WO2019188977A1 - 自立膜、積層体、および自立膜の製造方法 - Google Patents

自立膜、積層体、および自立膜の製造方法 Download PDF

Info

Publication number
WO2019188977A1
WO2019188977A1 PCT/JP2019/012501 JP2019012501W WO2019188977A1 WO 2019188977 A1 WO2019188977 A1 WO 2019188977A1 JP 2019012501 W JP2019012501 W JP 2019012501W WO 2019188977 A1 WO2019188977 A1 WO 2019188977A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
supporting film
fibrous carbon
film
carbon nanostructure
Prior art date
Application number
PCT/JP2019/012501
Other languages
English (en)
French (fr)
Inventor
智子 山岸
貢 上島
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2020510071A priority Critical patent/JP7211414B2/ja
Publication of WO2019188977A1 publication Critical patent/WO2019188977A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment

Definitions

  • the present invention relates to a self-supporting film, a laminate, and a method for manufacturing a self-supporting film, and in particular, includes a self-supporting film made of a fibrous carbon nanostructure, a manufacturing method thereof, and a self-supporting film made of a fibrous carbon nanostructure.
  • the present invention relates to a laminate.
  • CNT carbon nanotubes
  • Patent Document 1 carbon obtained by forming a carbon film using a single-layer fibrous carbon nanostructure having a BET specific surface area of 500 m 2 / g or more and a multilayer fibrous carbon nanostructure.
  • the self-supporting property and conductivity of the film can be improved.
  • the carbon film has been required to improve its light transmittance while sufficiently ensuring its independence.
  • a method of reducing the thickness of the carbon film is conceivable.
  • the self-supporting property of the carbon film may be impaired and the use as a self-supporting film may be difficult.
  • the present invention aims to provide a self-supporting film composed of a plurality of fibrous carbon nanostructures having excellent light transmittance, a laminate including the self-supporting film, and a method of manufacturing the self-supporting film. To do.
  • the present inventor has intensively studied to achieve the above object. And this inventor discovered that the self-supporting film
  • the present invention aims to advantageously solve the above problems, and the self-supporting film of the present invention is a self-supporting film composed of a plurality of fibrous carbon nanostructures, and has a D in the Raman spectrum.
  • the ratio of the G band peak intensity to the band peak intensity (G / D ratio) is 2 or more, the light transmittance at a wavelength of 550 nm is 60% or more, and the plurality of fibrous carbon nanostructures are simply It contains a single-walled carbon nanotube.
  • the self-supporting film described above is excellent in light transmittance.
  • the “self-supporting film” refers to a film that can maintain the film shape alone without being damaged even if a support is not present.
  • the ratio of the G band peak intensity to the D band peak intensity in the Raman spectrum (G / D ratio)” of the self-supporting membrane and the fibrous carbon nanostructure is the method described in the examples of the present specification. Can be measured. And in this invention, “the light transmittance of wavelength 550nm” of a self-supporting film
  • membrane can be measured using the method as described in the Example of this specification.
  • the self-supporting film of the present invention preferably has a thickness of 10 nm to 110 nm. If the thickness is within the above-described range, the film strength of the self-supporting film can be sufficiently secured and the light transmittance of the self-supporting film can be further improved.
  • the “thickness” of the self-supporting film can be measured using the method described in the examples of the present specification.
  • the self-supporting film of the present invention preferably has a surface resistance value of 600 ⁇ / ⁇ or less.
  • a self-supporting film having a surface resistance value equal to or less than the above value is excellent in conductivity.
  • the “surface resistance value” of the self-supporting film can be measured using, for example, the method described in the examples of the present specification in accordance with JIS K7194.
  • the ratio of the G band peak intensity to the D band peak intensity in the Raman spectrum is preferably 10 or more.
  • a self-supporting film having a G / D ratio equal to or higher than the above-described value has a further excellent film strength.
  • the present invention aims to advantageously solve the above-mentioned problems, and the laminate of the present invention includes any of the above-mentioned self-supporting films and a support body in contact with the self-supporting films.
  • the self-supporting membrane is handled as a laminate with the support, it is possible to prevent the self-supporting membrane from being damaged during storage or transportation.
  • the surface roughness Ra of the surface of the support that is in contact with the self-supporting film is preferably 2.3 ⁇ m or less. If a support having a surface roughness Ra of 2.3 ⁇ m or less on the surface in contact with the self-supporting film is used, the self-supporting film can be easily peeled off from the support.
  • the “surface roughness Ra” of the support refers to the arithmetic average roughness according to JIS B0601: 1994, and can be measured, for example, using the method described in the examples of the present specification. it can.
  • Another object of the present invention is to advantageously solve the above-mentioned problems, and a method for producing a self-supporting film according to the present invention is any one of the above-described methods for producing a self-supporting film, comprising single-walled carbon nanotubes. And a fibrous carbon nanostructure comprising a plurality of fibrous carbon nanostructures having a ratio of G band peak intensity to D band peak intensity in a Raman spectrum (G / D ratio) of 2 or more, and a solvent Supplying the dispersion onto the support, and removing the solvent from the fibrous carbon nanostructure dispersion on the support to form a laminate including a self-supporting film on the support.
  • G / D ratio Raman spectrum
  • the “SP value” in the present invention means a solubility parameter (SP value) of water or an organic solvent, and is a value represented by the square root of the molecular cohesive energy.
  • SP value is described in “Polymer HandBook (Second Edition) Chapter IV, Solubility Parameter Values”, and the value is used as the SP value in the present invention.
  • SP value refers to a value at 25 ° C.
  • calculation was performed by the method described in “RF Fedors, Polymer Engineering Science, 14, p147 (1967)”.
  • the value is the SP value in the present invention.
  • a self-supporting film composed of a plurality of fibrous carbon nanostructures having excellent light transmittance, a laminate including the self-supporting film, and a method of manufacturing the self-supporting film. it can.
  • the self-supporting film of the present invention is a self-supporting film composed of an assembly of a plurality of fibrous carbon nanostructures.
  • the self-supporting film manufacturing method of the present invention is a method of manufacturing a self-supporting film by assembling a plurality of fibrous carbon nanostructures into a film shape, and is used for manufacturing the self-supporting film of the present invention.
  • the laminate of the present invention is provided with the self-supporting film of the present invention on a support, and can be obtained as a production intermediate when the self-supporting film of the present invention is manufactured by the method of manufacturing the self-supporting film of the present invention. it can.
  • the self-supporting film of the present invention is a carbon film obtained by collecting a plurality of fibrous carbon nanostructures into a film.
  • membrane of this invention may contain components (dispersant etc.) other than the fibrous carbon nanostructure which are inevitably mixed in a manufacturing process, for example.
  • the proportion of the fibrous carbon nanostructure in the free-standing film is preferably 95% by mass or more, more preferably 98% by mass or more, and further preferably 99% by mass or more. It is particularly preferably 5% by mass or more, and most preferably 100% by mass (that is, the self-supporting film is composed only of fibrous carbon nanostructures).
  • the self-supporting film of the present invention needs to have a G / D ratio of 2 or more, and preferably 10 or more.
  • the G / D ratio is less than 2
  • the self-supporting property required as a self-supporting film cannot be ensured.
  • the reason for this is not clear, but if the G / D ratio is less than 2, the density of the free-standing film decreases due to an increase in the proportion of the bent structure in the fibrous carbon nanostructure constituting the free-standing film, It is presumed that the film strength is reduced.
  • the upper limit of the G / D ratio of the self-supporting film is not particularly limited, but is usually 200 or less.
  • the self-supporting film of the present invention needs to have a light transmittance at a wavelength of 550 nm of 60% or more, preferably 85% or more, and more preferably 90% or more.
  • a self-supporting film having a light transmittance of a wavelength of 550 nm of less than 60% is inferior in light transmittance.
  • the self-supporting film of the present invention preferably has a surface resistance value of 600 ⁇ / ⁇ or less.
  • a self-supporting film having a surface resistance value of 600 ⁇ / ⁇ or less is excellent in conductivity.
  • the lower limit of the surface resistance value of the free-standing film is not particularly limited, but is usually 0.1 ⁇ / ⁇ or more.
  • the self-supporting film of the present invention preferably has a thickness of 10 nm or more, more preferably 20 nm or more, preferably 110 nm or less, and more preferably 100 nm or less. If the thickness is 10 nm or more, the film strength of the free-standing film can be sufficiently secured, and if it is 110 nm or less, the light transmittance of the free-standing film can be further improved.
  • the fibrous carbon nanostructure containing single-walled CNTs may consist of single-walled CNTs alone, or a mixture of single-walled CNTs and fibrous carbon nanostructures other than single-walled CNTs. There may be.
  • fibrous carbon nanostructures other than single-walled CNTs include multilayer CNTs, vapor-grown carbon fibers, carbon fibers obtained by carbonizing organic fibers, and cut products thereof. These may be used individually by 1 type and may use 2 or more types together.
  • the proportion of the single-walled CNT in the fibrous carbon nanostructure is preferably 60% or more, more preferably 80% or more, still more preferably 90% or more, and 100%. Most preferably (that is, the fibrous carbon nanostructure consists of single-walled CNTs only).
  • the “ratio of single-walled CNT in the fibrous carbon nanostructure” is the number of single-walled CNT in 100 fibrous carbon nanostructures randomly selected using a transmission electron microscope. And you can ask for it.
  • the fibrous carbon nanostructure containing single-walled CNTs has a ratio (3 ⁇ / Av) of a value (3 ⁇ ) obtained by multiplying the standard deviation ( ⁇ ) of the diameter by 3 with respect to the average diameter (Av) is 0.20. It is preferable to use a fibrous carbon nanostructure having a super-less than 0.60, more preferably a fibrous carbon nanostructure having a 3 ⁇ / Av of more than 0.25, and a fiber having a 3 ⁇ / Av of 0.50 or more. More preferably, a carbon-like carbon nanostructure is used. If 3 ⁇ / Av of the fibrous carbon nanostructure is within the above-described range, the conductivity can be improved while further increasing the film strength of the free-standing film.
  • Average diameter (Av) of fibrous carbon nanostructure” and “standard deviation of diameter of fibrous carbon nanostructure ( ⁇ : sample standard deviation)” are randomized using a transmission electron microscope, respectively. It can be determined by measuring the diameter (outer diameter) of 100 fibrous carbon nanostructures selected. The average diameter (Av) and standard deviation ( ⁇ ) of the fibrous carbon nanostructure may be adjusted by changing the manufacturing method and manufacturing conditions of the fibrous carbon nanostructure, or obtained by different manufacturing methods. You may adjust by combining multiple types of the obtained fibrous carbon nanostructure.
  • the average diameter (Av) of the fibrous carbon nanostructure containing single-walled CNTs is preferably 0.5 nm or more, more preferably 1 nm or more, and preferably 15 nm or less, and 10 nm or less. It is more preferable that If the average diameter (Av) of the fibrous carbon nanostructure is 0.5 nm or more, the aggregation of the fibrous carbon nanostructure is suppressed, and the light transmittance of the free-standing film due to the formation of the aggregate is prevented. Can do. On the other hand, if the average diameter (Av) of the fibrous carbon nanostructure is 15 nm or less, the film strength of the free-standing film can be further improved. In addition, if the average diameter (Av) of the fibrous carbon nanostructure is within the above-described range, the conductivity of the self-supporting film can be increased.
  • the BET specific surface area of the fibrous carbon nanostructure containing single-walled CNTs is preferably 400 m 2 / g or more, more preferably 700 m 2 / g or more, and 2500 m 2 / g or less. Is preferably 1200 m 2 / g or less.
  • the film strength of the self-supporting film can be further improved.
  • the BET specific surface area of the fibrous carbon nanostructure is 2500 m 2 / g or less, the aggregation of the fibrous carbon nanostructure is suppressed and the light transmittance of the free-standing film due to the formation of the aggregate is prevented from decreasing. be able to.
  • the BET specific surface area of the fibrous carbon nanostructure is within the above-described range, the conductivity of the self-supporting film can be increased.
  • the “BET specific surface area” refers to a nitrogen adsorption specific surface area measured using the BET method.
  • the fibrous carbon nanostructure containing single-walled CNTs commercially available products may be used. For example, a raw material compound and a carrier gas are supplied onto a substrate having a catalyst layer for producing CNTs on the surface. When synthesizing CNTs by chemical vapor deposition (CVD), the catalytic activity of the catalyst layer is drastically improved by the presence of a small amount of oxidizing agent (catalyst activation material) in the system.
  • a fibrous carbon nanostructure containing CNTs may be efficiently produced according to a method (super-growth method; see WO 2006/011655).
  • the carbon nanotube obtained by the super growth method may be referred to as “SGCNT”.
  • the fibrous carbon nanostructure containing SGCNT manufactured by the super-growth method may be composed only of SGCNT, and in addition to SGCNT, other carbon such as non-cylindrical carbon nanostructures may be used. Nanostructures may be included.
  • the self-supporting film of the present invention described above can be manufactured by the method of manufacturing a self-supporting film of the present invention.
  • membrane of this invention contains a single-walled carbon nanotube,
  • the ratio of G band peak intensity with respect to D band peak intensity in a Raman spectrum is two or more fibrous form
  • a step of supplying a fibrous carbon nanostructure dispersion containing carbon nanostructures and a solvent onto the support (dispersion supply step), and removing the solvent from the fibrous carbon nanostructure dispersion on the support By performing a step of forming a laminate including a self-supporting film on the support (laminate formation step), and bringing the laminate into contact with a stripping solution having an SP value of 10 (MPa) 1/2 or more, It includes at least a step of peeling the free-standing film from the support (a free-standing film peeling step).
  • a self-supporting film of the present invention a self-supporting film
  • membrane of this invention
  • Dispersion supply process a fibrous carbon nanostructure dispersion liquid (hereinafter referred to as “dispersion”) in which a fibrous carbon nanostructure having a G / D ratio of 2 or more and containing single-walled CNTs is dispersed in a solvent.
  • the liquid is sometimes abbreviated as “liquid”.) Is supplied onto the support.
  • the dispersion contains a fibrous carbon nanostructure and a solvent, and optionally contains components (other components) other than the fibrous carbon nanostructure and the solvent.
  • the fibrous carbon nanostructure contained in the dispersion is a fibrous carbon nanostructure constituting the self-supporting film of the present invention described above.
  • the fibrous carbon nanostructure used for preparing the dispersion needs to have a G / D ratio of 2 or more, and preferably 10 or more.
  • the upper limit of G / D ratio of the fibrous carbon nanostructure used for preparation of a dispersion liquid is not specifically limited, Usually, it is 1000 or less.
  • the properties of the fibrous carbon nanostructures (excluding the G / D ratio) contained in the dispersion usually coincide with the properties of the fibrous carbon nanostructures described above in the section “Free-standing membrane”.
  • concentration of the fibrous carbon nanostructure in a dispersion liquid will not be specifically limited if a fibrous carbon nanostructure can be disperse
  • the solvent (dispersion medium for the fibrous carbon nanostructure) contained in the dispersion is not particularly limited.
  • Amides polar organic solvents such as ethers, N, N-dimethylformamide and N-methylpyrrolidone, aromatic hydrocarbons such as toluene, xylene, chlorobenzene, orthodichlorobenzene and paradichlorobenzene Kind and the like. These may be used alone or in combination of two or more.
  • the dispersion preferably contains a dispersant as the other component.
  • the dispersant is not particularly limited as long as it can disperse the fibrous carbon nanostructure and can be dissolved in the solvent in which the fibrous carbon nanostructure is dispersed.
  • a natural polymer can be used.
  • any of an anionic surfactant, a cationic surfactant, and a nonionic surfactant can be used.
  • the surfactant include sodium dodecyl sulfonate, sodium deoxycholate, sodium cholate, sodium dodecylbenzene sulfonate, and the like.
  • the synthetic polymer include polyether diol, polyester diol, polycarbonate diol, polyvinyl alcohol, partially saponified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, acetal group-modified polyvinyl alcohol, butyral group-modified polyvinyl alcohol, and silanol group-modified.
  • Polyvinyl alcohol ethylene-vinyl alcohol copolymer, ethylene-vinyl alcohol-vinyl acetate copolymer resin, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, acrylic resin, epoxy resin, modified epoxy resin, phenoxy resin, modified phenoxy system Resin, phenoxy ether resin, phenoxy ester resin, fluorine resin, melamine resin, alkyd resin, phenol resin, Polyacrylamide, polyacrylic acid, polystyrene sulfonic acid, polyethylene glycol, polyvinyl pyrrolidone.
  • examples of natural polymers include polysaccharides such as starch, pullulan, dextran, dextrin, guar gum, xanthan gum, amylose, amylopectin, alginic acid, gum arabic, carrageenan, chondroitin sulfate, hyaluronic acid, curdlan, chitin, chitosan, Examples thereof include cellulose and salts or derivatives thereof. These dispersants can be used alone or in combination of two or more.
  • surfactants are preferred.
  • a surfactant having a molecular weight of 400 or less is preferably used, a surfactant having a molecular weight of 350 or less is more preferably used, and a surfactant having a molecular weight of 300 or less is further used.
  • the surfactant having a molecular weight of 400 or less has a property of dispersing the fibrous carbon nanostructures in the solvent, but does not hinder the network formation between the fibrous carbon nanostructures after the removal of the solvent.
  • the free-standing film can be favorably peeled from the support in the free-standing film peeling step described later.
  • the minimum of the molecular weight of surfactant is not specifically limited, For example, it is 50 or more.
  • the surfactant having a molecular weight of 400 or less include sodium dodecyl sulfonate (molecular weight: 288.38) and sodium dodecyl benzene sulfonate (molecular weight: 348.48). These may be used alone or in combination of two or more.
  • the surfactant it is preferable to use a surfactant having a linear alkyl chain having 6 to 20 carbon atoms.
  • a surfactant having a linear alkyl chain having 6 to 20 carbon atoms By using a surfactant having a linear alkyl chain having 6 to 20 carbon atoms, the free-standing film can be satisfactorily peeled from the support in the free-standing film peeling step described later.
  • sodium dodecyl sulfonate and sodium dodecyl benzene sulfonate are preferable, and sodium dodecyl sulfonate is particularly preferable from the viewpoint of satisfactorily releasing the self-supporting membrane from the support in the self-supporting membrane peeling step described later.
  • the dispersion includes a step of performing a dispersion treatment (dispersion treatment step) on a composition containing a plurality of fibrous carbon nanostructures, a solvent, and optionally other components such as a dispersant, and the dispersion treatment.
  • a step of separating or centrifuging the subsequent composition to precipitate a part of the plurality of fibrous carbon nanostructures (separation step), and a fiber using the supernatant from the composition that has been left or centrifuged as a liquid
  • a step (sorting step) of sorting the carbon nanostructure dispersion liquid If a dispersion liquid is prepared through the dispersion treatment process, the separation process, and the fractionation process described above, the light transmittance of the self-supporting film obtained using the dispersion liquid can be further improved.
  • a dispersion treatment is performed on a composition comprising a plurality of fibrous carbon nanostructures, a solvent, and optionally other components such as a dispersant.
  • the dispersion treatment method used in the dispersion treatment step is not particularly limited, and a known dispersion treatment method used for preparing a fibrous carbon nanostructure dispersion liquid can be used.
  • a dispersion treatment applied to the composition a dispersion treatment capable of obtaining a cavitation effect or a crushing effect is preferable.
  • the fibrous carbon nanostructure can be favorably dispersed, so that the strength of the obtained free-standing film can be further increased.
  • specific examples of the dispersion process for obtaining the cavitation effect and the dispersion process for obtaining the crushing effect are not particularly limited, and examples thereof include those described in JP-A-2016-183082.
  • the concentration of the fibrous carbon nanostructure containing single-walled CNT in the composition to be subjected to the dispersion treatment is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, It is preferably 5% by mass or less, and more preferably 3% by mass or less. If the concentration of the fibrous carbon nanostructure is 0.005% by mass or more, the concentration of the fibrous carbon nanostructure in the obtained dispersion is suppressed and the free-standing membrane is efficiently produced. be able to.
  • the concentration of the dispersant in the composition to be subjected to the dispersion treatment is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and preferably 10% by mass or less. More preferably, it is 5 mass% or less. If the concentration of the dispersant is 0.1% by mass or more and 10% by mass or less, the fibrous carbon nanostructure having excellent dispersibility is appropriately left in the obtained supernatant liquid (dispersion liquid), and the light transmittance is excellent. A self-supporting film can be manufactured efficiently.
  • ⁇ Separation process In the separation step, a part of the plurality of fibrous carbon nanostructures is precipitated by allowing the composition after the dispersion treatment described above to stand or be centrifuged. In the separation step, the fibrous carbon nanostructure with high cohesion is precipitated, and the fibrous carbon nanostructure with excellent dispersibility remains in the supernatant.
  • the conditions for standing the composition after the dispersion treatment are not particularly limited as long as the precipitate and the supernatant are separated well.
  • the standing time is 1 hour or more from the viewpoint of efficiently producing a self-supporting film having excellent light transmittance by leaving a fibrous carbon nanostructure having excellent dispersibility in the obtained supernatant liquid. It is preferable that it is 2 hours or more.
  • the upper limit of time to leave still is not specifically limited.
  • the centrifugation of the composition after a dispersion process is not specifically limited, It can carry out using a known centrifuge.
  • the composition after the dispersion treatment is centrifuged.
  • the centrifugal rotation speed at that time is preferably 10 rpm or more, more preferably 20 rpm or more, preferably 15000 rpm or less, and more preferably 10,000 rpm or less.
  • the fibrous carbon nanostructure dispersion liquid is centrifuged.
  • the centrifugation time at the time of separation is preferably 0.1 minutes or more, more preferably 0.5 minutes or more, preferably 150 minutes or less, and more preferably 120 minutes or less. .
  • the fibrous carbon nanostructure dispersion liquid is fractionated as a supernatant from the composition left standing or centrifuged in the separation step.
  • the fractionation of the supernatant can be performed, for example, by collecting the supernatant while leaving the precipitate layer by decantation or pipetting.
  • the supernatant liquid present in a portion from the liquid surface of the composition after the separation step to a depth of 5/6 may be recovered.
  • the fibrous carbon nanostructure dispersion liquid as a supernatant liquid separated from the composition after standing or centrifuging contains fibrous carbon nanostructures that were not precipitated by standing or centrifuging. If this fibrous carbon nanostructure dispersion liquid is used, a self-supporting film excellent in light transmittance can be efficiently produced.
  • the light transmittance at a wavelength of 550 nm of the fibrous carbon nanostructure dispersion liquid is preferably 60% or more, more preferably 70% or more, still more preferably 80% or more, It is more preferably 85% or more, particularly preferably 88% or more, and preferably 99% or less. If the light transmittance at a wavelength of 550 nm of the dispersion is 60% or more, a self-supporting film having excellent light transmittance can be efficiently produced. On the other hand, if the light transmittance of the dispersion at a wavelength of 550 nm is 99% or less, the film strength of the free-standing film obtained can be sufficiently secured, and the handling property can be improved.
  • the “light transmittance at a wavelength of 550 nm” of the fibrous carbon nanostructure dispersion liquid can be measured using the method described in the examples of the present specification.
  • the method for supplying the above-described fibrous carbon nanostructure dispersion liquid onto the support is not particularly limited, and examples thereof include coating and dropping.
  • the support is not particularly limited as long as it can remove the solvent in the dispersion and form a carbon film as a self-supporting film.
  • examples of the support include a resin support and a glass support.
  • the resin support polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polytetrafluoroethylene (PTFE), polyimide, polyphenylene sulfide, aramid, polypropylene, polyethylene, polylactic acid, polyvinyl chloride, polycarbonate, Examples thereof include a support made of polymethyl methacrylate, alicyclic acrylic resin, cycloolefin resin, triacetyl cellulose and the like.
  • a glass support body the support body which consists of normal soda glass can be mentioned.
  • a porous support is used as the support.
  • the porous support is not particularly limited, and examples thereof include filter paper and a porous sheet containing at least one of cellulose and nitrocellulose.
  • the surface of the support to which the dispersion is supplied (that is, the surface in contact with the free-standing film obtained after removing the solvent) preferably has a surface roughness Ra of 2.3 ⁇ m or less, and 2.0 ⁇ m or less. More preferably, it is 1.7 ⁇ m or less. If a support having a surface roughness Ra of 2.3 ⁇ m or less on the surface in contact with the self-supporting film is used, the self-supporting film can be easily peeled off from the support in the self-supporting film peeling step described later.
  • the lower limit of the surface roughness Ra is not particularly limited, but is usually 0.5 ⁇ m or more.
  • Laminated body formation process In the laminate forming step, a solvent is removed from the dispersion on the support to obtain a laminate including a self-supporting film and a support in contact with the self-supporting film.
  • Examples of the method for removing the solvent from the dispersion include drying and filtration, but filtration is preferred from the viewpoint of removing the solvent easily and quickly.
  • a well-known filtration method is employable as a filtration method. Specifically, natural filtration, vacuum filtration, pressure filtration, centrifugal filtration, or the like can be used as a filtration method. Among these, vacuum filtration is preferable. It is not necessary to completely remove the solvent in the dispersion liquid. If the fibrous carbon nanostructure remaining after the removal of the solvent can be handled as a film-like aggregate (carbon film), some solvent is used. There is no problem even if it remains.
  • the laminate of the present invention obtained by removing the solvent from the dispersion as described above may be immediately subjected to the self-supporting film peeling step described later, but in the state of the laminate, storage and transportation are performed. Also good. By storing and transporting in the state of the laminated body, it is possible to prevent the self-supporting film from being damaged.
  • Self-standing film peeling process the self-supporting film is peeled from the support by bringing the laminate obtained in the stack forming step into contact with a peeling solution having an SP value of 10 (MPa) 1/2 or more.
  • the SP value of the stripping solution needs to be 10 (MPa) 1/2 or more. If the SP value of the stripping solution is less than 10 (MPa) 1/2, it is assumed that the stripping solution does not sufficiently penetrate between the support and the free-standing film, but the free-standing film is peeled off from the support without damage. Difficult to do.
  • the upper limit of SP value of stripping solution is not specifically limited, For example, it is 25 (MPa) 1/2 or less.
  • SP value of the entire stripping liquid is not particularly limited as long 10 (MPa) 1/2 or more, SP value of 10 (MPa) 1/2 or more liquids
  • One kind may be used alone, or a mixture of liquids having two or more SP values of 10 (MPa) 1/2 or more may be used.
  • one or two or more kinds of SP values may be used.
  • a mixture of a liquid having 10 (MPa) 1/2 or more and a liquid having one or more SP values of less than 10 (MPa) 1/2 may be used.
  • Examples of the liquid having an SP value of 10 (MPa) 1/2 or more include water (pure water, nanobubble water, etc.), ethanol, methanol, and isopropyl alcohol (IPA).
  • the method of bringing the laminate into contact with the stripping solution having an SP value of 10 (MPa) 1/2 or more is not particularly limited as long as the self-supporting film can be peeled without damage, but the laminate may be immersed in the stripping solution. preferable.
  • the free-standing film is satisfactorily peeled from the support in the stripping solution, and the free-standing film after stripping can be recovered.
  • membrane can be removed by immersing a laminated body in stripping solution.
  • the immersion conditions for example, the immersion time and the immersion temperature
  • membrane of this invention which is excellent in light transmittance can be obtained by drying arbitrarily.
  • ⁇ G / D ratio> Using a microscopic laser Raman spectrophotometer (Nicolet Almega XR manufactured by Thermo Fisher Scientific Co., Ltd.), the Raman spectra of the free-standing film and the fibrous carbon nanostructure were measured. The Raman spectrum obtained, determined the intensity of the G band peak observed in 1590 cm -1 vicinity and the intensity of the D band peak observed in 1340 cm -1 vicinity, was calculated G / D ratio.
  • ⁇ Light transmittance of the dispersion at a wavelength of 550 nm> A measurement sample was prepared by dropping the dispersion into a quartz cell having a width of 0.1 mm.
  • ⁇ Light transmittance of carbon film with wavelength of 550 nm> The light transmittance at a wavelength of 550 nm of the carbon film was measured using a spectrophotometer (manufactured by JASCO Corporation, “V-670”).
  • ⁇ Surface roughness Ra of support> Measure the surface roughness of any 5 points on the surface on the dispersion supply side with a shape analysis laser microscope (manufactured by Keyence Corporation, “VK-X160”), and calculate the average value of the surface roughness Ra ( ⁇ m) of the support. It was.
  • Example 1 ⁇ Preparation of fibrous carbon nanostructure dispersion liquid> “MEIJO eDIPS” as a fibrous carbon nanostructure (manufactured by Meijo Nanocarbon, G / D ratio: 200, single-walled CNT) with respect to 500 mL of an aqueous SDS solution containing 2% sodium dodecylsulfonate (SDS) as a dispersant Ratio: 90%, 3 ⁇ / Av: 0.5, average diameter (Av): 1.5 nm, 0.1 g of BET specific surface area: 750 m 2 / g), fibrous carbon nanostructure, dispersant, and A composition containing water is charged into a high-pressure homogenizer (product name “BERYU SYSTEM PRO” manufactured by Mie Co., Ltd.) having a multi-stage pressure control device (multi-stage pressure reducer) that applies back pressure during dispersion, and at a pressure of 100 MPa.
  • a high-pressure homogenizer product name “BERYU
  • the composition was dispersed. Specifically, the fibrous carbon nanostructure was dispersed by applying a shearing force to the composition while applying a back pressure. The dispersion treatment was performed for 10 minutes while the dispersion liquid flowing out from the high-pressure homogenizer was returned to the high-pressure homogenizer again (dispersion treatment step). Next, 50 times the amount of water as the composition was added to the composition after the dispersion treatment. The obtained diluted solution was allowed to stand at room temperature (25 ° C.) for 2 hours (separation step). After standing for 2 hours, the supernatant was collected to obtain a fibrous carbon nanostructure dispersion (preparation step).
  • the resulting dispersion (supernatant) had a light transmittance of 90.0% at a wavelength of 550 nm.
  • ⁇ Production of laminate> Using the vacuum filtration apparatus provided with the membrane filter (cellulose mixed ester type, surface roughness Ra of the surface on the dispersion supply side: 1.2 ⁇ m) as a porous support, the dispersion obtained above, The supernatant liquid was filtered under a condition of 0.09 MPa to obtain a laminate including a carbon film on the membrane filter.
  • ⁇ Carbon film peeling> The laminate obtained above was immersed in a stripping solution (SP value: 10 (MPa) 1/2 , composition: water 50%, ethanol 50%).
  • the carbon film peeled off from the membrane filter and floated on the surface of the stripping solution was collected.
  • the obtained carbon film was the same size as the membrane filter, and the film state was maintained even after peeling from the membrane filter (that is, the obtained carbon film was a self-supporting film).
  • the G / D ratio of the obtained carbon film (self-supporting film) was 21, the light transmittance at a wavelength of 550 nm was 92.7%, the surface resistance value was 500 ⁇ / ⁇ , and the thickness was 50 nm. It was.
  • Example 2 In the separation step, instead of separation by standing, by centrifugation (under vacuum, centrifugal rotation speed: 50 rpm, centrifugation time: 1 minute) using a centrifuge (“Shinky Corporation,“ Awatori Nertaro ”) A fibrous carbon nanostructure dispersion liquid, a laminate, and a carbon membrane (self-supporting membrane) were obtained in the same manner as in Example 1 except that separation was employed.
  • the obtained dispersion (supernatant) had a light transmittance of 98.6% at a wavelength of 550 nm.
  • the obtained carbon film was the same size as the membrane filter, and the film state was maintained even after peeling from the membrane filter (that is, the obtained carbon film was a self-supporting film).
  • the obtained carbon film (self-supporting film) had a G / D ratio of 21, a light transmittance at a wavelength of 550 nm of 95%, a surface resistance of 500 ⁇ / ⁇ , and a thickness of 30 nm
  • Example 1 As a fibrous carbon nanostructure, NC7000 (manufactured by Nanosil, G / D ratio: 1.2, ratio of single-walled CNT: 0%, 3 ⁇ / Av: 0.5, average diameter (Av): 9.5 nm, BET A fibrous carbon nanostructure dispersion liquid and a laminate were obtained in the same manner as in Example 1 except that the specific surface area was 250 m 2 / g). Then, the carbon film was peeled in the same manner as in Example 1. However, since the film strength was extremely weak, the carbon film collapsed at the same time as being immersed in the stripping solution to obtain a carbon film as a self-supporting film. could not.
  • a self-supporting film composed of a plurality of fibrous carbon nanostructures having excellent light transmittance, a laminate including the self-supporting film, and a method of manufacturing the self-supporting film. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本発明は、優れた光透過性を備えた、複数本の繊維状炭素ナノ構造体よりなる自立膜の提供を目的とする。本発明の自立膜は、複数本の繊維状炭素ナノ構造体よりなる自立膜であって、ラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(G/D比)が2以上であり、波長550nmの光線透過率が60%以上であり、そして、前記複数本の繊維状炭素ナノ構造体は、単層カーボンナノチューブを含有する。

Description

自立膜、積層体、および自立膜の製造方法
 本発明は、自立膜、積層体、および自立膜の製造方法に関し、特には、繊維状炭素ナノ構造体よりなる自立膜およびその製造方法、並びに、繊維状炭素ナノ構造体よりなる自立膜を備える積層体に関するものである。
 近年、導電性、熱伝導性および機械的特性に優れる材料として、カーボンナノチューブ(以下、「CNT」と称することがある。)等の繊維状炭素ナノ構造体が注目されている。
 しかし、CNT等の繊維状炭素ナノ構造体は直径がナノメートルサイズの微細な構造体であるため、単体では取り扱い性や加工性が悪い。そこで、取り扱い性や加工性を確保して各種用途に用いるべく、複数本の繊維状炭素ナノ構造体を膜状に集合させて炭素膜を形成することが従来から行われている(例えば、特許文献1参照)。
 特許文献1によれば、BET比表面積が500m/g以上である単層繊維状炭素ナノ構造体と、多層繊維状炭素ナノ構造体とを用いて炭素膜を形成することで、得られる炭素膜の自立性および導電性を高めることができる。
特開2016-190772号公報
 ここで、炭素膜には、その自立性を十分に確保しながら、光透過性を向上させることが求められていた。炭素膜の光透過性を高めるためには、例えば炭素膜の厚みを低減する手法が考えられる。しかしながら、上記従来の炭素膜において、光透過性を高めるために炭素膜の厚みを低減すると、炭素膜の自立性が損なわれ自立膜としての使用が困難となる場合があった。
 そこで、本発明は、優れた光透過性を備えた、複数本の繊維状炭素ナノ構造体よりなる自立膜、当該自立膜を備える積層体、および当該自立膜を製造する方法の提供を目的とする。
 本発明者は、上記目的を達成するために鋭意検討を行った。そして、本発明者は、所定の性状を有する繊維状炭素ナノ構造体を用いた所定の手順を採用することで、優れた光透過性を備えた自立膜が得られることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の自立膜は、複数本の繊維状炭素ナノ構造体よりなる自立膜であって、ラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(G/D比)が2以上であり、波長550nmの光線透過率が60%以上であり、そして、前記複数本の繊維状炭素ナノ構造体は、単層カーボンナノチューブを含有することを特徴とする。上述した自立膜は、光透過性に優れる。
 なお、本発明において、「自立膜」とは、支持体が存在せずとも破損せずに、単独で膜形状を維持し得る膜をいう。
 また、本発明において、自立膜および繊維状炭素ナノ構造体の「ラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(G/D比)」は、本明細書の実施例に記載の方法を用いて測定することができる。
 そして、本発明において、自立膜の「波長550nmの光線透過率」は、本明細書の実施例に記載の方法を用いて測定することができる。
 ここで、本発明の自立膜は、厚みが10nm以上110nm以下であることが好ましい。厚みが上述した範囲内であれば、自立膜の膜強度を十分に確保すると共に、自立膜の光透過性を更に向上させることができる。
 なお、本発明において、自立膜の「厚み」は、本明細書の実施例に記載の方法を用いて測定することができる。
 そして、本発明の自立膜は、表面抵抗値が600Ω/□以下であることが好ましい。表面抵抗値が上述した値以下である自立膜は、導電性に優れる。
 なお、本発明において、自立膜の「表面抵抗値」は、JIS K7194に準拠し、たとえば、本明細書の実施例に記載の方法を用いて測定することができる。
 加えて、本発明の自立膜は、前記ラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(G/D比)が10以上であることが好ましい。G/D比が上述した値以上である自立膜は、更に優れた膜強度を有する。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の積層体は、上述した何れかの自立膜と、前記自立膜に接する支持体とを備える。自立膜を、支持体との積層体として取り扱えば、保管や運搬等の際に自立膜が破損するのを防止することができる。
 ここで、本発明の積層体は、前記支持体の、前記自立膜と接する面の表面粗さRaが2.3μm以下であることが好ましい。自立膜と接する面の表面粗さRaが2.3μm以下である支持体を用いれば、当該支持体から自立膜を容易に剥離することができる。
 なお、本発明において、支持体の「表面粗さRa」とは、JIS B0601:1994に準じる算術平均粗さを指し、たとえば、本明細書の実施例に記載の方法を用いて測定することができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の自立膜の製造方法は、上述した何れかの自立膜の製造方法であって、単層カーボンナノチューブを含有し、ラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(G/D比)が2以上である複数本の繊維状炭素ナノ構造体と、溶媒とを含む繊維状炭素ナノ構造体分散液を支持体上に供給する工程と、前記支持体上の前記繊維状炭素ナノ構造体分散液から前記溶媒を除去することで、前記支持体上に自立膜を備える積層体を形成する工程と、前記積層体を、SP値が10(MPa)1/2以上の剥離液と接触させることで、前記支持体から前記自立膜を剥離する工程と、を含むことを特徴とする。上述した工程を経れば、光透過性に優れる自立膜を効率良く製造することができる。
 なお、本発明における「SP値」は、水や有機溶剤の溶解度パラメーター(SP値)を意味し、分子凝集エネルギーの平方根で表される値である。SP値については、「Polymer HandBook(Second Edition) 第IV章 Solubility Parameter Values」に記載があり、その値を本発明におけるSP値とする。(なお、SP値は25℃における値を指す。)また、データの記載がないものについては、「R.F.Fedors,Polymer Engineering Science,14, p147(1967)」に記載の方法で計算した値を本発明におけるSP値とする。
 本発明によれば、優れた光透過性を備えた、複数本の繊維状炭素ナノ構造体よりなる自立膜、当該自立膜を備える積層体、および当該自立膜を製造する方法を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の自立膜は、複数本の繊維状炭素ナノ構造体の集合体で構成される自立膜である。そして、本発明の自立膜の製造方法は、複数本の繊維状炭素ナノ構造体を膜状に集合させて自立膜を製造する方法であり、本発明の自立膜の製造に用いられる。なお、本発明の積層体は、支持体上に本発明の自立膜を備えるものであり、本発明の自立膜の製造方法により本発明の自立膜を製造するに際し、製造中間体として得ることができる。
(自立膜)
 本発明の自立膜は、複数本の繊維状炭素ナノ構造体が集合し膜化することで得られる炭素膜である。なお、本発明の自立膜は、例えば、製造工程において不可避に混入する、繊維状炭素ナノ構造体以外の成分(分散剤など)を含んでいてもよい。しかしながら、自立膜中に占める繊維状炭素ナノ構造体の割合は、95質量%以上であることが好ましく、98質量%以上であることがより好ましく、99質量%以上であることが更に好ましく、99.5質量%以上であることが特に好ましく、100質量%であること(即ち、自立膜が繊維状炭素ナノ構造体のみからなること)が最も好ましい。
<性状>
<<G/D比>>
 ここで、本発明の自立膜は、G/D比が2以上であることが必要であり、10以上であることが好ましい。G/D比が2未満であると、自立膜として求められる自立性を確保することができない。この理由は定かではないが、G/D比が2未満であると、自立膜を構成する繊維状炭素ナノ構造体中に占める屈曲構造体の割合が高まることで自立膜の密度が低下し、膜強度が低下するためと推察される。
 なお、自立膜のG/D比の上限は、特に限定されないが、通常200以下である。
<<波長550nmの光線透過率>>
 また、本発明の自立膜は、波長550nmの光線透過率が、60%以上であることが必要であり、85%以上であることが好ましく、90%以上であることがより好ましい。波長550nmの光線透過率が60%未満である自立膜は、光透過性に劣る。
<<表面抵抗値>>
 そして、本発明の自立膜は、表面抵抗値が600Ω/□以下であることが好ましい。表面抵抗値が600Ω/□以下である自立膜は、導電性に優れる。なお、自立膜の表面抵抗値の下限は特に限定されないが、通常0.1Ω/□以上である。
<<厚み>>
 ここで、本発明の自立膜は、厚みが10nm以上であることが好ましく、20nm以上であることがより好ましく、110nm以下であることが好ましく、100nm以下であることがより好ましい。厚みが10nm以上であれば、自立膜の膜強度を十分に確保することができ、110nm以下であれば、自立膜の光透過性を更に向上させることができる。
<繊維状炭素ナノ構造体>
 本発明の自立膜を構成する複数本の繊維状炭素ナノ構造体としては、単層CNTを含む繊維状炭素ナノ構造体を使用することが必要である。自立膜を構成する複数本の繊維状炭素ナノ構造体に単層CNTが含まれなければ、自立膜の光透過性が低下する。
 ここで、単層CNTを含む繊維状炭素ナノ構造体は、単層CNTのみからなるものであってもよいし、単層CNTと、単層CNT以外の繊維状炭素ナノ構造体との混合物であってもよい。単層CNT以外の繊維状炭素ナノ構造体としては、例えば、多層CNT、気相成長炭素繊維、有機繊維を炭化して得られる炭素繊維、およびそれらの切断物が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 そして、繊維状炭素ナノ構造体中に占める単層CNTの割合は、60%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましく、100%であること(即ち、繊維状炭素ナノ構造体が単層CNTのみからなること)が最も好ましい。
 なお、「繊維状炭素ナノ構造体中に占める単層CNTの割合」は、透過型電子顕微鏡を用いて無作為に選択した繊維状炭素ナノ構造体100本中の単層CNTの数を数えることで、求めることができる。
 また、単層CNTを含む繊維状炭素ナノ構造体としては、平均直径(Av)に対する、直径の標準偏差(σ)に3を乗じた値(3σ)の比(3σ/Av)が0.20超0.60未満の繊維状炭素ナノ構造体を用いることが好ましく、3σ/Avが0.25超の繊維状炭素ナノ構造体を用いることがより好ましく、3σ/Avが0.50以上の繊維状炭素ナノ構造体を用いることが更に好ましい。繊維状炭素ナノ構造体の3σ/Avが上述した範囲内であれば、自立膜の膜強度を更に高めつつ、導電性を向上させることができる。
 なお、「繊維状炭素ナノ構造体の平均直径(Av)」および「繊維状炭素ナノ構造体の直径の標準偏差(σ:標本標準偏差)」は、それぞれ、透過型電子顕微鏡を用いて無作為に選択した繊維状炭素ナノ構造体100本の直径(外径)を測定して求めることができる。そして、繊維状炭素ナノ構造体の平均直径(Av)および標準偏差(σ)は、繊維状炭素ナノ構造体の製造方法や製造条件を変更することにより調整してもよいし、異なる製法で得られた繊維状炭素ナノ構造体を複数種類組み合わせることにより調整してもよい。
 そして、単層CNTを含む繊維状炭素ナノ構造体の平均直径(Av)は、0.5nm以上であることが好ましく、1nm以上であることがより好ましく、15nm以下であることが好ましく、10nm以下であることがより好ましい。繊維状炭素ナノ構造体の平均直径(Av)が0.5nm以上であれば、繊維状炭素ナノ構造体の凝集を抑制して、凝集物の生成による自立膜の光透過性の低下を防ぐことができる。一方、繊維状炭素ナノ構造体の平均直径(Av)が15nm以下であれば、自立膜の膜強度を更に向上させることができる。加えて、繊維状炭素ナノ構造体の平均直径(Av)が上述した範囲内であれば、自立膜の導電性を高めることができる。
 更に、単層CNTを含む繊維状炭素ナノ構造体のBET比表面積は、400m/g以上であることが好ましく、700m/g以上であることがより好ましく、2500m/g以下であることが好ましく、1200m/g以下であることがより好ましい。繊維状炭素ナノ構造体のBET比表面積が400m/g以上であれば、自立膜の膜強度を更に向上させることができる。一方、繊維状炭素ナノ構造体のBET比表面積が2500m/g以下であれば、繊維状炭素ナノ構造体の凝集を抑制して、凝集物の生成による自立膜の光透過性の低下を防ぐことができる。加えて、繊維状炭素ナノ構造体のBET比表面積が上述した範囲内であれば、自立膜の導電性を高めることができる。
 なお、本発明において、「BET比表面積」とは、BET法を用いて測定した窒素吸着比表面積を指す。
 そして、単層CNTを含む繊維状炭素ナノ構造体としては、市販品を用いてもよいし、例えば、CNT製造用の触媒層を表面に有する基材上に、原料化合物およびキャリアガスを供給して、化学的気相成長法(CVD法)によりCNTを合成する際に、系内に微量の酸化剤(触媒賦活物質)を存在させることで、触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)に準じて、CNTを含む繊維状炭素ナノ構造体を効率的に製造してもよい。なお、以下では、スーパーグロース法により得られるカーボンナノチューブを「SGCNT」と称することがある。
 ここで、スーパーグロース法により製造したSGCNTを含む繊維状炭素ナノ構造体は、SGCNTのみから構成されていてもよいし、SGCNTに加え、例えば、非円筒形状の炭素ナノ構造体等の他の炭素ナノ構造体が含まれていてもよい。
(自立膜の製造方法)
 上述した本発明の自立膜は、本発明の自立膜の製造方法により製造することができる。そして、本発明の自立膜の製造方法は、単層カーボンナノチューブを含有し、ラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(G/D比)が2以上である複数本の繊維状炭素ナノ構造体と、溶媒とを含む繊維状炭素ナノ構造体分散液を支持体上に供給する工程(分散液供給工程)と、支持体上の繊維状炭素ナノ構造体分散液から溶媒を除去することで、支持体上に自立膜を備える積層体を形成する工程(積層体形成工程)と、積層体を、SP値が10(MPa)1/2以上の剥離液と接触させることで、支持体から自立膜を剥離する工程(自立膜剥離工程)を、少なくとも含む。本発明の製造方法によれば、光透過性に優れる自立膜を効率良く製造することができる。
<<分散液供給工程>>
 分散液供給工程では、G/D比が2以上であり且つ単層CNTを含有する繊維状炭素ナノ構造体が、溶媒中に分散してなる繊維状炭素ナノ構造体分散液(以下、「分散液」と略記する場合がある。)を支持体上に供給する。
〔繊維状炭素ナノ構造体分散液〕
 分散液は、繊維状炭素ナノ構造体と溶媒とを含み、任意に、繊維状炭素ナノ構造体および溶媒以外の成分(その他の成分)を含む。
[繊維状炭素ナノ構造体]
 分散液に含まれる繊維状炭素ナノ構造体は、上述した本発明の自立膜を構成する繊維状炭素ナノ構造体である。
 ここで、分散液の調製に用いる繊維状炭素ナノ構造体は、G/D比が2以上であることが必要であり、10以上であることが好ましい。なお、分散液の調製に用いる繊維状炭素ナノ構造体のG/D比の上限は、特に限定されないが、通常1000以下である。
 また、分散液に含まれる繊維状炭素ナノ構造体の性状(上記G/D比を除く)は、通常、「自立膜」の項で上述した繊維状炭素ナノ構造体の性状と一致する。
 なお、分散液中の繊維状炭素ナノ構造体の濃度は、繊維状炭素ナノ構造体が溶媒中に分散可能であれば特に限定されない。
[溶媒]
 分散液に含まれる溶媒(繊維状炭素ナノ構造体の分散媒)としては、特に限定されることなく、例えば、水、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、アミルアルコールなどのアルコール類、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類、酢酸エチル、酢酸ブチルなどのエステル類、ジエチルエーテル、ジオキサン、テトラヒドロフランなどのエーテル類、N,N-ジメチルホルムアミド、N-メチルピロリドンなどのアミド系極性有機溶媒、トルエン、キシレン、クロロベンゼン、オルトジクロロベンゼン、パラジクロロベンゼンなどの芳香族炭化水素類などが挙げられる。これらは1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
[その他の成分]
 分散液に任意に含まれるその他の成分としては、繊維状炭素ナノ構造体の分散液や炭素膜に含まれうる既知の成分であれば特に限定されない。例えば、分散液は、その他の成分として分散剤を含むことが好ましい。
 そして、分散剤としては、繊維状炭素ナノ構造体を分散可能であり、繊維状炭素ナノ構造体を分散させる溶媒に溶解可能であれば、特に限定されることなく、界面活性剤、合成高分子または天然高分子を用いることができる。
 ここで、界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤の何れも用いることができる。具体的に、界面活性剤としては、ドデシルスルホン酸ナトリウム、デオキシコール酸ナトリウム、コール酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウムなどが挙げられる。
 また、合成高分子としては、例えば、ポリエーテルジオール、ポリエステルジオール、ポリカーボネートジオール、ポリビニルアルコール、部分けん化ポリビニルアルコール、アセトアセチル基変性ポリビニルアルコール、アセタール基変性ポリビニルアルコール、ブチラール基変性ポリビニルアルコール、シラノール基変性ポリビニルアルコール、エチレン-ビニルアルコール共重合体、エチレン-ビニルアルコール-酢酸ビニル共重合樹脂、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、アクリル系樹脂、エポキシ樹脂、変性エポキシ系樹脂、フェノキシ樹脂、変性フェノキシ系樹脂、フェノキシエーテル樹脂、フェノキシエステル樹脂、フッ素系樹脂、メラミン樹脂、アルキッド樹脂、フェノール樹脂、ポリアクリルアミド、ポリアクリル酸、ポリスチレンスルホン酸、ポリエチレングリコール、ポリビニルピロリドンが挙げられる。
 更に、天然高分子としては、例えば、多糖類であるデンプン、プルラン、デキストラン、デキストリン、グアーガム、キサンタンガム、アミロース、アミロペクチン、アルギン酸、アラビアガム、カラギーナン、コンドロイチン硫酸、ヒアルロン酸、カードラン、キチン、キトサン、セルロース、並びに、その塩または誘導体が挙げられる。
 これらの分散剤は、1種または2種以上を混合して用いることができる。
 そして、これらの分散剤の中でも界面活性剤が好ましい。また、界面活性剤としては、分子量が400以下の界面活性剤を用いることが好ましく、分子量が350以下の界面活性剤を用いることがより好ましく、分子量が300以下の界面活性剤を用いることが更に好ましい。分子量が400以下の界面活性剤は、溶媒中で繊維状炭素ナノ構造体を分散させる性質を有する一方で、溶媒除去後には繊維状炭素ナノ構造体同士のネットワーク形成を阻害しないためと推察されるが、分子量が400以下の界面活性剤を用いることにより、後述する自立膜剥離工程において、支持体から自立膜を良好に剥離させることができる。ここで、界面活性剤の分子量の下限は、特に限定されないが、例えば50以上である。なお、分子量が400以下の界面活性剤としては、例えば、ドデシルスルホン酸ナトリウム(分子量:288.38)や、ドデシルベンゼンスルホン酸ナトリウム(分子量:348.48)が挙げられる。これらは、1種または2種以上を混合して用いることができる。
 また、界面活性剤としては、炭素数6以上20以下の直鎖アルキル鎖を有する界面活性剤を用いることが好ましい。炭素数6以上20以下の直鎖アルキル鎖を有する界面活性剤を用いることで、後述する自立膜剥離工程において、支持体から自立膜を良好に剥離させることができる。
 そして、界面活性剤の中でも、後述する自立膜剥離工程において、支持体から自立膜を良好に剥離させる観点から、ドデシルスルホン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウムが好ましく、ドデシルスルホン酸ナトリウムが特に好ましい。
[分散液の調製方法]
 ここで、複数本の繊維状炭素ナノ構造体と、溶媒と、任意に分散剤などのその他の成分を含む分散液の調製方法は、繊維状炭素ナノ構造体が溶媒中に分散可能であれば特に限定されない。例えば、分散液は、複数本の繊維状炭素ナノ構造体と、溶媒と、任意に分散剤などのその他の成分とを含む組成物に分散処理を施す工程(分散処理工程)と、前記分散処理後の組成物を静置または遠心分離し、前記複数本の繊維状炭素ナノ構造体の一部を沈殿させる工程(分離工程)と、静置または遠心分離した前記組成物から上澄みを液として繊維状炭素ナノ構造体分散液を分取する工程(分取工程)、を経て製造することができる。上述した分散処理工程、分離工程、および分取工程を経て分散液を調製すれば、当該分散液を用いて得られる自立膜の光透過性を更に向上させることができる。
―分散処理工程―
 分散処理工程では、複数本の繊維状炭素ナノ構造体と、溶媒と、任意に分散剤などのその他の成分とを含む組成物に分散処理を施す。ここで、分散処理工程で用いる分散処理方法としては、特に限定されることなく、繊維状炭素ナノ構造体分散液の調製に使用されている既知の分散処理方法を用いることができる。中でも、組成物に施す分散処理としては、キャビテーション効果または解砕効果が得られる分散処理が好ましい。キャビテーション効果または解砕効果が得られる分散処理を使用すれば、繊維状炭素ナノ構造体を良好に分散させることができるので、得られる自立膜の膜強度を更に高めることができる。
 ここで、キャビテーション効果が得られる分散処理、解砕効果が得られる分散処理の具体例としては、特に限定されず、例えば、特開2016-183082号公報に記載のものが挙げられる。
 なお、分散処理に供する組成物中の単層CNTを含む繊維状炭素ナノ構造体の濃度は、0.005質量%以上であることが好ましく、0.01質量%以上であることがより好ましく、5質量%以下であることが好ましく、3質量%以下であることがより好ましい。繊維状炭素ナノ構造体の濃度が0.005質量%以上であれば、得られる分散液中の繊維状炭素ナノ構造体の濃度が低下するのを抑制して、自立膜を効率的に製造することができる。また、繊維状炭素ナノ構造体の濃度が5質量%以下であれば、繊維状炭素ナノ構造体の凝集を抑制して、凝集物の生成による自立膜の光透過性の低下を防ぐことができる。
 更に、分散処理に供する組成物中の分散剤の濃度は、0.1質量%以上であることが好ましく、0.2質量%以上であることがより好ましく、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。分散剤の濃度が0.1質量%以上10質量%以下であれば、得られる上澄み液(分散液)中に分散性に優れる繊維状炭素ナノ構造体を適度に残存させ、光透過性に優れる自立膜を効率的に製造することができる。
―分離工程―
 分離工程では、上述した分散処理後の組成物を静置または遠心分離することで、複数本の繊維状炭素ナノ構造体の一部を沈殿させる。そして、分離工程では、凝集性の高い繊維状炭素ナノ構造体が沈殿し、分散性に優れる繊維状炭素ナノ構造体は上澄み液中に残存する。
 分散処理後の組成物を静置する際の条件は、沈殿と上澄みの分離が良好に行われれば特に限定されない。例えば、静置する時間は、得られる上澄み液中に分散性に優れる繊維状炭素ナノ構造体を適度に残存させ、光透過性に優れる自立膜を効率良く製造する観点からは、1時間以上であることが好ましく、2時間以上であることがより好ましい。なお、静置する時間の上限は特に限定されない。
 また、分散処理後の組成物の遠心分離は、特に限定されることなく、既知の遠心分離機を用いて行うことができる。
 中でも、得られる上澄み液中に分散性に優れる繊維状炭素ナノ構造体を適度に残存させ、光透過性に優れる自立膜を効率良く製造する観点からは、分散処理後の組成物を遠心分離する際の遠心回転数は、10rpm以上であることが好ましく、20rpm以上であることがより好ましく、15000rpm以下であることが好ましく、10000rpm以下であることがより好ましい。
 また、得られる上澄み液中に分散性に優れる繊維状炭素ナノ構造体を適度に残存させ、光透過性に優れる自立膜を効率良く製造する観点からは、繊維状炭素ナノ構造体分散液を遠心分離する際の遠心分離時間は、0.1分以上であることが好ましく、0.5分以上であることがより好ましく、150分以下であることが好ましく、120分以下であることがより好ましい。
―分取工程―
 分取工程では、分離工程で静置または遠心分離した組成物から上澄み液として繊維状炭素ナノ構造体分散液を分取する。そして、上澄み液の分取は、例えば、デカンテーションやピペッティングなどにより、沈殿層を残して上澄み液を回収することにより行うことができる。具体的には、例えば、分離工程後の組成物の液面から5/6の深さまでの部分に存在する上澄み液を回収すればよい。
 静置または遠心分離後の組成物から分取した上澄み液としての繊維状炭素ナノ構造体分散液には、静置または遠心分離により沈殿しなかった繊維状炭素ナノ構造体が含まれている。この繊維状炭素ナノ構造体分散液を用いれば、光透過性に優れる自立膜を効率良く製造することができる。
[分散液の光線透過率]
 ここで、繊維状炭素ナノ構造体分散液の、波長550nmの光線透過率は、60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることが更に好ましく、85%以上であることが一層好ましく、88%以上であることが特に好ましく、99%以下であることが好ましい。分散液の、波長550nmの光線透過率が60%以上であれば、光透過性に優れる自立膜を効率良く製造することができる。一方、分散液の、波長550nmの光線透過率が99%以下であれば、得られる自立膜の膜強度を十分に確保することができ、ハンドリング性を向上させることができる。
 なお、本発明において、繊維状炭素ナノ構造体分散液の「波長550nmの光線透過率」は、本明細書の実施例に記載の方法を用いて測定することができる。
〔分散液の支持体上への供給〕
 上述した繊維状炭素ナノ構造体分散液を支持体上に供給する方法は、特に限定されず、塗布、滴下などが挙げられる。また支持体としては、その上で分散液中の溶媒を除去して自立膜としての炭素膜を成膜可能であれば、特に限定されない。
[支持体]
 例えば、分散液中の溶媒の除去を乾燥により行う場合は、支持体としては、樹脂支持体、ガラス支持体などを挙げることができる。ここで、樹脂支持体としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリテトラフルオロエチレン(PTFE)、ポリイミド、ポリフェニレンスルフィド、アラミド、ポリプロピレン、ポリエチレン、ポリ乳酸、ポリ塩化ビニル、ポリカーボネート、ポリメタクリル酸メチル、脂環式アクリル樹脂、シクロオレフィン樹脂、トリアセチルセルロースなどよりなる支持体を挙げることができる。また、ガラス支持体としては、通常のソーダガラスよりなる支持体を挙げることができる。
 また、例えば、分散液中の溶媒の除去をろ過により行う場合は、支持体としては、多孔質の支持体を用いる。多孔質の支持体としては、特に限定されないが、ろ紙や、セルロースとニトロセルロースの少なくとも一方を含む多孔質シートを挙げることができる。
 また、支持体の、分散液が供給される面(即ち、溶媒の除去後に得られる自立膜と接する面)は、表面粗さRaが2.3μm以下であることが好ましく、2.0μm以下であることがより好ましく、1.7μm以下であることが更に好ましい。自立膜と接する面の表面粗さRaが2.3μm以下である支持体を用いれば、後述する自立膜剥離工程において、支持体から自立膜を容易に剥離することができる。なお、表面粗さRaの下限は特に限定されないが、通常0.5μm以上である。
<<積層体形成工程>>
 積層体形成工程では、支持体上の分散液から溶媒を除去することで、自立膜と、自立膜に接する支持体とを備える積層体を得る。
〔溶媒の除去〕
 分散液から溶媒を除去する方法としては、乾燥、ろ過が挙げられるが、容易かつ迅速に溶媒を除去する観点からは、ろ過が好ましい。
 なお、ろ過の方法としては、公知のろ過方法を採用できる。具体的には、ろ過方法としては、自然ろ過、減圧ろ過、加圧ろ過、遠心ろ過などを用いることができる。これらの中でも、減圧ろ過が好ましい。
 なお、分散液中の溶媒は完全に除去する必要はなく、溶媒の除去後に残った繊維状炭素ナノ構造体が膜状の集合体(炭素膜)としてハンドリング可能な状態であれば、多少の溶媒が残留していても問題はない。
〔積層体〕
 上述のようにして分散液から溶媒を除去することで得られる本発明の積層体は、直ちに後述する自立膜剥離工程に供してもよいが、積層体の状態で、保管や運搬等を行ってもよい。積層体の状態で保管や運搬を行うことで、自立膜の破損を防止することができる。
<<自立膜剥離工程>>
 自立膜剥離工程では、積層体形成工程で得られた積層体を、SP値が10(MPa)1/2以上の剥離液と接触させることで、支持体から自立膜を剥離する。
〔剥離液〕
 ここで、剥離液のSP値は10(MPa)1/2以上であることが必要である。剥離液のSP値が10(MPa)1/2未満であると、剥離液が、支持体と自立膜の間に十分に浸透しないためと推察されるが、自立膜を支持体から損傷なく剥離することが困難となる。なお、剥離液のSP値の上限は、特に限定されないが、例えば25(MPa)1/2以下である。
 ここで、剥離液として使用可能な液体としては、剥離液全体としてのSP値が10(MPa)1/2以上であれば特に限定されず、SP値が10(MPa)1/2以上の液体1種を単独で用いてもよいし、2種以上のSP値が10(MPa)1/2以上の液体の混合物を用いてもよいし、さらには、1種又は2種以上のSP値が10(MPa)1/2以上の液体と、1種又は2種以上のSP値が10(MPa)1/2未満の液体との混合物を用いてもよい。
 なお、SP値が10(MPa)1/2以上の液体としては、例えば、水(純水、ナノバブル水等)、エタノール、メタノール、イソプロピルアルコール(IPA)を挙げることができる。
〔積層体と剥離液の接触〕
 積層体と、SP値が10(MPa)1/2以上の剥離液とを接触させる方法は、自立膜を損傷なく剥離させることができれば特に限定されないが、積層体を剥離液に浸漬させることが好ましい。積層体を剥離液に浸漬させることで、剥離液中で自立膜が支持体から良好に剥離し、剥離後の自立膜を回収することができる。加えて、積層体を剥離液に浸漬させることで、自立膜中に存在する分散剤を除去することができる。ここで、浸漬条件(例えば、浸漬時間、浸漬温度)は、支持体と自立膜の剥離を良好に行うことができれば、特に限定されない。
 そして、支持体からの剥離後、任意に乾燥する等して、光透過性に優れる本発明の自立膜を得ることができる。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 そして、本発明において、炭素膜および繊維状炭素ナノ構造体のG/D比、繊維状炭素ナノ構造体分散液の波長550nmの光線透過率、炭素膜の厚み、表面抵抗値および波長550nmの光線透過率、並びに、支持体の表面粗さRaは、以下の要領で測定および評価した。
<G/D比>
 顕微レーザラマン分光光度計(サーモフィッシャーサイエンティフィック(株)製Nicolet Almega XR)を使用し、自立膜および繊維状炭素ナノ構造体のラマンスペクトルを計測した。そして、得られたラマンスペクトルについて、1590cm-1近傍で観察されたGバンドピークの強度と、1340cm-1近傍で観察されたDバンドピークの強度とを求め、G/D比を算出した。
<分散液の波長550nmの光線透過率>
 0.1mm幅の石英セルに、分散液を滴下して測定サンプルを用意した。そして、分光光度計(日本分光社製、「V-670」)を用いて、分散液の波長550nmの光線透過率を測定した。
<炭素膜の厚み>
 得られた炭素膜をガラス基板に載せ、「Dimension Icon AFM」(ブルカー社製)を用いて、ガラス面と炭素膜面の任意の3か所の段差を測定し,その平均値を、炭素膜の厚みとした。
<炭素膜の表面抵抗値>
 抵抗率計(三菱化学社製、「ロレスタ(登録商標)GP」)を用いて、四端子四探針法にて炭素膜のシート抵抗を測定した。
<炭素膜の波長550nmの光線透過率>
 分光光度計(日本分光社製、「V-670」)を用いて、炭素膜の波長550nmの光線透過率を測定した。
<支持体の表面粗さRa>
 形状解析レーザ顕微鏡(キーエンス社製、「VK-X160」)で、分散液供給側の面の任意の5点の表面粗さを測定し、その平均値を支持体の表面粗さRa(μm)とした。
(実施例1)
<繊維状炭素ナノ構造体分散液の調製>
 分散剤としてドデシルスルホン酸ナトリウム(SDS)を含む濃度2%のSDS水溶液500mLに対し、繊維状炭素ナノ構造体としての「MEIJO eDIPS」(名城ナノカーボン製、G/D比:200、単層CNTの割合:90%、3σ/Av:0.5、平均直径(Av):1.5nm、BET比表面積:750m/g)を0.1g加え、繊維状炭素ナノ構造体、分散剤、および水を含む組成物を、分散時に背圧を負荷する多段圧力制御装置(多段降圧器)を有する高圧ホモジナイザー(株式会社美粒製、製品名「BERYU SYSTEM PRO」)に充填し、100MPaの圧力で組成物の分散処理を行った。具体的には、背圧を負荷しつつ、組成物にせん断力を与えて繊維状炭素ナノ構造体を分散させた。なお、分散処理は、高圧ホモジナイザーから流出した分散液を再び高圧ホモジナイザーに返送しつつ、10分間実施した(分散処理工程)。
 次いで、分散処理後の組成物に、当該組成物の50倍量の水を添加した。得られた希釈液を、常温(25℃)で2時間静置した(分離工程)。2時間静置後、上澄み液を採取して繊維状炭素ナノ構造体分散液を得た(分取工程)。得られた分散液(上澄み液)の波長550nmの光線透過率は90.0%であった。
<積層体の作製>
 上記で得られた分散液を、多孔質の支持体としてのメンブレンフィルター(セルロース混合エステルタイプ、分散液供給側の面の表面粗さRa:1.2μm)を備えた減圧ろ過装置を用いて、0.09MPaの条件下にて上澄み液のろ過を実施し、メンブレンフィルター上に炭素膜を備える積層体を得た。
<炭素膜の剥離>
 上記で得られた積層体を、剥離液(SP値:10(MPa)1/2、組成:水が50%、エタノールが50%)中に浸漬した。浸漬から2分経過後、メンブレンフィルターから剥離し剥離液の液面に浮上した炭素膜を回収した。得られた炭素膜は、メンブレンフィルターと同等の大きさであり、メンブレンフィルターから剥離しても膜の状態を維持していた(即ち、得られた炭素膜は自立膜であった)。そして、得られた炭素膜(自立膜)のG/D比は21であり、波長550nmの光線透過率は92.7%であり、表面抵抗値は500Ω/□であり、厚みは50nmであった。
(実施例2)
 分離工程において、静置による分離に替えて、遠心分離機(シンキー社製、「あわとり練太郎」)を用いた遠心分離(真空下、遠心回転数:50rpm、遠心分離時間:1分)による分離を採用した以外は、実施例1と同様にして、繊維状炭素ナノ構造体分散液、積層体、および炭素膜(自立膜)を得た。なお、得られた分散液(上澄み液)の波長550nmの光線透過率は98.6%であった。また、得られた炭素膜は、メンブレンフィルターと同等の大きさであり、メンブレンフィルターから剥離しても膜の状態を維持していた(即ち、得られた炭素膜は自立膜であった)。そして、得られた炭素膜(自立膜)のG/D比は21であり、波長550nmの光線透過率は95%であり、表面抵抗値は500Ω/□であり、厚みは30nmであった。
(比較例1)
 繊維状炭素ナノ構造体として、NC7000(ナノシル製、G/D比:1.2、単層CNTの割合:0%、3σ/Av:0.5、平均直径(Av):9.5nm、BET比表面積:250m/g)を用いた以外は、実施例1と同様にして、繊維状炭素ナノ構造体分散液および積層体を得た。そして、実施例1と同様にして、炭素膜の剥離を試みたが、膜強度が極めて弱いため剥離液中へ浸漬するのと同時に炭素膜が崩壊し、自立膜としての炭素膜を得ることができなかった。
 本発明によれば、優れた光透過性を備えた、複数本の繊維状炭素ナノ構造体よりなる自立膜、当該自立膜を備える積層体、および当該自立膜を製造する方法を提供することができる。

Claims (7)

  1.  複数本の繊維状炭素ナノ構造体よりなる自立膜であって、
     ラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(G/D比)が2以上であり、波長550nmの光線透過率が60%以上であり、そして、
     前記複数本の繊維状炭素ナノ構造体は、単層カーボンナノチューブを含有する、自立膜。
  2.  厚みが10nm以上110nm以下である、請求項1に記載の自立膜。
  3.  表面抵抗値が600Ω/□以下である、請求項1または2に記載の自立膜。
  4.  前記ラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(G/D比)が10以上である、請求項1~3の何れかに記載の自立膜。
  5.  請求項1~4の何れかに記載の自立膜と、
     前記自立膜に接する支持体とを備える、積層体。
  6.  前記支持体の、前記自立膜と接する面の表面粗さRaが2.3μm以下である、請求項5に記載の積層体。
  7.  請求項1~4の何れかに記載の自立膜の製造方法であって、
     単層カーボンナノチューブを含有し、ラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(G/D比)が2以上である複数本の繊維状炭素ナノ構造体と、溶媒とを含む繊維状炭素ナノ構造体分散液を支持体上に供給する工程と、
     前記支持体上の前記繊維状炭素ナノ構造体分散液から前記溶媒を除去することで、前記支持体上に自立膜を備える積層体を形成する工程と、
     前記積層体を、SP値が10(MPa)1/2以上の剥離液と接触させることで、前記支持体から前記自立膜を剥離する工程と、
    を含む、自立膜の製造方法。
PCT/JP2019/012501 2018-03-29 2019-03-25 自立膜、積層体、および自立膜の製造方法 WO2019188977A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020510071A JP7211414B2 (ja) 2018-03-29 2019-03-25 自立膜の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-065287 2018-03-29
JP2018065287 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019188977A1 true WO2019188977A1 (ja) 2019-10-03

Family

ID=68060014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012501 WO2019188977A1 (ja) 2018-03-29 2019-03-25 自立膜、積層体、および自立膜の製造方法

Country Status (2)

Country Link
JP (1) JP7211414B2 (ja)
WO (1) WO2019188977A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021172528A (ja) * 2020-04-17 2021-11-01 国立研究開発法人産業技術総合研究所 カーボンナノチューブ膜、分散液及びカーボンナノチューブ膜の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182342A (ja) * 2006-01-05 2007-07-19 Univ Of Tokyo カーボンナノチューブ自立膜及びその製造方法、並びにカーボンナノチューブ膜を有する構成体及びその製造方法
JP2009242149A (ja) * 2008-03-31 2009-10-22 Toray Ind Inc カーボンナノチューブの製造方法
JP2014529559A (ja) * 2011-06-20 2014-11-13 矢崎総業株式会社 炭素の凝集アセンブリおよびその用途
JP2015017029A (ja) * 2013-06-11 2015-01-29 東レ株式会社 カーボンナノチューブ集合体およびその製造方法
JP2015020939A (ja) * 2013-07-22 2015-02-02 東レ株式会社 カーボンナノチューブ集合体、カーボンナノチューブ集合体の合成方法、樹脂組成物、導電性エラストマーおよび分散液
WO2016103706A1 (ja) * 2014-12-25 2016-06-30 日本ゼオン株式会社 カーボンナノチューブ膜およびその製造方法
WO2016157834A1 (ja) * 2015-03-31 2016-10-06 日本ゼオン株式会社 炭素膜およびその製造方法
JP2016183082A (ja) * 2015-03-26 2016-10-20 日本ゼオン株式会社 炭素膜の製造方法および炭素膜
JP2016190772A (ja) * 2015-03-31 2016-11-10 日本ゼオン株式会社 炭素膜およびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182342A (ja) * 2006-01-05 2007-07-19 Univ Of Tokyo カーボンナノチューブ自立膜及びその製造方法、並びにカーボンナノチューブ膜を有する構成体及びその製造方法
JP2009242149A (ja) * 2008-03-31 2009-10-22 Toray Ind Inc カーボンナノチューブの製造方法
JP2014529559A (ja) * 2011-06-20 2014-11-13 矢崎総業株式会社 炭素の凝集アセンブリおよびその用途
JP2015017029A (ja) * 2013-06-11 2015-01-29 東レ株式会社 カーボンナノチューブ集合体およびその製造方法
JP2015020939A (ja) * 2013-07-22 2015-02-02 東レ株式会社 カーボンナノチューブ集合体、カーボンナノチューブ集合体の合成方法、樹脂組成物、導電性エラストマーおよび分散液
WO2016103706A1 (ja) * 2014-12-25 2016-06-30 日本ゼオン株式会社 カーボンナノチューブ膜およびその製造方法
JP2016183082A (ja) * 2015-03-26 2016-10-20 日本ゼオン株式会社 炭素膜の製造方法および炭素膜
WO2016157834A1 (ja) * 2015-03-31 2016-10-06 日本ゼオン株式会社 炭素膜およびその製造方法
JP2016190772A (ja) * 2015-03-31 2016-11-10 日本ゼオン株式会社 炭素膜およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021172528A (ja) * 2020-04-17 2021-11-01 国立研究開発法人産業技術総合研究所 カーボンナノチューブ膜、分散液及びカーボンナノチューブ膜の製造方法

Also Published As

Publication number Publication date
JP7211414B2 (ja) 2023-01-24
JPWO2019188977A1 (ja) 2021-03-18

Similar Documents

Publication Publication Date Title
Yim et al. Fabrication of transparent single wall carbon nanotube films with low sheet resistance
TWI775738B (zh) 纖維狀碳奈米構造體分散液
KR102576626B1 (ko) 탄소막 및 그 제조 방법
JP3837557B2 (ja) カーボンナノチューブ分散溶液およびその製造方法
JP2021088804A (ja) 導電性不織布およびその製造方法
JP7211414B2 (ja) 自立膜の製造方法
JP2016190772A (ja) 炭素膜およびその製造方法
KR20240049650A (ko) 탄소 시트
JP7255586B2 (ja) 炭素膜の製造方法
JP6511906B2 (ja) 炭素膜の製造方法および炭素膜
JP2016183395A (ja) 金属複合材料およびその製造方法
JPWO2017104772A1 (ja) 繊維状炭素ナノ構造体分散液
JP6841318B2 (ja) 炭素膜およびその製造方法
CN107614425B (zh) 碳膜及其制造方法、以及纤维状碳纳米结构体分散液及其制造方法
Castro et al. Preparation and characterization of low-and high-adherent transparent multi-walled carbon nanotube thin films
JP6648423B2 (ja) 不織布およびその製造方法
JP2017119586A (ja) 繊維状炭素ナノ構造体分散液及びその製造方法、炭素膜の製造方法並びに炭素膜
WO2015045417A1 (ja) カーボンナノチューブ分散液の製造方法
WO2017104769A1 (ja) 繊維状炭素ナノ構造体分散液
JP2019102177A (ja) カーボンナノチューブ含有異方性導電フィルムおよびその製造方法
WO2016143299A1 (ja) 複合材料の製造方法および複合材料
JP2023097049A (ja) カーボンナノチューブ複合膜及びその製造方法、並びに熱電変換素子
WO2017186912A1 (en) Members of carbon nanomaterials and methods for their production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775556

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510071

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775556

Country of ref document: EP

Kind code of ref document: A1