WO2019196609A1 - 一种含两种类型模组的双向直流变换器及其控制方法 - Google Patents

一种含两种类型模组的双向直流变换器及其控制方法 Download PDF

Info

Publication number
WO2019196609A1
WO2019196609A1 PCT/CN2019/078844 CN2019078844W WO2019196609A1 WO 2019196609 A1 WO2019196609 A1 WO 2019196609A1 CN 2019078844 W CN2019078844 W CN 2019078844W WO 2019196609 A1 WO2019196609 A1 WO 2019196609A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
module
converter
circuit
bidirectional
Prior art date
Application number
PCT/CN2019/078844
Other languages
English (en)
French (fr)
Inventor
杨晨
张中锋
王宇
刘洪德
祁琦
谢晔源
李海英
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Publication of WO2019196609A1 publication Critical patent/WO2019196609A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load

Definitions

  • the invention belongs to the field of power electronics applications, and relates to a DC grid and a bidirectional DC converter, in particular to a bidirectional DC converter containing two types of modules and a control method thereof.
  • the bidirectional DC converter As an important component of the DC power grid, the bidirectional DC converter has gained more and more attention from scholars in the field of DC power grid.
  • the bidirectional DC converter of this kind of application mostly adopts the structure of multiple modules input series output parallel, ie ISOP, the module is generally based on Dual active bridge circuit and isolated DC-DC converter based on LC resonance technology circuit.
  • the dual active bridge circuit also known as the DAB circuit, can be actively and freely adjusted by its own power, and is easy to realize soft turn-on, becoming the most common module of the bidirectional DC converter, but the DAB circuit exists. Power reflow and high voltage disadvantages for matching at both ends.
  • the circuit based on the LC resonance technology can realize the soft turn-on and soft turn-off of all the switch tubes, so the working efficiency will be higher than that of the DAB circuit structure.
  • the circuit based on LC resonance technology is limited by the relationship between its switching frequency and resonant frequency. Generally, it is not suitable to achieve better voltage or current closed-loop control, that is, a circuit whose own power is not suitable for active regulation.
  • the object of the present invention is to provide a bidirectional DC converter including two types of modules, which can not only solve the control problem of the bidirectional DC converter formed by the LC resonance type technical circuit, but also solve the voltage matching problem based on the DAB circuit module. It also reduces the cost and efficiency of a bidirectional DC converter based on a full two-stage or multi-stage converter circuit module. At the same time, this patent also proposes a corresponding control method for the composition scheme of the new bidirectional DC converter.
  • a bidirectional DC converter comprising two types of modules, characterized in that:
  • the two-way DC converter is composed of two types of DC-DC converter modules, which are respectively defined as Type I modules and Type II modules, and each module uses at least one;
  • a port is connected in series as the first port of the bidirectional DC converter.
  • the DC input positive pole of the port is directly connected to the positive pole of the medium/high voltage DC grid, and the negative pole is connected to the cathode of the medium/high voltage DC grid;
  • the other port forms a second port in parallel, the port is connected to the load or connected to the DC bus;
  • the two types of modules are converters including at least one isolated DC-DC circuit; wherein the type I module
  • the structural form includes at least one DC-DC circuit whose own power can be actively adjusted; the Type II module structure is different from the Type I module.
  • the type I module of the bidirectional DC converter has two structural forms, namely:
  • the Type I module contains only one DC-DC circuit whose power can be actively adjusted, and the remaining circuits are DC-DC circuits whose power is not actively adjustable; all DC-DC circuits include at least one isolated DC-DC circuit;
  • the type I module is a type I module a type;
  • the type I module contains at least two or more DC-DC circuits whose power can be actively adjusted, and the remaining circuits are DC-DC circuits whose power is not actively adjustable; all DC-DC circuits include at least one isolated DC -DC circuit;
  • the Type II module of the bidirectional DC converter has two structural forms, namely:
  • the Type II module only contains a DC-DC circuit whose power can be actively adjusted. The remaining circuits are DC-DC circuits whose power is not actively adjustable. All DC-DC circuits include at least one isolated DC-DC circuit;
  • the type II module is a type II module a type; the type II module a type is the same as the type I module a type structure;
  • All circuits of the Type II module are DC-DC circuits whose power is not actively adjustable; all DC-DC circuits include at least one isolated DC-DC circuit; the Type II module is defined as Type II module b type ;
  • the front-to-back cascade connection is used, and the front-to-back cascade order is not limited; the type II module and the type I module are mixed to form a two-way In the case of a DC converter, circuits of different configurations are used.
  • the first combination of the bidirectional DC converters is: using type I module a type and type II module b type; defining the combination mode is combination mode A.
  • the second combination of the bidirectional DC converters is: using type I module b type and type II module b type; defining the combination mode as combination mode B.
  • the third combination of the two-way DC converter is: using type I module b type and type II module a type; defining the combination mode is combination mode C.
  • a control method for a bidirectional DC converter comprising two types of modules, characterized in that:
  • Step 1 Real-time detection of the series side port current or the parallel side port voltage of the bidirectional DC converter, compared with the current reference or the voltage reference value;
  • Step 2 When the detected value deviates from the given value, the power of the DC-DC circuit whose own power can be actively adjusted in all types I modules is adjusted, so that the detected value is adjusted to a given value.
  • Step 1 Real-time detection of the series side port current or the parallel side port voltage of the bidirectional DC converter, compared with the current reference or the voltage reference value;
  • Step 2 When the detected value is inconsistent with the given value, change the power of the DC-DC circuit that can be actively adjusted by the self-power of the closest parallel port on all types I modules, so that the detected value is adjusted to a given value;
  • Step 3 Real-time detection of the remaining voltage of the DC-DC circuit in the type I module that can be actively adjusted is close to the port voltage on the side of the parallel side port, and compared with the voltage reference value;
  • Step 4 When the detected value does not coincide with the given value, the power of the DC-DC circuit that can be actively adjusted by the above self power is changed, and the detected value is adjusted to a given value.
  • Step 1 Real-time detection of the series side port current or the parallel side port voltage of the bidirectional DC converter, compared with the current reference or the voltage reference value;
  • Step 2 When the detected value is inconsistent with the given value, change the power of the DC-DC circuit of the active-adjustable DC power of the closest power of the parallel-side port of all Type I modules, and change all the Type II modules themselves.
  • the power of the power-adjustable DC-DC circuit adjusts the detected value to a given value
  • Step 3 Real-time detection of the remaining voltage of the DC-DC circuit in the type I module that can be actively adjusted is close to the port voltage on the side of the parallel side port, and compared with the voltage reference value;
  • Step 4 When the detected value does not coincide with the given value, the power of the DC-DC circuit that can be actively adjusted by the above self power is changed, and the detected value is adjusted to a given value.
  • the DAB circuit module can solve the shortcomings of the original bidirectional DC converter that cannot perform voltage or current regulation, and can make the original bidirectional DC converter have the feasibility of multiple sets of parallel operation, and can be applied to a larger capacity system.
  • two-stage or multi-stage structural modules such as half-bridge and LC resonant circuits or half-bridge and DAB circuits, are constructed according to the scheme proposed in this patent.
  • a part of the two-stage structure is transformed into a single-stage structure, which reduces the number of used switches, and can reduce the cost of the applied bidirectional DC converter to a certain extent and improve its operating efficiency.
  • FIG. 1 is a block diagram of a bidirectional DC converter including two types of modules according to the present invention
  • FIG. 2 is a schematic diagram of the composition of an isolated DC-DC converter based on a DAB circuit
  • FIG. 3 is a schematic diagram showing the composition of an isolated DC-DC converter based on an LC resonant type circuit
  • Figure 4 is a block diagram of the module using cascade connection.
  • Figure 5 is a type I module a type of a half bridge circuit cascade LC resonant circuit
  • Figure 6 is a type I module b-type of a half-bridge circuit cascade DAB circuit
  • FIG. 7 is a control block diagram of a bidirectional DC converter composed of n type I modules and m type II modules in the case of combination mode A;
  • FIG. 8 is a control block diagram of a bidirectional DC converter composed of n type I modules and m type II modules in the case of combination mode B;
  • FIG. 9 is a control block diagram of a bidirectional DC converter composed of n type I modules and m type II modules in the case of combination mode C;
  • the present invention provides a bidirectional DC converter including two types of modules and a control method thereof.
  • FIG. 1 it is a schematic structural diagram of a bidirectional DC converter including two types of modules.
  • the component 101 is a type I module
  • the component 102 is a type II module.
  • One port of all two types of modules is connected in series as the first port of the bidirectional DC converter.
  • the DC input positive pole of the port is directly connected to the positive pole of the medium/high voltage DC grid, and the negative pole is connected to the cathode of the medium/high voltage DC grid;
  • the other port of all two types of modules forms a second port in parallel, which can be connected to the load or to the DC bus.
  • the two types of modules are converters including at least one isolated DC-DC circuit; as shown in FIG. 2 and FIG. 3, respectively, two isolated DC-DC circuits currently used in the mainstream, DAB circuits are respectively shown. And circuits based on LC resonance technology.
  • Figure 2 shows a dual active bridge circuit, also known as a DAB circuit.
  • the component 201 and the component 202 are two full-bridge circuits respectively composed of four full-control devices including anti-parallel diodes.
  • the component 203 is a high-frequency transformer, the component 204 is a high-frequency inductor, and the components 205 and 206 are capacitors.
  • the dual active bridge circuit relies on the component 203 to implement the isolation function, and all of the switching transistors are broken in the following manner: the driving pulses of the same duty ratio are given to all the switching tubes of the component 201 and the component 202, the duty ratio is constant at 0.5, and each bridge arm
  • the upper tube and the lower tube are complementarily turned on, regardless of the dead zone; between the two bridge arms of each full bridge circuit, one of the upper tubes is required to be turned on at a time lags the opening time of the other upper tube, that is, T/2
  • T is the time of one switching cycle, which is a fixed value, and is fixed at half of the switching cycle, that is, T/2; taking the same name end of the high-frequency transformer as a reference, the difference between the component 201 and the component 202 corresponding to the opening time of the switching transistor is DT/2 D indicates the duty ratio of the turn-on time difference, which can be automatically adjusted to satisfy D ⁇ [-0.5, 0.5], that is, the dual active bridge circuit can actively adjust its
  • FIG. 3 shows the circuit based on the LC resonance technique.
  • the components 301 and 302 are respectively two full-bridge circuits composed of four full-control devices including anti-parallel diodes.
  • the component 303 is a high-frequency transformer, the component 304 is an LC resonant branch, and the components 305 and 306 are capacitors.
  • the relying component 303 implements an isolation function, and all of the switching tubes are disconnected in the following manner: a driving pulse of the same duty ratio is given to all the switching tubes of the component 301 and the component 302, the duty ratio is constant at 0.5, and each bridge arm is upper and lower.
  • the tubes are complementarily turned on, regardless of the dead zone; between the two bridge arms of each full-bridge circuit, one of the upper tubes is required to be turned on at a time lags the turn-on time of the other upper tube, that is, T/2, where T is
  • T is
  • the time of one switching cycle is a fixed value, and is fixed at half of the switching period, that is, T/2; taking the same name end of the high-frequency transformer as a reference, the opening time of the corresponding switching tube of the component 301 and the component 302 is exactly the same. That is, the LC resonance type circuit has no control amount that can be actively adjusted, and its power cannot be actively adjusted. According to the existing research, when the circuit based on the LC resonance technology works normally, the voltage ratio of the ports on both sides is the same as that of the high-frequency transformer.
  • the above isolated DC-DC circuit can be mixed with the non-isolated DC-DC circuit to obtain the Type I module and the Type II module described in this patent.
  • the implementation method of the cascade connection mode is as shown in FIG. 4, that is, two ports of a plurality of DC-DC circuits are connected in series through the front and rear stages, and a circuit having only two ports can be obtained.
  • the 401 component represents a DC-DC circuit that is actively adjustable in its own power closest to the parallel side port
  • the 402 component is a DC-DC circuit that is actively adjustable by its own power.
  • the Type I module has two structural forms, namely:
  • a type I module only contains a DC-DC circuit whose power can be actively adjusted, and the remaining circuits are DC-DC circuits whose power is not actively adjustable; all DC-DC circuits include at least one isolated DC-DC circuit; Define this type I module as type I module a.
  • this type I module can be defined as type I module a.
  • only one circuit shown in FIG. 2 can be used to form a type I module a type; or as shown in FIG. 5, using FIG. 3 and a half bridge circuit cascade, it can also constitute a type I module a type. .
  • the half-bridge circuit can realize the active adjustment of its own power by freely adjusting the working duty of the upper and lower switching tubes.
  • the type I module contains at least two or more DC-DC circuits whose power can be actively adjusted, and the remaining circuits are DC-DC circuits whose power is not actively adjustable; all DC-DC circuits include at least one isolated type DC-DC circuit; defines this type I module as type I module b type.
  • a type I module b type can be constructed by using FIG. 2 and a half bridge DC-DC circuit cascade.
  • Type II modules come in two structural forms:
  • the Type II module only includes a DC-DC circuit whose power can be actively adjusted, and the remaining circuits are DC-DC circuits whose power is not actively adjustable; all DC-DC circuits include at least one isolated DC-DC circuit;
  • the type II module is defined as a type II module a type; the type II module a type is the same as the type I module a type structure.
  • Type II modules do not contain any DC-DC circuits whose power can be actively adjusted. All circuits are DC-DC circuits whose power is not actively adjustable; all DC-DC circuits include at least one isolated DC-DC circuit;
  • the type II module is defined as a type II module b type; for example, only one circuit shown in FIG. 3 can be used to form a type II module b type;
  • combination method A consisting of type I module type a and type II module b type;
  • combination method B consisting of type B module type b and type II module b type;
  • combination method C consisting of type A module b type and type II module a type;
  • the control block diagram of the bidirectional DC converter in the case of the combination mode A is as an example of controlling the voltage of the parallel side port.
  • the bidirectional DC converter detects the voltage of the parallel side port in real time, compares it with the voltage reference value, and then generates the adjustment amount through the PI regulator and the like, and then obtains the adjustment of each type I module through the drive generation circuit.
  • the driving pulse of the power-adjustable DC-DC circuit is used to adjust the detected value to a given value.
  • the control block diagram of the bidirectional DC converter in the case of the combination mode B is as an example of controlling the voltage of the parallel side port.
  • the bidirectional DC converter detects the voltage of the parallel side port in real time and compares it with the voltage reference value; then, through the PI regulator and other links, the adjustment amount is generated, and then the drive generation circuit is used to obtain the last of all types I modules.
  • the driving pulse of the DC-DC circuit whose level of self power can be actively adjusted is used to adjust the detected value to a given value.
  • the DC-DC circuit that can actively adjust the rest of the power is sampled, and the port voltage of the circuit is close to the side of the parallel side port, compared with the given value, and obtained through the PI regulator and the like.
  • the drive pulses of these DC-DC circuits are used to control the port voltage to a given value.
  • the control block diagram of the bidirectional DC converter in the case of the combination mode C is as an example of controlling the voltage of the parallel side port.
  • the bidirectional DC converter detects the voltage of the parallel side port in real time and compares it with the voltage reference value; then, through the PI regulator and other links, the adjustment amount is generated, and then the drive generation circuit is used to obtain the last of all types I modules.
  • the DC-DC circuit that can actively adjust the remaining power is sampled, and the port voltage of the circuit is close to the side of the parallel side port, compared with the given value, and obtained through the PI regulator and the like.
  • the drive pulses of these DC-DC circuits are used to control the port voltage to a given value.
  • the bidirectional DC converter body includes n types I module a type and m type II module b type.
  • the serial side port voltage is U 1 and the parallel side port target control voltage is U op .
  • the voltage ratio of the two sides of the Type II module is N 1 :1. It is assumed that all types of I modules are adjusted by the circuit at this time, and the power transmitted by them is 0. Therefore, the voltage of the series side port is also zero.
  • the serial port voltages of all Type II modules are:
  • the voltage of the parallel side port at this time is:
  • the power P t of all types I modules can be adjusted to be greater than 0. Assuming that the operating power of all Type II modules is P LC at this time, the adjustment P t satisfies:
  • the parallel side port voltages of all Type II modules can be calculated as:

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开一种含两种类型模组的双向直流变换器及其控制方法。采用二种不同类型的隔离DC-DC变换器模组组成,分别定义为类型Ⅰ模组与类型Ⅱ模组,通过将这些模组的一个端口串联,而另一个端口并联组成功率等级和电压等级更高双向直流变换器。二种类型的直流变换器模组使用个数不限,但每种至少1个。两种模组均至少包含一个隔离型的DC-DC电路。其中,类型Ⅰ模组还至少包含一个自身功率可主动调节的DC-DC变换器,类型Ⅱ模组的电路结构形式与类型Ⅰ模组不同。本发明的双向直流变换器及其控制方法,可以根据不同类型模组的组合情况,实现整体双向直流变换器的功率和电压调节。

Description

一种含两种类型模组的双向直流变换器及其控制方法 技术领域
本发明属于电力电子应用领域,涉及直流电网和双向直流变换器,特别涉及一种同时含有两种类型模组的双向直流变换器及其控制方法。
背景技术
双向直流变换器作为直流电网中,实现电压变换的重要组成设备,获得了越来越多直流电网领域学者们的关注。为实现中/高压至低压的变换,受开关管器件应力和成本的影响,该类应用的双向直流变换器多采用多个模组输入串联输出并联的结构,即ISOP,模组则一般采用基于双有源桥电路和基于LC谐振技术电路的隔离型DC-DC变换器。其中,双有源桥电路,也被称为DAB电路,该电路以其自身功率能够主动自由的调节,易于实现软开通,成为双向直流变换器的最常见的一种模组,但DAB电路存在功率回流以及对两端电压匹配要求高等劣势。相比双有源桥DAB电路,基于LC谐振技术的电路能够实现所有开关管的软开通和软关断,所以其工作效率将高于DAB电路结构。然而,基于LC谐振技术的电路受到其开关频率和谐振频率关系的限制,一般不宜实现较好的电压或电流闭环控制,即属于自身功率不宜主动调节的电路。
为解决LC谐振型技术电路的可控制问题,以及DAB电路对电压匹配要求高的问题,有学者提出给上述隔离型DC-DC电路级联一级或多级自身功率可主动调节的DC-DC电路,这样,双向直流变换器的一个模组至少包含了两个或以上个数的DC-DC电路。通过对所级联电路功率的调节,一方面针对LC谐振型技术的电路,能够解决其可控制问题,另一方面能够令DAB电路易于实现两侧电压的匹配,实现更高效的控制。但上述方案由于给所有模组都增加至少一级DC-DC电路,在不改变开关管电压应力的情况下,增加了整体双向直流变换器的体积和成本,同时,两级或多级变换电路也增加了整体电路的损耗。
发明内容
本发明的目的是提供一种含有两种类型模组的双向直流变换器,不仅能够解决通过LC谐振型技术电路构成的双向直流变换器的控制问题,能够解决基于DAB电路模组的电压匹配问题,还能够减少基于全两级或多级变换电路模组构成的双向直流变换器的成本和效率。同时,本专利还针对新型双向直流变换器组成方案,提出了相应的控制方法。
为了达成上述目的,本发明采用的技术方案是:
一种含两种类型模组的双向直流变换器,其特征在于:
所述双向直流变换器由两种类型的DC-DC变换器模组组成,分别定义为类型Ⅰ模组与类型Ⅱ模组,每种模组至少采用1个;将所有两种类型模组的一个端口串联后作为双向直流变换器的第一端口,该端口的直流输入正极直接接入中/高压直流电网的正极,负极接入中/高压直流电网的负极;将所有两种类型模组的另一个端口通过并联形成第二端口,该端口连接负载或者连接直流母线;所述两种类型的模组均为至少包含一个隔离型DC-DC电路的变换器;其中,所述类型Ⅰ模组的结构形式至少包含一个自身功率可主动调节的DC-DC电路;所述类型Ⅱ模组结构形式与类型Ⅰ模组不同。
所述双向直流变换器的类型Ⅰ模组有二种结构形式,分别为:
a1.类型Ⅰ模组仅包含一个自身功率可主动调节的DC-DC电路,其余电路为功率不可主动调节的DC-DC电路;所有DC-DC电路中至少包含一个隔离型DC-DC电路;定义该类型Ⅰ模组为类型Ⅰ模组a型;
b1.类型Ⅰ模组至少包含二个或以上个数自身功率可主动调节的DC-DC电路,其余电路为功率不可主动调节的DC-DC电路;所有DC-DC电路中至少包含一个隔离型DC-DC电路;
所述双向直流变换器的类型Ⅱ模组有二种结构形式,分别为:
a2.类型Ⅱ模组仅包含一个自身功率可主动调节的DC-DC电路,其余电路为功率不可主动调节的DC-DC电路;所有DC-DC电路中至少包含一个隔离型DC-DC电路;定义该类型Ⅱ模组为类型Ⅱ模组a型;类型Ⅱ模组a型与类型Ⅰ模组a型结构形式相同;
b2.类型Ⅱ模组的所有电路均为功率不可主动调节的DC-DC电路;所有DC-DC电路中至少包含一个隔离型DC-DC电路;定义该类型Ⅱ模组为类型Ⅱ模组b型;
上述所有结构形式中,采用二个或以上个数的DC-DC电路时,采用前后级联连接形式构成,前后级联次序不限;所述类型Ⅱ模组与类型Ⅰ模组混合使用组成双向直流变换器时,采用不同结构形式的电路。
双向直流变换器的第一种组合方式为:采用类型Ⅰ模组a型与类型Ⅱ模组b型;定义该组合方式为组合方式A。
双向直流变换器的第二种组合方式为:采用类型Ⅰ模组b型与类型Ⅱ模组b型;定义该组合方式为组合方式B。
双向直流变换器的第三种组合方式为:采用类型Ⅰ模组b型与类型Ⅱ模组a型;定义该组合方式为组合方式C。
一种含两种类型模组的双向直流变换器的控制方法,其特征在于:
组合方式A情况下,采用如下控制方法:
步骤1:实时检测双向直流变换器的串联侧端口电流或并联侧端口电压,与电流给定或电压给定值比较;
步骤2:当检测值偏离给定值时,则调整所有类型Ⅰ模组中自身功率可主动调节的DC-DC电路的功率,使检测值调节至给定值。
组合方式B情况下,采用如下控制方法:
步骤1:实时检测双向直流变换器的串联侧端口电流或并联侧端口电压,与电流给定或电压给定值比较;
步骤2:当该检测值与给定值不一致时,改变所有类型Ⅰ模组中最靠近并联侧端口的自身功率可主动调节的DC-DC电路的功率,使检测值调节至给定值;
步骤3:实时检测类型Ⅰ模组中其余自身功率可主动调节的DC-DC电路靠近并联侧端口一侧的端口电压,与电压给定值比较;
步骤4:当该检测值与给定值不一致时,改变上述自身功率可主动调节的DC-DC电路的功率,使检测值调节至给定值。
组合方式C情况下,采用如下控制方法:
步骤1:实时检测双向直流变换器的串联侧端口电流或并联侧端口电压,与电流给定或电压给定值比较;
步骤2:当该检测值与给定值不一致时,改变所有类型Ⅰ模组中最靠近并联侧端口的自身功率可主动调节的DC-DC电路的功率,同时,改变所有类型Ⅱ模组中自身功率可主动调节的DC-DC电路的功率,使检测值调节至给定值;
步骤3:实时检测类型Ⅰ模组中其余自身功率可主动调节的DC-DC电路靠近并联侧端口一侧的端口电压,与电压给定值比较;
步骤4:当该检测值与给定值不一致时,改变上述自身功率可主动调节的DC-DC电路的功率,使检测值调节至给定值。
有益效果:
(1)相比现有应用中全部采用LC谐振型电路模组构成的双向直流变换器,根据本专利提出的方案,将一部分LC谐振型电路模组改造为两级结构的模组,或更换为DAB电路模组,能够解决原有双向直流变换器无法进行电压或电流调节的缺点,能够令原有双向直流变换器具备多套并联运行的可行性,能够应用于更大容量的系统。
(2)相比全部采用DAB电路模组构成的双向直流变换器,根据本专利提出的方案,将一部分DAB电路模组更换为LC谐振型电路,能够提升这些模组的运行效率,提升整体双向变换器的运行效率。或者将一部分DAB电路模组更换为半桥级联DAB电路结构,能够实现所有DAB电路非并联侧端口电压的控制,实现电路两侧电压匹配功能,优化电路工作状态。
(3)相比现有应用中全部采用两级或多级结构模组,如半桥与LC谐振型电路或半桥与DAB电路等构成的双向直流变换器,根据本专利提出的方案,将一部分两级结构改造为单级结构,减少了开关管的使用个数,能够在一定程度上降低所应用双向直流变换器的成本,提高其运行效率。
附图说明
图1为:本发明提出的一种含两种类型模组的双向直流变换器框图;
图2为:基于DAB电路的隔离DC-DC变换器组成示意图;
图3为:基于LC谐振型电路的隔离DC-DC变换器组成示意图;
图4为:采用级联连接方式的模组结构图
图5为:半桥电路级联LC谐振电路的类型Ⅰ模组a型
图6为:半桥电路级联DAB电路的类型Ⅰ模组b型
图7为:组合方式A情况下,n个类型Ⅰ模组和m个类型Ⅱ模组构成的双向直流变换器控制框图;
图8为:组合方式B情况下,n个类型Ⅰ模组和m个类型Ⅱ模组构成的双向直流变换器控制框图;
图9为:组合方式C情况下,n个类型Ⅰ模组和m个类型Ⅱ模组构成的双向直流变换器控制框图;
具体实施方式
本发明提供一种含两种类型模组的双向直流变换器及其控制方法,为使本发明的目的、技术方案及效果更加清楚、明确,下面结合附图对本发明进行详细说明。
应当理解,此处所描述的具体实施仅用以解释本发明,并不用于限定本发明。
如图1所示,为一种含两种类型模组的双向直流变换器的结构示意图,组件101是类型Ⅰ模组,组件102是类型Ⅱ模组。所有两种类型模组的一个端口串联后作为双向直流变换器的第一端口,该端口的直流输入正极直接接入中/高压直流电网的正极,负极接入中/高压直流电网的负极;将所有两种类型模组的另一个端口通过并联形成第二端口,该端口可以连接负 载,也可以连接直流母线。所述两种类型的模组均为至少包含一个隔离型DC-DC电路的变换器;如图2和图3所示,分别展示了目前主流使用的两种隔离型DC-DC电路,DAB电路和基于LC谐振技术的电路。
图2为双有源桥电路,也被称为DAB电路。其中,组件201和组件202是分别由四个含有反并联二极管全控器件构成的二个全桥电路,组件203是高频变压器,组件204是高频电感,组件205和206是电容。双有源桥电路依靠组件203实现隔离功能,其所有开关管开断方式如下:给组件201和组件202所有开关管相同占空比的驱动脉冲,占空比恒定为0.5,并且每个桥臂上管和下管互补导通,不考虑死区;每个全桥电路的两个桥臂之间,要求其中一个上管开通时刻滞后另一个上管的开通时刻半个开关周期即T/2,其中T为一个开关周期的时间,为固定值,且固定在半个开关周期即T/2;以连接高频变压器同名端为参考,组件201和组件202对应开关管开通时刻相差DT/2,D表示开通时刻差占空比,可以自动调节,满足D∈[-0.5,0.5],即双有源桥电路可以主动调节自身功率。
图3所示为基于LC谐振技术的电路。其中,组件301和组件302是分别由四个含有反并联二极管全控器件构成的二个全桥电路,组件303是高频变压器,组件304是LC谐振支路,组件305和306是电容。该依靠组件303实现隔离功能,其所有开关管开断方式如下:给组件301和组件302所有开关管相同占空比的驱动脉冲,占空比恒定为0.5,并且每个桥臂上管和下管互补导通,不考虑死区;每个全桥电路的两个桥臂之间,要求其中一个上管开通时刻滞后另一个上管的开通时刻半个开关周期即T/2,其中T为一个开关周期的时间,为固定值,且固定在半个开关周期即T/2;以连接高频变压器同名端为参考,组件301和组件302对应开关管开通时刻完全相同。即LC谐振型电路没有可以主动调节的控制量,其功率不可主动调节。根据现有研究,基于LC谐振技术的电路正常工作时,其两侧端口电压比与高频变压器变比相同。
通过级联连接方式,上述隔离型DC-DC电路可以与非隔离DC-DC电路混合使用,得到本专利所述的类型Ⅰ模组和类型Ⅱ模组。级联连接方式的实施方法,如图4所示,即将多个DC-DC电路的两端口通过前后级串联,可以获得一个只有两个端口的电路。图中,401组件表示最接近并联侧端口的自身功率可主动调节的DC-DC电路,402组件是其它自身功率可主动调节的DC-DC电路。
根据级联时采用的变换器种类的不同,类型Ⅰ模组有二种结构形式,分别为:
a.类型Ⅰ模组仅包含一个自身功率可主动调节的DC-DC电路,其余电路为功率不可主 动调节的DC-DC电路;所有DC-DC电路中至少包含包含一个隔离型DC-DC电路;定义该类型Ⅰ模组为类型Ⅰ模组a型。例如,只采用一个图2所示的电路,即可构成类型Ⅰ模组a型;也可以如图5所示,利用图3和一个半桥电路级联,也可以构成类型Ⅰ模组a型。其中,半桥电路可以通过上下开关管工作占空比的自由调节,实现其自身功率的主动调节。
b.类型Ⅰ模组至少包含二个或以上个数自身功率可主动调节的DC-DC电路,其余电路为功率不可主动调节的DC-DC电路;所有DC-DC电路中至少包含包含一个隔离型DC-DC电路;定义该类型Ⅰ模组为类型Ⅰ模组b型。如图6所示,利用图2和一个半桥DC-DC电路级联,可以构成类型Ⅰ模组b型。
同样,类型Ⅱ模组也有二种结构形式:
a.类型Ⅱ模组仅包含一个自身功率可主动调节的DC-DC电路,其余电路为功率不可主动调节的DC-DC电路;所有DC-DC电路中至少包含包含一个隔离型DC-DC电路;定义该类型Ⅱ模组为类型Ⅱ模组a型;类型Ⅱ模组a型与类型Ⅰ模组a型结构形式相同。
b.类型Ⅱ模组不包含任何自身功率可主动调节的DC-DC电路,所有电路为功率不可主动调节的DC-DC电路;所有DC-DC电路中至少包含包含一个隔离型DC-DC电路;定义该类型Ⅱ模组为类型Ⅱ模组b型;例如,只采用一个图3所示的电路,即可构成类型Ⅱ模组b型;
类型Ⅱ模组与类型Ⅰ模组混合使用组成双向直流变换器时,不采用相同结构形式的电路。因此,双向直流变换器有三种组合方式:
定义组合方式A:为由类型Ⅰ模组a型与类型Ⅱ模组b型组成;
定义组合方式B:为由类型Ⅰ模组b型与类型Ⅱ模组b型组成;
定义组合方式C:为由类型Ⅰ模组b型与类型Ⅱ模组a型组成;
如图7所示为组合方式A情况下,双向直流变换器的控制框图,图中以控制并联侧端口电压为例。根据该框图可知,双向直流变换器通过实时检测其并联侧端口电压,与电压给定值比较,后经PI调节器等环节,产生调节量,再经过驱动生成电路获得所有类型Ⅰ模组中自身功率可主动调节的DC-DC电路的驱动脉冲,以此将检测值调节至给定值。
如图8所示为组合方式B情况下,双向直流变换器的控制框图,图中以控制并联侧端口电压为例。根据该框图可知,双向直流变换器通过实时检测其并联侧端口电压,与电压给定值比较;而后经PI调节器等环节,产生调节量,再经过驱动生成电路获得所有类型Ⅰ模组中最后一级自身功率可主动调节的DC-DC电路的驱动脉冲,以此将检测值调节至给定值。而后, 在类型Ⅰ模组中,对其余自身功率可主动调节的DC-DC电路,采样该电路接近并联侧端口一侧的端口电压,与给定值比较,并经PI调节器等环节,得到这些DC-DC电路的驱动脉冲,以此将端口电压控制在给定值。
如图9所示为组合方式C情况下,双向直流变换器的控制框图,图中以控制并联侧端口电压为例。根据该框图可知,双向直流变换器通过实时检测其并联侧端口电压,与电压给定值比较;而后经PI调节器等环节,产生调节量,再经过驱动生成电路获得所有类型Ⅰ模组中最后一级自身功率可主动调节的DC-DC电路的驱动脉冲,以及所有类型Ⅱ模组中自身功率可主动调节的DC-DC电路的驱动脉冲,以此将检测值调节至给定值。而后,在类型Ⅰ模组中,对其余自身功率可主动调节的DC-DC电路,采样该电路接近并联侧端口一侧的端口电压,与给定值比较,并经PI调节器等环节,得到这些DC-DC电路的驱动脉冲,以此将端口电压控制在给定值。
为定量说明本专利的调节原理,以图7所示电路为例,下面介绍具体定量调节的推导过程。如图7所示,双向直流变换器本体包含n个类型Ⅰ模组a型和m个类型Ⅱ模组b型。
按照图7结构,假设串联侧端口电压为U 1,并联侧端口目标控制电压为U op。假设其中类型Ⅱ模组的两侧电压变比为N 1:1。假设此时所有类型Ⅰ模组因电路调节,其传递的功率均为0,因此,其串联侧端口电压也为0。此时,所有类型Ⅱ模组的串联端口电压为:
Figure PCTCN2019078844-appb-000001
根据类型Ⅱ模组的两侧电压变比,所以此时并联侧端口电压为:
Figure PCTCN2019078844-appb-000002
通过选取合适的n,m和N 1,可以令
Figure PCTCN2019078844-appb-000003
经图7所示闭环调节后,可以调节所有类型Ⅰ模组的功率P t大于0,假设此时所有类型Ⅱ模组的工作功率为P LC,则调节P t满足:
Figure PCTCN2019078844-appb-000004
可以计算得到所有类型Ⅱ模组的并联侧端口电压为:
Figure PCTCN2019078844-appb-000005
以上内容,可以定量说明本专利控制方法实现情况。
同理可以推导其他组合方式的调节原理。
可以理解的是,对本领域普通技术人员来说,可以根据本发明的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本发明所附的权利要求的保护范围。

Claims (8)

  1. 一种含两种类型模组的双向直流变换器,其特征在于:
    所述双向直流变换器由两种类型的DC-DC变换器模组组成,分别定义为类型Ⅰ模组与类型Ⅱ模组,每种模组至少采用1个;将所有两种类型模组的一个端口串联后作为双向直流变换器的第一端口,该第一端口的直流输入正极直接接入中/高压直流电网的正极,负极接入中/高压直流电网的负极;将所有两种类型模组的另一个端口通过并联形成第二端口,该第二端口连接负载或者连接直流母线;所述两种类型的模组均为至少包含一个隔离型DC-DC电路的变换器;其中,所述类型Ⅰ模组的结构形式至少包含一个自身功率可主动调节的DC-DC电路;所述类型Ⅱ模组结构形式与类型Ⅰ模组不同。
  2. 根据权利要求1所述的一种含两种类型模组的双向直流变换器,其特征在于:
    所述双向直流变换器的类型Ⅰ模组有二种结构形式,分别为:
    a1.类型Ⅰ模组仅包含一个自身功率可主动调节的DC-DC电路,其余电路为功率不可主动调节的DC-DC电路;所有DC-DC电路中至少包含一个隔离型DC-DC电路;定义该类型Ⅰ模组为类型Ⅰ模组a型;
    b1.类型Ⅰ模组至少包含二个或以上个数自身功率可主动调节的DC-DC电路,其余电路为功率不可主动调节的DC-DC电路;所有DC-DC电路中至少包含一个隔离型DC-DC电路;定义该类型Ⅰ模组为类型Ⅰ模组b型;
    所述双向直流变换器的类型Ⅱ模组有二种结构形式,分别为:
    a2.类型Ⅱ模组仅包含一个自身功率可主动调节的DC-DC电路,其余电路为功率不可主动调节的DC-DC电路;所有DC-DC电路中至少包含一个隔离型DC-DC电路;定义该类型Ⅱ模组为类型Ⅱ模组a型;类型Ⅱ模组a型与类型Ⅰ模组a型结构形式相同;
    b2.类型Ⅱ模组的所有电路均为功率不可主动调节的DC-DC电路;所有DC-DC电路中至少包含一个隔离型DC-DC电路;定义该类型Ⅱ模组为类型Ⅱ模组b型;
    上述所有结构形式中,采用二个或以上个数的DC-DC电路时,采用前后级联连接形式构成,前后级联次序不限;所述类型Ⅱ模组与类型Ⅰ模组混合使用组成双向直流变换器时,采用不同结构形式的电路。
  3. 根据权利要求2所述的一种含两种类型模组的双向直流变换器,其特征在于:
    双向直流变换器的第一种组合方式为:采用类型Ⅰ模组a型与类型Ⅱ模组b型;定义该组合方式为组合方式A。
  4. 根据权利要求2所述的一种含两种类型模组的双向直流变换器,其特征在于:
    双向直流变换器的第二种组合方式为:采用类型Ⅰ模组b型与类型Ⅱ模组b型;定义该组合方式为组合方式B。
  5. 根据权利要求2所述的一种含两种类型模组的双向直流变换器,其特征在于:
    双向直流变换器的第三种组合方式为:采用类型Ⅰ模组b型与类型Ⅱ模组a型;定义该组合方式为组合方式C。
  6. 如权利要求3所述的一种含两种类型模组的双向直流变换器的控制方法,其特征在于:
    组合方式A情况下,采用如下控制方法:
    步骤1:实时检测双向直流变换器的第一端口电流或第二端口电压,与电流给定或电压给定值比较;
    步骤2:当检测值偏离给定值时,则调整所有类型Ⅰ模组中自身功率可主动调节的DC-DC电路的功率,使检测值调节至给定值。
  7. 如权利要求4所述的一种含两种类型模组的双向直流变换器的控制方法,其特征在于:
    组合方式B情况下,采用如下控制方法:
    步骤1:实时检测双向直流变换器的第一端口电流或第二端口电压,与电流给定或电压给定值比较;
    步骤2:当该检测值与给定值不一致时,改变所有类型Ⅰ模组中最靠近第二端口的自身功率可主动调节的DC-DC电路的功率,使检测值调节至给定值;
    步骤3:实时检测类型Ⅰ模组中其余自身功率可主动调节的DC-DC电路靠近第二端口一侧的端口电压,与电压给定值比较;
    步骤4:当该检测值与给定值不一致时,改变上述自身功率可主动调节的DC-DC电路的功率,使检测值调节至给定值。
  8. 如权利要求5所述的一种含两种类型模组的双向直流变换器的控制方法,其特征在于:
    组合方式C情况下,采用如下控制方法:
    步骤1:实时检测双向直流变换器的第一端口电流或第二端口电压,与电流给定或电压给定值比较;
    步骤2:当该检测值与给定值不一致时,改变所有类型Ⅰ模组中最靠近第二端口的自身功率可主动调节的DC-DC电路的功率,同时,改变所有类型Ⅱ模组中自身功率可主动调节的DC-DC电路的功率,使检测值调节至给定值;
    步骤3:实时检测类型Ⅰ模组中其余自身功率可主动调节的DC-DC电路靠近第二端口一 侧的端口电压,与电压给定值比较;
    步骤4:当该检测值与给定值不一致时,改变上述自身功率可主动调节的DC-DC电路的功率,使检测值调节至给定值。
PCT/CN2019/078844 2018-04-11 2019-03-20 一种含两种类型模组的双向直流变换器及其控制方法 WO2019196609A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810320246.5 2018-04-11
CN201810320246.5A CN110365213B (zh) 2018-04-11 2018-04-11 一种含两种类型模组的双向直流变换器及其控制方法

Publications (1)

Publication Number Publication Date
WO2019196609A1 true WO2019196609A1 (zh) 2019-10-17

Family

ID=68163927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078844 WO2019196609A1 (zh) 2018-04-11 2019-03-20 一种含两种类型模组的双向直流变换器及其控制方法

Country Status (2)

Country Link
CN (1) CN110365213B (zh)
WO (1) WO2019196609A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111711347B (zh) * 2020-05-22 2021-11-05 国网江苏省电力有限公司电力科学研究院 混合隔离型电力电子变压器
CN112260543B (zh) * 2020-09-19 2022-06-24 许继电源有限公司 一种高增益高频隔离双向级联dc/dc变换器及其控制方法
WO2023076560A1 (en) * 2021-10-29 2023-05-04 Murata Manufacturing Co., Ltd. Current sharing of bidirectional converters connected in parallel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080298093A1 (en) * 2007-05-30 2008-12-04 Taotao Jin Multiphase resonant converter for dc-dc applications
US20160065081A1 (en) * 2014-08-26 2016-03-03 General Electric Company Multi-level dc-dc converter with galvanic isolation and adaptive conversion ratio
CN106230268A (zh) * 2016-08-31 2016-12-14 中天昱品科技有限公司 一种交错并联llc谐振dc/dc功率变换器
CN107181413A (zh) * 2017-07-15 2017-09-19 华北电力大学(保定) 混合型直流电力电子变压器
CN208063056U (zh) * 2018-04-11 2018-11-06 南京南瑞继保电气有限公司 一种混合谐振型电路和双有源桥电路的双向直流变换器
CN208063055U (zh) * 2018-04-11 2018-11-06 南京南瑞继保电气有限公司 一种混合谐振型电路和非隔离直直电路的双向直流变换器
CN208094442U (zh) * 2018-04-11 2018-11-13 南京南瑞继保电气有限公司 一种混合双有源桥和非隔离直直电路的双向直流变换器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6693371B2 (en) * 2001-02-06 2004-02-17 American Power Corporation Integrated uninterruptible power supply enclosure
JP2003018828A (ja) * 2001-06-28 2003-01-17 Sanken Electric Co Ltd Dc−dcコンバータ
CN101707443B (zh) * 2009-11-20 2013-05-08 中国电力科学研究院 一种新型电力电子变压器
CN105978370B (zh) * 2016-05-26 2019-04-05 全球能源互联网研究院 一种提高电力电子变压器功率密度的正弦功率传输方法
CN106208761A (zh) * 2016-08-12 2016-12-07 上海交通大学 隔离型三相ac‑dc变换器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080298093A1 (en) * 2007-05-30 2008-12-04 Taotao Jin Multiphase resonant converter for dc-dc applications
US20160065081A1 (en) * 2014-08-26 2016-03-03 General Electric Company Multi-level dc-dc converter with galvanic isolation and adaptive conversion ratio
CN106230268A (zh) * 2016-08-31 2016-12-14 中天昱品科技有限公司 一种交错并联llc谐振dc/dc功率变换器
CN107181413A (zh) * 2017-07-15 2017-09-19 华北电力大学(保定) 混合型直流电力电子变压器
CN208063056U (zh) * 2018-04-11 2018-11-06 南京南瑞继保电气有限公司 一种混合谐振型电路和双有源桥电路的双向直流变换器
CN208063055U (zh) * 2018-04-11 2018-11-06 南京南瑞继保电气有限公司 一种混合谐振型电路和非隔离直直电路的双向直流变换器
CN208094442U (zh) * 2018-04-11 2018-11-13 南京南瑞继保电气有限公司 一种混合双有源桥和非隔离直直电路的双向直流变换器

Also Published As

Publication number Publication date
CN110365213A (zh) 2019-10-22
CN110365213B (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
WO2019196609A1 (zh) 一种含两种类型模组的双向直流变换器及其控制方法
CN110719035B (zh) 单级dab-llc混合型双向dc-dc变换器的拓扑结构
CN102364860A (zh) 一种二次侧移相控制全桥变换器
CN105186866A (zh) 一种非隔离型软开关高增益dc/dc变换器
CN110190752B (zh) 一种双向clllc-dcx谐振变换器及其控制方法
CN107546959A (zh) 一种开关电源、电子设备及开关电源控制方法
CN111064364A (zh) 同步整流Buck变换器全软开关电路及其控制方法
CN110380637A (zh) 一种基于临界电流模式的全桥逆变器的混合调制策略及其控制方案
JP2021112121A (ja) Zvsを備えたdcバランサ回路
CN110957922A (zh) 单级式高频隔离型双向直流变换器和并网储能系统
CN106787242A (zh) 一种用于无线电能传输的有源整流器
CN109713929B (zh) 一种基于零电压软开关的三相三开关两电平整流器
CN115642805A (zh) 基于ZVS的六开关buck-boost变换器
CN109698627B (zh) 一种基于开关电容器的全桥dc/dc变换器及其调制策略
CN110061624A (zh) 采用脉宽调制控制的软开关谐振buck变换器
CN211127589U (zh) 单级式高频隔离型双向直流变换器和并网储能系统
CN110224605B (zh) 一种全桥变换电路
CN110071652B (zh) 一种低漏电流五开关非隔离单相光伏并网逆变器及并网系统
CN112054673A (zh) 一种软开关buck变换器电路及其控制方法
CN110445392B (zh) 一种交错并联双管正激变换器及其调制策略
CN208522655U (zh) 一种高增益模块化大容量隔离型dc/dc变换器
CN111525792A (zh) 一种混合开关电感高输出电压增益z源逆变器
CN215580488U (zh) 一种移相全桥充电电路
Sreejith et al. A high efficiency resonant DC-DC power converter-analysis and comparison of P&O and INC algorithms
CN103490625A (zh) 一种升压式直流变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19786178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19786178

Country of ref document: EP

Kind code of ref document: A1