WO2019193749A1 - 交流回転機装置 - Google Patents

交流回転機装置 Download PDF

Info

Publication number
WO2019193749A1
WO2019193749A1 PCT/JP2018/014748 JP2018014748W WO2019193749A1 WO 2019193749 A1 WO2019193749 A1 WO 2019193749A1 JP 2018014748 W JP2018014748 W JP 2018014748W WO 2019193749 A1 WO2019193749 A1 WO 2019193749A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
rotating machine
current
temperature
motor
Prior art date
Application number
PCT/JP2018/014748
Other languages
English (en)
French (fr)
Inventor
直之 岩本
彰俊 高谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/975,191 priority Critical patent/US11264937B2/en
Priority to CN201880092053.7A priority patent/CN111937294B/zh
Priority to PCT/JP2018/014748 priority patent/WO2019193749A1/ja
Priority to DE112018007438.2T priority patent/DE112018007438T5/de
Priority to JP2020511574A priority patent/JP6896159B2/ja
Publication of WO2019193749A1 publication Critical patent/WO2019193749A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/66Controlling or determining the temperature of the rotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/22Standstill, e.g. zero speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • This application relates to an AC rotating machine device provided with a secondary battery.
  • secondary batteries have been widely used as power sources for electric devices such as hybrid cars or electric cars.
  • hybrid cars when a vehicle is driven by a motor, the motor is driven by the current from the secondary battery.
  • the generator when the output from the engine is large, the generator is driven by the engine to charge the secondary battery. It is known that the degree of deterioration of this secondary battery varies depending on the temperature at the time of charging. For this reason, the secondary battery is charged and discharged to self-heat, and the temperature of the secondary battery is raised to suppress the deterioration.
  • the technology to do is known.
  • the present application discloses a technique for solving the above-described problems, and provides an AC rotating machine device capable of flowing a large current in a short time.
  • An AC rotating machine device disclosed in the present application includes a magnet-type rotor, an AC rotating machine main body having a first three-phase coil and a second three-phase coil for generating a rotating magnetic field in the rotor, and the first A secondary battery that supplies power to the second three-phase coil, and a power converter that converts the direct current generated by the secondary battery into alternating current, and controls the alternating current generated by the power converter
  • the AC rotary machine device controls the rotational torque of the AC rotary machine body, and includes a temperature sensor provided in the AC rotary machine device, and the power converter increases the temperature based on temperature information of the temperature sensor.
  • the X-phase, Y-phase, and Z-phase of the second three-phase coil in the AC rotating machine main body have the same magnitude as the U-phase, V-phase, and W-phase of the first three-phase coil.
  • 180-degree three-phase AC power It is characterized in that it has to supply the.
  • the AC rotating machine body by passing an average current through each phase of the three-phase coil constituting the AC rotating machine body, the AC rotating machine body is large in a short time while the AC rotating machine body is stopped. Since it becomes possible to flow an electric current, it can be utilized for raising the temperature of the secondary battery and the AC rotating machine body. In addition, since it is possible to achieve by diverting current control when driving the AC rotating machine main body, it is not necessary to provide a temperature increase control circuit outside, and an inexpensive AC rotating machine device can be provided. it can.
  • FIG. 5 is a flowchart for illustrating inverter processing during motor drive control in the first embodiment.
  • FIG. 6 is a characteristic diagram showing a waveform of a three-phase alternating current during temperature increase control in the first embodiment.
  • 3 is a flowchart for illustrating processing of an inverter during temperature increase control in the first embodiment.
  • FIG. 1 is a block diagram conceptually showing the configuration of the AC rotating machine apparatus according to the first embodiment.
  • an AC rotating machine device 1 is supplied with current by a secondary battery 2 that outputs a voltage of about 48 V, a temperature sensor 2A that detects the temperature of the secondary battery 2, and the secondary battery 2.
  • An inverter 3 serving as a power conversion device that converts AC into AC, a temperature sensor 4 that detects the temperature of the inverter 3, a motor 5 that is driven by the inverter 3 and generates AC power, and the motor 5 And a temperature sensor 6 for detecting the temperature.
  • the motor 5 is provided with a sensor for detecting rotational position information, and this rotational position information is supplied to the inverter 3 together with the temperature information of the temperature sensor 6.
  • an inverter 3 includes six upper arm switching elements 7, 8, 9, 13, 14, 15 and lower arm switching elements 10, 11, 12, 16, 17, 18, and these switching elements 7 to A microcomputer 19 that controls the on / off operation of the motor 18 is provided, and a current is supplied to the coil of the motor 5 based on the operation of the switching elements 7 to 18.
  • the switching elements 7 to 18 operate according to instructions of the microcomputer 19, and the direct current is converted into alternating currents Iu, Iv, Iw, Ix, It is converted into Iy and Iz and supplied to the coil of the motor 5.
  • the microcomputer 19 includes a processor 191 and a storage device 192, as shown in FIG.
  • the storage device 192 includes a volatile storage device such as a random access memory and a non-volatile auxiliary storage device such as a flash memory, and a program input from the storage device 192. Execute. In this case, a program is input from the auxiliary storage device to the processor 191 via the volatile storage device.
  • the processor 191 may output data such as a calculation result to the volatile storage device of the storage device 192, or may store the data in the auxiliary storage device via the volatile storage device. Further, a hard disk auxiliary storage device may be provided instead of the flash memory.
  • the motor 5 is disposed in the center opposite to the stator 51 in which six coils 51 u, 51 v, 51 w, 51 x, 51 y, 51 z for generating a magnetic field are disposed. And a magnet-type rotor 52 that has been made.
  • the coil 51u and the coil 51x, the coil 51v and the coil 51y, the coil 51w and the coil 51z are combined in pairs, and are arranged around the rotor 52 at intervals of 120 degrees with the rotor 52 as the center.
  • the inverter 3 sets the phase difference of the first group of three-phase alternating currents (U-phase current Iu, V-phase current Iv, and W-phase current Iw) out of the two groups of three-phase alternating currents to be output to 120 degrees.
  • the second group of three-phase alternating currents (X-phase current Ix, Y-phase current Iy, Z-phase current Iz) also have a phase difference of 120 degrees, current Iu and current Ix, current Iv and current Iy, and current Iw.
  • FIG. 5 is a flowchart showing the processing of the inverter 3 during motor drive control.
  • the inverter 3 receives the rotational speed information and rotational position information of the rotor 52 from the motor 5 (step S1). Further, a torque value for rotating the target motor 5 is received from another unit (step S2). Next, it is determined whether or not the current torque value has reached the target torque value (step S3). If the torque value has been reached (Y), the processing flow is ended as it is.
  • step S3 determines whether the current torque value has not reached the target torque value (N)
  • the process proceeds to step S4, where the rotational speed information and rotational position information of the rotor 52 and the current motor 5 are supplied.
  • a voltage command value is calculated from the value of the three-phase alternating current (step S4). Thereafter, the calculated voltage command value is applied to the switching elements 7 to 18 to control the current (step S5), and the motor 5 is caused to generate a rotational torque to perform normal drive control of the motor 5.
  • FIG. 6 is a waveform representing an alternating current that flows through the second group and three phase coils 51u, 51v, 51w, 51x, 51y, and 51z in the motor 5.
  • the first group of three-phase alternating currents (U-phase, V-phase and W-phase) are composed of a U-phase current Iu, a V-phase current Iv, and a W-phase current Iw.
  • the phase (Z phase) includes an X phase current Ix, a Y phase current Iy, and a Z phase current Iz.
  • the V-phase current Iv for the U-phase current Iu, the W-phase current Iw for the V-phase current Iv, the Y-phase current Iy for the X-phase current Ix, and the Z-phase current Iz for the Y-phase current Iy are all 120 degrees in phase. Form like being late.
  • the X-phase current Ix with respect to the U-phase current Iu, the Y-phase current Iy with respect to the V-phase current Iv, and the Z-phase current Iz with respect to the W-phase current Iw are all delayed so that the phase difference is 180 degrees.
  • the amplitude of the current is assumed to be I [A].
  • the U-phase current 20, V-phase current 21, and W-phase current 22 at time T have the same amplitude and opposite signs as the X-phase current 23, Y-phase current 24, and Z-phase current 25, respectively. This is the same state at any time.
  • FIG. 7 is a flowchart for explaining the inverter processing during the temperature raising control in the first embodiment as described above.
  • the current motor temperature reaches the target temperature by the temperature sensor 6 of the motor 5.
  • Step S6 the temperature rise control is unnecessary and the flow is terminated.
  • the temperature of the secondary battery 2 can be detected by the temperature sensor 2 ⁇ / b> A, but can be substituted by the temperature sensor 6 of the motor 5 because it is almost equal to the temperature of the motor 5.
  • the target temperature is set in advance to a value that does not cause deterioration due to charging of the secondary battery 2, for example, 0 [° C.] that is a general lower limit operating temperature of a lithium ion battery.
  • step S7 when the current motor temperature does not reach the target temperature (N), the process proceeds to step S7, and the first group (U phase V phase W phase) and the second group (X phase Y phase Z phase). It is determined whether the current phase difference is 180 degrees.
  • the process proceeds to step S8, the current of the second group (X phase, Y phase, Z phase) is delayed, and the operation of the inverter 3 is performed until the phase difference reaches 180 degrees. repeat.
  • Step S9 when the current phase difference between the first group (U phase, V phase, W phase) and the second group (X phase, Y phase, Z phase) reaches 180 degrees, the process proceeds to step S9 to maintain this current phase difference.
  • a current command value is calculated, and the calculated current command value is given to the switching elements 7 to 18 to operate the motor 5.
  • Step S10 At this time, if the rotational torque generated by the U-phase current 20, V-phase current 21, and W-phase current 22 in FIG. 6 is T1, the X-phase current 23, the Y-phase current 24, and the Z-phase current 25 are generated.
  • the rotational torque is indicated by T2 in FIG. 4, and T1 and T2 have the same magnitude and are reverse rotational torques. Therefore, the rotational torque of the motor 5 generated by the coils 51u, 51v, 51w, 51x, 51y, 51z can be regarded as substantially zero.
  • the control for flowing currents having different phases through the coils 51u, 51v, 51w, 51x, 51y, 51z of each phase can be diverted.
  • the control for driving the motor 5 can be diverted.
  • the temperature can be raised without rotationally driving the motor 5, it is useful for starting an AC rotating machine device in a cold region.
  • the temperature can be measured by the temperature sensor 4 provided in the inverter 3 and a current can be passed through the AC rotating machine body 5 until the target temperature is reached.
  • the temperature sensor 2A, the temperature sensor 4 and the temperature sensor 6 are not installed in the secondary battery 2, the inverter 3 or the motor 5, but are installed in other parts of the AC rotating machine device 1, so that the temperature of the secondary battery 2 is increased. It can also be configured to estimate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

二次電池の充電時の温度による劣化を防ぐことを目的とし、交流回転機本体を構成する2群3相のコイルの各相に平均的に電流を流すように制御し、これによって、交流回転機本体が停止状態ににあっても短時間で大きな電流を流して二次電池を昇温させるようにした。

Description

交流回転機装置
 本願は、二次電池を備えた交流回転機装置に関するものである。
 近年、ハイブリッド自動車または電気自動車等の電動装置の電源として、二次電池が広く用いられており、例えば、ハイブリッド自動車においては、モータにより車両を走行させる場合には、二次電池からの電流によってモータを駆動し、一方、エンジンからの出力が大きい場合には、エンジンにより発電機を駆動して二次電池を充電させるように構成している。この二次電池は、充電時の温度によって劣化の程度が異なることが知られており、このため、二次電池を充放電させて自己発熱させ、二次電池の温度を上昇させて劣化を抑制する技術が知られている。
 このような二次電池の温度を上昇させるための昇温制御装置として、モータが回転しない態様で二次電池を放電させて二次電池からモータへ電力を供給させることにより、二次電池を自己発熱させる発熱制御部を備えたものが提案されている。(例えば、特許文献1参照)
国際公開WO2014/024490号公報
 上述のような昇温制御装置においては、モータの回転位置から回転トルクが0となるようなU相、V相、W相の電流指令値Iu、Iv、Iwを求め、その電流指令値に基づいてモータを駆動させることによって二次電池を放電させ、自己発熱させている。
 しかしながら、この昇温制御装置においては、モータを回転させないことによって特定相に偏った電流が流れ続けることが考えられ、各相のスイッチング素子やコイルの発熱に偏りが生じるため、短時間で大電流を流すことができないという問題があった。また、二次電池の自己発熱にのみ着目しており、モータの昇温により回転の効率を上げることについては考えられていない。
 本願は、上述のような問題を解決するための技術を開示するもので、短時間で大きな電流を流すことが可能な交流回転機装置を提供するものである。
 本願に開示される交流回転機装置は、磁石式のロータおよびこのロータに回転磁界を発生させるための第1の3相コイル、第2の3相コイルを有する交流回転機本体と、前記第1、第2の3相コイルへ電力を供給する二次電池と、前記二次電池が発生する直流を交流に変換する電力変換装置とを備え、前記電力変換装置が生成する交流電流を制御することによって前記交流回転機本体の回転トルクを制御する交流回転機装置であって、前記交流回転機装置に設けられた温度センサを備え、前記電力変換装置は、前記温度センサの温度情報に基づき昇温が必要と判定した場合、前記交流回転機本体における前記第2の3相コイルのX相Y相Z相にそれぞれ前記第1の3相コイルのU相V相W相と同じ大きさで位相が180度異なる3相交流電流を供給するようにしたことを特徴とするものである。
 本願に開示される交流回転機装置によれば、交流回転機本体を構成する3相コイルの各相に平均的に電流を流すことによって、交流回転機本体が停止中でありながら短時間で大きな電流を流すことが可能となるため、二次電池および交流回転機本体の昇温に活用することができる。また、交流回転機本体を駆動させる場合の電流制御を流用することによって実現することが可能となるため、外部に昇温制御回路を設ける必要がなく、安価な交流回転機装置を提供することができる。
実施の形態1に係る交流回転機装置の構成を概念的に示すブロック図である。 図1におけるインバータとモータの接続関係の詳細を示す回路図である。 インバータの要部構成を説明するためのハードウエアを示すブロック図である。 図2に示す交流回転機本体の構成を示す概要図である。 実施の形態1におけるモータ駆動制御時のインバータ処理を説明するためのフローチャートである。 実施の形態1における昇温制御中の3相交流電流の波形を示す特性図である。 実施の形態1における昇温制御時のインバータの処理を説明するためのフローチャートである。
実施の形態1.
 以下、実施の形態1について、図面に基づいて説明する。
 図1は、実施の形態1に係る交流回転機装置の構成を概念的に示すブロック図である。
 図1において、交流回転機装置1は、48V程度の電圧を出力する二次電池2と、この二次電池2の温度を検出する温度センサ2Aと、二次電池2によって電流が供給され、直流を交流に変換する電力変換装置となるインバータ3と、このインバータ3の温度を検出する温度センサ4と、インバータ3によって駆動され、動力を発生する交流回転機本体であるモータ5と、このモータ5の温度を検出する温度センサ6とを備えて構成されている。また、モータ5には回転位置情報を検出するセンサが設けられ、この回転位置情報が温度センサ6の温度情報とともにインバータ3に供給されている。
 次に、このような交流回転機装置1におけるインバータ3とモータ5の接続関係の詳細を図2に基づいて説明する。
 図2において、インバータ3は、6つの上アームスイッチング素子7、8、9、13、14、15と、下アームスイッチング素子10、11、12、16、17、18と、これらのスイッチング素子7~18に対してオンオフ動作を制御するマイクロコンピュータ19を備えており、スイッチング素子7~18の動作に基づいてモータ5のコイルに電流を供給するものである。
 すなわち、二次電池2の放電によって直流電流が供給されると、マイクロコンピュータ19の指示に従ってスイッチング素子7~18が動作し、直流電流を2群3相の交流電流Iu、Iv、Iw、Ix、Iy、Izに変換してモータ5のコイルに供給する。
 なお、マイクロコンピュータ19は、ハードウエアの一例を図3に示すように、プロセッサ191と記憶装置192から構成される。この記憶装置192は、詳細を図示していないが、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備しており、記憶装置192から入力されたプログラムを実行する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ191にプログラムが入力される。また、プロセッサ191は、演算結果等のデータを記憶装置192の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。さらに、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。
 一方、モータ5は、図4に示すように磁界を生じさせるための6つのコイル51u、51v、51w、51x、51y、51zが配置されたステータ51と、このステータ51に対向して中央に配置された磁石式のロータ52とで構成されている。ここで、コイル51uとコイル51x、コイル51vとコイル51y、コイル51wとコイル51zは、それぞれ対として組み合わせられ、ロータ52を中心として120度の間隔でロータ52の周囲に配置されている。
 したがって、インバータ3は、出力する2群3相の交流電流のうち、第1群の3相交流電流(U相電流Iu、V相電流Iv、W相電流Iw)の位相差を互いに120度とし、第2群の3相交流電流(X相電流Ix、Y相電流Iy、Z相電流Iz)もまた位相差を互いに120度とし、さらに電流Iuと電流Ix、電流Ivと電流Iy、電流Iwと電流Izとをいずれも位相差を0度として出力するように制御し、2群3相の交流電流Iu、Iv、Iw、Ix、Iy、Izをモータ5における6つのコイル51u、51v、51w、51x、51y、51zにそれぞれ流すように構成している。これによってUVW相とXYZ相に同等の磁界を発生させ、ロータ52を回転させるトルクを形成する。
 図5は、モータ駆動制御の際のインバータ3の処理を示すフローチャートである。
 図において、まず、マイクロコンピュータ19の記憶装置192に記録されたプログラムに基づき、インバータ3は、モータ5からロータ52の回転速度情報と回転位置情報を受け取る(ステップS1)。また、他ユニットから目標となるモータ5を回転させるトルク値を受け取る(ステップS2)。
 次に、現在のトルク値が目標のトルク値に到達しているか判定し(ステップS3)、到達している場合(Y)は、処理フローをそのまま終了する。
 一方、ステップS3で現在のトルク値が目標のトルク値に到達していないと判定した場合(N)、ステップS4に進み、ロータ52の回転速度情報と回転位置情報、および現在モータ5に供給されている3相交流電流の値から電圧指令値を演算する(ステップS4)。その後、演算した電圧指令値をスイッチング素子7~18に与えて電流を制御し(ステップS5)、モータ5に回転トルクを発生させてモータ5の通常の駆動制御を行わせる。
 次に、回転トルクを発生させることなくモータ5を駆動させ、二次電池2及びモータ5を昇温させる場合の動作について図6、図7を用いて説明する。
 図6は、モータ5における2群3相のコイル51u、51v、51w、51x、51y、51zに流す交流電流を表す波形である。
 図において、第1群の3相交流電流(U相V相W相)は、U相電流Iu、V相電流Iv、W相電流Iwからなり、第2群の3相交流電流(X相Y相Z相)は、X相電流Ix、Y相電流Iy、Z相電流Izからなる。ここで、U相電流Iuに対するV相電流Iv、V相電流Ivに対するW相電流Iw、X相電流Ixに対するY相電流Iy、Y相電流Iyに対するZ相電流Izは、いずれも位相が120度遅れているように形成する。また、U相電流Iuに対するX相電流Ix、V相電流Ivに対するY相電流Iy、W相電流Iwに対するZ相電流Izは、いずれも位相差が180度となるように遅らせている。また、電流の振幅は、いずれもI[A]とする。
 例えば、時刻TにおけるU相電流20、V相電流21、W相電流22は、それぞれX相電流23、Y相電流24、Z相電流25と同じ振幅かつ符号が逆の電流値となっており、これは、あらゆる時刻においても同じ状態となる。
 図7は、以上のような実施の形態1における昇温制御時のインバータ処理を説明するためのフローチャートで、図において、まず、モータ5の温度センサ6により現在のモータ温度が目標温度に到達しているかを判定し(ステップS6)、到達している場合(Y)、昇温制御を不要としてフローを終了する。なお、二次電池2の温度は、温度センサ2Aによって検出することができるが、モータ5の温度とほぼ同等であるため、モータ5の温度センサ6により代用することができる。また、目標温度は、二次電池2の充電による劣化が生じないような値、例えば、リチウムイオンバッテリーの一般的な下限動作温度である0[℃]に予め設定している。
 次に、現在のモータ温度が目標温度に到達していない場合(N)、ステップS7に移行し、第1群(U相V相W相)と第2群(X相Y相Z相)の電流位相差が180度であるかを判定する。ここで、電流位相差が180度でない場合(N)、ステップS8に移行して第2群(X相Y相Z相)の電流を遅らせ、位相差が180度となるまでインバータ3の動作を繰り返す。
 次に、第1群(U相V相W相)と第2群(X相Y相Z相)の電流位相差が180度になると、ステップS9に移行してこの電流位相差を保持するような電流指令値を演算し、この演算した電流指令値をスイッチング素子7~18にそれぞれ与えてモータ5を動作させる。(ステップS10)
 このとき、図6におけるU相電流20、V相電流21、W相電流22が発生させる回転トルクを図4におけるT1とすると、X相電流23、Y相電流24、Z相電流25が発生させる回転トルクは、図4にT2で示すものとなり、T1とT2は、同じ大きさで、かつ逆方向への回転トルクとなる。
 したがって、コイル51u、51v、51w、51x、51y、51zが発生させるモータ5の回転トルクは、実質0と見なすことができることになる。
 この結果、モータ5は、回転しないが、二次電池2からインバータ3に放電電流が流れるため、二次電池2は、自己発熱により昇温することになる。
 また、このとき、インバータ3から各相の6つのコイル51u、51v、51w、51x、51y、51zに電流が供給されるが、モータ5が回転しないためにトルクの損失が生まれ、モータ5のコイル51u、51v、51w、51x、51y、51zが発熱することになる。
 以上のような動作が終了すると、所定のタイミングでステップS10からステップS6に戻り、引き続いて現在温度が目標温度に到達するまでフローを繰り返して実行する。
 ここで、各相のコイル51u、51v、51w、51x、51y、51zに流れる電流は、いずれも振幅I[A]内の電流値であるため、特定の相に偏って電流が流れることはない。したがって、振幅Iを大きくすることにより短時間で均等に大電流を流すことができることになり、効率よく二次電池2およびモータ5を昇温させることが可能である。
 また、各相のコイル51u、51v、51w、51x、51y、51zに位相の異なる電流を流すための制御は、モータ5を駆動させる場合の制御を流用できるため、外部に昇温制御のための回路を設ける必要がなく、安価な交流回転機装置を提供することができる利点がある。
 さらに、モータ5を回転駆動させることなく昇温させることができるため、寒冷地における交流回転機装置の始動に有用である。
 さらにまた、インバータ3に設けた温度センサ4によって温度を計測し、目標となる温度に達するまで交流回転機本体5に電流を流すことが可能である。
 なお、温度センサ2A、温度センサ4および温度センサ6を二次電池2、インバータ3あるいはモータ5に設置せず、交流回転機装置1の他の部分に設置することによって、二次電池2の温度を推定させるように構成することもできる。
 本開示は、例示的な実施の形態が記載されているが、実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合が含まれるものとする。
1:交流回転機装置、 2:二次電池、 2A:温度センサ、 3:インバータ(電力変換装置)、 4:温度センサ、 5:モータ(交流回転機本体)、 51:ステータ、 51u・51v・51w:U相V相W相コイル、 51x・51y・51z:X相W相Z相コイル、 52:ロータ、 6:温度センサ、 7・8・9・10・11・12:U相V相W相スイッチング素子、 13・14・15・16・17・18:X相W相Z相スイッチング素子、 19:マイクロコンピュータ

Claims (3)

  1.  磁石式のロータおよびこのロータに回転磁界を発生させるための第1の3相コイル、第2の3相コイルを有する交流回転機本体と、前記第1、第2の3相コイルへ電力を供給する二次電池と、前記二次電池が発生する直流を交流に変換する電力変換装置とを備え、前記電力変換装置が生成する交流電流を制御することによって前記交流回転機本体の回転トルクを制御する交流回転機装置であって、
     前記交流回転機装置に設けられた温度センサを備え、
     前記電力変換装置は、前記温度センサの温度情報に基づき昇温が必要と判定した場合、前記交流回転機本体における前記第2の3相コイルのX相Y相Z相にそれぞれ前記第1の3相コイルのU相V相W相と同じ大きさで位相が180度異なる3相交流電流を供給するようにしたことを特徴とする交流回転機装置。
  2.  前記交流回転機本体における前記第1の3相コイルのU相V相W相および前記第2の3相コイルのX相Y相Z相をそれぞれ前記ロータに対して120度の位相差をもって配置し、前記U相と前記X相、前記V相と前記Y相、前記W相と前記Z相の位相差をそれぞれ0度としたことを特徴とする請求項1記載の交流回転機装置。
  3.  前記温度センサは、前記交流回転機本体または前記二次電池または前記電力変換装置に取り付けられていることを特徴とする請求項1または2記載の交流回転機装置。
PCT/JP2018/014748 2018-04-06 2018-04-06 交流回転機装置 WO2019193749A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/975,191 US11264937B2 (en) 2018-04-06 2018-04-06 AC rotary machine apparatus
CN201880092053.7A CN111937294B (zh) 2018-04-06 2018-04-06 交流旋转电机装置
PCT/JP2018/014748 WO2019193749A1 (ja) 2018-04-06 2018-04-06 交流回転機装置
DE112018007438.2T DE112018007438T5 (de) 2018-04-06 2018-04-06 Wechselstrom-Rotationsmaschinenvorrichtung
JP2020511574A JP6896159B2 (ja) 2018-04-06 2018-04-06 交流回転機装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/014748 WO2019193749A1 (ja) 2018-04-06 2018-04-06 交流回転機装置

Publications (1)

Publication Number Publication Date
WO2019193749A1 true WO2019193749A1 (ja) 2019-10-10

Family

ID=68100666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014748 WO2019193749A1 (ja) 2018-04-06 2018-04-06 交流回転機装置

Country Status (5)

Country Link
US (1) US11264937B2 (ja)
JP (1) JP6896159B2 (ja)
CN (1) CN111937294B (ja)
DE (1) DE112018007438T5 (ja)
WO (1) WO2019193749A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112977171B (zh) * 2021-04-30 2022-05-31 重庆长安新能源汽车科技有限公司 一种电动汽车及动力电池脉冲加热系统
JP7483760B2 (ja) * 2021-08-05 2024-05-15 寧徳時代新能源科技股▲分▼有限公司 動力電池加熱システム、その制御方法及び制御回路
US11929475B2 (en) * 2022-06-23 2024-03-12 GM Global Technology Operations LLC Battery heating during vehicle operation and/or during vehicle charging

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004364352A (ja) * 2003-06-02 2004-12-24 Matsushita Electric Ind Co Ltd 電動機とその駆動方法及び自動車
JP2006136096A (ja) * 2004-11-04 2006-05-25 Toyota Motor Corp 動力出力装置およびそれを備えた車両
JP2018057161A (ja) * 2016-09-29 2018-04-05 株式会社デンソー 誘導電動機の制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6647325B2 (en) * 2001-02-19 2003-11-11 Kokusan Denki Co., Ltd. Control system for electric motor for driving electric vehicle
JP4881991B2 (ja) * 2009-10-26 2012-02-22 本田技研工業株式会社 電気自動車の油温上昇制御方法及びその装置、並びに電気自動車
JP5397785B2 (ja) * 2011-08-01 2014-01-22 株式会社デンソー 3相回転機の制御装置
WO2014024490A1 (ja) 2012-08-09 2014-02-13 パナソニック株式会社 昇温制御回路、及び電動装置
JP5616409B2 (ja) * 2012-09-06 2014-10-29 ファナック株式会社 永久磁石の不可逆減磁を防止する永久磁石同期電動機の制御装置及びそのような制御装置を備える制御システム
WO2014080486A1 (ja) * 2012-11-22 2014-05-30 三菱電機株式会社 車両用交流電動発電機
JP6287756B2 (ja) * 2014-10-24 2018-03-07 株式会社デンソー モータ制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004364352A (ja) * 2003-06-02 2004-12-24 Matsushita Electric Ind Co Ltd 電動機とその駆動方法及び自動車
JP2006136096A (ja) * 2004-11-04 2006-05-25 Toyota Motor Corp 動力出力装置およびそれを備えた車両
JP2018057161A (ja) * 2016-09-29 2018-04-05 株式会社デンソー 誘導電動機の制御装置

Also Published As

Publication number Publication date
JPWO2019193749A1 (ja) 2020-12-03
JP6896159B2 (ja) 2021-06-30
US11264937B2 (en) 2022-03-01
US20200395883A1 (en) 2020-12-17
DE112018007438T5 (de) 2021-01-07
CN111937294B (zh) 2024-04-12
CN111937294A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
US8232753B2 (en) Control device for electric motor drive apparatus
JP6426426B2 (ja) 電動機駆動装置
JP5803559B2 (ja) 回転電機制御装置
JP6416414B2 (ja) 交流回転機の制御装置
WO2019193749A1 (ja) 交流回転機装置
JP2016123222A (ja) 電力変換装置
JP6348424B2 (ja) 電力変換装置
JPWO2019065882A1 (ja) インバータ制御装置
JP2017158233A (ja) 電力変換装置
WO2019102539A1 (ja) 回転電機制御装置及び電動車両
JP4957574B2 (ja) 回転機の制御装置及び回転機の制御システム
JP7037473B2 (ja) 電力変換装置
JP5354269B2 (ja) 交流機制御装置
JP6389103B2 (ja) 電力変換装置
CN114731114A (zh) 电动机控制装置
JP2012244740A (ja) 駆動装置
JP5694046B2 (ja) 制御装置
JP7377083B2 (ja) 制御装置、プログラム
JP5194608B2 (ja) 回転電機制御装置
JP6426427B2 (ja) 電動機駆動装置
JP7169952B2 (ja) 電力変換装置
JP2022096905A (ja) 回転電機の制御装置
JP6861096B2 (ja) 電動車両の電源システム
JP2021002898A (ja) 回転電機の制御装置
JP2020124018A (ja) 回転電機の駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511574

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18913568

Country of ref document: EP

Kind code of ref document: A1