WO2019188453A1 - 基板処理装置、空調方法及び記憶媒体 - Google Patents

基板処理装置、空調方法及び記憶媒体 Download PDF

Info

Publication number
WO2019188453A1
WO2019188453A1 PCT/JP2019/010977 JP2019010977W WO2019188453A1 WO 2019188453 A1 WO2019188453 A1 WO 2019188453A1 JP 2019010977 W JP2019010977 W JP 2019010977W WO 2019188453 A1 WO2019188453 A1 WO 2019188453A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
duct
air conditioning
storage chambers
individual air
Prior art date
Application number
PCT/JP2019/010977
Other languages
English (en)
French (fr)
Inventor
真任 田所
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN201980019632.3A priority Critical patent/CN111868883A/zh
Priority to KR1020207029449A priority patent/KR102674916B1/ko
Priority to JP2020510674A priority patent/JP6986623B2/ja
Publication of WO2019188453A1 publication Critical patent/WO2019188453A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/10Temperature; Pressure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67196Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • H01L21/67225Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one lithography chamber

Definitions

  • the present disclosure relates to a substrate processing apparatus, an air conditioning method, and a storage medium.
  • Patent Document 1 discloses a temperature controller that adjusts the temperature of air outside a processing station having a plurality of processing units stacked in multiple stages, and a blower fan that sends air whose temperature is adjusted by the temperature controller into the processing station. Is disclosed.
  • This disclosure is intended to provide a substrate processing apparatus that enables temperature adjustment for each substrate storage chamber with a simple configuration.
  • a substrate processing apparatus includes a plurality of storage chambers that store a substrate, a first duct that sends a first gas to each of the plurality of storage chambers, and a first gas that is supplied to each of the plurality of storage chambers.
  • a plurality of second ducts for supplying a high-temperature second gas and a plurality of housing chambers for adjusting the mixing ratio of the first gas discharged from the first duct and the second gas discharged from the second duct.
  • an individual air conditioning unit is included in a substrate.
  • the first duct includes a first main duct along a direction in which the plurality of storage chambers are arranged, and a plurality of first sub-ducts protruding from the first main duct at a plurality of positions corresponding to the plurality of storage chambers.
  • the second duct is a second main duct along the direction in which the plurality of storage chambers are arranged, a plurality of second sub-ducts protruding from the second main duct at a plurality of positions respectively corresponding to the plurality of storage chambers,
  • a plurality of first sub-ducts projecting from the first main duct toward the second main duct, and a plurality of second sub-ducts projecting from the second main duct toward the first main duct, May be connected between the first main duct and the second main duct to the first sub duct and the second sub duct corresponding to the storage chamber.
  • the substrate processing apparatus includes a control unit that controls the plurality of individual air conditioning units so as to adjust the mixing ratio of the first gas and the second gas discharged into the plurality of storage chambers based on the internal temperature of each storage chamber. Furthermore, you may provide. In this case, the temperature for each storage chamber can be adjusted more appropriately by performing feedback control of the internal temperature for each storage chamber.
  • the control unit may control the plurality of individual air conditioning units so as to adjust the total amount of the first gas and the second gas discharged into the plurality of storage chambers based on the internal pressure for each storage chamber.
  • the individual air conditioning unit can also be used for adjusting the pressure, and the configuration can be further simplified.
  • the plurality of individual air conditioning units include a plurality of individual air conditioning units provided in the same storage room, and the control unit is provided in the storage room so as to improve the uniformity of the temperature distribution in the storage room.
  • a plurality of individual air conditioning units may be controlled. In this case, temperature uniformity in the same storage chamber can also be improved.
  • the control unit has a plurality of individual units based on a model indicating a relationship between a change in temperature distribution in the accommodation chamber and an increase / decrease in the discharge amount of the first gas and the second gas in the plurality of individual air conditioning units provided in the accommodation chamber.
  • the air conditioning unit may be controlled. In this case, the temperature uniformity in the same storage chamber can be further improved.
  • the substrate processing apparatus further includes a third duct for sending a third gas outside the plurality of storage chambers to each of the plurality of storage chambers, and the first duct supplies a gas lower in temperature than the third gas as the first gas.
  • the second duct is connected to a second gas supply source that supplies a gas higher in temperature than the third gas as the second gas, and the individual air conditioning unit is sent by the third duct. It is comprised so that the mixed gas which mixed the 1st gas sent by the 1st duct with the 3rd gas and the 2nd gas sent by the 2nd duct may be discharged, and the 1st gas in the mixed gas, the 2nd gas, and the 3rd gas The mixing ratio may be adjusted.
  • the total supply amount of the first gas and the second gas can be reduced by mixing the third gas having a temperature between the first gas and the second gas.
  • the burden of a 1st gas supply source and a 2nd gas supply source can be reduced, and these can be reduced in size.
  • the substrate processing apparatus may further include a housing including a plurality of storage chambers, and the third duct may be configured to send a gas in a space adjacent to the housing to each of the plurality of storage chambers as a third gas. Good.
  • the device configuration can be further simplified.
  • An air conditioning method for a substrate processing apparatus acquires internal temperature information for each storage chamber of a substrate processing apparatus having a plurality of storage chambers, and is discharged from a first duct that sends a first gas.
  • a plurality of individual air conditioners respectively provided in a plurality of storage chambers so as to adjust the mixing ratio of the first gas and the second gas discharged from the second duct that sends the second gas having a temperature higher than the first gas.
  • Each of the units is controlled based on the acquired internal temperature information for each storage chamber.
  • a storage medium is a computer-readable storage medium that stores a program for causing the apparatus to execute the air conditioning method.
  • FIG. 7 is a sectional view taken along line VII-VII in FIG. 6. It is a block diagram which shows the hardware constitutions of a control part. It is a flowchart which shows an air-conditioning process procedure. It is a schematic diagram which shows the modification of an air conditioning system. It is a schematic diagram which shows the modification of an air conditioning system. It is a schematic diagram which shows the modification of an individual air conditioning part. It is a schematic diagram which shows the modification of an individual air conditioning part.
  • the substrate processing system 1 is a system for forming a photosensitive film, exposing the photosensitive film, and developing the photosensitive film on a substrate.
  • the substrate to be processed is, for example, a semiconductor wafer W.
  • the photosensitive film is, for example, a resist film.
  • the substrate processing system 1 includes a coating / developing device 2 and an exposure device 3.
  • the exposure apparatus 3 performs an exposure process on a resist film (photosensitive film) formed on the wafer W (substrate). Specifically, the exposure target portion of the resist film is irradiated with energy rays by a method such as immersion exposure.
  • the coating / developing apparatus 2 performs a process of forming a resist film on the surface of the wafer W (substrate) before the exposure process by the exposure apparatus 3, and performs a development process of the resist film after the exposure process.
  • the coating / developing apparatus 2 includes a carrier block 4, a processing block 5, an interface block 6, and a control unit 100.
  • the carrier block 4 introduces the wafer W into the coating / developing apparatus 2 and derives the wafer W from the coating / developing apparatus 2.
  • the carrier block 4 can support a plurality of carriers C for the wafer W, and incorporates a delivery arm A1.
  • the carrier C accommodates a plurality of circular wafers W, for example.
  • the delivery arm A1 takes out the wafer W from the carrier C and delivers it to the processing block 5, receives the wafer W from the processing block 5, and returns it to the carrier C.
  • the processing block 5 includes a plurality of processing modules 11, 12, 13, and 14.
  • the processing modules 11, 12, and 13 have storage chambers 11 a, 12 a, and 13 a (see FIG. 3) that store the wafer W, a coating unit U 1, a heat treatment unit U 2, and a transport that transports the wafer W to these units.
  • the arm A3 is built in the storage chambers 11a, 12a, and 13a.
  • the processing module 11 forms a lower layer film on the surface of the wafer W by the coating unit U1 and the heat treatment unit U2.
  • the coating unit U1 of the processing module 11 applies a processing liquid for forming a lower layer film on the wafer W.
  • the heat treatment unit U2 of the processing module 11 performs various heat treatments accompanying the formation of the lower layer film.
  • the processing module 12 forms a resist film on the lower layer film by the coating unit U1 and the heat treatment unit U2.
  • the coating unit U1 of the processing module 12 applies a processing liquid for forming a resist film on the lower layer film.
  • the heat treatment unit U2 of the processing module 12 performs various heat treatments accompanying the formation of the resist film.
  • the processing module 13 forms an upper layer film on the resist film by the coating unit U1 and the heat treatment unit U2.
  • the coating unit U1 of the processing module 13 applies a liquid for forming an upper layer film on the resist film.
  • the heat treatment unit U2 of the processing module 13 performs various heat treatments accompanying the formation of the upper layer film.
  • the processing module 14 includes a storage chamber 14a (see FIG. 3) that stores the wafer W, and includes a developing unit U3, a heat treatment unit U4, and a transfer arm A3 that transfers the wafer W to these units in the storage chamber 14a. Built-in.
  • the processing module 14 develops the resist film after the exposure by the developing unit U3 and the heat treatment unit U4.
  • the developing unit U3 applies a developing solution on the exposed surface of the wafer W, and then rinses the developing solution with a rinsing solution, thereby developing the resist film.
  • the heat treatment unit U4 performs various heat treatments associated with the development processing. Specific examples of the heat treatment include heat treatment before development processing (PEB: Post Exposure Bake), heat treatment after development processing (PB: Post Bake), and the like.
  • a shelf unit U10 is provided on the carrier block 4 side in the processing block 5.
  • the shelf unit U10 is partitioned into a plurality of cells arranged in the vertical direction.
  • An elevating arm A7 is provided in the vicinity of the shelf unit U10. The raising / lowering arm A7 raises / lowers the wafer W between the cells of the shelf unit U10.
  • a shelf unit U11 is provided on the interface block 6 side in the processing block 5.
  • the shelf unit U11 is partitioned into a plurality of cells arranged in the vertical direction.
  • the interface block 6 delivers the wafer W to and from the exposure apparatus 3.
  • the interface block 6 includes a delivery arm A8 and is connected to the exposure apparatus 3.
  • the delivery arm A8 delivers the wafer W arranged on the shelf unit U11 to the exposure apparatus 3, receives the wafer W from the exposure apparatus 3, and returns it to the shelf unit U11.
  • the control unit 100 controls the coating / developing apparatus 2 to execute the coating / developing process in the following procedure, for example. First, the control unit 100 controls the transfer arm A1 so as to transfer the wafer W in the carrier C to the shelf unit U10, and controls the lifting arm A7 so that the wafer W is arranged in the cell for the processing module 11.
  • control unit 100 controls the transfer arm A3 so as to transfer the wafer W of the shelf unit U10 to the coating unit U1 and the heat treatment unit U2 in the processing module 11, and forms a lower layer film on the surface of the wafer W.
  • the coating unit U1 and the heat treatment unit U2 are controlled.
  • control unit 100 controls the transfer arm A3 so as to return the wafer W on which the lower layer film is formed to the shelf unit U10, and controls the lifting arm A7 so as to place the wafer W in the cell for the processing module 12. .
  • control unit 100 controls the transfer arm A3 to transfer the wafer W of the shelf unit U10 to the coating unit U1 and the heat treatment unit U2 in the processing module 12, and forms a resist film on the lower layer film of the wafer W.
  • the coating unit U1 and the heat treatment unit U2 are controlled.
  • the control unit 100 controls the transfer arm A3 so as to return the wafer W to the shelf unit U10, and controls the lifting arm A7 so as to place the wafer W in the cell for the processing module 13.
  • control unit 100 controls the transfer arm A3 so as to transfer the wafer W of the shelf unit U10 to each unit in the processing module 13, and the coating unit so as to form an upper layer film on the resist film of the wafer W.
  • U1 and heat treatment unit U2 are controlled.
  • the control unit 100 controls the transfer arm A3 so as to transfer the wafer W to the shelf unit U11.
  • control unit 100 controls the delivery arm A8 so as to send the wafer W of the shelf unit U11 to the exposure apparatus 3. Thereafter, the control unit 100 receives the wafer W that has been subjected to the exposure process from the exposure apparatus 3, and controls the transfer arm A8 so as to be placed in the cell for the processing module 14 in the shelf unit U11.
  • control unit 100 controls the transfer arm A3 so as to transfer the wafer W of the shelf unit U11 to each unit in the processing module 14, and the developing unit U3 and the developing unit U3 so as to perform development processing on the resist film of the wafer W.
  • the heat treatment unit U4 is controlled.
  • control unit 100 controls the transfer arm A3 so as to return the wafer W to the shelf unit U10, and controls the lift arm A7 and the transfer arm A1 so as to return the wafer W into the carrier C.
  • the coating / developing process is completed.
  • the specific configuration of the substrate processing apparatus is not limited to the configuration of the coating / developing apparatus 2 exemplified above.
  • the substrate processing apparatus may be anything as long as it includes the coating unit U1 and the control unit 100 that can control the coating unit U1.
  • the substrate processing system 1 further includes an air conditioning system 20 for adjusting the temperature and pressure in the processing block 5.
  • the air conditioning system 20 includes a first gas supply source 21, a second gas supply source 22, a first duct 30, a second duct 40, a plurality of individual air conditioning units 50, and a plurality of temperature sensors 61, 62, 63. And a plurality of pressure sensors 71, 72, 73.
  • the first gas supply source 21 is a blower having a temperature adjusting unit such as a cooler or a heater, for example, and supplies the first gas adjusted to a temperature lower than the target temperature in the processing block 5 to the processing block 5.
  • the second gas supply source 22 is a blower having a temperature adjusting unit such as a cooler or a heater, for example, and the second gas adjusted to a temperature higher than the temperature of the first gas and the target temperature in the processing block 5 is processed to the processing block 5. To supply.
  • the first duct 30, the second duct 40, the plurality of individual air conditioning units 50, the plurality of temperature sensors 61, 62, 63, and the plurality of pressure sensors 71, 72, 73 are included in the coating / developing apparatus 2.
  • the coating / developing apparatus 2 includes a first duct 30, a second duct 40, a plurality of individual air conditioning units 50, a plurality of temperature sensors 61, 62, 63, and a plurality of pressure sensors 71, 72, 73. Is provided.
  • the first duct 30 sends the first gas supplied from the first gas supply source 21 to each of the plurality of storage chambers 11a, 12a, 13a, 14a.
  • the first duct 30 includes a first main duct 31 and a plurality of first sub ducts 32.
  • the first main duct 31 extends along the direction in which the plurality of storage chambers 11a, 12a, 13a, and 14a are arranged (for example, the vertical direction).
  • the plurality of first sub ducts 32 project laterally from the first main duct 31 at a plurality of positions respectively corresponding to the plurality of storage chambers 11a, 12a, 13a, 14a.
  • Corresponding to each of the plurality of storage chambers 11a, 12a, 13a, and 14a is located within the range of the plurality of storage chambers 11a, 12a, 13a, and 14a in the direction in which the plurality of storage chambers 11a, 12a, 13a, and 14a are arranged. Or it is located in the vicinity of the range of the plurality of storage chambers 11a, 12a, 13a, 14a.
  • each of the first sub ducts 32 is disposed in the vicinity of the ceiling within the range of the height of the corresponding storage chamber 11a, 12a, 13a, 14a.
  • the side means a direction intersecting with the direction in which the first main duct 31 extends. The same applies to the following.
  • the second duct 40 sends the second gas supplied from the second gas supply source 22 to each of the plurality of storage chambers 11a, 12a, 13a, 14a.
  • the second duct 40 includes a second main duct 41 and a plurality of second sub ducts 42.
  • the second main duct 41 extends along the direction in which the plurality of storage chambers 11a, 12a, 13a, 14a are arranged (for example, the vertical direction).
  • the plurality of second sub-ducts 42 project laterally from the second main duct 41 at a plurality of positions respectively corresponding to the plurality of storage chambers 11a, 12a, 13a, 14a.
  • the plurality of first sub-ducts 32 protrude from the first main duct 31 to the second main duct 41 side (right direction in the drawing) through the plurality of storage chambers 11a, 12a, 13a, and 14a, respectively.
  • the plurality of second sub ducts 42 project from the second main duct 41 to the first main duct 31 side (the left direction in the drawing) through the accommodating chambers 11a, 12a, 13a, and 14a, respectively.
  • the first main duct 31 and the second main duct 41 may be arranged so as to sandwich the storage chambers 11a, 12a, 13a, 14a in a predetermined direction.
  • the first main duct 31 and the second main duct 41 are arranged so as to sandwich the storage chambers 11a, 12a, 13a, and 14a in the direction in which the carrier block 4, the processing block 5, and the interface block 6 are arranged.
  • the first main duct 31 is disposed on the carrier block 4 side, and the second main duct 41 is disposed on the interface block 6 side.
  • the present invention is not limited to this, and the first main duct 31 is disposed on the interface block 6 side.
  • the second main duct 41 may be disposed on the carrier block 4 side.
  • the first main duct 31 and the second main duct 41 may be covered with a heat insulating material.
  • the first main duct 31 is covered with a heat insulating material 34
  • the first sub duct 32 is covered with a heat insulating material 36
  • the second main duct 41 is covered with a heat insulating material 44
  • the second sub duct 42 is covered with a heat insulating material. 46.
  • Specific examples of the heat insulating materials 34, 36, 44, and 46 include porous resin materials such as urethane foam. Heat transfer between the first duct 30 and the second duct 40 is suppressed by the heat insulating materials 34, 36, 44, and 46.
  • the plurality of individual air conditioning units 50 include a plurality of individual air conditioning units 50 respectively provided in the plurality of storage chambers 11a, 12a, 13a, and 14a.
  • the plurality of individual air conditioning units 50 may include a plurality of individual air conditioning units 50 provided in the same storage chamber 11a, 12a, 13a, 14a.
  • a plurality of individual air conditioning units 50 arranged along the first sub-duct 32 and the second sub-duct 42 are provided in each of the storage chambers 11a, 12a, 13a, and 14a.
  • the individual air conditioning unit 50 adjusts the mixing ratio of the first gas discharged from the first duct 30 and the second gas discharged from the second duct 40.
  • the individual air conditioning unit 50 mixes the first gas sent by the first duct 30 and the second gas sent by the second duct 40, and the mixed gas obtained thereby is contained in the storage chambers 11a, 12a, 13a, 14a. And the mixing ratio of the first gas and the second gas in the mixed gas is adjusted.
  • the individual air conditioning units 50 of the storage chambers 11a, 12a, 13a, and 14a are connected between the first main duct 31 and the second main duct 41 to the first sub duct 32 and the second sub duct 42 corresponding to the storage chamber. Yes.
  • the individual air conditioning unit 50 includes a discharge unit 53, a first introduction unit 51, a second introduction unit 52, a first valve 54, and a second valve 55.
  • the discharge part 53 is opened in the storage chambers 11a, 12a, 13a, 14a.
  • the first introduction part 51 is connected to the first sub duct 32 and introduces the first gas from the first sub duct 32 to the discharge part 53.
  • the second introduction part 52 is connected to the second sub duct 42 and introduces the second gas from the second sub duct 42 to the discharge part 53.
  • the first valve 54 adjusts the opening degree of the flow path in the first introduction part 51.
  • the second valve 55 adjusts the opening degree of the flow path in the second introduction part 52.
  • the opening degree of the first valve 54 and the second valve 55 respectively, it is possible to adjust the mixing ratio of the first gas and the second gas in the discharge part 53.
  • the mixing ratio of the first gas and the second gas is adjusted by adjusting the opening degree of the first valve 54 and the second valve 55 while maintaining the opening ratio of the first valve 54 and the opening degree of the second valve 55. It is possible to adjust the total amount of the first gas and the second gas discharged from the discharge unit 53 while maintaining the above.
  • Specific examples of the first valve 54 and the second valve 55 include a butterfly valve that adjusts the opening degree of the flow path by rotating a plate-like valve member 56.
  • the individual air conditioning unit 50 can be configured in any way as long as the mixing ratio of the first gas discharged from the first duct 30 and the second gas discharged from the second duct 40 can be adjusted.
  • 6 and 7 are schematic views showing modifications of the individual air conditioning unit 50.
  • 6 and 7 includes a first valve 81 for adjusting the mixing ratio and a second valve 82 for adjusting the discharge amount, instead of the first valve 54 and the second valve 55.
  • the first valve 81 adjusts the mixing ratio of the first gas and the second gas by moving the plate-shaped valve member 83 between the first introduction part 51 side and the second introduction part 52 side.
  • the second valve 82 is disposed on the downstream side of the first valve 81, and adjusts the opening degree of the flow path in the discharge unit 53 by rotating the plate-like valve member 84.
  • the plurality of temperature sensors 61 are source point sensors that measure the temperature of the first gas before being supplied into the storage chambers 11 a, 12 a, 13 a, and 14 a, and are provided in the first duct 30. Yes.
  • the plurality of temperature sensors 61 are arranged so as to correspond to the plurality of first sub ducts 32, respectively. In the drawing, each temperature sensor 61 is disposed at a portion where the first main duct 31 and the first sub duct 32 intersect, but the present invention is not limited thereto.
  • the temperature sensor 61 may be disposed in the first sub duct 32. Further, the plurality of temperature sensors 61 may include a plurality of temperature sensors 61 arranged in the same first sub duct 32.
  • the plurality of temperature sensors 61 in the same first sub duct 32 may be arranged so as to correspond to each of the plurality of individual air conditioning units 50 arranged along the first sub duct 32. Note that the temperature sensor 61 and the individual air conditioning unit 50 correspond that the distance between the temperature sensor 61 and the individual air conditioning unit 50 is smaller than the distance between the temperature sensor 61 and any other individual air conditioning unit 50. Means that. The same applies to the following.
  • the plurality of temperature sensors 62 are source point sensors that measure the temperature of the second gas before being supplied into the storage chambers 11a, 12a, 13a, and 14a, and are provided in the second duct 40.
  • the plurality of temperature sensors 62 are disposed so as to correspond to the plurality of second sub-ducts 42, respectively.
  • each temperature sensor 62 is disposed at a portion where the second main duct 41 and the second sub duct 42 intersect, but the present invention is not limited thereto.
  • the temperature sensor 62 may be disposed in the second sub duct 42.
  • the plurality of temperature sensors 62 may include a plurality of temperature sensors 62 arranged in the same second sub duct 42.
  • the plurality of temperature sensors 62 in the same second sub-duct 42 may be disposed so as to correspond to the plurality of individual air conditioning units 50 arranged along the second sub-duct 42, respectively.
  • the plurality of temperature sensors 63 are use point sensors that measure temperatures in the storage chambers 11a, 12a, 13a, and 14a.
  • the plurality of temperature sensors 63 includes a plurality of temperature sensors 63 disposed in the plurality of storage chambers 11a, 12a, 13a, and 14a, respectively.
  • the plurality of temperature sensors 63 may include a plurality of temperature sensors 63 provided in the same storage chamber 11a, 12a, 13a, 14a. In FIG. 3, the same number of temperature sensors 63 as the individual air conditioning units 50 are provided in the storage chambers 11 a, 12 a, 13 a, and 14 a. In each of the storage chambers 11a, 12a, 13a, and 14a, the plurality of temperature sensors 63 are disposed so as to correspond to the plurality of individual air conditioning units 50, respectively.
  • the plurality of pressure sensors 71 are source point sensors that measure the pressure of the first gas before being supplied into the storage chambers 11 a, 12 a, 13 a, and 14 a, and are provided in the first duct 30.
  • the plurality of pressure sensors 71 are arranged so as to correspond to the plurality of first sub ducts 32, respectively.
  • each pressure sensor 71 is disposed at a portion where the first main duct 31 and the first sub duct 32 intersect, but the present invention is not limited thereto.
  • the pressure sensor 71 may be disposed in the first sub duct 32.
  • the plurality of pressure sensors 71 may include a plurality of pressure sensors 71 arranged in the same first sub-duct 32.
  • the plurality of pressure sensors 71 in the same first sub-duct 32 may be arranged to correspond to the plurality of individual air-conditioning units 50 arranged along the first sub-duct 32, respectively.
  • the plurality of pressure sensors 72 are source point sensors that measure the pressure of the second gas before being supplied into the storage chambers 11a, 12a, 13a, and 14a, and are provided in the second duct 40.
  • the plurality of pressure sensors 72 are arranged so as to correspond to the plurality of second sub-ducts 42, respectively.
  • each pressure sensor 72 is disposed at a portion where the second main duct 41 and the second sub duct 42 intersect, but the present invention is not limited thereto.
  • the pressure sensor 72 may be disposed in the second sub duct 42.
  • the plurality of pressure sensors 72 may include a plurality of pressure sensors 72 arranged in the same second sub-duct 42.
  • the plurality of pressure sensors 72 in the same second sub-duct 42 may be arranged so as to respectively correspond to the plurality of individual air-conditioning units 50 arranged along the second sub-duct 42.
  • the plurality of pressure sensors 73 are use point sensors that measure the pressure in the storage chambers 11a, 12a, 13a, and 14a.
  • the plurality of pressure sensors 73 include a plurality of pressure sensors 73 disposed in the plurality of storage chambers 11a, 12a, 13a, and 14a, respectively. In FIG. 3, one pressure sensor 73 is disposed in each of the storage chambers 11a, 12a, 13a, and 14a, but the present invention is not limited to this.
  • the plurality of pressure sensors 73 may include a plurality of pressure sensors 73 provided in the same storage chamber 11a, 12a, 13a, 14a.
  • the above air conditioning system 20 is controlled by the control unit 100, for example. Based on the internal temperature of each of the storage chambers 11a, 12a, 13a, and 14a, the control unit 100 sets the mixing ratio of the first gas and the second gas discharged into the plurality of storage chambers 11a, 12a, 13a, and 14a, respectively.
  • the plurality of individual air conditioning units 50 are controlled so as to adjust.
  • the control unit 100 adjusts the total amount of the first gas and the second gas discharged into the plurality of storage chambers 11a, 12a, 13a, and 14a based on the internal pressure for each of the storage chambers 11a, 12a, 13a, and 14a. As such, a plurality of individual air conditioning units 50 may be controlled.
  • the control unit 100 may control the plurality of individual air conditioning units 50 provided in the storage chamber so as to improve the uniformity of the temperature distribution in the storage chambers 11a, 12a, 13a, and 14a.
  • the control unit 100 includes a source point information acquisition unit 111, a first air conditioning control unit 112, a use point information acquisition unit 113, and a second air conditioning control as a functional configuration (hereinafter referred to as “functional module”). Part 114.
  • the source point information acquisition unit 111 acquires measurement results obtained by the plurality of temperature sensors 61, the plurality of temperature sensors 62, the plurality of pressure sensors 71, and the plurality of pressure sensors 72.
  • the first air conditioning control unit 112 controls the first gas supply source 21 and the second gas supply source 22 so that the measurement results of all the temperature sensors 61 and 62 and the pressure sensors 71 and 72 satisfy a predetermined condition. For example, in the first air conditioning control unit 112, the measurement results of all the temperature sensors 61 are lower than the target temperature in the storage chambers 11a, 12a, 13a, 14a, and the measurement results of all the pressure sensors 71 are the storage chambers 11a, 12a. , 13a, 14a, the first gas supply source 21 is controlled to be higher than the target pressure.
  • the first air conditioning control unit 112 has the measurement results of all the temperature sensors 62 higher than the target temperature in the storage chambers 11a, 12a, 13a, 14a, and the measurement results of all the pressure sensors 72 are the storage chambers 11a,
  • the first gas supply source 21 is controlled so as to be higher than the target pressure in 12a, 13a, 14a.
  • the use point information acquisition unit 113 acquires measurement results from the plurality of temperature sensors 63 and the plurality of pressure sensors 73.
  • the second air conditioning control unit 114 adjusts the mixing ratio of the first gas and the second gas discharged into the plurality of storage chambers 11a, 12a, 13a, and 14a based on the measurement results obtained by the plurality of temperature sensors 63, respectively.
  • the plurality of individual air conditioning units 50 are controlled. For example, when the measurement result by the temperature sensor 63 of the storage chambers 11a, 12a, 13a, and 14a is lower than the target temperature, the second air conditioning control unit 114 mixes the second gas in the individual air conditioning unit 50 of the storage chamber. To increase.
  • the second air conditioning control unit 114 mixes the first gas in the individual air conditioning unit 50 of the storage chamber. Increase the ratio.
  • the second air conditioning controller 114 has a plurality of individual units provided in the storage chamber so as to improve the uniformity of the measurement results obtained by the plurality of temperature sensors 63 in the same storage chamber 11a, 12a, 13a, 14a.
  • the air conditioning unit 50 is controlled. For example, when the measurement result by any one of the temperature sensors 63 is lower than the target temperature, the second air conditioning control unit 114 increases the mixing ratio of the second gas in the individual air conditioning unit 50 corresponding to the temperature sensor 63. On the other hand, when the measurement result by any one of the temperature sensors 63 is higher than the target temperature, the second air conditioning control unit 114 increases the mixing ratio of the first gas in the individual air conditioning unit 50 corresponding to the temperature sensor 63.
  • the second air conditioning control unit 114 adjusts the total amount of the first gas and the second gas discharged into the plurality of storage chambers 11a, 12a, 13a, and 14a based on the measurement results by the plurality of pressure sensors 73, respectively.
  • the plurality of individual air-conditioning units 50 are controlled as described above. For example, when the measurement result by the pressure sensor 73 of the storage chambers 11a, 12a, 13a, and 14a is lower than the target pressure, the second air conditioning control unit 114 includes the first gas discharged from the individual air conditioning unit 50 of the storage chamber and Increase the total amount of secondary gas.
  • the second air conditioning control unit 114 discharges the first gas discharged from the individual air conditioning unit 50 of the storage chamber. And reduce the total amount of secondary gas.
  • the control unit 100 includes one or a plurality of control computers.
  • the control unit 100 includes a circuit 120 illustrated in FIG.
  • the circuit 120 includes one or more processors 121, a memory 122, a storage 123, an input / output port 124, and a timer 125.
  • the storage 123 includes a computer-readable storage medium such as a hard disk.
  • the storage medium stores a program for causing the air conditioning system 20 to execute an air conditioning processing procedure described later.
  • the storage medium may be a removable medium such as a nonvolatile semiconductor memory, a magnetic disk, and an optical disk.
  • the memory 122 temporarily stores the program loaded from the storage medium of the storage 123 and the calculation result by the processor 121.
  • the processor 121 configures each functional module described above by executing the program in cooperation with the memory 122.
  • the input / output port 124 is connected between the first gas supply source 21, the second gas supply source 22, the individual air conditioning unit 50, the temperature sensors 61, 62, 63 and the pressure sensors 71, 72, 73 in accordance with a command from the processor 121. Input and output electrical signals.
  • the timer 125 measures the elapsed time by, for example, counting a reference pulse with a fixed period.
  • control unit 100 is not necessarily limited to one that configures each functional module by a program.
  • each functional module of the control unit 100 may be configured by a dedicated logic circuit or an ASIC (Application Specific Integrated Circuit) in which the functional modules are integrated.
  • ASIC Application Specific Integrated Circuit
  • the air conditioning processing procedure includes acquiring internal temperature information for each storage chamber of a substrate processing apparatus having a plurality of storage chambers, and a first gas discharged from a first duct that sends a first gas, and a first gas
  • a plurality of individual air conditioning units respectively provided in the plurality of storage chambers are provided for each acquired storage chamber. Respectively controlling based on the temperature information.
  • the control unit 100 first executes steps S01 and S02 in order.
  • step S01 the source point information acquisition unit 111 acquires the measurement results of all the temperature sensors 61 and 62 and the pressure sensors 71 and 72.
  • step S ⁇ b> 02 the first air conditioning control unit 112 checks whether or not the measurement results from all the temperature sensors 61 and 62 and the pressure sensors 71 and 72 satisfy a predetermined condition.
  • Step S02 when it is determined that the measurement result by any of the temperature sensors 61 and 62 and the pressure sensors 71 and 72 does not satisfy the predetermined condition, the control unit 100 executes Step S03.
  • the 1st air-conditioning control part 112 changes the 1st gas supply source 21 and the 2nd gas supply source 22 so that the supply state of 1st gas and 2nd gas may be adjusted based on the determination result in step S02. Control.
  • the first air conditioning control unit 112 decreases the temperature of the first gas.
  • the first gas supply source 21 is controlled.
  • the first air conditioning control unit 112 increases the first gas supply amount so as to increase the supply amount of the first gas.
  • the supply source 21 is controlled.
  • the first air conditioning control unit 112 increases the second gas temperature so as to increase the temperature.
  • the gas supply source 22 is controlled.
  • the first air conditioning control unit 112 increases the second gas supply amount so as to increase the supply amount of the second gas.
  • the supply source 22 is controlled. Thereafter, the control unit 100 returns the process to step S01. Thereafter, the adjustment of the supply state of the first gas and the second gas is repeated until the measurement results of all the temperature sensors 61 and 62 and the pressure sensors 71 and 72 satisfy a predetermined condition.
  • step S02 when it is determined that the measurement results of all the temperature sensors 61 and 62 and the pressure sensors 71 and 72 satisfy a predetermined condition, the control unit 100 sequentially executes steps S04, S05, S06, and S07.
  • step S04 the use point information acquisition unit 113 acquires measurement results from all the temperature sensors 63 and the pressure sensors 73.
  • step S05 the second air conditioning control unit 114, based on the measurement results of the temperature sensor 63 and the pressure sensor 73, the mixing ratio of the first gas and the second gas in each individual air conditioning unit 50, and each individual air conditioning unit. 50, the total discharge amount of the first gas and the second gas is set. For example, when the measurement result by the temperature sensor 63 of the storage chambers 11a, 12a, 13a, and 14a is lower than the target temperature, the second air conditioning control unit 114 mixes the second gas in the individual air conditioning unit 50 of the storage chamber. Increase the setting value of.
  • the second air conditioning control unit 114 mixes the first gas in the individual air conditioning unit 50 of the storage chamber. Increase the ratio setting. Moreover, when the measurement result by any one of the temperature sensors 63 is lower than the target temperature, the second air conditioning control unit 114 sets the set value of the mixing ratio of the second gas in the individual air conditioning unit 50 corresponding to the temperature sensor 63. To increase. On the other hand, when the measurement result by any one of the temperature sensors 63 is higher than the target temperature, the second air conditioning control unit 114 sets the set value of the mixing ratio of the first gas in the individual air conditioning unit 50 corresponding to the temperature sensor 63.
  • the second air conditioning control unit 114 when the measurement result by the pressure sensor 73 of the storage chambers 11a, 12a, 13a, 14a is lower than the target pressure, the first gas discharged by the individual air conditioning unit 50 of the storage chamber. And increase the set value of the total amount of the second gas.
  • the second air conditioning control unit 114 discharges the first gas discharged from the individual air conditioning unit 50 of the storage chamber. And reduce the set value of the total amount of the second gas.
  • step S06 the second air conditioning control unit 114 derives the opening commands of the first valve 54 and the second valve 55 in each individual air conditioning unit 50 based on the mixing ratio and the total discharge amount set in step S05. To do.
  • step S07 the second air conditioning control unit 114 outputs the opening degree command derived in step S06 to each individual air conditioning unit 50. Thus, the air conditioning process procedure is completed.
  • the control unit 100 repeatedly executes the air conditioning process procedure.
  • the coating / developing apparatus 2 supplies the first gas to each of the plurality of storage chambers 11a, 12a, 13a, and 14a that store the wafer W and the plurality of storage chambers 11a, 12a, 13a, and 14a.
  • a plurality of individual air conditioning units 50 that adjust the mixing ratio of the first gas discharged from the first duct 30 and the second gas discharged from the second duct 40.
  • the storage chambers 11a When the gas adjusted in the air supply source outside the coating / developing apparatus 2 is sent to the plurality of storage chambers 11a, 12a, 13a, 14a, the storage chambers 11a, There may be a difference in internal temperature between 12a, 13a, and 14a.
  • the structure which supplies the 1st gas and 2nd gas from which temperature differs mutually and provides the separate air-conditioning part 50 which adjusts these mixing ratios for every storage chamber 11a, 12a, 13a, 14a
  • the temperature of the gas discharged to each of the storage chambers 11a, 12a, 13a, and 14a can be individually adjusted. Therefore, it is possible to adjust the temperature for each of the storage chambers 11a, 12a, 13a, and 14a with a simple configuration.
  • the first duct 30 is at a plurality of positions corresponding to the first main duct 31 along the direction in which the plurality of storage chambers 11a, 12a, 13a, and 14a are arranged, and the plurality of storage chambers 11a, 12a, 13a, and 14a, respectively.
  • a plurality of first sub-ducts 32 protruding from the first main duct 31, and the second duct 40 corresponds to the second main duct 41 along the direction in which the plurality of storage chambers are arranged, and the plurality of storage chambers, respectively.
  • the second sub duct 42 protrudes from the second main duct 41 toward the first main duct 31, and the individual air conditioning units 50 of the respective storage chambers 11 a, 12 a, 13 a, 14 a Between Ndakuto 31 and the second main duct 41, it may be connected to the first sub-duct 32 and a second sub-duct 42 corresponding to the receiving chamber.
  • the 1st main duct 31 and the 2nd main duct 41 can be arrange
  • the heat transfer from the second duct 40 to the first duct 30 can be suppressed by arranging the first main duct 31 and the second main duct 41 apart from each other.
  • heat transfer from the second duct 40 to the first duct 30 can also be suppressed by covering at least a part of the first main duct 31 and the second main duct 41 with the heat insulating materials 34 and 44.
  • the coating / developing apparatus 2 has a mixing ratio of the first gas and the second gas discharged into the plurality of storage chambers 11a, 12a, 13a, 14a based on the internal temperature of each of the storage chambers 11a, 12a, 13a, 14a.
  • a control unit 100 that controls the plurality of individual air conditioning units 50 may be further provided so as to adjust each of the above. In this case, by performing feedback control of the internal temperature for each of the storage chambers 11a, 12a, 13a, and 14a, the temperature of each of the storage chambers 11a, 12a, 13a, and 14a can be adjusted more appropriately.
  • the control unit 100 adjusts the total amount of the first gas and the second gas discharged into the plurality of storage chambers 11a, 12a, 13a, and 14a based on the internal pressure for each of the storage chambers 11a, 12a, 13a, and 14a.
  • a plurality of individual air conditioning units 50 may be controlled.
  • the individual air conditioning unit 50 can also be used for pressure adjustment, and the configuration can be further simplified.
  • the plurality of individual air conditioning units 50 include a plurality of individual air conditioning units 50 provided in the same accommodation room 11a, 12a, 13a, 14a, and the control unit 100 is provided in the accommodation rooms 11a, 12a, 13a, 14a. You may control the several separate air-conditioning part 50 provided in the said storage chamber so that the uniformity of temperature distribution may be improved. In this case, the temperature uniformity in the same storage chamber 11a, 12a, 13a, 14a can also be improved.
  • the control unit 100 is configured to change the temperature distribution in the storage chambers 11a, 12a, 13a, and 14a and increase / decrease the discharge amounts of the first gas and the second gas in the plurality of individual air conditioning units 50 provided in the storage chamber.
  • the plurality of individual air conditioning units 50 may be controlled based on a model indicating the relationship.
  • control unit 100 may further include a data storage unit 116 and a model construction unit 117 as functional modules.
  • the data storage unit 116 acquires data regarding changes in the temperature distribution in the storage chambers 11a, 12a, 13a, and 14a from the use point information acquisition unit 113, and first data in the plurality of individual air conditioning units 50 provided in the storage chambers. Data on the increase and decrease of the discharge amount of the gas and the second gas is acquired from the second air conditioning control unit 114, and these are stored in association with each other.
  • the model building unit 117 changes the temperature distribution to be changed (hereinafter referred to as “necessary change amount”), the first gas and the plurality of individual air conditioning units 50, A model (for example, a multivariable function) indicating the relationship with the amount (hereinafter referred to as “necessary control amount”) to increase or decrease the discharge amount of the second gas is constructed.
  • the second air conditioning control unit 114 controls the plurality of individual air conditioning units 50 based on the model constructed by the model construction unit 117. For example, the second air conditioning control unit 114 derives the temperature distribution in the storage chambers 11a, 12a, 13a, and 14a based on the measurement result acquired by the use point information acquisition unit 113, and is necessary for making the temperature distribution uniform. A change amount is derived, a necessary control amount corresponding to the necessary change amount is derived based on the model, and the plurality of individual air conditioning units 50 are controlled based on the necessary control amount. More specifically, the second air conditioning control unit 114 derives the opening commands of the first valve 54 and the second valve 55 in each individual air conditioning unit 50 based on the necessary control amount, and each individual air conditioning unit An opening degree command is output to 50.
  • the coating / developing apparatus 2 sends a third gas outside the plurality of storage chambers 11a, 12a, 13a, 14a to each of the plurality of storage chambers 11a, 12a, 13a, 14a.
  • the first gas supply source 21 is configured to supply a gas having a temperature lower than that of the third gas to the first duct 30 as the first gas
  • the second gas supply source 22 is configured to supply the third gas.
  • the air conditioning unit 50 is configured to supply a higher temperature gas as the second gas to the second duct 40, and the individual air conditioning unit 50 includes the first gas sent by the first duct 30 to the third gas sent by the third duct 90 and It is comprised so that the mixed gas which mixed the 2nd gas sent by the 2nd duct 40 may be discharged, and the mixing ratio of the 1st gas in the mixed gas, the 2nd gas, and the 3rd gas may be adjusted.
  • the third duct 90 illustrated in FIG. 11 is similar to the first duct 30 in that the third main duct 91 along the direction in which the plurality of storage chambers 11a, 12a, 13a, and 14a are arranged, and the storage chambers 11a, 12a, And a plurality of third sub-ducts 92 protruding from the third main duct 91 at a plurality of positions respectively corresponding to 13a and 14a.
  • the 3rd main duct 91 is arrange
  • the coating / developing apparatus 2 may further include a housing B1 including a plurality of storage chambers 11a, 12a, 13a, and 14a.
  • the third duct 90 uses the gas in the space adjacent to the housing B1 as a third gas. You may be comprised so that it may send to each of the some storage chamber 11a, 12a, 13a, 14a.
  • the device configuration can be further simplified.
  • the coating / developing apparatus 2 shown in FIG. 11 further includes a blower 93 that introduces gas in a space adjacent to the casing B1 into the casing B1, and the third main duct 91 of the third duct 90 is the blower 93. It is connected to the.
  • the individual air conditioning unit 50 shown in FIG. 12 is obtained by adding a third introduction unit 58 and a third valve 59 to the individual air conditioning unit 50 of FIG.
  • the third introduction part 58 is connected to the third sub duct 92 and introduces the third gas from the third sub duct 92 to the discharge part 53.
  • the third valve 59 adjusts the opening degree of the flow path in the third introduction part 58.
  • a specific example of the third valve 59 is a butterfly valve that adjusts the opening degree of the flow path by rotating the valve member 56, similarly to the first valve 54 and the second valve 55.
  • the joining portion 87 is a portion interposed between the first introduction portion 51 and the second introduction portion 52 and the discharge portion 53.
  • the first valve 81 for adjusting the mixing ratio of the first gas and the second gas is provided in the junction portion 87.
  • the third introduction part 58 is connected to the third sub duct 92 and introduces the third gas from the third sub duct 92 to the discharge part 53.
  • the third valve 88 adjusts the mixing ratio of the first gas, the second gas, and the third gas by moving the plate-shaped valve member 89 between the joining portion 87 and the third introduction portion 58.
  • the control part 100 is based on the internal temperature for every storage chamber 11a, 12a, 13a, 14a.
  • the plurality of individual air conditioning units 50 may be controlled so as to adjust the mixing ratio of the first gas, the second gas, and the third gas discharged into the plurality of storage chambers 11a, 12a, 13a, and 14a, respectively.
  • the control unit 100 also controls the first gas, the second gas, and the third gas discharged into the plurality of storage chambers 11a, 12a, 13a, and 14a based on the internal pressures of the storage chambers 11a, 12a, 13a, and 14a.
  • the plurality of individual air conditioning units 50 may be controlled so as to adjust the total amount of gas.
  • the substrate to be processed is not limited to a semiconductor wafer, and may be a glass substrate, a mask substrate, an FPD (Flat Panel Display), or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Air Bags (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

塗布・現像装置2は、ウェハWを収容する複数の収容室11a,12a,13a,14aと、複数の収容室11a,12a,13a,14aのそれぞれに第一ガスを送る第一ダクト30と、複数の収容室11a,12a,13a,14aのそれぞれに第一ガスよりも高温の第二ガスを送る第二ダクト40と、複数の収容室11a,12a,13a,14aにそれぞれ設けられ、第一ダクト30から吐出される第一ガス及び第二ダクト40から吐出される第二ガスの混合比率を調節する複数の個別空調部50と、を備える。

Description

基板処理装置、空調方法及び記憶媒体
 本開示は、基板処理装置、空調方法及び記憶媒体に関する。
 特許文献1には、多段に重ねられた複数の処理ユニットを有する処理ステーションの外部において、空気の温度を調節する温度コントローラと、温度コントローラにより温度を調節された空気を処理ステーション内に送る送風ファンと、を備える処理装置が開示されている。
特開平9-205047号公報
 本開示は、簡素な構成にて基板の収容室ごとの温度調節を可能にする基板処理装置を提供することを目的とする。
 本開示の一側面に係る基板処理装置は、基板を収容する複数の収容室と、複数の収容室のそれぞれに第一ガスを送る第一ダクトと、複数の収容室のそれぞれに第一ガスよりも高温の第二ガスを送る第二ダクトと、複数の収容室にそれぞれ設けられ、第一ダクトから吐出される第一ガス及び第二ダクトから吐出される第二ガスの混合比率を調節する複数の個別空調部と、を備える。
 基板処理装置外の給気源において調温されたガスを複数の収容室に送る場合、給気源からの距離の違い等に起因して、収容室同士で内部温度に差異が生じる場合がある。収容室ごとの温度調節を可能にするためには、給気源を収容室ごとに設けることが考えられるが、給気源の数が増えることによってシステム構成が複雑化する。これに対し、互いに温度の異なる第一ガス及び第二ガスを別々に供給し、これらの混合比率を調節する個別空調部を収容室ごとに設ける構成によれば、給気源を収容室ごとに設けることなく、各収容室に吐出されるガスの温度を個別に調節することができる。したがって、簡素な構成にて収容室ごとの温度調節を可能にすることができる。
 第一ダクトは、複数の収容室が並ぶ方向に沿った第一メインダクトと、複数の収容室にそれぞれ対応する複数の位置にて第一メインダクトから突出した複数の第一サブダクトと、を有し、第二ダクトは、複数の収容室が並ぶ方向に沿った第二メインダクトと、複数の収容室にそれぞれ対応する複数の位置にて第二メインダクトから突出した複数の第二サブダクトと、を有し、複数の第一サブダクトは第一メインダクトから第二メインダクト側に突出し、複数の第二サブダクトは第二メインダクトから第一メインダクト側に突出し、それぞれの収容室の個別空調部は、第一メインダクト及び第二メインダクトの間において、当該収容室に対応する第一サブダクト及び第二サブダクトに接続されていてもよい。第二ダクトから第一ダクトへの伝熱が生じると、第二ガスの温度が第一ガスの温度に近付き、個別空調部における温度調整範囲が狭くなる可能性がある。これに対し、本構成によれば、第一メインダクト及び第二メインダクトを離して配置することができるので、第二ダクトから第一ダクトへの伝熱を抑制することができる。
 基板処理装置は、収容室ごとの内部温度に基づいて、複数の収容室内に吐出される第一ガス及び第二ガスの混合比率をそれぞれ調節するように複数の個別空調部を制御する制御部を更に備えていてもよい。この場合、収容室ごとに、内部温度のフィードバック制御を行うことで、収容室ごとの温度をより適切に調節することができる。
 制御部は、収容室ごとの内部圧力に基づいて、複数の収容室内に吐出される第一ガス及び第二ガスの総量をそれぞれ調節するように複数の個別空調部を制御してもよい。この場合、個別空調部を圧力の調節にも活用し、構成の更なる簡素化を図ることができる。
 複数の個別空調部は、同一の収容室に設けられた複数の個別空調部を含んでおり、制御部は、収容室内における温度分布の均一性を向上させるように、当該収容室内に設けられた複数の個別空調部を制御してもよい。この場合、同一の収容室内における温度均一性も向上させることができる。
 制御部は、収容室内における温度分布の変化と、当該収容室内に設けられた複数の個別空調部における第一ガス及び第二ガスの吐出量の増減との関係を示すモデルに基づいて複数の個別空調部を制御してもよい。この場合、同一の収容室内における温度均一性を更に向上させることができる。
 基板処理装置は、複数の収容室の外の第三ガスを複数の収容室のそれぞれに送る第三ダクトを更に備え、第一ダクトは、第三ガスよりも低温のガスを第一ガスとして供給する第一ガス供給源に接続され、第二ダクトは、第三ガスよりも高温のガスを第二ガスとして供給する第二ガス供給源に接続され、個別空調部は、第三ダクトにより送られる第三ガスに第一ダクトにより送られる第一ガス及び第二ダクトにより送られる第二ガスを混合した混合ガスを吐出するように構成され、混合ガスにおける第一ガス、第二ガス及び第三ガスの混合比率を調節してもよい。この場合、第一ガス及び第二ガスの間の温度の第三ガスを混合することにより、第一ガス及び第二ガスの総供給量を削減することができる。これにより、第一ガス供給源及び第二ガス供給源の負担を減らし、これらの小規模化を図ることができる。
 基板処理装置は、複数の収容室を含む筐体を更に備え、第三ダクトは、筐体に隣接する空間のガスを第三ガスとして複数の収容室のそれぞれに送るように構成されていてもよい。この場合、装置構成の更なる簡素化を図ることができる。
 本開示の他の側面に係る基板処理装置の空調方法は、複数の収容室を有する基板処理装置の収容室ごとの内部温度情報を取得することと、第一ガスを送る第一ダクトから吐出される第一ガス、及び第一ガスよりも高温の第二ガスを送る第二ダクトから吐出される第二ガスの混合比率を調節するように、複数の収容室にそれぞれ設けられた複数の個別空調部を、取得した収容室ごとの内部温度情報に基づいてそれぞれ制御することと、を含む。
 本開示の更に他の側面に係る記憶媒体は、上記空調方法を装置に実行させるためのプログラムを記憶した、コンピュータ読み取り可能な記憶媒体である。
 本開示によれば、簡素な構成にて基板の収容室ごとの温度調節を可能にする基板処理装置を提供することができる。
基板液処理システムの概略構成を示す斜視図である。 基板処理装置の概略構成を示す断面図である。 空調システムの概略構成を示す模式図である。 第一ダクト及び第二ダクトの部分拡大図である。 個別空調部の一例を示す模式図である。 個別空調部の変形例を示す模式図である。 図6中のVII-VII線に沿う断面図である。 制御部のハードウェア構成を示すブロック図である。 空調処理手順を示すフローチャートである。 空調システムの変形例を示す模式図である。 空調システムの変形例を示す模式図である。 個別空調部の変形例を示す模式図である。 個別空調部の変形例を示す模式図である。
〔基板処理システム〕
 基板処理システム1は、基板に対し、感光性被膜の形成、当該感光性被膜の露光、及び当該感光性被膜の現像を施すシステムである。処理対象の基板は、例えば半導体のウェハWである。感光性被膜は、例えばレジスト膜である。基板処理システム1は、塗布・現像装置2と露光装置3とを備える。露光装置3は、ウェハW(基板)上に形成されたレジスト膜(感光性被膜)の露光処理を行う。具体的には、液浸露光等の方法によりレジスト膜の露光対象部分にエネルギー線を照射する。塗布・現像装置2は、露光装置3による露光処理の前に、ウェハW(基板)の表面にレジスト膜を形成する処理を行い、露光処理後にレジスト膜の現像処理を行う。
〔基板処理装置〕
 以下、基板処理装置の一例として、塗布・現像装置2の構成を説明する。図1及び図2に示すように、塗布・現像装置2は、キャリアブロック4と、処理ブロック5と、インタフェースブロック6と、制御部100とを備える。
 キャリアブロック4は、塗布・現像装置2内へのウェハWの導入及び塗布・現像装置2内からのウェハWの導出を行う。例えばキャリアブロック4は、ウェハW用の複数のキャリアCを支持可能であり、受け渡しアームA1を内蔵している。キャリアCは、例えば円形の複数枚のウェハWを収容する。受け渡しアームA1は、キャリアCからウェハWを取り出して処理ブロック5に渡し、処理ブロック5からウェハWを受け取ってキャリアC内に戻す。
 処理ブロック5は、複数の処理モジュール11,12,13,14を有する。処理モジュール11,12,13は、ウェハWを収容する収容室11a,12a,13a(図3参照)を有し、塗布ユニットU1と、熱処理ユニットU2と、これらのユニットにウェハWを搬送する搬送アームA3とを収容室11a,12a,13aに内蔵している。
 処理モジュール11は、塗布ユニットU1及び熱処理ユニットU2によりウェハWの表面上に下層膜を形成する。処理モジュール11の塗布ユニットU1は、下層膜形成用の処理液をウェハW上に塗布する。処理モジュール11の熱処理ユニットU2は、下層膜の形成に伴う各種熱処理を行う。
 処理モジュール12は、塗布ユニットU1及び熱処理ユニットU2により下層膜上にレジスト膜を形成する。処理モジュール12の塗布ユニットU1は、レジスト膜形成用の処理液を下層膜の上に塗布する。処理モジュール12の熱処理ユニットU2は、レジスト膜の形成に伴う各種熱処理を行う。
 処理モジュール13は、塗布ユニットU1及び熱処理ユニットU2によりレジスト膜上に上層膜を形成する。処理モジュール13の塗布ユニットU1は、上層膜形成用の液体をレジスト膜の上に塗布する。処理モジュール13の熱処理ユニットU2は、上層膜の形成に伴う各種熱処理を行う。
 処理モジュール14は、ウェハWを収容する収容室14a(図3参照)を有し、現像ユニットU3と、熱処理ユニットU4と、これらのユニットにウェハWを搬送する搬送アームA3とを収容室14aに内蔵している。
 処理モジュール14は、現像ユニットU3及び熱処理ユニットU4により、露光後のレジスト膜の現像処理を行う。現像ユニットU3は、露光済みのウェハWの表面上に現像液を塗布した後、これをリンス液により洗い流すことで、レジスト膜の現像処理を行う。熱処理ユニットU4は、現像処理に伴う各種熱処理を行う。熱処理の具体例としては、現像処理前の加熱処理(PEB:Post Exposure Bake)、現像処理後の加熱処理(PB:Post Bake)等が挙げられる。
 処理ブロック5内におけるキャリアブロック4側には棚ユニットU10が設けられている。棚ユニットU10は、上下方向に並ぶ複数のセルに区画されている。棚ユニットU10の近傍には昇降アームA7が設けられている。昇降アームA7は、棚ユニットU10のセル同士の間でウェハWを昇降させる。
 処理ブロック5内におけるインタフェースブロック6側には棚ユニットU11が設けられている。棚ユニットU11は、上下方向に並ぶ複数のセルに区画されている。
 インタフェースブロック6は、露光装置3との間でウェハWの受け渡しを行う。例えばインタフェースブロック6は、受け渡しアームA8を内蔵しており、露光装置3に接続される。受け渡しアームA8は、棚ユニットU11に配置されたウェハWを露光装置3に渡し、露光装置3からウェハWを受け取って棚ユニットU11に戻す。
 制御部100は、例えば以下の手順で塗布・現像処理を実行するように塗布・現像装置2を制御する。まず制御部100は、キャリアC内のウェハWを棚ユニットU10に搬送するように受け渡しアームA1を制御し、このウェハWを処理モジュール11用のセルに配置するように昇降アームA7を制御する。
 次に制御部100は、棚ユニットU10のウェハWを処理モジュール11内の塗布ユニットU1及び熱処理ユニットU2に搬送するように搬送アームA3を制御し、このウェハWの表面上に下層膜を形成するように塗布ユニットU1及び熱処理ユニットU2を制御する。その後制御部100は、下層膜が形成されたウェハWを棚ユニットU10に戻すように搬送アームA3を制御し、このウェハWを処理モジュール12用のセルに配置するように昇降アームA7を制御する。
 次に制御部100は、棚ユニットU10のウェハWを処理モジュール12内の塗布ユニットU1及び熱処理ユニットU2に搬送するように搬送アームA3を制御し、このウェハWの下層膜上にレジスト膜を形成するように塗布ユニットU1及び熱処理ユニットU2を制御する。その後制御部100は、ウェハWを棚ユニットU10に戻すように搬送アームA3を制御し、このウェハWを処理モジュール13用のセルに配置するように昇降アームA7を制御する。
 次に制御部100は、棚ユニットU10のウェハWを処理モジュール13内の各ユニットに搬送するように搬送アームA3を制御し、このウェハWのレジスト膜上に上層膜を形成するように塗布ユニットU1及び熱処理ユニットU2を制御する。その後制御部100は、ウェハWを棚ユニットU11に搬送するように搬送アームA3を制御する。
 次に制御部100は、棚ユニットU11のウェハWを露光装置3に送り出すように受け渡しアームA8を制御する。その後制御部100は、露光処理が施されたウェハWを露光装置3から受け入れて、棚ユニットU11における処理モジュール14用のセルに配置するように受け渡しアームA8を制御する。
 次に制御部100は、棚ユニットU11のウェハWを処理モジュール14内の各ユニットに搬送するように搬送アームA3を制御し、このウェハWのレジスト膜に現像処理を施すように現像ユニットU3及び熱処理ユニットU4を制御する。その後制御部100は、ウェハWを棚ユニットU10に戻すように搬送アームA3を制御し、このウェハWをキャリアC内に戻すように昇降アームA7及び受け渡しアームA1を制御する。以上で塗布・現像処理が完了する。
 なお、基板処理装置の具体的な構成は、以上に例示した塗布・現像装置2の構成に限られない。基板処理装置は、塗布ユニットU1と、これを制御可能な制御部100とを備えていればどのようなものであってもよい。
〔空調システム〕
 図3に示すように、基板処理システム1は、処理ブロック5内の温度及び圧力を調節するための空調システム20を更に備える。空調システム20は、第一ガス供給源21と、第二ガス供給源22と、第一ダクト30と、第二ダクト40と、複数の個別空調部50と、複数の温度センサ61,62,63と、複数の圧力センサ71,72,73とを備える。
 第一ガス供給源21は、例えばクーラまたはヒータ等の温度調節部を有する送風機であり、処理ブロック5内の目標温度よりも低い温度に調節した第一ガスを処理ブロック5に供給する。第二ガス供給源22は、例えばクーラまたはヒータ等の温度調節部を有する送風機であり、第一ガスの温度及び処理ブロック5内の目標温度よりも高い温度に調節した第二ガスを処理ブロック5に供給する。
 第一ダクト30と、第二ダクト40と、複数の個別空調部50と、複数の温度センサ61,62,63と、複数の圧力センサ71,72,73とは、塗布・現像装置2内に設けられている。すなわち、塗布・現像装置2は、第一ダクト30と、第二ダクト40と、複数の個別空調部50と、複数の温度センサ61,62,63と、複数の圧力センサ71,72,73とを備える。
 第一ダクト30は、第一ガス供給源21により供給された第一ガスを複数の収容室11a,12a,13a,14aのそれぞれに送る。第一ダクト30は、第一メインダクト31と、複数の第一サブダクト32とを有する。第一メインダクト31は、複数の収容室11a,12a,13a,14aが並ぶ方向(例えば上下方向)に沿って延びている。
 複数の第一サブダクト32は、複数の収容室11a,12a,13a,14aにそれぞれ対応する複数の位置にて第一メインダクト31から側方に突出している。複数の収容室11a,12a,13a,14aにそれぞれ対応するとは、複数の収容室11a,12a,13a,14aが並ぶ方向において、複数の収容室11a,12a,13a,14aの範囲内にそれぞれ位置するか、或いは複数の収容室11a,12a,13a,14aの範囲の近傍にそれぞれ位置することを意味する。例えば、それぞれの第一サブダクト32は、対応する収容室11a,12a,13a,14aの高さの範囲内で天井の近傍に配置されている。側方とは、第一メインダクト31が延びる方向に交差する方向を意味する。以下においても同様である。
 第二ダクト40は、第二ガス供給源22により供給された第二ガスを複数の収容室11a,12a,13a,14aのそれぞれに送る。第二ダクト40は、第二メインダクト41と、複数の第二サブダクト42とを有する。第二メインダクト41は、複数の収容室11a,12a,13a,14aが並ぶ方向(例えば上下方向)に沿って延びている。複数の第二サブダクト42は、複数の収容室11a,12a,13a,14aにそれぞれ対応する複数の位置にて第二メインダクト41から側方に突出している。
 ここで、複数の第一サブダクト32は、複数の収容室11a,12a,13a,14aをそれぞれ経て第一メインダクト31から第二メインダクト41側(図示右方向)に突出している。複数の第二サブダクト42は、収容室11a,12a,13a,14aをそれぞれ経て第二メインダクト41から第一メインダクト31側(図示左方向)に突出している。
 第一メインダクト31及び第二メインダクト41は、所定方向において収容室11a,12a,13a,14aを挟むように配置されていてもよい。例えば第一メインダクト31及び第二メインダクト41は、キャリアブロック4、処理ブロック5及びインタフェースブロック6が並ぶ方向において収容室11a,12a,13a,14aを挟むように配置されている。
 図示においては、第一メインダクト31がキャリアブロック4側に配置され、第二メインダクト41がインタフェースブロック6側に配置されているがこれに限られず、第一メインダクト31がインタフェースブロック6側に配置され、第二メインダクト41がキャリアブロック4側に配置されていてもよい。
 図4に例示するように、第一メインダクト31及び第二メインダクト41の少なくとも一部は断熱材により被覆されていてもよい。図4においては、第一メインダクト31が断熱材34により被覆され、第一サブダクト32が断熱材36により被覆され、第二メインダクト41が断熱材44により被覆され、第二サブダクト42が断熱材46により被覆されている。互いに離れて配置される第一メインダクト31及び第二メインダクト41の断熱材34,44を省略してもよい。断熱材34,36,44,46の具体例としては、例えば発泡ウレタン等の多孔性の樹脂材料が挙げられる。断熱材34,36,44,46により、第一ダクト30及び第二ダクト40の間における伝熱が抑制される。
 図3に戻り、複数の個別空調部50は、複数の収容室11a,12a,13a,14aにそれぞれ設けられた複数の個別空調部50を含む。複数の個別空調部50は、同一の収容室11a,12a,13a,14aに設けられた複数の個別空調部50を含んでいてもよい。図3においては、第一サブダクト32及び第二サブダクト42に沿って並ぶ複数の個別空調部50が収容室11a,12a,13a,14aのそれぞれに設けられている。個別空調部50は、第一ダクト30から吐出される第一ガス及び第二ダクト40から吐出される第二ガスの混合比率を調節する。例えば個別空調部50は、第一ダクト30により送られる第一ガスと第二ダクト40により送られる第二ガスとを混合し、これにより得られた混合ガスを収容室11a,12a,13a,14a内に吐出し、混合ガスにおける第一ガス及び第二ガスの混合比率を調節する。収容室11a,12a,13a,14aの個別空調部50は、第一メインダクト31及び第二メインダクト41の間において、当該収容室に対応する第一サブダクト32及び第二サブダクト42に接続されている。
 例えば図5に示すように、個別空調部50は、吐出部53と、第一導入部51と、第二導入部52と、第一バルブ54と、第二バルブ55とを有する。吐出部53は収容室11a,12a,13a,14a内に開口している。第一導入部51は第一サブダクト32に接続され、第一サブダクト32から吐出部53に第一ガスを導入する。第二導入部52は第二サブダクト42に接続され、第二サブダクト42から吐出部53に第二ガスを導入する。
 第一バルブ54は、第一導入部51内の流路の開度を調節する。第二バルブ55は、第二導入部52内の流路の開度を調節する。第一バルブ54及び第二バルブ55の開度をそれぞれ調節することにより、吐出部53における第一ガス及び第二ガスの混合比率を調節することが可能である。また、第一バルブ54の開度及び第二バルブ55の開度の比率を保ちながら第一バルブ54及び第二バルブ55の開度を調節することにより、第一ガス及び第二ガスの混合比率を保ちつつ、吐出部53から吐出される第一ガス及び第二ガスの総量を調節することが可能である。第一バルブ54及び第二バルブ55の具体例としては、板状の弁部材56を回転させることにより当該流路の開度を調節するバタフライバルブが挙げられる。
 なお、図5の構成は一例に過ぎない。個別空調部50は、第一ダクト30から吐出される第一ガス及び第二ダクト40から吐出される第二ガスの混合比率を調節し得る限り、いかようにも構成可能である。
 図6及び図7は、個別空調部50の変形例を示す模式図である。図6及び図7の個別空調部50は、第一バルブ54及び第二バルブ55に代えて、混合比率の調節用の第一バルブ81と、吐出量の調節用の第二バルブ82とを有する。例えば第一バルブ81は、第一導入部51側及び第二導入部52側の間で板状の弁部材83を移動させることによって第一ガス及び第二ガスの混合比率を調節する。第二バルブ82は第一バルブ81よりも下流側に配置され、板状の弁部材84を回転させることにより吐出部53内の流路の開度を調節する。
 図3に戻り、複数の温度センサ61は、収容室11a,12a,13a,14a内への供給前における第一ガスの温度を計測するソースポイントセンサであり、第一ダクト30内に設けられている。複数の温度センサ61は、複数の第一サブダクト32にそれぞれ対応するように配置されている。図示において、それぞれの温度センサ61は第一メインダクト31と第一サブダクト32とが交わる部分に配置されているがこれに限られない。温度センサ61は第一サブダクト32内に配置されていてもよい。また、複数の温度センサ61は、同一の第一サブダクト32内に配置される複数の温度センサ61を含んでいてもよい。同一の第一サブダクト32内の複数の温度センサ61は、当該第一サブダクト32に沿って並ぶ複数の個別空調部50にそれぞれ対応するように配置されていてもよい。なお、温度センサ61と個別空調部50とが対応するとは、当該温度センサ61と当該個別空調部50との距離が、当該温度センサ61と他のいずれの個別空調部50との距離よりも小さいことを意味する。以下においても同様である。
 複数の温度センサ62は、収容室11a,12a,13a,14a内への供給前における第二ガスの温度を計測するソースポイントセンサであり、第二ダクト40内に設けられている。複数の温度センサ62は、複数の第二サブダクト42にそれぞれ対応するように配置されている。図示において、それぞれの温度センサ62は第二メインダクト41と第二サブダクト42とが交わる部分に配置されているがこれに限られない。温度センサ62は第二サブダクト42内に配置されていてもよい。また、複数の温度センサ62は、同一の第二サブダクト42内に配置される複数の温度センサ62を含んでいてもよい。同一の第二サブダクト42内の複数の温度センサ62は、当該第二サブダクト42に沿って並ぶ複数の個別空調部50にそれぞれ対応するように配置されていてもよい。
 複数の温度センサ63は、収容室11a,12a,13a,14a内の温度を計測するユースポイントセンサである。複数の温度センサ63は、複数の収容室11a,12a,13a,14a内にそれぞれ配置される複数の温度センサ63を含む。複数の温度センサ63は、同一の収容室11a,12a,13a,14aに設けられた複数の温度センサ63を含んでいてもよい。図3においては、個別空調部50と同数の温度センサ63が収容室11a,12a,13a,14aのそれぞれに設けられている。それぞれの収容室11a,12a,13a,14aにおいて、複数の温度センサ63は、複数の個別空調部50にそれぞれ対応するように配置されている。
 複数の圧力センサ71は、収容室11a,12a,13a,14a内への供給前における第一ガスの圧力を計測するソースポイントセンサであり、第一ダクト30内に設けられている。複数の圧力センサ71は、複数の第一サブダクト32にそれぞれ対応するように配置されている。図示において、それぞれの圧力センサ71は第一メインダクト31と第一サブダクト32とが交わる部分に配置されているがこれに限られない。圧力センサ71は第一サブダクト32内に配置されていてもよい。また、複数の圧力センサ71は、同一の第一サブダクト32内に配置される複数の圧力センサ71を含んでいてもよい。同一の第一サブダクト32内の複数の圧力センサ71は、当該第一サブダクト32に沿って並ぶ複数の個別空調部50にそれぞれ対応するように配置されていてもよい。
 複数の圧力センサ72は、収容室11a,12a,13a,14a内への供給前における第二ガスの圧力を計測するソースポイントセンサであり、第二ダクト40内に設けられている。複数の圧力センサ72は、複数の第二サブダクト42にそれぞれ対応するように配置されている。図示において、それぞれの圧力センサ72は第二メインダクト41と第二サブダクト42とが交わる部分に配置されているがこれに限られない。圧力センサ72は第二サブダクト42内に配置されていてもよい。また、複数の圧力センサ72は、同一の第二サブダクト42内に配置される複数の圧力センサ72を含んでいてもよい。同一の第二サブダクト42内の複数の圧力センサ72は、当該第二サブダクト42に沿って並ぶ複数の個別空調部50にそれぞれ対応するように配置されていてもよい。
 複数の圧力センサ73は、収容室11a,12a,13a,14a内の圧力を計測するユースポイントセンサである。複数の圧力センサ73は、複数の収容室11a,12a,13a,14a内にそれぞれ配置される複数の圧力センサ73を含む。図3においては、収容室11a,12a,13a,14aのそれぞれに一つの圧力センサ73が配置されているが、これに限られない。複数の圧力センサ73は、同一の収容室11a,12a,13a,14aに設けられた複数の圧力センサ73を含んでいてもよい。
 以上の空調システム20は、例えば制御部100により制御される。制御部100は、収容室11a,12a,13a,14aごとの内部温度に基づいて、複数の収容室11a,12a,13a,14a内に吐出される第一ガス及び第二ガスの混合比率をそれぞれ調節するように複数の個別空調部50を制御する。制御部100は、収容室11a,12a,13a,14aごとの内部圧力に基づいて、複数の収容室11a,12a,13a,14a内に吐出される第一ガス及び第二ガスの総量をそれぞれ調節するように複数の個別空調部50を制御してもよい。制御部100は、収容室11a,12a,13a,14a内における温度分布の均一性を向上させるように、当該収容室内に設けられた複数の個別空調部50を制御してもよい。
 例えば制御部100は、機能上の構成(以下、「機能モジュール」という。)として、ソースポイント情報取得部111と、第一空調制御部112と、ユースポイント情報取得部113と、第二空調制御部114とを有する。ソースポイント情報取得部111は、複数の温度センサ61、複数の温度センサ62、複数の圧力センサ71、及び複数の圧力センサ72による計測結果を取得する。
 第一空調制御部112は、全ての温度センサ61,62及び圧力センサ71,72による計測結果が所定の条件を満たすように第一ガス供給源21及び第二ガス供給源22を制御する。例えば第一空調制御部112は、全ての温度センサ61による計測結果が収容室11a,12a,13a,14a内の目標温度よりも低くなり、全ての圧力センサ71による計測結果が収容室11a,12a,13a,14a内の目標圧力よりも高くなるように第一ガス供給源21を制御する。また、第一空調制御部112は、全ての温度センサ62による計測結果が収容室11a,12a,13a,14a内の目標温度よりも高くなり、全ての圧力センサ72による計測結果が収容室11a,12a,13a,14a内の目標圧力よりも高くなるように第一ガス供給源21を制御する。
 ユースポイント情報取得部113は、複数の温度センサ63及び複数の圧力センサ73による計測結果を取得する。
 第二空調制御部114は、複数の温度センサ63による計測結果に基づいて、複数の収容室11a,12a,13a,14a内に吐出される第一ガス及び第二ガスの混合比率をそれぞれ調節するように複数の個別空調部50を制御する。例えば第二空調制御部114は、収容室11a,12a,13a,14aの温度センサ63による計測結果が目標温度よりも低い場合には、当該収容室の個別空調部50において第二ガスの混合比率を高める。一方、第二空調制御部114は、収容室11a,12a,13a,14aの温度センサ63による計測結果が目標温度よりも高い場合には、当該収容室の個別空調部50において第一ガスの混合比率を高める。
 また、第二空調制御部114は、同一の収容室11a,12a,13a,14a内の複数の温度センサ63による計測結果の均一性を向上させるように、当該収容室内に設けられた複数の個別空調部50を制御する。例えば第二空調制御部114は、いずれかの温度センサ63による計測結果が目標温度よりも低い場合には、当該温度センサ63に対応する個別空調部50において第二ガスの混合比率を高める。一方、第二空調制御部114は、いずれかの温度センサ63による計測結果が目標温度よりも高い場合には、当該温度センサ63に対応する個別空調部50において第一ガスの混合比率を高める。
 また、第二空調制御部114は、複数の圧力センサ73による計測結果に基づいて、複数の収容室11a,12a,13a,14a内に吐出される第一ガス及び第二ガスの総量をそれぞれ調節するように複数の個別空調部50を制御する。例えば第二空調制御部114は、収容室11a,12a,13a,14aの圧力センサ73による計測結果が目標圧力よりも低い場合には、当該収容室の個別空調部50が吐出する第一ガス及び第二ガスの総量を増やす。一方、第二空調制御部114は、収容室11a,12a,13a,14aの圧力センサ73による計測結果が目標圧力よりも高い場合には、当該収容室の個別空調部50が吐出する第一ガス及び第二ガスの総量を減らす。
 制御部100は、一つ又は複数の制御用コンピュータにより構成される。例えば制御部100は、図8に示す回路120を有する。回路120は、一つ又は複数のプロセッサ121と、メモリ122と、ストレージ123と、入出力ポート124と、タイマー125とを有する。ストレージ123は、例えばハードディスク等、コンピュータによって読み取り可能な記憶媒体を有する。記憶媒体は、後述の空調処理手順を空調システム20に実行させるためのプログラムを記憶している。記憶媒体は、不揮発性の半導体メモリ、磁気ディスク及び光ディスク等の取り出し可能な媒体であってもよい。メモリ122は、ストレージ123の記憶媒体からロードしたプログラム及びプロセッサ121による演算結果を一時的に記憶する。プロセッサ121は、メモリ122と協働して上記プログラムを実行することで、上述した各機能モジュールを構成する。入出力ポート124は、プロセッサ121からの指令に従って、第一ガス供給源21、第二ガス供給源22、個別空調部50、温度センサ61,62,63及び圧力センサ71,72,73との間で電気信号の入出力を行う。タイマー125は、例えば一定周期の基準パルスをカウントすることで経過時間を計測する。
 なお、制御部100のハードウェア構成は、必ずしもプログラムにより各機能モジュールを構成するものに限られない。例えば制御部100の各機能モジュールは、専用の論理回路又はこれを集積したASIC(Application Specific Integrated Circuit)により構成されていてもよい。
〔空調方法〕
 以下、塗布・現像装置2の空調方法の一例として、空調システム20において実行される空調処理手順を説明する。当該空調処理手順は、複数の収容室を有する基板処理装置の収容室ごとの内部温度情報を取得することと、第一ガスを送る第一ダクトから吐出される第一ガス、及び第一ガスよりも高温の第二ガスを送る第二ダクトから吐出される第二ガスの混合比率を調節するように、複数の収容室にそれぞれ設けられた複数の個別空調部を、取得した収容室ごとの内部温度情報に基づいてそれぞれ制御することと、を含む。
 例えば図9に示すように、制御部100は、まずステップS01,S02を順に実行する。ステップS01では、ソースポイント情報取得部111が、全ての温度センサ61,62及び圧力センサ71,72による計測結果を取得する。ステップS02では、第一空調制御部112が、全ての温度センサ61,62及び圧力センサ71,72による計測結果が所定の条件を満たすか否かを確認する。
 ステップS02において、温度センサ61,62及び圧力センサ71,72のいずれかによる計測結果が所定の条件を満たしていないと判定した場合、制御部100はステップS03を実行する。ステップS03では、第一空調制御部112は、ステップS02における判定結果に基づいて、第一ガス及び第二ガスの供給状態を調節するように第一ガス供給源21及び第二ガス供給源22を制御する。例えば、いずれかの温度センサ61による計測結果が、収容室11a,12a,13a,14aの目標温度以上となっている場合、第一空調制御部112は、第一ガスの温度を低下させるように第一ガス供給源21を制御する。いずれかの圧力センサ71による計測結果が収容室11a,12a,13a,14aの目標圧力以下となっている場合、第一空調制御部112は、第一ガスの供給量を増やすように第一ガス供給源21を制御する。いずれかの温度センサ62による計測結果が、収容室11a,12a,13a,14aの目標温度以下となっている場合、第一空調制御部112は、第二ガスの温度を上昇させるように第二ガス供給源22を制御する。いずれかの圧力センサ72による計測結果が収容室11a,12a,13a,14aの目標圧力以下となっている場合、第一空調制御部112は、第二ガスの供給量を増やすように第二ガス供給源22を制御する。その後、制御部100は処理をステップS01に戻す。以後、全ての温度センサ61,62及び圧力センサ71,72による計測結果が所定の条件を満たすまでは、第一ガス及び第二ガスの供給状態の調節が繰り返される。
 ステップS02において、全ての温度センサ61,62及び圧力センサ71,72による計測結果が所定の条件を満たしていると判定した場合、制御部100はステップS04,S05,S06,S07を順に実行する。ステップS04では、ユースポイント情報取得部113が、全ての温度センサ63及び圧力センサ73による計測結果を取得する。
 ステップS05では、第二空調制御部114が、温度センサ63及び圧力センサ73による計測結果に基づいて、それぞれの個別空調部50における第一ガス及び第二ガスの混合比率と、それぞれの個別空調部50における第一ガス及び第二ガスの総吐出量とを設定する。例えば第二空調制御部114は、収容室11a,12a,13a,14aの温度センサ63による計測結果が目標温度よりも低い場合には、当該収容室の個別空調部50における第二ガスの混合比率の設定値を高くする。一方、第二空調制御部114は、収容室11a,12a,13a,14aの温度センサ63による計測結果が目標温度よりも高い場合には、当該収容室の個別空調部50における第一ガスの混合比率の設定値を高くする。また、第二空調制御部114は、いずれかの温度センサ63による計測結果が目標温度よりも低い場合には、当該温度センサ63に対応する個別空調部50における第二ガスの混合比率の設定値を高くする。一方、第二空調制御部114は、いずれかの温度センサ63による計測結果が目標温度よりも高い場合には、当該温度センサ63に対応する個別空調部50における第一ガスの混合比率の設定値を高くする。また、第二空調制御部114は、収容室11a,12a,13a,14aの圧力センサ73による計測結果が目標圧力よりも低い場合には、当該収容室の個別空調部50が吐出する第一ガス及び第二ガスの総量の設定値を増やす。一方、第二空調制御部114は、収容室11a,12a,13a,14aの圧力センサ73による計測結果が目標圧力よりも高い場合には、当該収容室の個別空調部50が吐出する第一ガス及び第二ガスの総量の設定値を減らす。
 ステップS06では、第二空調制御部114が、ステップS05において設定された混合比率及び総吐出量に基づいて、それぞれの個別空調部50における第一バルブ54及び第二バルブ55の開度指令を導出する。ステップS07では、第二空調制御部114が、ステップS06において導出された開度指令をそれぞれの個別空調部50に出力する。以上で空調処理手順が完了する。制御部100は、当該空調処理手順を繰り返し実行する。
〔本実施形態の効果〕
 以上に説明したように、塗布・現像装置2は、ウェハWを収容する複数の収容室11a,12a,13a,14aと、複数の収容室11a,12a,13a,14aのそれぞれに第一ガスを送る第一ダクト30と、複数の収容室11a,12a,13a,14aのそれぞれに第一ガスよりも高温の第二ガスを送る第二ダクト40と、複数の収容室11a,12a,13a,14aにそれぞれ設けられ、第一ダクト30から吐出される第一ガス及び第二ダクト40から吐出される第二ガスの混合比率を調節する複数の個別空調部50と、を備える。
 塗布・現像装置2外の給気源において調温されたガスを複数の収容室11a,12a,13a,14aに送る場合、給気源からの距離の違い等に起因して、収容室11a,12a,13a,14a同士で内部温度に差異が生じる場合がある。収容室11a,12a,13a,14aごとの温度調節を可能にするためには、給気源を収容室11a,12a,13a,14aごとに設けることが考えられるが、給気源の数が増えることによってシステム構成が複雑化する。これに対し、互いに温度の異なる第一ガス及び第二ガスを別々に供給し、これらの混合比率を調節する個別空調部50を収容室11a,12a,13a,14aごとに設ける構成によれば、給気源を収容室11a,12a,13a,14aごとに設けることなく、各収容室11a,12a,13a,14aに吐出されるガスの温度を個別に調節することができる。したがって、簡素な構成にて収容室11a,12a,13a,14aごとの温度調節を可能にすることができる。
 第一ダクト30は、複数の収容室11a,12a,13a,14aが並ぶ方向に沿った第一メインダクト31と、複数の収容室11a,12a,13a,14aにそれぞれ対応する複数の位置にて第一メインダクト31から突出した複数の第一サブダクト32と、を有し、第二ダクト40は、複数の収容室が並ぶ方向に沿った第二メインダクト41と、複数の収容室にそれぞれ対応する複数の位置にて第二メインダクト41から突出した複数の第二サブダクト42と、を有し、複数の第一サブダクト32は第一メインダクト31から第二メインダクト41側に突出し、複数の第二サブダクト42は第二メインダクト41から第一メインダクト31側に突出し、それぞれの収容室11a,12a,13a,14aの個別空調部50は、第一メインダクト31及び第二メインダクト41の間において、当該収容室に対応する第一サブダクト32及び第二サブダクト42に接続されていてもよい。第二ダクト40から第一ダクト30への伝熱が生じると、第二ガスの温度が第一ガスの温度に近付き、個別空調部における温度調整範囲が狭くなる可能性がある。これに対し、本構成によれば、第一メインダクト31及び第二メインダクト41を離して配置することができるので、第二ダクトから第一ダクトへの伝熱を抑制することができる。例えば、所定方向において収容室11a,12a,13a,14aを挟むように第一メインダクト31及び第二メインダクト41を配置することも可能である。このように、第一メインダクト31及び第二メインダクト41を離して配置することにより、第二ダクト40から第一ダクト30への伝熱を抑制することができる。更に、第一メインダクト31及び第二メインダクト41の少なくとも一部を断熱材34,44により被覆することによっても、第二ダクト40から第一ダクト30への伝熱を抑制することができる。
 塗布・現像装置2は、収容室11a,12a,13a,14aごとの内部温度に基づいて、複数の収容室11a,12a,13a,14a内に吐出される第一ガス及び第二ガスの混合比率をそれぞれ調節するように複数の個別空調部50を制御する制御部100を更に備えていてもよい。この場合、収容室11a,12a,13a,14aごとに、内部温度のフィードバック制御を行うことで、収容室11a,12a,13a,14aごとの温度をより適切に調節することができる。
 制御部100は、収容室11a,12a,13a,14aごとの内部圧力に基づいて、複数の収容室11a,12a,13a,14a内に吐出される第一ガス及び第二ガスの総量をそれぞれ調節するように複数の個別空調部50を制御してもよい。この場合、個別空調部50を圧力の調節にも活用し、構成の更なる簡素化を図ることができる。
 複数の個別空調部50は、同一の収容室11a,12a,13a,14aに設けられた複数の個別空調部50を含んでおり、制御部100は、収容室11a,12a,13a,14a内における温度分布の均一性を向上させるように、当該収容室内に設けられた複数の個別空調部50を制御してもよい。この場合、同一の収容室11a,12a,13a,14a内における温度均一性も向上させることができる。
 制御部100は、収容室11a,12a,13a,14a内における温度分布の変化と、当該収容室内に設けられた複数の個別空調部50における第一ガス及び第二ガスの吐出量の増減との関係を示すモデルに基づいて複数の個別空調部50を制御するように構成されていてもよい。
 例えば制御部100は、図10に示すように、機能モジュールとしてデータ蓄積部116及びモデル構築部117を更に有してもよい。データ蓄積部116は、収容室11a,12a,13a,14a内における温度分布の変化に関するデータをユースポイント情報取得部113から取得し、当該収容室内に設けられた複数の個別空調部50における第一ガス及び第二ガスの吐出量の増減に関するデータを第二空調制御部114から取得し、これらを対応付けて蓄積する。
 モデル構築部117は、データ蓄積部116に蓄積されたデータに基づいて、温度分布を変化させるべき量(以下、「必要変化量」という。)と、複数の個別空調部50において第一ガス及び第二ガスの吐出量を増減させるべき量(以下、「必要制御量」という。)との関係を示すモデル(例えば多変数の関数)を構築する。
 第二空調制御部114は、モデル構築部117により構築されたモデルに基づいて複数の個別空調部50を制御する。例えば第二空調制御部114は、ユースポイント情報取得部113が取得した計測結果に基づいて収容室11a,12a,13a,14a内における温度分布を導出し、当該温度分布の均一化のための必要変化量を導出し、当該必要変化量に対応する必要制御量を当該モデルに基づいて導出し、当該必要制御量に基づいて複数の個別空調部50を制御する。より具体的に、第二空調制御部114は、当該必要制御量に基づいて、それぞれの個別空調部50における第一バルブ54及び第二バルブ55の開度指令を導出し、それぞれの個別空調部50に開度指令を出力する。
 このような構成によれば、同一の収容室11a,12a,13a,14a内における温度均一性を更に向上させることができる。例えば、複数の温度センサ63が複数の個別空調部50に対応するように配置されている場合であっても、いずれかの個別空調部50における第一ガス及び第二ガスの増減は、当該個別空調部50に対応する温度センサ63の他の温度センサ63の配置位置の温度にも影響する。以下、これを「周辺影響」という。局所的な温度変化及びガス吐出量の増減との関係ではなく、温度分布の変化と複数個所におけるガス吐出量の増減との関係を示すモデルに基づくことにより、上記周辺影響をも加味した制御を行うことができる。これが、温度均一性の更なる向上に寄与する。
 図11に示すように、塗布・現像装置2は、複数の収容室11a,12a,13a,14aの外の第三ガスを複数の収容室11a,12a,13a,14aのそれぞれに送る第三ダクト90を更に備えてもよく、第一ガス供給源21は第三ガスよりも低温のガスを第一ガスとして第一ダクト30に供給するように構成され、第二ガス供給源22は第三ガスよりも高温のガスを第二ガスとして第二ダクト40に供給するように構成され、個別空調部50は、第三ダクト90により送られる第三ガスに第一ダクト30により送られる第一ガス及び第二ダクト40により送られる第二ガスを混合した混合ガスを吐出するように構成され、混合ガスにおける第一ガス、第二ガス及び第三ガスの混合比率を調節してもよい。
 この場合、第一ガス及び第二ガスの間の温度の第三ガスを混合することにより、第一ガス及び第二ガスの総供給量を削減することができる。これにより、第一ガス供給源21及び第二ガス供給源22の負担を減らし、これらの小規模化を図ることができる。なお、図11に例示する第三ダクト90は、第一ダクト30と同様に、複数の収容室11a,12a,13a,14aが並ぶ方向に沿う第三メインダクト91と、収容室11a,12a,13a,14aにそれぞれ対応する複数の位置で第三メインダクト91から突出した複数の第三サブダクト92とを有する。第三メインダクト91は、キャリアブロック4側に配置されているがこれに限られず、インタフェースブロック6側に配置されていてもよい。また、第三メインダクト91は処理ブロック5内に配置されていてもよい。
 塗布・現像装置2は、複数の収容室11a,12a,13a,14aを含む筐体B1を更に備えてもよく、第三ダクト90は、筐体B1に隣接する空間のガスを第三ガスとして複数の収容室11a,12a,13a,14aのそれぞれに送るように構成されていてもよい。この場合、装置構成の更なる簡素化を図ることができる。例えば図11に示す塗布・現像装置2は、筐体B1に隣接する空間のガスを筐体B1内に導入する送風機93を更に備えており、第三ダクト90の第三メインダクト91は送風機93に接続されている。
 第一ガス、第二ガス及び第三ガスの混合比率を調節可能な個別空調部50の構成例を図12及び図13に示す。図12に示す個別空調部50は、図5の個別空調部50に第三導入部58と第三バルブ59とを付加したものである。第三導入部58は第三サブダクト92に接続され、第三サブダクト92から吐出部53に第三ガスを導入する。第三バルブ59は、第三導入部58内の流路の開度を調節する。第三バルブ59の具体例としては、第一バルブ54及び第二バルブ55と同様に、弁部材56を回転させることにより流路の開度を調節するバタフライバルブが挙げられる。
 図13に示す個別空調部50は、図6の個別空調部50に合流部87、第三導入部58及び第三バルブ88を付加したものである。合流部87は、第一導入部51及び第二導入部52と吐出部53との間に介在する部分である。第一ガス及び第二ガスの混合比率を調節するための上記第一バルブ81は合流部87に設けられている。第三導入部58は、第三サブダクト92に接続され、第三サブダクト92から吐出部53に第三ガスを導入する。第三バルブ88は、合流部87及び第三導入部58の間で板状の弁部材89を移動させることによって、第一ガス及び第二ガスと第三ガスとの混合比率を調節する。
 このように、個別空調部50が第一ガス、第二ガス及び第三ガスの混合比率を調節可能である場合、制御部100は、収容室11a,12a,13a,14aごとの内部温度に基づいて、複数の収容室11a,12a,13a,14a内に吐出される第一ガス、第二ガス及び第三ガスの混合比率をそれぞれ調節するように複数の個別空調部50を制御してもよい。また、制御部100は、収容室11a,12a,13a,14aごとの内部圧力に基づいて、複数の収容室11a,12a,13a,14a内に吐出される第一ガス、第二ガス及び第三ガスの総量をそれぞれ調節するように複数の個別空調部50を制御してもよい。
 以上、実施形態について説明したが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。処理対象の基板は、半導体ウェハに限られず、例えばガラス基板、マスク基板、FPD(Flat Panel Display)等であってもよい。
 2…塗布・現像装置(基板処理装置)、11a,12a,13a,14a…収容室、21…第一ガス供給源、22…第二ガス供給源、30…第一ダクト、31…第一メインダクト、32…第一サブダクト、40…第二ダクト、41…第二メインダクト、42…第二サブダクト、50…個別空調部、90…第三ダクト、100…制御部、B1…筐体、W…ウェハ(基板)。

Claims (10)

  1.  基板を収容する複数の収容室と、
     前記複数の収容室のそれぞれに第一ガスを送る第一ダクトと、
     前記複数の収容室のそれぞれに前記第一ガスよりも高温の第二ガスを送る第二ダクトと、
     前記複数の収容室にそれぞれ設けられ、前記第一ダクトから吐出される前記第一ガス及び前記第二ダクトから吐出される前記第二ガスの混合比率を調節する複数の個別空調部と、を備える基板処理装置。
  2.  前記第一ダクトは、前記複数の収容室が並ぶ方向に沿った第一メインダクトと、前記複数の収容室にそれぞれ対応する複数の位置にて前記第一メインダクトから突出した複数の第一サブダクトと、を有し、
     前記第二ダクトは、前記複数の収容室が並ぶ方向に沿った第二メインダクトと、前記複数の収容室にそれぞれ対応する複数の位置にて前記第二メインダクトから突出した複数の第二サブダクトと、を有し、
     前記複数の第一サブダクトは前記第一メインダクトから前記第二メインダクト側に突出し、前記複数の第二サブダクトは前記第二メインダクトから前記第一メインダクト側に突出し、それぞれの前記収容室の前記個別空調部は、前記第一メインダクト及び前記第二メインダクトの間において、当該収容室に対応する前記第一サブダクト及び前記第二サブダクトに接続されている、請求項1記載の基板処理装置。
  3.  前記収容室ごとの内部温度に基づいて、前記複数の収容室内に吐出される前記第一ガス及び前記第二ガスの混合比率をそれぞれ調節するように前記複数の個別空調部を制御する制御部を更に備える、請求項1又は2記載の基板処理装置。
  4.  前記制御部は、前記収容室ごとの内部圧力に基づいて、前記複数の収容室内に吐出される前記第一ガス及び前記第二ガスの総量をそれぞれ調節するように前記複数の個別空調部を制御する、請求項3記載の基板処理装置。
  5.  前記複数の個別空調部は、同一の前記収容室に設けられた複数の前記個別空調部を含んでおり、
     前記制御部は、前記収容室内における温度分布の均一性を向上させるように、当該収容室内に設けられた前記複数の個別空調部を制御する、請求項3又は4記載の基板処理装置。
  6.  前記制御部は、前記収容室内における温度分布の変化と、当該収容室内に設けられた前記複数の個別空調部における前記第一ガス及び前記第二ガスの吐出量の増減との関係を示すモデルに基づいて前記複数の個別空調部を制御する、請求項5記載の基板処理装置。
  7.  前記複数の収容室の外の第三ガスを前記複数の収容室のそれぞれに送る第三ダクトを更に備え、
     前記第一ダクトは、前記第三ガスよりも低温のガスを前記第一ガスとして供給する第一ガス供給源に接続され、
     前記第二ダクトは、前記第三ガスよりも高温のガスを前記第二ガスとして供給する第二ガス供給源に接続され、
     前記個別空調部は、前記第三ダクトにより送られる前記第三ガスに前記第一ダクトにより送られる前記第一ガス及び前記第二ダクトにより送られる前記第二ガスを混合した混合ガスを吐出するように構成され、前記混合ガスにおける前記第一ガス、前記第二ガス及び前記第三ガスの混合比率を調節する、請求項1~6のいずれか一項記載の基板処理装置。
  8.  前記複数の収容室を含む筐体を更に備え、
     前記第三ダクトは、前記筐体に隣接する空間のガスを前記第三ガスとして前記複数の収容室のそれぞれに送るように構成されている、請求項7記載の基板処理装置。
  9.  複数の収容室を有する基板処理装置の前記収容室ごとの内部温度情報を取得することと、
     第一ガスを送る第一ダクトから吐出される第一ガス、及び前記第一ガスよりも高温の第二ガスを送る第二ダクトから吐出される第二ガスの混合比率を調節するように、前記複数の収容室にそれぞれ設けられた複数の個別空調部を、取得した前記収容室ごとの内部温度情報に基づいてそれぞれ制御することと、を含む基板処理装置の空調方法。
  10.  請求項9記載の空調方法を装置に実行させるためのプログラムを記憶した、コンピュータ読み取り可能な記憶媒体。
PCT/JP2019/010977 2018-03-26 2019-03-15 基板処理装置、空調方法及び記憶媒体 WO2019188453A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980019632.3A CN111868883A (zh) 2018-03-26 2019-03-15 基片处理装置、空气调节方法和存储介质
KR1020207029449A KR102674916B1 (ko) 2018-03-26 2019-03-15 기판 처리 장치, 공조 방법 및 기억 매체
JP2020510674A JP6986623B2 (ja) 2018-03-26 2019-03-15 基板処理装置、空調方法及び記憶媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018057924 2018-03-26
JP2018-057924 2018-03-26

Publications (1)

Publication Number Publication Date
WO2019188453A1 true WO2019188453A1 (ja) 2019-10-03

Family

ID=68058810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010977 WO2019188453A1 (ja) 2018-03-26 2019-03-15 基板処理装置、空調方法及び記憶媒体

Country Status (5)

Country Link
JP (1) JP6986623B2 (ja)
KR (1) KR102674916B1 (ja)
CN (1) CN111868883A (ja)
TW (1) TWI788540B (ja)
WO (1) WO2019188453A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111076498A (zh) * 2019-12-25 2020-04-28 广东利元亨智能装备股份有限公司 电芯的干燥方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI739201B (zh) * 2019-11-08 2021-09-11 辛耘企業股份有限公司 基板濕處理裝置及基板清洗方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135429A (ja) * 1997-08-29 1999-05-21 Nikon Corp 温度制御方法及び該方法を使用する露光装置
JP2000150335A (ja) * 1998-11-12 2000-05-30 Tokyo Electron Ltd 処理装置
JP2006024638A (ja) * 2004-07-06 2006-01-26 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2010056545A (ja) * 2008-08-01 2010-03-11 Nikon Corp 露光方法及び装置、並びにデバイス製造方法
JP2017092339A (ja) * 2015-11-13 2017-05-25 株式会社Screenホールディングス 基板処理装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3225344B2 (ja) * 1996-01-26 2001-11-05 東京エレクトロン株式会社 処理装置
JP3552600B2 (ja) * 1998-07-13 2004-08-11 東京エレクトロン株式会社 基板処理装置
JP3888836B2 (ja) * 1999-05-25 2007-03-07 東京エレクトロン株式会社 レジスト塗布現像処理装置
JP5067432B2 (ja) * 2010-02-15 2012-11-07 東京エレクトロン株式会社 塗布、現像装置、現像方法及び記憶媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135429A (ja) * 1997-08-29 1999-05-21 Nikon Corp 温度制御方法及び該方法を使用する露光装置
JP2000150335A (ja) * 1998-11-12 2000-05-30 Tokyo Electron Ltd 処理装置
JP2006024638A (ja) * 2004-07-06 2006-01-26 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2010056545A (ja) * 2008-08-01 2010-03-11 Nikon Corp 露光方法及び装置、並びにデバイス製造方法
JP2017092339A (ja) * 2015-11-13 2017-05-25 株式会社Screenホールディングス 基板処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111076498A (zh) * 2019-12-25 2020-04-28 广东利元亨智能装备股份有限公司 电芯的干燥方法

Also Published As

Publication number Publication date
JP6986623B2 (ja) 2021-12-22
KR20200136940A (ko) 2020-12-08
JPWO2019188453A1 (ja) 2021-04-01
TWI788540B (zh) 2023-01-01
TW201941262A (zh) 2019-10-16
CN111868883A (zh) 2020-10-30
KR102674916B1 (ko) 2024-06-12

Similar Documents

Publication Publication Date Title
JP4391518B2 (ja) 温度制御方法、調整装置、温度調節器、プログラム、記録媒体および加熱処理装置
US20050287821A1 (en) Wafer processing system, coating/developing apparatus, and wafer, processing apparatus
JP4464993B2 (ja) 基板の処理システム
US7101816B2 (en) Methods for adaptive real time control of a thermal processing system
WO2019188453A1 (ja) 基板処理装置、空調方法及び記憶媒体
TW502328B (en) Substrate processing system and substrate processing method
JP4531778B2 (ja) 温度制御方法、温度調節器および加熱処理装置
WO2006087955A1 (ja) 熱処理板の温度設定方法,熱処理板の温度設定装置,プログラム及びプログラムを記録したコンピュータ読み取り可能な記録媒体
KR20030091047A (ko) 기판처리장치
JP2009212404A (ja) 基板の処理方法、プログラム及びコンピュータ記憶媒体及び基板処理システム
JP2022188287A (ja) 基板処理装置、及び基板処理方法、及び記憶媒体
JP2003234270A (ja) 熱処理装置
JP4970882B2 (ja) 基板の測定方法、プログラム、プログラムを記録したコンピュータ読み取り可能な記録媒体及び基板の測定システム
TW202121085A (zh) 基板處理裝置及基板處理方法
JP2004228475A (ja) 半導体ウェハの処理装置およびその処理装置を用いた写真製版工程を有する半導体装置の製造方法
JPH11204402A (ja) 熱処理装置
KR20230029507A (ko) 기판 처리 장치 및 반도체 장치 제조 방법
JP2007335544A (ja) 基板処理装置
KR101985764B1 (ko) 공조 장치 및 그것을 갖는 기판 처리 장치
JPH10261558A (ja) 加熱処理装置および加熱処理方法
KR101985754B1 (ko) 공조 장치 및 그것을 갖는 기판 처리 장치
JP7454509B2 (ja) 基板処理システムのモデルベースの制御
JPWO2018154993A1 (ja) 基板処理システム
JP2011129673A (ja) 荷電粒子ビーム描画装置及び基板配置室の温度調整方法
KR20240101845A (ko) 기판 처리 시스템 및 기판 처리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510674

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207029449

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19774204

Country of ref document: EP

Kind code of ref document: A1