WO2019188862A1 - 熱電変換モジュール - Google Patents

熱電変換モジュール Download PDF

Info

Publication number
WO2019188862A1
WO2019188862A1 PCT/JP2019/012295 JP2019012295W WO2019188862A1 WO 2019188862 A1 WO2019188862 A1 WO 2019188862A1 JP 2019012295 W JP2019012295 W JP 2019012295W WO 2019188862 A1 WO2019188862 A1 WO 2019188862A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
conversion module
substrate
layer
resin
Prior art date
Application number
PCT/JP2019/012295
Other languages
English (en)
French (fr)
Inventor
邦久 加藤
豪志 武藤
祐馬 勝田
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN201980022181.9A priority Critical patent/CN111971807A/zh
Priority to JP2020510007A priority patent/JPWO2019188862A1/ja
Priority to US17/041,063 priority patent/US20210098672A1/en
Publication of WO2019188862A1 publication Critical patent/WO2019188862A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur

Definitions

  • the present invention relates to a thermoelectric conversion module that performs mutual energy conversion between heat and electricity.
  • thermoelectric conversion module use of a so-called ⁇ -type thermoelectric conversion element.
  • a pair of electrodes that are spaced apart from each other are provided on the substrate, for example, a P-type thermoelectric element is provided on the negative electrode, and an N-type thermoelectric element is provided on the other electrode, which are also spaced apart from each other.
  • the upper surface of both thermoelectric semiconductor materials is connected to the electrode of the opposing substrate.
  • in-plane type thermoelectric conversion element is known.
  • the in-plane type is configured by arranging a plurality of thermoelectric elements so that N-type thermoelectric elements and P-type thermoelectric elements are alternately arranged, and connecting the lower electrodes of the thermoelectric elements in series, for example. ing.
  • a resin substrate such as polyimide is used as a substrate used for a thermoelectric conversion module.
  • the thermoelectric element layer is a thin film made of a thermoelectric semiconductor composition containing a resin. Under such circumstances, in Patent Document 1, in a thermoelectric conversion module using a ⁇ -type thermoelectric conversion element (Peltier cooling element), a thermoelectric element layer containing a resin and an electrode are bonded using a conductive adhesive. It is disclosed.
  • a conductive adhesive layer composed of an epoxy resin-based resin, an acrylic resin-based resin, a urethane resin-based adhesive, or the like in which the thermoelectric element layer containing the resin and the electrode are bonded to each other contains a metal filler or the like. Since it is carried out, the heat conductivity cannot be made sufficiently high, and further improvement of the heat conductivity is desired. Further, as a result of the study by the present inventors, a new problem has been found that when a solder layer is used instead of the conductive adhesive layer, the thermoelectric element layer containing the resin cannot be bonded to the solder layer.
  • An object of the present invention is to provide a thermoelectric conversion module in which the bondability between a thermoelectric element layer containing a resin and a solder layer is improved.
  • thermoelectric conversion module As a result of intensive studies to solve the above problems, the present inventors have formed a thermoelectric conversion module, and in the joining of a thermoelectric element layer containing resin and an electrode via a solder layer, It has been found that by providing a solder receiving layer containing a metal material between the solder layer and the thermoelectric element layer and the solder layer, the present invention has been completed. That is, the present invention provides the following (1) to (9).
  • thermoelectric conversion module including a first electrode of the first substrate and a second electrode of the second substrate facing each other, wherein the thermoelectric element layer includes a resin.
  • thermoelectric conversion module comprising a thin film, wherein the solder receiving layer contains a metal material.
  • the metal material is at least one selected from gold, silver, aluminum, rhodium, platinum, chromium, palladium, tin, and an alloy containing any one of these metal materials. Thermoelectric conversion module.
  • thermoelectric conversion module according to (1) or (2) wherein the solder receiving layer has a thickness of 10 nm to 50 ⁇ m.
  • thermoelectric semiconductor composition contains a thermoelectric semiconductor material, and the thermoelectric semiconductor material is a bismuth-tellurium-based thermoelectric semiconductor material, telluride-based thermoelectric semiconductor material, antimony-tellurium-based thermoelectric semiconductor material, or bismuth selenide-based thermoelectric
  • thermoelectric conversion module according to any one of (1) to (5) above, which is a semiconductor material.
  • the bismuth-tellurium-based thermoelectric semiconductor material is P-type bismuth telluride, N-type bismuth telluride, or Bi 2 Te 3 .
  • thermoelectric conversion module The thermoelectric conversion module according to any one of (1) to (8), wherein the thermoelectric element layer is made of a thin film made of a thermoelectric semiconductor composition further containing an ionic liquid.
  • thermoelectric conversion module in which the bondability between a thermoelectric element layer containing a resin and a solder layer is improved.
  • thermoelectric conversion module containing the solder receiving layer of this invention. It is sectional drawing for demonstrating another example of a structure of the thermoelectric conversion module containing the solder receiving layer of this invention. It is sectional drawing which shows the structure of the thermoelectric conversion module (test piece) produced by the Example and the comparative example.
  • thermoelectric conversion module includes a first substrate having a first electrode, a second substrate having a second electrode, a thermoelectric element layer, a solder receiving layer directly bonded to the thermoelectric element layer, A thermoelectric conversion module in which the first electrode of the first substrate and the second electrode of the second substrate are opposed to each other, and the thermoelectric element layer includes a resin It is a thermoelectric conversion module which consists of a thin film which consists of a thermoelectric-semiconductor composition, and the said solder receiving layer contains a metal material.
  • thermoelectric conversion module of the present invention since the solder receiving layer containing the metal material is provided on the thermoelectric element layer containing the hard solder bonding resin, for example, the bonding with the first and / or the second electrode is performed. Therefore, the bonding strength with the solder layer used is high.
  • FIG. 1 is a cross-sectional view for explaining an example of the configuration of a thermoelectric conversion module including a solder receiving layer according to the present invention.
  • the thermoelectric conversion module 1A is composed of so-called ⁇ -type thermoelectric conversion elements and are opposed to each other.
  • FIG. 2 is a cross-sectional view for explaining another example of the configuration of the thermoelectric conversion module including the solder receiving layer of the present invention.
  • the thermoelectric conversion module 1B is similarly composed of ⁇ -type thermoelectric conversion elements, and A P-type thermoelectric element having a first substrate 2a and a second substrate 2b facing each other and between an electrode 3a formed on the first substrate 2a and an electrode 3b formed on the second substrate 2b.
  • the solder receiving layer 5 and the solder layer 6 are included in this order on both surfaces of the element layer 4a and the N-type thermoelectric element layer 4b, respectively.
  • the solder receiving layer 5 either one or both sides of the P-type thermoelectric element layer 4a and the N-type thermoelectric element layer 4b on the electrode side of the counter substrate are disposed with the solder receiving layer 5 interposed therebetween. In the joint portion 7 with the layer 6, it is possible to join with high reliability.
  • solder acceptance layer A solder receiving layer is used in the thermoelectric conversion module of the present invention.
  • the solder receiving layer has a function of bonding a thermoelectric element layer containing a resin and a solder layer on the opposite electrode side, and is directly bonded to the thermoelectric element layer.
  • the solder receiving layer includes a metal material.
  • the metal material is preferably at least one selected from gold, silver, aluminum, rhodium, platinum, chromium, palladium, tin, and an alloy containing any one of these metal materials. Among these, those consisting of two layers of gold, silver, aluminum, tin and gold are more preferred, and silver and aluminum are more preferred from the viewpoint of material cost, high thermal conductivity, and bonding stability.
  • the solder receiving layer may be formed using a paste material containing a solvent and a resin component in addition to the metal material. When using the paste material, it is preferable to remove the solvent and the resin component by firing or the like as described later. As the paste material, silver paste and aluminum paste are preferable.
  • the thickness of the solder receiving layer is preferably 10 nm to 50 ⁇ m, more preferably 50 nm to 16 ⁇ m, still more preferably 200 nm to 4 ⁇ m, and particularly preferably 500 nm to 3 ⁇ m.
  • the thickness of the solder-receiving layer is within this range, the adhesion with the surface of the thermoelectric element layer containing the resin and the adhesion with the surface of the solder layer on the electrode side are excellent, and a highly reliable bond is obtained.
  • heat conductivity as well as conductivity can be maintained high, as a result, the thermoelectric performance as a thermoelectric conversion module does not deteriorate and is maintained.
  • the metal material may be formed as it is and used as a single layer, or two or more metal materials may be laminated and used as a multilayer.
  • a film may be formed as a composition containing a metal material in a solvent, a resin, or the like.
  • the resin component including the solvent may be removed by baking or the like. preferable.
  • the solder receiving layer is formed using the metal material described above.
  • a method of forming the solder receiving layer a known physical process or chemical process mainly using a photolithography method, or a combination thereof, after providing a solder receiving layer on which no pattern is formed on the thermoelectric element layer For example, a method of processing into a predetermined pattern shape, or a method of directly forming a solder receiving layer pattern by a screen printing method, a stencil printing method, an ink jet method, or the like can be given.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • various coating and electrodeposition methods such as dip coating, spin coating, spray coating, gravure coating, die coating, and doctor blade methods , Silver salt method, electrolytic plating method, electroless plating method, lamination of metal foil, and the like, which are appropriately selected according to the material of the solder receiving layer.
  • the solder-receiving layer is required to have high conductivity and high thermal conductivity from the viewpoint of maintaining thermoelectric performance
  • the screen printing method, the stencil printing method, the electrolytic plating method, the electroless plating method and the vacuum deposition method are used. It is preferable to use a solder receiving layer formed by a film method.
  • solder layer The solder layer is used to join the solder receiving layer and the counter substrate side electrode.
  • the solder material constituting the solder layer used in the present invention may be appropriately selected in consideration of the heat resistance temperature of the resin contained in the substrate and the thermoelectric element layer described later, and the conductivity, thermal conductivity, etc.
  • the thickness of the solder layer (after heating and cooling) is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m, still more preferably 30 to 130 ⁇ m, and particularly preferably 40 to 120 ⁇ m.
  • the thickness of the solder layer is in this range and the thickness of the solder receiving layer is in the above-described range, the bonding strength between the thermoelectric element layer and the electrode is maintained high through the solder receiving layer and the solder layer.
  • thermoelectric element layer used for the thermoelectric conversion module of this invention consists of a thin film which consists of a thermoelectric semiconductor composition containing resin.
  • a thermoelectric semiconductor composition hereinafter, also referred to as “thermal semiconductor fine particles”
  • thermoelectric semiconductor fine particles a thermoelectric semiconductor composition containing one or both of an ionic liquid and an inorganic ionic compound described later. It consists of a thin film.
  • thermoelectric semiconductor material used in the present invention, that is, the thermoelectric semiconductor material constituting the P-type thermoelectric element layer and the N-type thermoelectric element layer is a material that can generate a thermoelectromotive force by applying a temperature difference.
  • bismuth-tellurium-based thermoelectric semiconductor materials such as P-type bismuth telluride and N-type bismuth telluride; telluride-based thermoelectric semiconductor materials such as GeTe and PbTe; antimony-tellurium-based thermoelectric semiconductor materials; ZnSb, Zn 3 Zinc-antimony-based thermoelectric semiconductor materials such as Sb 2 and Zn 4 Sb 3 ; Silicon-germanium-based thermoelectric semiconductor materials such as SiGe; Bismuth selenide-based thermoelectric semiconductor materials such as Bi 2 Se 3 ; ⁇ -FeSi 2 , CrSi 2 , MnSi 1.73, silicide-based thermoelectric semiconductor materials, such as Mg 2 Si; oxide-based thermoelectric semiconductor Material; FeVAl, FeVAlSi, Heusler materials such FeVTiAl, sulfide-based thermoelectric semiconductor materials such as TiS 2 is used.
  • bismuth-tellurium-based thermoelectric semiconductor materials, telluride-based thermoelectric semiconductor materials such as Ge
  • a bismuth-tellurium-based thermoelectric semiconductor material such as P-type bismuth telluride or N-type bismuth telluride is more preferable.
  • P-type bismuth telluride carriers are holes and the Seebeck coefficient is a positive value, and for example, those represented by Bi X Te 3 Sb 2-X are preferably used.
  • X is preferably 0 ⁇ X ⁇ 0.8, and more preferably 0.4 ⁇ X ⁇ 0.6. It is preferable that X is greater than 0 and less than or equal to 0.8 because the Seebeck coefficient and electrical conductivity are increased, and the characteristics as a P-type thermoelectric element are maintained.
  • the N-type bismuth telluride preferably has an electron as a carrier and a negative Seebeck coefficient, for example, Bi 2 Te 3-Y Se Y.
  • the blending amount of the thermoelectric semiconductor material or thermoelectric semiconductor fine particles in the thermoelectric semiconductor composition is preferably 30 to 99% by mass. More preferably, it is 50 to 96% by mass, and still more preferably 70 to 95% by mass. If the compounding amount of the thermoelectric semiconductor fine particles is within the above range, the Seebeck coefficient (absolute value of the Peltier coefficient) is large, the decrease in electrical conductivity is suppressed, and only the thermal conductivity is decreased, thereby exhibiting high thermoelectric performance. In addition, it is preferable to obtain a film having sufficient film strength and flexibility.
  • the average particle diameter of the thermoelectric semiconductor fine particles is preferably 10 nm to 200 ⁇ m, more preferably 10 nm to 30 ⁇ m, still more preferably 50 nm to 10 ⁇ m, and particularly preferably 1 to 6 ⁇ m. If it is in the said range, uniform dispersion
  • the thermoelectric semiconductor fine particles used for the thermoelectric element layer are preferably those obtained by pulverizing the above-described thermoelectric semiconductor material to a predetermined size using a pulverizer or the like.
  • the method of pulverizing the thermoelectric semiconductor material to obtain the thermoelectric semiconductor fine particles is not particularly limited, and may be pulverized to a predetermined size by a known pulverization apparatus such as a jet mill, a ball mill, a bead mill, a colloid mill, or a roller mill. .
  • the average particle size of the thermoelectric semiconductor fine particles was obtained by measuring with a laser diffraction particle size analyzer (manufactured by Malvern, Mastersizer 3000), and was the median value of the particle size distribution.
  • thermoelectric semiconductor fine particles have been subjected to an annealing treatment (hereinafter sometimes referred to as “annealing treatment A”).
  • annealing treatment A By performing the annealing treatment A, the thermoelectric semiconductor fine particles are improved in crystallinity, and the surface oxide film of the thermoelectric semiconductor fine particles is removed, so that the Seebeck coefficient or Peltier coefficient of the thermoelectric conversion material is increased, and the thermoelectric performance index is increased. Can be further improved.
  • Annealing treatment A is not particularly limited, but under an inert gas atmosphere such as nitrogen or argon in which the gas flow rate is controlled so as not to adversely affect the thermoelectric semiconductor fine particles before preparing the thermoelectric semiconductor composition.
  • thermoelectric semiconductor fine particles such as hydrogen or under vacuum conditions
  • a mixed gas atmosphere of an inert gas and a reducing gas preferably carried out under a reducing gas atmosphere such as hydrogen or under vacuum conditions
  • a reducing gas atmosphere such as hydrogen or under vacuum conditions
  • a mixed gas atmosphere of an inert gas and a reducing gas preferably carried out under a reducing gas atmosphere.
  • the specific temperature condition depends on the thermoelectric semiconductor fine particles used, but it is usually preferable to carry out the treatment at a temperature below the melting point of the fine particles and at 100 to 1500 ° C. for several minutes to several tens of hours.
  • the resin used in the present invention is preferably a heat resistant resin from the viewpoint of performing an annealing treatment B described later at a high temperature on the thermoelectric element layer. It acts as a binder between thermoelectric semiconductor materials (thermoelectric semiconductor fine particles), can improve the flexibility of the thermoelectric conversion module, and facilitates the formation of a thin film by coating or the like.
  • the heat-resistant resin is not particularly limited, but when the thermoelectric semiconductor fine particles are crystal-grown by annealing treatment or the like for the thin film made of the thermoelectric semiconductor composition, various materials such as mechanical strength and thermal conductivity as the resin are used. A heat resistant resin that maintains its physical properties without damaging it is preferred.
  • the heat-resistant resin is preferably a polyamide resin, a polyamide-imide resin, a polyimide resin, or an epoxy resin because it has higher heat resistance and does not adversely affect the crystal growth of the thermoelectric semiconductor fine particles in the thin film, and has excellent flexibility. From this point, a polyamide resin, a polyamideimide resin, and a polyimide resin are more preferable. When a polyimide film is used as a substrate to be described later, a polyimide resin is more preferable as the heat resistant resin in terms of adhesion to the polyimide film.
  • the polyimide resin is a general term for polyimide and its precursor.
  • the heat-resistant resin preferably has a decomposition temperature of 300 ° C. or higher. If the decomposition temperature is within the above range, the flexibility can be maintained without losing the function as a binder even when the thin film made of the thermoelectric semiconductor composition is annealed as described later.
  • the heat-resistant resin preferably has a mass reduction rate at 300 ° C. by thermogravimetry (TG) of 10% or less, more preferably 5% or less, and still more preferably 1% or less. . If the mass reduction rate is in the above range, the flexibility of the thermoelectric element layer can be maintained without losing the function as a binder even when the thin film made of the thermoelectric semiconductor composition is annealed as described later. .
  • TG thermogravimetry
  • the blending amount of the heat-resistant resin in the thermoelectric semiconductor composition is 0.1 to 40% by mass, preferably 0.5 to 20% by mass, more preferably 1 to 20% by mass, and further preferably 2 to 15%. % By mass.
  • a film that functions as a binder for a thermoelectric semiconductor material facilitates the formation of a thin film, and has both high thermoelectric performance and film strength is obtained. Resin portions are present on the outer surface of the layer.
  • the ionic liquid used in the present invention is a molten salt formed by combining a cation and an anion, and refers to a salt that can exist as a liquid in any region in the temperature range of ⁇ 50 to 500 ° C.
  • Ionic liquids have features such as extremely low vapor pressure, non-volatility, excellent thermal stability and electrochemical stability, low viscosity, and high ionic conductivity. Therefore, the reduction of the electrical conductivity between the thermoelectric semiconductor fine particles can be effectively suppressed as a conductive auxiliary agent.
  • the ionic liquid since the ionic liquid has high polarity based on the aprotic ionic structure and is excellent in compatibility with the heat-resistant resin, the electric conductivity of the thermoelectric element layer can be made uniform.
  • ionic liquids can be used.
  • nitrogen-containing cyclic cation compounds such as pyridinium, pyrimidinium, pyrazolium, pyrrolidinium, piperidinium, imidazolium and their derivatives; amine-based cations of tetraalkylammonium and their derivatives; phosphines such as phosphonium, trialkylsulfonium and tetraalkylphosphonium Cation components such as lithium cations and their derivatives; chloride ions such as Cl ⁇ , AlCl 4 ⁇ , Al 2 Cl 7 ⁇ , ClO 4 ⁇ , bromide ions such as Br ⁇ , I ⁇ and the like Iodide ions, BF 4 ⁇ , fluoride ions such as PF 6 ⁇ , halide anions such as F (HF) n ⁇ , NO 3 ⁇ , CH 3 COO ⁇ , CF 3 COO
  • the cation component of the ionic liquid is a pyridinium cation and a derivative thereof from the viewpoints of high temperature stability, compatibility with thermoelectric semiconductor fine particles and resin, and suppression of decrease in electrical conductivity of the gap between thermoelectric semiconductor fine particles. It is preferable to contain at least one selected from imidazolium cations and derivatives thereof.
  • the anionic component of the ionic liquid preferably contains a halide anion, and more preferably contains at least one selected from Cl ⁇ , Br ⁇ and I ⁇ .
  • ionic liquids in which the cation component includes a pyridinium cation and derivatives thereof include 4-methyl-butylpyridinium chloride, 3-methyl-butylpyridinium chloride, 4-methyl-hexylpyridinium chloride, 3-methyl-hexylpyridinium Chloride, 4-methyl-octylpyridinium chloride, 3-methyl-octylpyridinium chloride, 3,4-dimethyl-butylpyridinium chloride, 3,5-dimethyl-butylpyridinium chloride, 4-methyl-butylpyridinium tetrafluoroborate, 4- Methyl-butylpyridinium hexafluorophosphate, 1-butyl-4-methylpyridinium bromide, 1-butyl-4-methylpyridinium hexafluorophosphate, 1-butyl-4- Chill pyridinium iodide and the like. Of these, 1-butylpyr
  • ionic liquids in which the cation component includes an imidazolium cation and derivatives thereof include [1-butyl-3- (2-hydroxyethyl) imidazolium bromide], [1-butyl-3- (2 -Hydroxyethyl) imidazolium tetrafluoroborate], 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium chloride, 1-hexyl-3 -Methylimidazolium chloride, 1-octyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium bromide, 1-dodecyl-3-methylimidazolium chloride, 1-Tetradecyl-3-methylimida 1-ethyl-3-methylimidazolium te
  • the ionic liquid preferably has an electric conductivity of 10 ⁇ 7 S / cm or more, and more preferably 10 ⁇ 6 S / cm or more. If electrical conductivity is said range, it can suppress effectively the reduction
  • the above ionic liquid preferably has a decomposition temperature of 300 ° C. or higher. If the decomposition temperature is within the above range, the effect as a conductive additive can be maintained even when a thin film made of a thermoelectric semiconductor composition is annealed as described later.
  • the ionic liquid has a mass reduction rate at 300 ° C. by thermogravimetry (TG) of preferably 10% or less, more preferably 5% or less, and further preferably 1% or less. .
  • TG thermogravimetry
  • the blending amount of the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and further preferably 1.0 to 20% by mass.
  • the blending amount of the ionic liquid is within the above range, a decrease in electrical conductivity is effectively suppressed, and a film having high thermoelectric performance can be obtained.
  • the inorganic ionic compound used in the present invention is a compound composed of at least a cation and an anion. Since the inorganic ionic compound is solid at room temperature, has a melting point at any temperature in the temperature range of 400 to 900 ° C., and has high ionic conductivity, etc., Reduction of electrical conductivity between thermoelectric semiconductor fine particles can be suppressed.
  • a metal cation is used as the cation.
  • the metal cation include an alkali metal cation, an alkaline earth metal cation, a typical metal cation, and a transition metal cation, and an alkali metal cation or an alkaline earth metal cation is more preferable.
  • the alkali metal cation include Li + , Na + , K + , Rb + , Cs + and Fr + .
  • Examples of the alkaline earth metal cation include Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ .
  • anion examples include F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , CN ⁇ , NO 3 ⁇ , NO 2 ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , CrO 4 2. -, HSO 4 -, SCN - , BF 4 -, PF 6 - , and the like.
  • a cation component such as potassium cation, sodium cation or lithium cation, chloride ion such as Cl ⁇ , AlCl 4 ⁇ , Al 2 Cl 7 ⁇ and ClO 4 ⁇ , bromide ion such as Br ⁇ , I ⁇ and the like
  • chloride ion such as Cl ⁇ , AlCl 4 ⁇ , Al 2 Cl 7 ⁇ and ClO 4 ⁇
  • bromide ion such as Br ⁇ , I ⁇ and the like
  • anion components such as NO 3 ⁇ , OH ⁇ and CN ⁇ are mentioned. It is done.
  • the cationic component of the inorganic ionic compound is potassium from the viewpoints of high temperature stability, compatibility with thermoelectric semiconductor fine particles and resin, and suppression of decrease in electrical conductivity of the gap between thermoelectric semiconductor fine particles. It is preferable to contain at least one selected from sodium, lithium, and lithium.
  • the anionic component of the inorganic ionic compound preferably contains a halide anion, and more preferably contains at least one selected from Cl ⁇ , Br ⁇ , and I ⁇ .
  • inorganic ionic compounds in which the cation component includes a potassium cation include KBr, KI, KCl, KF, KOH, K 2 CO 3 and the like. Of these, KBr and KI are preferred.
  • Specific examples of inorganic ionic compounds in which the cation component contains a sodium cation include NaBr, NaI, NaOH, NaF, Na 2 CO 3 and the like. Among these, NaBr and NaI are preferable.
  • Specific examples of the inorganic ionic compound in which the cation component includes a lithium cation include LiF, LiOH, LiNO 3 and the like. Among these, LiF and LiOH are preferable.
  • the inorganic ionic compound preferably has an electric conductivity of 10 ⁇ 7 S / cm or more, and more preferably 10 ⁇ 6 S / cm or more. If electrical conductivity is the said range, the reduction of the electrical conductivity between thermoelectric semiconductor fine particles can be effectively suppressed as a conductive support agent.
  • the inorganic ionic compound preferably has a decomposition temperature of 400 ° C. or higher. If the decomposition temperature is within the above range, the effect as a conductive additive can be maintained even when a thin film made of a thermoelectric semiconductor composition is annealed as described later.
  • the inorganic ionic compound preferably has a mass reduction rate at 400 ° C. by thermogravimetry (TG) of 10% or less, more preferably 5% or less, and preferably 1% or less. Further preferred.
  • TG thermogravimetry
  • the blending amount of the inorganic ionic compound in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and still more preferably 1.0 to 10% by mass. .
  • the blending amount of the inorganic ionic compound is within the above range, a decrease in electrical conductivity can be effectively suppressed, and as a result, a film having improved thermoelectric performance can be obtained.
  • the total content of the inorganic ionic compound and the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably Preferably it is 0.5 to 30% by mass, more preferably 1.0 to 10% by mass.
  • thermoelectric semiconductor composition used in the present invention
  • the thermoelectric semiconductor fine particles, the ionic liquid, and the ionic liquid can be obtained by a known method such as an ultrasonic homogenizer, a spiral mixer, a planetary mixer, a disperser, or a hybrid mixer. What is necessary is just to add the said heat resistant resin, the said other additive as needed, and also a solvent, and mix and disperse
  • the solvent examples include solvents such as toluene, ethyl acetate, methyl ethyl ketone, alcohol, tetrahydrofuran, methyl pyrrolidone, and ethyl cellosolve. These solvents may be used alone or in a combination of two or more.
  • the solid content concentration of the thermoelectric semiconductor composition is not particularly limited as long as the composition has a viscosity suitable for coating.
  • the thin film made of the thermoelectric semiconductor composition can be formed by applying the thermoelectric semiconductor composition onto a substrate and drying it. Thus, by forming, a large-area thermoelectric element layer can be easily obtained at low cost.
  • the thickness of the thin film made of the thermoelectric semiconductor composition is not particularly limited, but is preferably 100 nm to 1000 ⁇ m, more preferably 300 nm to 600 ⁇ m, and still more preferably 5 to 400 ⁇ m from the viewpoint of thermoelectric performance and film strength.
  • thermoelectric conversion module used in the present invention that is, as the first substrate and the second substrate, plastic films that do not affect the decrease in the electrical conductivity of the thermoelectric element layer and the increase in the thermal conductivity are used. It is preferable. In particular, it is excellent in flexibility, and even when a thin film made of a thermoelectric semiconductor composition is annealed, the performance of the thermoelectric conversion module can be maintained without thermal deformation of the substrate, and heat resistance and dimensional stability are high. Therefore, as the plastic film, a polyimide film, a polyamide film, a polyetherimide film, a polyaramid film, and a polyamideimide film are preferable, and a polyimide film is particularly preferable from the viewpoint of high versatility.
  • the thickness of the plastic film used for the substrate is preferably 1 to 1000 ⁇ m, more preferably 10 to 500 ⁇ m, and further preferably 20 to 100 ⁇ m from the viewpoints of flexibility, heat resistance and dimensional stability.
  • the plastic film preferably has a 5% weight loss temperature measured by thermogravimetric analysis of 300 ° C. or higher, more preferably 400 ° C. or higher.
  • the heating dimensional change rate measured at 200 ° C. based on JIS K7133 (1999) is preferably 0.5% or less, and more preferably 0.3% or less.
  • the linear expansion coefficient measured in accordance with JIS K7197 (2012) is 0.1 ppm ⁇ ° C. ⁇ 1 to 50 ppm ⁇ ° C. ⁇ 1 and 0.1 ppm ⁇ ° C. ⁇ 1 to 30 ppm ⁇ ° C. ⁇ 1 Is more preferable.
  • the metal material of the electrode on the first and / or second substrate of the thermoelectric conversion module used in the present invention is gold, nickel, aluminum, rhodium, platinum, chromium, palladium, stainless steel, molybdenum, or any of these metals
  • An alloy containing The thickness of the electrode layer is preferably 10 nm to 200 ⁇ m, more preferably 30 nm to 150 ⁇ m, and still more preferably 50 nm to 120 ⁇ m. If the thickness of the electrode layer is within the above range, the electrical conductivity is high and the resistance is low, and sufficient strength as an electrode can be obtained.
  • the electrode is formed using the metal material of the electrode.
  • the method for forming the electrode is the same as the method for forming the solder receiving layer described above.
  • the electrode used in the present invention is required to have high conductivity as in the case of the solder receiving layer, and the electrode formed by plating or vacuum film formation can easily achieve high conductivity.
  • a vacuum film forming method such as a method, an electrolytic plating method, and an electroless plating method are preferable. Although depending on the dimensions of the formation pattern and the dimensional accuracy, the pattern can be easily formed through a hard mask such as a metal mask.
  • the substrate to be used may be heated while heating the substrate so as not to impair the characteristics of the substrate for the purpose of improving adhesion with the substrate to be used and removing moisture. Good.
  • the film may be formed by electrolytic plating on the film formed by electroless plating.
  • thermoelectric element layer can be used alone, but a plurality of thermoelectric element layers (P-type thermoelectric element layer, N-type thermoelectric element layer) having a solder receiving layer with high solder bonding properties are obtained. It can be used for power generation and cooling by alternately connecting in series electrically via electrodes and in parallel via a flexible sheet having thermal insulation properties.
  • thermoelectric conversion module In the manufacture of the thermoelectric conversion module of the present invention, a process of forming electrodes on the first and second substrates (hereinafter, also referred to as “electrode forming process”), and a thermoelectric element on the electrodes of the first substrate are performed.
  • thermoelectric element layer forming process Forming a layer (hereinafter also referred to as “thermoelectric element layer forming process”), annealing process of the thermoelectric element layer (hereinafter also referred to as “annealing process”), and forming a solder receiving layer Step (hereinafter, also referred to as “solder receiving layer forming step”), and a step of bonding the solder receiving layer and the electrode on the second substrate through the solder layer (hereinafter referred to as “bonding step”). May be included).
  • thermal element layer forming process annealing process of the thermoelectric element layer
  • solder receiving layer forming step solder receiving layer Step
  • bonding step a step of bonding the solder receiving layer and the electrode on the second substrate through the solder layer
  • the electrode forming step is, for example, a step of forming a pattern made of the above-described metal material for electrode formation on the first substrate and the second substrate, and a method of forming on the substrate and a method of forming the pattern Is as described above.
  • thermoelectric element layer formation process is a process of apply
  • Methods for applying the thermoelectric semiconductor composition onto the substrate include screen printing, flexographic printing, gravure printing, spin coating, dip coating, die coating, spray coating, bar coating, doctor blade, etc. There are no particular restrictions on the known method.
  • a screen printing method, a slot die coating method, or the like that can easily form a pattern using a screen plate having a desired pattern is preferably used.
  • the obtained coating film is dried to form a thin film.
  • a conventionally known drying method such as a hot air drying method, a hot roll drying method, or an infrared irradiation method can be employed.
  • the heating temperature is usually 80 to 150 ° C., and the heating time is usually several seconds to several tens of minutes, although it varies depending on the heating method.
  • the heating temperature is not particularly limited as long as it is in a temperature range in which the used solvent can be dried.
  • the annealing process is a process of annealing the first substrate having the first electrode and the thermoelectric element layer obtained above, for example.
  • the obtained thermoelectric element layer is preferably further subjected to annealing treatment (hereinafter sometimes referred to as annealing treatment B) after the thin film is formed.
  • annealing treatment B annealing treatment
  • the annealing treatment B is not particularly limited, but is usually performed in an inert gas atmosphere such as nitrogen or argon, a reducing gas atmosphere, or a vacuum condition in which the gas flow rate is controlled. Although depending on the heat-resistant temperature, etc., it is carried out at 100 to 500 ° C. for several minutes to several tens of hours.
  • the solder receiving layer forming step is a step of directly laminating a metal material on the thermoelectric element layer obtained above.
  • One layer or two or more layers may be stacked.
  • the method for forming on the thermoelectric element layer and the method for forming the pattern are as described above.
  • the resin component including the solvent is preferably removed by firing or the like as the final form of the solder receiving layer.
  • the firing temperature is not limited as long as the thermoelectric performance can be maintained.
  • the bonding step for example, the solder receiving layer side surface of the first substrate obtained in the solder receiving layer forming step and the second electrode side surface of the second substrate are bonded via a solder layer.
  • the thermoelectric conversion module is manufactured by joining and bonding.
  • the solder material constituting the solder layer used for the bonding is as described above, and as a method for applying the solder material on the substrate, there are known methods such as a stencil printing method, a screen printing method, and a dispensing method. Can be mentioned.
  • the heating temperature varies depending on the solder material used, the material used for the substrate, and the like, but is usually performed at 150 to 280 ° C. for 3 to 20 minutes.
  • the solder receiving layer can be provided by a simple method, thereby improving the bonding reliability between the thermoelectric element layer containing the resin and the solder layer on the electrode side of the counter substrate. it can.
  • FIG. 3 is a cross-sectional view showing a configuration of a thermoelectric conversion module (test piece) produced in Examples and Comparative Examples.
  • a thermoelectric conversion module (test piece) 11 has a first substrate 12a and a second substrate 12b facing each other, and an electrode 13a and a second substrate formed on the first substrate 12a.
  • the thermoelectric element layer 14, the solder receiving layer 15, and the solder layer 16 are included in this order between the electrode 13 b formed on 12 b, and the solder receiving layer 15 and the solder layer 16 are bonded at the bonding portion 17.
  • the electrical resistance value between the electrode 13a and the electrode 13b of the test piece of the thermoelectric conversion module produced in the example and the comparative example was measured at 25 ° C. and 60% using a low resistance measuring device (manufactured by Hioki Co., Ltd., model name: RM3545). Measurements were made in an RH environment.
  • -Bondability evaluation Based on the obtained electrical resistance value, solder bondability was evaluated according to the following criteria. ⁇ : Electric resistance value is 10 ⁇ 2 ( ⁇ ) or less (good solderability) ⁇ : When the electrical resistance value is more than 10 ⁇ 2 ( ⁇ ), ⁇ ( ⁇ ) (measurement is impossible), or a bonding failure can be confirmed visually (solder bonding failure)
  • thermoelectric conversion module test piece (1) Production of thermoelectric semiconductor composition (production of thermoelectric semiconductor fine particles) A P-type bismuth telluride Bi 0.4 Te 3 Sb 1.6 (manufactured by High Purity Chemical Laboratory, particle size: 180 ⁇ m), a bismuth-tellurium-based thermoelectric semiconductor material, The thermoelectric semiconductor fine particles having an average particle diameter of 2.0 ⁇ m were prepared by pulverizing under a nitrogen gas atmosphere using ⁇ 7). The thermoelectric semiconductor fine particles obtained by pulverization were subjected to particle size distribution measurement with a laser diffraction particle size analyzer (manufactured by Malvern, Mastersizer 3000).
  • thermoelectric semiconductor composition 92 parts by mass of P-type bismuth telluride Bi 0.4 Te 3 Sb 1.6 fine particles obtained above, polyamic acid (poly (pyromellitic dianhydride-co, made by Sigma-Aldrich) as a polyimide precursor as a heat resistant resin -4,4'-oxydianiline) amic acid solution, solvent: N-methylpyrrolidone, solid content concentration: 15% by mass) and 5 parts by mass of N-butylpyridinium bromide as an ionic liquid mixed and dispersed A coating solution comprising a semiconductor composition was prepared.
  • thermoelectric element layer A polyimide film substrate (made by Ube Eximo Co., Ltd., product name: Iupicel N, polyimide substrate, thickness: 50 ⁇ m, copper foil, thickness: 9 ⁇ m) prepared with a copper foil was prepared.
  • a substrate having electrodes was prepared by laminating a nickel layer (thickness: 9 ⁇ m) and a gold layer (thickness: 40 nm) in this order on the copper foil by electroless plating (two in total).
  • thermoelectric element layer The coating liquid prepared in (1) above is screen-printed on a region (application area: 0.35 cm ⁇ 0.35 cm) on the electrode of one substrate produced in (2). It was applied and dried at 120 ° C.
  • thermoelectric element layer A silver paste (manufactured by Mitsuboshi Belting Co., Ltd., product name: MDotEC264) was printed on the thermoelectric element layer produced in (3) and heated at 120 ° C.
  • solder paste 42Sn / 58Bi alloy (product name: SAM10-401-27) manufactured by Tamura Seisakusho is stencil-printed on the solder receiving layer prepared in (4). After the layer (thickness before heating: 100 ⁇ m) is prepared, the thermoelectric element layer having the solder receiving layer is formed by superimposing the polyimide substrate having the other electrode pattern prepared in (2) and heating at 180 ° C. for 5 minutes. The counter electrode was joined via a solder layer (thickness after heating and cooling: 50 ⁇ m) to obtain a test piece of a thermoelectric conversion module. The electrical resistance value between the counter electrodes of the test piece of the obtained thermoelectric conversion module was measured. The results are shown in Table 1.
  • Example 2 A test piece of a thermoelectric conversion module was produced in the same manner as in Example 1 except that the thermoelectric semiconductor material was N-type Bi 2 Te 3 . The electrical resistance value between the counter electrodes of the test piece of the obtained thermoelectric conversion module was measured. The results are shown in Table 1.
  • Example 3 A test piece of a thermoelectric conversion module was produced in the same manner as in Example 1 except that the solder receiving layer was a silver layer (thickness: 300 nm) formed by vacuum deposition. The electrical resistance value between the counter electrodes of the test piece of the obtained thermoelectric conversion module was measured. The results are shown in Table 1.
  • Example 4 A test piece of a thermoelectric conversion module was produced in the same manner as in Example 1 except that the solder receiving layer was an aluminum layer (thickness: 300 nm) formed by vacuum deposition. The electrical resistance value between the counter electrodes of the test piece of the obtained thermoelectric conversion module was measured. The results are shown in Table 1.
  • Example 5 Thermoelectric conversion was performed in the same manner as in Example 1 except that the solder receiving layer was formed by vacuum evaporation on the thermoelectric element layer in the order of Sn layer (thickness: 250 nm) and Au layer (thickness: 50 nm). Module test pieces were prepared. The electrical resistance value between the counter electrodes of the test piece of the obtained thermoelectric conversion module was measured. The results are shown in Table 1.
  • Example 1 (Comparative Example 1) In Example 1, a test piece of a thermoelectric conversion module was produced in the same manner as in Example 1 except that the solder receiving layer was not provided. The electrical resistance value between the counter electrodes of the test piece of the obtained thermoelectric conversion module was measured. The results are shown in Table 1.
  • thermoelectric element layer containing the resin and the solder layer on the electrode side of the counter substrate were compared with Comparative Example 1 in which the solder receiving layer was not provided (joint failure was visually confirmed). It was found that the bondability was high. Also, in Examples 2 to 4, it was found that the bonding property between the thermoelectric element layer containing resin and the solder layer on the electrode side of the counter substrate was high.
  • thermoelectric conversion module of the present invention since the bondability between the thermoelectric element layer containing the resin and the solder layer on the opposing electrode is stable, a highly reliable thermoelectric conversion module can be obtained. At the same time, the yield in the manufacturing process can be expected to improve.
  • the thermoelectric conversion module of the present invention has flexibility and can be thinned (small and light). Specifically, it may be applied to power generation applications that convert waste heat from various combustion furnaces such as factories, waste combustion furnaces, cement combustion furnaces, automobile combustion gas exhaust heat, and electronic equipment exhaust heat. It is done. As the cooling application, in the field of electronic equipment, for example, it may be applied to temperature control of various sensors such as CCD (Charge Coupled Device), MEMS (Micro Electro Mechanical Systems), and light receiving elements. .
  • CCD Charge Coupled Device
  • MEMS Micro Electro Mechanical Systems
  • thermoelectric conversion module 2a first substrate 2b: second substrate 3a: first electrode 3b: second electrode 4a: P-type thermoelectric element layer 4b: N-type thermoelectric element layer 5: solder receiving layer 6: Solder layer 7: Joint 11: Thermoelectric conversion module (test piece) 12a: first substrate 12b: second substrate 13a: first electrode 13b: second electrode 14: thermoelectric element layer 15: solder receiving layer 16: solder layer 17: bonding portion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

樹脂を含む熱電素子層とハンダ層との接合性を向上させた熱電変換モジュールを提供するものであり、第1の電極を有する第1の基板と、第2の電極を有する第2の基板と、熱電素子層と、前記熱電素子層に直接接合するハンダ受理層と、ハンダ層と、を含み、前記第1の基板の第1の電極及び前記第2の基板の第2の電極とは互いに対向している熱電変換モジュールであって、前記熱電素子層が樹脂を含む熱電半導体組成物からなる薄膜からなり、前記ハンダ受理層が金属材料を含む、熱電変換モジュールである。

Description

熱電変換モジュール
 本発明は、熱と電気との相互エネルギー変換を行う熱電変換モジュールに関する。
 従来から、エネルギーの有効利用手段の一つとして、ゼーベック効果やペルチェ効果などの熱電効果を有する熱電変換モジュールにより、熱エネルギーと電気エネルギーとを直接相互変換するようにした装置がある。
 前記熱電変換モジュールとして、いわゆるπ型の熱電変換素子の使用が知られている。π型は、互いに離間するー対の電極を基板上に設け、例えば、―方の電極の上にP型熱電素子を、他方の電極の上にN型熱電素子を、同じく互いに離間して設け、両方の熱電半導体材料の上面を対向する基板の電極に接続することで構成されている。また、いわゆるインプレーン型の熱電変換素子の使用が知られている。インプレーン型は、N型熱電素子とP型熱電素子とが交互に配置されるように、複数の熱電素子を配列して、例えば、熱電素子の下部の電極を直列に接続することで構成されている。
 一方、近年、熱電変換モジュールの屈曲性向上、薄型化及び熱電性能の向上等の要求がある。これらの要求を満足するために、例えば、熱電変換モジュールに用いる基板として、ポリイミド等の樹脂基板が、耐熱性及び屈曲性の観点から使用されている。また、薄型化及び屈曲性の観点から、熱電素子層を、樹脂を含む熱電半導体組成物からなる薄膜とすることが検討されている。
 このような中、特許文献1には、π型の熱電変換素子(ペルチェ冷却素子)を用いた熱電変換モジュールにおいて、樹脂を含む熱電素子層と電極とを導電性接着剤を用いて接合されることが開示されている。
国際公開WO2016/104615号公報
 しかしながら、特許文献1において、前記樹脂を含む熱電素子層と電極との接合が、金属フィラー等を含有させたエポキシ樹脂系、アクリル樹脂系、ウレタン樹脂系接着剤等からなる導電性接着剤層を介在して行われていることから、熱伝導率を十分高くとることができず、さらなる熱伝導率の向上が望まれている。
 また、本発明者の検討により、前記導電性接着剤層の代わりに、ハンダ層を使用した場合、前記樹脂を含む熱電素子層とハンダ層との接合がとれないという新たな問題を見出した。
 本発明は、樹脂を含む熱電素子層とハンダ層との接合性を向上させた熱電変換モジュールを提供することを課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、熱電変換モジュールを構成する、樹脂を含む熱電素子層と電極とのハンダ層を介在しての接合において、熱電素子層とハンダ層との間に金属材料を含むハンダ受理層を設けることにより、前記熱電素子層とハンダ層との接合性が向上することを見出し、本発明を完成した。
 すなわち、本発明は、以下の(1)~(9)を提供するものである。
(1)第1の電極を有する第1の基板と、第2の電極を有する第2の基板と、熱電素子層と、前記熱電素子層に直接接合するハンダ受理層と、ハンダ層と、を含み、前記第1の基板の第1の電極及び前記第2の基板の第2の電極とは互いに対向している熱電変換モジュールであって、前記熱電素子層が樹脂を含む熱電半導体組成物からなる薄膜からなり、前記ハンダ受理層が金属材料を含む、熱電変換モジュール。
(2)前記金属材料が、金、銀、アルミニウム、ロジウム、白金、クロム、パラジウム、錫、及びこれらのいずれかの金属材料を含む合金から選ばれる少なくとも1種である、上記(1)に記載の熱電変換モジュール。
(3)前記ハンダ受理層の厚さが、10nm~50μmである、上記(1)又は(2)に記載の熱電変換モジュール。
(4)前記樹脂が耐熱性樹脂である、上記(1)~(3)のいずれかに記載の熱電変換モジュール。
(5)前記耐熱性樹脂が、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、又はエポキシ樹脂である、上記(4)に記載の熱電変換モジュール。
(6)前記熱電半導体組成物は熱電半導体材料を含んでおり、該熱電半導体材料がビスマス-テルル系熱電半導体材料、テルライド系熱電半導体材料、アンチモン-テルル系熱電半導体材料、又はビスマスセレナイド系熱電半導体材料である、上記(1)~(5)のいずれかに記載の熱電変換モジュール。
(7)前記ビスマス-テルル系熱電半導体材料が、P型ビスマステルライド、N型ビスマステルライド、又はBiTeである、上記(6)に記載の熱電変換モジュール。
(8)前記第1の基板及び第2の基板が、ポリイミドフィルム、ポリアミドフィルム、ポリエーテルイミドフィルム、ポリアラミドフィルム、又はポリアミドイミドフィルムである、上記(1)~(7)のいずれかに記載の熱電変換モジュール。
(9)前記熱電素子層が、さらにイオン液体を含む熱電半導体組成物からなる薄膜からなる、上記(1)~(8)のいずれかに記載の熱電変換モジュール。
 本発明によれば、樹脂を含む熱電素子層とハンダ層との接合性を向上させた熱電変換モジュールを提供することができる。
本発明のハンダ受理層を含む熱電変換モジュールの構成の一例を説明するための断面図である。 本発明のハンダ受理層を含む熱電変換モジュールの構成の他の一例を説明するための断面図である。 実施例及び比較例で作製した熱電変換モジュール(試験片)の構成を示す断面図である。
[熱電変換モジュール]
 本発明の熱電変換モジュールは、第1の電極を有する第1の基板と、第2の電極を有する第2の基板と、熱電素子層と、前記熱電素子層に直接接合するハンダ受理層と、ハンダ層と、を含み、前記第1の基板の第1の電極及び前記第2の基板の第2の電極とは互いに対向している熱電変換モジュールであって、前記熱電素子層が樹脂を含む熱電半導体組成物からなる薄膜からなり、前記ハンダ受理層が金属材料を含む、熱電変換モジュールである。
 本発明の熱電変換モジュールにおいては、難ハンダ接合性の樹脂を含む熱電素子層上に、金属材料を含むハンダ受理層を有するため、例えば、前記第1及び/又は第2の電極との接合のために用いられるハンダ層との接合強度が高い。
 図1は、本発明のハンダ受理層を含む熱電変換モジュールの構成の一例を説明するための断面図であり、熱電変換モジュール1Aは、いわゆるπ型の熱電変換素子から構成され、互いに対向する第1の基板2a及び第2の基板2bを有し、前記第1の基板2aに形成される電極3a、前記第2の基板2bに形成される電極3bとの間に、P型熱電素子層4a及びN型熱電素子層4b、さらにハンダ受理層5、ハンダ層6をこの順に含む。
 図2は、本発明のハンダ受理層を含む熱電変換モジュールの構成の他の一例を説明するための断面図であり、熱電変換モジュール1Bは、同様にπ型の熱電変換素子から構成され、互いに対向する第1の基板2a及び第2の基板2bを有し、前記第1の基板2aに形成される電極3aと、前記第2の基板2bに形成される電極3bとの間のP型熱電素子層4a及びN型熱電素子層4bの両面に、それぞれハンダ受理層5、ハンダ層6をこの順に含む。本発明では、ハンダ受理層5を設けることにより、P型熱電素子層4a及びN型熱電素子層4bの対向基板の電極側のいずれかの片面、又は両面を、ハンダ受理層5を介在しハンダ層6との接合部7において、信頼性高く接合することができる。
<ハンダ受理層>
 本発明の熱電変換モジュールには、ハンダ受理層が用いられる。
 ハンダ受理層は、樹脂を含む熱電素子層と対向する電極側のハンダ層とを接合する機能を有し、熱電素子層と直接接合する。
 ハンダ受理層は、金属材料を含む。金属材料は、金、銀、アルミニウム、ロジウム、白金、クロム、パラジウム、錫、及びこれらのいずれかの金属材料を含む合金から選ばれる少なくとも1種であることが好ましい。この中で、金、銀、アルミニウム、錫及び金の2層からなるものがより好ましく、材料コスト、高熱伝導性、接合安定性の観点から、銀、アルミニウムがさらに好ましい。
 さらにハンダ受理層には、金属材料に加えて、溶媒や樹脂成分を含むペースト材を用いて形成してもよい。ペースト材を用いる場合は、後述するように焼成等により溶媒や樹脂成分を除去することが好ましい。ペースト材としては、銀ペースト、アルミペーストが好ましい。
 ハンダ受理層の厚さは、好ましくは10nm~50μmであり、より好ましくは50nm~16μm、さらに好ましくは200nm~4μm、特に好ましくは500nm~3μmである。ハンダ受理層の厚さがこの範囲にあると、樹脂を含む熱電素子層の面との密着性、及び電極側のハンダ層の面との密着性が優れ、信頼性の高い接合が得られる。また、導電性はもとより、熱伝導性が高く維持できるため、結果的に熱電変換モジュールとしての熱電性能が低下することはなく、維持される。
 ハンダ受理層は、前記金属材料をそのまま成膜し単層で用いてもよいし、2以上の金属材料を積層し多層で用いてもよい。また、金属材料を溶媒、樹脂等に含有させた組成物として成膜してもよい。但し、この場合、高い導電性、高い熱伝導性を維持する(熱電性能を維持する)観点から、ハンダ受理層の最終形態として、溶媒等を含め樹脂成分は焼成等により除去しておくことが好ましい。
 ハンダ受理層の形成は、前述した金属材料を用いて行う。
 ハンダ受理層を形成する方法としては、熱電素子層上にパターンが形成されていないハンダ受理層を設けた後、フォトリソグラフィー法を主体とした公知の物理的処理もしくは化学的処理、又はそれらを併用する等により、所定のパターン形状に加工する方法、または、スクリーン印刷法、ステンシル印刷法、インクジェット法等により直接ハンダ受理層のパターンを形成する方法等が挙げられる。
 パターンが形成されていないハンダ受理層の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD(物理気相成長法)、もしくは熱CVD、原子層蒸着(ALD)等のCVD(化学気相成長法)等の真空成膜法、又はディップコーティング法、スピンコーティング法、スプレーコーティング法、グラビアコーティング法、ダイコーティング法、ドクターブレード法等の各種コーティングや電着法等のウェットプロセス、銀塩法、電解めっき法、無電解めっき法、金属箔の積層等が挙げられ、ハンダ受理層の材料に応じて適宜選択される。
 本発明では、ハンダ受理層には、熱電性能を維持する観点から、高い導電性、高い熱伝導性が求められるため、スクリーン印刷法、ステンシル印刷法、電解めっき法、無電解めっき法や真空成膜法で成膜したハンダ受理層を用いることが好ましい。
(ハンダ層)
 ハンダ層は、ハンダ受理層と対向基板側の電極とを接合するために用いられる。
 本発明に用いるハンダ層を構成するハンダ材料は、基板、後述する熱電素子層に含まれる樹脂の耐熱温度等、また、導電性、熱伝導性等を考慮し、適宜選択すればよく、Sn、Sn/Pb合金、Sn/Ag合金、Sn/Cu合金、Sn/Sb合金、Sn/In合金、Sn/Zn合金、Sn/In/Bi合金、Sn/In/Bi/Zn合金、Sn/Bi/Pb/Cd合金、Sn/Bi/Pb合金、Sn/Bi/Cd合金、Bi/Pb合金、Sn/Bi/Zn合金、Sn/Bi合金、Sn/Bi/Pb合金、Sn/Pb/Cd合金、Sn/Cd合金等の既知の材料が挙げられる。鉛フリー及び/またはカドミウムフリー、融点、導電性、熱伝導性の観点から、43Sn/57Bi合金、42Sn/58Bi合金、40Sn/56Bi/4Zn合金、48Sn/52In合金、39.8Sn/52In/7Bi/1.2Zn合金のような合金が好ましい。
 ハンダ材料の市販品としては、以下のものが挙げられる。例えば、42Sn/58Bi合金(タムラ製作所社製、製品名:SAM10-401-27)、41Sn/58Bi/Ag合金(ニホンハンダ株式会社、製品名:PF141-LT7HO)、96.5Sn3Ag0.5Cu合金(ニホンハンダ株式会社、製品名:PF305-207BTO)等が使用できる。
 ハンダ層の厚さ(加熱冷却後)は、好ましくは10~200μmであり、より好ましくは20~150μm、さらに好ましくは30~130μm、特に好ましくは40~120μmである。ハンダ層の厚さがこの範囲にあり、かつハンダ受理層の厚さが前述した範囲にあると、熱電素子層と電極との接合強度が、ハンダ受理層及びハンダ層を介在し、高く維持される。
<熱電素子層>
 本発明の熱電変換モジュールに用いる熱電素子層は、樹脂を含む熱電半導体組成物からなる薄膜からなる。好ましくは、熱電半導体材料(以下、「熱半導体微粒子」ということがある。)、後述する耐熱性樹脂、さらに、後述するイオン液体及び無機イオン性化合物の一方又は双方を含む熱電半導体組成物からなる薄膜からなる。
(熱電半導体材料)
 本発明に用いる熱電半導体材料、すなわち、P型熱電素子層及びN型熱電素子層を構成する熱電半導体材料としては、温度差を付与することにより、熱起電力を発生させることができる材料であれば特に制限されず、例えば、P型ビスマステルライド、N型ビスマステルライド等のビスマス-テルル系熱電半導体材料;GeTe、PbTe等のテルライド系熱電半導体材料;アンチモン-テルル系熱電半導体材料;ZnSb、ZnSb2、ZnSb等の亜鉛-アンチモン系熱電半導体材料;SiGe等のシリコン-ゲルマニウム系熱電半導体材料;BiSe等のビスマスセレナイド系熱電半導体材料;β―FeSi、CrSi、MnSi1.73、MgSi等のシリサイド系熱電半導体材料;酸化物系熱電半導体材料;FeVAl、FeVAlSi、FeVTiAl等のホイスラー材料、TiS等の硫化物系熱電半導体材料等が用いられる。
 これらの中で、ビスマス-テルル系熱電半導体材料、テルライド系熱電半導体材料、アンチモン-テルル系熱電半導体材料、又はビスマスセレナイド系熱電半導体材料が好ましい。
 さらに、P型ビスマステルライド又はN型ビスマステルライド等のビスマス-テルル系熱電半導体材料であることがより好ましい。
 前記P型ビスマステルライドは、キャリアが正孔で、ゼーベック係数が正値であり、例えば、BiTeSb2-Xで表わされるものが好ましく用いられる。この場合、Xは、好ましくは0<X≦0.8であり、より好ましくは0.4≦X≦0.6である。Xが0より大きく0.8以下であるとゼーベック係数と電気伝導率が大きくなり、P型熱電素子としての特性が維持されるので好ましい。
 また、前記N型ビスマステルライドは、キャリアが電子で、ゼーベック係数が負値であり、例えば、BiTe3-YSeで表わされるものが好ましく用いられる。この場合、Yは、好ましくは0≦Y≦3(Y=0の時:BiTe)であり、より好ましくは0<Y≦2.7である。Yが0以上3以下であるとゼーベック係数と電気伝導率が大きくなり、N型熱電素子としての特性が維持されるので好ましい。
 熱電半導体材料または熱電半導体微粒子の前記熱電半導体組成物中の配合量は、好ましくは、30~99質量%である。より好ましくは、50~96質量%であり、さらに好ましくは、70~95質量%である。熱電半導体微粒子の配合量が、上記範囲内であれば、ゼーベック係数(ペルチェ係数の絶対値)が大きく、また電気伝導率の低下が抑制され、熱伝導率のみが低下するため高い熱電性能を示すとともに、十分な皮膜強度、屈曲性を有する膜が得られ好ましい。
 熱電半導体微粒子の平均粒径は、好ましくは、10nm~200μm、より好ましくは、10nm~30μm、さらに好ましくは、50nm~10μm、特に好ましくは、1~6μmである。上記範囲内であれば、均一分散が容易になり、電気伝導率を高くすることができる。
 熱電素子層に用いる熱電半導体微粒子は、前述した熱電半導体材料を、微粉砕装置等により、所定のサイズまで粉砕したものが好ましい。
 前記熱電半導体材料を粉砕して熱電半導体微粒子を得る方法は特に限定されず、ジェットミル、ボールミル、ビーズミル、コロイドミル、ローラーミル等の公知の微粉砕装置等により、所定のサイズまで粉砕すればよい。
 なお、熱電半導体微粒子の平均粒径は、レーザー回折式粒度分析装置(Malvern社製、マスターサイザー3000)にて測定することにより得られ、粒径分布の中央値とした。
 また、熱電半導体微粒子は、アニール処理(以下、「アニール処理A」ということがある。)されたものであることが好ましい。アニール処理Aを行うことにより、熱電半導体微粒子は、結晶性が向上し、さらに、熱電半導体微粒子の表面酸化膜が除去されるため、熱電変換材料のゼーベック係数又はペルチェ係数が増大し、熱電性能指数をさらに向上させることができる。アニール処理Aは、特に限定されないが、熱電半導体組成物を調製する前に、熱電半導体微粒子に悪影響を及ぼすことがないように、ガス流量が制御された、窒素、アルゴン等の不活性ガス雰囲気下、同じく水素等の還元ガス雰囲気下、または真空条件下で行うことが好ましく、不活性ガス及び還元ガスの混合ガス雰囲気下で行うことがより好ましい。具体的な温度条件は、用いる熱電半導体微粒子に依存するが、通常、微粒子の融点以下の温度で、かつ100~1500℃で、数分~数十時間行うことが好ましい。
(樹脂)
 本発明に用いる樹脂は、熱電素子層を高温度で後述するアニール処理Bを行う観点から、耐熱性樹脂が好ましい。熱電半導体材料(熱電半導体微粒子)間のバインダーとして働き、熱電変換モジュールの屈曲性を高めることができるとともに、塗布等による薄膜の形成が容易になる。該耐熱性樹脂は、特に制限されるものではないが、熱電半導体組成物からなる薄膜をアニール処理等により熱電半導体微粒子を結晶成長させる際に、樹脂としての機械的強度及び熱伝導率等の諸物性が損なわれず維持される耐熱性樹脂が好ましい。
 前記耐熱性樹脂は、耐熱性がより高く、且つ薄膜中の熱電半導体微粒子の結晶成長に悪影響を及ぼさないという点から、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、エポキシ樹脂が好ましく、屈曲性に優れるという点からポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂がより好ましい。後述する基板として、ポリイミドフィルムを用いた場合、該ポリイミドフィルムとの密着性などの点から、耐熱性樹脂としては、ポリイミド樹脂がより好ましい。なお、本発明においてポリイミド樹脂とは、ポリイミド及びその前駆体を総称する。
 前記耐熱性樹脂は、分解温度が300℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、バインダーとして機能が失われることなく、屈曲性を維持することができる。
 また、前記耐熱性樹脂は、熱重量測定(TG)による300℃における質量減少率が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましい。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、バインダーとして機能が失われることなく、熱電素子層の屈曲性を維持することができる。
 前記耐熱性樹脂の前記熱電半導体組成物中の配合量は、0.1~40質量%、好ましくは0.5~20質量%、より好ましくは、1~20質量%、さらに好ましくは2~15質量%である。前記耐熱性樹脂の配合量が、上記範囲内であると、熱電半導体材料のバインダーとして機能し、薄膜の形成がしやすくなり、しかも高い熱電性能と皮膜強度が両立した膜が得られ、熱電素子層の外表面には樹脂部が存在する。
(イオン液体)
 本発明で用いるイオン液体は、カチオンとアニオンとを組み合わせてなる溶融塩であり、-50~500℃の温度領域のいずれかの領域において液体で存在し得る塩をいう。イオン液体は、蒸気圧が極めて低く不揮発性であること、優れた熱安定性及び電気化学安定性を有していること、粘度が低いこと、かつイオン伝導度が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体微粒子間の電気伝導率の低減を効果的に抑制することができる。また、イオン液体は、非プロトン性のイオン構造に基づく高い極性を示し、耐熱性樹脂との相溶性に優れるため、熱電素子層の電気伝導率を均一にすることができる。
 イオン液体は、公知または市販のものが使用できる。例えば、ピリジニウム、ピリミジニウム、ピラゾリウム、ピロリジニウム、ピペリジニウム、イミダゾリウム等の窒素含有環状カチオン化合物及びそれらの誘導体;テトラアルキルアンモニウムのアミン系カチオン及びそれらの誘導体;ホスホニウム、トリアルキルスルホニウム、テトラアルキルホスホニウム等のホスフィン系カチオン及びそれらの誘導体;リチウムカチオン及びその誘導体等のカチオン成分と、Cl、AlCl 、AlCl 、ClO 等の塩化物イオン、Br等の臭化物イオン、I等のヨウ化物イオン、BF 、PF 等のフッ化物イオン、F(HF) 等のハロゲン化物アニオン、NO 、CHCOO、CFCOO、CHSO 、CFSO 、(FSO、(CFSO、(CFSO、AsF 、SbF 、NbF 、TaF 、F(HF)n、(CN)、CSO 、(CSO、CCOO、(CFSO)(CFCO)N等のアニオン成分とから構成されるものが挙げられる。
 上記のイオン液体の中で、高温安定性、熱電半導体微粒子及び樹脂との相溶性、熱電半導体微粒子間隙の電気伝導率の低下抑制等の観点から、イオン液体のカチオン成分が、ピリジニウムカチオン及びその誘導体、イミダゾリウムカチオン及びその誘導体から選ばれる少なくとも1種を含むことが好ましい。イオン液体のアニオン成分が、ハロゲン化物アニオンを含むことが好ましく、Cl、Br及びIから選ばれる少なくとも1種を含むことがさらに好ましい。
 カチオン成分が、ピリジニウムカチオン及びその誘導体を含むイオン液体の具体的な例として、4-メチル-ブチルピリジニウムクロライド、3-メチル-ブチルピリジニウムクロライド、4-メチル-ヘキシルピリジニウムクロライド、3-メチル-ヘキシルピリジニウムクロライド、4-メチル-オクチルピリジニウムクロライド、3-メチル-オクチルピリジニウムクロライド、3、4-ジメチル-ブチルピリジニウムクロライド、3、5-ジメチル-ブチルピリジニウムクロライド、4-メチル-ブチルピリジニウムテトラフルオロボレート、4-メチル-ブチルピリジニウムヘキサフルオロホスフェート、1-ブチル-4-メチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムヘキサフルオロホスファート、1-ブチル-4-メチルピリジニウムヨージド等が挙げられる。この中で、1-ブチル-4-メチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムヘキサフルオロホスファート、1-ブチル-4-メチルピリジニウムヨージドが好ましい。
 また、カチオン成分が、イミダゾリウムカチオン及びその誘導体を含むイオン液体の具体的な例として、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムテトラフルオロボレイト]、1-エチル-3-メチルイミダゾリウムクロライド、1-エチル-3-メチルイミダゾリウムブロミド、1-ブチル-3-メチルイミダゾリウムクロライド、1-ヘキシル-3-メチルイミダゾリウムクロライド、1-オクチル-3-メチルイミダゾリウムクロライド、1-デシル-3-メチルイミダゾリウムクロライド、1-デシル-3-メチルイミダゾリウムブロミド、1-ドデシル-3-メチルイミダゾリウムクロライド、1-テトラデシル-3-メチルイミダゾリウムクロライド、1-エチル-3-メチルイミダゾリウムテトラフロオロボレート、1-ブチル-3-メチルイミダゾリウムテトラフロオロボレート、1-ヘキシル-3-メチルイミダゾリウムテトラフロオロボレート、1-エチル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-メチル-3-ブチルイミダゾリウムメチルスルフェート、1、3-ジブチルイミダゾリウムメチルスルフェート等が挙げられる。この中で、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムテトラフルオロボレイト]が好ましい。
 上記のイオン液体は、電気伝導率が10-7S/cm以上であることが好ましく、10-6S/cm以上であることがより好ましい。電気伝導率が上記の範囲であれば、導電補助剤として、熱電半導体微粒子間の電気伝導率の低減を効果的に抑制することができる。
 また、上記のイオン液体は、分解温度が300℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。
 また、上記のイオン液体は、熱重量測定(TG)による300℃における質量減少率が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましい。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。
 前記イオン液体の前記熱電半導体組成物中の配合量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、さらに好ましくは1.0~20質量%である。前記イオン液体の配合量が、上記の範囲内であれば、電気伝導率の低下が効果的に抑制され、高い熱電性能を有する膜が得られる。
(無機イオン性化合物)
 本発明で用いる無機イオン性化合物は、少なくともカチオンとアニオンから構成される化合物である。無機イオン性化合物は室温において固体であり、400~900℃の温度領域のいずれかの温度に融点を有し、イオン伝導度が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体微粒子間の電気伝導率の低減を抑制することができる。
 カチオンとしては、金属カチオンを用いる。
 金属カチオンとしては、例えば、アルカリ金属カチオン、アルカリ土類金属カチオン、典型金属カチオン及び遷移金属カチオンが挙げられ、アルカリ金属カチオン又はアルカリ土類金属カチオンがより好ましい。
 アルカリ金属カチオンとしては、例えば、Li、Na、K、Rb、Cs及びFr等が挙げられる。
 アルカリ土類金属カチオンとしては、例えば、Mg2+、Ca2+、Sr2+及びBa2+等が挙げられる。
 アニオンとしては、例えば、F、Cl、Br、I、OH、CN、NO3-、NO2-、ClO、ClO2-、ClO3-、ClO4-、CrO 2-、HSO 、SCN、BF 、PF 等が挙げられる。
 無機イオン性化合物は、公知または市販のものが使用できる。例えば、カリウムカチオン、ナトリウムカチオン、又はリチウムカチオン等のカチオン成分と、Cl、AlCl 、AlCl 、ClO 等の塩化物イオン、Br等の臭化物イオン、I等のヨウ化物イオン、BF 、PF 等のフッ化物イオン、F(HF) 等のハロゲン化物アニオン、NO 、OH、CN等のアニオン成分とから構成されるものが挙げられる。
 上記の無機イオン性化合物の中で、高温安定性、熱電半導体微粒子及び樹脂との相溶性、熱電半導体微粒子間隙の電気伝導率の低下抑制等の観点から、無機イオン性化合物のカチオン成分が、カリウム、ナトリウム、及びリチウムから選ばれる少なくとも1種を含むことが好ましい。また、無機イオン性化合物のアニオン成分が、ハロゲン化物アニオンを含むことが好ましく、Cl、Br、及びIから選ばれる少なくとも1種を含むことがさらに好ましい。
 カチオン成分が、カリウムカチオンを含む無機イオン性化合物の具体的な例として、KBr、KI、KCl、KF、KOH、KCO等が挙げられる。この中で、KBr、KIが好ましい。
 カチオン成分が、ナトリウムカチオンを含む無機イオン性化合物の具体的な例として、NaBr、NaI、NaOH、NaF、NaCO等が挙げられる。この中で、NaBr、NaIが好ましい。
 カチオン成分が、リチウムカチオンを含む無機イオン性化合物の具体的な例として、LiF、LiOH、LiNO等が挙げられる。この中で、LiF、LiOHが好ましい。
 上記の無機イオン性化合物は、電気伝導率が10-7S/cm以上であることが好ましく、10-6S/cm以上であることがより好ましい。電気伝導率が上記範囲であれば、導電補助剤として、熱電半導体微粒子間の電気伝導率の低減を効果的に抑制することができる。
 また、上記の無機イオン性化合物は、分解温度が400℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。
 また、上記の無機イオン性化合物は、熱重量測定(TG)による400℃における質量減少率が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましい。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。
 前記無機イオン性化合物の前記熱電半導体組成物中の配合量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、さらに好ましくは1.0~10質量%である。前記無機イオン性化合物の配合量が、上記範囲内であれば、電気伝導率の低下を効果的に抑制でき、結果として熱電性能が向上した膜が得られる。
 なお、無機イオン性化合物とイオン液体とを併用する場合においては、前記熱電半導体組成物中における、無機イオン性化合物及びイオン液体の含有量の総量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、さらに好ましくは1.0~10質量%である。
(熱電半導体組成物の調製方法)
 本発明で用いる熱電半導体組成物の調製方法は、特に制限はなく、超音波ホモジナイザー、スパイラルミキサー、プラネタリーミキサー、ディスパーサー、ハイブリッドミキサー等の公知の方法により、前記熱電半導体微粒子と前記イオン液体及び前記耐熱性樹脂、必要に応じて前記その他の添加剤、さらに溶媒を加えて、混合分散させ、当該熱電半導体組成物を調製すればよい。
 前記溶媒としては、例えば、トルエン、酢酸エチル、メチルエチルケトン、アルコール、テトラヒドロフラン、メチルピロリドン、エチルセロソルブ等の溶媒などが挙げられる。これらの溶媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。熱電半導体組成物の固形分濃度としては、該組成物が塗工に適した粘度であればよく、特に制限はない。
 前記熱電半導体組成物からなる薄膜は、基板上に、前記熱電半導体組成物を塗布し、乾燥することで形成することができる。このように、形成することで、簡便に低コストで大面積の熱電素子層を得ることができる。
 前記熱電半導体組成物からなる薄膜の厚さは、特に制限はないが、熱電性能と皮膜強度の点から、好ましくは100nm~1000μm、より好ましくは300nm~600μm、さらに好ましくは5~400μmである。
<基板>
 本発明に用いる熱電変換モジュールの基板としては、すなわち、第1の基板及び第2の基板としては、熱電素子層の電気伝導率の低下、熱伝導率の増加に影響を及ぼさないプラスチックフィルムを用いることが好ましい。なかでも、屈曲性に優れ、熱電半導体組成物からなる薄膜をアニール処理した場合でも、基板が熱変形することなく、熱電変換モジュールの性能を維持することができ、耐熱性及び寸法安定性が高いという点から、プラスチックフィルムとしては、ポリイミドフィルム、ポリアミドフィルム、ポリエーテルイミドフィルム、ポリアラミドフィルム、ポリアミドイミドフィルムが好ましく、さらに、汎用性が高いという点から、ポリイミドフィルムが特に好ましい。
 前記基板に使用されるプラスチックフィルムの厚さは、屈曲性、耐熱性及び寸法安定性の観点から、1~1000μmが好ましく、10~500μmがより好ましく、20~100μmがさらに好ましい。
 また、上記プラスチックフィルムは、熱重量分析で測定される5%重量減少温度が300℃以上であることが好ましく、400℃以上であることがより好ましい。JIS K7133(1999)に準拠して200℃で測定した加熱寸法変化率が0.5%以下であることが好ましく、0.3%以下であることがより好ましい。JIS K7197(2012)に準拠して測定した平面方向の線膨脹係数が0.1ppm・℃-1~50ppm・℃-1であり、0.1ppm・℃-1~30ppm・℃-1であることがより好ましい。
<電極>
 本発明に用いる熱電変換モジュールの第1及び/又は第2の基板上の電極の金属材料は、金、ニッケル、アルミニウム、ロジウム、白金、クロム、パラジウム、ステンレス鋼、モリブデン又はこれらのいずれかの金属を含む合金等が挙げられる。
 前記電極の層の厚さは、好ましくは10nm~200μm、より好ましくは30nm~150μm、さらに好ましくは50nm~120μmである。電極の層の厚さが、上記範囲内であれば、電気伝導率が高く低抵抗となり、電極として十分な強度が得られる。
 電極の形成は、上記電極の金属材料を用いて行う。電極を形成する方法としては、前述したハンダ受理層を形成する方法と同様である。
 本発明に用いる電極には、ハンダ受理層と同様、高い導電性が求められ、めっき法や真空成膜法で成膜した電極は、高い導電性を容易に実現できることから、真空蒸着法、スパッタリング法等の真空成膜法、および電解めっき法、無電解めっき法が好ましい。形成パターンの寸法、寸法精度の要求にもよるが、メタルマスク等のハードマスクを介在し、容易にパターンを形成することもできる。また、真空成膜法で成膜を行う場合は、用いる基板との密着性の向上、水分除去等の目的で、用いる基板を、基板の特性が損なわれない範囲で、加熱しながら行ってもよい。めっき法で成膜する場合は、無電解めっき法で成膜した膜上に電解めっき法で成膜してもよい。
 本発明の熱電変換モジュールは、熱電素子層を単独で用いることもできるが、ハンダ接合性の高いハンダ受理層を有する複数の熱電素子層(P型熱電素子層、N型熱電素子層)を、交互に電気的には電極を介在して直列に、熱的には絶縁性を有するフレキシブルなシート等を介在して並列に接続することにより、発電用及び冷却用として使用することができる。
[熱電変換モジュールの製造方法]
 本発明の熱電変換モジュールの製造は、第1及び第2の基板上に、電極を形成する工程(以下、「電極形成工程」ということがある。)、第1の基板の電極上に熱電素子層を形成する工程(以下、「熱電素子層形成工程」ということがある。)、熱電素子層をアニール処理する工程(以下、「アニール処理工程」ということがある。)、ハンダ受理層を形成する工程(以下、「ハンダ受理層形成工程」ということがある。)、さらにハンダ受理層と第2の基板上の電極とをハンダ層を介在し貼り合せる工程(以下、「貼り合わせ工程」ということがある。)を含む。
 以下、本発明に含まれる工程について、順次説明する。
(電極形成工程)
 電極形成工程は、例えば、第1の基板上及び第2の基板上に、前述した電極形成用の金属材料からなるパターンを形成する工程であり、基板上に形成する方法、及びパターンの形成方法については、前述したとおりである。
(熱電素子層形成工程)
 熱電素子層形成工程は、前述した熱電半導体組成物を、例えば、上記で得られた第1の電極を有する第1の基板上に塗布する工程である。熱電半導体組成物を、基板上に塗布する方法としては、スクリーン印刷法、フレキソ印刷法、グラビア印刷法、スピンコート法、ディップコート法、ダイコート法、スプレーコート法、バーコート法、ドクターブレード法等の公知の方法が挙げられ、特に制限されない。塗膜をパターン状に形成する場合は、所望のパターンを有するスクリーン版を用いて簡便にパターン形成が可能なスクリーン印刷法、スロットダイコート法等が好ましく用いられる。
 次いで、得られた塗膜を乾燥することにより、薄膜が形成されるが、乾燥方法としては、熱風乾燥法、熱ロール乾燥法、赤外線照射法等、従来公知の乾燥方法が採用できる。加熱温度は、通常、80~150℃であり、加熱時間は、加熱方法により異なるが、通常、数秒~数十分である。
 また、熱電半導体組成物の調製において溶媒を使用した場合、加熱温度は、使用した溶媒を乾燥できる温度範囲であれば、特に制限はない。
(アニール処理工程)
 アニール処理工程は、例えば、上記で得られた第1の電極及び熱電素子層を有する第1の基板をアニール処理する工程である。
 得られた熱電素子層は、薄膜形成後、さらにアニール処理(以下、アニール処理Bということがある。)を行うことが好ましい。該アニール処理Bを行うことで、熱電性能を安定化させるとともに、薄膜中の熱電半導体微粒子を結晶成長させることができ、熱電性能をさらに向上させることができる。アニール処理Bは、特に限定されないが、通常、ガス流量が制御された、窒素、アルゴン等の不活性ガス雰囲気下、還元ガス雰囲気下、または真空条件下で行われ、用いる樹脂及びイオン性化合物の耐熱温度等に依存するが、100~500℃で、数分~数十時間行われる。
(ハンダ受理層形成工程)
 ハンダ受理層形成工程は、上記で得られた熱電素子層上に直接金属材料を積層する工程である。1層であっても2以上積層してもよい。また、金属材料を溶媒、樹脂等に含有させた組成物を、熱電素子層上に塗布することにより形成してもよい。熱電素子層上に形成する方法、及びパターンの形成方法については、前述したとおりである。
 金属材料を溶媒、樹脂等に含有させて組成物として成膜した場合、ハンダ受理層の最終形態として、溶媒等を含め樹脂成分は焼成等により除去しておくことが好ましい。焼成温度は、熱電性能が維持できる温度範囲であれば、制限されない。
(貼り合わせ工程)
 貼り合わせ工程は、例えば、前記ハンダ受理層形成工程で得られた第1の基板のハンダ受理層側の面と、第2の基板の第2の電極側の面とをハンダ層を介在し貼り合わせ、接合し、熱電変換モジュールを作製する工程である。
 前記貼り合わせに用いるハンダ層を構成するハンダ材料としては、前述したとおりであり、ハンダ材料を基板上に塗布する方法としては、ステンシル印刷法、スクリーン印刷法、ディスペンシング法等の公知の方法が挙げられる。加熱温度は用いるハンダ材料、基板に使用する材料等により異なるが、通常、150~280℃で3~20分間行う。
 本発明の製造方法によれば、簡便な方法でハンダ受理層を設けることができ、これにより、樹脂を含む熱電素子層と対向基板の電極側のハンダ層との接合信頼性を向上させることができる。
 次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
 実施例及び比較例で作製した熱電変換モジュールの試験片のハンダ接合性に関する評価は、以下の方法で行った。
<ハンダ接合性の評価>
・電気抵抗値の測定
 図3は、実施例及び比較例で作製した熱電変換モジュール(試験片)の構成を示す断面図である。
 図3において、熱電変換モジュール(試験片)11は、互いに対向する第1の基板12a及び第2の基板12bを有し、前記第1の基板12aに形成される電極13a、前記第2の基板12bに形成される電極13bとの間に、熱電素子層14、ハンダ受理層15、ハンダ層16をこの順に含み、接合部17で、ハンダ受理層15とハンダ層16が接合している。
 実施例及び比較例で作製した熱電変換モジュールの試験片の、電極13aと電極13b間の電気抵抗値を、低抵抗測定装置(日置社製、型名:RM3545)を用いて、25℃60%RHの環境下で測定した。
・接合性評価
 得られた電気抵抗値に基づき、以下の基準でハンダ接合性を評価した。
〇:電気抵抗値が10-2(Ω)以下(ハンダ接合性良好)
×:電気抵抗値が10-2(Ω)超、∞(Ω)(測定不可)、又は目視で接合不良を確認できる場合(ハンダ接合性不良)
(実施例1)
<熱電変換モジュールの試験片の作製>
(1)熱電半導体組成物の作製
(熱電半導体微粒子の作製)
 ビスマス-テルル系熱電半導体材料であるP型ビスマステルライドBi0.4TeSb1.6(高純度化学研究所製、粒径:180μm)を、遊星型ボールミル(フリッチュジャパン社製、Premium line P-7)を使用し、窒素ガス雰囲気下で粉砕することで、平均粒径2.0μmの熱電半導体微粒子を作製した。粉砕して得られた熱電半導体微粒子に関して、レーザー回折式粒度分析装置(Malvern社製、マスターサイザー3000)により粒度分布測定を行った。
(熱電半導体組成物の塗工液の調製)
 上記で得られたP型ビスマステルライドBi0.4TeSb1.6微粒子92質量部、耐熱性樹脂としてポリイミド前駆体であるポリアミック酸(シグマアルドリッチ社製、ポリ(ピロメリト酸二無水物-co-4,4´-オキシジアニリン)アミド酸溶液、溶媒:N-メチルピロリドン、固形分濃度:15質量%)3質量部、及びイオン液体としてN-ブチルピリジニウムブロミド5質量部を混合分散した熱電半導体組成物からなる塗工液を調製した。
(2)電極の作製
 銅箔を貼付したポリイミドフィルム基板(宇部エクシモ社製、製品名:ユピセルN、ポリイミド基板、厚さ:50μm、銅箔、厚さ:9μm)を準備し、該ポリイミドフィルム基板の銅箔上に、無電解めっきにより、ニッケル層(厚さ:9μm)及び金層(厚さ:40nm)をこの順に積層することで、電極を有する基板を作製した(合計2枚)。
(3)熱電素子層の作製
 上記(1)で調製した塗工液を、(2)で作製した一方の基板の電極上の領域(塗布面積:0.35cm×0.35cm)にスクリーン印刷により塗布し、温度120℃で、10分間アルゴン雰囲気下で乾燥し、厚さが50μmの薄膜を形成した。次いで、得られた薄膜に対し、水素とアルゴンの混合ガス(水素:アルゴン=3体積%:97体積%)雰囲気下で、加温速度5K/minで昇温し、325℃で1時間保持し、薄膜形成後のアニール処理を行うことにより、熱電半導体材料の微粒子を結晶成長させ、熱電素子層を作製した。(4)ハンダ受理層の作製
 (3)で作製した熱電素子層上にハンダ受理層として銀ペースト(三ツ星ベルト社製、製品名:MDotEC264)を印刷し120℃で10分間加熱した(厚さ:5.0μm)。(5)ハンダ層の作製及び対向電極との接合
 (4)で作製したハンダ受理層上にソルダペースト42Sn/58Bi合金(タムラ製作所社製、製品名:SAM10-401-27)をステンシル印刷しハンダ層(加熱前厚さ:100μm)を作製した後、(2)で作製した他方の電極パターンを有するポリイミド基板と重ね、180℃で5分間加熱することで、ハンダ受理層を有する熱電素子層と対向電極とをハンダ層(加熱冷却後厚さ:50μm)を介在し接合し、熱電変換モジュールの試験片を得た。
 得られた熱電変換モジュールの試験片の対向電極間の電気抵抗値を測定した。結果を表1に示す。
(実施例2)
 熱電半導体材料をN型BiTeにした以外は、実施例1と同様にして熱電変換モジュールの試験片を作製した。得られた熱電変換モジュールの試験片の対向電極間の電気抵抗値を測定した。結果を表1に示す。
(実施例3)
 ハンダ受理層を、真空蒸着法により成膜した銀層(厚さ:300nm)とした以外は、実施例1と同様にして熱電変換モジュールの試験片を作製した。得られた熱電変換モジュールの試験片の対向電極間の電気抵抗値を測定した。結果を表1に示す。
(実施例4)
 ハンダ受理層を、真空蒸着法により成膜したアルミニウム層(厚さ:300nm)とした以外は、実施例1と同様にして熱電変換モジュールの試験片を作製した。得られた熱電変換モジュールの試験片の対向電極間の電気抵抗値を測定した。結果を表1に示す。
(実施例5)
 ハンダ受理層として、熱電素子層上にSn層(厚さ:250nm)層、Au層(厚さ:50nm)層の順に真空蒸着法により成膜した以外は、実施例1と同様にして熱電変換モジュールの試験片を作製した。得られた熱電変換モジュールの試験片の対向電極間の電気抵抗値を測定した。結果を表1に示す。
(比較例1)
 実施例1において、ハンダ受理層を設けなかった以外は、実施例1と同様にして熱電変換モジュールの試験片を作製した。得られた熱電変換モジュールの試験片の対向電極間の電気抵抗値を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 ハンダ受理層を設けた実施例1では、ハンダ受理層を設けない比較例1(目視で接合不良を確認)に比べて、樹脂を含む熱電素子層と、対向基板の電極側のハンダ層との接合性が高いことが分かった。また、実施例2~4についても、樹脂を含む熱電素子層と、対向基板の電極側のハンダ層との接合性が高いことが分かった。
 本発明の熱電変換モジュールでは、樹脂を含む熱電素子層と対向する電極上のハンダ層との接合性が安定することから、信頼性の高い熱電変換モジュールが得られる。同時に、製造工程内での歩留まりの向上が期待できる。また、本発明の熱電変換モジュールは、屈曲性を有するとともに、薄型化(小型、軽量)が実現できる可能性を有する。
 具体的には、工場や廃棄物燃焼炉、セメント燃焼炉等の各種燃焼炉からの排熱、自動車の燃焼ガス排熱及び電子機器の排熱を電気に変換する発電用途に適用することが考えられる。冷却用途としては、エレクトロニクス機器の分野において、例えば、半導体素子である、CCD(Charge Coupled Device)、MEMS(Micro Electro Mechanical Systems)、受光素子等の各種センサーの温度制御等に適用することが考えられる。
1A,1B:熱電変換モジュール
2a:第1の基板
2b:第2の基板
3a:第1の電極
3b:第2の電極
4a:P型熱電素子層
4b:N型熱電素子層
5:ハンダ受理層
6:ハンダ層
7:接合部
11:熱電変換モジュール(試験片)
12a:第1の基板
12b:第2の基板
13a:第1の電極
13b:第2の電極
14:熱電素子層
15:ハンダ受理層
16:ハンダ層
17:接合部

Claims (9)

  1.  第1の電極を有する第1の基板と、第2の電極を有する第2の基板と、熱電素子層と、前記熱電素子層に直接接合するハンダ受理層と、ハンダ層と、を含み、前記第1の基板の第1の電極側及び前記第2の基板の第2の電極側とは互いに対向している熱電変換モジュールであって、前記熱電素子層が樹脂を含む熱電半導体組成物からなる薄膜からなり、前記ハンダ受理層が金属材料を含む、熱電変換モジュール。
  2.  前記金属材料が、金、銀、アルミニウム、ロジウム、白金、クロム、パラジウム、錫、及びこれらのいずれかの金属材料を含む合金から選ばれる少なくとも1種である、請求項1に記載の熱電変換モジュール。
  3.  前記ハンダ受理層の厚さが、10nm~50μmである、請求項1又は2に記載の熱電変換モジュール。
  4.  前記樹脂が耐熱性樹脂である、請求項1~3のいずれか1項に記載の熱電変換モジュール。
  5.  前記耐熱性樹脂が、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、又はエポキシ樹脂である、請求項4に記載の熱電変換モジュール。
  6.  前記熱電半導体組成物は熱電半導体材料を含んでおり、該熱電半導体材料がビスマス-テルル系熱電半導体材料、テルライド系熱電半導体材料、アンチモン-テルル系熱電半導体材料、又はビスマスセレナイド系熱電半導体材料である、請求項1~5のいずれか1項に記載の熱電変換モジュール。
  7.  前記ビスマス-テルル系熱電半導体材料が、P型ビスマステルライド、N型ビスマステルライド、又はBiTeである、請求項6に記載の熱電変換モジュール。
  8.  前記第1の基板及び第2の基板が、ポリイミドフィルム、ポリアミドフィルム、ポリエーテルイミドフィルム、ポリアラミドフィルム、又はポリアミドイミドフィルムである、請求項1~7のいずれか1項に記載の熱電変換モジュール。
  9.  前記熱電素子層が、さらにイオン液体を含む熱電半導体組成物からなる薄膜からなる、請求項1~8のいずれか1項に記載の熱電変換モジュール。
PCT/JP2019/012295 2018-03-26 2019-03-25 熱電変換モジュール WO2019188862A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980022181.9A CN111971807A (zh) 2018-03-26 2019-03-25 热电转换模块
JP2020510007A JPWO2019188862A1 (ja) 2018-03-26 2019-03-25 熱電変換モジュール
US17/041,063 US20210098672A1 (en) 2018-03-26 2019-03-25 Thermoelectric conversion module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018058458 2018-03-26
JP2018-058458 2018-03-26

Publications (1)

Publication Number Publication Date
WO2019188862A1 true WO2019188862A1 (ja) 2019-10-03

Family

ID=68059046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012295 WO2019188862A1 (ja) 2018-03-26 2019-03-25 熱電変換モジュール

Country Status (5)

Country Link
US (1) US20210098672A1 (ja)
JP (1) JPWO2019188862A1 (ja)
CN (1) CN111971807A (ja)
TW (1) TW201941462A (ja)
WO (1) WO2019188862A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021132054A (ja) * 2020-02-18 2021-09-09 株式会社白山 熱電変換モジュール、及び、熱電変換モジュール製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU210269U1 (ru) * 2021-09-20 2022-04-05 Общество с ограниченной ответственностью "Технологическое бюро "Норд" (ООО "ТБ "НОРД") Термоэлектрический элемент

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028462A (ja) * 1999-07-13 2001-01-30 Yamaha Corp 熱電素子及び熱電素子の製造方法
WO2016104615A1 (ja) * 2014-12-26 2016-06-30 リンテック株式会社 ペルチェ冷却素子及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3540576B2 (ja) * 1997-10-14 2004-07-07 三洋電機株式会社 冷蔵庫
JP5377753B2 (ja) * 2010-03-25 2013-12-25 京セラ株式会社 熱電素子及び熱電モジュール

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028462A (ja) * 1999-07-13 2001-01-30 Yamaha Corp 熱電素子及び熱電素子の製造方法
WO2016104615A1 (ja) * 2014-12-26 2016-06-30 リンテック株式会社 ペルチェ冷却素子及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021132054A (ja) * 2020-02-18 2021-09-09 株式会社白山 熱電変換モジュール、及び、熱電変換モジュール製造方法
JP7274749B2 (ja) 2020-02-18 2023-05-17 株式会社白山 熱電変換モジュール、及び、熱電変換モジュール製造方法

Also Published As

Publication number Publication date
US20210098672A1 (en) 2021-04-01
TW201941462A (zh) 2019-10-16
JPWO2019188862A1 (ja) 2021-03-11
CN111971807A (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
JP7486949B2 (ja) 熱電変換モジュール用電極材料及びそれを用いた熱電変換モジュール
WO2016104615A1 (ja) ペルチェ冷却素子及びその製造方法
JP7406756B2 (ja) 熱電変換モジュール及びその製造方法
WO2019188862A1 (ja) 熱電変換モジュール
JP2019179911A (ja) 熱電変換モジュール
WO2021241635A1 (ja) 熱電変換モジュール及びその製造方法
JP7348192B2 (ja) 半導体素子
JP7207858B2 (ja) 熱電変換モジュール
WO2020071424A1 (ja) 熱電変換材料のチップ
WO2020203612A1 (ja) 熱電変換材料層及びその製造方法
WO2020196709A1 (ja) 熱電変換材料のチップの製造方法
JP2022057937A (ja) 熱電変換モジュール用電極
JP7401361B2 (ja) 熱電変換モジュール
WO2021193358A1 (ja) 熱電変換モジュール
WO2021193357A1 (ja) 熱電変換モジュール
WO2020203611A1 (ja) 熱電変換材料のチップへのハンダ受理層形成方法
JP2020035818A (ja) 熱電変換素子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510007

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776345

Country of ref document: EP

Kind code of ref document: A1