of observing 20 arbitrary particles by SEM. That is, when colloidal silica particles having a solid content concentration of about 5 to 40% by mass and dispersed in water are taken as an example, a wafer with a patterned wiring was obtained by cutting a 2 cm square into a dispersion of colloidal silica particles. After immersing the chip for about 30 seconds, the chip is rinsed with pure water for about 30 seconds and blown dry with nitrogen.
  • the chip is placed on a sample stage for SEM observation, an acceleration voltage of 10 kV is applied, the silica particles are observed at a magnification of 100,000, and an image is taken. 20 silica particles are arbitrarily selected from the obtained image, and the average of the particle diameters of these particles is defined as the average particle diameter.
  • the number of silanol groups per gram of silica particles may be 10 ⁇ 10 18 pieces / g or more, or 50 ⁇ 10 18 pieces / g or more from the viewpoint of easily obtaining an airgel having excellent shrinkage resistance. 100 ⁇ 10 18 pieces / g or more.
  • the number of silanol groups per gram of silica particles may be 1000 ⁇ 10 18 pieces / g or less, may be 800 ⁇ 10 18 pieces / g or less, and 700 ⁇ It may be 10 18 pieces / g or less.
  • the number of silanol groups per gram of silica particles may be 10 ⁇ 10 18 to 1000 ⁇ 10 18 pcs / g, or may be 50 ⁇ 10 18 to 800 ⁇ 10 18 pcs / g. 100 ⁇ 10 18 to 700 ⁇ 10 18 pieces / g.
  • Content of polysiloxane compound group contained in the sol (content of polysiloxane compound having hydrolyzable functional group or condensable functional group, and hydrolysis of polysiloxane compound having hydrolyzable functional group)
  • the total sum of the product contents) may be 5 parts by mass or more and 10 parts by mass or more with respect to 100 parts by mass of the total amount of sol, from the viewpoint of further easily obtaining good reactivity.
  • the content of the polysiloxane compound group contained in the sol may be 50 parts by mass or less and 30 parts by mass or less with respect to 100 parts by mass of the total amount of the sol, from the viewpoint of further easily obtaining good compatibility. There may be. From these viewpoints, the content of the polysiloxane compound group contained in the sol may be 5 to 50 parts by mass or 10 to 30 parts by mass with respect to 100 parts by mass of the total amount of the sol.
  • the total content of the hydrolysis products of the silicon compounds having may be 5 parts by mass or more with respect to 100 parts by mass of the sol. It may be the above.
  • the content of the silicon compound group contained in the sol may be 50 parts by mass or less and 30 parts by mass or less with respect to 100 parts by mass of the total amount of the sol from the viewpoint of further easily obtaining good compatibility. May be. From these viewpoints, the content of the silicon compound group contained in the sol may be 5 to 50 parts by mass, or 10 to 30 parts by mass.
  • the ratio between the content of the polysiloxane compound group and the content of the silicon compound group is 1: It may be 0.5 or more, or 1: 1 or more.
  • the ratio between the content of the polysiloxane compound group and the content of the silicon compound group may be 1: 4 or less, or 1: 2 or less, from the viewpoint of further suppressing the gel shrinkage.
  • the ratio of the content of the polysiloxane compound group and the content of the silicon compound group may be 1: 0.5 to 1: 4, or 1: 1 to 1: 2. Also good.
  • the content of the silica particles is easy to impart an appropriate strength to the airgel, and from the viewpoint of easily obtaining an airgel having excellent shrinkage resistance during drying, the total amount of the sol is 100 parts by mass. On the other hand, it may be 1 part by mass or more, or 4 parts by mass or more.
  • the content of the silica particles may be 20 parts by mass or less with respect to the total amount of sol of 100 parts by mass, from the viewpoint of easily obtaining an airgel having excellent heat insulation properties, because the solid heat conduction of the silica particles is easily suppressed. It may be 15 parts by mass or less. From these viewpoints, the content of the silica particles may be 1 to 20 parts by mass or 4 to 15 parts by mass with respect to 100 parts by mass of the total amount of the sol.
  • Airgel particles in the present embodiment can be obtained, for example, by pulverizing bulk airgel as described later.
  • the average particle diameter D50 of the airgel particles can be 1 to 1000 ⁇ m, but may be 3 to 700 ⁇ m, 5 to 500 ⁇ m, 10 to 100 ⁇ m, or 10 to 50 ⁇ m. May be.
  • the average particle diameter of the airgel particles can be appropriately adjusted depending on the pulverization method and pulverization conditions, sieving, classification method and the like.
  • the average particle diameter D50 of the airgel particles can be measured by a laser diffraction / scattering method.
  • the airgel particles are dispersed by adding to a solvent (ethanol) so that the content of the airgel particles is 0.05 to 5% by mass and vibrating with a 50 W ultrasonic homogenizer for 15 to 30 minutes. Thereafter, about 10 mL of the dispersion is injected into a laser diffraction / scattering particle size distribution measuring apparatus, and the particle size is measured at 25 ° C. with a refractive index of 1.3 and zero absorption.
  • the particle size at an integrated value of 50% (volume basis) in this particle size distribution is defined as the average particle size D50.
  • the measuring device for example, Microtrac MT3000 (manufactured by Nikkiso Co., Ltd., product name) can be used.
  • the specific surface area of the airgel particles can be less 1200 m 2 / g, it may also be 1000 m 2 / g or less, may be not more than 900m 2 / g. Thereby, it is easy to prepare a paste excellent in film formability.
  • the minimum of the specific surface area of an airgel particle is not specifically limited, From a viewpoint of the aggregation suppression in a paste and the improvement of a filling rate, it can be set to about 30 m ⁇ 2 > / g.
  • There are various methods for adjusting the specific surface area of the airgel particles For example, adjusting the amount of the airgel component having the bridge structure represented by the general formula (2) and adjusting the amount of the silica particles. Etc.
  • Specific surface area can be measured by the BET method.
  • a gas adsorption amount measuring device manufactured by Cantachrome Instruments Japan Ltd., Autosorb-iQ (Autosorb is a registered trademark) can be used.
  • an airgel particle is not specifically limited, For example, it can manufacture with the following method.
  • the airgel particles of the present embodiment include a sol production step, a wet gel production step in which the sol obtained in the sol production step is gelled and then aged to obtain a wet gel, and the wet gel obtained in the wet gel production step.
  • a manufacturing method mainly comprising a washing and solvent substitution step for washing and solvent substitution (if necessary), a drying step for drying the wet gel after washing and solvent substitution, and a pulverization step for crushing the airgel obtained by drying Can be manufactured.
  • a manufacturing method mainly including a sol generation step, a wet gel generation step, a wet gel pulverization step for pulverizing the wet gel obtained in the wet gel generation step, a washing and solvent replacement step, and a drying step. May be.
  • the obtained airgel particles can be further arranged in size by sieving, classification and the like. Dispersibility can be improved by adjusting the size of the particles.
  • the “sol” is a state before the gelation reaction occurs, and in the present embodiment, means a state in which the silicon compound and, optionally, silica particles are dissolved or dispersed in a solvent. .
  • the wet gel means a gel solid in a wet state that contains a liquid medium but does not have fluidity.
  • generation process is a process of producing
  • an acid catalyst may be further added to the solvent in order to promote the hydrolysis reaction.
  • a surfactant, a thermohydrolyzable compound, or the like can be added to the solvent.
  • components such as carbon graphite, an aluminum compound, a magnesium compound, a silver compound, and a titanium compound may be added to the solvent for the purpose of suppressing heat radiation.
  • the solvent for example, water or a mixed solution of water and alcohol can be used.
  • the alcohol include methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol, t-butanol and the like.
  • alcohols having a low surface tension and a low boiling point in terms of reducing the interfacial tension with the gel wall include methanol, ethanol, 2-propanol and the like. You may use these individually or in mixture of 2 or more types.
  • the amount of alcohol when used as the solvent, can be 4 to 8 moles relative to 1 mole of the total amount of the silicon compound group and the polysiloxane compound group, but may be 4 to 6.5. Alternatively, it may be 4.5 to 6 mol.
  • the amount of alcohol 4 mol or more it becomes easier to obtain good compatibility, and by making the amount 8 mol or less, it becomes easier to suppress gel shrinkage.
  • Acid catalysts include hydrofluoric acid, hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, hypophosphorous acid, bromic acid, chloric acid, chlorous acid, hypochlorous acid and other inorganic acids; acidic phosphoric acid Acidic phosphates such as aluminum, acidic magnesium phosphate, and acidic zinc phosphate; organic carboxylic acids such as acetic acid, formic acid, propionic acid, oxalic acid, malonic acid, succinic acid, citric acid, malic acid, adipic acid, and azelaic acid Etc. Among these, organic carboxylic acid is mentioned as an acid catalyst which improves the water resistance of the airgel obtained more. Examples of the organic carboxylic acid include acetic acid, but formic acid, propionic acid, oxalic acid, malonic acid, and the like may be used. You may use these individually or in mixture of 2 or more types.
  • the addition amount of the acid catalyst can be 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the total amount of the polysiloxane compound group and the silicon compound group.
  • a nonionic surfactant As the surfactant, a nonionic surfactant, an ionic surfactant, or the like can be used. You may use these individually or in mixture of 2 or more types.
  • nonionic surfactant for example, a compound containing a hydrophilic part such as polyoxyethylene and a hydrophobic part mainly composed of an alkyl group, a compound containing a hydrophilic part such as polyoxypropylene, and the like can be used.
  • the compound containing a hydrophilic part such as polyoxyethylene and a hydrophobic part mainly composed of an alkyl group include polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene alkyl ether and the like.
  • the compound having a hydrophilic portion such as polyoxypropylene include polyoxypropylene alkyl ether, a block copolymer of polyoxyethylene and polyoxypropylene, and the like.
  • Examples of the ionic surfactant include a cationic surfactant, an anionic surfactant, and an amphoteric surfactant.
  • Examples of the cationic surfactant include cetyltrimethylammonium bromide and cetyltrimethylammonium chloride, and examples of the anionic surfactant include sodium dodecylsulfonate.
  • Examples of amphoteric surfactants include amino acid surfactants, betaine surfactants, amine oxide surfactants, and the like.
  • Examples of amino acid surfactants include acyl glutamic acid.
  • Examples of betaine surfactants include lauryldimethylaminoacetic acid betaine, stearyldimethylaminoacetic acid betaine, and the like.
  • Examples of the amine oxide surfactant include lauryl dimethylamine oxide.
  • surfactants have the effect of reducing the difference in chemical affinity between the solvent in the reaction system and the growing siloxane polymer and suppressing phase separation in the wet gel formation process described later. It is considered to be.
  • the amount of the surfactant added depends on the type of surfactant or the type and amount of the silicon compound. For example, 1 to 100 parts by mass with respect to 100 parts by mass of the total amount of the polysiloxane compound group and the silicon compound group. It can be. The added amount may be 5 to 60 parts by mass.
  • thermohydrolyzable compound is considered to generate a base catalyst by thermal hydrolysis to make the reaction solution basic and to promote the sol-gel reaction in the wet gel generation process described later. Accordingly, the thermohydrolyzable compound is not particularly limited as long as it can make the reaction solution basic after hydrolysis.
  • Urea formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N -Acid amides such as methylacetamide and N, N-dimethylacetamide; cyclic nitrogen compounds such as hexamethylenetetramine and the like.
  • urea is particularly easy to obtain the above-mentioned promoting effect.
  • the addition amount of the thermohydrolyzable compound is not particularly limited as long as it can sufficiently promote the sol-gel reaction in the wet gel generation step described later.
  • the amount added can be 1 to 200 parts by mass with respect to 100 parts by mass as the total amount of the polysiloxane compound group and the silicon compound group.
  • the added amount may be 2 to 150 parts by mass.
  • the hydrolysis in the sol production step depends on the type and amount of silicon compound, silica particles, acid catalyst, surfactant, etc. in the mixed solution, but for example, at a temperature environment of 20-60 ° C. for 10 minutes-24 It may be performed for 5 hours to 8 hours in a temperature environment of 50 to 60 ° C. Thereby, the hydrolyzable functional group in a silicon compound is fully hydrolyzed, and the hydrolysis product of a silicon compound can be obtained more reliably.
  • the temperature environment of the sol generation step may be adjusted to a temperature that suppresses hydrolysis of the thermohydrolyzable compound and suppresses gelation of the sol. .
  • the temperature at this time may be any temperature as long as the hydrolysis of the thermally hydrolyzable compound can be suppressed.
  • the temperature environment of the sol production step can be 0 to 40 ° C., but may be 10 to 30 ° C.
  • the wet gel generation step is a step in which the sol obtained in the sol generation step is gelled and then aged to obtain a wet gel.
  • a base catalyst can be used to promote gelation.
  • Base catalysts include carbonates such as calcium carbonate, potassium carbonate, sodium carbonate, barium carbonate, magnesium carbonate, lithium carbonate, ammonium carbonate, copper (II) carbonate, iron (II) carbonate, silver (I) carbonate; hydrogen carbonate Bicarbonates such as calcium, potassium bicarbonate, sodium bicarbonate, ammonium bicarbonate; alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide; ammonium hydroxide, ammonium fluoride, Ammonium compounds such as ammonium chloride and ammonium bromide; basic sodium phosphates such as sodium metaphosphate, sodium pyrophosphate, and sodium polyphosphate; allylamine, diallylamine, triallylamine, isopropylamine, diisopropylamine, ethylamine, die Ruamine, triethylamine, 2-ethylhexylamine, 3-ethoxypropylamine, diisobutylamine,
  • ammonium hydroxide (ammonia water) is excellent in that it has high volatility and does not easily remain in the airgel particles after drying, so that it is difficult to impair the water resistance, and is economical. You may use said base catalyst individually or in mixture of 2 or more types.
  • the dehydration condensation reaction or dealcoholization condensation reaction of the silicon compound and silica particles in the sol can be promoted, and the sol can be gelled in a shorter time. Thereby, a wet gel with higher strength (rigidity) can be obtained.
  • the use of ammonia as a base catalyst makes it possible to obtain airgel particles with better water resistance.
  • the addition amount of the base catalyst can be 0.5 to 5 parts by mass with respect to 100 parts by mass of the total amount of the polysiloxane compound group and the silicon compound group, but may be 1 to 4 parts by mass. By setting it as 0.5 mass part or more, gelatinization can be performed in a short time, and a water resistance fall can be suppressed more by setting it as 5 mass part or less.
  • the gelation of the sol in the wet gel generation step may be performed in a sealed container so that the solvent and the base catalyst do not volatilize.
  • the gelation temperature can be 30 to 90 ° C., but it may be 40 to 80 ° C. By setting the gelation temperature to 30 ° C. or higher, gelation can be performed in a shorter time, and a wet gel with higher strength (rigidity) can be obtained. Moreover, since it becomes easy to suppress volatilization of a solvent (especially alcohol) by making gelation temperature into 90 degrees C or less, it can gelatinize, suppressing volume shrinkage.
  • the aging in the wet gel generation step may be performed in a sealed container so that the solvent and the base catalyst do not volatilize.
  • the aging temperature can be 30 to 90 ° C., but it may be 40 to 80 ° C.
  • the aging temperature can be 30 to 90 ° C. or higher, a wet gel with higher strength (rigidity) can be obtained, and by setting the aging temperature to 90 ° C. or lower, volatilization of the solvent (particularly alcohol) can be easily suppressed. It can be gelled while suppressing volume shrinkage.
  • gelation of the sol and subsequent aging may be performed in a series of operations.
  • Gelling time and aging time can be appropriately set depending on the gelation temperature and aging temperature.
  • the gelation time can be particularly shortened as compared with the case where silica particles are not contained.
  • the reason is presumed that the silanol group or reactive group of the silicon compound in the sol forms hydrogen bonds or chemical bonds with the silanol groups of the silica particles.
  • the gelation time can be 10 to 120 minutes, but may be 20 to 90 minutes. By setting the gelation time to 10 minutes or more, it becomes easy to obtain a homogeneous wet gel, and by setting it to 120 minutes or less, the drying process can be simplified from the washing and solvent replacement process described later.
  • the total time of the gelation time and the aging time in the entire gelation and aging process can be 4 to 480 hours, but may be 6 to 120 hours.
  • the total gelation time and aging time can be 4 to 480 hours or more, a wet gel with higher strength (rigidity) can be obtained, and by setting it to 480 hours or less, the effect of aging can be more easily maintained.
  • the gelation temperature and the aging temperature are increased within the above range, or the total time of the gelation time and the aging time is increased within the above range. Also good. Further, in order to increase the density of the obtained airgel particles or reduce the average pore diameter, the gelation temperature and the aging temperature are reduced within the above range, or the total time of the gelation time and the aging time is within the above range. It may be shortened.
  • the wet gel obtained in the wet gel production step is pulverized.
  • the pulverization can be carried out, for example, by putting the wet gel in a Hench type mixer or by performing a wet gel production process in the mixer and operating the mixer under appropriate conditions (number of rotations and time). More simply, the wet gel is put into a sealable container, or the wet gel generation process is performed in the sealable container, and the mixture is shaken for an appropriate time using a shaker such as a shaker. Can do. If necessary, the particle size of the wet gel can be adjusted using a jet mill, a roller mill, a bead mill or the like.
  • the washing and solvent replacement step includes a step for washing the wet gel obtained by the wet gel generation step or the wet gel pulverization step (washing step), and a solvent suitable for drying conditions (described later). It is a process which has the process (solvent replacement process) of substituting.
  • the washing and solvent replacement step can be performed in a form in which only the solvent replacement step is performed without performing the step of washing the wet gel, but the impurities such as unreacted substances and by-products in the wet gel are reduced, and more From the viewpoint of enabling the production of airgel particles with high purity, the wet gel may be washed.
  • the wet gel obtained by the wet gel production step or the wet gel pulverization step is washed.
  • the washing can be repeatedly performed using, for example, water or an organic solvent. At this time, washing efficiency can be improved by heating.
  • Organic solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetone, methyl ethyl ketone, 1,2-dimethoxyethane, acetonitrile, hexane, toluene, diethyl ether, chloroform, ethyl acetate, tetrahydrofuran, methylene chloride , N, N-dimethylformamide, dimethyl sulfoxide, acetic acid, formic acid, and other various organic solvents can be used. You may use said organic solvent individually or in mixture of 2 or more types.
  • a low surface tension solvent can be used in order to suppress gel shrinkage due to drying.
  • low surface tension solvents generally have very low mutual solubility with water. Therefore, when using a low surface tension solvent in the solvent replacement step, examples of the organic solvent used in the washing step include hydrophilic organic solvents having high mutual solubility in both water and a low surface tension solvent. Note that the hydrophilic organic solvent used in the washing step can serve as a preliminary replacement for the solvent replacement step.
  • examples of hydrophilic organic solvents include methanol, ethanol, 2-propanol, acetone, and methyl ethyl ketone. Methanol, ethanol, methyl ethyl ketone and the like are excellent in terms of economy.
  • the amount of water or organic solvent used in the washing step can be an amount that can be sufficiently washed by replacing the solvent in the wet gel.
  • the amount can be 3 to 10 times the volume of the wet gel.
  • the washing can be repeated until the moisture content in the wet gel after washing is 10% by mass or less with respect to the silica mass.
  • the temperature environment in the washing step can be a temperature not higher than the boiling point of the solvent used for washing.
  • the temperature can be raised to about 30 to 60 ° C.
  • the solvent of the washed wet gel is replaced with a predetermined replacement solvent in order to suppress the shrinkage of the airgel in the drying step.
  • the replacement efficiency can be improved by heating.
  • Specific examples of the solvent for substitution include a low surface tension solvent described later in the drying step when drying is performed under atmospheric pressure at a temperature lower than the critical point of the solvent used for drying.
  • examples of the substitution solvent include ethanol, methanol, 2-propanol, dichlorodifluoromethane, carbon dioxide, and the like, or a mixture of two or more thereof.
  • Examples of the low surface tension solvent include a solvent having a surface tension at 20 ° C. of 30 mN / m or less. The surface tension may be 25 mN / m or less, or 20 mN / m or less.
  • Examples of the low surface tension solvent include pentane (15.5), hexane (18.4), heptane (20.2), octane (21.7), 2-methylpentane (17.4), 3- Aliphatic hydrocarbons such as methylpentane (18.1), 2-methylhexane (19.3), cyclopentane (22.6), cyclohexane (25.2), 1-pentene (16.0); Aromatic hydrocarbons such as (28.9), toluene (28.5), m-xylene (28.7), p-xylene (28.3); dichloromethane (27.9), chloroform (27.2) ), Carbon tetrachloride (26.9), 1-chloropropane (21.8),
  • aliphatic hydrocarbons hexane, heptane, etc.
  • a hydrophilic organic solvent such as acetone, methyl ethyl ketone, 1,2-dimethoxyethane
  • it can be used as the organic solvent in the washing step.
  • a solvent having a boiling point of 100 ° C. or less at normal pressure may be used because it is easy to dry in the drying step described later. You may use said solvent individually or in mixture of 2 or more types.
  • the amount of the solvent used in the solvent replacement step can be an amount that can sufficiently replace the solvent in the wet gel after washing.
  • the amount can be 3 to 10 times the volume of the wet gel.
  • the temperature environment in the solvent replacement step can be a temperature not higher than the boiling point of the solvent used for the replacement.
  • the temperature can be increased to about 30 to 60 ° C.
  • the solvent replacement step is not essential.
  • the inferred mechanism is as follows. That is, when the silica particles function as a support for a three-dimensional network skeleton, the skeleton is supported and the shrinkage of the gel in the drying process is suppressed. Therefore, it is considered that the gel can be directly subjected to the drying step without replacing the solvent used for washing. Thus, by using silica particles, it is possible to simplify the drying process from the washing and solvent replacement process.
  • drying process In the drying step, the wet gel that has been washed and solvent-substituted (if necessary) as described above is dried. Thereby, an airgel (aerogel block or airgel particle) can be obtained. That is, an airgel obtained by drying a wet gel generated from the sol can be obtained.
  • the drying method is not particularly limited, and known atmospheric pressure drying, supercritical drying, or freeze drying can be used.
  • atmospheric drying or supercritical drying can be used from the viewpoint of easy production of low density airgel.
  • atmospheric pressure drying can be used.
  • the normal pressure means 0.1 MPa (atmospheric pressure).
  • the airgel can be obtained by drying a wet gel that has been washed and (if necessary) solvent-substituted at a temperature below the critical point of the solvent used for drying under atmospheric pressure.
  • the drying temperature varies depending on the type of substituted solvent (the solvent used for washing if solvent substitution is not performed), but especially when drying at a high temperature increases the evaporation rate of the solvent and causes large cracks in the gel. In view of the fact that the temperature is 20 to 150 ° C.
  • the drying temperature may be 60 to 120 ° C.
  • the drying time varies depending on the wet gel volume and the drying temperature, but can be 4 to 120 hours. It should be noted that atmospheric pressure drying also includes speeding up drying by applying a pressure less than the critical point within a range that does not impair productivity.
  • the aerogel can also be obtained by supercritical drying of a wet gel that has been washed and (if necessary) solvent-substituted.
  • Supercritical drying can be performed by a known method. Examples of the supercritical drying method include a method of removing the solvent at a temperature and pressure higher than the critical point of the solvent contained in the wet gel.
  • all or part of the solvent contained in the wet gel is obtained by immersing the wet gel in liquefied carbon dioxide, for example, at about 20 to 25 ° C. and about 5 to 20 MPa. And carbon dioxide having a lower critical point than that of the solvent, and then removing carbon dioxide alone or a mixture of carbon dioxide and the solvent.
  • the airgel obtained by such normal pressure drying or supercritical drying may be further dried at 105 to 200 ° C. for about 0.5 to 2 hours under normal pressure. This makes it easier to obtain an airgel having a low density and small pores. Additional drying may be performed at 150 to 200 ° C. under normal pressure.
  • the airgel particles (airgel block) obtained by drying are pulverized to obtain airgel particles.
  • it can be carried out by putting airgel in a jet mill, roller mill, bead mill, hammer mill or the like and operating at an appropriate number of revolutions and time.
  • the paste for inhibiting corrosion under a heat insulating material includes airgel particles and a liquid medium. It can also be said that the paste for inhibiting corrosion under a heat insulating material is a mixture of airgel particles and a liquid medium. The airgel particles in the paste may have pores filled with a liquid medium.
  • the paste may further contain a binder resin.
  • the binder resin has a function of binding the airgel particles after forming the coating film.
  • the binder resin for example, epoxy resin, silicone resin, phenol resin, urea resin, melamine resin, polyurethane resin, polyethylene resin, polypropylene resin, polystyrene resin, polyester resin, acrylic resin (the structural unit mainly comprising acrylic ester or methacrylic ester) Polymer), acrylic resin (polymer containing acrylic acid, acrylate, methacrylic acid, methacrylate as structural units), polyvinyl chloride resin, polyvinyl acetate resin, polyamide resin, polyimide resin, cellulose Resin, polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene oxide, polyethylene glycol and the like.
  • the first binder resin and the second binder resin described later may be selected from these.
  • the binder resin can particularly include a first binder resin and a second binder resin.
  • the first binder resin and the second binder resin have a function of binding the airgel particles to each other after the coating film is formed. Both the first binder resin and the second binder resin are dissolved in the liquid medium, and the solubility of the first binder resin in the liquid medium is higher than the solubility of the second binder resin in the liquid medium.
  • the first binder resin and the second binder resin have different solubility in the liquid medium
  • the first binder resin is the first binder resin with respect to the liquid medium in the drying step (step of removing the liquid medium) during coating film formation.
  • the binder resin is saturated before the second binder resin, and the second binder resin is likely to precipitate first. Due to such a difference in solubility, a characteristic binder structure is formed at the time of coating film formation, and it is considered that excellent coating film strength and adhesiveness can be obtained.
  • the second binder resin is first bound on the airgel particles (and the fibrous material described below), and the first binder resin is the second binder resin. It is presumed that excellent coating strength and adhesiveness are obtained by binding the airgel particles (or between the airgel particles and the fibrous material or between the fibrous materials) via the binder resin. The In addition, it is considered that the airgel particles are firmly bound by the second binder resin being granulated, filling the space between the airgel particles, and then being bound by the first binder resin.
  • the content of the second binder resin is preferably larger than the content of the first binder resin. Thereby, the above-mentioned effect is more remarkably exhibited.
  • the content of the second binder resin is preferably more than 100 parts by mass with respect to 100 parts by mass of the first binder resin, more preferably 500 parts by mass or more, and may be 1000 parts by mass or more, and 2000 parts by mass. It may be the above.
  • the content of the second binder resin may be 10000 parts by mass or less, preferably 7000 parts by mass or less, and preferably 5000 parts by mass with respect to 100 parts by mass of the first binder resin from the viewpoint of excellent heat insulation performance. Or 3000 parts by mass or less.
  • the total content of the first binder resin and the second binder resin (also referred to as the binder resin content) may be, for example, 5 parts by mass or more with respect to 100 parts by mass of the airgel particles. Part or more, preferably 50 parts by weight or more, more preferably 100 parts by weight or more. Thereby, the airgel particles are easily bound firmly by the binder resin, and the strength of the coating film is further improved.
  • the total content of the first binder resin and the second binder resin may be, for example, 500 parts by mass or less, preferably 300 parts by mass or less, with respect to 100 parts by mass of the airgel particles.
  • the amount is more preferably at most 200 parts by mass, and still more preferably at most 200 parts by mass.
  • the first binder resin may be any resin that has a function of binding airgel particles to each other after the coating film is formed and can be dissolved in a liquid medium.
  • the liquid medium is an aqueous solvent
  • examples of the first binder resin include cellulose resins, acrylic resins, polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene oxide, polyethylene glycol, and the like.
  • cellulose-based resins and acrylic acid-based resins can be suitably used from the viewpoint of excellent viscosity increase.
  • cellulose-based resin examples include hydroxypropylmethylcellulose, carboxymethylcellulose ammonium, hydroxyethylmethylcellulose, and the like.
  • acrylic resin examples include polyacrylic acid, acrylic acid copolymer, polyacrylate, and acrylate copolymer.
  • the second binder resin may be any resin that can be dissolved in the liquid medium and has a lower solubility in the liquid medium than the first binder resin.
  • the second binder resin may be a thermoplastic resin or a thermosetting resin.
  • thermoplastic resin examples include acrylic resin, polyvinyl alcohol, polypropylene, and polyvinyl chloride. Of these, acrylic resin and polyvinyl alcohol can be suitably used from the viewpoint of handleability.
  • thermosetting resin examples include epoxy resin, silicone resin, polyurethane, and the like. Among these, from the viewpoint of excellent heat resistance, epoxy resins and silicone resins can be suitably used.
  • the coating film may further contain a curing agent.
  • curing agent is not specifically limited, You may change suitably according to the kind of thermosetting resin.
  • the thermosetting resin is an epoxy resin
  • a known epoxy resin curing agent can be used as the curing agent.
  • the epoxy resin curing agent include amine-based curing agents, acid anhydride-based curing agents, and polyamide-based curing agents. From the viewpoint of reactivity, amine-based and polyamide-based curing agents can be preferably used.
  • Liquid medium includes water and organic solvent.
  • the organic solvent is not particularly limited as long as it can disperse the airgel particles.
  • aromatic hydrocarbons such as toluene, xylene, mesitylene, cumene and p-cymene
  • fat such as hexane, heptane and pentane.
  • ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane
  • alcohols such as methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol
  • acetone methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4- Ketones such as hydroxy-4-methyl-2-pentanone
  • esters such as methyl acetate, ethyl acetate and butyl acetate
  • amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone Is It is.
  • alcohols and ketones can be used from the viewpoints of volatility, boiling point, etc., and alcohols can be particularly preferably used. Alcohols and ketones are easy to mix with water, water-based resins, and the like, and are therefore suitable when used in combination with these components.
  • the liquid medium is preferably an aqueous solvent containing water.
  • the aqueous solvent may be water or a mixed solvent containing water and an organic solvent. According to such a liquid medium, the dispersibility of the airgel particles is improved, and a uniform coating film is easily obtained.
  • the paste may further contain a fibrous substance.
  • a fibrous substance since the airgel particles are bound to the fibrous substance in the coating film, the anchoring effect prevents the airgel particles from falling off the coating film. Moreover, the intensity
  • fibrous materials include organic fibers and inorganic fibers.
  • Organic fibers include polyamide, polyimide, polyvinyl alcohol, polyvinylidene chloride, polyvinyl chloride, polyester, polyacrylonitrile, polyethylene, polypropylene, polyurethane, phenol, polyetherester, polylactic acid And the like.
  • inorganic fibers include glass fibers, carbon fibers, ceramic fibers, and metal fibers.
  • the fiber length of the fibrous material is not particularly limited, for example, it is preferably 1.5 mm or more, more preferably 2 mm or more, and further preferably 2.5 mm or more.
  • the upper limit of the fiber length of the fibrous substance is not particularly limited, but may be, for example, 20 mm or less from the viewpoint of dispersibility in the paste.
  • the fiber diameter of the fiber can be 0.01 to 100 ⁇ m from the viewpoints of dispersibility in the paste, good anchor function, and the like.
  • the content of the fibrous substance is not particularly limited, but is preferably 5 parts by mass or more, more preferably 7 parts by mass or more, and still more preferably 9 parts by mass or more with respect to 100 parts by mass of the airgel particles.
  • the content of the fibrous substance is, for example, preferably 25 parts by mass or less, more preferably 20 parts by mass or less, and further preferably 15 parts by mass or less with respect to 100 parts by mass of the airgel particles.
  • the ratio of the airgel particle in a coating film becomes high, and the heat insulation of a coating film improves further.
  • the paste may further contain components other than those described above.
  • other components include thickeners, pigments, leveling agents, film forming aids, and the like.
  • a thickener an organic polymer, a layered inorganic additive, fumed silica, etc. are mentioned.
  • the concentration of the paste is not particularly limited, and may be appropriately changed according to a desired coating thickness, coating method, and the like.
  • the content of the airgel particles in the paste may be 5 to 30% by mass or 5 to 25% by mass based on the total amount of the paste.
  • the total content of the first binder resin and the second binder resin in the paste (also referred to as the binder resin content) is 1 from the viewpoint of the binding property between the airgel particles, the heat insulating property of the coating film, etc. It can be ⁇ 40% by mass, but may be 1 ⁇ 30% by mass.
  • the content of the fibrous substance in the paste can be 0.01 to 30% by mass from the viewpoint of dispersibility in the paste, good anchor function, etc., but 0.1 to 10% by mass. %.
  • the content of the thickener can be appropriately adjusted so as to obtain a desired paste viscosity (for example, 1000 mPa ⁇ s or more). Since the viscosity of the paste can be improved by blending a binder resin, it is not always necessary to blend a thickener.
  • the paste for inhibiting corrosion under a heat insulating material may contain other porous particles in addition to or instead of the airgel particles. That is, the paste for inhibiting corrosion under a heat insulating material may include porous particles and a liquid medium.
  • the porous particles include inorganic porous particles and organic porous particles.
  • the constituent material of the inorganic porous particles include metal oxides (including composite oxides), hydroxides, nitrides, carbides, carbonates, borates, sulfates, silicates, phosphates, and the like.
  • metal oxides such as silica, titanium oxide, zinc oxide, alumina, zircon oxide, tin oxide, magnesium oxide and potassium titanate, hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide, Nitride such as silicon nitride, titanium nitride and aluminum nitride, carbide such as silicon carbide and titanium carbide, carbonate such as calcium carbonate and magnesium carbonate, borate such as aluminum borate and magnesium borate, sulfuric acid such as calcium sulfate and magnesium sulfate Examples thereof include salts, silicates such as calcium silicate and magnesium silicate, and phosphates such as calcium phosphate.
  • constituent material glass, zeolite, the above-mentioned airgel, or the like can be used.
  • constituent material of the organic porous particles include charcoal, activated carbon, polymer porous sintered body, resin foam, and silicone porous body.
  • the paste of this embodiment can be suitably used in applications in which a heat insulating material capable of suppressing pipe corrosion is provided for various pipes of large-scale facilities such as plants and power plants.
  • the paste can be used in a situation where the same phenomenon as corrosion under a heat insulating material occurs in piping. For example, energy loss can be reduced in small and medium-sized equipment of home appliances, automobiles, etc. .
  • the method for suppressing corrosion under a heat insulating material includes a step of forming a coating film by applying a paste containing airgel particles and a liquid medium to a target surface. More specifically, the method for suppressing corrosion under a heat insulating material includes a step of applying the above-described paste to the target surface, and a step of obtaining a coating film by removing the liquid medium from the paste applied to the target surface. be able to.
  • the method for inhibiting corrosion under the heat insulating material may include a step of forming a coating film by applying a paste containing porous particles and a liquid medium to the target surface.
  • the method for suppressing the corrosion under the heat insulating material is a target heat insulating method capable of suppressing the corrosion under the heat insulating material.
  • the method for applying the paste to the target surface is not particularly limited, for example, it can be applied to the target surface using a spatula (metal spatula) as shown in FIG. As a result, it is possible to form in a short time a coating film having a thickness that is difficult to achieve with conventional heat insulating paints.
  • a coating film having a thickness of at least about 2 mm can be formed by a single application, and only a coating film having a thickness of about 0.5 mm can be obtained. Compared with other paints, extremely high working efficiency can be realized.
  • a paste contains airgel particle, the coating film which is excellent in heat insulation performance rather than the conventional heat insulation paint can be obtained.
  • the applied paste is left in an environment of 0 to 40 ° C., or the paste is subjected to a heating (eg, 40 to 150 ° C.) treatment, a reduced pressure (eg, 10,000 Pa or less) treatment, or both treatments. By doing so, the liquid medium may be removed.
  • a heating eg, 40 to 150 ° C.
  • a reduced pressure eg, 10,000 Pa or less
  • the second binder resin is a thermosetting resin
  • a step of curing the second binder resin after application may be performed.
  • the second binder resin may be cured after removing the liquid medium. That is, the step of removing the liquid medium and the step of curing the second binder resin may be performed in this order.
  • the second binder resin may be cured simultaneously with the removal of the liquid medium. That is, the removal of the liquid medium and the curing of the second binder resin may be performed simultaneously.
  • the object to which the paste is applied is a metal material, and examples of such a metal material include carbon steel and stainless steel.
  • a metal material include carbon steel and stainless steel.
  • the shape of the target surface may be complex from the viewpoint that the paste can be applied not only to the straight pipe portion of the pipe but also to a place such as a flange portion or a bent portion without particular limitation. Even if it is difficult to attach a planar heat insulating material such as a sheet or board, a heat insulating layer can be provided on the surface of the paste.
  • a coating film containing airgel particles, binder resin, etc. can be obtained by the paste for inhibiting corrosion under the heat insulating material.
  • the content of the airgel particles in the coating film can be, for example, 8% by mass or more, but may be 20% by mass or more, or 40% by mass or more. Thereby, a coating-film density falls and the heat insulation of a coating film improves further.
  • the content of the airgel particles in the coating film can be, for example, 92% by mass or less, but may be 85% by mass or less. Thereby, there exists a tendency for a coating film to become easy to form.
  • the total content of the first binder resin and the second binder resin in the coating film (also referred to as the binder resin content) can be, for example, 8% by mass or more, but 20% by mass or more. It may be 40 mass% or more. Thereby, the airgel particles are easily bound firmly by the binder resin, and the strength of the coating film is further improved.
  • the total content of the first binder resin and the second binder resin in the coating film can be, for example, 92% by mass or less, but may be 85% by mass or less. Thereby, the ratio of the airgel particle in a coating film becomes high, and there exists a tendency for the heat insulation of a coating film to improve further.
  • the thickness of the coating film is not particularly limited, and may be, for example, 0.01 to 5 mm.
  • the coating film has good water repellency because the airgel particles of the present embodiment are hydrophobic. That is, the performance deterioration (for example, a heat insulation fall) by the coating film containing water is hard to produce, and the replacement frequency of a coating film can be reduced. Moreover, it is not necessary to provide an exterior material for the purpose of protecting the coating film due to good water repellency.
  • Water repellency can be evaluated by measuring the contact angle between the coating film and water. The contact angle can be 90 ° or more, 110 ° or more, and 130 ° or more. The contact angle of the coating film can be adjusted by, for example, the content of airgel particles in the coating film, the type and content of the liquid medium, and the like.
  • the coating film has good heat resistance.
  • the heat resistance can be evaluated by measuring the temperature at the time of 5% weight reduction of the coating film. For example, when a differential thermothermal gravimetric simultaneous measurement device is used and the temperature is increased to 500 ° C. at a temperature increase rate of 10 ° C./min, the temperature at the time of 5% weight reduction can be 150 ° C. or higher. 200 ° C. or higher, or 250 ° C. or higher.
  • the heat resistance of the coating film can be adjusted by, for example, the type of binder resin and the content in the coating film.
  • the coating film has a very low thermal conductivity.
  • the thermal conductivity of the coating film can be 0.05 W / m ⁇ K or less, or 0.04 W / m ⁇ K or less.
  • the lower limit value of the thermal conductivity is not particularly limited, but can be set to 0.01 W / m ⁇ K, for example.
  • the thermal conductivity can be measured by a steady-state method using, for example, a steady-state method thermal conductivity measuring apparatus “HFM436 Lambda” (manufactured by NETZSCH, product name, HFM436 Lambda is a registered trademark).
  • HFM436 Lambda manufactured by NETZSCH, product name, HFM436 Lambda is a registered trademark.
  • polysiloxane compound A a bifunctional alkoxy-modified polysiloxane compound having a structure represented by Obtain a sol by. The obtained sol was gelled at 60 ° C. and then aged at 60 ° C. for 48 hours to obtain a wet gel.
  • the “polysiloxane compound A” was synthesized as follows. First, 100.0 masses of dimethylpolysiloxane XC96-723 (product name, manufactured by Momentive) having silanol groups at both ends in a 1-liter three-necked flask equipped with a stirrer, a thermometer, and a Dimroth condenser. Parts, 181.3 parts by mass of methyltrimethoxysilane and 0.50 parts by mass of t-butylamine were mixed and reacted at 30 ° C. for 5 hours. Thereafter, this reaction solution was heated at 140 ° C. for 2 hours under a reduced pressure of 1.3 kPa to remove volatile components, thereby obtaining a bifunctional alkoxy-modified polysiloxane compound (polysiloxane compound A) at both ends.
  • the obtained wet gel was transferred to a plastic bottle, sealed, and then pulverized at 27,000 rpm for 10 minutes using an extreme mill (manufactured by As One Co., Ltd., MX-1000XTS) to obtain a particulate wet gel. .
  • the obtained particulate wet gel was immersed in 2500.0 parts by mass of methanol and washed at 25 ° C. for 24 hours. This washing operation was performed a total of three times while exchanging with fresh methanol.
  • the washed particulate wet gel was immersed in 2500.0 parts by mass of heptane, which is a low surface tension solvent, and solvent substitution was performed at 25 ° C. for 24 hours.
  • the BET specific surface area of the airgel particles was measured using a gas adsorption amount measuring device (manufactured by Cantachrome Instruments Japan G.K., Autosorb-iQ (Autosorb is a registered trademark)).
  • the specific surface area of the airgel particles A was 125 m 2 / g
  • the specific surface area of the airgel particles B was 716 m 2 / g.
  • a dispersion was prepared by adding ethanol to ethanol so that the content of the airgel particles was 0.5% by mass, and applying vibration to this with a 50 W ultrasonic homogenizer for 20 minutes. 10 mL of the obtained dispersion was injected into Microtrac MT3000 (product name, manufactured by Nikkiso Co., Ltd.), and the particle size was measured at 25 ° C. with a refractive index of 1.3 and absorption of 0. The particle diameter at an integrated value of 50% (volume basis) in the obtained particle diameter distribution was defined as the average particle diameter D50.
  • the average particle diameter D50 of the airgel particles A was 20 ⁇ m
  • the average particle diameter D50 of the airgel particles B was 17 ⁇ m.
  • Example 1 15 parts by mass of N-vinylacetamide / sodium acrylate copolymer resin (manufactured by Showa Denko KK, product name: Adhero GE-167), 10 glass fibers (chopped strands, fiber diameter: 13 ⁇ m, fiber length: 3 mm) 100 parts by mass of airgel particles B, 200 parts by mass of acrylic resin (manufactured by DIC Corporation, product name: DV-759EF, solid content 40 wt%), 20 parts by mass of isopropyl alcohol, and 150 parts by mass of water are mixed. Thus, paste 1 was obtained.
  • Paste 1 was applied onto an aluminum foil (manufactured by UACJ, product name: My foil thickness mold 50, thickness: 50 ⁇ m) with a metal spatula so that the thickness after drying was 2 mm, and heated to 60 ° C.
  • the dried product product name: Perfect Oven SPHH-301, manufactured by Espec Co., Ltd. was dried for 2 hours to form an airgel particle-containing coating film on the aluminum foil.
  • the obtained coating film was cut with an aluminum foil at intervals of 3 mm to obtain measurement samples.
  • a small tabletop testing machine “EZTest” manufactured by Shimadzu Corporation, product name
  • the sample was fixed with the aluminum foil surface facing upward, the aluminum foil was sandwiched, and tension was performed at a speed of 50 mm / min.
  • the measurement was terminated when the aluminum foil peeled from the coating film. The results are shown in Table 1.
  • Paste 1 is applied to a 100 ⁇ 100 ⁇ 100 mm stainless steel container side using a metal spatula so that the thickness after drying is 1 mm, dried at 60 ° C. for 2 hours, and airgel particles on the container side A containing coating film was formed.
  • a caulking agent manufactured by Takada Chemicals Manufacturing Co., Ltd., product name: Swan Bond 112 was applied to the cross section of the coating to protect the cross section from moisture. Thereby, an evaluation sample was obtained.
  • thermo-hygrostat made by Kato Co., Ltd. set at a temperature of 20 ° C. and a humidity of 80%, and allowed to stand for 1 hour. After standing, the container was taken out, and it was visually confirmed whether water droplets were generated on the coating film surface and the interface between the coating film and the container. The case where water droplets were not confirmed was evaluated as ⁇ , and the case where water droplets were confirmed was evaluated as ⁇ . The results are shown in Table 1.
  • Example 2 5 parts by mass of hydroxypropylmethylcellulose (manufactured by Matsumoto Yushi Co., Ltd., product name: MP-30000), 10 parts by mass of glass fiber (chopped strand, fiber diameter: 13 ⁇ m, fiber length: 3 mm), and 100 parts by mass of airgel particles A , 300 parts by mass of silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., product name: POLON-MF-56, solid content 40 wt%), 20 parts by mass of isopropyl alcohol, and 500 parts by mass of water are mixed to obtain paste 2. It was. Thereafter, various evaluations were performed in the same manner as in Example 1.
  • Pyrogel XT manufactured by Aspen Aerogel: thickness 5 mm
  • Pyrogel is an airgel blanket for heat insulation in which a glass fiber nonwoven fabric is impregnated with silica airgel. This was used in place of the coating film to evaluate condensation.
  • Pyrogel XT was cut into 100 ⁇ 100 mm, and the cross section was fixed to the side of the container while caulking, to obtain an evaluation sample.
  • the airgel particle-containing coating film was able to suppress interfacial dew condensation, which is a fundamental cause of corrosion under the heat insulating material.
  • interfacial dew condensation which is a fundamental cause of corrosion under the heat insulating material.
  • a heat insulating material such as an airgel blanket, there are not a few voids at the interface, and therefore, interface dew condensation could not be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Polymers (AREA)
  • Paints Or Removers (AREA)
  • Silicon Compounds (AREA)

Abstract

本発明は、エアロゲル粒子及び液状媒体を含むペーストを対象表面に塗布して塗膜を形成する工程を備える、保温材下腐食の抑制方法に関する。本発明はまた、エアロゲル粒子及び液状媒体を含む保温材下腐食抑制用ペーストに関する。

Description

保温材下腐食の抑制方法、及び保温材下腐食抑制用ペースト
 本発明は、保温材下腐食の抑制方法、及び保温材下腐食抑制用ペーストに関する。
 プラントや発電所のような大規模施設における各種配管には、熱エネルギーロスを低減するために保温材が設けられている。保温材は一般的に、無機多孔質体又は無機繊維体から形成される、透水性を有する断熱性の部材である。そのため、配管の腐食を抑制するべく、保温材の外部に金属製の外装材、補修材等を幾重にも設けることで、保温材への水分の浸透を抑制しようという検討がなされている(例えば、特許文献1)。
特開2011-27168号公報
 ところで、特許文献1の各断面図にも示されているように、保温材を必須とする態様では、配管と保温材との間に少なからず空隙が生じる(符号21の周辺)。このような空隙には、元より保温材に内在していた水分、あるいは外装材等のかしめ部分や外装材等で適切に覆うことが困難な配管のフランジ部等から侵入する水分などが結露として付着する。付着した水分は、長い年月をかけて配管を腐食する、いわゆる保温材下腐食(Corrosion Under Insulation:CUI)を引き起こす要因となる。
 本発明は上記の事情に鑑みてなされたものであり、このような保温材下腐食を抑制する方法を提供することを目的とする。本発明はまた、当該方法に用いるための保温材下腐食抑制用ペーストを提供することを目的とする。
 本発明は、エアロゲル粒子及び液状媒体を含むペーストを対象表面に塗布して塗膜を形成する工程を備える、保温材下腐食の抑制方法を提供する。このような方法であれば、ペーストから形成される塗膜が保温材として機能しつつ、かつ結露が発生するような空隙が塗膜と配管との間に生じる現象を抑制することができる。保温材下腐食は外装材や保温材を取り外さないと確認できないため極めて対処が困難であるが、本発明の方法により保温材下腐食の根本的な原因を排除することができる。
 本発明の方法において、エアロゲル粒子の含有量は、ペーストの全量を基準として5質量%以上とすることができる。
 本発明はまた、エアロゲル粒子及び液状媒体を含む、保温材下腐食抑制用ペーストを提供する。当該ペーストは、配管の直管部だけでなくフランジ部や屈曲部のような複雑な形状を有する箇所に対しても、特に制限なく適用することができる。そのため、配管全体に渡って保温材下腐食を抑制することができる。
 本発明のペーストは、バインダ樹脂を含んでいてもよい。特に、バインダ樹脂は、第一のバインダ樹脂と、液状媒体に対する溶解度が第一のバインダ樹脂より低い第二のバインダ樹脂と、を含んでいてもよい。このようなペーストによれば、塗膜強度及び接着性に優れる塗膜を得ることができる。
 本発明のペーストにおいて、第二のバインダ樹脂の含有量は、第一のバインダ樹脂の含有量より多くてよい。これにより、塗膜強度及び接着性により優れた塗膜が得られ易くなる。
 本発明のペーストにおいて、第一のバインダ樹脂はセルロース系樹脂又はアクリル酸系樹脂であってよい。これにより、塗膜強度及び接着性が優れた塗膜が得られるのに加え、ペーストの粘度が高くなり膜形成し易くなるという効果がある。
 本発明のペーストにおいて、第二のバインダ樹脂は熱可塑性樹脂であってよい。これにより、接着性に一層優れた塗膜が得られ易くなる。また、本発明のペーストにおいて、第二のバインダ樹脂はアクリル樹脂であってよい。
 本発明のペーストにおいて、第二のバインダ樹脂は熱硬化性樹脂であってよい。これにより、塗膜強度に一層優れた塗膜が得られ易くなる。また、本発明のペーストにおいて、第二のバインダ樹脂はシリコーン樹脂であってよい。
 本発明のペーストは、繊維状物質を更に含んでいてよい。これにより、塗膜強度に一層優れた塗膜が得られ易くなる。
 本発明のペーストにおいて、液状媒体は、水を含む水系溶媒であってよい。これによりエアロゲル粒子の分散性が向上して、均一な塗膜が得られ易くなる。
 なお、本発明において、エアロゲル粒子に加えて、又は代えて他の多孔質粒子を用いてもよい。すなわち、本発明は、多孔質粒子及び液状媒体を含むペーストを対象表面に塗布して塗膜を形成する工程を備える、保温材下腐食の抑制方法、並びに、多孔質粒子及び液状媒体を含む、保温材下腐食抑制用ペースト、を提供することもできる。
 本発明によれば、保温材下腐食の抑制方法を提供することができる。本発明はまた、当該方法に用いるための保温材下腐食抑制用ペーストを提供することができる。
鏝を用いてペーストを対象物上に塗布する方法を示す図である。
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。「A又はB」とは、A及びBのいずれか一方を含んでいればよく、両方を含んでいてもよい。本実施形態で例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。
<エアロゲル>
 狭義には、湿潤ゲルに対して超臨界乾燥法を用いて得られた乾燥ゲルをエアロゲル、大気圧下での乾燥により得られた乾燥ゲルをキセロゲル、凍結乾燥により得られた乾燥ゲルをクライオゲルと称するが、本実施形態においては、湿潤ゲルのこれらの乾燥手法によらず、得られた低密度の乾燥ゲルを「エアロゲル」と称する。すなわち、本実施形態において、「エアロゲル」とは、広義のエアロゲルである「Gel comprised of a microporous solid in which the dispersed phase is a gas(分散相が気体である微多孔性固体から構成されるゲル)」を意味する。一般的に、エアロゲルの内部は、網目状の微細構造を有しており、2~20nm程度の粒子状のエアロゲル成分が結合したクラスター構造を有している。このクラスターにより形成される骨格間には、100nmに満たない細孔がある。これにより、エアロゲルは、三次元的に微細な多孔性の構造が形成されている。なお、本実施形態に係るエアロゲルは、例えば、シリカを主成分とするシリカエアロゲルである。シリカエアロゲルとしては、例えば、有機基(メチル基等)又は有機鎖を導入した、いわゆる有機-無機ハイブリッド化されたシリカエアロゲルが挙げられる。
 本実施形態に係るエアロゲルとしては、以下の態様が挙げられる。これらの態様を採用することにより、断熱性、難燃性、耐熱性及び柔軟性に優れるエアロゲルを得ることが容易となる。各々の態様を採用することで、各々の態様に応じた断熱性、難燃性、耐熱性及び柔軟性を有するエアロゲルを得ることができる。
(第一の態様)
 本実施形態に係るエアロゲルは、下記一般式(1)で表される構造を有することができる。本実施形態に係るエアロゲルは、式(1)で表される構造を含む構造として、下記一般式(1a)で表される構造を有することができる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 式(1)及び式(1a)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、R及びRはそれぞれ独立にアルキレン基を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。なお、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。pは1~50の整数を示す。式(1a)中、2個以上のRは各々同一であっても異なっていてもよく、同様に、2個以上のRは各々同一であっても異なっていてもよい。式(1a)中、2個のRは各々同一であっても異なっていてもよく、同様に、2個のRは各々同一であっても異なっていてもよい。
 上記式(1)又は式(1a)で表される構造をエアロゲル成分としてエアロゲルの骨格中に導入することにより、低熱伝導率かつ柔軟なエアロゲルとなる。このような観点から、式(1)及び式(1a)中、R及びRとしてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(1)及び式(1a)中、R及びRとしてはそれぞれ独立に炭素数が1~6のアルキレン基等が挙げられ、当該アルキレン基としてはエチレン基、プロピレン基等が挙げられる。式(1a)中、pは2~30とすることができ、5~20であってもよい。
(第二の態様)
 本実施形態に係るエアロゲルは、支柱部及び橋かけ部を備えるラダー型構造を有し、かつ橋かけ部が下記一般式(2)で表される構造を有することができる。このようなラダー型構造をエアロゲル成分としてエアロゲルの骨格中に導入することにより、耐熱性と機械的強度を向上させることができる。なお、本実施形態において「ラダー型構造」とは、2本の支柱部(struts)と支柱部同士を連結する橋かけ部(bridges)とを有するもの(いわゆる「梯子」の形態を有するもの)である。本態様において、エアロゲルの骨格がラダー型構造からなっていてもよいが、エアロゲルが部分的にラダー型構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000003
 式(2)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、bは1~50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(2)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に2個以上のRも各々同一であっても異なっていてもよい。
 上記の構造をエアロゲル成分としてエアロゲルの骨格中に導入することにより、例えば、従来のラダー型シルセスキオキサンに由来する構造を有する(すなわち、下記一般式(X)で表される構造を有する)エアロゲルよりも優れた柔軟性を有するエアロゲルとなる。シルセスキオキサンは、組成式:(RSiO1.5を有するポリシロキサンであり、カゴ型、ラダー型、ランダム型等の種々の骨格構造を有することができる。なお、下記一般式(X)にて示すように、従来のラダー型シルセスキオキサンに由来する構造を有するエアロゲルでは、橋かけ部の構造が-O-であるが、本実施形態に係るエアロゲルでは、橋かけ部の構造が上記一般式(2)で表される構造(ポリシロキサン構造)である。ただし、本態様のエアロゲルは、一般式(2)で表される構造に加え、さらにシルセスキオキサンに由来する構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000004
 式(X)中、Rはヒドロキシ基、アルキル基又はアリール基を示す。
 支柱部となる構造及びその鎖長、並びに橋かけ部となる構造の間隔は特に限定されないが、耐熱性と機械的強度とをより向上させるという観点から、ラダー型構造としては、下記一般式(3)で表されるラダー型構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000005
 式(3)中、R、R、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、a及びcはそれぞれ独立に1~3000の整数を示し、bは1~50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(3)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に2個以上のRも各々同一であっても異なっていてもよい。また、式(3)中、aが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様にcが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよい。
 なお、より優れた柔軟性を得る観点から、式(2)及び(3)中、R、R、R及びR(ただし、R及びRは式(3)中のみ)としてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(3)中、a及びcは、それぞれ独立に6~2000とすることができるが、10~1000であってもよい。また、式(2)及び(3)中、bは、2~30とすることができるが、5~20であってもよい。
(第三の態様)
 本実施形態に係るエアロゲルは、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種、を含有するゾルの縮合物である湿潤ゲルの乾燥物(ゾルから生成された湿潤ゲルを乾燥して得られるもの:ゾル由来の湿潤ゲルの乾燥物)であってもよい。なお、これまで述べてきたエアロゲルも、このように、ケイ素化合物等を含有するゾルから生成された湿潤ゲルを乾燥することで得られるものであってもよい。
 加水分解性の官能基又は縮合性の官能基を有するケイ素化合物としては、ポリシロキサン化合物を用いることができる。すなわち、上記ゾルは、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種の化合物(以下、場合により「ポリシロキサン化合物群」という)を含有することができる。
 ポリシロキサン化合物における官能基は、特に限定されないが、同じ官能基同士で反応するか、あるいは他の官能基と反応する基とすることができる。加水分解性の官能基としては、アルコキシ基が挙げられる。縮合性の官能基としては、水酸基、シラノール基、カルボキシル基、フェノール性水酸基等が挙げられる。水酸基は、ヒドロキシアルキル基等の水酸基含有基に含まれていてもよい。なお、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物は、加水分解性の官能基及び縮合性の官能基とは異なる反応性基(加水分解性の官能基及び縮合性の官能基に該当しない官能基)をさらに有していてもよい。反応性基としては、エポキシ基、メルカプト基、グリシドキシ基、ビニル基、アクリロイル基、メタクリロイル基、アミノ基等が挙げられる。エポキシ基は、グリシドキシ基等のエポキシ基含有基に含まれていてもよい。これらの官能基及び反応性基を有するポリシロキサン化合物は単独で、又は2種類以上を混合して用いてもよい。これらの官能基及び反応性基のうち、例えば、エアロゲルの柔軟性を向上する基としては、アルコキシ基、シラノール基、ヒドロキシアルキル基等が挙げられ、これらのうち、アルコキシ基及びヒドロキシアルキル基は、ゾルの相溶性をより向上することができる。また、ポリシロキサン化合物の反応性の向上とエアロゲルの熱伝導率の低減の観点から、アルコキシ基及びヒドロキシアルキル基の炭素数は1~6とすることができるが、エアロゲルの柔軟性をより向上する観点から2~4であってもよい。
 分子内にヒドロキシアルキル基を有するポリシロキサン化合物としては、下記一般式(A)で表される構造を有するものが挙げられる。下記一般式(A)で表される構造を有するポリシロキサン化合物を使用することにより、一般式(1)及び式(1a)で表される構造をエアロゲルの骨格中に導入することができる。
Figure JPOXMLDOC01-appb-C000006
 式(A)中、R1aはヒドロキシアルキル基を示し、R2aはアルキレン基を示し、R3a及びR4aはそれぞれ独立にアルキル基又はアリール基を示し、nは1~50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(A)中、2個のR1aは各々同一であっても異なっていてもよく、同様に2個のR2aは各々同一であっても異なっていてもよい。また、式(A)中、2個以上のR3aは各々同一であっても異なっていてもよく、同様に2個以上のR4aは各々同一であっても異なっていてもよい。
 上記構造のポリシロキサン化合物を含有するゾルの縮合物である(ゾルから生成された)湿潤ゲルを用いることにより、低熱伝導率かつ柔軟なエアロゲルをさらに得易くなる。このような観点から、式(A)中、R1aとしては炭素数が1~6のヒドロキシアルキル基等が挙げられ、当該ヒドロキシアルキル基としてはヒドロキシエチル基、ヒドロキシプロピル基等が挙げられる。また、式(A)中、R2aとしては炭素数が1~6のアルキレン基等が挙げられ、当該アルキレン基としてはエチレン基、プロピレン基等が挙げられる。また、式(A)中、R3a及びR4aとしてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(A)中、nは2~30とすることができるが、5~20であってもよい。
 上記一般式(A)で表される構造を有するポリシロキサン化合物としては、市販品を用いることができ、X-22-160AS、KF-6001、KF-6002、KF-6003等の化合物(いずれも、信越化学工業株式会社製)、XF42-B0970、Fluid OFOH 702-4%等の化合物(いずれも、モメンティブ社製)などが挙げられる。
 分子内にアルコキシ基を有するポリシロキサン化合物としては、下記一般式(B)で表される構造を有するものが挙げられる。下記一般式(B)で表される構造を有するポリシロキサン化合物を使用することにより、一般式(2)又は(3)で表される橋かけ部を有するラダー型構造をエアロゲルの骨格中に導入することができる。
Figure JPOXMLDOC01-appb-C000007
 式(B)中、R1bはアルキル基、アルコキシ基又はアリール基を示し、R2b及びR3bはそれぞれ独立にアルコキシ基を示し、R4b及びR5bはそれぞれ独立にアルキル基又はアリール基を示し、mは1~50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(B)中、2個のR1bは各々同一であっても異なっていてもよく、2個のR2bは各々同一であっても異なっていてもよく、同様に2個のR3bは各々同一であっても異なっていてもよい。また、式(B)中、mが2以上の整数の場合、2個以上のR4bは各々同一であっても異なっていてもよく、同様に2個以上のR5bも各々同一であっても異なっていてもよい。
 上記構造のポリシロキサン化合物又はその加水分解生成物を含有するゾルの縮合物である(ゾルから生成された)湿潤ゲルを用いることにより、低熱伝導率かつ柔軟なエアロゲルをさらに得易くなる。このような観点から、式(B)中、R1bとしては炭素数が1~6のアルキル基、炭素数が1~6のアルコキシ基等が挙げられ、当該アルキル基又はアルコキシ基としてはメチル基、メトキシ基、エトキシ基等が挙げられる。また、式(B)中、R2b及びR3bとしてはそれぞれ独立に炭素数が1~6のアルコキシ基等が挙げられ、当該アルコキシ基としてはメトキシ基、エトキシ基等が挙げられる。また、式(B)中、R4b及びR5bとしてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(B)中、mは2~30とすることができるが、5~20であってもよい。
 上記一般式(B)で表される構造を有するポリシロキサン化合物は、特開2000-26609号公報、特開2012-233110号公報等にて報告される製造方法を適宜参照して得ることができる。また、当該ポリシロキサン化合物としてXR31-B1410(モメンティブ社製)を用いることもできる。
 なお、アルコキシ基は加水分解するため、アルコキシ基を有するポリシロキサン化合物はゾル中にて加水分解生成物として存在する可能性があり、アルコキシ基を有するポリシロキサン化合物とその加水分解生成物は混在していてもよい。また、アルコキシ基を有するポリシロキサン化合物において、分子中のアルコキシ基の全てが加水分解されていてもよいし、部分的に加水分解されていてもよい。
 これら、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物は、単独で、又は2種類以上を混合して用いてもよい。
 本実施形態に係るエアロゲルを作製するにあたり、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物としては、上述のポリシロキサン化合物以外のケイ素化合物を用いることができる。すなわち、上記のケイ素化合物を含有するゾルは、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物(ポリシロキサン化合物を除く)、及び、加水分解性の官能基を有する当該ケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種(以下、場合により「ケイ素化合物群」という)を、上述のポリシロキサン化合物群に加えて、あるいは上述のポリシロキサン化合物群に代えて、含有することができる。ケイ素化合物における分子内のケイ素数は1又は2とすることができる。
 分子内に加水分解性の官能基を有するケイ素化合物としては、特に限定されないが、アルキルケイ素アルコキシド等が挙げられる。アルキルケイ素アルコキシドは、耐水性を向上する観点から、加水分解性の官能基の数を3個以下とすることができる。このようなアルキルケイ素アルコキシドとしては、モノアルキルトリアルコキシシラン、モノアルキルジアルコキシシラン、ジアルキルジアルコキシシラン、モノアルキルモノアルコキシシラン、ジアルキルモノアルコキシシラン、トリアルキルモノアルコキシシラン等が挙げられ、具体的には、メチルトリメトキシシラン、メチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジメトキシシラン、エチルトリメトキシシラン、ヘキシルトリメトキシシラン等が挙げられる。ここで、加水分解性の官能基としては、メトキシ基、エトキシ基等のアルコキシ基などが挙げられる。
 縮合性の官能基を有するケイ素化合物としては、特に限定されないが、シランテトラオール、メチルシラントリオール、ジメチルシランジオール、フェニルシラントリオール、フェニルメチルシランジオール、ジフェニルシランジオール、n-プロピルシラントリオール、ヘキシルシラントリオール、オクチルシラントリオール、デシルシラントリオール、トリフルオロプロピルシラントリオール等が挙げられる。
 加水分解性の官能基又は縮合性の官能基を有するケイ素化合物は、加水分解性の官能基及び縮合性の官能基とは異なる上述の反応性基(加水分解性の官能基及び縮合性の官能基に該当しない官能基)をさらに有していてもよい。
 加水分解性の官能基の数が3個以下であり、反応性基を有するケイ素化合物として、ビニルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン等も用いることができる。
 また、縮合性の官能基を有し、反応性基を有するケイ素化合物として、ビニルシラントリオール、3-グリシドキシプロピルシラントリオール、3-グリシドキシプロピルメチルシランジオール、3-メタクリロキシプロピルシラントリオール、3-メタクリロキシプロピルメチルシランジオール、3-アクリロキシプロピルシラントリオール、3-メルカプトプロピルシラントリオール、3-メルカプトプロピルメチルシランジオール、N-フェニル-3-アミノプロピルシラントリオール、N-2-(アミノエチル)-3-アミノプロピルメチルシランジオール等も用いることができる。
 さらに、分子末端の加水分解性の官能基が3個以下のケイ素化合物であるビストリメトキシシリルメタン、ビストリメトキシシリルエタン、ビストリメトキシシリルヘキサン、エチルトリメトキシシラン、ビニルトリメトキシシラン等も用いることができる。
 加水分解性の官能基又は縮合性の官能基を有するケイ素化合物(ポリシロキサン化合物を除く)、及び、加水分解性の官能基を有する当該ケイ素化合物の加水分解生成物は、単独で、又は2種類以上を混合して用いてもよい。
 上記のケイ素化合物(ポリシロキサン化合物を除く)を使用することにより、下記一般式(4)~(6)で表される構造をエアロゲルの骨格中に導入することができる。本実施形態に係るエアロゲルは、これらの構造をのうちいずれかを単独で、又は2種以上有することができる。
Figure JPOXMLDOC01-appb-C000008
 式(4)中、Rはアルキル基を示す。ここで、アルキル基としては炭素数が1~6のアルキル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 式(5)中、R10及びR11はそれぞれ独立にアルキル基を示す。ここで、アルキル基としては炭素数が1~6のアルキル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 式(6)中、R12はアルキレン基を示す。ここで、アルキレン基としては炭素数が1~10のアルキレン基等が挙げられ、当該アルキレン基としてはエチレン基、ヘキシレン基等が挙げられる。
(第四の態様)
 本実施形態に係るエアロゲルは、さらに強靱化する観点並びにさらに優れた断熱性及び柔軟性を達成する観点から、エアロゲル成分に加え、さらにシリカ粒子を含有していてもよい。エアロゲル成分及びシリカ粒子を含有するエアロゲルを、エアロゲル複合体ということもできる。エアロゲル複合体は、エアロゲル成分とシリカ粒子とが複合化されていながらも、エアロゲルの特徴であるクラスター構造を有しており、三次元的に微細な多孔性の構造を有していると考えられる。
 エアロゲル成分及びシリカ粒子を含有するエアロゲルは、上述の、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種と、シリカ粒子と、を含有するゾルの縮合物である湿潤ゲルの乾燥物ということができる。したがって、第一の態様~第三の態様に関する記載は、本実施形態に係るエアロゲルに対しても適宜準用することができる。
 シリカ粒子としては、特に制限なく用いることができ、非晶質シリカ粒子等が挙げられる。非晶質シリカ粒子としては、溶融シリカ粒子、ヒュームドシリカ粒子、コロイダルシリカ粒子等が挙げられる。これらのうち、コロイダルシリカ粒子は単分散性が高く、ゾル中での凝集を抑制し易い。なお、シリカ粒子としては、中空構造、多孔質構造等を有するシリカ粒子であってもよい。
 シリカ粒子の形状は特に制限されず、球状、繭型、会合型等が挙げられる。これらのうち、シリカ粒子として球状の粒子を用いることにより、ゾル中での凝集を抑制し易くなる。シリカ粒子の平均一次粒子径は、適度な強度及び柔軟性をエアロゲルに付与し易く、乾燥時の耐収縮性に優れるエアロゲルが得易い観点から、1nm以上であってもよく、5nm以上であってもよく、20nm以上であってもよい。シリカ粒子の平均一次粒子径は、シリカ粒子の固体熱伝導を抑制し易くなり、断熱性に優れるエアロゲルが得易くなる観点から、500nm以下であってもよく、300nm以下であってもよく、100nm以下であってもよい。これらの観点から、シリカ粒子の平均一次粒子径は、1~500nmであってもよく、5~300nmであってもよく、20~100nmであってもよい。
 本実施形態において、エアロゲル成分の平均粒子径及びシリカ粒子の平均一次粒子径は、走査型電子顕微鏡(以下「SEM」と略記する。)を用いてエアロゲルを直接観察することにより得ることができる。ここでいう「直径」とは、エアロゲルの断面に露出した粒子の断面を円とみなした場合の直径を意味する。また、「断面を円とみなした場合の直径」とは、断面の面積を同じ面積の真円に置き換えたときの当該真円の直径のことである。なお、平均粒子径の算出に当たっては、100個の粒子について円の直径を求め、その平均を取るものとする。
 なお、シリカ粒子の平均粒子径は、原料からも測定することができる。例えば、二軸平均一次粒子径は、任意の粒子20個をSEMにより観察した結果から、次のようにして算出される。すなわち、通常固形分濃度が5~40質量%程度で、水中に分散しているコロイダルシリカ粒子を例にすると、コロイダルシリカ粒子の分散液に、パターン配線付きウエハを2cm角に切って得られたチップを約30秒浸した後、当該チップを純水にて約30秒間すすぎ、窒素ブロー乾燥する。その後、チップをSEM観察用の試料台に載せ、加速電圧10kVを掛け、10万倍の倍率にてシリカ粒子を観察し、画像を撮影する。得られた画像から20個のシリカ粒子を任意に選択し、それらの粒子の粒子径の平均を平均粒子径とする。
 シリカ粒子の1g当たりのシラノール基数は、耐収縮性に優れるエアロゲルを得易くなる観点から、10×1018個/g以上であってもよく、50×1018個/g以上であってもよく、100×1018個/g以上であってもよい。シリカ粒子の1g当たりのシラノール基数は、均質なエアロゲルが得易くなる観点から、1000×1018個/g以下であってもよく、800×1018個/g以下であってもよく、700×1018個/g以下であってもよい。これらの観点から、シリカ粒子の1g当たりのシラノール基数は、10×1018~1000×1018個/gであってもよく、50×1018~800×1018個/gであってもよく、100×1018~700×1018個/gであってもよい。
 上記ゾルに含まれるポリシロキサン化合物群の含有量(加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物の含有量、及び、加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物の含有量の総和)は、良好な反応性をさらに得易くなる観点から、ゾルの総量100質量部に対し、5質量部以上であってもよく、10質量部以上であってもよい。上記ゾルに含まれるポリシロキサン化合物群の含有量は、良好な相溶性をさらに得易くなる観点から、ゾルの総量100質量部に対し、50質量部以下であってもよく、30質量部以下であってもよい。これらの観点から、上記ゾルに含まれるポリシロキサン化合物群の含有量は、ゾルの総量100質量部に対し、5~50質量部であってもよく、10~30質量部であってもよい。
 上記ゾルがケイ素化合物(ポリシロキサン化合物を除く)を含有する場合、ケイ素化合物群(加水分解性の官能基又は縮合性の官能基を有するケイ素化合物の含有量、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物の含有量の総和)は、良好な反応性をさらに得易くなる観点から、ゾルの総量100質量部に対し、5質量部以上であってもよく、10質量部以上であってもよい。上記ゾルに含まれるケイ素化合物群の含有量は、良好な相溶性をさらに得易くなる観点から、ゾルの総量100質量部に対し、50質量部以下であってもよく、30質量部以下であってもよい。これらの観点から、上記ゾルに含まれるケイ素化合物群の含有量は、5~50質量部であってもよく、10~30質量部であってもよい。
 ゾルが、ポリシロキサン化合物群及びケイ素化合物群を共に含む場合、ポリシロキサン化合物群の含有量と、ケイ素化合物群の含有量との比は、良好な相溶性がさらに得易くなる観点から、1:0.5以上であってもよく、1:1以上であってもよい。ポリシロキサン化合物群の含有量と、ケイ素化合物群の含有量との比は、ゲルの収縮がさらに抑制し易くなる観点から、1:4以下であってもよく、1:2以下であってもよい。これらの観点から、ポリシロキサン化合物群の含有量と、ケイ素化合物群の含有量との比は、1:0.5~1:4であってもよく、1:1~1:2であってもよい。
 上記ゾルにシリカ粒子が含まれる場合、シリカ粒子の含有量は、適度な強度をエアロゲルに付与し易くなり、乾燥時の耐収縮性に優れるエアロゲルが得易くなる観点から、ゾルの総量100質量部に対し、1質量部以上であってもよく、4質量部以上であってもよい。シリカ粒子の含有量は、シリカ粒子の固体熱伝導を抑制し易くなり、断熱性に優れるエアロゲルが得易くなる観点から、ゾルの総量100質量部に対し、20質量部以下であってもよく、15質量部以下であってもよい。これらの観点から、シリカ粒子の含有量は、ゾルの総量100質量部に対し、1~20質量部であってもよく、4~15質量部であってもよい。
<エアロゲル粒子>
 本実施形態におけるエアロゲル粒子は、例えば後述のとおりバルクのエアロゲルを粉砕することにより得ることができる。
 エアロゲル粒子の平均粒子径D50は1~1000μmとすることができるが、3~700μmであってもよく、5~500μmであってもよく、10~100μmであってもよく、10~50μmであってもよい。エアロゲル粒子の平均粒子径D50が1μm以上であることにより、分散性、取り扱い性等に優れるエアロゲル粒子が得易くなる。一方、平均粒子径D50が1000μm以下であることにより、分散性に優れるエアロゲル粒子が得易くなる。エアロゲル粒子の平均粒子径は、粉砕方法及び粉砕条件、ふるい、分級の仕方等により適宜調整することができる。
 エアロゲル粒子の平均粒子径D50はレーザー回折・散乱法により測定することができる。例えば、溶媒(エタノール)に、エアロゲル粒子の含有量が0.05~5質量%となるように添加し、50Wの超音波ホモジナイザーで15~30分振動することによって、エアロゲル粒子の分散を行う。その後、分散液の約10mL程度をレーザー回折・散乱式粒子径分布測定装置に注入して、25℃で、屈折率1.3、吸収0として粒子径を測定する。そして、この粒子径分布における積算値50%(体積基準)での粒径を平均粒子径D50とする。測定装置としては、例えばMicrotrac MT3000(日機装株式会社製、製品名)を用いることができる。
 エアロゲル粒子の比表面積は1200m/g以下とすることができるが、1000m/g以下であってもよく、900m/g以下であってもよい。これにより、成膜性に優れるペーストを調製し易い。エアロゲル粒子の比表面積の下限は特に限定されないが、ペースト中での凝集抑制及び充填率の向上という観点から、30m/g程度とすることができる。エアロゲル粒子の比表面積を調整する方法としては様々考えられるが、例えば、一般式(2)で表される橋架け部構造を有するエアロゲル成分の量を調整すること、シリカ粒子の量を調整すること等が挙げられる。
 比表面積はBET法により測定することができる。測定装置としては、ガス吸着量測定装置(カンタクローム・インスルツメンツ・ジャパン合同会社製、Autosorb-iQ(Autosorbは登録商標))を用いることができる。
<エアロゲル粒子の製造方法>
 エアロゲル粒子の製造方法は、特に限定されないが、例えば以下の方法により製造することができる。
 本実施形態のエアロゲル粒子は、ゾル生成工程と、ゾル生成工程で得られたゾルをゲル化し、その後熟成して湿潤ゲルを得る湿潤ゲル生成工程と、湿潤ゲル生成工程で得られた湿潤ゲルを洗浄及び(必要に応じ)溶媒置換する洗浄及び溶媒置換工程と、洗浄及び溶媒置換した湿潤ゲルを乾燥する乾燥工程と、乾燥により得られたエアロゲルを粉砕する粉砕工程とを主に備える製造方法により製造することができる。
 また、ゾル生成工程と、湿潤ゲル生成工程と、湿潤ゲル生成工程で得られた湿潤ゲルを粉砕する湿潤ゲル粉砕工程と、洗浄及び溶媒置換工程と、乾燥工程とを主に備える製造方法により製造してもよい。
 得られたエアロゲル粒子は、ふるい、分級等によって大きさをさらに揃えることができる。粒子の大きさを整えることで分散性を高めることができる。なお、「ゾル」とは、ゲル化反応が生じる前の状態であって、本実施形態においては上記ケイ素化合物と、場合によりシリカ粒子と、が溶媒中に溶解又は分散している状態を意味する。また、湿潤ゲルとは、液体媒体を含んでいながらも、流動性を有しない湿潤状態のゲル固形物を意味する。
(ゾル生成工程)
 ゾル生成工程は、ケイ素化合物と、場合によりシリカ粒子(シリカ粒子を含む溶媒であってもよい)と、を混合して加水分解反応を行った後、ゾルを生成する工程である。本工程においては、加水分解反応を促進させるため、溶媒中にさらに酸触媒を添加してもよい。また、特許第5250900号公報に示されるように、溶媒中に界面活性剤、熱加水分解性化合物等を添加することもできる。さらに、熱線輻射抑制等を目的として、溶媒中にカーボングラファイト、アルミニウム化合物、マグネシウム化合物、銀化合物、チタン化合物等の成分を添加してもよい。
 溶媒としては、例えば、水、又は、水及びアルコールの混合液を用いることができる。アルコールとしては、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、t-ブタノール等が挙げられる。これらの中でも、ゲル壁との界面張力を低減させる点で、表面張力が低くかつ沸点の低いアルコールとしては、メタノール、エタノール、2-プロパノール等が挙げられる。これらは単独で、又は2種類以上を混合して用いてもよい。
 例えば溶媒としてアルコールを用いる場合、アルコールの量は、ケイ素化合物群及びポリシロキサン化合物群の総量1モルに対し、4~8モルとすることができるが、4~6.5であってもよく、又は4.5~6モルであってもよい。アルコールの量を4モル以上にすることにより良好な相溶性をさらに得易くなり、また、8モル以下にすることによりゲルの収縮をさらに抑制し易くなる。
 酸触媒としては、フッ酸、塩酸、硝酸、硫酸、亜硫酸、リン酸、亜リン酸、次亜リン酸、臭素酸、塩素酸、亜塩素酸、次亜塩素酸等の無機酸;酸性リン酸アルミニウム、酸性リン酸マグネシウム、酸性リン酸亜鉛等の酸性リン酸塩;酢酸、ギ酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、クエン酸、リンゴ酸、アジピン酸、アゼライン酸等の有機カルボン酸などが挙げられる。これらの中でも、得られるエアロゲルの耐水性をより向上する酸触媒としては有機カルボン酸が挙げられる。当該有機カルボン酸としては酢酸が挙げられるが、ギ酸、プロピオン酸、シュウ酸、マロン酸等であってもよい。これらは単独で、又は2種類以上を混合して用いてもよい。
 酸触媒を用いることで、ケイ素化合物の加水分解反応を促進させて、より短時間でゾルを得ることができる。
 酸触媒の添加量は、ポリシロキサン化合物群及びケイ素化合物群の総量100質量部に対し、0.001~0.1質量部とすることができる。
 界面活性剤としては、非イオン性界面活性剤、イオン性界面活性剤等を用いることができる。これらは単独で、又は2種類以上を混合して用いてもよい。
 非イオン性界面活性剤としては、例えば、ポリオキシエチレン等の親水部と主にアルキル基からなる疎水部とを含む化合物、ポリオキシプロピレン等の親水部を含む化合物などを使用できる。ポリオキシエチレン等の親水部と主にアルキル基からなる疎水部とを含む化合物としては、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルエーテル等が挙げられる。ポリオキシプロピレン等の親水部を含む化合物としては、ポリオキシプロピレンアルキルエーテル、ポリオキシエチレンとポリオキシプロピレンのブロック共重合体等が挙げられる。
 イオン性界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、両イオン性界面活性剤等が挙げられる。カチオン性界面活性剤としては、臭化セチルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム等が挙げられ、アニオン性界面活性剤としては、ドデシルスルホン酸ナトリウム等が挙げられる。また、両イオン性界面活性剤としては、アミノ酸系界面活性剤、ベタイン系界面活性剤、アミンオキシド系界面活性剤等が挙げられる。アミノ酸系界面活性剤としては、例えば、アシルグルタミン酸等が挙げられる。ベタイン系界面活性剤としては、例えば、ラウリルジメチルアミノ酢酸ベタイン、ステアリルジメチルアミノ酢酸ベタイン等が挙げられる。アミンオキシド系界面活性剤としては、例えばラウリルジメチルアミンオキシドが挙げられる。
 これらの界面活性剤は、後述する湿潤ゲル生成工程において、反応系中の溶媒と、成長していくシロキサン重合体との間の化学的親和性の差異を小さくし、相分離を抑制する作用をすると考えられている。
 界面活性剤の添加量は、界面活性剤の種類、あるいはケイ素化合物の種類及び量にも左右されるが、例えばポリシロキサン化合物群及びケイ素化合物群の総量100質量部に対し、1~100質量部とすることができる。なお、同添加量は5~60質量部であってもよい。
 熱加水分解性化合物は、熱加水分解により塩基触媒を発生して、反応溶液を塩基性とし、後述する湿潤ゲル生成工程でのゾルゲル反応を促進すると考えられている。よって、この熱加水分解性化合物としては、加水分解後に反応溶液を塩基性にできる化合物であれば、特に限定されず、尿素;ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド等の酸アミド;ヘキサメチレンテトラミン等の環状窒素化合物などを挙げることができる。これらの中でも、特に尿素は上記促進効果を得られ易い。
 熱加水分解性化合物の添加量は、後述する湿潤ゲル生成工程でのゾルゲル反応を十分に促進することができる量であれば、特に限定されない。例えば、熱加水分解性化合物として尿素を用いた場合、その添加量は、ポリシロキサン化合物群及びケイ素化合物群の総量100質量部に対して、1~200質量部とすることができる。なお、同添加量は2~150質量部であってもよい。添加量を1質量部以上とすることにより、良好な反応性をさらに得易くなり、また、200質量部以下とすることにより、結晶の析出及びゲル密度の低下をさらに抑制し易くなる。
 ゾル生成工程の加水分解は、混合液中のケイ素化合物、シリカ粒子、酸触媒、界面活性剤等の種類及び量にも左右されるが、例えば20~60℃の温度環境下で10分~24時間行ってもよく、50~60℃の温度環境下で5分~8時間行ってもよい。これにより、ケイ素化合物中の加水分解性官能基が十分に加水分解され、ケイ素化合物の加水分解生成物をより確実に得ることができる。
 ただし、溶媒中に熱加水分解性化合物を添加する場合は、ゾル生成工程の温度環境を、熱加水分解性化合物の加水分解を抑制してゾルのゲル化を抑制する温度に調節してもよい。この時の温度は、熱加水分解性化合物の加水分解を抑制できる温度であれば、いずれの温度であってもよい。例えば、熱加水分解性化合物として尿素を用いた場合は、ゾル生成工程の温度環境は0~40℃とすることができるが、10~30℃であってもよい。
(湿潤ゲル生成工程)
 湿潤ゲル生成工程は、ゾル生成工程で得られたゾルをゲル化し、その後熟成して湿潤ゲルを得る工程である。本工程では、ゲル化を促進させるため塩基触媒を用いることができる。
 塩基触媒としては、炭酸カルシウム、炭酸カリウム、炭酸ナトリウム、炭酸バリウム、炭酸マグネシウム、炭酸リチウム、炭酸アンモニウム、炭酸銅(II)、炭酸鉄(II)、炭酸銀(I)等の炭酸塩類;炭酸水素カルシウム、炭酸水素カリウム、炭酸水素ナトリウム、炭酸水素アンモニウム等の炭酸水素塩類;水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物;水酸化アンモニウム、フッ化アンモニウム、塩化アンモニウム、臭化アンモニウム等のアンモニウム化合物;メタ燐酸ナトリウム、ピロ燐酸ナトリウム、ポリ燐酸ナトリウム等の塩基性燐酸ナトリウム塩;アリルアミン、ジアリルアミン、トリアリルアミン、イソプロピルアミン、ジイソプロピルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、2-エチルヘキシルアミン、3-エトキシプロピルアミン、ジイソブチルアミン、3-(ジエチルアミノ)プロピルアミン、ジ-2-エチルヘキシルアミン、3-(ジブチルアミノ)プロピルアミン、テトラメチルエチレンジアミン、t-ブチルアミン、sec-ブチルアミン、プロピルアミン、3-(メチルアミノ)プロピルアミン、3-(ジメチルアミノ)プロピルアミン、3-メトキシアミン、ジメチルエタノールアミン、メチルジエタノールアミン、ジエタノールアミン、トリエタノールアミン等の脂肪族アミン類;モルホリン、N-メチルモルホリン、2-メチルモルホリン、ピペラジン及びその誘導体、ピペリジン及びその誘導体、イミダゾール及びその誘導体等の含窒素複素環状化合物類などが挙げられる。これらの中でも、水酸化アンモニウム(アンモニア水)は、揮発性が高く、乾燥後のエアロゲル粒子中に残存し難いため耐水性を損ない難いという点、さらには経済性の点で優れている。上記の塩基触媒は単独で、又は2種類以上を混合して用いてもよい。
 塩基触媒を用いることで、ゾル中のケイ素化合物、及びシリカ粒子の、脱水縮合反応又は脱アルコール縮合反応を促進することができ、ゾルのゲル化をより短時間で行うことができる。また、これにより、強度(剛性)のより高い湿潤ゲルを得ることができる。特に、アンモニアは揮発性が高く、エアロゲル粒子中に残留し難いので、塩基触媒としてアンモニアを用いることで、より耐水性の優れたエアロゲル粒子を得ることができる。
 塩基触媒の添加量は、ポリシロキサン化合物群及びケイ素化合物群の総量100質量部に対し、0.5~5質量部とすることができるが、1~4質量部であってもよい。0.5質量部以上とすることにより、ゲル化をより短時間で行うことができ、5質量部以下とすることにより、耐水性の低下をより抑制することができる。
 湿潤ゲル生成工程におけるゾルのゲル化は、溶媒及び塩基触媒が揮発しないように密閉容器内で行ってもよい。ゲル化温度は、30~90℃とすることができるが、40~80℃であってもよい。ゲル化温度を30℃以上とすることにより、ゲル化をより短時間に行うことができ、強度(剛性)のより高い湿潤ゲルを得ることができる。また、ゲル化温度を90℃以下にすることにより、溶媒(特にアルコール)の揮発を抑制し易くなるため、体積収縮を抑えながらゲル化することができる。
 湿潤ゲル生成工程における熟成は、溶媒及び塩基触媒が揮発しないように密閉容器内で行ってもよい。熟成により、湿潤ゲルを構成する成分の結合が強くなり、その結果、乾燥時の収縮を抑制するのに十分な強度(剛性)の高い湿潤ゲルを得ることができる。熟成温度は、30~90℃とすることができるが、40~80℃であってもよい。熟成温度を30℃以上とすることにより、強度(剛性)のより高い湿潤ゲルを得ることができ、熟成温度を90℃以下にすることにより、溶媒(特にアルコール)の揮発を抑制し易くなるため、体積収縮を抑えながらゲル化することができる。
 なお、ゾルのゲル化終了時点を判別することは困難な場合が多いため、ゾルのゲル化とその後の熟成とは、連続して一連の操作で行ってもよい。
 ゲル化時間と熟成時間は、ゲル化温度及び熟成温度により適宜設定することができる。ゾル中にシリカ粒子が含まれている場合は、含まれていない場合と比較して、特にゲル化時間を短縮することができる。この理由は、ゾル中のケイ素化合物が有するシラノール基又は反応性基が、シリカ粒子のシラノール基と水素結合又は化学結合を形成するためであると推察する。なお、ゲル化時間は10~120分間とすることができるが、20~90分間であってもよい。ゲル化時間を10分間以上とすることにより均質な湿潤ゲルを得易くなり、120分間以下とすることにより後述する洗浄及び溶媒置換工程から乾燥工程の簡略化が可能となる。なお、ゲル化及び熟成の工程全体として、ゲル化時間と熟成時間との合計時間は、4~480時間とすることができるが、6~120時間であってもよい。ゲル化時間と熟成時間の合計を4時間以上とすることにより、強度(剛性)のより高い湿潤ゲルを得ることができ、480時間以下にすることにより熟成の効果をより維持し易くなる。
 得られるエアロゲル粒子の密度を下げたり、平均細孔径を大きくするために、ゲル化温度及び熟成温度を上記範囲内で高めたり、ゲル化時間と熟成時間の合計時間を上記範囲内で長くしてもよい。また、得られるエアロゲル粒子の密度を上げたり、平均細孔径を小さくするために、ゲル化温度及び熟成温度を上記範囲内で低くしたり、ゲル化時間と熟成時間の合計時間を上記範囲内で短くしてもよい。
(湿潤ゲル粉砕工程)
 湿潤ゲル粉砕工程を行う場合、湿潤ゲル生成工程で得られた湿潤ゲルを粉砕する。粉砕は、例えば、ヘンシャル型ミキサーに湿潤ゲルを入れるか、又はミキサー内で湿潤ゲル生成工程を行い、ミキサーを適度な条件(回転数及び時間)で運転することにより行うことができる。また、より簡易的には密閉可能な容器に湿潤ゲルを入れるか、又は密閉可能な容器内で湿潤ゲル生成工程を行い、シェイカー等の振盪装置を用いて、適度な時間振盪することにより行うことができる。なお、必要に応じて、ジェットミル、ローラーミル、ビーズミル等を用いて、湿潤ゲルの粒子径を調整することもできる。
(洗浄及び溶媒置換工程)
 洗浄及び溶媒置換工程は、湿潤ゲル生成工程又は湿潤ゲル粉砕工程により得られた湿潤ゲルを洗浄する工程(洗浄工程)と、湿潤ゲル中の洗浄液を乾燥条件(後述の乾燥工程)に適した溶媒に置換する工程(溶媒置換工程)を有する工程である。洗浄及び溶媒置換工程は、湿潤ゲルを洗浄する工程を行わず、溶媒置換工程のみを行う形態でも実施可能であるが、湿潤ゲル中の未反応物、副生成物等の不純物を低減し、より純度の高いエアロゲル粒子の製造を可能にする観点からは、湿潤ゲルを洗浄してもよい。
 洗浄工程では、湿潤ゲル生成工程又は湿潤ゲル粉砕工程により得られた湿潤ゲルを洗浄する。当該洗浄は、例えば水又は有機溶媒を用いて繰り返し行うことができる。この際、加温することにより洗浄効率を向上させることができる。
 有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、アセトン、メチルエチルケトン、1,2-ジメトキシエタン、アセトニトリル、ヘキサン、トルエン、ジエチルエーテル、クロロホルム、酢酸エチル、テトラヒドロフラン、塩化メチレン、N、N-ジメチルホルムアミド、ジメチルスルホキシド、酢酸、ギ酸等の各種の有機溶媒を使用することができる。上記の有機溶媒は単独で、又は2種類以上を混合して用いてもよい。
 後述する溶媒置換工程では、乾燥によるゲルの収縮を抑制するため、低表面張力の溶媒を用いることができる。しかし、低表面張力の溶媒は、一般的に水との相互溶解度が極めて低い。そのため、溶媒置換工程において低表面張力の溶媒を用いる場合、洗浄工程で用いる有機溶媒としては、水及び低表面張力の溶媒の双方に対して高い相互溶解性を有する親水性有機溶媒が挙げられる。なお、洗浄工程において用いられる親水性有機溶媒は、溶媒置換工程のための予備置換の役割を果たすことができる。上記の有機溶媒の中で、親水性有機溶媒としては、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン等が挙げられる。なお、メタノール、エタノール、メチルエチルケトン等は経済性の点で優れている。
 洗浄工程に使用される水又は有機溶媒の量としては、湿潤ゲル中の溶媒を十分に置換し、洗浄できる量とすることができる。当該量は、湿潤ゲルの容量に対して3~10倍の量とすることができる。洗浄は、洗浄後の湿潤ゲル中の含水率が、シリカ質量に対し、10質量%以下となるまで繰り返すことができる。
 洗浄工程における温度環境は、洗浄に用いる溶媒の沸点以下の温度とすることができ、例えば、メタノールを用いる場合は、30~60℃程度の加温とすることができる。
 溶媒置換工程では、乾燥工程におけるエアロゲルの収縮を抑制するため、洗浄した湿潤ゲルの溶媒を所定の置換用溶媒に置き換える。この際、加温することにより置換効率を向上させることができる。置換用溶媒としては、具体的には、乾燥工程において、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥する場合は、後述の低表面張力の溶媒が挙げられる。一方、超臨界乾燥をする場合は、置換用溶媒としては、例えば、エタノール、メタノール、2-プロパノール、ジクロロジフルオロメタン、二酸化炭素等、又はこれらを2種以上混合した溶媒が挙げられる。
 低表面張力の溶媒としては、20℃における表面張力が30mN/m以下の溶媒が挙げられる。なお、当該表面張力は25mN/m以下であっても、又は20mN/m以下であってもよい。低表面張力の溶媒としては、例えば、ペンタン(15.5)、ヘキサン(18.4)、ヘプタン(20.2)、オクタン(21.7)、2-メチルペンタン(17.4)、3-メチルペンタン(18.1)、2-メチルヘキサン(19.3)、シクロペンタン(22.6)、シクロヘキサン(25.2)、1-ペンテン(16.0)等の脂肪族炭化水素類;ベンゼン(28.9)、トルエン(28.5)、m-キシレン(28.7)、p-キシレン(28.3)等の芳香族炭化水素類;ジクロロメタン(27.9)、クロロホルム(27.2)、四塩化炭素(26.9)、1-クロロプロパン(21.8)、2-クロロプロパン(18.1)等のハロゲン化炭化水素類;エチルエーテル(17.1)、プロピルエーテル(20.5)、イソプロピルエーテル(17.7)、ブチルエチルエーテル(20.8)、1,2-ジメトキシエタン(24.6)等のエーテル類;アセトン(23.3)、メチルエチルケトン(24.6)、メチルプロピルケトン(25.1)、ジエチルケトン(25.3)等のケトン類;酢酸メチル(24.8)、酢酸エチル(23.8)、酢酸プロピル(24.3)、酢酸イソプロピル(21.2)、酢酸イソブチル(23.7)、エチルブチレート(24.6)等のエステル類などが挙げられる(かっこ内は20℃での表面張力を示し、単位は[mN/m]である)。これらの中で、脂肪族炭化水素類(ヘキサン、ヘプタン等)は低表面張力でありかつ作業環境性に優れている。また、これらの中でも、アセトン、メチルエチルケトン、1,2-ジメトキシエタン等の親水性有機溶媒を用いることで、上記洗浄工程の有機溶媒と兼用することができる。なお、これらの中でも、さらに後述する乾燥工程における乾燥が容易な点で、常圧での沸点が100℃以下の溶媒を用いてもよい。上記の溶媒は単独で、又は2種類以上を混合して用いてもよい。
 溶媒置換工程に使用される溶媒の量としては、洗浄後の湿潤ゲル中の溶媒を十分に置換できる量とすることができる。当該量は、湿潤ゲルの容量に対して3~10倍の量とすることができる。
 溶媒置換工程における温度環境は、置換に用いる溶媒の沸点以下の温度とすることができ、例えば、ヘプタンを用いる場合は、30~60℃程度の加温とすることができる。
 なお、ゲル中にシリカ粒子が含まれている場合、溶媒置換工程は必須ではない。推察されるメカニズムとしては次のとおりである。すなわち、シリカ粒子が三次元網目状の骨格の支持体として機能することにより、当該骨格が支持され、乾燥工程におけるゲルの収縮が抑制される。そのため、洗浄に用いた溶媒を置換せずに、ゲルをそのまま乾燥工程に付すことができると考えられる。このように、シリカ粒子を用いることで、洗浄及び溶媒置換工程から乾燥工程の簡略化が可能である。
(乾燥工程)
 乾燥工程では、上記のとおり洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを乾燥させる。これにより、エアロゲル(エアロゲルブロック又はエアロゲル粒子)を得ることができる。すなわち、上記ゾルから生成された湿潤ゲルを乾燥してなるエアロゲルを得ることができる。
 乾燥の手法としては特に制限されず、公知の常圧乾燥、超臨界乾燥又は凍結乾燥を用いることができる。これらの中で、低密度のエアロゲルを製造し易いという観点からは、常圧乾燥又は超臨界乾燥を用いることができる。また、低コストで生産可能という観点からは、常圧乾燥を用いることができる。なお、本実施形態において、常圧とは0.1MPa(大気圧)を意味する。
 エアロゲルは、洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥することにより得ることができる。乾燥温度は、置換された溶媒(溶媒置換を行わない場合は洗浄に用いられた溶媒)の種類により異なるが、特に高温での乾燥が溶媒の蒸発速度を速め、ゲルに大きな亀裂を生じさせる場合があるという点に鑑み、20~150℃とすることができる。なお、当該乾燥温度は60~120℃であってもよい。また、乾燥時間は、湿潤ゲルの容量及び乾燥温度により異なるが、4~120時間とすることができる。なお、生産性を阻害しない範囲内において臨界点未満の圧力をかけて乾燥を早めることも、常圧乾燥に包含されるものとする。
 エアロゲルは、また、洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを、超臨界乾燥することによっても得ることができる。超臨界乾燥は、公知の手法にて行うことができる。超臨界乾燥する方法としては、例えば、湿潤ゲルに含まれる溶媒の臨界点以上の温度及び圧力にて溶媒を除去する方法が挙げられる。あるいは、超臨界乾燥する方法としては、湿潤ゲルを、液化二酸化炭素中に、例えば、20~25℃、5~20MPa程度の条件で浸漬することで、湿潤ゲルに含まれる溶媒の全部又は一部を当該溶媒より臨界点の低い二酸化炭素に置換した後、二酸化炭素を単独で、又は二酸化炭素及び溶媒の混合物を除去する方法が挙げられる。
 このような常圧乾燥又は超臨界乾燥により得られたエアロゲルは、さらに常圧下にて、105~200℃で0.5~2時間程度追加乾燥してもよい。これにより、密度が低く、小さな細孔を有するエアロゲルをさらに得易くなる。追加乾燥は、常圧下にて、150~200℃で行ってもよい。
(粉砕工程)
 湿潤ゲル粉砕工程を行わない場合は、乾燥により得られたエアロゲル(エアロゲルブロック)を粉砕することによりエアロゲル粒子を得る。例えば、ジェットミル、ローラーミル、ビーズミル、ハンマーミル等にエアロゲルを入れ、適度な回転数と時間で運転することにより行うことができる。
<保温材下腐食抑制用ペースト>
 保温材下腐食抑制用ペーストは、エアロゲル粒子及び液状媒体を含む。保温材下腐食抑制用ペーストは、エアロゲル粒子及び液状媒体の混合物であるということもできる。ペースト中のエアロゲル粒子は、細孔内が液状媒体で満たされていてもよい。
 ペーストはバインダ樹脂を更に含んでいてもよい。バインダ樹脂は、塗膜形成後にエアロゲル粒子同士を結着する機能を有する。バインダ樹脂としては、例えばエポキシ樹脂、シリコーン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、ポリウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリエステル樹脂、アクリル樹脂(アクリル酸エステル又はメタクリル酸エステルを主たる構造単位として含む重合体)、アクリル酸系樹脂(アクリル酸、アクリル酸塩、メタクリル酸、メタクリル酸塩を構造単位として含む重合体)、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース系樹脂、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキシド、ポリエチレングリコール等が挙げられる。後述の第一のバインダ樹脂及び第二のバインダ樹脂はこれらの中から選択してもよい。
 バインダ樹脂は、特に第一のバインダ樹脂及び第二のバインダ樹脂を含むことができる。第一のバインダ樹脂及び第二のバインダ樹脂は、塗膜形成後にエアロゲル粒子同士を結着する機能を有する。第一のバインダ樹脂及び第二のバインダ樹脂は、いずれも液状媒体に溶解し、第一のバインダ樹脂の液状媒体に対する溶解度は、第二のバインダ樹脂の液状媒体に対する溶解度より高い。
 このような第一のバインダ樹脂及び第二のバインダ樹脂をペーストに含ませることで、塗膜強度及び接着性に優れた塗膜が得られる。この理由は必ずしも定かではないが、発明者らは次のように推察している。第一のバインダ樹脂と第二のバインダ樹脂は液状媒体に対する溶解度が異なるため、塗膜形成時の乾燥工程(液状媒体を除去する工程)において、液状媒体に対して第二のバインダ樹脂が第一のバインダ樹脂より先に飽和し、第二のバインダ樹脂が先に析出し易くなる。このような溶解度の差異により、塗膜形成時に特徴的なバインダ構造が形成され、優れた塗膜強度及び接着性が得られると考えられる。
 上述の特徴的なバインダ構造については必ずしも定かではないが、例えば、第二のバインダ樹脂が先にエアロゲル粒子(及び後述の繊維状物質)上に結着し、第一のバインダ樹脂が第二のバインダ樹脂を介してエアロゲル粒子間(又は、エアロゲル粒子と繊維状物質との間若しくは繊維状物質間)を結着することで、優れた塗膜強度及び接着性が得られていることが推測される。また、第二のバインダ樹脂が粒状となってエアロゲル粒子間を埋め、その後、第一のバインダ樹脂で結着されることで、エアロゲル粒子同士が強固に結着しているとも考えられる。
 本実施形態では、第二のバインダ樹脂の含有量が、第一のバインダ樹脂の含有量より多いことが好ましい。これにより、上述の効果がより顕著に奏される。第二のバインダ樹脂の含有量は、第一のバインダ樹脂100質量部に対して100質量部を超えることが好ましく、500質量部以上がより好ましく、1000質量部以上であってよく、2000質量部以上であってもよい。
 また、第二のバインダ樹脂の含有量は、断熱性能に優れる観点からは、第一のバインダ樹脂100質量部に対して、10000質量部以下であってよく、7000質量部以下が好ましく、5000質量部以下であってよく、3000質量部以下であってもよい。
 第一のバインダ樹脂及び第二のバインダ樹脂の合計含有量(バインダ樹脂の含有量ということもできる)は、例えば、エアロゲル粒子100質量部に対して、5質量部以上であってよく、10質量部以上であることが好ましく、50質量部以上がより好ましく、100質量部以上が更に好ましい。これにより、エアロゲル粒子がバインダ樹脂によって強固に結着され易くなり、塗膜の強度が一層向上する。
 また、第一のバインダ樹脂及び第二のバインダ樹脂の合計含有量は、例えば、エアロゲル粒子100質量部に対して、500質量部以下であってよく、300質量部以下であることが好ましく、250質量部以下がより好ましく、200質量部以下が更に好ましい。これにより、塗膜中のエアロゲル粒子の比率が高くなり、塗膜の断熱性が一層向上する。
 第一のバインダ樹脂は、塗膜形成後にエアロゲル粒子同士を結着する機能を有し、液状媒体に溶解可能な樹脂であればよい。例えば、液状媒体が水系溶媒であるとき、第一のバインダ樹脂としては、例えば、セルロース系樹脂、アクリル酸系樹脂、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキシド、ポリエチレングリコール等が挙げられる。これらのうち、増粘性に優れる観点からは、セルロース系樹脂、アクリル酸系樹脂を好適に用いることができる。
 セルロース系樹脂としては、例えば、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロースアンモニウム、ヒドロキシエチルメチルセルロース等が挙げられる。
 アクリル酸系樹脂としては、例えば、ポリアクリル酸、アクリル酸共重合ポリマー、ポリアクリル酸塩、アクリル酸塩共重合ポリマー等が挙げられる。
 第二のバインダ樹脂は、液状媒体に溶解可能であり、液状媒体に対する溶解度が第一のバインダ樹脂より低い樹脂であればよい。第二のバインダ樹脂は、熱可塑性樹脂であってよく、熱硬化性樹脂であってもよい。
 熱可塑性樹脂としては、例えば、アクリル樹脂、ポリビニルアルコール、ポリプロピレン、ポリ塩化ビニル等が挙げられる。これらのうち、取り扱い性の観点からは、アクリル樹脂、ポリビニルアルコールを好適に用いることができる。
 熱硬化性樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、ポリウレタン等が挙げられる。これらのうち、耐熱性に優れる観点からは、エポキシ樹脂、シリコーン樹脂を好適に用いることができる。
 第二のバインダ樹脂が熱硬化性樹脂であるとき、塗膜は、硬化剤を更に含有していてよい。硬化剤は特に限定されず、熱硬化性樹脂の種類に応じて適宜変更してよい。例えば、熱硬化性樹脂がエポキシ樹脂であるとき、硬化剤としては、公知のエポキシ樹脂硬化剤を用いることができる。エポキシ樹脂硬化剤としては、例えば、アミン系硬化剤、酸無水物系硬化剤、ポリアミド系硬化剤等が例示でき、反応性の観点からはアミン系、ポリアミド系を好適に用いることができる。
 液状媒体としては水及び有機溶媒が挙げられる。有機溶媒としては、該エアロゲル粒子を分散し得るものであれば特に制限はなく、例えば、トルエン、キシレン、メシチレン、クメン、p-シメン等の芳香族炭化水素類;ヘキサン、ヘプタン、ペンタン等の脂肪族炭化水素類;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類;メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類などが挙げられる。これらの中でも、揮発性、沸点等の観点から、アルコール類及びケトン類を用いることができ、特にアルコール類を好適に用いることができる。アルコール類及びケトン類は、水、水系樹脂等との混合が容易であるため、それらの成分との併用時にも好適である。
 好適な一態様において、液状媒体は、水を含む水系溶媒であることが好ましい。水系溶媒は、水であってよく、水及び有機溶媒を含む混合溶媒であってもよい。このような液状媒体によれば、エアロゲル粒子の分散性が向上して、均一な塗膜が得られ易くなる。
 ペーストは、繊維状物質を更に含有していてよい。このようなペーストを用いると、塗膜中でエアロゲル粒子が繊維状物質と結着されるため、アンカー効果によって、エアロゲル粒子の塗膜からの脱落が防止される。また、塗膜中に繊維状物質が分散することで、塗膜の強度が一層向上する。
 繊維状物質としては、有機繊維及び無機繊維が挙げられる。有機繊維としてはポリアミド系、ポリイミド系、ポリビニルアルコール系、ポリ塩化ビニリデン系、ポリ塩化ビニル系、ポリエステル系、ポリアクリロニトリル系、ポリエチレン系、ポリプロピレン系、ポリウレタン系、フェノール系、ポリエーテルエステル系、ポリ乳酸系等が挙げられる。無機繊維としては、ガラス繊維、炭素繊維、セラミック繊維、金属繊維等が挙げられる。
 繊維状物質の繊維長は特に限定されないが、例えば、1.5mm以上が好ましく、2mm以上がより好ましく、2.5mm以上が更に好ましい。繊維状物質の繊維長の上限は特に制限されないが、ペースト中での分散性の観点から、例えば20mm以下であってよい。
 繊維の繊維径は、ペースト中での分散性、良好なアンカー機能等の観点から、0.01~100μmとすることができる。
 繊維状物質の含有量は特に限定されないが、例えば、エアロゲル粒子100質量部に対して、5質量部以上が好ましく、7質量部以上がより好ましく、9質量部以上が更に好ましい。これにより、繊維状物質によるアンカー効果が得られ易くなり、塗膜強度が一層向上する。
 また、繊維状物質の含有量は、例えば、エアロゲル粒子100質量部に対して、25質量部以下が好ましく、20質量部以下がより好ましく、15質量部以下が更に好ましい。これにより、塗膜中のエアロゲル粒子の比率が高くなり、塗膜の断熱性が一層向上する。
 ペーストは、上記以外の他の成分を更に含有していてよい。他の成分としては、例えば、増粘剤、顔料、レベリング剤、成膜助剤等が挙げられる。なお、増粘剤としては、有機系ポリマー、層状無機添加剤、フュームドシリカ等が挙げられる。
 ペーストの濃度は特に限定されず、所望の塗膜の厚さ、塗工方法等に応じて適宜変更してよい。例えば、ペースト中のエアロゲル粒子の含有量は、ペーストの全量を基準として5~30質量%であってよく、5~25質量%であってもよい。
 ペースト中の第一のバインダ樹脂及び第二のバインダ樹脂の合計含有量(バインダ樹脂の含有量ということもできる)は、エアロゲル粒子同士の結着性、塗膜の断熱性等の観点から、1~40質量%とすることができるが、1~30質量%であってもよい。
 ペースト中の繊維状物質の含有量は、ペースト中での分散性、良好なアンカー機能の発現性等の観点から、0.01~30質量%とすることができるが、0.1~10質量%であってもよい。
 増粘剤の含有量は、所望のペースト粘度(例えば、1000mPa・s以上)となるように適宜調整することができる。ペーストの粘度はバインダ樹脂を配合することにより向上させることもできるため、その場合は必ずしも増粘剤を配合する必要はない。
 なお、保温材下腐食抑制用ペーストは、エアロゲル粒子に加えて、又は代えて他の多孔質粒子を含んでいてもよい。すなわち、保温材下腐食抑制用ペーストは、多孔質粒子及び液状媒体を含むものであってもよい。多孔質粒子としては、無機多孔質粒子及び有機多孔質粒子が挙げられる。無機多孔質粒子の構成材料としては、金属酸化物(複合酸化物含む)、水酸化物、窒化物、炭化物、炭酸塩、硼酸塩、硫酸塩、ケイ酸塩、リン酸塩等が挙げられる。具体的には、シリカ、酸化チタン、酸化亜鉛、アルミナ、酸化ジルコン、酸化錫、酸化マグネシウム、チタン酸カリウム等の金属酸化物、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物、窒化珪素、窒化チタン、窒化アルミニウム等の窒化物、炭化珪素、炭化チタン等の炭化物、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、硼酸アルミニウム、硼酸マグネシウム等の硼酸塩、硫酸カルシウム、硫酸マグネシウム等の硫酸塩、ケイ酸カルシウム、ケイ酸マグネシウム等のケイ酸塩、リン酸カルシウム等のリン酸塩などが挙げられる。その他、上記構成材料としては、硝子、ゼオライト、上記のエアロゲル等を用いることができる。有機多孔質粒子の構成材料としては、木炭、活性炭、高分子多孔質焼結体、樹脂フォーム、シリコーン多孔質体等が挙げられる。
 本実施形態のペーストは、プラントや発電所のような大規模施設が有する各種配管に対し、配管腐食を抑制可能な保温材を設ける用途において好適に用いることができる。ただし、配管における保温材下腐食と同様の現象が生じる場面においては当該ペーストを活用することが可能であり、例えば家電、自動車等が有する中・小型機器において、エネルギーロスの低減を図ることもできる。
<保温材下腐食の抑制方法>
 保温材下腐食の抑制方法は、エアロゲル粒子及び液状媒体を含むペーストを対象表面に塗布して塗膜を形成する工程を備える。より具体的には、保温材下腐食の抑制方法は、上述のペーストを対象表面に塗布する工程と、対象表面に塗布されたペーストから液状媒体を除去して塗膜を得る工程と、を備えることができる。保温材下腐食の抑制方法は、多孔質粒子及び液状媒体を含むペーストを対象表面に塗布して塗膜を形成する工程を備えるものであってもよい。
 なお、当該抑制方法により対象表面にペーストの乾燥物である塗膜が形成され、またその塗膜は対象表面において保温材として機能する。したがって、保温材下腐食の抑制方法は、保温材下腐食を抑制することのできる対象の保温方法と言うこともできる。
 ペーストを対象表面に塗布する方法としては特に制限されないが、例えば図1に示すように鏝(金属へら)等を用いて対象表面に塗布することができる。これにより、従来の断熱塗料では実現困難な厚みの塗膜を短時間で形成することができる。具体的には、本実施形態のペーストであれば、一度の塗布により少なくとも2mm程度の厚さの塗膜を形成することができ、0.5mm程度の厚さの塗膜しか得られなかった従来の塗料に比して極めて高い作業効率を実現することができる。なお、ペーストはエアロゲル粒子を含むため、従来の断熱塗料よりも断熱性能に優れる塗膜を得ることができる。
 その後、塗布されたペーストを0~40℃の環境に放置することで、あるいはペーストに対し、加熱(例えば、40~150℃)処理、減圧(例えば、10000Pa以下)処理、又はそれらの両処理を行うことで、液状媒体を除去してもよい。
 第二のバインダ樹脂が熱硬化性樹脂であるとき、塗布後に第二のバインダ樹脂を硬化する工程を実施してもよい。本実施形態では、例えば、液状媒体を除去してから、第二のバインダ樹脂を硬化してよい。すなわち、液状媒体を除去する工程と、第二のバインダ樹脂を硬化する工程とをこの順に実施してもよい。また、本実施形態では、例えば、液状媒体の除去と同時に、第二のバインダ樹脂を硬化してもよい。すなわち、液状媒体の除去及び第二のバインダ樹脂の硬化を同時に実施してもよい。
 配管等における保温材下腐食を抑制するという観点から、ペーストを塗布する対象は金属材料であり、そのような金属材料としては炭素鋼、ステンレス鋼等が挙げられる。ただし、対象表面に密着した保温材を設けるという観点からは、対象を構成する材料として、金属以外にセラミック、ガラス、樹脂、これらの複合材料等を用いることが排除されるわけではない。
 ペーストが配管の直管部だけでなくフランジ部や屈曲部のような箇所に対しても特に制限なく適用することができるという観点から、対象表面の形状は複雑であってもよい。シート状、ボード状等の平面状の断熱材を取り付け難い対象物に対しても、ペーストであればその表面に断熱層を設けることができる。
<塗膜(保温材)>
 保温材下腐食抑制用ペーストにより、エアロゲル粒子、バインダ樹脂等を含む塗膜を得ることができる。
 塗膜中のエアロゲル粒子の含有量は、例えば8質量%以上とすることができるが、20質量%以上であってもよく、40質量%以上であってもよい。これにより、塗膜密度が低下し、塗膜の断熱性が一層向上する。塗膜中のエアロゲル粒子の含有量は、例えば、92質量%以下とすることができるが、85質量%以下であってもよい。これにより、塗膜が形成し易くなる傾向がある。
 塗膜中の第一のバインダ樹脂及び第二のバインダ樹脂の合計含有量(バインダ樹脂の含有量ということもできる)は、例えば、8質量%以上とすることができるが、20質量%以上であってもよく、40質量%以上であってもよい。これにより、エアロゲル粒子がバインダ樹脂によって強固に結着され易くなり、塗膜の強度が一層向上する。塗膜中の第一のバインダ樹脂及び第二のバインダ樹脂の合計含有量は、例えば、92質量%以下とすることができるが、85質量%以下であってもよい。これにより、塗膜中のエアロゲル粒子の比率が高くなり、塗膜の断熱性が一層向上する傾向がある。
 塗膜の厚さは特に限定されず、例えば0.01~5mmであってよい。
 塗膜は、本実施形態のエアロゲル粒子が疎水性を有するため、良好な撥水性を有する。すなわち、塗膜が水を含んでしまうことによる性能劣化(例えば断熱性の低下)が生じ難く、塗膜の交換頻度を低減することができる。また、良好な撥水性により、塗膜の保護を目的とした外装材を設ける必要もない。撥水性は、塗膜と水との接触角を測定することで評価できる。接触角は90°以上とすることができ、110°以上であってもよく、130°以上であってもよい。塗膜の接触角は、例えば塗膜中のエアロゲル粒子の含有量、液状媒体の種類や含有量等により調整することができる。
 塗膜は良好な耐熱性を有する。耐熱性は、塗膜の5%重量減少時の温度を測定することで評価できる。例えば、示差熱熱重量同時測定装置を用い、昇温速度10℃/minの条件で500℃まで昇温させ測定を行った場合、5%重量減少時の温度は150℃以上とすることができ、200℃以上であってもよく、250℃以上であってもよい。塗膜の耐熱性は、例えばバインダ樹脂の種類や塗膜中の含有量等により調整することができる。
 塗膜は極めて低い熱伝導率を有する。例えば、大気圧下、25℃において、塗膜の熱伝導率は0.05W/m・K以下とすることができ、0.04W/m・K以下であってもよい。これにより、高性能断熱材であるポリウレタンフォームと比較しても遜色のない断熱性を得ることができる。なお、熱伝導率の下限値は特に限定されないが、例えば0.01W/m・Kとすることができる。熱伝導率は、例えば、定常法熱伝導率測定装置「HFM436Lambda」(NETZSCH社製、製品名、HFM436Lambdaは登録商標)を用いて、定常法により測定することができる。
 次に、下記の実施例により本発明を更に詳しく説明するが、これらの実施例は本発明を制限するものではない。
(エアロゲル粒子Aの作製)
 シリカ粒子含有原料としてPL-2L(扶桑化学工業株式会社製、製品名)を100.0質量部、水を80.0質量部、酸触媒として酢酸を0.5質量部、カチオン系界面活性剤として臭化セチルトリメチルアンモニウム(和光純薬工業株式会社製)を1.0質量部、及び熱加水分解性化合物として尿素を150.0質量部混合し、これにケイ素化合物としてメチルトリメトキシシラン(信越化学工業株式会社製、製品名:KBM-13)を60.0質量部、ジメチルジメトキシシラン(信越化学工業株式会社製、製品名:KBM-22)を20.0質量部、上記一般式(B)で表される構造を有する両末端2官能アルコキシ変性ポリシロキサン化合物(以下、「ポリシロキサン化合物A」という)を20.0質量部加え、25℃で2時間反応させてゾルを得た。得られたゾルを60℃でゲル化した後、60℃で48時間熟成して湿潤ゲルを得た。
 なお、上記「ポリシロキサン化合物A」は次のようにして合成した。まず、撹拌機、温度計及びジムロート冷却管を備えた1リットルの3つ口フラスコにて、両末端にシラノール基を有するジメチルポリシロキサンXC96-723(モメンティブ社製、製品名)を100.0質量部、メチルトリメトキシシランを181.3質量部及びt-ブチルアミンを0.50質量部混合し、30℃で5時間反応させた。その後、この反応液を、1.3kPaの減圧下、140℃で2時間加熱し、揮発分を除去することで、両末端2官能アルコキシ変性ポリシロキサン化合物(ポリシロキサン化合物A)を得た。
 その後、得られた湿潤ゲルをプラスチック製ボトルに移し、密閉後、エクストリームミル(アズワン株式会社製、MX-1000XTS)を用いて、27,000rpmで10分間粉砕し、粒子状の湿潤ゲルを得た。得られた粒子状の湿潤ゲルをメタノール2500.0質量部に浸漬し、25℃で24時間かけて洗浄を行った。この洗浄操作を、新しいメタノールに交換しながら合計3回行った。次に、洗浄した粒子状の湿潤ゲルを、低表面張力溶媒であるヘプタン2500.0質量部に浸漬し、25℃で24時間かけて溶媒置換を行った。この溶媒置換操作を、新しいヘプタンに交換しながら合計3回行った。洗浄及び溶媒置換された粒子状の湿潤ゲルを、常圧下にて、40℃で96時間乾燥し、その後さらに150℃で2時間乾燥した。最後に、ふるい(東京スクリーン株式会社製、目開き45μm、線径32μm)にかけ、上記一般式(3)、(4)及び(5)で表される構造を有するエアロゲル粒子Aを得た。
(エアロゲル粒子Bの準備)
 エアロゲル粒子BとしてJIOS AeroVa(登録商標、JIOS AEROGEL CORPORATION社製、製品名)を準備した。
(エアロゲル粒子の比表面積測定)
 エアロゲル粒子のBET比表面積を、ガス吸着量測定装置(カンタクローム・インスツルメンツ・ジャパン合同会社製、Autosorb-iQ(Autosorbは登録商標))を用いて測定した。エアロゲル粒子Aの比表面積は125m/g、エアロゲル粒子Bの比表面積は716m/gであった。
(エアロゲル粒子の平均粒子径測定)
 エタノールに、エアロゲル粒子の含有量が0.5質量%となるように添加し、これに50Wの超音波ホモジナイザーで20分間振動を与えることで分散液を調製した。得られた分散液10mLをMicrotrac MT3000(日機装株式会社製、製品名)に注入し、25℃で、屈折率1.3、吸収0として粒子径を測定した。そして、得られた粒子径分布における積算値50%(体積基準)での粒子径を平均粒子径D50とした。エアロゲル粒子Aの平均粒子径D50は20μm、エアロゲル粒子Bの平均粒子径D50は17μmであった。
(実施例1)
 N-ビニルアセトアミド・アクリル酸ナトリウム共重合樹脂(昭和電工株式会社製、製品名:アドヒーローGE-167)を15質量部、ガラス繊維(チョップドストランド、繊維径:13μm、繊維長:3mm)を10質量部、エアロゲル粒子Bを100質量部、アクリル樹脂(DIC株式会社製、製品名:DV-759EF、固形分40wt%)を200質量部、イソプロピルアルコールを20質量部、水を150質量部混合して、ペースト1を得た。
<ピール強度の測定>
 ペースト1を、アルミ箔(株式会社UACJ製、製品名:マイホイル厚型50、厚さ:50μm)上に、乾燥後厚さが2mmとなるように金属へらを用いて塗布し、60℃に加熱した乾燥機(エスペック株式会社製、製品名:パーフェクトオーブンSPHH-301)で2時間乾燥させ、アルミ箔上にエアロゲル粒子含有塗膜を形成した。
 得られた塗膜をアルミ箔ごと3mm間隔で切断し、測定サンプルとした。測定装置としては、小型卓上試験機「EZTest」(株式会社島津製作所製、製品名)を用いた。測定はアルミ箔面を上側にしてサンプルを固定し、アルミ箔をはさみ、50mm/minの速度で引張りを行った。測定はアルミ箔が塗膜から剥離した時点で終了とした。結果を表1に示す。
<結露の評価>
 ペースト1を、100×100×100mmのステンレス製の容器側面に対し、乾燥後厚さが1mmとなるように金属へらを用いて塗布し、60℃で2時間乾燥させ、容器側面上にエアロゲル粒子含有塗膜を形成した。塗膜の断面には、コーキング剤(タカダ化学品製造株式会社製、製品名:スワンボンド112)を塗布し、断面から水分が入らないように保護した。これにより評価サンプルを得た。
 次に、容器に0℃の氷水を900mL入れ、温度20℃、湿度80%に設定した恒温恒湿槽(株式会社カトー製)に投入し、1時間静置した。静置後、容器を取り出し、塗膜表面、及び塗膜と容器との界面に、それぞれ水滴が発生していないかを目視にて確認した。水滴が確認されなかった場合を○、確認された場合を×と評価した。結果を表1に示す。
(実施例2)
 ヒドロキシプロピルメチルセルロース(松本油脂株式会社製、製品名:MP-30000)を5質量部、ガラス繊維(チョップドストランド、繊維径:13μm、繊維長:3mm)を10質量部、エアロゲル粒子Aを100質量部、シリコーン樹脂(信越化学工業株式会社製、製品名:POLON-MF-56、固形分40wt%)を300質量部、イソプロピルアルコールを20質量部、水を500質量部混合して、ペースト2を得た。その後、実施例1と同様にして、各種評価を行った。
(比較例1)
 パイロジェルXT(Aspen Aerogel製:厚さ5mm)を準備した。パイロジェルはシリカエアロゲルをグラスファイバー不織布に含浸させた保温用エアロゲルブランケットである。これを塗膜に代えて用い、結露の評価を行った。具体的には、パイロジェルXTを100×100mmに切断し、その断面をコーキングしつつ容器側面に固定し、評価サンプルとした。
Figure JPOXMLDOC01-appb-T000011
 表1に示すように、エアロゲル粒子含有塗膜により、保温材下腐食の根本的な原因となる界面結露を抑制することができた。一方で、エアロゲルブランケットのような保温材では、界面における空隙が少なからず存在するため、界面結露を抑制することはできなかった。

Claims (15)

  1.  エアロゲル粒子及び液状媒体を含むペーストを対象表面に塗布して塗膜を形成する工程を備える、保温材下腐食の抑制方法。
  2.  前記エアロゲル粒子の含有量が、前記ペーストの全量を基準として5質量%以上である、請求項1に記載の方法。
  3.  エアロゲル粒子及び液状媒体を含む、保温材下腐食抑制用ペースト。
  4.  バインダ樹脂を更に含む、請求項3に記載のペースト。
  5.  前記バインダ樹脂が、第一のバインダ樹脂と、前記液状媒体に対する溶解度が前記第一のバインダ樹脂より低い第二のバインダ樹脂と、を含む、請求項4に記載のペースト。
  6.  前記第二のバインダ樹脂の含有量が、前記第一のバインダ樹脂の含有量より多い、請求項5に記載のペースト。
  7.  前記第一のバインダ樹脂がセルロース系樹脂又はアクリル酸系樹脂である、請求項5又は6に記載のペースト。
  8.  前記第二のバインダ樹脂が熱可塑性樹脂である、請求項5~7のいずれか一項に記載のペースト。
  9.  前記第二のバインダ樹脂がアクリル樹脂である、請求項8に記載のペースト。
  10.  前記第二のバインダ樹脂が熱硬化性樹脂である、請求項5~7のいずれか一項に記載のペースト。
  11.  前記第二のバインダ樹脂がシリコーン樹脂である、請求項10に記載のペースト。
  12.  繊維状物質を更に含む、請求項3~11のいずれか一項に記載のペースト。
  13.  前記液状媒体が、水を含む水系溶媒である、請求項3~12のいずれか一項に記載のペースト。
  14.  多孔質粒子及び液状媒体を含むペーストを対象表面に塗布して塗膜を形成する工程を備える、保温材下腐食の抑制方法。
  15.  多孔質粒子及び液状媒体を含む、保温材下腐食抑制用ペースト。
     
PCT/JP2018/015704 2018-04-16 2018-04-16 保温材下腐食の抑制方法、及び保温材下腐食抑制用ペースト WO2019202635A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18915090.7A EP3783076B1 (en) 2018-04-16 2018-04-16 Method for suppressing corrosion under heat-insulating material, and paste for suppressing corrosion under heat-insulating material
US17/047,391 US12110414B2 (en) 2018-04-16 2018-04-16 Method for suppressing corrosion under heat-insulating material, and paste for suppressing corrosion under heat-insulating material
PCT/JP2018/015704 WO2019202635A1 (ja) 2018-04-16 2018-04-16 保温材下腐食の抑制方法、及び保温材下腐食抑制用ペースト
CN201880092501.3A CN112041402A (zh) 2018-04-16 2018-04-16 保温材料下腐蚀的抑制方法及用于抑制保温材料下腐蚀的糊剂
JP2020514804A JP7196907B2 (ja) 2018-04-16 2018-04-16 保温材下腐食の抑制方法、及び保温材下腐食抑制用ペースト

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/015704 WO2019202635A1 (ja) 2018-04-16 2018-04-16 保温材下腐食の抑制方法、及び保温材下腐食抑制用ペースト

Publications (1)

Publication Number Publication Date
WO2019202635A1 true WO2019202635A1 (ja) 2019-10-24

Family

ID=68239490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015704 WO2019202635A1 (ja) 2018-04-16 2018-04-16 保温材下腐食の抑制方法、及び保温材下腐食抑制用ペースト

Country Status (5)

Country Link
US (1) US12110414B2 (ja)
EP (1) EP3783076B1 (ja)
JP (1) JP7196907B2 (ja)
CN (1) CN112041402A (ja)
WO (1) WO2019202635A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113045915A (zh) * 2021-03-19 2021-06-29 三棵树(上海)新材料研究有限公司 一种防火型气凝胶保温隔热中涂漆及其制备方法
US11447633B2 (en) * 2020-04-27 2022-09-20 Taiwan Aerogel Technology Material Co., Ltd. Method for producing a cold resisting and heat insulating composite glue composed of a hydrophobic aerogel and the related product thereof
US20220306537A1 (en) * 2021-03-25 2022-09-29 Rockwool International A/S Anticorrosive composition

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04372677A (ja) * 1991-06-20 1992-12-25 Kubokou Paint Kk 断熱性ライニング材及びそれを用いた断熱構造
JPH07138520A (ja) * 1993-11-19 1995-05-30 Kubokou Paint Kk 断熱塗料及びそれを塗装した構造体
JPH10508049A (ja) * 1994-10-20 1998-08-04 ヘキスト・アクチェンゲゼルシャフト エーロゲルを含む組成物、その製造法、およびその使用
JP2000026609A (ja) 1998-07-13 2000-01-25 Ge Toshiba Silicones Co Ltd アルコキシ基末端ポリジオルガノシロキサンの製造方法
JP2007514810A (ja) * 2003-11-12 2007-06-07 バーチル,ジー.スチュアート,ジュニア 断熱層のための組成物
JP2011027168A (ja) 2009-07-24 2011-02-10 Nichias Corp 保温構造の補修方法及び保温構造
JP2012233110A (ja) 2011-05-06 2012-11-29 Shin-Etsu Chemical Co Ltd 末端アルコキシ変性オルガノポリシロキサン及びその製造方法
JP2013100406A (ja) * 2011-11-08 2013-05-23 Ozonesave Corp 断熱用塗料、該塗料を用いた断熱方法、及び該塗料を塗布したシート材
JP5250900B2 (ja) 2005-07-19 2013-07-31 株式会社ダイナックス アルキルシロキサンエアロゲルの製造方法、並びに、アルキルシロキサンエアロゲル、その製造装置およびそれを含むパネルの製造方法
JP2017031386A (ja) * 2015-07-30 2017-02-09 現代自動車株式会社Hyundai Motor Company 断熱コーティング組成物および断熱コーティング層

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250900U (ja) 1975-10-08 1977-04-11
US5916954A (en) * 1993-01-27 1999-06-29 Trw Inc. Fiber reinforced viscoelastic material composites for passive damping
CN102382554B (zh) * 2011-10-12 2013-11-20 上海海隆赛能新材料有限公司 一种具有低导热系数的保温隔热重防腐涂料及其制备方法
US9944793B2 (en) 2012-06-04 2018-04-17 Basf Se Aerogel-containing polyurethane composite material
CN105038445A (zh) * 2014-04-24 2015-11-11 中国科学院苏州纳米技术与纳米仿生研究所 含二氧化硅气凝胶的水性浆料、其制备方法及应用
KR101726095B1 (ko) 2015-12-24 2017-04-12 주식회사 포스코 내식성, 내스크래치성 및 내오염성이 우수한 크롬프리 코팅 조성물, 이를 이용한 크롬프리 코팅 강판 제조방법 및 이에 따라 제조된 크롬프리 코팅 강판
KR101645973B1 (ko) * 2016-03-16 2016-08-05 주식회사 코에원텍 높은 단열성과 접착성을 지닌 에어로겔 코팅액 및 이를 코팅처리한 내열성 글라스울과 그 제조방법
CN106285502B (zh) 2016-09-18 2019-06-11 中国石油天然气股份有限公司 一种复合涂层隔热防腐油管
CN106930492B (zh) 2017-03-19 2018-01-26 湖北邱氏节能建材高新技术股份有限公司 保温隔热涂料复合一体板及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04372677A (ja) * 1991-06-20 1992-12-25 Kubokou Paint Kk 断熱性ライニング材及びそれを用いた断熱構造
JPH07138520A (ja) * 1993-11-19 1995-05-30 Kubokou Paint Kk 断熱塗料及びそれを塗装した構造体
JPH10508049A (ja) * 1994-10-20 1998-08-04 ヘキスト・アクチェンゲゼルシャフト エーロゲルを含む組成物、その製造法、およびその使用
JP2000026609A (ja) 1998-07-13 2000-01-25 Ge Toshiba Silicones Co Ltd アルコキシ基末端ポリジオルガノシロキサンの製造方法
JP2007514810A (ja) * 2003-11-12 2007-06-07 バーチル,ジー.スチュアート,ジュニア 断熱層のための組成物
JP5250900B2 (ja) 2005-07-19 2013-07-31 株式会社ダイナックス アルキルシロキサンエアロゲルの製造方法、並びに、アルキルシロキサンエアロゲル、その製造装置およびそれを含むパネルの製造方法
JP2011027168A (ja) 2009-07-24 2011-02-10 Nichias Corp 保温構造の補修方法及び保温構造
JP2012233110A (ja) 2011-05-06 2012-11-29 Shin-Etsu Chemical Co Ltd 末端アルコキシ変性オルガノポリシロキサン及びその製造方法
JP2013100406A (ja) * 2011-11-08 2013-05-23 Ozonesave Corp 断熱用塗料、該塗料を用いた断熱方法、及び該塗料を塗布したシート材
JP2017031386A (ja) * 2015-07-30 2017-02-09 現代自動車株式会社Hyundai Motor Company 断熱コーティング組成物および断熱コーティング層

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3783076A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11447633B2 (en) * 2020-04-27 2022-09-20 Taiwan Aerogel Technology Material Co., Ltd. Method for producing a cold resisting and heat insulating composite glue composed of a hydrophobic aerogel and the related product thereof
CN113045915A (zh) * 2021-03-19 2021-06-29 三棵树(上海)新材料研究有限公司 一种防火型气凝胶保温隔热中涂漆及其制备方法
US20220306537A1 (en) * 2021-03-25 2022-09-29 Rockwool International A/S Anticorrosive composition

Also Published As

Publication number Publication date
EP3783076A1 (en) 2021-02-24
JPWO2019202635A1 (ja) 2021-04-22
US20210115266A1 (en) 2021-04-22
CN112041402A (zh) 2020-12-04
EP3783076A4 (en) 2021-03-31
US12110414B2 (en) 2024-10-08
JP7196907B2 (ja) 2022-12-27
EP3783076B1 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
JP7196854B2 (ja) 塗液、塗膜の製造方法及び塗膜
JP7196852B2 (ja) 塗液、塗膜の製造方法及び塗膜
JPWO2019069494A1 (ja) 塗液、塗膜の製造方法及び塗膜
JP7322479B2 (ja) 塗液、複合材料及び塗膜
WO2019202635A1 (ja) 保温材下腐食の抑制方法、及び保温材下腐食抑制用ペースト
JP7259857B2 (ja) 塗液の製造方法、塗液及び塗膜
JP7230914B2 (ja) 塗液及び塗膜
WO2020208756A1 (ja) 複合材料、シート及び断熱材
WO2021153764A1 (ja) 塗液の製造方法及び断熱材の製造方法
JP7196853B2 (ja) 塗液、塗膜の製造方法及び塗膜
JP7160106B2 (ja) エアロゲル粒子、分散体及び塗膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514804

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018915090

Country of ref document: EP

Effective date: 20201116