WO2019194085A1 - セルロース粉末 - Google Patents

セルロース粉末 Download PDF

Info

Publication number
WO2019194085A1
WO2019194085A1 PCT/JP2019/013956 JP2019013956W WO2019194085A1 WO 2019194085 A1 WO2019194085 A1 WO 2019194085A1 JP 2019013956 W JP2019013956 W JP 2019013956W WO 2019194085 A1 WO2019194085 A1 WO 2019194085A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
cellulose composite
mass
minutes
polysaccharide
Prior art date
Application number
PCT/JP2019/013956
Other languages
English (en)
French (fr)
Inventor
大貴 浅井
山崎 有亮
真幸 垣澤
直紀 坂本
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2020512211A priority Critical patent/JPWO2019194085A1/ja
Priority to US17/041,722 priority patent/US20210130586A1/en
Priority to EP19781608.5A priority patent/EP3777565A4/en
Publication of WO2019194085A1 publication Critical patent/WO2019194085A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/62Clouding agents; Agents to improve the cloud-stability
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/262Cellulose; Derivatives thereof, e.g. ethers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • A23L33/21Addition of substantially indigestible substances, e.g. dietary fibres
    • A23L33/24Cellulose or derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/10General cosmetic use

Definitions

  • the present invention relates to a cellulose composite comprising cellulose and a polysaccharide and a method for producing the same.
  • a cellulose complex of cellulose and a polysaccharide forms a cellulose colloid in an aqueous medium and exhibits a good suspension stability.
  • Food, pharmaceuticals, cosmetics, paints, ceramics, resins It is widely used in the fields of catalysts, other industrial products and the like.
  • the cellulose composite is particularly a suspension stabilizer, emulsion stabilizer, thickener stabilizer, etc., tissue imparting agent, cloudy agent, whiteness improvement, fluidity improvement, abrasive, dietary fiber, fat and oil substitute It is used for the purpose.
  • the cellulose composite is added for the purpose of improving the suspension stability of a water-insoluble component having a large specific gravity such as milk calcium or calcium carbonate.
  • a water-insoluble component having a large specific gravity such as milk calcium or calcium carbonate.
  • many beverages and foods containing a large amount of water-insoluble components such as dietary fiber and protein have been developed along with an increase in the population that is socially or health-conscious.
  • agglomeration and precipitation are likely to occur. Therefore, a cellulose composite having high suspension stabilization performance has been desired.
  • Patent Document 1 discloses a cellulose composite composed of crystalline cellulose (MCC) and carboxymethylcellulose (CMC) having two specific viscosities.
  • MCC crystalline cellulose
  • CMC carboxymethylcellulose
  • Patent Document 2 discloses a dry powder of a cellulose composite having a high gel strength composed of MCC and CMC having two specific substitution degrees, and the cellulose composite is highly stabilized with a small addition amount. It shows performance and has been shown to be useful in various foods and drinks.
  • the cellulose composite described in Patent Document 1 is said to exhibit good suspension stability in a rich-taste beverage containing a high concentration of insoluble components, and cocoa, coffee, black sesame at a concentration of 0.4% by mass. It is described that separation, aggregation, and sedimentation are excellent in a mixed milk beverage. However, in this document, the cellulose composite has been added to the beverage in a wet state without passing through the drying step.
  • the dry powder of the cellulose composite described in Patent Document 2 is able to stabilize calcium particles in the reduced milk with an addition amount of 0.3% by mass.
  • the dry powder of the cellulose composite tends to decrease the gel strength of the aqueous dispersion in proportion to the shear energy applied when dispersed in water. Therefore, when adding to foods and beverages that undergo shearing and homogenization in multiple stages during the manufacturing process, the stability of calcium particles changes due to the shearing and homogenization treatment, and appropriate addition of the cellulose composite It was difficult to determine the amount.
  • an object is to provide a cellulose composite which is composed of cellulose and polysaccharide and is useful as a suspension stabilizer for insoluble components in a liquid composition such as a beverage.
  • the present inventors have found that Bragg spacing of the precipitate obtained by centrifuging an aqueous dispersion of a complex composed of cellulose and polysaccharide is involved in the strength of complexing cellulose and polysaccharide. I found. Further, in a beverage to which a powdered composition of a cellulose composite having a Bragg spacing value of a specified value or more is added, the beverage is irrelevant regardless of the amount and amount of shear energy applied when the cellulose composite is added to the beverage. It was found that the change in the degree of separation, aggregation and sedimentation of the components was small, and the present invention was completed. That is, the present invention is as follows.
  • SAXS X-ray small angle scattering
  • a high shear homogenizer product name “Excel Auto Homogenizer ED-7” manufactured by Nippon Seiki Co., Ltd.
  • the cellulose composite according to the above [1] or [2], wherein a storage elastic modulus (G′2) of an aqueous dispersion obtained by dispersing under a condition of 000 rpm for 5 minutes is 0.3 Pa or more.
  • [4] The cellulose composite according to any one of the above [1] to [3], which has a water content of 20% by mass or less and is in a powder form that passes through a sieve having an opening of 1 mm.
  • [5] A method for producing a cellulose composite comprising cellulose and a polysaccharide, wherein a cellulose hydrolyzate having a Bragg spacing of 7.5 nm or more is complexed with the polysaccharide.
  • a food or drink comprising the cellulose composite according to any one of [1] to [4].
  • a pharmaceutical comprising the cellulose complex according to any one of [1] to [4].
  • An industrial product comprising the cellulose composite according to any one of [1] to [4].
  • the present invention can provide a cellulose composite in which the suspension stability is hardly changed regardless of the time of homogenization treatment and the applied shear stress when blended in a liquid composition. For this reason, the cellulose composite according to the present invention is added to foods and beverages containing a high concentration of insoluble components such as cocoa particles, proteins, and dietary fibers, and homogenized with sufficient shearing force to achieve suspension stability. And a smooth food texture can be produced.
  • Scattering intensity plot (ordinate the modifying process after pulp and reforming pretreatment of pulp in Example 1, 3 (LBKP pulp): The value obtained by multiplying the q 2 to the scattering intensity of the ring after averaging q 2 I (q ), Horizontal axis: logarithm of q).
  • dispersion precipitation of scattering intensity plots (ordinate: value obtained by multiplying the scattering intensity of annulus average later q 2 q 2 I (q), the horizontal axis q logarithm of) is there.
  • suspension stability means that in a liquid composition in which an insoluble component is contained in an aqueous medium, the insoluble component has a uniform appearance without being separated and settled.
  • the cellulose composite according to the present invention is a cellulose composite comprising cellulose and a polysaccharide, and X-ray small angle scattering of a precipitate obtained by centrifuging a 0.1% by mass aqueous dispersion of the cellulose composite.
  • Bragg spacing by (SAXS) analysis is 8.6 nm or more.
  • “complexing cellulose and polysaccharide” means that at least a part of the surface of cellulose is coated with the polysaccharide by chemical bonding such as hydrogen bonding, and “cellulose complex” In this case, it means that at least a part of the surface of cellulose is coated with a polysaccharide.
  • Cellulose obtained by hydrolyzing a cellulose raw material whose Bragg spacing by SAXS analysis is a specific value or more has high accessibility of hydroxy groups in the cellulose molecule. For this reason, the cellulose which hydrolyzed such a cellulose raw material forms many hydrogen bonds in the process of kneading
  • Cellulose in the present invention is a naturally derived water-insoluble fibrous material containing cellulose.
  • cellulose used as a raw material of the cellulose composite according to the present invention include wood pulp, non-wood pulp, wheat straw, rice straw, cotton, cotton linter, hemp, ramie, bagasse, kenaf, beet, squirt, and bacterial cellulose.
  • Cellulose obtained by subjecting it to hydrolysis treatment or the like can be used.
  • the cellulose raw material is preferably wood pulp or non-wood pulp, more preferably wood bleached pulp (BP), wood dissolving pulp (DP), or cotton linter pulp, most preferably wood bleached kraft pulp (BKP). Wood-dissolved kraft pulp (DKP).
  • BP wood bleached pulp
  • DP wood dissolving pulp
  • DKP Wood-dissolved kraft pulp
  • 1 type may be used among these and it is also possible to use what mixed 2 or more types.
  • ⁇ Bragg spacing of cellulose> As the cellulose used as a raw material of the cellulose composite according to the present invention, it is preferable to use a cellulose having a large Bragg spacing (d [nm]) in SAXS analysis.
  • the Bragg spacing obtained by SAXS analysis represents the size of the cellulose microfibril gap constituting the cellulose. A larger cellulose microfibril gap indicates that the structure of cellulose is sparse, and the accessibility of the hydroxy group is higher. For this reason, it is easy to receive the attack by an acid catalyst at the time of hydrolysis, and therefore, the degree of polymerization tends to decrease. Further, in the process of compounding with polysaccharides by kneading, it is preferable because hydrogen bonds are easily formed and the compounding is easily promoted.
  • the Bragg spacing of cellulose can be measured by the following method. First, a mixture is obtained in which ion-exchanged water is added so that the total amount is 270 g with respect to a cellulose sample of 30 g by dry weight. The mixture is slurried using a high shear homogenizer (product name “Excel Auto Homogenizer ED-7” manufactured by Nippon Seiki Co., Ltd.) and slurried. The obtained slurry is subjected to SAXS analysis using a nanoscale X-ray structure evaluation apparatus (manufactured by Rigaku Corporation, product name “NANOPIX”). The analysis conditions are as follows. The sample is always kept in a slurry state impregnated with water from the above operation to the end of the SAXS measurement, and is not dried. The solid content of the slurry is 10 to 50% by mass.
  • a one-dimensional scattering profile Iobs (2 ⁇ ) is obtained by circularly averaging the scattering pattern Iobs (2 ⁇ , ⁇ ) measured by the two-dimensional detector under the above conditions as shown in Equation 1.
  • is the Bragg angle
  • P is the polarization factor
  • is the azimuth angle
  • I BG is the detector background value.
  • Equation 2 I (2 ⁇ ) is the scattering intensity after the empty cell scattering correction
  • I obs (2 ⁇ ) is the scattering intensity before correction (one-dimensional scattering profile obtained by Equation 1)
  • T is the X-ray of the sample Transmittance.
  • d [nm] calculated from q max by Bragg's formula (Formula 4) is defined as Bragg spacing.
  • the Bragg spacing of the cellulose is 7.5 nm or more, the structure of the cellulose microfibril is sufficiently sparse.
  • the value of the Bragg spacing of the cellulose used as the raw material of the cellulose composite according to the present invention is preferably 8.0 nm or more, more preferably 9.0 nm or more, and further preferably 9.5 nm or more.
  • Examples of the method for controlling the Bragg spacing of cellulose include immersion in a solvent, explosion, and beating. These methods may be used alone or in combination of two or more. Further, these treatments may be performed at any time before and after cellulose hydrolysis for adjusting the average degree of polymerization described later. By performing these treatments, hydrogen bonds within the cellulose molecular chain and between the molecular chains are broken, and accessibility to the hydroxy group is improved.
  • a solvent treatment for immersing in a solvent is preferable, and a known solvent such as an alkaline aqueous solution, an ionic liquid, or DMSO can be used as the solvent.
  • ⁇ Solvent treatment of cellulose> By immersing in a solvent, impurities such as hemicellulose, lignin, and resin are removed from cellulose, and at the same time, hydrogen bonds between cellulose molecular chains are broken. For this reason, the Bragg spacing of cellulose can be further increased by the solvent treatment.
  • the slurry concentration during the solvent treatment is not limited, but by setting the solid content to 1 to 20% by mass, the entire cellulose sample can be treated uniformly.
  • the solvent used for the treatment all solvents known as cellulose solvents can be used. Of these, ionic liquids, metal complex solutions, and aqueous alkali solutions are preferred. Most preferably, it is an alkaline aqueous solution even in consideration of food safety.
  • the ionic liquid is defined as an ionic liquid substance having a melting point of 100 ° C. or lower.
  • the kind of ionic liquid used for the solvent treatment is not limited and may be used alone or in combination of two or more.
  • the processing temperature is preferably 20 to 100 ° C.
  • the processing time is preferably about 1 to 60 minutes.
  • a metal complex solution is a solution containing a metal complex as a solute.
  • the kind of metal complex used for a metal complex solution is not restrict
  • [Cu (NH 3 ) 4 ] (OH) is preferable as the metal complex solution used for the solvent treatment.
  • the treatment temperature is preferably ⁇ 20 to 100 ° C., and the treatment time is preferably about 1 to 60 minutes.
  • the type of alkali used in the alkaline aqueous solution is not limited and may be used alone or in combination of two or more.
  • an aqueous alkali metal hydroxide (lithium hydroxide, sodium hydroxide, potassium hydroxide) aqueous solution is particularly preferred, and an aqueous sodium hydroxide solution is most preferred.
  • the concentration of sodium hydroxide is preferably 1 to 11% by mass
  • the treatment temperature is ⁇ 10 to 80 ° C.
  • the treatment time is 1 to 300 minutes.
  • the solvent penetrates into the fibers of the cellulose raw material while maintaining the crystalline properties of the cellulose, and the change in the cellulose structure occurs uniformly. It is considered that control of compounding by a certain kneading can be facilitated.
  • the average polymerization degree of the cellulose used as the raw material of the cellulose composite according to the present invention is 500 or less.
  • crystalline cellulose is preferable.
  • the average degree of polymerization of crystalline cellulose can be measured by a reduced specific viscosity method using a copper ethylenediamine solution. The specific measurement procedure is based on the reduced specific viscosity method using a copper ethylenediamine solution specified in the Crystalline Cellulose Confirmation Test (3) of “17th Revised Japanese Pharmacopoeia”. When exceeding the measurable range, the measurement is performed according to the powdered cellulose confirmation test (3) of the same Japanese pharmacy method.
  • the average degree of polymerization is 500 or less, the crystalline cellulose is likely to be subjected to physical treatment such as stirring, pulverization, and grinding in the step of conjugating with the polysaccharide, and conjugation is easily promoted, which is preferable.
  • the average degree of polymerization of cellulose as a raw material is more preferably 400 or less, further preferably 300 or less, still more preferably 200 or less, and particularly preferably 150 or less.
  • the lower the average degree of polymerization the easier the control of complexing. Therefore, the lower limit is not particularly limited, but a preferred range is 10 or more.
  • Examples of a method for controlling the average degree of polymerization of cellulose include hydrolysis treatment.
  • the hydrolysis treatment By the hydrolysis treatment, the depolymerization of the amorphous cellulose inside the cellulose fiber proceeds, and the average degree of polymerization decreases.
  • impurities such as hemicellulose and lignin are also removed by the hydrolysis treatment, so that highly pure crystalline cellulose can be obtained.
  • the method for hydrolysis is not particularly limited, and examples include acid-catalyzed hydrolysis, alkali-catalyzed hydrolysis, and hydrothermal decomposition. These methods may be used alone or in combination of two or more.
  • the hydrolysis method is preferably acid-catalyzed hydrolysis.
  • an appropriate amount of an organic acid or an inorganic acid is added, and the average degree of polymerization can be easily controlled by heating while stirring.
  • the reaction conditions such as temperature, pressure, and time at this time vary depending on the cellulose species, cellulose concentration, acid species, and acid concentration, but are appropriately adjusted to achieve the desired average degree of polymerization.
  • concentration of the acid catalyst and the higher the reaction temperature the easier the acid-catalyzed hydrolysis of hemicellulose, lignin, etc. will proceed, causing coloration, so the concentration of the acid catalyst should be low and the reaction should be performed at a low temperature. Is preferred.
  • Cellulose with a Bragg spacing of 7.5 nm or more has a large cellulose microfibril gap, so proton accessibility to amorphous cellulose is high, reducing the acid concentration during the hydrolysis reaction, and reducing the reaction temperature. Can be cooled down.
  • an acid has low swellability with respect to cellulose, and the hydrolysis reaction proceeds almost from the cellulose surface. Therefore, in order to hydrolyze cellulose to LODP (degree of level-off polymerization) within a certain period of time, it is necessary to bring the reaction rate to a sufficiently high level under a high-concentration catalyst.
  • LODP degree of level-off polymerization
  • the hydrolysis conditions are preferably a hydrochloric acid concentration of 0.1 to 5.0% by mass and a reaction temperature of 70 to 170 ° C. More preferably, it is 1.5 mass% or less as a hydrochloric acid concentration, More preferably, it is 1.0 mass% or less.
  • the hydrochloric acid concentration is too low, the reaction time becomes long, and therefore, it is more preferably 0.3% by mass or more, and further preferably 0.5% by mass or more.
  • the crystalline property of the cellulose used as the raw material of the cellulose composite according to the present invention is type I crystal.
  • the cellulose type I fraction is calculated by the following procedure by X-ray diffraction (XRD). 1-1. Prepare a cellulose sample. 1-2. Hydrochloric acid and water are added to the cellulose sample to a final concentration of 2.5 N and a bath ratio of 10%, and the mixture is hydrolyzed at 105 ° C.
  • the I-type crystallinity is preferably 98% or less, more preferably 95% or less, and still more preferably 90% or less.
  • a peak is observed when the diffraction angle 2 ⁇ is between 22.1 ° and 23.1 °.
  • the cellulose composite according to the present invention preferably contains 20 to 99% by mass of cellulose and 1 to 80% by mass of polysaccharide with respect to the whole cellulose composite.
  • the surface of cellulose particles is coated with the polysaccharide by chemical bonds such as hydrogen bonds.
  • a cellulose composite in which at least a part of cellulose is coated with a polysaccharide can be dispersed in an aqueous dispersion, and the suspension stability is improved by forming a network structure. It is preferable to complex the cellulose and the polysaccharide with the above composition, since the complexing effectively proceeds.
  • the cellulose content with respect to the whole cellulose composite is more preferably 60% by mass or more, still more preferably 70% by mass or more, and particularly preferably 75% by mass or more.
  • the content of cellulose relative to the whole cellulose composite is more preferably 95% by mass or less, and particularly preferably 90% by mass or less.
  • content of this polysaccharide with respect to the whole cellulose composite 5 mass% or more is more preferable, and 10 mass% or more is further more preferable.
  • As content of this polysaccharide with respect to the whole cellulose composite 40 mass% or less is more preferable, 30 mass% or less is further more preferable, and 25 mass% or less is especially preferable.
  • the polysaccharide used as the raw material of the cellulose composite according to the present invention is a monosaccharide such as glucose, galactose, mannose, xylose, N-acetylglucosamine, gluconic acid, galacturonic acid, mannuronic acid, ⁇ - or ⁇ -bonded, It refers to the compound that constitutes the side chain.
  • polysaccharides derived from resins such as almond gum, gum arabic, arabinogalactan, elemi resin, karaya gum, gati gum, dammar resin, tragacanth gum, peach resin, etc .
  • Decomposition products polysaccharides derived from beans such as psyllium seed gum, mackerel mugwort seed gum, sesbania gum, tamarind seed gum, tara gum, triacanthos gum, algae, alginate, carrageenan, fukuronori extract, many derived from seaweed Sugars, aloe vera extract, okra extract, beetle aloe extract, trooaoi, pectin and other fruits, leaves, rhizome derived polysaccharides; aeromonas gum, aureobasidium culture, Azotobacter vinegar gum, welan gum Polysaccharides derived from fermentation products of microorganisms such as Erwinia mitsuensis gum, Entero
  • polysaccharides may be used alone or in combination of two or more.
  • a water-soluble polysaccharide is preferable, and an anionic polysaccharide or a neutral polysaccharide is preferable because it is easily complexed with cellulose. Since anionic polysaccharides are more easily complexed, it is preferable that at least one or more types of anionic polysaccharides are blended as the cellulose composite according to the present invention.
  • An anionic polysaccharide A cation that is liberated in water and becomes an anion itself is called an anionic polysaccharide. It is preferable to use an anionic polysaccharide as a raw material for the cellulose composite according to the present invention because the composite with cellulose is further promoted.
  • anionic polysaccharide psyllium seed gum, karaya gum, carrageenan, agar, fercellan, heparin, chondroitin sulfate, alginic acid, sodium alginate, calcium alginate, HM pectin, LM pectin, azotobacter vinegar gum, xanthan gum, gellan gum, sodium carboxymethylcellulose, carboxymethylcellulose calcium , Cellulose derivatives such as sodium carboxyethyl cellulose and calcium carboxyethyl cellulose.
  • anionic polysaccharides may be used alone or in combination of two or more.
  • xanthan gum, gellan gum, carboxymethylcellulose sodium, carboxymethylcellulose calcium, carboxyethylcellulose sodium, and carboxyethylcellulose calcium are preferable because complexation is promoted from the structural similarity with cellulose.
  • Particularly preferred is sodium carboxymethylcellulose, and a molecular weight of 150,000 or less is particularly preferred.
  • the degree of etherification of sodium carboxymethylcellulose is preferably 0.5 to 1.5, more preferably 0.86 to 1.5, and still more preferably 0.86 to 1.2. If the degree of etherification is within this range, aggregation is difficult to occur when added to a beverage.
  • the cellulose composite according to the present invention is a composite of polysaccharides with cellulose as the main component.
  • complexing means a form in which at least a part of the surface of cellulose particles is coated with a polysaccharide by chemical bonds such as hydrogen bonds. Accordingly, the cellulose composite is not in a state where the cellulose powder and the polysaccharide are simply mixed, but in a state in which the polysaccharide covers the surface of the cellulose particles. Therefore, when the cellulose composite is dispersed in an aqueous medium, the polysaccharide does not peel from the surface of the cellulose particles, but forms a structure spreading radially from the surface and becomes colloidal in water.
  • the cellulose composite present in a colloidal state can form a higher-order network structure by the interaction such as electrostatic repulsion, steric repulsion and van der Waals force.
  • the cellulose composite according to the present invention is characterized by large Bragg spacing.
  • the Bragg spacing of the cellulose composite is the Bragg spacing of the cellulose particles that form the core of the composite, and is measured, for example, by the following method.
  • the cellulose composite is measured (for example, 300 g in total) and mixed with ion-exchanged water so that the cellulose composite content is 0.1% by mass, and the resulting mixture is obtained. Is stirred for 5 minutes at 15,000 rpm using the Excel Auto Homogenizer.
  • the obtained aqueous dispersion was put into a stoppered test tube for a centrifuge (manufactured by KUBOTA Corporation, product name “compact high-speed cooling centrifuge 6930”, rotor: RA-400, 8 ⁇ 50 mL). Dispense (for example, 30 mL per bottle), and centrifuge at 8,000 G (G represents gravitational acceleration) with this instrument for 10 minutes. 2-3.
  • the supernatant is removed by decantation, and 25 mL of ion-exchanged water is added to the precipitate.
  • the mixture is stirred with a vortex mixer until the precipitate is eliminated, and centrifuged again at 8,000 G for 10 minutes. 2-4. 2-3. Repeat the operation. 2-5. 2-1. ⁇ 2-4. The above procedure is repeated to obtain 0.5 g of precipitate.
  • the Bragg spacing of the cellulose composite was measured by SAXS analysis using a nanoscale X-ray structure evaluation apparatus (product name “NANOPIX” manufactured by Rigaku Corporation) in the same manner as the measurement of the Bragg spacing of cellulose. can do.
  • sample is always kept in a slurry state impregnated in water from the above operations 2-1 to 2-5 until the SAXS measurement is completed, and is not dried.
  • the solid content of the slurry is 10 to 50% by mass.
  • cellulose particles having an appropriate size can be recovered in the SAXS analysis contained in the aqueous dispersion of the cellulose composite. 1-5.
  • the Bragg spacing obtained by the SAXS analysis is the size of the gap between the cellulose microfibrils constituting the coarse particles, but this structure is maintained even in the crystalline cellulose particles that are the core of the cellulose composite. That is, in cellulose having a large Bragg spacing value, the accessibility of the hydroxy group is high, so that a large number of water molecules exist in the microfibril gaps, and mediate many hydrogen bonds between the crystalline cellulose and the water-soluble polysaccharide.
  • the larger the Bragg spacing of the coarse particles the stronger the cellulose and water-soluble polysaccharide are combined, so even when a high shear force is applied, the hydrogen bond between the crystalline cellulose and the water-soluble polysaccharide is broken.
  • functions as a cellulose composite such as suspension stabilization ability are not easily impaired.
  • the Bragg spacing of the cellulose composite is preferably 9.0 nm or more.
  • it is 9.5 nm or more, More preferably, it is 10.0 nm or more, More preferably, it is 10.5 nm or more, Especially preferably, it is 11.0 nm or more, Especially preferably, it is 11.5 nm or more, Most preferably, it is 12.0 nm
  • the thickness is most preferably 12.5 nm or more.
  • the upper limit of the Bragg spacing of the cellulose composite is not particularly set, but considering the structure of the cellulose itself, the Bragg spacing of the cellulose composite is preferably 50 nm or less.
  • the Bragg spacing of the cellulose composite tends to be larger than that of cellulose used as a raw material. This is because the molecular weight of cellulose is lowered in the hydrolysis and kneading processes, and water molecules are likely to enter the microfibril gaps.
  • the cellulose composite according to the present invention is strongly composited.
  • the degree of conjugation is considered to be the proportion of hydrogen bonds between cellulose and polysaccharide. As complexing progresses, the proportion of hydrogen bonds between cellulose and polysaccharide in the cellulose composite increases, and the effects of the present invention are improved.
  • the composite strength of the cellulose composite is defined as follows. 1% by mass of the cellulose composite in ion-exchanged water is treated at a low speed (treatment condition: 1,000 rpm ⁇ 5 minutes by a high shear homogenizer (product name “Excel Auto Homogenizer ED-7” manufactured by Nippon Seiki Co., Ltd.)). ) Ratio of storage elastic modulus (G′2) when dispersed at high speed (processing condition: 16,000 rpm ⁇ 5 minutes) to storage elastic modulus (G′1) when dispersed in () '2] / [G'1]) is defined as the composite strength of the cellulose composite.
  • the storage elastic modulus (G′1) and the storage elastic modulus (G′2) are measured as follows.
  • the storage elastic modulus (G′1) uses a value of 20% strain on the strain-stress curve obtained by the above measurement. 3-3.
  • the cellulose composite is purified at high speed (treatment condition: 16,000 rpm ⁇ 5 minutes) using a high shear homogenizer (manufactured by Nippon Seiki Co., Ltd., product name “Excel Auto Homogenizer ED-7”).
  • a 1.0% by mass pure water dispersion is prepared by dispersing in water, and the resulting aqueous dispersion is allowed to stand at room temperature for 24 hours. 3-4.
  • the strain dependence of the stress of the aqueous dispersion is measured using a viscoelasticity measuring device (TA Instruments, ARES-G2 type, geometry: Double Wall Couette type).
  • the storage elastic modulus (G′2) uses a value of 20% strain on the strain-stress curve obtained by the above measurement.
  • the value of [G′2] / [G′1] of the cellulose composite according to the present invention is preferably 0.5 or more. If the value of [G′2] / [G′1] is 0.5 or more, it can be said that the composite strength of the cellulose composite is sufficiently high.
  • the value of [G′2] / [G′1] of the cellulose composite according to the present invention is more preferably 0.7 or more, further preferably 0.85 or more, still more preferably 0.90 or more, particularly preferably. Is 0.95 or more. Since the value of [G′2] / [G′1] is large, the stability is not deteriorated during the food and drink manufacturing process, and therefore the upper limit is not particularly set.
  • the value of [G′2] / [G′1] of the cellulose composite according to the present invention is preferably 10 or less, more preferably 5 or less, still more preferably 2 or less, and still more preferably 1. 5 or less, particularly preferably 1.2 or less.
  • the cellulose composite of the present invention is obtained by subjecting 1% by mass of the cellulose composite in ion-exchanged water at a high speed (treatment condition: rotation) using a high shear homogenizer (manufactured by Nippon Seiki Co., Ltd., product name “Excel Auto Homogenizer ED-7”).
  • the storage elastic modulus (the aforementioned G′2) when dispersed at several 16,000 rpm ⁇ 5 minutes is preferably 0.3 Pa or more.
  • the value of G′2 of the cellulose composite in the present invention is preferably 0.3 Pa or more.
  • G′2 is 0.3 Pa or more, it is considered that the cellulose and polysaccharide form a good composite, and when dispersed in a solvent, due to the interaction between the cellulose composites, It can form a rigid gel and exhibit sufficient suspension stability.
  • a larger value means that the number of cellulose composites is increased, and the cellulose composites form more interactions, so that the aqueous dispersion becomes a more rigid gel.
  • the storage elastic modulus of the cellulose composite is preferably 0.45 Pa or more, more preferably 1.0 Pa or more, further preferably 1.5 Pa or more, and most preferably 3.0 Pa or more.
  • the upper limit is not particularly set, and the larger the value, the lower the ratio of the cellulose composite added to the beverage.
  • the crystalline property of the cellulose contained in the cellulose composite according to the present invention is preferably type I crystal.
  • the cellulose type I fraction is calculated by the following procedure by X-ray diffraction (XRD). 4-1.
  • a cellulose composite sample is prepared. 4-2. Hydrochloric acid and water are added to the cellulose composite sample so that the final concentration is 2.5 N and the bath ratio is 10%, and the mixture is hydrolyzed at 105 ° C. for 20 minutes while stirring at 100 rpm with a stirrer. 4-3. The resulting residue is collected by suction filtration.
  • the filtrate is washed and filtered with pure water until the pH of the filtrate becomes 4.0 to 7.0. 4-4. Dry in an oven at 105 ° C and adjust moisture content to 2-10%. 4-5.
  • the dried sample is pulverized with a pestle and mortar and passed through a sieve having a mesh size of 180 ⁇ m as a measurement sample (S1). 4-6.
  • S1 X-ray diffraction measurement is performed under the following conditions.
  • the cellulose I type crystallinity is preferably 98% or less, more preferably 95% or less, and still more preferably 90% or less.
  • a peak is observed when the diffraction angle 2 ⁇ is between 22.1 ° and 23.1 °.
  • the cellulose composite having a specific Bragg spacing uses cellulose having a Bragg spacing value equal to or greater than a specific value as a raw material, and imparts mechanical shearing force to the cellulose and the polysaccharide in a kneading step, thereby producing crystalline cellulose. It is obtained by refining and making polysaccharides complex on the cellulose surface. During kneading, water-soluble gums other than polysaccharides, hydrophilic substances, and other additives may be added.
  • a kneading method using a kneader or the like can be applied.
  • a kneading machine a kneader, an extruder, a planetary mixer, a reiki machine or the like can be used, and a continuous type or a batch type may be used.
  • These models can be used alone, or two or more models can be used in combination. These models may be appropriately selected depending on the viscosity requirements in various applications.
  • the temperature at the time of kneading may be a result, and when heat is generated due to a compounding reaction or friction during kneading, kneading may be performed while removing the heat.
  • the kneading temperature is preferably low. This is because the lower the kneading temperature, the more the degradation of the polysaccharide is suppressed, and the resulting cellulose composite has a higher storage elastic modulus (G ′).
  • the kneading temperature when kneading cellulose and polysaccharide is preferably 80 ° C. or less, more preferably 70 ° C. or less, further preferably 60 ° C.
  • the solid content during kneading of cellulose and polysaccharide is preferably 35% by mass or more. Kneading in a semi-solid state where the viscosity of the kneaded material is high is preferable because the kneaded material does not become loose, the kneading energy described below is easily transmitted to the kneaded material, and compounding is promoted.
  • the solid content at the time of kneading is more preferably 40% by mass or more, further preferably 50% by mass or more, and still more preferably 55% by mass or more.
  • the upper limit of the solid content at the time of kneading is not particularly limited, but the practical range is 90 considering that the kneaded product does not have a low moisture content and a sufficient kneading effect and a uniform kneading state can be obtained. It is preferably at most mass%, more preferably at most 70 mass%, further preferably at most 60 mass%. Moreover, in order to make solid content into the said range, as a timing to add water, a required amount may be added before a kneading
  • ⁇ Drying method of cellulose composite> when drying the kneaded product obtained from the kneading step described above, tray drying, spray drying, belt drying, fluidized bed drying, freeze drying, microwave drying, A known drying method such as drying can be used.
  • a drying step it is preferable that water is not added to the kneaded product, and the solid content concentration in the kneading step is maintained and the dried step is used.
  • the moisture content of the dried cellulose composite is preferably 1 to 20% by mass.
  • the moisture content of the dried cellulose composite is more preferably 10% by mass or less, and further preferably 6% by mass or less. Moreover, the deterioration of the dispersibility by excessive drying can be suppressed by making this moisture content into 1 mass% or more.
  • the moisture content is more preferably 1.5% by mass or more.
  • the cellulose composite When the cellulose composite is distributed on the market, it is preferable to pulverize the cellulose composite obtained by drying into a powder because the powder is easier to handle.
  • spray drying is used as a drying method, drying and pulverization can be performed at the same time, so pulverization is not necessary.
  • a known method such as a cutter mill, a hammer mill, a pin mill, or a jet mill can be used.
  • the degree of pulverization is preferably such that the pulverized product passes through a sieve having an opening of 1 mm, and passes through a sieve having an opening of 425 ⁇ m, and the average particle size (weight average particle diameter) is 10 to 250 ⁇ m.
  • pulverization is performed.
  • the powdery dried cellulose composite of such a size is easily dispersed when stirred in water. Therefore, a stable colloidal dispersion having a smooth structure and a smooth structure in which cellulose is uniformly dispersed is obtained. It is formed.
  • the cellulose composite since the cellulose does not cause aggregation or separation in neutrality and forms a stable colloidal dispersion, the cellulose composite exhibits an excellent function as a stabilizer or the like.
  • the cellulose composite according to the present invention can be used for various foods, industrial products, and pharmaceuticals.
  • foods and drinks that can be blended with the cellulose composite according to the present invention include coffee, tea matcha, cocoa, juice, juice and other favorite beverages, raw milk, processed milk, lactic acid bacteria beverages, soy milk and other milk beverages, calcium
  • beverages including fortified beverages such as fortified beverages and dietary fiber-containing beverages; ice confectionery such as ice cream, ice milk, soft cream, milk shake, sherbet; butter, cheese, yogurt, coffee whitener, whipping cream Milk products such as mayonnaise, margarine, spread and shortening; Liquid foods such as various soups and stews; Liquid seasonings such as sauces, sauces and dressings;
  • Various kinds of spices typified by Jam various types typified by jam and flower paste Gel / paste foods including fillings, various types of ann and jelly
  • solid foods such as bread, noodles, pasta, pizza, and cereals including various premixes
  • the cellulose composite according to the present invention is a suspension stabilizer, an emulsion stabilizer, a thickening stabilizer, a foam stabilizer, a cloudy agent, a tissue imparting agent, a fluidity improver, a shape retention agent, a water separation agent. It acts as a low calorie base such as an inhibitor, a dough modifier, a powdered base, a dietary fiber base, a fat and oil substitute, and the like. Moreover, even if the form of food-drinks etc. which mix
  • the cellulose composite according to the present invention exhibits an excellent suspension stabilization effect even when blended in retort foods, powdered foods, frozen foods, foods for microwave ovens, and the like.
  • the cellulose composite according to the present invention is different from conventional cellulosic materials in that the function is exhibited even in a heating environment and a high concentration environment.
  • the suspension stability of the insoluble component is remarkably improved, and the problem of roughness is eliminated by its smooth texture and body feeling. It can also be used for a wide range of food applications.
  • ⁇ Method for adding cellulose composite When using the cellulose composite according to the present invention for food, using the same equipment as that generally used in the production of each food, in addition to the main ingredients, if necessary, perfume, pH adjuster, A thickening stabilizer, salts, saccharides, fats and oils, proteins, emulsifiers, acidulants, pigments and the like may be blended, and operations such as mixing, kneading, stirring, emulsification, and heating may be performed. Specifically, the following method is mentioned as a method of adding the cellulose composite which concerns on this invention to food-drinks.
  • the cellulose composite according to the present invention can be dispersed in an aqueous medium such as water simultaneously with other components such as a main raw material, a colorant, a fragrance, a sour agent, and a thickener.
  • an aqueous medium such as water
  • other components such as a main raw material, a colorant, a fragrance, a sour agent, and a thickener.
  • the suspension stability of the cellulose composite is better when the cellulose composite is once dispersed in water and then added to the desired food form. It is preferable because it improves.
  • the cellulose composite is a dry powder, it can be dispersed using various kneaders such as various dispersers, emulsifiers, and grinders that are usually used in the production process of foods and the like as a dispersion method in water.
  • the kneading machine include various types of mixers such as a propeller stirrer, high speed mixer, homomixer and cutter, mills such as a ball mill, a colloid mill, a bead mill, and a laika machine, a dispersion represented by a high pressure homogenizer such as a high pressure homogenizer and a nanomizer.
  • a kneader represented by a machine / emulsifier, a planetary mixer, a kneader, an eccluder, a turbulizer, or the like can be used. Only one type of kneader may be used, or two or more types of kneaders may be used in combination. In addition, dispersion is easier when performed while heating.
  • addition amount of the cellulose composite with respect to food-drinks For example, in drinks, such as coffee, cocoa, and milk, 0.01 mass% or more is preferable. By making the addition amount of the cellulose composite 0.01% by mass or more, the dispersion and suspension stability of insoluble components in food and drink are increased, and the effect of emulsion stability and water separation prevention is excellent. As addition amount of the cellulose composite with respect to food-drinks, More preferably, it is 0.05 mass% or more, More preferably, it is 0.1 mass% or more. By adding the cellulose composite in an amount of 5% by mass or less, it is preferable that the amount is 5% by mass or less from the viewpoint of ease of drinking (grooves in the throat and tongue) without causing aggregation and separation. .
  • the cellulose composite according to the present invention has a suspension stabilization ability that is hardly affected by shear energy, and changes the time and shear stress of the homogenization process to adjust the texture and digestibility.
  • the suspension stability hardly changes.
  • the digestibility of insoluble components can be controlled by adjusting the shear force in the homogenization step of dispersing the cellulose composite. It is possible to adjust the texture, which in turn can simplify the food and beverage production process. In addition, even when homogenizing with a high shear force to smooth the texture, there is no need to change the amount of crystalline cellulose added to obtain the required suspension stability without causing a change in taste. The texture can be adjusted.
  • the cellulose composite according to the present invention has significantly improved cellulose composite strength, and in particular, in an aqueous suspension composition containing a water-insoluble component, without causing aggregation, separation, water separation, and sedimentation, It is possible to maintain a stable dispersion state. For this reason, it can be used for various purposes besides food and drink.
  • the cellulose composite according to the present invention includes pharmaceuticals such as syrups, liquids and ointments; cosmetics such as lotions, emulsions and detergents; raw materials for food and industry, raw materials for cleaning agents for food and industry, Household detergents (clothing, kitchens, houses, dishes, etc.); paints, pigments, ceramics, aqueous latex, emulsion (polymerization) additives, agricultural chemical additives, textile processing additives (refining agents, dyeing aids, Softeners, water repellents), antifouling agents, concrete admixtures, printing ink additives, lubricating oil additives, antistatic agents, antifogging agents, lubricants, dispersants, deinking agents, etc. be able to.
  • pharmaceuticals such as syrups, liquids and ointments
  • cosmetics such as lotions, emulsions and detergents
  • raw materials for food and industry raw materials for cleaning agents for food and industry, Household detergents (clothing,
  • the Bragg spacing of cellulose was measured as follows. First, ion-exchanged water was added so that the total amount was 270 g with respect to a 30 g cellulose sample by dry weight. This was slurried by performing a defibrating treatment (1,000 rpm ⁇ 5 minutes) with a high shear homogenizer (manufactured by Nippon Seiki Co., Ltd., product name “Excel Auto Homogenizer ED-7”). The obtained slurry was subjected to SAXS analysis using a nanoscale X-ray structure evaluation apparatus (manufactured by Rigaku Corporation, product name “NANOPIX”) under the following conditions.
  • the sample was always kept in a slurry state impregnated with water from the mixing of the dry cellulose sample and ion-exchanged water to the end of the SAXS measurement, and was not dried.
  • the solid content of the slurry was about 10 to 50% by mass.
  • a one-dimensional scattering profile Iobs (2 ⁇ ) was obtained by averaging the scattering patterns Iobs (2 ⁇ , ⁇ ) measured by the two-dimensional detector under the above conditions as shown in Equation 1.
  • is the Bragg angle
  • P is the polarization factor
  • is the azimuth angle
  • I BG is the detector background value.
  • Equation 2 I (2 ⁇ ) is the scattering intensity after the empty cell scattering correction
  • I obs (2 ⁇ ) is the scattering intensity before correction (one-dimensional scattering profile obtained by Equation 1)
  • T is the X-ray of the sample Transmittance.
  • sample and empty indicate those obtained by sample measurement and empty cell measurement, respectively.
  • ⁇ Crystalline properties of cellulose> the crystalline properties of cellulose were measured as follows. First, 26 g of a cellulose sample was measured, and hydrochloric acid and water were added so that the final concentration was 2.5 N and the bath ratio was 10%. While stirring with a stirrer, this was heated to 105 ° C. using an oil bath, and after reaching 105 ° C., hydrolysis was performed for 20 minutes. The obtained slurry was filtered and washed, and washed with pure water until the pH became 4.0 or more. Further, the obtained hydrolysis residue was dried in an oven at 105 ° C. until the water content became 2 to 10%.
  • the dried sample was pulverized using a pestle and a mortar, and subjected to XRD analysis under the following conditions using a sample passed through a sieve having a mesh size of 180 ⁇ m as a measurement sample.
  • ion-exchanged water and a cellulose composite were measured and mixed so that the cellulose composite content was 0.1% by mass and the total amount was 300 g. This mixture was stirred at 15,000 rpm for 5 minutes using the Excel auto homogenizer.
  • 30 mL of each of the obtained aqueous dispersions was put into a stoppered test tube for a centrifuge (manufactured by KUBOTA Corporation, product name “compact high-speed cooling centrifuge 6930”, rotor: RA-400, 8 ⁇ 50 mL). This was dispensed and centrifuged at 8,000 G for 10 minutes with this instrument.
  • the sample was always kept in a slurry state impregnated with water from the mixing of ion-exchanged water and cellulose composite to the end of SAXS measurement, and was not dried.
  • the solid content of the slurry was 10 to 50% by mass.
  • ⁇ Crystalline properties of cellulose in cellulose composite> the crystalline properties of cellulose were measured as follows. First, 26 g of a cellulose sample was measured, and hydrochloric acid and water were added so that the final concentration was 2.5 N and the bath ratio was 10%. While stirring with a stirrer, this was heated to 105 ° C. using an oil bath, and after reaching 105 ° C., hydrolysis was performed for 20 minutes.
  • the obtained slurry was filtered and washed, and washed with pure water until the pH became 4.0 or more. Further, the obtained hydrolysis residue was dried in an oven at 105 ° C. until the water content became 2 to 10%.
  • the dried sample was pulverized using a pestle and mortar, and passed through a mesh 180 ⁇ m sieve as a measurement sample, and subjected to XRD analysis under the same conditions as in the above ⁇ Crystalline crystallinity of cellulose>. The degree of conversion was calculated.
  • the composite strength of the cellulose composite is represented by the ratio of the storage elastic modulus (G′2) to the storage elastic modulus (G′1) ([G′2] / [G′1]).
  • the storage elastic modulus (G′1) and the storage elastic modulus (G′2) were measured as follows.
  • the cellulose composite is dispersed in pure water using a high shear homogenizer (product name “Excel Auto Homogenizer ED-7” manufactured by Nippon Seiki Co., Ltd.) (treatment condition: 1,000 rpm ⁇ 5 minutes). ), 1.0% by mass of an aqueous dispersion 1 was prepared. The obtained aqueous dispersion 1 was allowed to stand at room temperature for 24 hours. The strain dependency of the stress of the aqueous dispersion 1 was measured using a viscoelasticity measuring apparatus (TA Instrument, ARES-G2 type, Geometry IV: Double Wall Couette type).
  • the cellulose composite is dispersed in pure water using a high-shear homogenizer (manufactured by Nippon Seiki Co., Ltd., product name “Excel Auto Homogenizer ED-7”) (treatment condition: 16,000 rpm ⁇ 5 minutes) ), 1.0% by mass of an aqueous dispersion 2 was prepared.
  • the obtained aqueous dispersion 2 was allowed to stand at room temperature for 24 hours.
  • the strain dependency of the stress of the aqueous dispersion 2 was measured using a viscoelasticity measuring apparatus (TA Instrument, ARES-G2 type, Geometry IV: Double Wall Couette type).
  • Example 1 A commercially available hardwood bleached kraft pulp (LBKP) was shredded, and the mixture was added to 7 mass% NaOHaq adjusted to 4 ° C. so as to have a solid content concentration of 9 mass% and stirred for 1 hour. Then, it filtered and washed with water until the filtrate showed neutrality, and purified pulp (modified cellulose) was obtained.
  • the purified pulp thus prepared is hydrolyzed in hydrochloric acid having a final concentration of 0.65% by mass at 121 ° C. for 60 minutes, and the resulting hydrolyzate is washed with water and filtered to obtain a wet cake having a solid content of 43% by mass.
  • Cellulose cellulose (MCC) was produced.
  • Product name “Compounder 15” manufactured by DSM Xplore” was added, and the kneading temperature was 30 ° C., and wet kneading was performed at 50 rpm for 10 minutes.
  • the prepared kneaded product was dried in an oven at 100 ° C.
  • a centrifugal pulverizer manufactured by Retsch, product name “ZM200”
  • Sieve powder using a sieve having an opening of 0.18 mm was passed through, and what passed through this was designated as a cellulose composite powder composition A.
  • the LBKP used as a raw material had a Bragg spacing of 7.2 nm, the modified cellulose had a Bragg spacing of 9.8 nm, and a type I crystallinity of 88%.
  • the obtained cellulose composite powder composition A had a water content of 5.8% by mass, a Bragg spacing of the precipitation part of the aqueous dispersion of 12.9 nm, a storage elastic modulus (G′1) of 2.90, and a storage elasticity.
  • Table 1 The results are shown in Table 1.
  • Example 2 A commercially available hardwood bleached kraft pulp (LBKP) was shredded and charged into 6% by weight NaOHaq adjusted to 4 ° C. so as to have a solid content concentration of 9% by weight, followed by stirring for 1 hour. Then, it filtered and washed with water until the filtrate showed neutrality, and purified pulp (modified cellulose) was obtained.
  • the purified pulp thus prepared is hydrolyzed in hydrochloric acid having a final concentration of 0.65% by mass at 121 ° C. for 60 minutes, and the resulting hydrolyzate is washed with water and filtered to obtain a wet cake having a solid content of 43% by mass.
  • Cellulose cellulose (MCC) was produced.
  • the kneading temperature was set to 70 ° C., and wet kneading was performed at 50 rpm for 10 minutes.
  • the prepared kneaded product was dried in an oven at 100 ° C.
  • a centrifugal pulverizer manufactured by Retsch, product name “ZM200”
  • Sieve powder using a sieve having an opening of 0.18 mm was passed through to obtain a cellulose composite powder composition B.
  • the LBKP used as a raw material had a Bragg spacing of 7.2 nm
  • the modified cellulose had a Bragg spacing of 9.7 nm
  • the I-type crystallinity was 91%.
  • the water content of the obtained cellulose composite powder composition B was 9.1% by mass
  • the Bragg spacing of the precipitation part of the aqueous dispersion was 12.7 nm
  • the storage elastic modulus (G′1) was 1.52
  • the storage elasticity was 1.69
  • [G′2] / [G′1] 1.11
  • the I-type crystallinity was 91%. It became.
  • the results are shown in Table 1.
  • Example 3 After chopping commercially available hardwood bleached kraft pulp (LBKP), it was added to 9 mass% NaOHaq, which was temperature-controlled at 30 ° C., and stirred for 1 hour. Then, it filtered and washed with water until the filtrate showed neutrality, and purified pulp (modified cellulose) was obtained.
  • the purified pulp thus prepared is hydrolyzed in hydrochloric acid having a final concentration of 0.65% by mass at 121 ° C. for 60 minutes, and the resulting hydrolyzate is washed with water and filtered to obtain a wet cake having a solid content of 44% by mass.
  • Cellulose cellulose (MCC) was produced.
  • the kneading temperature was set to 70 ° C., and wet kneading was performed at 50 rpm for 10 minutes.
  • the prepared kneaded product was dried in an oven at 100 ° C.
  • a centrifugal pulverizer manufactured by Retsch, product name “ZM200”
  • Sieve powder using a sieve having an opening of 0.18 mm was passed through to obtain a cellulose composite powder composition C.
  • the LBKP used as a raw material had a Bragg spacing of 7.2 nm, the modified cellulose had a Bragg spacing of 9.5 nm, and the I-type crystallinity was 93%.
  • the water content of the obtained cellulose composite powder composition C was 7.1% by mass
  • the Bragg spacing of the precipitation part of the aqueous dispersion was 12.3 nm
  • the storage elastic modulus (G′1) was 1.40
  • the storage elasticity was 1.35
  • [G′2] / [G′1] 0.96
  • the I-type crystallinity was 92%.
  • Example 4 A commercially available hardwood bleached kraft pulp (LBKP) was shredded and charged into 5 mass% NaOHaq adjusted to a temperature of 4 ° C. to a solid content concentration of 9 mass%, followed by stirring for 1 hour. Then, it filtered and washed with water until the filtrate showed neutrality, and purified pulp (modified cellulose) was obtained.
  • the purified pulp thus prepared is hydrolyzed in hydrochloric acid having a final concentration of 0.65% by mass at 121 ° C. for 60 minutes, and the resulting hydrolyzate is washed with water and filtered to obtain a wet cake having a solid content of 43% by mass.
  • Cellulose cellulose (MCC) was produced.
  • Product name “Compounder 15” manufactured by DSM Xplore” was added, and the kneading temperature was 30 ° C., and wet kneading was performed at 50 rpm for 10 minutes.
  • the prepared kneaded product was dried in an oven at 100 ° C.
  • a centrifugal pulverizer manufactured by Retsch, product name “ZM200”
  • Sieve powder using a sieve having an opening of 0.18 mm was passed through to obtain a cellulose composite powder composition D.
  • the LBKP used as a raw material had a Bragg spacing of 7.2 nm
  • the modified cellulose had a Bragg spacing of 8.9 nm
  • the I-type crystallinity was 95%.
  • the obtained cellulose composite powder composition D had a water content of 10.8% by mass, a Bragg spacing in the aqueous dispersion precipitation part of 11.2 nm, a storage elastic modulus (G′1) of 0.99, and a storage elasticity.
  • Table 1 The results are shown in Table 1.
  • Example 5 A commercially available hardwood bleached kraft pulp (LBKP) was shredded and charged into 4% by weight NaOHaq adjusted to 4 ° C. to a solid content concentration of 9% by weight and stirred for 1 hour. Then, it filtered and washed with water until the filtrate showed neutrality, and purified pulp (modified cellulose) was obtained.
  • the purified pulp thus prepared is hydrolyzed in hydrochloric acid having a final concentration of 0.65% by mass at 121 ° C. for 60 minutes, and the resulting hydrolyzate is washed with water and filtered to obtain a wet cake having a solid content of 42% by mass.
  • Cellulose cellulose (MCC) was produced.
  • Product name “Compounder 15” manufactured by DSM Xplore” was added, and the kneading temperature was 30 ° C., and wet kneading was performed at 50 rpm for 10 minutes.
  • the prepared kneaded product was dried in an oven at 100 ° C.
  • a centrifugal pulverizer manufactured by Retsch, product name “ZM200”
  • Sieve powder using a sieve having an opening of 0.18 mm was passed through to obtain a cellulose composite powder composition E.
  • the Bragg spacing of LBKP used as a raw material was 7.2 nm
  • the Bragg spacing of the modified cellulose was 8.0 nm
  • the type I crystallinity was 97%.
  • the obtained cellulose composite powder composition E has a water content of 6.2% by mass, a Bragg spacing of the precipitation part of the aqueous dispersion of 9.8 nm, a storage elastic modulus (G′1) of 0.77, and a storage elasticity.
  • Table 1 The results are shown in Table 1.
  • Example 6 A commercially available hardwood bleached kraft pulp (LBKP) was chopped, and then poured into H 2 O so as to have a solid content concentration of 9% by mass, and heated and stirred at 150 ° C. for 1 hour in a pressure vessel. Then, it filtered and refined pulp (modified cellulose) was obtained. The purified pulp thus prepared is hydrolyzed in hydrochloric acid having a final concentration of 0.65% by mass at 121 ° C. for 60 minutes, and the resulting hydrolyzate is washed with water and filtered to obtain a wet cake having a solid content of 42% by mass. Cellulose cellulose (MCC) was produced.
  • LLKP hardwood bleached kraft pulp
  • Product name “Compounder 15” manufactured by DSM Xplore” was added, and the kneading temperature was 30 ° C., and wet kneading was performed at 50 rpm for 10 minutes.
  • the prepared kneaded product was dried in an oven at 100 ° C.
  • a centrifugal pulverizer manufactured by Retsch, product name “ZM200”
  • Sieve powder using a sieve having an opening of 0.18 mm was passed through to obtain a cellulose composite powder composition F.
  • the LBKP used as a raw material had a Bragg spacing of 7.2 nm
  • the modified cellulose had a Bragg spacing of 7.6 nm
  • the I-type crystallinity was 98%.
  • the water content of the obtained cellulose composite powder composition F was 4.9% by mass
  • the Bragg spacing of the precipitation part of the aqueous dispersion was 8.8 nm
  • the storage elastic modulus (G′1) was 0.62
  • the storage elasticity was 0.31
  • [G′2] / [G′1] 0.50
  • the I-type crystallinity was 97%.
  • Example 7 A commercially available hardwood-dissolved sulfide pulp (LDSP) was shredded, and the mixture was added to 7 mass% NaOHaq adjusted to a temperature of 4 ° C. to a solid content concentration of 9 mass% and stirred for 1 hour. Then, it filtered and washed with water until the filtrate showed neutrality, and purified pulp (modified cellulose) was obtained.
  • the purified pulp thus prepared is hydrolyzed in hydrochloric acid having a final concentration of 0.65% by mass at 121 ° C. for 60 minutes, and the resulting hydrolyzate is washed with water and filtered to obtain a wet cake having a solid content of 42% by mass.
  • Cellulose cellulose (MCC) was produced.
  • Product name “Compounder 15” manufactured by DSM Xplore” was added, and the kneading temperature was 30 ° C., and wet kneading was performed at 50 rpm for 10 minutes.
  • the prepared kneaded product was dried in an oven at 100 ° C.
  • a centrifugal pulverizer manufactured by Retsch, product name “ZM200”
  • Sieve powder using a sieve having an opening of 0.18 mm was passed through to obtain a cellulose composite powder composition G.
  • the LDSP used as a raw material had a Bragg spacing of 7.2 nm, the modified cellulose had a Bragg spacing of 9.7 nm, and a type I crystallinity of 90%.
  • the obtained cellulose composite powder composition G had a moisture content of 7.5% by mass, a Bragg spacing of the aqueous dispersion precipitation part of 12.7 nm, a storage elastic modulus (G′1) of 3.12, and a storage elasticity.
  • Table 1 The results are shown in Table 1.
  • Example 8 9% solid content in 1-ethyl-3-methylimidazolium diethyl phosphate (manufactured by Nippon Emulsifier Co., Ltd.) temperature-controlled at 80 ° C. after shredding commercially available hardwood bleached kraft pulp (LBKP) % Was added and stirred for 10 minutes. Then, after centrifuging at 8,000 G for 5 minutes with a centrifuge (manufactured by KUBOTA Corporation, product name “Compact High Speed Cooling Centrifuge 6930”), the supernatant was removed by decantation. An excess amount of ethanol was added to the resulting precipitate, and the mixture was again centrifuged and the supernatant was removed to replace the solvent.
  • LLKP hardwood bleached kraft pulp
  • This replacement operation was further performed twice, a total of 3 times, and then a pulp washing operation was further performed twice in the same procedure using ion exchanged water at 30 ° C. to obtain purified pulp (modified cellulose).
  • the purified pulp thus prepared is hydrolyzed in hydrochloric acid having a final concentration of 0.65% by mass at 121 ° C. for 60 minutes, and the resulting hydrolyzate is washed with water and filtered to obtain a wet cake having a solid content of 43% by mass.
  • Cellulose cellulose (MCC) was produced.
  • Product name “Compounder 15” manufactured by DSM Xplore” was added, and the kneading temperature was 30 ° C., and wet kneading was performed at 50 rpm for 10 minutes.
  • the prepared kneaded product was dried in an oven at 100 ° C.
  • a centrifugal pulverizer manufactured by Retsch, product name “ZM200”
  • Sieve powder using a sieve having an opening of 0.18 mm was passed through to obtain a cellulose composite powder composition H.
  • the LBKP used as a raw material had a Bragg spacing of 7.2 nm
  • the modified cellulose had a Bragg spacing of 9.7 nm
  • the I-type crystallinity was 86%.
  • the water content of the obtained cellulose composite powder composition H was 7.2% by mass
  • the Bragg spacing of the precipitation part of the aqueous dispersion was 12.4 nm
  • the storage elastic modulus (G′1) was 2.49
  • the storage elasticity was 2.48
  • the I-type crystallinity was 85%.
  • the obtained cellulose composite powder composition I had a water content of 6.5% by mass, a Bragg spacing of the aqueous dispersion precipitation part of 8.3 nm, a storage elastic modulus (G′1) of 0.31, and a storage elasticity.
  • Table 2 The results are shown in Table 2.
  • the LDSP used as a raw material had a Bragg spacing of 7.2 nm and an I-type crystallinity of 99%.
  • the obtained cellulose composite powder composition K had a water content of 4.5% by mass, a Bragg spacing of the aqueous dispersion precipitation part of 8.4 nm, a storage elastic modulus (G′1) of 2.66, and a storage elasticity.
  • Table 2 The results are shown in Table 2.
  • FIG. 1 the scattering intensity plot of the pulp after a modification process in Example 1, 3 and the raw material pulp (LBKP pulp) before a modification process is shown.
  • FIG. 2 the scattering intensity plot of the dispersion liquid precipitation part in Example 1 and Comparative Example 1 is shown. Both the vertical axis is a circle value multiplied by the scattering intensity q 2 rings after averaging q 2 I (q), the horizontal axis is the logarithm of q.
  • each carrot juice after storage was drunk and the texture was sensory evaluated.
  • the evaluation method was performed according to the following criteria for the separation state, the sedimentation state, the number of redispersions, and the texture. The evaluation results are shown in Tables 3-6.
  • ⁇ Red Bean Milk Drink> Using the cellulose composite powder compositions A to K obtained in the above examples and comparative examples, two kinds of red bean milk drinks having different textures were prepared and evaluated by the following operations. First, 100 g of sugar-free yuzuzuki, 50 g of sugar, 8 g of whole milk powder, 0.5 g of salt, 1.0 g of an emulsifier (monoglyceride preparation), and 5.0 g (dry weight) of a cellulose composite powder composition are ion-exchanged water. Was added to make the total amount 1000 g.
  • the mixture was put into a food mixer, boiled red pepper was pulverized and then homogenized at 10 MPa using a piston type homogenizer (manufactured by APV, product name: “Manton Gorin homogenizer”). What was homogenized 10 times at 40 MPa was used as red beans milk (slip). These were filled in a 200 mL glass heat-resistant bottle, heat sterilized (121 ° C., 30 minutes), and cooled with tap water for 1 hour. The cooled bottle was gently shaken 10 times up and down, and then stored in an atmosphere at 5 ° C. for 1 month.
  • a piston type homogenizer manufactured by APV, product name: “Manton Gorin homogenizer”. What was homogenized 10 times at 40 MPa was used as red beans milk (slip).
  • the beverage that had been homogenized with a low shear force (10 MPa) had a rough texture, but the homogenization with a high shear force (10 MPa at 40 MPa).
  • the mouthfeel was smooth.
  • suspension stability was observed to be better for beverages homogenized with low shear force than for beverages homogenized with high shear force, regardless of the type of cellulose composite powder composition. .
  • Beverages blended with the cellulose composite powder compositions I to K having [G′2] / [G′1] of 0.45 to 0.49 are relatively slack in beverages homogenized with a low shear force. Although the turbidity stability was good, at least one of separation, sedimentation and oil ring was evaluated as x (impossible) in the beverage homogenized with high shear force, and the suspension stability was poor. In contrast, beverages containing cellulose composite powder compositions A to H having [G′2] / [G′1] of 0.5 or more are separated even when beverages are homogenized with high shear force. , Sedimentation and oil ring were all evaluated as ⁇ (good) or better, and the suspension stability was excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Inorganic Chemistry (AREA)
  • Mycology (AREA)
  • Dermatology (AREA)
  • Birds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Non-Alcoholic Beverages (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Jellies, Jams, And Syrups (AREA)

Abstract

本発明は、セルロースと多糖類からなるセルロース複合体であって、前記セルロース複合体の0.1質量%水分散体を遠心分離処理して得られる沈殿物のX線小角散乱(SAXS)解析によるブラッグスペーシングが8.6nm以上であることを特徴とするセルロース複合体およびその製造方法を提供する。

Description

セルロース粉末
 本発明は、セルロースと多糖類からなるセルロース複合体とその製造方法に関する。
 本願は、2018年4月3日に、日本国に出願された特願2018-071778号に基づき優先権を主張し、その内容をここに援用する。
 従来、セルロースと、多糖類とのセルロース複合体が、水系媒体中においてセルロースコロイドを形成し、良好な懸濁安定性を示すことが知られており、食品、医薬品、化粧品、塗料、セラミックス、樹脂、触媒、その他工業用品等の分野において、広く用いられている。該セルロース複合体は、特に、懸濁安定剤、乳化安定剤、増粘安定剤等の安定剤、組織付与剤、クラウディー剤、白度向上、流動性改良、研磨剤、食物繊維、油脂代替等の目的で用いられる。例えば、カルシウム強化牛乳においては、ミルクカルシウムや炭酸カルシウムの如く比重の大きい水不溶性成分の懸濁安定性の向上を目的として、前記セルロース複合体が添加されている。また、近年は、社会的に健康やダイエットを志向する人口の増加に伴って食物繊維やたんぱく質などの水不溶性成分を多く含む飲料や食品が数多く開発されている。特に飲料において、これらの水不溶性成分を多量加えると凝集や沈殿などが発生しやすくなるため、懸濁安定化性能が高いセルロース複合体が望まれてきた。
 従来までに、セルロース複合体が持つ懸濁安定性を向上させるために様々な検討がなされている。特許文献1には、結晶セルロース(MCC)と2種の特定の粘度を持つカルボキシメチルセルロース(CMC)からなるセルロース複合体が開示されている。該セルロース複合体は、高い貯蔵弾性率を持ち、ミルク中でココア粒子を、低添加量(0.2質量%)で安定化できると記載されている。また、特許文献2には、MCCと2種の特定の置換度を持つCMCからなるゲル強度の高いセルロース複合体の乾燥粉末が開示されており、該セルロース複合体が少ない添加量で高い安定化性能を示し、さまざまな飲食品において有用であることが示されている。
国際公開第2013/022090号 特開第2015-502136号公報
 従来のセルロースと多糖類で構成されるセルロース複合体は、輸送や保存などの観点から乾燥、粉砕を経て粉末状に加工されているが、粉末状のセルロース複合体を水などの溶媒へ分散処理する際に複合化構造が破壊されやすくなることが分かってきた。そのため、特に、不溶性食物繊維やタンパク質などの不溶性成分が高濃度に配合されている飲料においては、従来の粉末状のセルロース複合体は安定剤としての機能が十分ではなかった。これは、不溶性成分が高濃度に配合されている飲料では、高圧ホモジナイザーなどによって長時間又は高圧での均質化処理を必要とするが、この均質化処理の際のせん断エネルギーによってセルロースと多糖類の水素結合が切断され、セルロース複合体の構造が破壊されてしまうためである。
 特許文献1に記載のセルロース複合体は、不溶性成分が高濃度配合されたリッチテイスト飲料において良好な懸濁安定性を示すとされており、0.4質量%の濃度でココアやコーヒー、黒ゴマ配合乳飲料において分離、凝集、沈降が優れることが記載されている。しかし、本文献においては、セルロース複合体は乾燥工程を経ずにウェット状態のまま飲料へ添加されていた。
 特許文献2に記載のセルロース複合体の乾燥粉末は、たしかに0.3質量%の添加量で還元乳中にカルシウム粒子を安定化できている。しかし、該セルロース複合体の乾燥粉末は、水に分散させる際に加えるせん断エネルギーと比例して、水分散液のゲル強度が低下してしまう傾向があった。そのため、製造工程中で多段階にせん断や均質化を行う飲食品に添加する際には、せん断や均質化の処理によってカルシウム粒子の安定性が変化してしまい、適切な該セルロース複合体の添加量を決定することは困難であった。
 本発明では、セルロースと多糖類からなり、飲料のような液状組成物に対して不溶性成分の懸濁安定化剤として有用なセルロース複合体を提供することを目的とする。
 本発明者らは、セルロースと多糖類からなる複合体の水分散液を遠心分離処理して得られる沈殿物のブラッグスペーシング(Bragg spacing)が、セルロースと多糖類の複合化の強度に関与することを見出した。さらに、該ブラッグスペーシングが特定以上の値のセルロース複合体の粉体状組成物を添加した飲料では、飲料に該セルロース複合体を添加する際に与えるせん断エネルギーの大きさ、量にかかわらず、飲料成分の分離、凝集、沈降の程度の変化が小さいことを見出し、本発明を完成させた。すなわち、本発明は下記のとおりである。
[1] セルロースと多糖類からなるセルロース複合体であって、前記セルロース複合体の0.1質量%水分散体を遠心分離処理して得られる沈殿物のX線小角散乱(SAXS)解析によるブラッグスペーシングが8.6nm以上であることを特徴とする、セルロース複合体。
[2] イオン交換水に前記セルロース複合体を1質量%含有させた混合物を、高剪断ホモジナイザー(日本精機(株)製、製品名「エクセルオートホモジナイザーED-7」)を用いて回転数1,000rpm、5分間の条件で分散させて得られた水分散体の貯蔵弾性率(G’1)と、前記混合物を前記高剪断ホモジナイザーを用いて回転数16,000rpm、5分間の条件で分散させて得られた水分散体の貯蔵弾性率(G’2)との比([G’2]/[G’1])が0.5以上である、前記[1]のセルロース複合体。
[3]イオン交換水に前記セルロース複合体を1質量%含有させた混合物を、高剪断ホモジナイザー(日本精機(株)製、製品名「エクセルオートホモジナイザーED-7」)を用いて回転数16,000rpm、5分間の条件で分散させて得られた水分散体の貯蔵弾性率(G’2)が0.3Pa以上である、前記[1]又は[2]のセルロース複合体。
[4] 含水率が20質量%以下であり、かつ目開き1mmの篩を全通する粉体状である、前記[1]~[3]のいずれか一項に記載のセルロース複合体。
[5] セルロースと多糖類とからなるセルロース複合体の製造方法であって、ブラッグスペーシングが7.5nm以上のセルロースの加水分解物を多糖類と複合体化する、セルロース複合体の製造方法。
[6] 前記[1]~[4]のいずれかのセルロース複合体を含む飲食品。
[7] 前記[1]~[4]のいずれかのセルロース複合体を含む医薬品。
[8] 前記[1]~[4]のいずれかのセルロース複合体を含む工業製品。
 本発明は、液状組成物に配合した場合に、均質化処理の時間、与えるせん断応力に関わらず、懸濁安定性が変化しづらいセルロース複合体を提供できる。このため、本発明に係るセルロース複合体を、ココア粒子やたんぱく質、食物繊維などの不溶性成分を高濃度に含む食品や飲料に添加し、十分なせん断力で均質化することによって、懸濁安定性と食感の滑らかさの両方が共に良好な飲食品を製造することができる。
実施例1、3における改質処理後パルプ及び改質処理前の原料パルプ(LBKPパルプ)の散乱強度プロット(縦軸:円環平均後の散乱強度にqを乗じた値qI(q)、横軸:qの対数)である。 実施例1及び比較例1における、分散液沈殿部の散乱強度プロット(縦軸:円環平均後の散乱強度にqを乗じた値qI(q)、横軸:qの対数)である。
 本発明について、以下具体的に説明する。
 本願明細書における懸濁安定の定義について説明する。「懸濁安定」とは、水系媒体中に不溶性成分が含まれる液状組成物において、該不溶性成分が分離、沈降することなく、均一な外観を呈することである。
 本発明に係るセルロース複合体は、セルロースと多糖類からなるセルロース複合体であって、前記セルロース複合体の0.1質量%水分散体を遠心分離処理して得られる沈殿物のX線小角散乱(SAXS)解析によるブラッグスペーシングが8.6nm以上であるものである。本発明において、「セルロースと多糖類の複合化」とは、セルロースの表面の少なくとも一部が、水素結合等の化学結合により多糖類で被覆されることを意味し、「セルロース複合体」とは、セルロースの表面の少なくとも一部が多糖類で被覆された物を意味する。
 SAXS解析によるブラッグスペーシングが特定の値以上であるセルロース原料を加水分解して得られるセルロースは、セルロース分子中のヒドロキシ基のアクセシビリティーが高い。このため、このようなセルロース原料を加水分解したセルロースは、多糖類との混練複合化の過程において多くの水素結合を形成し、いわゆる複合化強度が高い状態を達成できる。その結果、得られたセルロース複合体は、高い懸濁安定性能を示し、またせん断を長時間与えた際にも懸濁安定性能が低下しない。
<セルロース>
 本発明における「セルロース」とは、セルロースを含有する天然由来の水不溶性繊維質物質である。本発明に係るセルロース複合体の原料となるセルロースとしては、木材パルプ、非木材パルプ、麦藁、稲藁、コットン、コットンリンター、麻、ラミー、バガス、ケナフ、ビート、ホヤ、バクテリアセルロース等のセルロース原料から加水分解処理等をして得られたセルロースを使用できる。該セルロース原料としては、好ましくは木材パルプ、非木材パルプであり、さらに好ましくは木材晒パルプ(BP)、木材溶解パルプ(DP)、コットンリンターパルプであり、最も好ましくは木材晒クラフトパルプ(BKP)、木材溶解クラフトパルプ(DKP)である。該セルロース原料としては、これらのうち1種を使用してもよく、2種以上を混合したものを使用することも可能である。
<セルロースのブラッグスペーシング>
 本発明に係るセルロース複合体の原料となるセルロースとしては、SAXS解析におけるブラッグスペーシング(d[nm])が大きいものを用いることが好ましい。SAXS解析によって得られるブラッグスペーシングは、セルロースを構成するセルロースミクロフィブリル間隙の大きさを表している。セルロースミクロフィブリル間隙が大きい程、セルロースの構造が疎であることを示しており、ヒドロキシ基のアクセシビリティーが高い。このため、加水分解時に酸触媒によるアタックを受けやすく、ゆえに重合度の低下が生じやすい。また、混練による多糖類との複合化の過程においては、水素結合を形成しやすく、複合化が促進されやすいので好ましい。
 セルロースのブラッグスペーシングは、以下の方法で測定することができる。まず、乾燥重量で30gのセルロース試料に対して、全量が270gになるようにイオン交換水を加えた混合物を得る。該混合物を、高剪断ホモジナイザー(日本精機(株)製、製品名「エクセルオートホモジナイザーED-7」)を用いて解繊処理(1,000rpm×5分間)を行ってスラリー化する。得られたスラリーを、ナノスケールX線構造評価装置((株)リガク製、製品名「NANOPIX」)を用いてSAXS解析を行う。解析条件は次の通りである。なお、試料は前記操作からSAXS測定終了まで、常に水に含浸したスラリー状態を保ち、乾燥しないようにする。スラリーの固形分は10~50質量%とする。
(SAXS解析条件)
X線波長λ:0.154nm
測定時間:900秒
検出器:2次元検出器(「HyPix-6000」)
カメラ長:1307mm
 以上の条件において2次元検出器により測定された散乱パターンIobs(2θ,φ)に対し、式1のように円環平均することで1次元散乱プロフィールIobs(2θ)を得る。式1中、θはブラッグ角であり、Pが偏光因子であり、φが方位角であり、IBGは検出器バックグラウンド値である。
Figure JPOXMLDOC01-appb-M000001
 さらに、円環平均した1次元プロフィールに対し、式2を用いて空セル散乱補正を行う。式2中、I(2θ)は空セル散乱補正済みの散乱強度であり、Iobs(2θ)は補正前散乱強度(式1により求めた1次元散乱プロフィール)であり、Tは試料のX線透過率である。また、「sample」、「empty」の添え字はそれぞれ、試料測定、空セル測定により得られたものを示している。
Figure JPOXMLDOC01-appb-M000002
 次に式3で表される散乱ベクトルの絶対値qを用いて、縦軸を円環平均後の散乱強度にqを乗じた値qI(q)、横軸をqの対数としてプロットし、ピーク位置qmaxを求める。
Figure JPOXMLDOC01-appb-M000003
 そして、qmaxからブラッグの式(式4)より算出したd[nm]をブラッグスペーシングと定義する。
Figure JPOXMLDOC01-appb-M000004
 セルロースのブラッグスペーシングが7.5nm以上であれば、セルロースミクロフィブリルの構造が十分に疎である。本発明に係るセルロース複合体の原料となるセルロースのブラッグスペーシングの値としては、好ましくは8.0nm以上、より好ましくは9.0nm以上、さらに好ましくは9.5nm以上である。ブラッグスペーシングは大きい程、セルロース分子のヒドロキシ基のアクセシビリティーが高くなるため、上限は特に制限されないが、セルロースの構造上、好ましい範囲としては25nm以下である。
<セルロースの改質>
 セルロースのブラッグスペーシングを制御する方法としては、溶媒への浸漬や爆砕、叩解などが挙げられる。これらの方法は単独で、又は2種類以上を組み合わせて用いてもよい。また、これらの処理は、後述する平均重合度調整のためのセルロース加水分解の前後のいずれの時点で行ってもよい。これらの処理を行うことで、セルロース分子鎖内及び分子鎖間の水素結合が切断され、ヒドロキシ基に対するアクセシビリティーが向上する。中でも、溶媒へ浸漬させる溶媒処理が好ましく、溶媒としては、アルカリ水溶液、イオン液体、DMSOなどの公知の溶媒を用いることができる。
<セルロースの溶媒処理>
 溶媒への浸漬を行うことで、セルロースからヘミセルロースやリグニン、樹脂などの不純物が取り除かれると同時に、セルロース分子鎖間の水素結合が破壊される。このため、溶媒処理により、セルロースのブラッグスペーシングをより大きくすることができる。溶媒処理の際のスラリー濃度は制限されないが、固形分1~20質量%とすることで、セルロース試料全体に、均一に処理を施すことができる。処理に用いる溶媒には、セルロースの溶媒として公知の全ての溶媒が使用できる。中でも、イオン液体や金属錯体溶液、アルカリ水溶液が好ましい。最も好ましくは、食品の安全性から考慮されても、アルカリ水溶液である。
 ここで、イオン液体とは、イオン結合性の物質のうち融点が100℃以下のものと定義する。溶媒処理に用いられるイオン液体の種類は制限されず、単独で用いてもよく、2種類以上を併用してもよい。イオン液体の中でもイミダゾリウム塩が好ましく、処理温度は20~100℃、処理時間は1~60分間程度が好ましい。
 金属錯体溶液とは、金属錯体を溶質として含む溶液である。金属錯体溶液に用いる金属錯体の種類は制限されず、単独で用いてもよく、2種類以上を併用してもよい。溶媒処理に用いられる金属錯体溶液としては、[Cu(NH](OH)が好ましい。この時CuとNHの濃度比率としては、Cu/NH=1/6~1/7[mol/mol]となるように調整されることが好ましい。処理温度としては、-20~100℃が好ましく、処理時間処理時間は1~60分間程度が好ましい。
 アルカリ水溶液に用いるアルカリの種類は制限されず、単独で用いてもよく、2種類以上を併用してもよい。溶媒処理に用いられるアルカリ水溶液としては、アルカリ金属水酸化物(水酸化リチウム、水酸化ナトリウム、水酸化カリウム)水溶液が特に好ましく、最も好ましくは水酸化ナトリウム水溶液である。水酸化ナトリウムの濃度としては1~11質量%、処理温度は-10~80℃、処理時間は1~300分間とすることが好ましい。本条件下で処理することで、ミクロフィブリル間の水素結合のみが選択的に破壊され、セルロースの結晶的性質をI型で維持したまま、前述のブラッグスペーシングを大きくすることが可能であると思われる。
 セルロース原料に対して上述のいずれかの処理を行うことで、セルロースの結晶的性質が維持されたまま、溶媒がセルロース原料の繊維内部まで浸透し、セルロース構造の変化が均一に生じ、後工程である混練による複合化の制御も容易になると考えられる。
<セルロースの平均重合度>
 本発明に係るセルロース複合体の原料となるセルロースの平均重合度は、500以下であることが好ましい。また、用いるセルロースとしては、結晶セルロースが好ましい。結晶セルロースの平均重合度は、銅エチレンジアミン溶液による還元比粘度法により測定できる。具体的な測定手順は「第十七改正日本薬局方」の結晶セルロース確認試験(3)に規定されている銅エチレンジアミン溶液による還元比粘度法に準じて測定し、もし結晶セルロース確認試験(3)の測定可能範囲を超える場合は、同日本薬局法の粉末セルロース確認試験(3)に準じて測定する。平均重合度が500以下ならば、多糖類との複合化の工程において、結晶セルロースが攪拌、粉砕、摩砕等の物理処理を受けやすくなり、複合化が促進されやすくなるため好ましい。原料となるセルロースの平均重合度としては、より好ましくは400以下、さらに好ましくは300以下、よりさらに好ましくは200以下、特に好ましくは150以下である。平均重合度は、小さいほど複合化の制御が容易になるため、下限は特に制限されないが、好ましい範囲としては10以上である。
<セルロースの加水分解>
 セルロースの平均重合度を制御する方法としては、加水分解処理等が挙げられる。加水分解処理によって、セルロース繊維質内部の非晶質セルロースの解重合が進み、平均重合度が小さくなる。また同時に、加水分解処理により、上述の非晶質セルロースに加え、ヘミセルロースや、リグニン等の不純物も、取り除かれるため、純度の高い結晶セルロースを得ることができる。加水分解の方法は、特に制限されないが、酸触媒加水分解、アルカリ触媒加水分解、熱水分解等が挙げられる。これらの方法は、単独で使用してもよく、2種以上を併用してもよい。加水分解の方法としては、好ましくは酸触媒加水分解である。セルロースを水系媒体に分散させた状態で、有機酸又は無機酸を適量加え、攪拌させながら加温することにより、容易に平均重合度を制御できる。この際の温度、圧力、時間等の反応条件は、セルロース種、セルロース濃度、酸種、酸濃度により異なるが、目的とする平均重合度が達成されるよう適宜調整されるものである。ただし酸触媒の濃度が濃く、また反応温度が高い程ヘミセルロースやリグニンなどの酸触媒加水分解も進みやすくなり、着色の原因となるため酸触媒の濃度は低濃度で、また低温下で反応させることが好ましい。
 ブラッグスペーシングが7.5nm以上であるセルロースは、セルロースミクロフィブリル間隙が大きいため、非晶セルロースに対するプロトンのアクセシビリティーが高く、加水分解反応の際の酸濃度を低濃度化することや、反応温度を低温下することができる。一般的に、酸はセルロースに対する膨潤性が低く、加水分解反応はほとんどセルロース表面から進行する。そのため、一定時間内にセルロースをLODP(レベルオフ重合度)まで加水分解するためには、高濃度の触媒下で高エネルギー状態にし、反応速度を十分に高める必要がある。しかし、ブラッグスペーシングが大きい、疎な構造を持ったセルロースは膨潤しやすいため、プロトンがミクロフィブリル内部まで侵入し、加水分解が速やかに進行する。このため、触媒濃度、反応エネルギーが低い条件下においても、加水分解反応が十分に速く進行する。よってブラッグスペーシングが7.5nm以上であるセルロースを用いる場合、加水分解条件としては、塩酸濃度0.1~5.0質量%以下、反応温度70~170℃とすることが好ましい。塩酸濃度としてより好ましくは1.5質量%以下であり、さらに好ましくは1.0質量%以下である。塩酸濃度が低すぎると、反応時間が長くなるため、より好ましくは0.3質量%以上、さらに好ましくは0.5質量%以上である。
<セルロースの結晶的性質>
 本発明に係るセルロース複合体の原料となるセルロースの結晶的性質はI型結晶であることが好ましい。結晶的性質はX線回折法(XRD)により、セルロースI型分率を下記手順で算出する。
1-1.セルロース試料を準備する。
1-2.前記セルロース試料に対し、終濃度2.5N、浴比10%となるよう塩酸および水を加え、105℃において、スターラーにて100rpmで攪拌しながら20分間加水分解する。
1-3.得られた残渣を吸引ろ過にて回収する。この時、ろ液のpHが4.0~7.0となるまで純水で洗浄濾過する。
1-4.105℃のオーブンで乾燥する。
1-5.乾燥後の試料を乳棒および乳鉢で粉砕し、メッシュ180μmの篩を通過したものを測定サンプル(S1)とする。
1-6.S1について、以下の条件にてX線回折測定を実施する。
(XRD解析条件)
 機器(型式):X線回折装置(RINT-TTR)
 測定方法:粉末X線回折測定法
 X線波長:0.15418nm(CU-Kα)
 電流:50kV
 電圧:200mA
 検出器:シンチレーションカウンタ
 発散スリット:1deg
 散乱スリット:1deg
 受光スリット:0.30mm
 走査速度:1.0deg/min.
 走査角度:5~35°
 測定結果に対し、平滑化およびバックグラウンド除去を実施したのち、セルロースI型結晶化度(%)は次のように定義される。なお平滑化およびバックグラウンド除去後、I22.6およびI18.5が負の値となる場合、0として扱うものとする。
 セルロースI型結晶化度(%)={(I22.6-I18.5)/I22.6}×100
 I22.6:002面(回折角2θ=22.6°)の回折強度
 I18.5:アモルファス部(回折角2θ=18.5°)の回折強度
 平滑化およびバックグラウンド除去は以下の条件により実施する。
(平滑化およびバックグラウンド除去条件)
解析ソフト:統合粉末X線解析ソフトウェアPDXL
平滑化方式:Savitzky-Golay平滑化
平滑化点数:11
バックグラウンド除去方式:フィッティング方式
 セルロースのI型結晶化度が40%以上であれば、混練による多糖類との複合化の過程においては、水素結合を形成しやすく、複合化が促進されやすいので好ましい。I型結晶化度の割合として好ましくは70%以上であり、さらに好ましくは85%以上である。I型結晶化度が高すぎる場合にも、多糖類のセルロース水酸基に対するアクセシビリティーが低下するため、複合化が進み難い。よってI型結晶化度は98%以下であることが好ましく、より好ましくは95%以下、さらに好ましくは90%以下である。なおセルロースI型結晶の定義としては、回折角2θが22.1°~23.1°の間に、ピークが認められることとする。
<セルロースと多糖類の配合比率>
 本発明に係るセルロース複合体は、セルロース複合体全体に対してセルロースを20~99質量%、多糖類を1~80質量%含むことが好ましい。セルロースと該多糖類の複合化により、セルロース粒子の表面が該多糖類により水素結合等の化学結合で被覆される。セルロースの少なくとも一部が多糖類に被覆されたセルロース複合体は、水分散液中に分散可能となり、ネットワーク構造を形成することで懸濁安定性が向上する。セルロースと該多糖類を前記の組成で複合化することにより、複合化が効果的に進むため、好ましい。セルロース複合体全体に対するセルロースの含有量は、より好ましくは60質量%以上であり、さらに好ましくは70質量%以上であり、特に好ましくは75質量%以上である。セルロースの比率が高すぎると分散性が悪化するため、セルロース複合体全体に対するセルロースの含有量は、95質量%以下がより好ましく、特に好ましくは90質量%以下である。セルロース複合体全体に対する該多糖類の含有量としては、5質量%以上がより好ましく、10質量%以上がさらに好ましい。セルロース複合体全体に対する該多糖類の含有量としては、40質量%以下がより好ましく、30質量%以下がさらに好ましく、25質量%以下が特に好ましい。
<多糖類>
 本発明に係るセルロース複合体の原料となる多糖類は、グルコース、ガラクトース、マンノース、キシロース、N-アセチルグルコサミン、グルコン酸、ガラクツロン酸、マンヌロン酸等の単糖類がα又はβ結合し、主鎖又は側鎖を構成する化合物を指す。例えば、天然由来では、アーモンドガム、アラビアガム、アラビノガラクタン、エレミ樹脂、カラヤガム、ガッティガム、ダンマル樹脂、トラガントガム、モモ樹脂等の樹脂由来の多糖類;アマシードガム、カシアガム、ローカストビーンガム、グアーガム、グアーガム酵素分解物、サイリウムシードガム、サバクヨモギシードガム、セスバニアガム、タマリンド種子ガム、タラガム、トリアカンソスガム等の豆類由来の多糖類、アルギン酸、カラギーナン、フクロノリ抽出物、ファーセルラン等の海草由来の多糖類、アロエベラ抽出物、オクラ抽出物、キダチアロエ抽出物、トロロアオイ、ペクチン等の果実類、葉、地下茎由来の多糖類;アエロモナスガム、アウレオバシジウム培養液、アゾトバクター・ビネランジーガム、ウェランガム、エルウィニア・ミツエンシスガム、エンテロバクター・シマナスガム、エンテロバクターガム、カードラン、キサンタンガム、ジェランガム、スクレロガム、デキストラン、納豆菌ガム、プルラン、マクロホモプシスガム、ラムザンガム、レバン等の微生物の発酵産物由来の多糖類;メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキプロピルメチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、カルボキシエチルセルロース等のセルロース由来の多糖類、及びそのナトリウム塩、カルシウム塩等のセルロース誘導体;等が挙げられ、その他としては、酵母細胞壁、キチン、キトサン、グルコサミン、オリゴグルコサミン、ヘパリン、コンドロイチン硫酸等が挙げられる。これらの多糖類は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。その中でも、本発明に係るセルロース複合体の原料としては、水溶性多糖類が好ましく、さらに、セルロースと複合化しやすいため、陰イオン性多糖類又は中性多糖類が好ましい。陰イオン性多糖類はより複合化しやすいため、本発明に係るセルロース複合体としては、少なくとも1種類以上の陰イオン性多糖類が配合されることが好ましい。
<陰イオン性多糖類>
 水中で陽イオンが遊離し、それ自身が陰イオンとなるものを陰イオン性多糖類と呼ぶ。本発明に係るセルロース複合体の原料として陰イオン性多糖類を用いることで、セルロースとの複合化がより促進されるため好ましい。
 陰イオン性多糖類としては、以下のものが好適である。例えば、サイリウムシードガム、カラヤガム、カラギーナン、寒天、ファーセルラン、ヘパリン、コンドロイチン硫酸、アルギン酸、アルギン酸ナトリウム、アルギン酸カルシウム、HMペクチン、LMペクチン、アゾトバクター・ビネランジーガム、キサンタンガム、ジェランガム、カルボキシメチルセルロースナトリウム、カルボキシメチルセルロースカルシウム、カルボキシエチルセルロースナトリウム、カルボキシエチルセルロースカルシウム等のセルロース誘導体が挙げられる。これらの陰イオン性多糖類は、単独で用いてもよく、2種以上を組み合わせてもよい。中でも、キサンタンガム、ジェランガム、カルボキシメチルセルロースナトリウム、カルボキシメチルセルロースカルシウム、カルボキシエチルセルロースナトリウム、カルボキシエチルセルロースカルシウムは、セルロースとの構造類似性から複合化が促進されるため好ましい。特に好ましくはカルボキシメチルセルロースナトリウムであり、分子量が150,000以下であれば格別に好ましい。カルボキシメチルセルロースナトリウムのエーテル化度としては好ましくは0.5~1.5であり、より好ましくは0.86~1.5であり、さらに好ましくは0.86~1.2である。エーテル化度がこの範囲であれば、飲料に添加した際に凝集が発生しづらい。
<セルロース複合体>
 本発明に係るセルロース複合体とは、主成分であるセルロースに多糖類が複合化されたものである。複合化とは、前述のとおり、セルロース粒子の表面の少なくとも一部が、水素結合等の化学結合により、多糖類で被覆された形態を意味する。したがって、セルロース複合体は、セルロース粉末と多糖類とを単に混合した状態ではなく、多糖類がセルロース粒子の表面を被覆した状態である。そのため、セルロース複合体を水系媒体中に分散させると、該多糖類がセルロース粒子の表面から剥離することなく、表面から放射状に広がった構造を形成し、水中でコロイド状となる。このコロイド状で存在するセルロース複合体は、それぞれの静電反発や立体反発、ファンデルワールス力等の相互作用によって、高次のネットワーク構造を形成することができる。
<セルロース複合体のブラッグスペーシング>
 本発明に係るセルロース複合体は、ブラッグスペーシングが大きい特徴を持つ。セルロース複合体のブラッグスペーシングとは、複合体の核をなすセルロース粒子のブラッグスペーシングであり、例えば以下の方法で測定される。
2-1. まず、セルロース複合体を(例えば、全量で300gとなるように)測りとり、セルロース複合体含有量が0.1質量%となるようにイオン交換水に混合し、得られた混合物を前記エクセルオートホモジナイザーを用いて15,000rpmで5分間撹拌する。
2-2. 得られた水分散体を、遠心機(KUBOTA(株)製、製品名「コンパクト高速冷却遠心機6930」、ローター:RA-400、8本×50mL)用の共栓試験管に分注(例えば、1本あたり30mL)し、これを本機器にて、8,000G(Gは重力加速度を表す)で10分間遠心する。
2-3. 遠心後、上清をデカントにて取り除き、沈殿部にイオン交換水25mLを加えて、ボルテックスミキサーにて沈殿が解消されるまで撹拌し、再度8,000Gで10分間遠心する。
2-4. 2-3.の操作を繰り返す。
2-5. 2-1.~2-4.の操作を繰り返し、沈殿0.5gを得る。該沈殿について、ナノスケールX線構造評価装置((株)リガク製、製品名「NANOPIX」)を用いたSAXS解析により、セルロースのブラッグスペーシングの測定と同様にして、セルロース複合体のブラッグスペーシングを測定することができる。
 なお、試料は、前記2-1.~2-5.の操作からSAXS測定終了まで常に水に含浸したスラリー状態を保ち、乾燥しないようにする。スラリーの固形分は10~50質量%とする。
 前記2-1.~2-4.の操作によって、セルロース複合体の水分散体中に含まれているSAXS解析において適正な大きさのセルロース粒子が回収できる。前記1-5.のSAXS解析によって得られるブラッグスペーシングは、粗大粒子を構成するセルロースミクロフィブリルの間隙の大きさであるが、この構造はセルロース複合体の核となっている結晶セルロース粒子中でも維持されている。つまり、ブラッグスペーシングの値が大きいセルロースではヒドロキシ基のアクセシビリティーが高いため、ミクロフィブリル間隙に多数の水分子が存在し、結晶セルロースと水溶性多糖類間の水素結合を多数媒介している。つまり、粗大粒子のブラッグスペーシングが大きい程、セルロースと水溶性多糖類が強固に複合化しているため、高いせん断力を加えた際にも、結晶セルロースと水溶性多糖類間の水素結合が破壊されず、懸濁安定化能などのセルロース複合体としての機能が損なわれにくい。
 セルロース複合体のブラッグスペーシングが8.6nm以上であれば、セルロース粒子と多糖類が十分に強固に複合化される。本発明に係るセルロース複合体のブラッグスペーシングとして、好ましくは9.0nm以上である。中でも、好ましくは9.5nm以上、より好ましくは10.0nm以上、さらに好ましくは10.5nm以上、特に好ましくは11.0nm以上、格別に好ましくは11.5nm以上、格段に好ましくは、12.0nm以上、最も好ましくは12.5nm以上である。セルロース複合体のブラッグスペーシングの上限は特に設定しないが、セルロース自身の構造を考慮すると、セルロース複合体のブラッグスペーシングは50nm以下が好ましい。セルロース複合体のブラッグスペーシングは、原料として用いたセルロースに比べて大きくなる傾向にある。これは、加水分解や混練工程においてセルロースの分子量が低下し、ミクロフィブリル間隙に水分子が入り込みやすくなるためである。
<セルロース複合体の複合化強度 ※貯蔵弾性率の比>
 本発明に係るセルロース複合体は強固に複合化している。複合化の程度は、セルロースと多糖類の水素結合の割合と考えられる。複合化が進むと、セルロース複合体中のセルロースと多糖類の水素結合の割合が高くなり、本発明の効果が向上する。
 該セルロース複合体の複合化強度は次のように定義される。イオン交換水中に1質量%の該セルロース複合体を高剪断ホモジナイザー(日本精機(株)製、製品名「エクセルオートホモジナイザーED-7」)により、低速(処理条件:回転数1,000rpm×5分間)で分散させた際の貯蔵弾性率(G’1)に対する、高速(処理条件:回転数16,000rpm×5分間)で分散させた際の貯蔵弾性率(G’2)の比([G’2]/[G’1])を、セルロース複合体の複合化強度とする。貯蔵弾性率(G’1)及び貯蔵弾性率(G’2)は、次のように測定される。
3-1. セルロース複合体を、高剪断ホモジナイザー(日本精機(株)製、製品名「エクセルオートホモジナイザーED-7」)を用いて低速(処理条件:回転数1,000rpm×5分間)で純水中に分散させ、1.0質量%の純水分散体を調製する。得られた水分散体を24時間、25℃のウォーターバス中で静置する。
3-2. 該水分散体の応力のひずみ依存性を、粘弾性測定装置(TA Instrument製、ARES-G2型、ジオメトリー:Double Wall Couette型)を用いて測定する。水分散体20gを、微細構造を壊さないようスポイトを使用して20g/分以下の速度で仕込み、5分間静置した後に、Dynamic Strainモードで測定を開始する(温度:25.0℃一定、角速度:20rad/秒、ひずみ:1→794%の範囲で掃引)。本発明において、貯蔵弾性率(G’1)は、上述の測定で得られた歪み-応力曲線上の、歪み20%の値を用いる。
3-3. 該セルロース複合体を、高剪断ホモジナイザー(日本精機(株)製、製品名「エクセルオートホモジナイザーED-7」を用いて高速(処理条件:回転数16,000rpm×5分間)で純水中に分散させ、1.0質量%の純水分散体を調製する。得られた水分散体を24時間室温で静置する。
3-4.  該水分散体の応力のひずみ依存性を、粘弾性測定装置(TA Instrument製、ARES-G2型、ジオメトリー : Double Wall Couette型)を用いて測定する。水分散体20gを、微細構造を壊さないようスポイトを使用して20g/分以下の速度で仕込み、5分間静置した後に、Dynamic Strainモードで測定を開始する(温度:25.0℃一定、角速度:20rad/秒、ひずみ:1→794%の範囲で掃引)。本発明において、貯蔵弾性率(G’2)は、上述の測定で得られた歪み-応力曲線上の、歪み20%の値を用いる。
 本発明に係るセルロース複合体の[G’2]/[G’1]の値は、0.5以上が好ましい。[G’2]/[G’1]の値が0.5以上であれば、該セルロース複合体の複合化強度は十分に高いと言える。本発明に係るセルロース複合体の[G’2]/[G’1]の値は、より好ましくは0.7以上、さらに好ましくは0.85以上、よりさらに好ましくは0.90以上、特に好ましくは0.95以上である。[G’2]/[G’1]の値が大きい分には、飲食品製造工程中で安定性が悪化することはないため、上限は特に設定されるものではない。ただし、大きすぎる場合には分散性が悪くなる傾向にあり、このため、該セルロース複合体を液状組成物中に分散させて懸濁安定性能を発揮するためには、より大きなせん断エネルギーが必要となる。このため、本発明に係るセルロース複合体の[G’2]/[G’1]の値としては、好ましくは10以下、より好ましくは5以下、さらに好ましくは2以下、よりさらに好ましくは1.5以下、特に好ましくは1.2以下である。
<セルロース複合体の貯蔵弾性率>
本発明のセルロース複合体はイオン交換水中に1質量%の該セルロース複合体を高剪断ホモジナイザー(日本精機(株)製、製品名「エクセルオートホモジナイザーED-7」)により、高速(処理条件:回転数16,000rpm×5分間)で分散させた際の貯蔵弾性率(前述のG’2)が0.3 Pa以上が好ましい。
 本発明におけるセルロース複合体のG’2の値は、0.3Pa以上が好ましい。G‘2の値が0.3Pa以上であれば、セルロースと多糖類が良好な複合体を形成していると考えられ、溶媒中に分散させた際に、セルロース複合体同士の相互作用により、剛直なゲルを形成し十分な懸濁安定性を発揮できる。この値が大きいほど、セルロース複合体の数が増加していることを意味し、セルロース複合体同士がより多くの相互作用を形成するため、水分散体はより剛直なゲルとなる。
 セルロース複合体の貯蔵弾性率は0.45Pa以上が好ましく、1.0Pa以上がより好ましく、さらに好ましくは1.5Pa以上、最も好ましくは3.0Pa以上である。上限は特に設定されるものではなく、この値が大きいほど、飲料に添加するセルロース複合体の割合を減らすことができる。
<セルロース複合体中セルロースの結晶的性質>
 本発明に係るセルロース複合体中に含まれるセルロースの結晶的性質はI型結晶であることが好ましい。結晶的性質はX線回折法(XRD)により、セルロースI型分率を下記手順で算出する。
4-1.セルロース複合体試料を準備する。
4-2.前記セルロース複合体試料に対し、終濃度2.5N、浴比10%となるよう塩酸および水を加え、105℃において、スターラーにて100rpmで攪拌しながら20分間加水分解する。
4-3.得られた残渣を吸引ろ過にて回収する。この時、ろ液のpHが4.0~7.0となるまで純水で洗浄濾過する。
4-4.105℃のオーブンで乾燥し、含水率を2~10%に調整する。
4-5.乾燥後の試料を乳棒および乳鉢で粉砕し、メッシュ180μmの篩を通過したものを測定サンプル(S1)とする。
4-6.S1について、以下の条件にてX線回折測定を実施する。
(XRD解析条件)
 機器(型式):X線回折装置(RINT-TTR)
 測定方法:粉末X線回折測定法
 X線波長:0.15418nm(CU-Kα)
 電流:50kV
 電圧:200mA
 検出器:シンチレーションカウンタ
 発散スリット:1deg
 散乱スリット:1deg
 受光スリット:0.30mm
 走査速度:1.0deg/min.
 走査角度:5~35°
 測定結果に対し、平滑化およびバックグラウンド除去を実施したのち、セルロースI型結晶化度(%)は次のように定義される。なお平滑化およびバックグラウンド除去後、I22.6およびI18.5が負の値となる場合、0として扱うものとする。
 セルロースI型結晶化度(%)={(I22.6-I18.5)/I22.6}×100
 I22.6:002面(回折角2θ=22.6°)の回折強度
 I18.5:アモルファス部(回折角2θ=18.5°)の回折強度
 平滑化およびバックグラウンド除去は以下の条件により実施する。
(平滑化およびバックグラウンド除去条件)
解析ソフト:統合粉末X線解析ソフトウェアPDXL
平滑化方式:Savitzky-Golay平滑化
平滑化点数:11
バックグラウンド除去方式:フィッティング方式
 セルロースのI型結晶化度が40%以上であれば、混練による多糖類との複合化の過程において複合化が促進されるため、複合化していない、いわゆる遊離状態の多糖類が減少するため好ましい。飲料中に遊離状態で多糖類が存在すると、ココアなどの粒子が沈降しやすくなるため、遊離状態の多糖類は少ないことが好ましい。I型結晶化度の割合として好ましくは70%以上であり、さらに好ましくは85%以上である。I型結晶化度が高すぎる場合にも、混練工程において十分に複合化が進まず、遊離状態の多糖類が増加する。ゆえにセルロースI型結晶化度は98%以下であることが好ましく、より好ましくは95%以下、さらに好ましくは90%以下である。なおセルロースI型結晶の定義としては、回折角2θが22.1°~23.1°の間に、ピークが認められることとする。
<セルロースと多糖類の複合化>
 本発明に係る特定のブラッグスペーシングを有するセルロース複合体は、ブラッグスペーシングの値が特定の値以上であるセルロースを原料とし、混練工程において該セルロースと多糖類に機械的せん断力をあたえ、結晶セルロースを微細化させるとともに、セルロース表面に多糖類を複合化させることによって得られる。混練時には、多糖類以外の水溶性ガム、親水性物質、及びその他の添加剤などを添加してもよい。
 機械的せん断力を与えるには、混練機等を用いて混練する方法を適用することができる。混練機は、ニーダー、エクストルーダー、プラネタリーミキサー、ライカイ機等を用いることができ、連続式でもよく、バッチ式でもよい。これらの機種を単独で使用することも可能であり、2種以上の機種を組み合わせて用いることも可能である。これらの機種は、種々の用途における粘性要求等により適宜選択すればよい。
 混練時の温度は成り行きでもよく、混練の際の複合化反応や摩擦等により発熱する場合にはこれを除熱しながら混練してもよい。本発明に係るセルロース複合体の製造においては、混練温度は低い方が好ましい。混練温度が低いほど、多糖類の劣化が抑制され、結果として得られるセルロース複合体の貯蔵弾性率(G’)が高くなるためである。セルロースと多糖類を混錬する際の混練温度は、80℃以下であることが好ましく、70℃以下がより好ましく、60℃以下がさらに好ましく、50℃以下がよりさらに好ましく、30℃以下が特に好ましく、20℃以下が最も好ましい。高エネルギー下で、前記の混練温度を維持するには、ジャケット冷却、放熱等の徐熱を工夫することも自由である。
 セルロースと多糖類の混練時の固形分は、35質量%以上であることが好ましい。混練物の粘性が高い半固形状態で混練することで、混練物が緩い状態にならず、下記に述べる混練エネルギーが混練物に伝わりやすくなり、複合化が促進されるため好ましい。混練時の固形分は、より好ましくは40質量%以上であり、さらに好ましくは50質量%以上であり、よりさらに好ましくは55質量%以上である。混練時の固形分の上限は特に限定されないが、混練物が水分量の少ないパサパサな状態にならず、充分な混練効果と均一な混練状態が得られることを考慮して、現実的範囲は90質量%以下が好ましく、より好ましくは70質量%以下であり、さらに好ましくは60質量%以下である。また、固形分を前記範囲とするために、加水するタイミングとしては、混練工程の前に必要量を加水してもよく、混練工程の途中で加水してもよく、両方実施してもよい。
<セルロース複合体の乾燥方法>
 本発明に係るセルロース複合体の粉体を得るにあたって、前述の混練工程より得られた混練物を乾燥する場合は、棚段式乾燥、噴霧乾燥、ベルト乾燥、流動床乾燥、凍結乾燥、マイクロウェーブ乾燥等の公知の乾燥方法を用いることができる。混練物を乾燥工程に供する場合には、混練物に水を添加せず、混練工程の固形分濃度を維持して、乾燥工程に供することが好ましい。乾燥後のセルロース複合体の含水率は1~20質量%が好ましい。含水率を20質量%以下とすることで、常温で保存した際に腐敗を防止でき、また、べたつき、腐敗等の問題や運搬・輸送におけるコストの問題が生じにくくなる。乾燥後のセルロース複合体の含水率は、より好ましくは10質量%以下、さらに好ましくは6質量%以下である。また、該含水率を1質量%以上とすることで、過剰乾燥による分散性の悪化を抑制できる。該含水率は、より好ましくは1.5質量%以上である。
 セルロース複合体を市場に流通させる場合、その形状は、粉体の方が取り扱い易いので、乾燥により得られたセルロース複合体を粉砕処理して粉体状にすることが好ましい。但し、乾燥方法として噴霧乾燥を用いた場合は、乾燥と粉末化が同時にできるため、粉砕は必要ない。乾燥したセルロース複合体を粉砕する場合、カッターミル、ハンマーミル、ピンミル、ジェットミル等の公知の方法を用いることができる。粉砕する程度は、粉砕処理したものが目開き1mmの篩いを全通する程度に粉砕することが好ましく、目開き425μmの篩いを全通し、かつ、平均粒度(重量平均粒子径)が10~250μmとなるように粉砕することがより好ましい。このような大きさの粉体状の乾燥したセルロース複合体は、水中で攪拌した際、容易に分散するため、セルロースが均一に分散した、なめらかな組織を持つザラツキの無い安定なコロイド分散体が形成される。特に、中性において、セルロースが凝集や分離を起こさず、安定なコロイド分散体を形成するため、該セルロース複合体は、安定剤等として優れた機能を奏する。
<用途> 
 本発明に係るセルロース複合体は、種々の食品、工業品、医薬品に使用できる。本発明に係るセルロース複合体が配合可能な飲食品は、例を挙げると、コーヒー、紅茶抹茶、ココア、汁粉、ジュース等の嗜好飲料、生乳、加工乳、乳酸菌飲料、豆乳等の乳飲料、カルシウム強化飲料等の栄養強化飲料並びに食物繊維含有飲料等を含む各種の飲料類;アイスクリーム、アイスミルク、ソフトクリーム、ミルクシェーキ、シャーベット等の氷菓類;バター、チーズ、ヨーグルト、コーヒーホワイトナー、ホイッピングクリーム、カスタードクリーム、プリン等の乳製品類;マヨネーズ、マーガリン、スプレッド、ショートニング等の油脂加工食品類;各種のスープ、シチュー等の液状食品;ソース、タレ、ドレッシング等の液状調味料類;練りからしに代表される各種練りスパイス;ジャム、フラワーペーストに代表される各種フィリング、各種のアン、ゼリーを含むゲル・ペースト状食品類;パン、麺、パスタ、ピザ、各種プレミックスを含むシリアル食品等の固形状食品類;キャンディー、クッキー、ビスケット、ホットケーキ、チョコレート、餅等を含む和・洋菓子類;蒲鉾、ハンペン等に代表される水産練り製品;ハム、ソーセージ、ハンバーグ等に代表される畜産製品;クリームコロッケ、中華用アン、グラタン、ギョーザ等の各種の惣菜類;塩辛、カス漬等の珍味類;ペットフード類;及び、経管流動食類等である。
 本発明に係るセルロース複合体は、これらの用途において、懸濁安定剤、乳化安定剤、増粘安定剤、泡安定剤、クラウディー剤、組織付与剤、流動性改善剤、保形剤、離水防止剤、生地改質剤、粉末化基剤、食物繊維基剤、油脂代替などの低カロリー化基剤等として作用するものである。また、本発明に係るセルロース複合体を配合する飲食品等の形態及び用時調製の加工手法が様々であっても、本発明の効果は発揮される。すなわち、本発明に係るセルロース複合体は、レトルト食品、粉末食品、冷凍食品、電子レンジ用食品等に配合した場合にも優れた懸濁安定化効果を奏する。特に、本発明に係るセルロース複合体は、加熱環境、高濃度環境においても機能を発揮する点が、従来のセルロース系の素材と異なる。 特に、本発明に係るセルロース複合体を配合することによって、不溶性成分の懸濁安定性が著しく向上するとともに、その滑らかな舌ざわりとボディ感によりザラツキの問題が解消されるため、前記に記載した以外の幅広い食品用途で使用することも可能である。
<セルロース複合体の添加方法> 
 本発明に係るセルロース複合体を食品に使用する場合、各食品の製造で一般に行われている方法と同様の機器を使用して、主原料の他、必要に応じて、香料、pH調整剤、増粘安定剤、塩類、糖類、油脂類、蛋白類、乳化剤、酸味料、色素等と配合して、混合、混練、撹拌、乳化、加熱等の操作を行えばよい。具体的には、本発明に係るセルロース複合体を飲食品に添加する方法としては、次の方法が挙げられる。例えば、本発明に係るセルロース複合体は、主原料、着色料、香料、酸味料、増粘剤等のその他の成分と同時に、水等の水系媒体に分散させることができる。また、セルロース複合体の乾燥粉末を水系媒体に分散する場合には、セルロース複合体を一旦、水に分散した後、目的とする食品形態に添加する方が、セルロース複合体の懸濁安定性が向上するため好ましい。セルロース複合体が乾燥粉末の場合、水への分散方法としては、食品等の製造工程で通常使用される各種の分散機・乳化機・磨砕機等の混練機を使用して分散することができる。混練機の具体例としては、プロペラ攪拌機、高速ミキサー、ホモミキサー、カッター等の各種ミキサー、ボールミル、コロイドミル、ビーズミル、ライカイ機等のミル類、高圧ホモジナイザー、ナノマイザー等の高圧ホモジナイザーに代表される分散機・乳化機、プラネタリーミキサー、ニーダー、エクルトルーダー、タービュライザー等に代表される混練機等が使用できる。混練機は、1種のみを使用してもよく、2種以上の混練機を組み合わせて使用してもよい。また、加温しながら行ったほうが、分散は容易である。 
<飲食品へのセルロース複合体の添加量> 
 飲食品に対するセルロース複合体の添加量としては、特に制限はないが、例えば、コーヒー、ココア、牛乳等の飲料において、0.01質量%以上が好ましい。セルロース複合体の添加量を0.01質量%以上とすることで、飲食品中の不溶性成分の分散、懸濁安定性が増し、乳化安定、離水防止の効果が優れる。飲食品に対するセルロース複合体の添加量としては、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上である。セルロース複合体の添加量を5質量%以下とすることで、凝集や分離を引き起こすこともなく、また、飲料の飲みやすさ(のど越し、舌のざらつき)の点からも5質量%以下が好ましい。
 不溶性成分を高濃度に含む食品や飲料では、滑らかな食感を得るためや、不溶性成分の消化性を高めるために、十分なせん断力で均質化することが必要である。しかし、従来のセルロース複合体では、せん断エネルギーが大きくなると、懸濁安定化能が低下するため、これを配合して高せん断力で均質化すると、懸濁安定性の低い飲食品となってしまう。これに対して、本発明に係るセルロース複合体は、その懸濁安定化能がせん断エネルギーの影響を受け難く、食感や消化性の調製のために均質化工程の時間、せん断応力を変更しても懸濁安定性が変化し難い。このため、本発明に係るセルロース複合体を懸濁安定化剤として飲食品に配合した場合には、セルロース複合体を分散させる均質化工程において、せん断力を調節することで不溶性成分の消化性や食感を調節することが可能となり、ひいては食品及び飲料の製造プロセスの簡略化することができる。また、食感を滑らかにするために高せん断力で均質化する場合でも、必要な懸濁安定性を得るために結晶セルロースの添加量を変更する必要がなく、味に変化を生じさせずに食感の調製が可能となる。
<飲食品以外の用途> 
 本発明に係るセルロース複合体は、セルロース複合体強度が著しく向上したものであり、特に、水不溶性成分を含む水系懸濁状態の組成物において、凝集や分離、離水、沈降を発生させることなく、安定な分散状態を保持することが可能である。このため、飲食品以外にも、様々な用途に使用することができる。例えば、本発明に係るセルロース複合体は、シロップ剤、液剤、軟膏等の医薬品;化粧水、乳液、洗浄剤等の化粧品;食品用・工業用洗浄剤、食品用・工業用洗浄処理剤原料、家庭用(衣料、台所、住居、食器等)洗剤原料;塗料、顔料、セラミックス、水系ラテックス、乳化(重合)用添加剤、農薬用添加剤、繊維加工用添加剤(精錬剤、染色助剤、柔軟剤、撥水剤)、防汚加工剤、コンクリート用混和剤、印刷インキ用添加剤、潤滑油用添加剤、帯電防止剤、防曇剤、滑剤、分散剤、脱墨剤等に配合することができる。
 本発明を下記の実施例により説明する。ただし、これらは本発明の範囲を制限するものではない。
<セルロースのブラッグスペーシング>
 以降の実施例等において、セルロースのブラッグスペーシングは以下の通りにして測定した。
 まず、乾燥重量で30gのセルロース試料に対して、全量が270gになるようにイオン交換水を加えた。これを高剪断ホモジナイザー(日本精機(株)製、製品名「エクセルオートホモジナイザーED-7」)により解繊処理(1,000rpm×5分間)を行ってスラリー化した。得られたスラリーを、ナノスケールX線構造評価装置((株)リガク製、製品名「NANOPIX」)を以下の条件で用いてSAXS解析を行った。なお、試料は、乾燥セルロース試料とイオン交換水の混合からSAXS測定終了まで常に水に含浸したスラリー状態を保ち、乾燥しないようにした。スラリーの固形分は10~50質量%程度とした。
(SAXS解析条件)
X線波長λ:0.154nm
測定時間:900秒
検出器:2次元検出器(「HyPix-6000」)
カメラ長:1307mm
 以上の条件において2次元検出器により測定された散乱パターンIobs(2θ,φ)に対し、式1のように円環平均することで1次元散乱プロフィールIobs(2θ)を得た。式1中、θはブラッグ角であり、Pが偏光因子であり、φが方位角であり、IBGは検出器バックグラウンド値である。
Figure JPOXMLDOC01-appb-M000005
 さらに、円環平均した1次元プロフィールに対し、式2を用いて空セル散乱補正を行った。式2中、I(2θ)は空セル散乱補正済みの散乱強度であり、Iobs(2θ)は補正前散乱強度(式1により求めた1次元散乱プロフィール)であり、Tは試料のX線透過率である。また、「sample」、「empty」の添え字はそれぞれ、試料測定、空セル測定により得られたものを示している。
Figure JPOXMLDOC01-appb-M000006
 次に式3で表される散乱ベクトルの絶対値qを用いて、縦軸を円環平均後の散乱強度にqを乗じた値qI(q)、横軸をqの対数としてプロットし、ピーク位置qmaxを求めた。
Figure JPOXMLDOC01-appb-M000007
 そして、qmaxからブラッグの式(式4)より算出したd[nm]をブラッグスペーシングとして算出した。
Figure JPOXMLDOC01-appb-M000008
<セルロースの結晶的性質>
 以降の実施例等において、セルロースの結晶的性質は以下の通りにして測定した。
 まず、セルロース試料を26g測り取り、終濃度が2.5N、浴比が10%となるよう塩酸及び水を加えた。これを、スターラーで攪拌しながらオイルバスを用いて105℃に加熱し、105℃に達温してから20分間、加水分解を行った。得られたスラリーを、濾過、洗浄し、pHが4.0以上となるまで純水で洗浄を行った。さらに得られた加水分解残渣を105℃のオーブンで含水率が2~10%となるまで乾燥した。乾燥後の試料を、乳棒及び乳鉢を用いて、粉砕し、メッシュ180μmの篩を通過したものを測定サンプルとして、以下の条件でXRD解析を行った。
(XRD解析条件)
 機器(型式):X線回折装置(RINT-TTR)
 測定方法:粉末X線回折測定法
 X線波長:0.15418nm(CU-Kα)
 電流:50kV
 電圧:200mA
 検出器:シンチレーションカウンタ
 発散スリット:1deg
 散乱スリット:1deg
 受光スリット:0.30mm
 走査速度:1.0deg/min.
 走査角度:5~35°
 測定結果に対し、平滑化およびバックグラウンド除去を実施したのち、セルロースI型結晶化度(%)を以下の式から算出した。
 セルロースI型結晶化度(%)={(I22.6-I18.5)/I22.6}×100
 I22.6:002面(回折角2θ=22.6°)の回折強度
 I18.5:アモルファス部(回折角2θ=18.5°)の回折強度
(平滑化およびバックグラウンド除去条件)
解析ソフト:統合粉末X線解析ソフトウェアPDXL
平滑化方式:Savitzky-Golay平滑化
平滑化点数:11
バックグラウンド除去方式:フィッティング方式
<セルロース複合体のブラッグスペーシング>
 以降の実施例等において、セルロース複合体のブラッグスペーシングは以下の通りにして測定した。
 まず、イオン交換水及びセルロース複合体を、セルロース複合体含有量が0.1質量%、全量で300gとなるように測りとり、混合した。この混合物を、前記エクセルオートホモジナイザーを用いて、15,000rpmで5分間撹拌した。得られた水分散体を、遠心機(KUBOTA(株)製、製品名「コンパクト高速冷却遠心機6930」、ローター:RA-400、8本×50mL)用の共栓試験管に1本あたり30mL分注し、これを本機器にて、8,000Gで10分間遠心処理した。遠心処理後、上清をデカントにて取り除き、沈殿部にイオン交換水25mLを加えてボルテックスミキサーにて沈殿が解消されるまで撹拌し、再度8,000Gで10分間遠心することで沈殿の洗浄を行った。本洗浄操作は2回繰り返された。以上の操作を繰り返し、得られた沈殿について、ナノスケールX線構造評価装置((株)リガク製、製品名「NANOPIX」)を用いて、前記<セルロースのブラッグスペーシング>と同じ条件でSAXS解析を行い、ブラッグスペーシング(d[nm])を算出した。なお、試料は、イオン交換水及びセルロース複合体の混合からSAXS測定終了まで常に水に含浸したスラリー状態を保ち、乾燥しないようにした。スラリーの固形分は10~50質量%とした。
<セルロース複合体中セルロースの結晶的性質>
 以降の実施例等において、セルロースの結晶的性質は以下の通りにして測定した。
 まず、セルロース試料を26g測り取り、終濃度が2.5N、浴比が10%となるよう塩酸及び水を加えた。これを、スターラーで攪拌しながらオイルバスを用いて105℃に加熱し、105℃に達温してから20分間、加水分解を行った。得られたスラリーを、濾過、洗浄し、pHが4.0以上となるまで純水で洗浄を行った。さらに得られた加水分解残渣を105℃のオーブンで含水率が2~10%となるまで乾燥した。乾燥後の試料を、乳棒及び乳鉢を用いて、粉砕し、メッシュ180μmの篩を通過したものを測定サンプルとして、前記<セルロースの結晶的性質>と同じ条件でXRD解析を行い、セルロースI型結晶化度を算出した。
<セルロース複合体の複合化強度>
 セルロース複合体の複合化強度は、前記貯蔵弾性率(G’1)に対する前記貯蔵弾性率(G’2)の比([G’2]/[G’1])で表す。以降の実施例等において、貯蔵弾性率(G’1)及び貯蔵弾性率(G’2)は以下の通りにして測定した。
 まず、セルロース複合体を、高剪断ホモジナイザー(日本精機(株)製、製品名「エクセルオートホモジナイザーED-7」)を用いて純水中に分散させ(処理条件:回転数1,000rpm×5分間)、1.0質量%の水分散体1を調製した。得られた水分散体1を24時間室温で静置した。この水分散体1の応力のひずみ依存性を、粘弾性測定装置(TA Instrument製、ARES-G2型、ジオメトリー : Double Wall Couette型)を用いて測定した。水分散体20gを、微細構造を壊さないようスポイトを使用して20g/分以下の速度で仕込み、5分間静置した後に、Dynamic Strainモードで測定を開始した(温度:25.0℃一定、角速度:20rad/秒、ひずみ:1→794%の範囲で掃引)。貯蔵弾性率(G’1)は、上述の測定で得られた歪み-応力曲線上の、歪み20%の値を用いた。
 別途、セルロース複合体を、高剪断ホモジナイザー(日本精機(株)製、製品名「エクセルオートホモジナイザーED-7」)を用いて純水中に分散させ(処理条件:回転数16,000rpm×5分間)、1.0質量%の水分散体2を調製した。得られた水分散体2を24時間室温で静置した。この水分散体2の応力のひずみ依存性を、粘弾性測定装置(TA Instrument製、ARES-G2型、ジオメトリー : Double Wall Couette型)を用いて測定した。水分散体20gを、微細構造を壊さないようスポイトを使用して20g/分以下の速度で仕込み、5分間静置した後に、Dynamic Strainモードで測定を開始した(温度:25.0℃一定、角速度:20rad/秒、ひずみ:1→794%の範囲で掃引)。貯蔵弾性率(G’2)は、上述の測定で得られた歪み-応力曲線上の、歪み20%の値を用いた。
[実施例1]
 市販されている広葉樹晒クラフトパルプ(LBKP)を細断後、4℃に温調された7質量% NaOHaq中に固形分濃度9質量%となるように投入し、1時間撹拌した。その後、濾過し、ろ液が中性を示すまで水洗して、精製パルプ(改質セルロース)を得た。
 このように作製した精製パルプを、終濃度0.65質量%の塩酸中、121℃で60分間加水分解し、得られた加水分解物を水洗、濾過し、固形分が43質量%のウェットケーキ状セルロース(MCC)を作製した。次に、MCCとCMC-Na(置換度0.93)を、MCC:CMC-Na=85:15、固形分濃度が42質量%(イオン交換水で調整)となるように二軸の混練機(DSM Xplore製、製品名「Compounder 15」)に投入して、混練温度を30℃とし、50rpmで10分間湿式混練した。作製した混練物をオーブンにて100℃で30分間乾燥させた後、遠心式粉砕機(Retsch製、製品名「ZM200」)にて目開き0.75mmのスクリーンを用いて粉砕し、さらにその後目開き0.18mmの篩を用いて篩粉し、これを通過したものをセルロース複合体粉体組成物Aとした。
 原料として用いたLBKPのブラッグスペーシングは7.2nm、改質セルロースのブラッグスペーシングは9.8nm、I型結晶化度は88%であった。また、得られたセルロース複合体粉体組成物Aの水分は5.8質量%、水分散体沈殿部のブラッグスペーシングは12.9nm、貯蔵弾性率(G’1)は2.90、貯蔵弾性率(G’2)は3.41、よって[G’2]/[G’1]=1.18、I型結晶化度は89%となった。結果を表1に示す。
[実施例2]
 市販されている広葉樹晒クラフトパルプ(LBKP)を細断後、4℃に温調された6質量% NaOHaq中に固形分濃度9質量%となるように投入し、1時間撹拌した。その後、濾過し、ろ液が中性を示すまで水洗して、精製パルプ(改質セルロース)を得た。
 このように作製した精製パルプを、終濃度0.65質量%の塩酸中、121℃で60分間加水分解し、得られた加水分解物を水洗、濾過し、固形分が43質量%のウェットケーキ状セルロース(MCC)を作製した。次に、MCCとCMC-Na(置換度0.93)を、MCC:CMC-Na=85:15、固形分濃度が42質量%(イオン交換水で調整)となるように二軸の混練機(DSM Xplore製、製品名「Compounder 15」)に投入して、混練温度を70℃とし、50rpmで10分間湿式混練した。作製した混練物をオーブンにて100℃で30分間乾燥させた後、遠心式粉砕機(Retsch製、製品名「ZM200」)にて目開き0.75mmのスクリーンを用いて粉砕し、さらにその後目開き0.18mmの篩を用いて篩粉し、これを通過したものをセルロース複合体粉体組成物Bとした。
 原料として用いたLBKPのブラッグスペーシングは7.2nm、改質セルロースのブラッグスペーシングは9.7nm、I型結晶化度は91%であった。また、得られたセルロース複合体粉体組成物Bの水分は9.1質量%、水分散体沈殿部のブラッグスペーシングは12.7nm、貯蔵弾性率(G’1)は1.52、貯蔵弾性率(G’2)は1.69、よって[G’2]/[G’1]=1.11、I型結晶化度は91%となった。となった。結果を表1に示す。
[実施例3]
 市販されている広葉樹晒クラフトパルプ(LBKP)を細断後、30℃に温調された9質量% NaOHaq中に固形分濃度9質量%となるように投入し、1時間撹拌した。その後、濾過し、ろ液が中性を示すまで水洗して、精製パルプ(改質セルロース)を得た。
 このように作製した精製パルプを、終濃度0.65質量%の塩酸中、121℃で60分間加水分解し、得られた加水分解物を水洗、濾過し、固形分が44質量%のウェットケーキ状セルロース(MCC)を作製した。次に、MCCとCMC-Na(置換度0.93)を、MCC:CMC-Na=85:15、固形分濃度が42質量%(イオン交換水で調整)となるように二軸の混練機(DSM Xplore製、製品名「Compounder 15」)に投入して、混練温度を70℃とし、50rpmで10分間湿式混練した。作製した混練物をオーブンにて100℃で30分間乾燥させた後、遠心式粉砕機(Retsch製、製品名「ZM200」)にて目開き0.75mmのスクリーンを用いて粉砕し、さらにその後目開き0.18mmの篩を用いて篩粉し、これを通過したものをセルロース複合体粉体組成物Cとした。
 原料として用いたLBKPのブラッグスペーシングは7.2nm、改質セルロースのブラッグスペーシングは9.5nm、I型結晶化度は93%であった。また、得られたセルロース複合体粉体組成物Cの水分は7.1質量%、水分散体沈殿部のブラッグスペーシングは12.3nm、貯蔵弾性率(G’1)は1.40、貯蔵弾性率(G’2)は1.35、よって[G’2]/[G’1]=0.96、I型結晶化度は92%となった。結果を表1に示す。
[実施例4]
 市販されている広葉樹晒クラフトパルプ(LBKP)を細断後、4℃に温調された5質量% NaOHaq中に固形分濃度9質量%となるように投入し、1時間撹拌した。その後、濾過し、ろ液が中性を示すまで水洗して、精製パルプ(改質セルロース)を得た。
 このように作製した精製パルプを、終濃度0.65質量%の塩酸中、121℃で60分間加水分解し、得られた加水分解物を水洗、濾過し、固形分が43質量%のウェットケーキ状セルロース(MCC)を作製した。次に、MCCとCMC-Na(置換度0.93)を、MCC:CMC-Na=85:15、固形分濃度が42質量%(イオン交換水で調整)となるように二軸の混練機(DSM Xplore製、製品名「Compounder 15」)に投入して、混練温度を30℃とし、50rpmで10分間湿式混練した。作製した混練物をオーブンにて100℃で30分間乾燥させた後、遠心式粉砕機(Retsch製、製品名「ZM200」)にて目開き0.75mmのスクリーンを用いて粉砕し、さらにその後目開き0.18mmの篩を用いて篩粉し、これを通過したものをセルロース複合体粉体組成物Dとした。
 原料として用いたLBKPのブラッグスペーシングは7.2nm、改質セルロースのブラッグスペーシングは8.9nm、I型結晶化度は95%であった。また、得られたセルロース複合体粉体組成物Dの水分は10.8質量%、水分散体沈殿部のブラッグスペーシングは11.2nm、貯蔵弾性率(G’1)は0.99、貯蔵弾性率(G’2)は0.65、よって[G’2]/[G’1]=0.66、I型結晶化度は95%となった。結果を表1に示す。
[実施例5]
 市販されている広葉樹晒クラフトパルプ(LBKP)を細断後、4℃に温調された4質量% NaOHaq中に固形分濃度9質量%となるように投入し、1時間撹拌した。その後、濾過し、ろ液が中性を示すまで水洗して、精製パルプ(改質セルロース)を得た。
 このように作製した精製パルプを、終濃度0.65質量%の塩酸中、121℃で60分間加水分解し、得られた加水分解物を水洗、濾過し、固形分が42質量%のウェットケーキ状セルロース(MCC)を作製した。次に、MCCとCMC-Na(置換度0.93)を、MCC:CMC-Na=85:15、固形分濃度が42質量%(イオン交換水で調整)となるように二軸の混練機(DSM Xplore製、製品名「Compounder 15」)に投入して、混練温度を30℃とし、50rpmで10分間湿式混練した。作製した混練物をオーブンにて100℃で30分間乾燥させた後、遠心式粉砕機(Retsch製、製品名「ZM200」)にて目開き0.75mmのスクリーンを用いて粉砕し、さらにその後目開き0.18mmの篩を用いて篩粉し、これを通過したものをセルロース複合体粉体組成物Eとした。
 原料として用いたLBKPのブラッグスペーシングは7.2nm、改質セルロースのブラッグスペーシングは8.0nm、I型結晶化度は97%であった。また、得られたセルロース複合体粉体組成物Eの水分は6.2質量%、水分散体沈殿部のブラッグスペーシングは9.8nm、貯蔵弾性率(G’1)は0.77、貯蔵弾性率(G’2)は0.48、よって[G’2]/[G’1]=0.62、I型結晶化度は97%となった。結果を表1に示す。
[実施例6]
 市販されている広葉樹晒クラフトパルプ(LBKP)を細断後、HO中に固形分濃度9質量%となるように投入し、圧力容器にて150℃で、1時間加熱、撹拌した。その後、濾過し、精製パルプ(改質セルロース)を得た。
 このように作製した精製パルプを、終濃度0.65質量%の塩酸中、121℃で60分間加水分解し、得られた加水分解物を水洗、濾過し、固形分が42質量%のウェットケーキ状セルロース(MCC)を作製した。次に、MCCとCMC-Na(置換度0.93)を、MCC:CMC-Na=85:15、固形分濃度が42質量%(イオン交換水で調整)となるように二軸の混練機(DSM Xplore製、製品名「Compounder 15」)に投入して、混練温度を30℃とし、50rpmで10分間湿式混練した。作製した混練物をオーブンにて100℃で30分間乾燥させた後、遠心式粉砕機(Retsch製、製品名「ZM200」)にて目開き0.75mmのスクリーンを用いて粉砕し、さらにその後目開き0.18mmの篩を用いて篩粉し、これを通過したものをセルロース複合体粉体組成物Fとした。
 原料として用いたLBKPのブラッグスペーシングは7.2nm、改質セルロースのブラッグスペーシングは7.6nm、I型結晶化度は98%であった。また、得られたセルロース複合体粉体組成物Fの水分は4.9質量%、水分散体沈殿部のブラッグスペーシングは8.8nm、貯蔵弾性率(G’1)は0.62、貯蔵弾性率(G’2)は0.31、よって[G’2]/[G’1]=0.50、I型結晶化度は97%となった。結果を表1に示す。
[実施例7]
 市販されている広葉樹溶解サルファイドパルプ(LDSP)を細断後、4℃に温調された7質量% NaOHaq中に固形分濃度9質量%となるように投入し、1時間撹拌した。その後、濾過し、ろ液が中性を示すまで水洗して、精製パルプ(改質セルロース)を得た。
 このように作製した精製パルプを、終濃度0.65質量%の塩酸中、121℃で60分間加水分解し、得られた加水分解物を水洗、濾過し、固形分が42質量%のウェットケーキ状セルロース(MCC)を作製した。次に、MCCとCMC-Na(置換度0.93)を、MCC:CMC-Na=85:15、固形分濃度が42質量%(イオン交換水で調整)となるように二軸の混練機(DSM Xplore製、製品名「Compounder 15」)に投入して、混練温度を30℃とし、50rpmで10分間湿式混練した。作製した混練物をオーブンにて100℃で30分間乾燥させた後、遠心式粉砕機(Retsch製、製品名「ZM200」)にて目開き0.75mmのスクリーンを用いて粉砕し、さらにその後目開き0.18mmの篩を用いて篩粉し、これを通過したものをセルロース複合体粉体組成物Gとした。
 原料として用いたLDSPのブラッグスペーシングは7.2nm、改質セルロースのブラッグスペーシングは9.7nm、I型結晶化度は90%であった。また、得られたセルロース複合体粉体組成物Gの水分は7.5質量%、水分散体沈殿部のブラッグスペーシングは12.7nm、貯蔵弾性率(G’1)は3.12、貯蔵弾性率(G’2)は3.40、よって[G’2]/[G’1]=1.09、I型結晶化度は89%となった。結果を表1に示す。
[実施例8]
 市販されている広葉樹晒クラフトパルプ(LBKP)を細断後、80℃に温調された1-エチル-3-メチルイミダゾリウムジエチルフォスフェート(日本乳化剤(株)製)中に固形分濃度9質量%となるように投入し、10分間撹拌した。その後、遠心機(KUBOTA(株)製、製品名「コンパクト高速冷却遠心機6930」)にて、8,000Gで5分間遠心分離処理した後、デカントで上清を除去した。得られた沈殿物に過剰量のエタノールを加えて再度遠心分離処理及び上清除去を行って溶媒置換をした。本置換操作をさらに2回、計3回行った後、30℃のイオン交換水を用い、同様の手順でパルプ洗浄作業をさらに2回行って、精製パルプ(改質セルロース)を得た。
 このように作製した精製パルプを、終濃度0.65質量%の塩酸中、121℃で60分間加水分解し、得られた加水分解物を水洗、濾過し、固形分が43質量%のウェットケーキ状セルロース(MCC)を作製した。次に、MCCとCMC-Na(置換度0.93)を、MCC:CMC-Na=85:15、固形分濃度が42質量%(イオン交換水で調整)となるように二軸の混練機(DSM Xplore製、製品名「Compounder 15」)に投入して、混練温度を30℃とし、50rpmで10分間湿式混練した。作製した混練物をオーブンにて100℃で30分間乾燥させた後、遠心式粉砕機(Retsch製、製品名「ZM200」)にて目開き0.75mmのスクリーンを用いて粉砕し、さらにその後目開き0.18mmの篩を用いて篩粉し、これを通過したものをセルロース複合体粉体組成物Hとした。
 原料として用いたLBKPのブラッグスペーシングは7.2nm、改質セルロースのブラッグスペーシングは9.7nm、I型結晶化度は86%であった。また、得られたセルロース複合体粉体組成物Hの水分は7.2質量%、水分散体沈殿部のブラッグスペーシングは12.4nm、貯蔵弾性率(G’1)は2.49、貯蔵弾性率(G’2)は2.58、よって[G’2]/[G’1]=1.04、I型結晶化度は85%となった。結果を表1に示す。
[比較例1]
 市販されている広葉樹晒クラフトパルプ(LBKP)を細断後、終濃度0.65質量%の塩酸中、121℃で60分間加水分解し、得られた加水分解物を水洗、濾過し、固形分が45質量%のウェットケーキ状セルロース(MCC)を作製した。次に、MCCとCMC-Na(置換度0.93)を、MCC:CMC-Na=85:15、固形分濃度が42質量%(イオン交換水で調整)となるように二軸の混練機(DSM Xplore製、製品名「Compounder 15」)に投入して、混練温度を30℃とし、50rpmで10分間湿式混練した。作製した混練物をオーブンにて100℃で30分間乾燥させた後、遠心式粉砕機(Retsch製、製品名「ZM200」)にて目開き0.75mmのスクリーンを用いて粉砕し、さらにその後目開き0.18mmの篩を用いて篩粉し、これを通過したものをセルロース複合体粉体組成物Iとした。
 原料として用いたLBKPのブラッグスペーシングは7.2nm、I型結晶化度は99%であった。また、得られたセルロース複合体粉体組成物Iの水分は6.5質量%、水分散体沈殿部のブラッグスペーシングは8.3nm、貯蔵弾性率(G’1)は0.31、貯蔵弾性率(G’2)は0.14、よって[G’2]/[G’1]=0.45、I型結晶化度は99%となった。結果を表2に示す。
[比較例2]
 市販されている広葉樹溶解サルファイドパルプ(LDSP)を終濃度0.65質量%の塩酸中、121℃で60分間加水分解し、得られた加水分解物を水洗、濾過し、固形分が49質量%のウェットケーキ状セルロース(MCC)を作製した。次に、MCCとCMC-Na(置換度0.93)を、MCC:CMC-Na=85:15、固形分濃度が46質量%(イオン交換水で調整)となるように二軸の混練機(DSM Xplore製、製品名「Compounder 15」)に投入して、混練温度を30℃とし、50rpmで10分間湿式混練した。作製した混練物をオーブンにて100℃で30分間乾燥させた後、遠心式粉砕機(Retsch製、製品名「ZM200」)にて目開き0.75mmのスクリーンを用いて粉砕し、さらにその後目開き0.18mmの篩を用いて篩粉し、これを通過したものをセルロース複合体粉体組成物Jとした。
 原料として用いたLDSPのブラッグスペーシングは7.2nm、I型結晶化度は99%であった。また、得られたセルロース複合体粉体組成物Jの水分は5.2質量%、水分散体沈殿部のブラッグスペーシングは8.5nm、貯蔵弾性率(G’1)は1.24、貯蔵弾性率(G’2)は0.58、よって[G’2]/[G’1]=0.47、I型結晶化度は99%となった。結果を表2に示す。
[比較例3]
 市販されている広葉樹溶解サルファイドパルプ(LDSP)を終濃度0.65質量%の塩酸中、121℃で60分間加水分解し、得られた加水分解物を水洗、濾過し、固形分が49質量%のウェットケーキ状セルロース(MCC)を作製した。次に、MCCとCMC-Na(置換度0.93)を、MCC:CMC-Na=85:15、固形分濃度が50質量%(イオン交換水で調整)となるように二軸の混練機(DSM Xplore製、製品名「Compounder 15」)に投入して、混練温度を30℃とし、50rpmで30分間湿式混練した。作製した混練物をオーブンにて100℃で30分間乾燥させた後、遠心式粉砕機(Retsch製、製品名「ZM200」)にて目開き0.75mmのスクリーンを用いて粉砕し、さらにその後目開き0.18mmの篩を用いて篩粉し、これを通過したものをセルロース複合体粉体組成物Kとした。
 原料として用いたLDSPのブラッグスペーシングは7.2nm、I型結晶化度は99%であった。また、得られたセルロース複合体粉体組成物Kの水分は4.5質量%、水分散体沈殿部のブラッグスペーシングは8.4nm、貯蔵弾性率(G’1)は2.66、貯蔵弾性率(G’2)は1.31、よって[G’2]/[G’1]=0.49、I型結晶化度は99%となった。結果を表2に示す。
 図1に、実施例1、3における改質処理後パルプ及び改質処理前の原料パルプ(LBKPパルプ)の散乱強度プロットを示す。また、図2に、実施例1及び比較例1における、分散液沈殿部の散乱強度プロットを示す。いずれも、縦軸は円環平均後の散乱強度にqを乗じた値qI(q)であり、横軸はqの対数である。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
<高濃度不溶性食物繊維含有人参ジュース>
 前記の実施例及び比較例により得られたセルロース複合体粉体組成物A~Kを使用し、以下の操作により食感の異なる2種類の人参ジュースを作成し、評価を行った。
 まず、人参300g及びリンゴ300gをすりおろしたものに、砂糖15gとセルロース複合体粉体状組成物を適量加え、さらにイオン交換水を加えて全量を1000gとした。この混合物をスパチュラで撹拌した後、ピストン型ホモジナイザー(APV製、製品名:「マントンゴーリンホモジナイザー」)を用い、10MPaで均質化処理したものを人参ジュース(粗)、40MPaで10回均質化処理を行ったものを人参ジュース(滑)とした。これらを200mL容のガラス製耐熱ビンに充填し、加熱殺菌処理(121℃、30分間)し、水道水で1時間冷却した。冷却後のビンは、上下に10回軽く振とうした後、5℃の雰囲気中にて1か月間保存した。
 保存後の各人参ジュースの懸濁安定性について、目視にて外観観察を行い、分離状態と沈降状態について評価した。また、保存後の各人参ジュースを飲み、食感を官能評価した。評価方法は、分離状態、沈降状態、再分散回数および食感について、以下の基準で行った。評価結果を表3~6に示す。
(分離状態)
 耐熱ビン入り飲料の上部の色が薄い層の飲料全体に対する割合を測定した。
◎(優):分離なし(色が薄い層が観察されない)
○(良):色が薄い層が、飲料全体の10%未満
△(可):色が薄い層が、飲料全体の30%未満
×(不可):色が薄い層が、飲料全体の30%以上
(沈降状態)
 耐熱ビン入り飲料をゆっくり上下反転し、底面の堆積物の付着量で評価した。
◎(優):底面に堆積物が付着していない
○(良):底面の部分的に堆積物が薄く付着している
△(可):底面の一面に堆積物が薄く付着している
×(不可):底面の全体的に堆積物が濃く付着している
(再分散回数)
 耐熱ビン入り飲料をゆっくり回転し、底面の堆積物が完全に解消されるまでの回数で評価した。
(食感)
滑:口当たりが滑らかである
粗:口当たりがざらざらしている
<小豆ミルク飲料>
 前記の実施例及び比較例により得られたセルロース複合体粉体組成物A~Kを使用し、以下の操作により食感の異なる2種類の小豆ミルク飲料を作成し、評価を行った。
 まず、無糖ゆであずき100g、砂糖50g、全脂粉乳8g、食塩0.5g、乳化剤(モノグリセライド製剤)1.0g、及びセルロース複合体粉体組成物を5.0g(乾燥重量)にイオン交換水を加えて全量を1000gとした。この混合物を食品用ミキサーに投入し、ゆであずきを疎粉砕した後、ピストン型ホモジナイザー(APV製、製品名:「マントンゴーリンホモジナイザー」)を用い、10MPaで均質化処理したものを小豆ミルク(粗)、40MPaで10回均質化処理を行ったものを小豆ミルク(滑)とした。これらを200mL容のガラス製耐熱ビンに充填し、加熱殺菌処理(121℃、30分間)し、水道水で1時間冷却した。冷却後のビンは、上下に10回軽く振とうした後、5℃の雰囲気中にて1か月間保存した。
 保存後の各小豆ミルクの懸濁安定性について、目視にて外観観察を行い、分離状態と沈降状態とオイルオフについて評価した。また、保存後の各小豆ミルクを飲み、食感を官能評価した。評価方法は、分離状態、沈降状態、再分散回数および食感については、人参ジュースと同じ評価基準で行った。オイルオフについては、以下の基準で行った。評価結果を表3~6に示す。
(オイルリング)
 耐熱ビン入り飲料の上部において、ビンの淵に沿って確認されるオイル固化物の量で評価した。
◎(優):オイル固化物なし
○(良):オイル固化物が、わずかにビンの淵の一部に生じている
△(可):オイル固化物が、ビンの淵に不完全なリング状に生じている
×(不可):ビンの淵に完全なリング状オイル固化物が生じている
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 いずれのセルロース複合体粉体組成物を用いた場合でも、均質化を低せん断力で(10MPa)で行った飲料では、口当たりがざらざらしていたが、均質化を高せん断力で(40MPaを10回)で行った飲料では、口当たりが滑らかであった。逆に、懸濁安定性は、セルロース複合体粉体組成物の種類にかかわらず、高せん断力で均質化した飲料よりも低せん断力で均質化した飲料のほうが優れている傾向が観察された。
 [G’2]/[G’1]が0.45~0.49であるセルロース複合体粉体組成物I~Kを配合した飲料では、低せん断力で均質化した飲料では、比較的懸濁安定性は良好であったが、高せん断力で均質化した飲料は、分離、沈降、オイルリングの少なくとも1つは評価が×(不可)であり、懸濁安定性が悪かった。これに対して、[G’2]/[G’1]が0.5以上であるセルロース複合体粉体組成物A~Hを配合した飲料では、高せん断力で均質化した飲料でも、分離、沈降、オイルリングの全てが△(可)以上の評価であり、懸濁安定性に優れていた。この高せん断力で均質化した飲料における懸濁安定性は、[G’2]/[G’1]が大きいほど優れている傾向が観察された。中でも、[G’2]/[G’1]が0.90以上であるセルロース複合体粉体組成物A~C、G、Hを配合した飲料では、高せん断力で均質化することにより、食感に優れ、懸濁安定性も良好な飲料が得られた。特に[G’2]/[G’1]が1.0以上であるセルロース複合体粉体組成物A、B、G、Hを配合した飲料では、高せん断力で均質化することにより、懸濁安定性と食感の両方が優れた飲料が得られた。

Claims (8)

  1.  セルロースと多糖類からなるセルロース複合体であって、前記セルロース複合体の0.1質量%水分散体を遠心分離処理して得られる沈殿物のX線小角散乱(SAXS)解析によるブラッグスペーシングが8.6nm以上であることを特徴とする、セルロース複合体。
  2.  イオン交換水に前記セルロース複合体を1質量%含有させた混合物を、高剪断ホモジナイザー(日本精機(株)製、製品名「エクセルオートホモジナイザーED-7」)を用いて回転数1,000rpm、5分間の条件で分散させて得られた水分散体の貯蔵弾性率(G’1)と、前記混合物を前記高剪断ホモジナイザーを用いて回転数16,000rpm、5分間の条件で分散させて得られた水分散体の貯蔵弾性率(G’2)との比([G’2]/[G’1])が0.5以上である、請求項1に記載のセルロース複合体。
  3. イオン交換水に前記セルロース複合体を1質量%含有させた混合物を、高剪断ホモジナイザー(日本精機(株)製、製品名「エクセルオートホモジナイザーED-7」)を用いて回転数16,000rpm、5分間の条件で分散させて得られた水分散体の貯蔵弾性率(G’2)が0.3Pa以上である、請求項1又は2に記載のセルロース複合体。
  4.  含水率が20質量%以下であり、かつ目開き1mmの篩を全通する粉体状である、請求項1~3のいずれか一項に記載のセルロース複合体。
  5.  セルロースと多糖類とからなるセルロース複合体の製造方法であって、ブラッグスペーシングが7.5nm以上のセルロースの加水分解物を多糖類と複合体化する、セルロース複合体の製造方法。
  6.  請求項1~4のいずれか一項に記載のセルロース複合体を含む飲食品。
  7.  請求項1~4のいずれか一項に記載のセルロース複合体を含む医薬品。
  8.  請求項1~4のいずれか一項に記載のセルロース複合体を含む工業製品。
PCT/JP2019/013956 2018-04-03 2019-03-29 セルロース粉末 WO2019194085A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020512211A JPWO2019194085A1 (ja) 2018-04-03 2019-03-29 セルロース粉末
US17/041,722 US20210130586A1 (en) 2018-04-03 2019-03-29 Cellulose powder
EP19781608.5A EP3777565A4 (en) 2018-04-03 2019-03-29 CELLULOSE POWDER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018071778 2018-04-03
JP2018-071778 2018-04-03

Publications (1)

Publication Number Publication Date
WO2019194085A1 true WO2019194085A1 (ja) 2019-10-10

Family

ID=68100684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013956 WO2019194085A1 (ja) 2018-04-03 2019-03-29 セルロース粉末

Country Status (5)

Country Link
US (1) US20210130586A1 (ja)
EP (1) EP3777565A4 (ja)
JP (1) JPWO2019194085A1 (ja)
TW (1) TWI721401B (ja)
WO (1) WO2019194085A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112205399B (zh) * 2020-10-22 2022-03-04 中国科学院合肥物质科学研究院 电驱动控释和迁移的凝胶基农药体系的构建方法、构建的农药体系及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125742A1 (ja) * 2010-03-31 2011-10-13 旭化成ケミカルズ株式会社 セルロース複合体
WO2013022090A1 (ja) 2011-08-11 2013-02-14 旭化成ケミカルズ株式会社 高機能セルロース複合体
JP2015502136A (ja) 2011-10-05 2015-01-22 エフ エム シー コーポレーションFmc Corporation 共摩耗型の微結晶セルロースおよびカルボキシメチルセルロースの安定化剤組成物、該組成物の製造方法および用途
JP2015074736A (ja) * 2013-10-10 2015-04-20 旭化成ケミカルズ株式会社 セルロース複合体
JP2016084397A (ja) * 2014-10-24 2016-05-19 旭化成ケミカルズ株式会社 セルロース複合体
WO2016167269A1 (ja) * 2015-04-17 2016-10-20 旭化成株式会社 セルロース複合体
WO2016166798A1 (ja) * 2015-04-13 2016-10-20 旭化成株式会社 セルロース複合体
JP2018071778A (ja) 2016-11-04 2018-05-10 良三 太田 頭付ボルトの緩み止め構造

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5855386B2 (ja) * 2011-08-11 2016-02-09 旭化成ケミカルズ株式会社 セルロース複合体
TWI514969B (zh) * 2012-02-14 2016-01-01 Asahi Kasei Chemicals Corp Cellulose composition
JP6215526B2 (ja) * 2012-10-31 2017-10-18 旭化成株式会社 セルロースを含む菓子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125742A1 (ja) * 2010-03-31 2011-10-13 旭化成ケミカルズ株式会社 セルロース複合体
WO2013022090A1 (ja) 2011-08-11 2013-02-14 旭化成ケミカルズ株式会社 高機能セルロース複合体
JP2015502136A (ja) 2011-10-05 2015-01-22 エフ エム シー コーポレーションFmc Corporation 共摩耗型の微結晶セルロースおよびカルボキシメチルセルロースの安定化剤組成物、該組成物の製造方法および用途
JP2015074736A (ja) * 2013-10-10 2015-04-20 旭化成ケミカルズ株式会社 セルロース複合体
JP2016084397A (ja) * 2014-10-24 2016-05-19 旭化成ケミカルズ株式会社 セルロース複合体
WO2016166798A1 (ja) * 2015-04-13 2016-10-20 旭化成株式会社 セルロース複合体
WO2016167269A1 (ja) * 2015-04-17 2016-10-20 旭化成株式会社 セルロース複合体
JP2018071778A (ja) 2016-11-04 2018-05-10 良三 太田 頭付ボルトの緩み止め構造

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Japanese Pharmacopoeia"
See also references of EP3777565A4 *

Also Published As

Publication number Publication date
EP3777565A4 (en) 2021-06-09
EP3777565A1 (en) 2021-02-17
JPWO2019194085A1 (ja) 2021-01-07
TW201946543A (zh) 2019-12-16
US20210130586A1 (en) 2021-05-06
TWI721401B (zh) 2021-03-11

Similar Documents

Publication Publication Date Title
JP5734436B2 (ja) 高機能セルロース複合体
JP5692822B2 (ja) セルロース複合体
JP6407412B2 (ja) セルロース複合体
JP6434777B2 (ja) セルロース複合体
JP2020048461A (ja) 高濃度タンパク飲料
JP2008048602A (ja) 水分散性セルロースと少なくとも1種の多糖類を含有する増粘剤
JP5938596B2 (ja) 緑色野菜粉砕物を含有する飲料
EP3284758B1 (en) Cellulose composite
JP2008050377A (ja) 水分散性セルロースと多糖類からなる増粘剤
JP6457171B2 (ja) セルロース複合体
JPH06335365A (ja) 微細セルロース含有食品組成物
WO2019194085A1 (ja) セルロース粉末
JP2018059126A (ja) セルロース複合体
JP5969748B2 (ja) 水不溶性成分を含有する液体調味料
JP6228243B2 (ja) 緑色野菜粉砕物を含有する飲料
TWI540142B (zh) 纖維素複合體
WO2022159807A1 (en) A stabilizer composition comprising microcrystalline cellulose

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781608

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020512211

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019781608

Country of ref document: EP

Effective date: 20201103