WO2019189812A1 - 微細気泡発生用ノズル、該微細気泡発生用ノズルを用いて液体に微細気泡を含む気泡を混合させる方法、該微細気泡発生用ノズルを備えた生物反応装置、および該微細気泡発生用ノズルを複数本備えた微細気泡発生用ノズル装置 - Google Patents
微細気泡発生用ノズル、該微細気泡発生用ノズルを用いて液体に微細気泡を含む気泡を混合させる方法、該微細気泡発生用ノズルを備えた生物反応装置、および該微細気泡発生用ノズルを複数本備えた微細気泡発生用ノズル装置 Download PDFInfo
- Publication number
- WO2019189812A1 WO2019189812A1 PCT/JP2019/014150 JP2019014150W WO2019189812A1 WO 2019189812 A1 WO2019189812 A1 WO 2019189812A1 JP 2019014150 W JP2019014150 W JP 2019014150W WO 2019189812 A1 WO2019189812 A1 WO 2019189812A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nozzle
- fine bubbles
- liquid
- generating
- bubbles
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/20—Activated sludge processes using diffusers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/04—Apparatus for enzymology or microbiology with gas introduction means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Definitions
- the present invention relates to a fine bubble generating nozzle used for mixing a liquid containing fine bubbles of gas such as air or oxygen into a liquid to form a liquid containing fine bubbles of gas.
- a fine bubble generating nozzle used for mixing a liquid containing fine bubbles of gas such as air or oxygen into a liquid to form a liquid containing fine bubbles of gas.
- the liquid containing the fine bubbles is shower water, bath water, washing water, washing water
- wastewater generated from various industries such as food plants, pulp plants, chemical plants, etc.
- wastewater treatment fields such as domestic wastewater from households, biological reactions [microorganisms or cells (hereinafter referred to as “microorganisms”) And the like)
- the reaction is caused to produce reaction products in microorganisms or the like, and the microorganisms etc. are propagated] and fishery products.
- bubbles having a number average diameter of 1 ⁇ m to 100 ⁇ m are referred to as microbubbles, and bubbles having a number average diameter of less than 1 ⁇ m are referred to as nanobubbles.
- image analysis method, laser diffraction scattering method, electrical detection band method, resonance mass measurement method, optical fiber probe method, etc. are generally used, and the method of measuring the bubble size of nanobubbles
- a dynamic light scattering method, a Brownian motion tracking method, an electrical detection band method, a resonance mass measurement method, and the like are used.
- “Nano bubbles”, which are extremely fine bubbles, are also called “ultra fine bubbles”.
- a liquid containing such fine gas bubbles is a plurality of jet nozzles provided on the side surface along a plane perpendicular to the central axis of the nozzle body with respect to the liquid flowing in the nozzle body made of a cylindrical body.
- a liquid containing fine gas bubbles is obtained by blowing gas from (Patent Documents 1 and 2)
- Patent Document 1 discloses a mud aeration apparatus 10 as schematically shown in FIG. 9.
- this aeration apparatus 10 an inlet 12 of a nozzle body 11 formed of a cylindrical body is disclosed.
- the mud is allowed to flow in and is discharged from the discharge port 13, and compressed air is blown from a plurality of air outlets 14 provided on the side surface along a surface perpendicular to the central axis of the nozzle body 11, thereby generating fine bubbles in the mud. Mixing.
- the compressed air blown into the mud flowing in the nozzle body 11 forms a plurality of gas bands A ′ and It flows along the inner surface and becomes a fine bubble B ′ in the vicinity of the discharge port 13.
- the fine bubble generating nozzle that blows gas from a plurality of jet nozzles provided on the side surface along a surface perpendicular to the central axis of the nozzle body as disclosed in Patent Documents 1 and 2, the nozzle body Since the gas blown into the liquid flowing inside forms a plurality of strips and flows along the inner surface of the nozzle body, the generation efficiency of the fine bubbles is poor, and the fine bubble content rate of the liquid is efficiently and sufficiently increased. Is difficult.
- Patent Document 3 discloses a nozzle in which ozone is blown out from an ejection annular port toward a high-speed water jet at an opening and flows into the water jet by the action of a circulating vortex.
- Patent Document 4 discloses a loop-type bubble generating nozzle that stirs and mixes a pressurized liquid and a gas supplied from an annular gap by a loop flow in a stirring and mixing chamber.
- the nozzles disclosed in Patent Documents 3 and 4 mix liquid and gas by generating turbulent flow at specific locations such as openings and stirring and mixing chambers.
- Nozzle such as the nozzle disclosed in Patent Documents 1 and 2 above, is a type of fine bubble generation of a simple shape and structure that blows gas into the liquid flowing in the nozzle body and flows along the inner surface of the nozzle body It is not a nozzle.
- Japanese Patent Laid-Open No. 2004-121988 JP 2006-034235 A Japanese Patent No. 3686763 Japanese Patent No. 5002480
- the inventors of the present invention use a fine bubble generating nozzle having a nozzle body with a simple shape and structure made of a cylindrical body, improve the generation efficiency of fine bubbles, and efficiently and sufficiently increase the content of fine bubbles in the liquid.
- the present invention has been made through repeated experiments and examinations.
- an object of the present invention is to provide a nozzle for generating microbubbles having a simple shape and structure, which can improve the generation efficiency of microbubbles and efficiently and sufficiently increase the content of microbubbles in a liquid.
- An object of the present invention is to provide a nozzle device for generating fine bubbles.
- the inventors of the present invention generate a fine bubble by flowing a gas blown against a liquid flowing in the nozzle body along the inner surface of the nozzle body with a conventional simple shape / structure. Surprisingly, by supplying gas to the liquid flowing through the nozzle body through a slit continuously provided on the side surface along a plane perpendicular to the central axis of the nozzle body.
- the present inventors have found that the production efficiency of fine bubbles can be improved, and the fine bubble content of the liquid can be efficiently and sufficiently increased.
- a fine bubble generating nozzle for mixing a liquid containing fine bubbles of nanobubbles or microbubbles into a liquid to obtain a liquid containing the fine bubbles
- On the upstream side an inflow port through which the liquid flows is provided, and on the downstream side, a nozzle body formed of a cylindrical body provided with an outlet for discharging the liquid in which the bubbles including the fine bubbles are mixed, and A slit continuously provided on the side surface along a surface perpendicular to the central axis of the nozzle body,
- a nozzle for generating fine bubbles, comprising a gas supply unit connected to the slit and configured to supply gas to the slit.
- the nozzle for generating fine bubbles according to (1) wherein an angle ⁇ at which the slit is inclined upstream with respect to a plane perpendicular to the central axis of the nozzle body is an acute angle.
- the nozzle body is formed of a single cylindrical body, and the slit is provided by cutting a peripheral surface of the single cylindrical body while leaving a connection part in part.
- the nozzle body is formed of two or more cylindrical bodies, and the slit is formed in a connecting portion of the cylindrical bodies.
- a bioreactor comprising: the nozzle for generating fine bubbles according to (8); and a conduit for returning a biological culture solution containing the fine bubbles to the culture tank.
- the amount of the biological culture liquid extracted from the culture tank and containing the bubbles containing the fine bubbles of nanobubbles or microbubbles and then refluxed to the culture tank is stored in the culture tank per minute.
- a plurality of the fine bubble generating nozzles according to any one of (1) to (8) are provided in parallel, and in each of the fine bubble generating nozzles, the fine bubbles of nanobubbles or microbubbles are formed in the liquid in parallel.
- the fine bubble generating nozzle of the present invention has a simple shape and structure, can improve the generation efficiency of fine bubbles, and can efficiently and sufficiently increase the content of fine bubbles in a liquid.
- the method of mixing bubbles containing fine bubbles in a liquid using the nozzle for generating fine bubbles according to the present invention is simple and economical to efficiently and sufficiently increase the content of fine bubbles and to add fine bubbles to the liquid. Air bubbles can be mixed.
- the biological reaction apparatus provided with the nozzle for generating fine bubbles according to the present invention can easily and economically increase the content of fine bubbles efficiently and sufficiently to mix bubbles containing fine bubbles into the liquid.
- the nozzle for generating fine bubbles it is possible to reduce stress and damage to microorganisms and to perform biological reaction efficiently and economically.
- the fine bubble generating nozzle device provided with a plurality of the fine bubble generating nozzles of the present invention comprises a plurality of fine bubble generating nozzles arranged in parallel to constitute a fine bubble generating nozzle device.
- a liquid containing bubbles can be generated more efficiently.
- FIG. 3 is a schematic diagram showing a II cross section in FIG. 2. It is a schematic diagram which shows the external appearance of the nozzle for fine bubble generation
- FIG. 1 It is a schematic diagram which shows the cross section of 4th Embodiment of the nozzle for fine bubble generation of this invention. It is a schematic diagram of culture apparatuses, such as microorganisms, showing an application example of the nozzle for generating fine bubbles of the present invention. It is a schematic diagram which shows the external appearance of the nozzle for fine bubble generation of patent document 1. FIG. It is a schematic diagram which shows the cross section of the nozzle for fine bubble generation of patent document 1. FIG. It is a schematic diagram which shows the II-II cross section in FIG.
- the nozzle for generating fine bubbles having the simple shape and structure is supplied from the inlets 2 and 12, and the nozzle bodies 1 and 11.
- the slit 4 continuously provided on the side surface along the surface perpendicular to the central axis of the nozzle body 1, 11, provided on the side surface along the surface perpendicular to the central axis
- a gas is blown from a supply port such as the air outlet 14, and the blown gas flows along the inner surfaces of the nozzle bodies 1 and 11, and fine bubbles B and B ′ are gradually formed, and the vicinity of the discharge ports 3 and 13. And a large amount of fine bubbles B and B ′.
- a surface perpendicular to the central axis of the nozzle body 1 with respect to the liquid flowing in the nozzle body 1 made of a cylindrical body.
- the gas blown from the slit 4 continuously provided on the side surface along the inner surface of the nozzle body 1 is a wide thin layer A (hereinafter also referred to as “thin layer A”) in which the gas continues along the inner surface.
- the cross-sectional shape of the cylindrical body of the nozzle body 1 used in the present invention can be circular or rectangular, but is preferably circular. By making the cross-sectional shape circular, the thickness of the thin layer A can be made uniform, and the liquid fine bubble content tends to be increased efficiently.
- the cross-sectional shape of the cylindrical body of the nozzle body 1 may be a perfect circle as shown in FIG. 3, or may be a substantially true circle or an ellipse.
- the slit 4 is “provided along a plane perpendicular to the central axis of the nozzle body 1 (hereinafter also referred to as“ vertical plane ”)”, but this is provided along the vertical plane.
- the slit 4 is “continuously provided on the side surface of the nozzle body 1”.
- the slit 4 is provided. It is also possible to leave a connection part in part so that the nozzle body 1 is not separated by providing.
- the nozzle body 1 made of a cylindrical body is provided with a rod-shaped body, preferably a rod-shaped body having a circular cross section along the central axis.
- liquid flow velocity the flow velocity of the liquid flowing in the nozzle body 1
- a liquid containing nanobubbles or microbubbles can be efficiently generated.
- the flow rate of the liquid and 2) the flow rate of the gas blown from the slit 4 in the direction orthogonal to the flow of the liquid in the nozzle body 1 (hereinafter also referred to as “gas flow rate”). It is necessary to balance this. If the gas flow rate is too large compared to the liquid flow rate, the gas is blown to the vicinity of the central axis of the nozzle body 1, making it difficult to form the thin layer A. On the other hand, when the gas flow rate is too small compared to the liquid flow rate, the liquid leaks out of the nozzle body 1 from the slit 4.
- a gas supply unit 5 that supplies pressurized gas (for example, pressurized air and / or oxygen) to the slit 4 is connected.
- the gas supply unit 5 is airtightly provided outside the nozzle body 1 so as to surround the slit 4.
- the pressure of the gas supplied to the gas supply unit 5 (hereinafter also referred to as “gas pressure”) is basically set so that the liquid does not leak from the slit 4 to the outside of the nozzle body 1. It is preferable to make it higher than the pressure of the liquid flowing in the nozzle body 1.
- the gas pressure can be set to an appropriate value in consideration of these factors, but normally the lower limit of the pressure at which liquid does not leak out of the nozzle body 1 from the slit 4 (for example, 1.5 atm) is the lower limit. It is preferable that the upper limit value is 3.0 atm.
- the slit 4 of the present invention is a pore continuously provided on the side surface along a surface perpendicular to the central axis of the nozzle body 1.
- the gap of the slit 4 can be set to an appropriate value that can form the thin layer A in consideration of the liquid flow rate, the gas flow rate, and the gas pressure.
- the gap between the slits 4 is too narrow, the generation efficiency of the fine bubbles B is reduced. If the gap is too wide, the fine bubbles B are hardly formed from the thin layer A in the vicinity of the discharge port 3. An appropriate value can be set.
- the gap of the slit 4 can be set to an appropriate value in consideration of these factors, but is usually 0.5 mm to 2.0 mm, preferably 0.5 mm to 1.5 mm, more preferably 0.5 mm. It can be set in the range of ⁇ 0.8 mm.
- the slit 4 is located upstream of the plane perpendicular to the central axis of the nozzle body 1. It is preferable to incline. Thereby, even if the gas flow rate itself is increased, there is an effect that the gas flow rate in the direction orthogonal to the liquid flow in the nozzle body 1 can be reduced, which prevents the formation of the thin layer A.
- an angle ⁇ (hereinafter also referred to as “inclination angle ⁇ ”) that is inclined upstream with respect to a plane perpendicular to the central axis of the nozzle body 1 stabilizes the thin layer A according to the liquid flow rate, the gas flow rate, and the like. It can be made an acute angle so that it can be formed.
- the inclination angle ⁇ is preferably 0 ° or more and 80 ° or less, more preferably 60 ° or more and 80 ° or less, and further preferably 70 ° or more and 80 ° or less.
- the amount of gas blowing can be increased without increasing the gas flow rate itself.
- the number of slits 4 is preferably large from the viewpoint of increasing the amount of gas blown, but if too large, the structure of the nozzle becomes complicated and the manufacturing cost and maintenance cost increase, so these factors are taken into consideration. It can be set appropriately.
- the number of steps of the slit 4 is preferably 1 to 3 steps.
- the slit 4 is formed by forming the nozzle body 1 with a single cylindrical body 1a, with a connecting portion in part. It can also be formed by cutting the peripheral surface of the cylindrical body, and FIG. 5 (second embodiment of the fine bubble generating nozzle of the present invention) and FIG. 6 (fine bubble generating nozzle of the present invention).
- FIG. 7 fourth embodiment of the fine bubble generating nozzle of the present invention
- the nozzle body 1 is formed of two or more cylindrical bodies 1b, 1c, etc. It can also be formed in connection parts such as cylindrical bodies 1b and 1c.
- the nozzle body 1 is formed of two cylindrical bodies 1b and 1c having a circular cross section, and these cylindrical bodies 1b and 1c, etc.
- the slit 4 having a small cross-sectional area becomes longer and the slit 4 becomes difficult to clean. There is a concern that the pressure of the gas supplied to the gas drops due to pressure loss.
- the third embodiment of the nozzle for generating fine bubbles of the present invention shown in FIG. 6 eliminates the above-mentioned concern.
- the third embodiment is different from the cylindrical body 1b having a circular cross-sectional shape.
- the length of the slit 4 is shortened by cutting off the tip of the connecting portion. Thereby, the cleaning of the slit 4 can be facilitated, and the pressure loss of the gas supplied into the nozzle body 1 can be reduced.
- ⁇ Discharge port> As shown in FIG. 2, in the vicinity of the discharge port 3, the thin layer A is separated from the inner surface of the nozzle body 1 to form the fine bubbles B. In order to make the thin layer A easily separated from the inner surface of the nozzle body 1, The inner diameter of the nozzle body 1 in the vicinity of the discharge port 3 can be gradually expanded toward the downstream side.
- irregularities are formed on the inner surface of the nozzle body 1 in the vicinity of the discharge port 3 to cause turbulence in the liquid flow.
- the formation of fine bubbles B can be promoted.
- Means for forming irregularities on the inner surface of the nozzle body 1 include means for cutting the inner surface of the nozzle body 1 to form recesses, means for joining a coiled member to the inner surface of the nozzle body 1 and forming projections, etc. Is mentioned.
- the nozzle for generating fine bubbles according to the present invention can easily and economically increase the content of fine bubbles efficiently and sufficiently to mix bubbles containing fine bubbles in the liquid. Utilizing the action of increasing the concentration (DO), sterilization and bactericidal action, ⁇ Manufacture and supply of shower water, bathtub water, washing water, washing water, etc. ⁇ Wastewater treatment from various industries such as food plants, pulp plants, chemical plants, wastewater treatment such as domestic wastewater from households, ⁇ Fish and shellfish culturing ⁇ Can be used in a wide range of fields such as chemical reactions and biological reactions.
- the nozzle for generating fine bubbles of the present invention can be suitably used in a chemical reaction using a reaction solution in which a solid catalyst is dispersed as a liquid, or a biological reaction using a culture solution containing microorganisms or the like as a liquid.
- the solid catalyst used in the chemical reaction is fragile and the activity of microorganisms used in the biological reaction is reduced by stress and damage.
- the thin layer A is a solid catalyst. Since it acts as a cushion for preventing microorganisms and the like from colliding with the inner surface of the nozzle body 1, it is possible to reduce the damage of the solid catalyst and the stress and damage of the microorganisms.
- the content of fine bubbles can be efficiently and sufficiently increased even if the flow rate of the liquid is reduced, so that the solid catalyst is broken and microorganisms are not damaged or damaged. can do.
- the nozzle for generating fine bubbles according to the present invention cultivates aerobic or facultative anaerobic microorganisms (hereinafter also referred to as “microorganisms”) and causes the microorganisms to generate reaction products, microorganisms, etc.
- microorganisms aerobic or facultative anaerobic microorganisms
- the biological reaction is carried out by the process of returning to the culture tank 7 through the use of the fine bubble generating nozzle of the present invention as the “micro / nano bubble generating device 9”, so that the thin layer A becomes a microorganism as shown in FIG. It serves as a cushion for preventing the nozzle body 1 from colliding with the inner surface of the nozzle body 1 and the like, and the stress and damage to the microorganisms can be reduced.
- the microbubble generation device 9 by using the fine bubble generating nozzle capable of efficiently generating the liquid having a high content of fine bubbles according to the present invention, the microbubble generation device 9 is extracted from the culture tank 7 and contains the fine bubbles. Since the amount of the biological culture solution 6 refluxed to the tank 7 can be set as low as 1% to less than 48% of the amount of the biological culture solution 6 accommodated in the culture tank 7 per minute, The stress and damage that etc. receive can be reduced.
- the method of mixing bubbles containing fine bubbles in the liquid of the present invention can be performed using the above-mentioned nozzle for generating fine bubbles, and can easily and economically increase the content of fine bubbles efficiently and sufficiently. Can be mixed with bubbles containing fine bubbles.
- the nozzle for generating fine bubbles according to the present invention can efficiently generate a liquid having a high content of fine bubbles.
- a plurality of nozzles for generating fine bubbles are provided in parallel to constitute a nozzle device for generating fine bubbles. As a result, a liquid containing fine bubbles can be generated more efficiently.
- This fine bubble generating nozzle device collects liquid containing fine bubbles from the liquid supply section that distributes and supplies the liquid to the inlet of each fine bubble generating nozzle and the discharge port of each fine bubble generating nozzle.
- a fine bubble-containing liquid recovery unit is provided for recovery.
- Example 1 and 2 and Comparative Examples 1 and 2 > In Examples 1 and 2 and Comparative Examples 1 and 2 below, as shown in Table 1, a nozzle for generating fine bubbles having the following shape and structure was used.
- ⁇ Nozzle body A cylindrical body having an inner diameter of 6.0 mm and a circular cross section.
- ⁇ Slits or holes provided in the nozzle body [Embodiment 1] An angle ⁇ inclined to the upstream side with respect to a surface perpendicular to the central axis of the nozzle body provided continuously along the side surface along a surface perpendicular to the central axis of the nozzle body is 0 °.
- glucose aqueous solution (hereinafter referred to as “glucose aqueous solution”) was flowed: While supplying at 16 m / second, air was supplied from a slit or hole provided in the nozzle body at an air flow rate of 30 L / min to obtain a glucose aqueous solution in which fine air bubbles were mixed.
- the KLA [mass transfer capacity coefficient (/ h)] of the aqueous glucose solution mixed with the fine air bubbles was measured. The results are shown in Table 2.
- KLA mass transfer capacity coefficient (/ h)] is generally used as an index representing the dissolved oxygen concentration (DO) of the liquid, and the larger this value, the higher the dissolved oxygen concentration of the liquid. Yes. That is, in order for oxygen in the air to be dissolved in the liquid to become dissolved oxygen, gas phase oxygen molecules O 2 must move into the liquid, and this oxygen transfer rate OTR is expressed by the following general formula (1). Therefore, the larger the KLA value, the higher the dissolved oxygen concentration of the liquid.
- OTR KLA ⁇ (C S -C) (1)
- OTR Oxygen transfer rate (mg / L ⁇ h)
- KLA Mass transfer capacity coefficient (/ h)
- C S Saturated solubility of oxygen in water (mg / L)
- C Oxygen solubility in water (mg / L).
- Example 1 (angle ⁇ is 0 °) and Example 2 (angle ⁇ is 75 °)
- the slit is inclined upstream with respect to the plane perpendicular to the central axis of the nozzle body. It can be seen that the concentration of dissolved oxygen in the liquid can be increased.
- Example 2 the shape of the air supply port is “slit”
- Comparative Example 1 the shape of the air supply port is “hole”
- the bubble size distribution of the bubbles was measured using an image analysis method particle size measuring device (manufactured by Microtrack Bell).
- the bubble diameter distribution of Example 2 is shown in Table 3, and the bubble diameter distribution of Comparative Example 1 is shown in Table 4.
- the bubble distributions shown in Tables 3 and 4 were measured for 1 minute using the above measuring apparatus, the horizontal axis represents the bubble diameter ( ⁇ m), and the vertical axis represents each bubble diameter relative to the total number of bubbles measured. The ratio (%) of bubbles is shown.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- Sustainable Development (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Accessories For Mixers (AREA)
Abstract
本件発明の課題は、微細気泡の生成効率を向上させ、液体の微細気泡含有率を効率良く十分に高めることができる、簡単な形状・構造の微細気泡発生用ノズルを提供すること、この微細気泡発生用ノズルを用いて液体に微細気泡を含む気泡を混合させる方法を提供すること、この微細気泡発生用ノズルを備えた生物反応装置を提供すること、およびこの微細気泡発生用ノズルを複数本備えた微細気泡発生用ノズル装置を提供することにある。 上記課題を解決するため、本件発明の微細気泡発生用ノズルは、ノズル本体を流れる液体に、ノズル本体の中心軸に垂直な面に沿って、側面に連続して設けられたスリットを通して、気体を供給することにより、微細気泡の生成効率を向上させ、液体の微細気泡含有率を効率良く十分に高めることができる。
Description
本件発明は、液体に、空気、酸素等の気体のナノバブル乃至マイクロバブルの微細気泡を含む気泡を混合させ、気体の微細気泡を含有する液体とするために用いられる微細気泡発生用ノズル、この微細気泡発生用ノズルを用いて液体に微細気泡を含む気泡を混合させる方法、この微細気泡発生用ノズルを備えた生物反応装置、およびこの微細気泡発生用ノズルを複数本備えた微細気泡発生用ノズル装置に関する。
液体に含有される微細気泡による、液体の溶存酸素濃度(DO)を高める作用、滅菌・殺菌作用等に着目して、微細気泡を含有する液体は、シャワー水、浴槽水、洗濯水、洗浄水等として利用され、また、食品プラント、パルププラント、化学プラント等の各種産業から発生する廃水、家庭からの生活廃水等の廃水処理の分野、生物反応[微生物または細胞(以下、「微生物等」ともいう。)を培養して、微生物等に反応生成物を生成させたり、微生物等を増殖させる反応]や魚介類の養殖の分野において利用されている。
本件発明においては、個数平均直径が1μm以上100μm以下の気泡をマイクロバブルといい、個数平均直径が1μm未満の気泡をナノバブルという。微細気泡の気泡径を測定する方法としては、画像解析法、レーザー回折散乱法、電気的検知帯法、共振式質量測定法、光ファイバープローブ法等が一般に用いられ、ナノバブルの気泡径を測定する方法としては、動的光散乱法、ブラウン運動トラッキング法、電気的検知帯法、共振式質量測定法等が一般に用いられている。極微小気泡である「ナノバブル」は、「ウルトラファインバブル」とも呼ばれる。なお、現在、ISO(国際標準化機構)において、ファインバブル技術に関する国際標準の作成が検討されており、国際標準が作成されれば、現在一般的に用いられている「ナノバブル」との呼称が、「ウルトラファインバブル」に統一される可能性もある。
このような気体の微細気泡を含有する液体は、筒状体からなるノズル本体内を流れる液体に対して、ノズル本体の中心軸に垂直な面に沿って、側面に設けられた複数の噴出口から気体を吹き込むことにより、気体の微細気泡を含有する液体を得ている。(特許文献1および2)
例えば、特許文献1には、図9にその外観を模式図で示すように、泥土の曝気装置10が開示されており、この曝気装置10では、筒状体からなるノズル本体11の流入口12から泥土を流入させ、放出口13から放出すると共に、ノズル本体11の中心軸に垂直な面に沿って、側面に設けられた複数の空気噴出口14から圧縮空気を吹き込み、泥土に微細気泡を混合させている。この曝気装置10においては、図10および図11の模式図に示すように、ノズル本体11内を流れる泥土に吹き込まれた圧縮空気は、気体の複数の帯A’を形成してノズル本体11の内面に沿って流れ、放出口13付近で微細気泡B’となる。
しかしながら、上記特許文献1および2に開示されるような、ノズル本体の中心軸に垂直な面に沿って、側面に設けられた複数の噴出口から気体を吹き込む微細気泡発生用ノズルでは、ノズル本体内を流れる液体に対して吹き込まれた気体が複数の帯状を形成してノズル本体の内面に沿って流れるため、微細気泡の生成効率が悪く、液体の微細気泡含有率を効率良く十分に高めることは難しい。
特許文献3には、開口部の高速水噴流に向けて、噴出環状口からオゾンを吹き出し、循環渦流の作用により水噴流に流入させるようにしたノズルが開示されている。また、特許文献4には、加圧された液体と、環状の隙間から供給された気体とを、撹拌混合室でループの流れによって撹拌混合するループ式バブル発生ノズルが開示されている。
しかしながら、上記特許文献3および4に開示されるようなノズルは、開口部、撹拌混合室等の特定の箇所において、乱流を生じさせることにより液体と気体を混合するものであり、本件発明のノズル、上記特許文献1および2に開示されるノズルのような、ノズル本体内を流れる液体に対して気体を吹き込み、ノズル本体の内面に沿って流すタイプの、簡単な形状・構造の微細気泡発生用ノズルではない。
本件発明者等は、筒状体からなる簡単な形状・構造のノズル本体を有する微細気泡発生用ノズルを用い、微細気泡の生成効率を向上させ、液体の微細気泡含有率を効率良く十分に高めることについて鋭意実験・検討を重ね、本件発明を成したものである。
すなわち、本件発明の課題は、微細気泡の生成効率を向上させ、液体の微細気泡含有率を効率良く十分に高めることができる、簡単な形状・構造の微細気泡発生用ノズルを提供すること、この微細気泡発生用ノズルを用いた液体に微細気泡を含む気泡を混合させる方法を提供すること、この微細気泡発生用ノズルを備えた生物反応装置を提供すること、およびこの微細気泡発生用ノズルを複数本備えた微細気泡発生用ノズル装置を提供することにある。
本件発明者等は、従来の簡単な形状・構造の微細気泡発生用ノズル(すなわち、ノズル本体内を流れる液体に対して吹き込まれた気体をノズル本体の内面に沿って流して微細気泡を生成する従来のノズル)において、驚くべきことに、ノズル本体を流れる液体に対して、ノズル本体の中心軸に垂直な面に沿って、側面に連続して設けられたスリットを通して、気体を供給することにより、微細気泡の生成効率を向上させ、液体の微細気泡含有率を効率良く十分に高めることができることを見出し、本件発明を成したものである。
本件発明の要旨を以下に示す。
(1)液体に、ナノバブル乃至マイクロバブルの微細気泡を含む気泡を混合させて、前記微細気泡を含有する液体とするための微細気泡発生用ノズルであって、
上流側には、液体が流入する流入口が設けられ、下流側には、前記微細気泡を含む気泡を混合させた液体を放出する放出口が設けられた筒状体からなるノズル本体と、
前記ノズル本体の中心軸に垂直な面に沿って、側面に連続して設けられたスリットと、
前記スリットに接続され、前記スリットに気体を供給する気体供給部
を有することを特徴とする、微細気泡発生用ノズル。
(2)前記スリットが、前記ノズル本体の中心軸に垂直な面に対して上流側に傾斜する角度θを鋭角としたことを特徴とする、(1)に記載の微細気泡発生用ノズル。
(3)前記スリットが、前記ノズル本体に複数段設けられていることを特徴とする、(1)または(2)に記載の微細気泡発生用ノズル。
(4)前記ノズル本体が1つの筒状体で形成されており、前記スリットが、一部に接続部を残し、前記1つの筒状体の周面を切削して設けられていることを特徴とする、(1)~(3)のいずれかに記載の微細気泡発生用ノズル。
(5)前記ノズル本体が2本以上の筒状体で形成されており、前記スリットが、前記筒状体の接続部に形成されていることを特徴とする、(1)~(3)のいずれかに記載の微細気泡発生用ノズル。
(6)前記放出口付近における前記ノズル本体の内径が、下流側に向けて漸次拡張されていることを特徴とする、(1)~(5)のいずれかに記載の微細気泡発生用ノズル。
(7)前記微細気泡発生用ノズルが、化学反応に用いられるものであることを特徴とする、(1)~(6)のいずれかに記載の微細気泡発生用ノズル。
(8)前記微細気泡発生用ノズルが、生物反応に用いられるものであることを特徴とする、(1)~(6)のいずれかに記載の微細気泡発生用ノズル。
(9)前記(1)~(8)のいずれかに記載の微細気泡発生用ノズルを用いて、液体に、ナノバブル乃至マイクロバブルの微細気泡を含む気泡を混合させる方法。
(10)培養液及び好気性または通性嫌気性微生物を含有する生物培養液を収容する培養槽と、該培養槽から抜き出した生物培養液に、ナノバブル乃至マイクロバブルの微細気泡を含む気泡を含有させる(8)に記載の微細気泡発生用ノズルと、該微細気泡を含有させた生物培養液を前記培養槽に還流する管路と、を備えることを特徴とする、生物反応装置。
(11)前記培養槽から抜き出し、ナノバブル乃至マイクロバブルの微細気泡を含む気泡を含有させた後に前記培養槽に還流する生物培養液の量を、1分間当たり、前記培養槽に収容された生物培養液の量の1%以上48%未満に設定することを特徴とする、(10)に記載の生物反応装置。
(12)前記(1)~(8)のいずれかに記載の微細気泡発生用ノズルを複数本並列して設け、各微細気泡発生用ノズルにおいて、並行して、液体にナノバブル乃至マイクロバブルの微細気泡を含む気泡を混合させて、前記微細気泡を含有する液体とすることを特徴とする、微細気泡発生用ノズル装置。
(1)液体に、ナノバブル乃至マイクロバブルの微細気泡を含む気泡を混合させて、前記微細気泡を含有する液体とするための微細気泡発生用ノズルであって、
上流側には、液体が流入する流入口が設けられ、下流側には、前記微細気泡を含む気泡を混合させた液体を放出する放出口が設けられた筒状体からなるノズル本体と、
前記ノズル本体の中心軸に垂直な面に沿って、側面に連続して設けられたスリットと、
前記スリットに接続され、前記スリットに気体を供給する気体供給部
を有することを特徴とする、微細気泡発生用ノズル。
(2)前記スリットが、前記ノズル本体の中心軸に垂直な面に対して上流側に傾斜する角度θを鋭角としたことを特徴とする、(1)に記載の微細気泡発生用ノズル。
(3)前記スリットが、前記ノズル本体に複数段設けられていることを特徴とする、(1)または(2)に記載の微細気泡発生用ノズル。
(4)前記ノズル本体が1つの筒状体で形成されており、前記スリットが、一部に接続部を残し、前記1つの筒状体の周面を切削して設けられていることを特徴とする、(1)~(3)のいずれかに記載の微細気泡発生用ノズル。
(5)前記ノズル本体が2本以上の筒状体で形成されており、前記スリットが、前記筒状体の接続部に形成されていることを特徴とする、(1)~(3)のいずれかに記載の微細気泡発生用ノズル。
(6)前記放出口付近における前記ノズル本体の内径が、下流側に向けて漸次拡張されていることを特徴とする、(1)~(5)のいずれかに記載の微細気泡発生用ノズル。
(7)前記微細気泡発生用ノズルが、化学反応に用いられるものであることを特徴とする、(1)~(6)のいずれかに記載の微細気泡発生用ノズル。
(8)前記微細気泡発生用ノズルが、生物反応に用いられるものであることを特徴とする、(1)~(6)のいずれかに記載の微細気泡発生用ノズル。
(9)前記(1)~(8)のいずれかに記載の微細気泡発生用ノズルを用いて、液体に、ナノバブル乃至マイクロバブルの微細気泡を含む気泡を混合させる方法。
(10)培養液及び好気性または通性嫌気性微生物を含有する生物培養液を収容する培養槽と、該培養槽から抜き出した生物培養液に、ナノバブル乃至マイクロバブルの微細気泡を含む気泡を含有させる(8)に記載の微細気泡発生用ノズルと、該微細気泡を含有させた生物培養液を前記培養槽に還流する管路と、を備えることを特徴とする、生物反応装置。
(11)前記培養槽から抜き出し、ナノバブル乃至マイクロバブルの微細気泡を含む気泡を含有させた後に前記培養槽に還流する生物培養液の量を、1分間当たり、前記培養槽に収容された生物培養液の量の1%以上48%未満に設定することを特徴とする、(10)に記載の生物反応装置。
(12)前記(1)~(8)のいずれかに記載の微細気泡発生用ノズルを複数本並列して設け、各微細気泡発生用ノズルにおいて、並行して、液体にナノバブル乃至マイクロバブルの微細気泡を含む気泡を混合させて、前記微細気泡を含有する液体とすることを特徴とする、微細気泡発生用ノズル装置。
本件発明の微細気泡発生用ノズルは、簡単な形状・構造を有し、微細気泡の生成効率を向上させ、液体の微細気泡含有率を効率良く十分に高めることができる。
また、本件発明の該微細気泡発生用ノズルを用いて液体に微細気泡を含む気泡を混合させる方法は、簡単かつ経済的に、微細気泡含有率を効率良く十分に高めて、液体に微細気泡を含む気泡を混合させることができる。
また、本件発明の該微細気泡発生用ノズルを備えた生物反応装置は、簡単かつ経済的に、微細気泡含有率を効率良く十分に高めて、液体に微細気泡を含む気泡を混合させることのできる微細気泡発生用ノズルを備えることにより、微生物等が受けるストレス・ダメージを低減し、生物反応を効率的、経済的に行うことができる。
また、本件発明の該微細気泡発生用ノズルを複数本備えた微細気泡発生用ノズル装置は、微細気泡発生用ノズルを複数本並列して設けて微細気泡発生用ノズル装置を構成することにより、微細気泡を含有する液体をより効率良く生成することができる。
以下、本件発明の実施形態を、添付の図面も参照しながら詳細に説明するが、本件発明はこれらに限定されるものではない。
<一般的な微細気泡発生用ノズル>
まず、本件発明のノズル、上記特許文献1および2に開示されるノズルのような、ノズル本体内を流れる液体に対して気体を吹き込み、ノズル本体の内面に沿って流すタイプの、簡単な形状・構造の微細気泡発生用ノズルについて説明する。
まず、本件発明のノズル、上記特許文献1および2に開示されるノズルのような、ノズル本体内を流れる液体に対して気体を吹き込み、ノズル本体の内面に沿って流すタイプの、簡単な形状・構造の微細気泡発生用ノズルについて説明する。
前記簡単な形状・構造の微細気泡発生用ノズルは、図1~3(本件発明)、図9~11(従来例)に示すように、流入口2,12から供給され、ノズル本体1,11内を流れる液体に対して、ノズル本体1,11の中心軸に垂直な面に沿って、側面に連続して設けられたスリット4、中心軸に垂直な面に沿って、側面に設けられた空気噴出口14等の供給口から気体を吹き込み、吹き込まれた気体はノズル本体1,11の内面に沿って流れ、微細気泡B,B’が徐々に形成されると共に、放出口3,13付近で多量の微細気泡B,B’となるものである。
<本件発明の微細気泡発生用ノズルの特徴>
図9~11に示すような従来の微細気泡発生用ノズルでは、筒状体からなるノズル本体11内を流れる液体に対して、ノズル本体11の中心軸に垂直な面に沿って、側面に設けられた複数の空気噴出口14から吹き込まれた気体は、気体の複数の帯A’を形成してノズル本体11の内面に沿って流れ放出口13付近で微細気泡B’となるため、微細気泡の生成効率が悪く、液体の微細気泡含有率を効率良く十分に高めることは難しい。
図9~11に示すような従来の微細気泡発生用ノズルでは、筒状体からなるノズル本体11内を流れる液体に対して、ノズル本体11の中心軸に垂直な面に沿って、側面に設けられた複数の空気噴出口14から吹き込まれた気体は、気体の複数の帯A’を形成してノズル本体11の内面に沿って流れ放出口13付近で微細気泡B’となるため、微細気泡の生成効率が悪く、液体の微細気泡含有率を効率良く十分に高めることは難しい。
一方、図1~3(本件発明)に示すような本件発明の微細気泡発生用ノズルでは、筒状体からなるノズル本体1内を流れる液体に対して、ノズル本体1の中心軸に垂直な面に沿って、側面に連続して設けられたスリット4から吹き込まれた気体は、ノズル本体1の内面に沿って気体の連続する幅広の薄層A(以下、「薄層A」ともいう。)を形成してノズル本体1の内面に沿って流れ、微細気泡Bが徐々に形成されると共に、放出口3付近で多量の微細気泡Bが形成されるため、微細気泡の生成効率を向上させ、液体の微細気泡含有率を効率良く十分に高めることができる。
本件発明において用いられるノズル本体1の筒状体の断面形状は、円形または矩形とすることができるが、円形とするのが好ましい。断面形状を円形とすることにより、薄層Aの厚さを均等なものとでき、液体の微細気泡含有率を効率良く高められる傾向にある。ノズル本体1の筒状体の断面形状は、図3に示すように真円形であってもよいし、略真円形または楕円形であってもよい。
なお、本件発明において、スリット4は、「ノズル本体1の中心軸に垂直な面(以下、「垂直面」ともいう。)に沿って設けられる」が、これは、垂直面に大凡沿って設けられることを意味する。また、本件発明において、スリット4は、「ノズル本体1の側面に連続して設けられる」が、後で述べるように、ノズル本体1を1本の筒状体で形成するような場合、スリット4を設けることによりノズル本体1が分離しないように、一部に接続部を残すこともできる。
また、筒状体からなるノズル本体1には、その中心軸に沿って棒状体、好ましくは断面形状が円形の棒状体を配することが好ましい。これにより、ノズル本体1への液体の供給量が同じであっても、ノズル本体1内を流れる液体の流速(以下、「液体の流速」ともいう。)を高くできるので、薄層Aを安定的に形成することができ、また、ナノバブル乃至マイクロバブルの微細気泡を含有する液体を効率良く生成することができる。
本件発明の微細気泡発生用ノズルを用いて、薄層Aを円滑に形成するためには、
1)液体の流速、および
2)ノズル本体1内の液体の流れに直交する方向への、スリット4から吹き込まれる気体の流速(以下、「気体の流速」ともいう。)
のバランスを適切なものとすることが必要である。液体の流速に比べ気体の流速が大きすぎる場合には、ノズル本体1の中心軸近くまで気体が吹き込まれ、薄層Aを形成するのが困難となる。一方、液体の流速に比べ気体の流速が小さすぎる場合には、液体がスリット4からノズル本体1の外部に漏れ出すこととなる。
1)液体の流速、および
2)ノズル本体1内の液体の流れに直交する方向への、スリット4から吹き込まれる気体の流速(以下、「気体の流速」ともいう。)
のバランスを適切なものとすることが必要である。液体の流速に比べ気体の流速が大きすぎる場合には、ノズル本体1の中心軸近くまで気体が吹き込まれ、薄層Aを形成するのが困難となる。一方、液体の流速に比べ気体の流速が小さすぎる場合には、液体がスリット4からノズル本体1の外部に漏れ出すこととなる。
<気体供給部>
図4に示すように、本件発明の微細気泡発生用ノズルにおいては、スリット4に加圧された気体(例えば、加圧された空気および/または酸素)を供給する気体供給部5が接続される。好適には、気体供給部5は、スリット4を囲むように、ノズル本体1の外部に気密に設けられる。
図4に示すように、本件発明の微細気泡発生用ノズルにおいては、スリット4に加圧された気体(例えば、加圧された空気および/または酸素)を供給する気体供給部5が接続される。好適には、気体供給部5は、スリット4を囲むように、ノズル本体1の外部に気密に設けられる。
気体供給部5に供給される気体の圧力(以下、「気体の圧力」ともいう。)は、基本的には、液体がスリット4からノズル本体1の外部に漏れ出さないようにするために、ノズル本体1内を流れる液体の圧力よりも高くすることが好ましい。
一方、気体の圧力を高くするとこれに伴い気体の流速が大きくなるため、気体の圧力を高くしすぎると、液体の流速に比べ気体の流速が大きくなりすぎ、薄層Aを形成するのが困難となる傾向にある。
気体の圧力は、これらの要素を考慮して適切な値を設定することができるが、通常は、液体がスリット4からノズル本体1の外部に漏れ出さない圧力(例えば、1.5atm)を下限値とし、3.0atmを上限値とするのが好ましい。
<スリット>
本件発明のスリット4は、図1~2および5~7に示すように、ノズル本体1の中心軸に垂直な面に沿って、側面に連続して設けられた細孔である。
本件発明のスリット4は、図1~2および5~7に示すように、ノズル本体1の中心軸に垂直な面に沿って、側面に連続して設けられた細孔である。
スリット4の間隙は、液体の流速、気体の流速、気体の圧力も考慮して、薄層Aを形成できる適切な値を設定することができる。
また、スリット4の間隙は、狭すぎると微細気泡Bの生成効率が低下し、広すぎると放出口3付近で薄層Aから微細気泡Bが形成されにくくなるので、これらの要素も考慮して適切な値を設定することができる。
スリット4の間隙は、これらの要素を考慮して適切な値を設定することができるが、通常は0.5mm~2.0mm、好ましくは0.5mm~1.5mm、より好ましくは0.5mm~0.8mmの範囲に設定することができる。
液体の微細気泡含有率を効率良く高めるためには、気体の流速を大きくして気体の吹き込み量を増加することが好ましいが、一方で、上記<本件発明の微細気泡発生用ノズルの特徴>で説明したように、気体の流速を液体の流速に比べて大きくするに伴い、薄層Aを形成するのが困難となる。
上記の「液体の微細気泡含有率の向上」と「薄層Aの安定的な形成」とを両立させるためには、スリット4をノズル本体1の中心軸に垂直な面に対して上流側に傾斜させることが好ましい。これにより、気体の流速自体を大きくしても、薄層Aの形成を妨げる、ノズル本体1内の液体の流れに直交する方向への気体の流速を低減できる作用が生じる。ノズル本体1の中心軸に垂直な面に対して上流側に傾斜する角度θ(以下、「傾斜角度θ」ともいう。)は、液体の流速、気体の流速等に応じて薄層Aを安定的に形成できるように鋭角とすることができる。傾斜角度θは、上記作用を考慮して、0°以上80°以下とするのが好ましく、60°以上80°以下とするのがより好ましく、70°以上80°以下とするのがさらに好ましい。
また、上記の「液体の微細気泡含有率の向上」と「薄層Aの安定的な形成」とを両立させるためには、スリット4をノズル本体1に複数段設けることも好ましい。これにより、気体の流速自体を大きくしなくても、気体の吹き込み量を増加することができる。スリット4の段数は、気体の吹き込み量を増加する観点からは多い方が好ましいが、多すぎるとノズルの構造が複雑になり製造コスト・メンテナンスコストが高くなることから、これらの要素を考慮して適宜設定することができる。スリット4の段数は、通常、1~3段とするのが好ましい。
<スリットの形成>
スリット4は、図1および図2(本件発明の微細気泡発生用ノズルの第1実施形態)に示すように、ノズル本体1を1本の筒状体1aで形成し、一部に接続部を残して筒状体の周面を切削して形成することもできるし、また、図5(本件発明の微細気泡発生用ノズルの第2実施形態)、図6(本件発明の微細気泡発生用ノズルの第3実施形態)および図7(本件発明の微細気泡発生用ノズルの第4実施形態)に示すように、ノズル本体1を2本以上の筒状体1b、1c等で形成し、これらの筒状体1b、1c等の接続部に形成することもできる。
スリット4は、図1および図2(本件発明の微細気泡発生用ノズルの第1実施形態)に示すように、ノズル本体1を1本の筒状体1aで形成し、一部に接続部を残して筒状体の周面を切削して形成することもできるし、また、図5(本件発明の微細気泡発生用ノズルの第2実施形態)、図6(本件発明の微細気泡発生用ノズルの第3実施形態)および図7(本件発明の微細気泡発生用ノズルの第4実施形態)に示すように、ノズル本体1を2本以上の筒状体1b、1c等で形成し、これらの筒状体1b、1c等の接続部に形成することもできる。
図5に示す本件発明の微細気泡発生用ノズルの第2実施形態では、ノズル本体1を2本の断面形状が円形の筒状体1b、1cで形成し、これらの筒状体1b、1c等の接続部に傾斜角度θのスリット4を形成しているが、この第2実施形態では、断面積の小さいスリット4が長くなることに伴い、スリット4の洗浄がやりにくくなる、ノズル本体1内に供給される気体の圧力が圧力損失により低下する等の懸念がある。
図6に示す本件発明の微細気泡発生用ノズルの第3実施形態は、上記懸念を解消するものであり、断面形状が円形の筒状体1cにおいて、断面形状が円形の筒状体1bとの接続部の先端部を切除することにより、スリット4の長さを短くしたものである。これにより、スリット4の洗浄を容易にし、ノズル本体1内に供給される気体の圧力損失を低減することができる。
<放出口>
図2に示すように、放出口3付近で、薄層Aがノズル本体1の内面から離れて微細気泡Bが形成されるが、薄層Aがノズル本体1の内面から離れやすくするために、放出口3付近におけるノズル本体1の内径を、下流側に向けて漸次拡張することができる。
図2に示すように、放出口3付近で、薄層Aがノズル本体1の内面から離れて微細気泡Bが形成されるが、薄層Aがノズル本体1の内面から離れやすくするために、放出口3付近におけるノズル本体1の内径を、下流側に向けて漸次拡張することができる。
また、図7に示す本件発明の微細気泡発生用ノズルの第4実施形態のように、放出口3付近におけるノズル本体1の内面に凹凸を形成し、液体の流れに乱流を生じさせることにより、微細気泡Bの形成を促進することができる。ノズル本体1の内面に凹凸を形成する手段としては、ノズル本体1の内面を切削して凹部を形成する手段、ノズル本体1の内面にコイル状の部材を接合して凸部を形成する手段等が挙げられる。
<ノズルの用途>
本件発明の微細気泡発生用ノズルは、簡単かつ経済的に、微細気泡含有率を効率良く十分に高めて、液体に微細気泡を含む気泡を混合させることができるので、微細気泡による液体の溶存酸素濃度(DO)を高める作用、滅菌・殺菌作用等を利用した、
〇シャワー水、浴槽水、洗濯水、洗浄水等の製造・供給、
〇食品プラント、パルププラント、化学プラント等の各種産業から発生する廃水、家庭からの生活廃水等の廃水処理、
〇魚介類の養殖
〇化学反応、生物反応
等の幅広い分野で使用することができる。
本件発明の微細気泡発生用ノズルは、簡単かつ経済的に、微細気泡含有率を効率良く十分に高めて、液体に微細気泡を含む気泡を混合させることができるので、微細気泡による液体の溶存酸素濃度(DO)を高める作用、滅菌・殺菌作用等を利用した、
〇シャワー水、浴槽水、洗濯水、洗浄水等の製造・供給、
〇食品プラント、パルププラント、化学プラント等の各種産業から発生する廃水、家庭からの生活廃水等の廃水処理、
〇魚介類の養殖
〇化学反応、生物反応
等の幅広い分野で使用することができる。
とりわけ、本件発明の微細気泡発生用ノズルは、液体として固体触媒を分散させた反応液を用いる化学反応、液体として微生物等を含む培養液を用いる生物反応において好適に使用することができる。
すなわち、化学反応で用いられる固体触媒は壊れやすく、また、生物反応で用いられる微生物等はストレス・ダメージにより活性が低下するが、本件発明の微細気泡発生用ノズルでは、薄層Aが、固体触媒、微生物等がノズル本体1の内面に衝突するのを防止するクッションの役割を果たすため、固体触媒が壊れたり、微生物等がストレス・ダメージを受けたりするのを低減することができる。また、本件発明の微細気泡発生用ノズルでは、液体の流速を小さくしても微細気泡含有率を効率良く十分に高められるため、固体触媒が壊れたり、微生物等がストレス・ダメージを受けるのを低減することができる。
<生物反応装置>
なかでも、本件発明の微細気泡発生用ノズルは、好気性または通性嫌気性微生物(以下、「微生物等」ともいう。)を培養して、微生物等に反応生成物を生成させたり、微生物等を増殖させる生物反応装置において、特に好適に使用することができる。
なかでも、本件発明の微細気泡発生用ノズルは、好気性または通性嫌気性微生物(以下、「微生物等」ともいう。)を培養して、微生物等に反応生成物を生成させたり、微生物等を増殖させる生物反応装置において、特に好適に使用することができる。
図8に示す生物反応装置では、
1)培養液および微生物等を含有する生物培養液6を培養槽7から抜き出す工程、
2)抜き出した生物培養液6をマイクロナノバブル発生槽8に供給して、マイクロナノバブル発生装置9により、微細気泡を含有させる工程、および
3)微細気泡を含有させた生物培養液6を還流管路を通じて培養槽7に戻す工程
により生物反応が行われるが、この「マイクロナノバブル発生装置9」として、本件発明の微細気泡発生用ノズルを用いることにより、図3に示すように、薄層Aが微生物等のノズル本体1の内面への衝突を防止するクッションの役割を果たし、微生物等が受けるストレス・ダメージを低減することができる。
1)培養液および微生物等を含有する生物培養液6を培養槽7から抜き出す工程、
2)抜き出した生物培養液6をマイクロナノバブル発生槽8に供給して、マイクロナノバブル発生装置9により、微細気泡を含有させる工程、および
3)微細気泡を含有させた生物培養液6を還流管路を通じて培養槽7に戻す工程
により生物反応が行われるが、この「マイクロナノバブル発生装置9」として、本件発明の微細気泡発生用ノズルを用いることにより、図3に示すように、薄層Aが微生物等のノズル本体1の内面への衝突を防止するクッションの役割を果たし、微生物等が受けるストレス・ダメージを低減することができる。
さらに、「マイクロナノバブル発生装置9」として、本件発明の微細気泡含有率の高い液体を効率良く生成できる微細気泡発生用ノズルを用いることにより、培養槽7から抜き出し、微細気泡を含有させた後に培養槽7に還流する生物培養液6の量を、1分間当たり、培養槽7に収容された生物培養液6の量の1%以上48%未満と低く設定することができるため、液循環により微生物等が受けるストレス・ダメージを軽減することができる。
<液体に微細気泡を含む気泡を混合させる方法>
本件発明の液体に微細気泡を含む気泡を混合させる方法は、上記の微細気泡発生用ノズルを用いて行うことができ、簡単かつ経済的に、微細気泡含有率を効率良く十分に高めて、液体に微細気泡を含む気泡を混合させることができる。
本件発明の液体に微細気泡を含む気泡を混合させる方法は、上記の微細気泡発生用ノズルを用いて行うことができ、簡単かつ経済的に、微細気泡含有率を効率良く十分に高めて、液体に微細気泡を含む気泡を混合させることができる。
<微細気泡発生用ノズル装置>
本件発明の微細気泡発生用ノズルは、微細気泡含有率の高い液体を効率良く生成できるものであるが、この微細気泡発生用ノズルを複数本並列して設けて微細気泡発生用ノズル装置を構成することにより、微細気泡を含有する液体をより効率良く生成することができる。
本件発明の微細気泡発生用ノズルは、微細気泡含有率の高い液体を効率良く生成できるものであるが、この微細気泡発生用ノズルを複数本並列して設けて微細気泡発生用ノズル装置を構成することにより、微細気泡を含有する液体をより効率良く生成することができる。
この微細気泡発生用ノズル装置には、各微細気泡発生用ノズルの流入口に液体を分配して供給する液体供給部、および各微細気泡発生用ノズルの放出口から微細気泡を含有する液体を集めて回収する微細気泡含有液体回収部が設けられる。
つぎに、本件発明の微細気泡発生用ノズルについて実施例・比較例を用いて説明するが、本件発明はこれら実験例・比較実験例により限定されるものではない。
<実施例1~2・比較例1~2>
以下の実施例1~2・比較例1~2では、表1に整理して示すように、次のような形状・構造の微細気泡発生用ノズルを用いた。
〇ノズル本体:内径6.0mmの断面形状が円形の筒状体
〇ノズル本体に設けられたスリットまたは孔:
[実施例1]ノズル本体の中心軸に垂直な面に沿って、側面に連続して設けられた、ノズル本体の中心軸に垂直な面に対して上流側に傾斜する角度θが0°、間隙が0.8mmであるスリット
[実施例2]ノズル本体の中心軸に垂直な面に沿って、側面に連続して設けられた、ノズル本体の中心軸に垂直な面に対して上流側に傾斜する角度θが75°、間隙が0.8mmであるスリット
[比較例1]ノズル本体の中心軸に垂直な面に沿って、側面に連続して等間隔に設けられた、ノズル本体の中心軸に垂直な面に対して上流側に傾斜する角度θが0°、3個の直径1.0mmの孔
[比較例2]ノズル本体の中心軸に垂直な面に沿って、側面に連続して等間隔に設けられた、ノズル本体の中心軸に垂直な面に対して上流側に傾斜する角度θが0°、3個の直径2.0mmの孔
〇スリットまたは孔の段数:1段
以下の実施例1~2・比較例1~2では、表1に整理して示すように、次のような形状・構造の微細気泡発生用ノズルを用いた。
〇ノズル本体:内径6.0mmの断面形状が円形の筒状体
〇ノズル本体に設けられたスリットまたは孔:
[実施例1]ノズル本体の中心軸に垂直な面に沿って、側面に連続して設けられた、ノズル本体の中心軸に垂直な面に対して上流側に傾斜する角度θが0°、間隙が0.8mmであるスリット
[実施例2]ノズル本体の中心軸に垂直な面に沿って、側面に連続して設けられた、ノズル本体の中心軸に垂直な面に対して上流側に傾斜する角度θが75°、間隙が0.8mmであるスリット
[比較例1]ノズル本体の中心軸に垂直な面に沿って、側面に連続して等間隔に設けられた、ノズル本体の中心軸に垂直な面に対して上流側に傾斜する角度θが0°、3個の直径1.0mmの孔
[比較例2]ノズル本体の中心軸に垂直な面に沿って、側面に連続して等間隔に設けられた、ノズル本体の中心軸に垂直な面に対して上流側に傾斜する角度θが0°、3個の直径2.0mmの孔
〇スリットまたは孔の段数:1段
実施例1~2、比較例1~2の微細気泡発生用ノズルに、ノズル本体の一端の流入口から、10質量%の濃度のブドウ糖の水溶液(以下、「ブドウ糖水溶液」という。)を流速:16m/秒で供給すると共に、ノズル本体に設けたスリットまたは孔から、空気を通気量:30L/分で供給して、空気の微細気泡を混合させたブドウ糖水溶液とした。
得られた空気の微細気泡を混合させたブドウ糖水溶液のKLA[物質移動容量係数(/h)]を測定した。その結果を表2に示す。
KLA[物質移動容量係数(/h)]は、液体の溶存酸素濃度(DO)を表す指標として一般に用いられているものであり、この値が大きいほど液体の溶存酸素濃度が高いことを表している。すなわち、空気中の酸素が液体に溶けて溶存酸素になるには、気相の酸素分子O2が液体中に移動しなければならないが、この酸素移動速度OTRは、下記の一般式(1)で表されるので、KLAの値が大きいほど液体の溶存酸素濃度が高いことを表す。
OTR=KLA×(CS-C) ・・・(1)
この式(1)において、
OTR:酸素移動速度(mg/L・h)
KLA:物質移動容量係数(/h)
CS :酸素の水中への飽和溶解度(mg/L)
C :酸素の水中への溶解度(mg/L)である。
OTR=KLA×(CS-C) ・・・(1)
この式(1)において、
OTR:酸素移動速度(mg/L・h)
KLA:物質移動容量係数(/h)
CS :酸素の水中への飽和溶解度(mg/L)
C :酸素の水中への溶解度(mg/L)である。
実施例1~2(空気供給口の形状が「スリット」)と比較例1~2(空気供給口の形状が「孔」)との比較から、ノズル本体に設ける空気供給口の形状を「スリット」とすることにより、「孔」とする場合(比較例1~2)に比べ、液体への溶存酸素濃度を格段に高くできることがわかる。
さらに、実施例1(角度θが0°)と実施例2(角度θが75°)との比較から、スリットをノズル本体の中心軸に垂直な面に対して上流側に傾斜させることにより、液体への溶存酸素濃度を高められることがわかる。
また、実施例2(空気供給口の形状が「スリット」)および比較例1(空気供給口の形状が「孔」)で得られた空気の微細気泡を混合させたブドウ糖水溶液における、空気の微細気泡の気泡径分布を画像解析法粒子径測定装置(マイクロトラックベル製)を用いて測定した。実施例2の上記気泡径分布を表3に示し、比較例1の上記気泡径分布を表4に示す。
表3および表4に示す気泡分布は上記測定装置を用いて1分間測定したものであり、横軸は気泡の粒子径(μm)を示し、縦軸は測定された気泡の全数に対する各気泡径の気泡の割合(%)を示す。
実施例2(空気供給口の形状が「スリット」)における空気の微細気泡の気泡径分布(表3)と、比較例1(空気供給口の形状が「孔」)における空気の微細気泡の気泡径分布(表4)との比較から、ノズル本体に設ける空気供給口の形状を「スリット」とすることにより、「孔」とする場合に比べ、空気の微細気泡の気泡径を小さくかつ気泡径の分布をシャープにできることがわかる。
1 ノズル本体
1a 筒状体
1b 筒状体
1c 筒状体
2 流入口
3 放出口
4 スリット
5 気体供給部
6 生物培養液
7 培養槽
8 マイクロナノバブル発生槽
9 マイクロナノバブル発生装置
10 曝気装置
11 ノズル本体
12 流入口
13 放出口
14 空気噴出口
A (ノズル本体の内面に沿って形成される)気体の連続する幅広の薄層
A’ (ノズル本体の内面に沿って形成される)気体の複数の帯
B 微細気泡
B’ 微細気泡
1a 筒状体
1b 筒状体
1c 筒状体
2 流入口
3 放出口
4 スリット
5 気体供給部
6 生物培養液
7 培養槽
8 マイクロナノバブル発生槽
9 マイクロナノバブル発生装置
10 曝気装置
11 ノズル本体
12 流入口
13 放出口
14 空気噴出口
A (ノズル本体の内面に沿って形成される)気体の連続する幅広の薄層
A’ (ノズル本体の内面に沿って形成される)気体の複数の帯
B 微細気泡
B’ 微細気泡
Claims (12)
- 液体に、ナノバブル乃至マイクロバブルの微細気泡を含む気泡を混合させて、前記微細気泡を含有する液体とするための微細気泡発生用ノズルであって、
上流側には、液体が流入する流入口が設けられ、下流側には、前記微細気泡を含む気泡を混合させた液体を放出する放出口が設けられた筒状体からなるノズル本体と、
前記ノズル本体の中心軸に垂直な面に沿って、側面に連続して設けられたスリットと、
前記スリットに接続され、前記スリットに気体を供給する気体供給部
を有することを特徴とする、微細気泡発生用ノズル。 - 前記スリットが、前記ノズル本体の中心軸に垂直な面に対して上流側に傾斜する角度θを鋭角としたことを特徴とする、請求項1に記載の微細気泡発生用ノズル。
- 前記スリットが、前記ノズル本体に複数段設けられていることを特徴とする、請求項1または2に記載の微細気泡発生用ノズル。
- 前記ノズル本体が1つの筒状体で形成されており、前記スリットが、一部に接続部を残し、前記1つの筒状体の周面を切削して設けられていることを特徴とする、請求項1~3のいずれかに記載の微細気泡発生用ノズル。
- 前記ノズル本体が2本以上の筒状体で形成されており、前記スリットが、前記筒状体の接続部に形成されていることを特徴とする、請求項1~3のいずれかに記載の微細気泡発生用ノズル。
- 前記放出口付近における前記ノズル本体の内径が、下流側に向けて漸次拡張されていることを特徴とする、請求項1~5のいずれかに記載の微細気泡発生用ノズル。
- 前記微細気泡発生用ノズルが、化学反応に用いられるものであることを特徴とする、請求項1~6のいずれかに記載の微細気泡発生用ノズル。
- 前記微細気泡発生用ノズルが、生物反応に用いられるものであることを特徴とする、請求項1~6のいずれかに記載の微細気泡発生用ノズル。
- 前記請求項1~8のいずれかに記載の微細気泡発生用ノズルを用いて、液体に、ナノバブル乃至マイクロバブルの微細気泡を含む気泡を混合させる方法。
- 培養液及び好気性または通性嫌気性微生物を含有する生物培養液を収容する培養槽と、
該培養槽から抜き出した生物培養液に、ナノバブル乃至マイクロバブルの微細気泡を含む気泡を含有させる請求項8に記載の微細気泡発生用ノズルと、
該微細気泡を含有させた生物培養液を前記培養槽に還流する管路と、
を備えることを特徴とする、生物反応装置。 - 前記培養槽から抜き出し、ナノバブル乃至マイクロバブルの微細気泡を含む気泡を含有させた後に前記培養槽に還流する生物培養液の量を、1分間当たり、前記培養槽に収容された生物培養液の量の1%以上48%未満に設定することを特徴とする、請求項10に記載の生物反応装置。
- 前記請求項1~8のいずれかに記載の微細気泡発生用ノズルを複数本並列して設け、各微細気泡発生用ノズルにおいて、並行して、液体にナノバブル乃至マイクロバブルの微細気泡を含む気泡を混合させて、前記微細気泡を含有する液体とすることを特徴とする、微細気泡発生用ノズル装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019517995A JP7161467B2 (ja) | 2018-03-30 | 2019-03-29 | 微細気泡発生用ノズル、該微細気泡発生用ノズルを用いて液体に微細気泡を含む気泡を混合させる方法、該微細気泡発生用ノズルを備えた生物反応装置、および該微細気泡発生用ノズルを複数本備えた微細気泡発生用ノズル装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPPCT/JP2018/013730 | 2018-03-30 | ||
PCT/JP2018/013730 WO2019187039A1 (ja) | 2018-03-30 | 2018-03-30 | 微細気泡発生用ノズル、該微細気泡発生用ノズルを用いて液体に微細気泡を含む気泡を混合させる方法、該微細気泡発生用ノズルを備えた生物反応装置、および該微細気泡発生用ノズルを複数本備えた微細気泡発生用ノズル装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019189812A1 true WO2019189812A1 (ja) | 2019-10-03 |
Family
ID=68058621
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/013730 WO2019187039A1 (ja) | 2018-03-30 | 2018-03-30 | 微細気泡発生用ノズル、該微細気泡発生用ノズルを用いて液体に微細気泡を含む気泡を混合させる方法、該微細気泡発生用ノズルを備えた生物反応装置、および該微細気泡発生用ノズルを複数本備えた微細気泡発生用ノズル装置 |
PCT/JP2019/014150 WO2019189812A1 (ja) | 2018-03-30 | 2019-03-29 | 微細気泡発生用ノズル、該微細気泡発生用ノズルを用いて液体に微細気泡を含む気泡を混合させる方法、該微細気泡発生用ノズルを備えた生物反応装置、および該微細気泡発生用ノズルを複数本備えた微細気泡発生用ノズル装置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/013730 WO2019187039A1 (ja) | 2018-03-30 | 2018-03-30 | 微細気泡発生用ノズル、該微細気泡発生用ノズルを用いて液体に微細気泡を含む気泡を混合させる方法、該微細気泡発生用ノズルを備えた生物反応装置、および該微細気泡発生用ノズルを複数本備えた微細気泡発生用ノズル装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7161467B2 (ja) |
WO (2) | WO2019187039A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7546426B2 (ja) | 2020-09-18 | 2024-09-06 | 三菱ケミカルエンジニアリング株式会社 | 微生物または細胞の培養に有用な気体を含有するファインバブル・ウルトラファインバブルが適用される生物反応装置に用いられるマルチノズル |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05252848A (ja) * | 1992-03-12 | 1993-10-05 | Matsushita Electric Ind Co Ltd | 液体浄化装置 |
JPH08290192A (ja) * | 1995-02-20 | 1996-11-05 | Takashi Yamamoto | 曝気装置 |
JP2002153741A (ja) * | 2000-11-21 | 2002-05-28 | Masao Ukisho | 流体混合具及びそれを用いた流体混合ポンプ |
JP2006181449A (ja) * | 2004-12-27 | 2006-07-13 | Green Precious:Kk | 水処理方法および水処理装置 |
WO2008038763A1 (fr) * | 2006-09-28 | 2008-04-03 | Nakata Coating Co., Ltd. | Appareil de production d'un écoulement tourbillonnaire, procédé de production d'un écoulement tourbillonnaire, appareil de génération de phase vapeur, appareil de génération de microbulles, mélangeur de fluides et buse d'injection de fluides |
JP2012524650A (ja) * | 2009-04-23 | 2012-10-18 | エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング | 調量リング |
JP2017018939A (ja) * | 2015-07-13 | 2017-01-26 | Jfeエンジニアリング株式会社 | 気液混合器 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1458523A (en) * | 1973-04-27 | 1976-12-15 | Teleflex Morse Ltd | Control devices |
JPS62121625A (ja) * | 1985-11-22 | 1987-06-02 | Kiyoyuki Horii | 液またはスラリ−にガスを微分散する装置 |
JPS6386828U (ja) * | 1986-11-21 | 1988-06-06 | ||
JP3544234B2 (ja) * | 1995-01-19 | 2004-07-21 | ケミカルグラウト株式会社 | 水中を微細気泡で仕切る仕切装置 |
JP2004174287A (ja) | 2000-12-27 | 2004-06-24 | Shiga Pref Gov | 水質浄化装置及び水質浄化方法 |
JP3733377B2 (ja) * | 2001-08-23 | 2006-01-11 | 孝 山本 | 混気用ノズル |
JP5252848B2 (ja) | 2007-07-20 | 2013-07-31 | アンファー株式会社 | 前立腺特異抗原レベルの低下剤 |
JP5257819B2 (ja) | 2011-02-25 | 2013-08-07 | 成和工業株式会社 | マイクロバブル発生器 |
JP6386828B2 (ja) | 2014-08-04 | 2018-09-05 | 東洋ゴム工業株式会社 | ランフラットタイヤの製造方法 |
-
2018
- 2018-03-30 WO PCT/JP2018/013730 patent/WO2019187039A1/ja active Application Filing
-
2019
- 2019-03-29 JP JP2019517995A patent/JP7161467B2/ja active Active
- 2019-03-29 WO PCT/JP2019/014150 patent/WO2019189812A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05252848A (ja) * | 1992-03-12 | 1993-10-05 | Matsushita Electric Ind Co Ltd | 液体浄化装置 |
JPH08290192A (ja) * | 1995-02-20 | 1996-11-05 | Takashi Yamamoto | 曝気装置 |
JP2002153741A (ja) * | 2000-11-21 | 2002-05-28 | Masao Ukisho | 流体混合具及びそれを用いた流体混合ポンプ |
JP2006181449A (ja) * | 2004-12-27 | 2006-07-13 | Green Precious:Kk | 水処理方法および水処理装置 |
WO2008038763A1 (fr) * | 2006-09-28 | 2008-04-03 | Nakata Coating Co., Ltd. | Appareil de production d'un écoulement tourbillonnaire, procédé de production d'un écoulement tourbillonnaire, appareil de génération de phase vapeur, appareil de génération de microbulles, mélangeur de fluides et buse d'injection de fluides |
JP2012524650A (ja) * | 2009-04-23 | 2012-10-18 | エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング | 調量リング |
JP2017018939A (ja) * | 2015-07-13 | 2017-01-26 | Jfeエンジニアリング株式会社 | 気液混合器 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7546426B2 (ja) | 2020-09-18 | 2024-09-06 | 三菱ケミカルエンジニアリング株式会社 | 微生物または細胞の培養に有用な気体を含有するファインバブル・ウルトラファインバブルが適用される生物反応装置に用いられるマルチノズル |
Also Published As
Publication number | Publication date |
---|---|
JP7161467B2 (ja) | 2022-10-26 |
JPWO2019189812A1 (ja) | 2020-04-30 |
WO2019187039A1 (ja) | 2019-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4690764A (en) | Aerator and aerobic biological treatment process using same | |
US5674433A (en) | High efficiency microbubble aeration | |
JP2018114498A (ja) | 気液溶解タンク及び微細気泡発生装置 | |
JP5306187B2 (ja) | 気液混合循環装置 | |
JP2014097449A (ja) | 貫流ポンプ極微細気泡流供給装置 | |
JP2014097449A5 (ja) | ||
KR102038132B1 (ko) | 와류를 이용한 폭기장치 | |
JP2011104534A (ja) | 微細気泡生成器、該発生器に使用する気泡微細化材及び気液反応装置 | |
JP7218016B2 (ja) | 微細気泡形成装置 | |
GB2593190A (en) | A microbubble generator | |
CN201027177Y (zh) | 喷射曝气搅拌装置 | |
WO2019189812A1 (ja) | 微細気泡発生用ノズル、該微細気泡発生用ノズルを用いて液体に微細気泡を含む気泡を混合させる方法、該微細気泡発生用ノズルを備えた生物反応装置、および該微細気泡発生用ノズルを複数本備えた微細気泡発生用ノズル装置 | |
KR102118842B1 (ko) | 마이크로버블 발생장치 | |
JP2012125690A (ja) | 貫流ポンプエアレ−ション装置 | |
JP2011183328A (ja) | 曝気装置 | |
CN118122161A (zh) | 一种纳米气泡生成混合器、混合方法及混合装置 | |
JPH0732699B2 (ja) | 光合成微生物培養装置 | |
JP6968405B2 (ja) | 気液混合ノズル | |
JP2013146702A (ja) | 貫流ポンプ微細気泡発生装置 | |
CN104221989A (zh) | 高速率水体充氧装置 | |
JP2018134587A (ja) | 微細気泡生成器 | |
KR102348801B1 (ko) | 토치형 초음파 오존 발생기 및 이를 이용한 초미세 오존 버블 발생장치 | |
KR20090082237A (ko) | 고점도 액체와 기체를 혼합하는 시스템 및 방법 | |
CN217449682U (zh) | 一种微米级气泡的发生喷头及发生系统 | |
JP2008114099A (ja) | マイクロバブル生成装置及びバブル微小化器具。 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019517995 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19775184 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19775184 Country of ref document: EP Kind code of ref document: A1 |