WO2019188350A1 - 接合体および弾性波素子 - Google Patents

接合体および弾性波素子 Download PDF

Info

Publication number
WO2019188350A1
WO2019188350A1 PCT/JP2019/010572 JP2019010572W WO2019188350A1 WO 2019188350 A1 WO2019188350 A1 WO 2019188350A1 JP 2019010572 W JP2019010572 W JP 2019010572W WO 2019188350 A1 WO2019188350 A1 WO 2019188350A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding layer
single crystal
piezoelectric single
oxygen ratio
substrate
Prior art date
Application number
PCT/JP2019/010572
Other languages
English (en)
French (fr)
Inventor
万佐司 後藤
雄大 鵜野
知義 多井
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to KR1020207027020A priority Critical patent/KR102249061B1/ko
Priority to CN201980016922.2A priority patent/CN111937306B/zh
Priority to DE112019001648.2T priority patent/DE112019001648B4/de
Priority to JP2019531181A priority patent/JP6605184B1/ja
Publication of WO2019188350A1 publication Critical patent/WO2019188350A1/ja
Priority to US17/034,828 priority patent/US11070189B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • H10N30/073Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies by fusion of metals or by adhesives

Definitions

  • the present invention relates to a bonded body of a piezoelectric single crystal substrate and a support substrate, and an acoustic wave device using the same.
  • acoustic wave devices that can function as filter elements and oscillators used in mobile phones, etc., and acoustic wave devices such as Lamb wave elements using piezoelectric thin films and thin film resonators (FBAR: FilmFiBulk Acoustic Resonator) are known.
  • FBAR FilmFiBulk Acoustic Resonator
  • a device in which a supporting substrate and a piezoelectric substrate that propagates a surface acoustic wave are bonded together and a comb-shaped electrode capable of exciting the surface acoustic wave is provided on the surface of the piezoelectric substrate is known.
  • Patent Document 1 proposes a surface acoustic wave device having a structure in which a piezoelectric single crystal substrate and a silicon substrate are bonded together by an adhesive layer made of an epoxy adhesive.
  • a piezoelectric single crystal substrate is directly bonded via an intermediate layer to a support substrate made of ceramics (alumina, aluminum nitride, silicon nitride) instead of a silicon substrate (Patent Document 4).
  • the intermediate layer is made of silicon, silicon oxide, silicon nitride, or aluminum nitride.
  • the stress Rt maximum cross-sectional height of the roughness curve
  • the stress Rt maximum cross-sectional height of the roughness curve
  • the insulation by increasing the electrical resistance in the joining layer.
  • noise and loss can be reduced by increasing the insulation of the bonding layer.
  • the Q value of the acoustic wave element tends to decrease.
  • An object of the present invention is to provide a support including a support substrate made of a polycrystalline ceramic material or a single crystal material, a piezoelectric single crystal substrate, and a bonding layer provided between the support substrate and the piezoelectric single crystal substrate. It is to increase the bonding strength between the substrate and the piezoelectric single crystal substrate and to improve the Q value.
  • the joined body according to the present invention is: A support substrate made of a polycrystalline ceramic material or a single crystal material, A piezoelectric single crystal substrate; and a bonding layer provided between the support substrate and the piezoelectric single crystal substrate, wherein the bonding layer is Si (1-x) O x (x is an oxygen ratio) And the oxygen ratio x at the center in the thickness direction of the bonding layer is such that the oxygen ratio x at the end of the bonding layer on the piezoelectric single crystal substrate side and the bonding layer The oxygen ratio x is higher than the oxygen ratio x at the end portion on the support substrate side, and the oxygen ratio x at the central portion in the thickness direction of the bonding layer is 0.013 or more and 0.666 or less.
  • the elastic wave device according to the present invention is It has an electrode provided on the bonded body and the piezoelectric single crystal substrate.
  • a bonded body including a support substrate made of a polycrystalline ceramic material or a single crystal material, a piezoelectric single crystal substrate, and a bonding layer provided between the support substrate and the piezoelectric single crystal substrate,
  • the insulation in the layer can be increased, and the bonding strength between the support substrate and the piezoelectric single crystal substrate can be increased.
  • an acoustic wave device having high bonding strength and low loss (high Q value).
  • (A) shows a state in which the bonding layer 2 is provided on the piezoelectric single crystal substrate 4, (b) shows a state in which the surface 2b of the bonding layer 2A is activated by the neutralized beam C, and (c ) Shows a state in which the surface 1a of the support substrate 1 is activated by the neutralizing beam D.
  • (A) shows a state in which the support substrate 1 is directly bonded to the bonding layer 2A
  • (b) shows a state in which the piezoelectric single crystal substrate 4A is thinned by processing
  • (c) shows a piezoelectric single crystal substrate.
  • a state in which the electrode 6 is provided on 4A is shown. It is a conceptual diagram which shows the oxygen ratio in 2 A of joining layers.
  • (A) shows a state in which the bonding layer 12 is provided on the support substrate 1, (b) shows a state in which the surface 12b of the bonding layer 12A is activated by the neutralizing beam C, and (c) A state in which the surface 4a of the piezoelectric single crystal substrate 4 is activated by the neutralizing beam D is shown.
  • (A) shows a state in which the piezoelectric single crystal substrate 4 is directly bonded to the bonding layer 12A
  • (b) shows a state in which the piezoelectric single crystal substrate 4A is thinned by processing
  • (c) shows a piezoelectric property.
  • a state in which the electrode 6 is provided on the single crystal substrate 4A is shown. It is a conceptual diagram which shows the oxygen ratio in bonding layer 12A.
  • FIG. 1 and 2 relate to an embodiment in which a bonding layer 2 is provided on a piezoelectric single crystal substrate 4 and this is directly bonded to a surface 1a of a support substrate 1.
  • FIG. 1 and 2 relate to an embodiment in which a bonding layer 2 is provided on a piezoelectric single crystal substrate 4 and this is directly bonded to a surface 1a of a support substrate 1.
  • the bonding layer 2 is provided on the surface 4 a of the piezoelectric single crystal substrate 4. 4b is the opposite surface. At this time, the surface 2a of the bonding layer 2 may be uneven.
  • the surface 2a of the bonding layer 2 is flattened to form a flat surface 2b on the bonding layer 2 as shown in FIG.
  • the thickness of the bonding layer 2 is usually reduced, resulting in a thinner bonding layer 2A (see FIG. 1B).
  • planarization is not always necessary.
  • the surface 2b of the bonding layer 2A is irradiated with a neutralization beam as indicated by an arrow C to activate the surface 2b of the bonding layer 2A to be an activated surface.
  • the surface 1a of the support substrate 1 is activated by irradiating it with a neutral beam as indicated by an arrow D. Then, as shown in FIG. 2A, the activated body 1a of the support substrate 1 and the activated surface 2b of the bonding layer 2A are directly bonded to obtain the bonded body 5.
  • the surface 4b of the piezoelectric single crystal substrate 4 of the bonded body 5 is further polished to reduce the thickness of the piezoelectric single crystal substrate 4A as shown in FIG. 5A is obtained.
  • 4c is a polishing surface.
  • the acoustic wave element 7 is manufactured by forming a predetermined electrode 6 on the polished surface 4c of the piezoelectric single crystal substrate 4A.
  • the bonding layer 2A has a composition of Si (1-x) O x (x is an oxygen ratio).
  • the oxygen ratio xO at the central portion in the thickness direction of the bonding layer 2A is the oxygen ratio at the end (near the interface B) of the bonding layer 2A on the piezoelectric single crystal substrate 4 (4A) side. It is higher than the oxygen ratio xA at the end portion (near the interface A) of xB and the bonding layer 2A on the support substrate 1 side.
  • the oxygen ratio xO in the central portion of the bonding layer 2A in the thickness direction is set to 0.013 or more and 0.666 or less. As a result, it is possible to provide an acoustic wave device 7 having a high bonding strength and a high Q value.
  • the maximum value of the oxygen ratio x in the bonding layer 2A is 0.013 or more and 0.666 or less. As a result, the Q value can be remarkably improved, and the bonding strength of the piezoelectric single crystal substrate 4 (4A) to the support substrate 1 can be increased. From such a viewpoint, it is preferable that the maximum value of the oxygen ratio x in the bonding layer 2A is 0.05 or more.
  • the bonding layer 12A is formed on the support substrate 1, and the bonding layer 12A is bonded to the piezoelectric single crystal substrate 4. That is, as shown in FIG. 4A, the bonding layer 12 is provided on the surface 1 a of the support substrate 1. At this time, the surface 12a of the bonding layer 12 may be uneven.
  • the surface 12a of the bonding layer 12 is planarized to form a flat surface 12b on the bonding layer 12A as shown in FIG.
  • the thickness of the bonding layer 12 is usually reduced, resulting in a thinner bonding layer 12A (see FIG. 4B).
  • planarization is not always necessary.
  • the surface 12b of the bonding layer 12A is irradiated with a neutralization beam as indicated by an arrow C to activate the surface of the bonding layer 12A to be an activated surface.
  • the surface of the piezoelectric single crystal substrate 4 is activated by irradiating the neutralized beam D to obtain an activated surface 4a.
  • the joined surface 15 is obtained by directly joining the activated surface 12b of the joining layer 12A and the surface 4a of the piezoelectric single crystal substrate 4 (FIG. 5A). )).
  • the surface 4b of the piezoelectric single crystal substrate 4 of the bonded body 15 is further polished to obtain a bonded body 15A.
  • the acoustic wave element 17 is produced by forming a predetermined electrode 6 on the polished surface 4c.
  • the oxygen ratio xO in the central portion of the bonding layer 12A in the thickness direction is the end of the bonding layer 12A on the piezoelectric single crystal substrate 4 (4A) side.
  • the oxygen ratio xB and the oxygen ratio xA at the end of the bonding layer 12A on the support substrate 1 side are higher.
  • the oxygen ratio xO in the center portion in the thickness direction of the bonding layer 12A is set to 0.013 or more and 0.666 or less. Accordingly, it is possible to provide the acoustic wave element 17 having a high bonding strength and a high Q value.
  • the interface A between the support substrate 1 and the bonding layer 2A is a directly bonded interface.
  • 1 to 3 relate to this embodiment.
  • the oxygen ratio xA at the end of the bonding layer 2A on the support substrate 1 side is 0.001 or more and 0.408 or less.
  • the bonding strength can be further improved and the Q value can be kept high.
  • the oxygen ratio xA at the end of the bonding layer 2A on the support substrate 1 side is more preferably 0.005 or more, and further preferably 0.3 or less.
  • the interface B between the piezoelectric single crystal substrate 4 (4A) and the bonding layer 12A is a directly bonded interface.
  • 4 to 6 relate to this embodiment.
  • the oxygen ratio xB at the end of the bonding layer 12A on the piezoelectric single crystal substrate 4 (4A) side (near the interface B) is 0.001 or more and 0.408 or less.
  • the bonding strength can be further improved and the Q value can be kept high.
  • the oxygen ratio xB at the end of the bonding layer 12A on the piezoelectric single crystal substrate 4 (4A) side is more preferably 0.005 or more, and further preferably 0.3 or less. .
  • the oxygen ratio xB at the ends of the bonding layers 2A and 12A on the piezoelectric single crystal substrate 4 (4A) side, and the oxygen ratio xA at the ends of the bonding layers 2A and 12A on the support substrate 1 side are both 0. More preferably 0.005 or more, and still more preferably 0.3 or less.
  • the oxygen ratio xO at the central portion in the thickness direction of 12A is measured as described in the examples.
  • the support substrate 1 is made of a polycrystalline ceramic material or a single crystal material.
  • the single crystal material constituting the support substrate 1 silicon and sapphire are preferable.
  • the polycrystalline ceramic material is preferably a material selected from the group consisting of mullite, cordierite, translucent alumina, and sialon.
  • the materials of the piezoelectric single crystal substrates 4 and 4A are specifically lithium tantalate (LT) single crystal, lithium niobate (LN) single crystal, lithium niobate-lithium tantalate solid solution single crystal, crystal, boric acid An example is lithium. Of these, LT or LN is more preferable. LT and LN are suitable as surface acoustic wave devices for high frequencies and wideband frequencies because of the high propagation speed of surface acoustic waves and a large electromechanical coupling coefficient.
  • the normal direction of the main surface of the piezoelectric single crystal substrates 4 and 4A is not particularly limited.
  • the piezoelectric single crystal substrates 4 and 4A are made of LT
  • the X axis that is the propagation direction of the surface acoustic wave is used. It is preferable to use a direction rotated by 36 to 47 ° (for example, 42 °) from the Y axis to the Z axis with a small propagation loss.
  • the piezoelectric single crystal substrate 4 is made of LN
  • a substrate having a direction rotated by 60 to 68 ° (for example, 64 °) from the Y axis to the Z axis about the X axis that is the propagation direction of the surface acoustic wave is used. This is preferable because the propagation loss is small.
  • the size of the piezoelectric single crystal substrates 4 and 4A is not particularly limited. For example, the diameter is 50 to 150 mm and the thickness is 0.2 to 60 ⁇ m.
  • the electrical resistivity of the bonding layers 2, 2A, 12, and 12A is preferably 4.8 ⁇ 10 3 ⁇ ⁇ cm or more, more preferably 5.8 ⁇ 10 3 ⁇ ⁇ cm or more, and 6.2. X 10 3 ⁇ ⁇ cm or more is particularly preferable.
  • the electrical resistivity of the bonding layers 2, 2A, 12, and 12A is generally 1.0 ⁇ 10 8 ⁇ ⁇ cm or less.
  • the thickness T of the bonding layers 2, 2A, 12, and 12A is not particularly limited, but is preferably 0.01 to 10 ⁇ m, more preferably 0.05 to 0.5 ⁇ m from the viewpoint of manufacturing cost.
  • the method for forming the bonding layers 2, 2A, 12, and 12A is not limited, but examples include sputtering, chemical vapor deposition (CVD), and vapor deposition.
  • the oxygen ratio (x) of the bonding layers 2, 2 ⁇ / b> A, 12, and 12 ⁇ / b> A is controlled by adjusting the amount of oxygen gas that flows in the chamber during reactive sputtering using Si as the sputtering target. Is possible. That is, while forming one bonding layer 2, 2A, 12, 12A, the oxygen ratio x can be increased by increasing the amount of oxygen gas, and the oxygen ratio x can be decreased by decreasing the amount of oxygen gas. Can be reduced.
  • the specific manufacturing conditions of the bonding layers 2, 2A, 12, 12A depend on the chamber specifications and are appropriately selected.
  • the total pressure is 0.28 to 0.34 Pa
  • the oxygen partial pressure is 1.2 ⁇ 10. ⁇ 3 to 5.7 ⁇ 10 ⁇ 2 Pa
  • the film formation temperature is room temperature.
  • An example of the Si target is B-doped Si.
  • the surface 12b of the bonding layers 12 and 12A and the surface 4a of the piezoelectric single crystal substrate 4 are directly bonded, or the surface 2b of the bonding layers 2 and 2A and the surface 1a of the support substrate 1 Are directly joined.
  • the arithmetic average roughness Ra of the surfaces 2b and 12b of the bonding layers 2, 2A, 12, and 12A is preferably 1 nm or less, and more preferably 0.3 nm or less.
  • the arithmetic average roughness Ra of the surface 4a of the piezoelectric single crystal substrate 4 and the surface 1a of the support substrate 1 is preferably 1 nm or less, and more preferably 0.3 nm or less.
  • the method of flattening the surfaces 2b and 12b of the bonding layers 2, 2A, 12, and 12A, and the surfaces 4a and 1a of the piezoelectric single crystal substrate 4 and the support substrate 1 includes lap polishing and chemical mechanical polishing ( CMP).
  • the surface 2b of the bonding layers 2 and 2A, and the surfaces 4a and 1a of the piezoelectric single crystal substrate 4 and the support substrate 1 can be activated by the neutralizing beam.
  • the surfaces 2b and 12b of the bonding layers 2, 2A, 12, and 12A, the surface 4a of the piezoelectric single crystal substrate 4, and the surface 1a of the support substrate 1 are flat surfaces, direct bonding is easy.
  • a saddle field type fast atomic beam source is used as the beam source.
  • an inert gas is introduced into the chamber, and a high voltage is applied to the electrodes from a DC power source.
  • the saddle field type electric field generated between the electrode (positive electrode) and the casing (negative electrode) moves the electrons e, thereby generating atomic and ion beams by the inert gas.
  • the ion beam is neutralized by the grid, so that a beam of neutral atoms is emitted from the fast atom beam source.
  • the atomic species constituting the beam is preferably an inert gas (argon, nitrogen, etc.).
  • the voltage during activation by beam irradiation is preferably 0.5 to 2.0 kV, and the current is preferably 50 to 200 mA.
  • the temperature at this time is room temperature, but specifically, it is preferably 40 ° C. or lower, more preferably 30 ° C. or lower.
  • the temperature at the time of joining is particularly preferably 20 ° C. or higher and 25 ° C. or lower.
  • the pressure at the time of joining is preferably 100 to 20000 N.
  • acoustic wave elements 7 and 17 a surface acoustic wave device, a Lamb wave element, a thin film resonator (FBAR), and the like are known.
  • a surface acoustic wave device receives an input-side IDT (Interdigital Transducer) electrode (also referred to as a comb-shaped electrode or a comb-shaped electrode) and a surface acoustic wave on the surface of a piezoelectric single crystal substrate.
  • IDT Interdigital Transducer
  • a metal film may be provided on the bottom surfaces of the piezoelectric single crystal substrates 4 and 4A.
  • the metal film plays a role of increasing the electromechanical coupling coefficient in the vicinity of the back surface of the piezoelectric substrate when a Lamb wave element is manufactured as an elastic wave device.
  • comb electrodes are formed on the surfaces 4b and 4c of the piezoelectric single crystal substrates 4 and 4A, and the metal film of the piezoelectric single crystal substrates 4 and 4A is formed by the cavities provided in the support substrate 1. It becomes an exposed structure.
  • Examples of the material of such a metal film include aluminum, an aluminum alloy, copper, and gold.
  • a composite substrate including the piezoelectric single crystal substrates 4 and 4A having no metal film on the bottom surface may be used.
  • a metal film and an insulating film may be provided on the bottom surfaces of the piezoelectric single crystal substrates 4 and 4A.
  • the metal film serves as an electrode when a thin film resonator is manufactured as an acoustic wave device.
  • the thin film resonator has a structure in which electrodes are formed on the front and back surfaces of the piezoelectric single crystal substrates 4 and 4A, and the metal film of the piezoelectric single crystal substrate is exposed by using the insulating film as a cavity.
  • the material for such a metal film include molybdenum, ruthenium, tungsten, chromium, and aluminum.
  • the material for the insulating film include silicon dioxide, phosphorous silica glass, and boron phosphorous silica glass.
  • examples of the optical element include an optical switching element, a wavelength conversion element, and an optical modulation element.
  • a periodically poled structure can be formed in the piezoelectric single crystal substrates 4 and 4A.
  • the present invention When the present invention is applied to an optical element, it is possible to reduce the size of the optical element. In particular, when a periodic polarization reversal structure is formed, deterioration of the periodic polarization reversal structure due to heat treatment can be prevented. Furthermore, since the material of the bonding layers 2, 2A, 12, and 12A of the present invention is also a highly insulating material, the occurrence of polarization inversion is suppressed during the treatment with the neutralized beam before bonding, and the piezoelectric single crystal substrate The shape of the periodically poled structure formed in 4, 4A is hardly disturbed.
  • Example A According to the method described with reference to FIGS. 1 to 3, the joined bodies 5 and 5A and the acoustic wave element 7 of each example shown in Table 1 were produced. Specifically, a lithium tantalate substrate (LT substrate) having an OF portion, a diameter of 4 inches, and a thickness of 250 ⁇ m was used as the piezoelectric single crystal substrate 4.
  • the LT substrate has a propagation direction of surface acoustic waves (SAW) of X, and a cutting angle of 46 ° Y-cut X propagation L, which is a rotating Y-cut plate.
  • a T substrate was used.
  • the surface 4a of the piezoelectric single crystal substrate 4 was mirror-polished so that the arithmetic average roughness Ra was 0.3 nm.
  • Ra is measured with an atomic force microscope (AFM) in a visual field of 10 ⁇ m ⁇ 10 ⁇ m.
  • the bonding layer 2 was formed on the surface 4a of the piezoelectric single crystal substrate 4 by DC sputtering. Boron-doped Si was used as a target. In addition, oxygen gas was introduced as an oxygen source. At this time, the total pressure and oxygen partial pressure of the atmosphere in the chamber were changed by changing the amount of oxygen gas introduced, thereby changing the oxygen ratio (x) of the bonding layer 2.
  • the thickness of the bonding layer 2 was 100 to 200 nm.
  • the arithmetic average roughness Ra of the surface 2a of the bonding layer 2 was 0.2 to 0.6 nm.
  • the bonding layer 2 was subjected to chemical mechanical polishing (CMP) to have a film thickness of 80 to 190 nm and Ra of 0.08 to 0.4 nm.
  • CMP chemical mechanical polishing
  • a support substrate 1 made of Si having an orientation flat (OF) portion, a diameter of 4 inches, and a thickness of 500 ⁇ m was prepared as the support substrate 1.
  • the surfaces 1a and 1b of the support substrate 1 are finished by chemical mechanical polishing (CMP), and each arithmetic average roughness Ra is 0.2 nm.
  • the flat surface 2b of the bonding layer 2A and the surface 1a of the support substrate 1 were washed, removed, and then introduced into a vacuum chamber. After evacuating to the 10 ⁇ 6 Pa level, the bonding surfaces 1a and 2b of the respective substrates were irradiated with a high-speed atomic beam (acceleration voltage 1 kV, Ar flow rate 27 sccm) for 120 seconds. Next, after the beam irradiation surface (activation surface) 2b of the bonding layer 2A and the activation surface 1a of the support substrate 1 are brought into contact with each other, the substrates 1 and 4 are bonded by pressurizing at 10000 N for 2 minutes (FIG. 2 ( a)). Subsequently, the obtained joined body 5 of each example was heated at 100 ° C. for 20 hours.
  • a high-speed atomic beam acceleration voltage 1 kV, Ar flow rate 27 sccm
  • the surface 4b of the piezoelectric single crystal substrate 4 was ground and polished so as to have a thickness of 250 ⁇ m from the initial thickness of 1 ⁇ m, thereby obtaining a bonded body 5A (see FIG. 2B).
  • the bonding layer 2A was evaluated by the Rutherford backscattering method under the following conditions.
  • the obtained results were analyzed, and an element distribution in the depth direction of the bonding layer 2A was obtained. The following parameters were used for the analysis.
  • Film thickness of the bonding layer 2A a value measured by an optical non-contact film thickness measuring device (Nanometrics Nanospec film thickness measuring instrument model 5000) Lithium tantalate atomic number density: 9.52 ⁇ 10 22 atoms / cm 3
  • an optical non-contact film thickness measuring device Nanometrics Nanospec film thickness measuring instrument model 5000
  • Lithium tantalate atomic number density 9.52 ⁇ 10 22 atoms / cm 3
  • the measured values xB and xA of the oxygen ratio at each end are measured values within a thickness range of 5 nm from each interface.
  • the central portion of the bonding layer 2A refers to the middle (in other words, the distance from the interface A to the central portion of the bonding layer 2A and the interface among the film thicknesses of the bonding layer 2A measured by the film thickness measuring device described above.
  • the distance from B to the center of the bonding layer 2A is substantially equal).
  • joining strength About the joined body 5A of each example, joining strength was measured by the crack opening method.
  • the acoustic wave device 7 was produced and the Q value was measured. Specifically, the IDT electrode 6 that generates surface acoustic waves was formed through a photolithography process. After the electrode 6 was formed, it was diced by dicing to obtain an acoustic wave element chip having a propagation direction of 5 mm and a vertical direction of 4 mm. These measurement results are shown in Table 1.
  • Example 1 When comparing Example 1 with Comparative Examples 1 and 2, in Example 1, the conditions of the present invention were satisfied, but the bonding strength and Q value were high (Q value: 1700).
  • Comparative Example 1 since the oxygen ratio x in the bonding layer 2A is constant, the average value of the oxygen ratio in the entire bonding layer 2A is substantially the same as that in Example 1, but the Q value is significantly reduced. (Q value: 1200).
  • the oxygen ratio xO at the central portion of the bonding layer 2A is such that the oxygen ratio xA at the end portion of the bonding layer 2A on the support substrate 1 side and the oxygen ratio at the end portion of the bonding layer 2A on the piezoelectric single crystal substrate 4A side. Although it was higher than xB, but was as low as 0.009, the Q value was also significantly reduced (Q value: 1100).
  • Example B In the same manner as in Experiment A, a joined body 5A and an acoustic wave device 7 were produced. However, in Experiment A, the oxygen ratio x in the bonding layer 5A was changed as shown in Table 2. About each obtained joined body 5A and the elastic wave element 7, joint strength and Q value were measured like Example A, and a result is shown in Table 2.
  • Example C In the same manner as in Experiment A, a joined body 5A and an acoustic wave device 7 were produced. However, in Example 2 of Experiment B, the material of the support substrate 1 was changed as shown in Table 3. That is, the material of the support substrate 1 was sapphire in Example 4, mullite in Example 5, cordierite in Example 6, translucent alumina sintered body in Example 7, and sialon in Example 8. For each of the obtained bonded bodies 5A and the acoustic wave element 7, the bonding strength and the Q value were measured in the same manner as in Example A, and the results are shown in Table 3.
  • Example 4 although the material of the support substrate 1 was changed to sapphire or various ceramics, it was confirmed that high bonding strength and Q value were obtained (in Example 4, Q value: 2200, In Example 5, Q value: 2500, in Example 6, Q value: 2500, in Example 7, Q value: 2300, and in Example 8, Q value: 2500).
  • Example 4 Q value: 2200, In Example 5, Q value: 2500, in Example 6, Q value: 2500, in Example 7, Q value: 2300, and in Example 8, Q value: 2500).
  • the bonded body 5A and the acoustic wave element 7 have been described. However, similar results were obtained for the bonded body 15A and the acoustic wave element 17.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

【課題】多結晶セラミック材料または単結晶材料からなる支持基板と圧電性単結晶基板との接合強度を高くし、かつQ値を向上させる。【解決手段】接合体5、5Aは、支持基板1、圧電性単結晶基板4、4A、および支持基板1と圧電性単結晶基板4、4Aとの間に設けられた接合層2Aを備える。接合層2AがSi(1-x)(xは酸素比率である)の組成を有する。接合層2Aの厚さ方向の中央部における酸素比率xが、接合層2Aの圧電性単結晶基板4、4A側の端部における酸素比率xおよび接合層2Aの支持基板1側の端部における酸素比率xよりも高い。接合層2Aの厚さ方向の中央部における酸素比率xが0.013以上、0.666以下である。

Description

接合体および弾性波素子
 本発明は、圧電性単結晶基板と支持基板との接合体、およびこれを利用する弾性波素子に関するものである。
 携帯電話等に使用されるフィルタ素子や発振子として機能させることができる弾性表面波デバイスや、圧電薄膜を用いたラム波素子や薄膜共振子(FBAR:Film Bulk Acoustic Resonator)などの弾性波デバイスが知られている。こうした弾性波デバイスとしては、支持基板と弾性表面波を伝搬させる圧電基板とを貼り合わせ、圧電基板の表面に弾性表面波を励振可能な櫛形電極を設けたものが知られている。このように圧電基板よりも小さな熱膨張係数を持つ支持基板を圧電基板に貼付けることにより、温度が変化したときの圧電基板の大きさの変化を抑制し、弾性表面波デバイスとしての周波数特性の変化を抑制している。
 特許文献1には、圧電性単結晶基板とシリコン基板とを、エポキシ接着剤からなる接着層によって貼り合わせた構造の弾性表面波デバイスが提案されている。
 圧電基板とシリコン基板とを接合するのに際して、圧電基板表面に酸化珪素膜を形成し、酸化珪素膜を介して圧電基板とシリコン基板とを直接接合することが知られている。この接合の際には、酸化珪素膜表面とシリコン基板表面とにプラズマビームを照射して表面を活性化し、直接接合を行う(特許文献2)。
 また、いわゆるFAB(Fast Atom Beam)方式の直接接合法が知られている。この方法では、中性化原子ビームを常温で各接合面に照射して活性化し、直接接合する(特許文献3)。
 圧電性単結晶基板を、シリコン基板ではなく、セラミックス(アルミナ、窒化アルミニウム、窒化珪素)からなる支持基板に対して、中間層を介して直接接合することが記載されている(特許文献4)。この中間層の材質は、珪素、酸化珪素、窒化珪素、窒化アルミニウムとされている。
 また、圧電基板と支持基板とを有機接着層で接着するのに際して、支持基板の圧電基板に対する接着面のRt(粗さ曲線の最大断面高さ)を5nm以上、50nm以下とすることで、応力緩和による割れ防止効果を得ることが記載されている(特許文献5)。
特開2010-187373 米国特許第7213314B2 特開2014-086400 特許第3774782 実用新案登録第3184763
 しかし、接合体の用途によっては、接合層における電気抵抗を高くすることで絶縁性を高めることが望まれている。例えば、弾性波素子の場合には、接合層の絶縁性を高くすることで、ノイズや損失を低減できる。しかし、高抵抗の接合層によって支持基板を圧電性単結晶基板に対して高い強度で接合することは困難であり、後の加工工程で圧電性単結晶基板と支持基板との間で剥離が生じ易い上、弾性波素子のQ値が低下する傾向がある。
 本発明の課題は、多結晶セラミック材料または単結晶材料からなる支持基板、圧電性単結晶基板、および支持基板と圧電性単結晶基板との間に設けられた接合層を備える接合体において、支持基板と圧電性単結晶基板との接合強度を高くし、かつQ値を向上させることである。
 本発明に係る接合体は、
 多結晶セラミック材料または単結晶材料からなる支持基板、
 圧電性単結晶基板、および
 前記支持基板と前記圧電性単結晶基板との間に設けられた接合層を備えており、前記接合層がSi(1-x)(xは酸素比率である)の組成を有しており、前記接合層の厚さ方向の中央部における前記酸素比率xが、前記接合層の前記圧電性単結晶基板側の端部における前記酸素比率xおよび前記接合層の前記支持基板側の端部における前記酸素比率xよりも高く、前記接合層の厚さ方向の中央部における前記酸素比率xが0.013以上、0.666以下であることを特徴とする。
 また、本発明に係る弾性波素子は、
 前記の接合体、および
 前記圧電性単結晶基板上に設けられた電極を備えていることを特徴とする。
 本発明によれば、多結晶セラミック材料または単結晶材料からなる支持基板、圧電性単結晶基板、および支持基板と圧電性単結晶基板との間に設けられた接合層を備える接合体において、接合層における絶縁性を高くし、かつ支持基板と圧電性単結晶基板との接合強度を高くすることができる。これによって接合強度が高く、かつ損失の低い(Q値の高い)弾性波素子を提供することが可能である。
(a)は、圧電性単結晶基板4上に接合層2を設けた状態を示し、(b)は、接合層2Aの表面2bを中性化ビームCによって活性化した状態を示し、(c)は、支持基板1の表面1aを中性化ビームDによって活性化した状態を示す。 (a)は、支持基板1を接合層2Aに直接接合した状態を示し、(b)は、圧電性単結晶基板4Aを加工によって薄くした状態を示し、(c)は、圧電性単結晶基板4A上に電極6を設けた状態を示す。 接合層2Aにおける酸素比率を示す概念図である。 (a)は、支持基板1上に接合層12を設けた状態を示し、(b)は、接合層12Aの表面12bを中性化ビームCによって活性化した状態を示し、(c)は、圧電性単結晶基板4の表面4aを中性化ビームDによって活性化した状態を示す。 (a)は、圧電性単結晶基板4を接合層12Aに直接接合した状態を示し、(b)は、圧電性単結晶基板4Aを加工によって薄くした状態を示し、(c)は、圧電性単結晶基板4A上に電極6を設けた状態を示す。 接合層12Aにおける酸素比率を示す概念図である。
 以下、適宜図面を参照しつつ、本発明を詳細に説明する。
 図1、図2は、圧電性単結晶基板4上に接合層2を設け、これを支持基板1の表面1aに直接接合する実施形態に係るものである。
 図1(a)に示すように、圧電性単結晶基板4の表面4aに接合層2を設ける。4bは反対側の表面である。この時点では、接合層2の表面2aには凹凸があってもよい。
 次いで、好適な実施形態においては、接合層2の表面2aを平坦化加工することによって、図1(b)に示すように、接合層2に平坦面2bを形成する。この平坦化加工によって、通常、接合層2の厚さは小さくなり、より薄い接合層2Aになる(図1(b)参照)。ただし、平坦化加工は必ずしも必要ない。次いで、接合層2Aの表面2bに対して矢印Cのように中性化ビームを照射し、接合層2Aの表面2bを活性化して活性化面とする。
 一方、図1(c)に示すように、支持基板1の表面1aに矢印Dのように中性化ビームを照射することによって活性化する。そして、図2(a)に示すように、支持基板1の活性化された表面1aと接合層2Aの活性化された表面2bとを直接接合することによって、接合体5を得る。
 好適な実施形態においては、接合体5の圧電性単結晶基板4の表面4bを更に研磨加工し、図2(b)に示すように圧電性単結晶基板4Aの厚さを小さくし、接合体5Aを得る。4cは研磨面である。
 図2(c)では、圧電性単結晶基板4Aの研磨面4c上に所定の電極6を形成することによって、弾性波素子7を作製している。
 本発明においては、接合層2AがSi(1-x)(xは酸素比率である)の組成を有している。そして、図3に示すように、接合層2Aの厚さ方向の中央部における酸素比率xOが、接合層2Aの圧電性単結晶基板4(4A)側の端部(界面B近傍)における酸素比率xBおよび接合層2Aの支持基板1側の端部(界面A近傍)における酸素比率xAよりも高くなっている。その上で、接合層2Aの厚さ方向の中央部における酸素比率xOを0.013以上、0.666以下とする。これによって接合強度が高く、かつQ値の高い弾性波素子7を提供することが可能である。
 本発明においては、接合層2Aにおける酸素比率xの最大値が0.013以上、0.666以下である。これによってQ値を顕著に改善することができ、かつ圧電性単結晶基板4(4A)の支持基板1への接合強度を高くすることができる。こうした観点からは、接合層2Aにおける酸素比率xの最大値を0.05以上とすることが好ましい。
 図4~図6の実施形態では、支持基板1上に接合層12Aを形成し、接合層12Aを圧電性単結晶基板4に対して接合している。
 すなわち、図4(a)に示すように、支持基板1の表面1aに接合層12を設ける。この時点では、接合層12の表面12aには凹凸があってもよい。
 次いで、好適な実施形態においては、接合層12の表面12aを平坦化加工することによって、図4(b)に示すように、接合層12Aに平坦面12bを形成する。この平坦化加工によって、通常、接合層12の厚さは小さくなり、より薄い接合層12Aになる(図4(b)参照)。ただし、平坦化加工は必ずしも必要ない。次いで、接合層12Aの表面12bに対して矢印Cのように中性化ビームを照射し、接合層12Aの表面を活性化して活性化面とする。
 一方、図4(c)に示すように、圧電性単結晶基板4の表面に中性化ビームDを照射することによって活性化し、活性化面4aとする。そして、図5(a)に示すように、接合層12Aの活性化された表面12bと圧電性単結晶基板4の表面4aとを直接接合することによって、接合体15を得る(図5(a)を参照)。その後、図5(b)及び図5(c)に示すように、接合体15の圧電性単結晶基板4の表面4bを更に研磨加工して接合体15Aを得、圧電性単結晶基板4Aの研磨面4c上に所定の電極6を形成することによって、弾性波素子17を作製する。
 本実施形態においては、図6の模式図に示すように、接合層12Aの厚さ方向の中央部における酸素比率xOが、接合層12Aの圧電性単結晶基板4(4A)側の端部における酸素比率xBおよび接合層12Aの支持基板1側の端部における酸素比率xAよりも高くなっている。その上で、接合層12Aの厚さ方向の中央部における酸素比率xOを0.013以上、0.666以下とする。これによって接合強度が高く、かつQ値の高い弾性波素子17を提供することが可能である。
 好適な実施形態においては、支持基板1と接合層2Aとの界面Aが、直接接合された界面である。図1~3はこの実施形態に係るものである。そして、本実施形態では、接合層2Aの支持基板1側の端部における酸素比率xAが0.001以上、0.408以下である。これによって接合強度を一層向上させることができ、またQ値も高く保持できる。この観点からは、接合層2Aの支持基板1側の端部における酸素比率xAを0.005以上とすることが更に好ましく、また、0.3以下とすることが更に好ましい。
 また、好適な実施形態においては、圧電性単結晶基板4(4A)と接合層12Aとの界面Bが、直接接合された界面である。図4~6はこの実施形態に係るものである。そして、本実施形態では、接合層12Aの圧電性単結晶基板4(4A)側の端部(界面Bの近傍)における酸素比率xBが0.001以上、0.408以下である。これによって接合強度を一層向上させることができ、またQ値も高く保持できる。この観点からは、接合層12Aの圧電性単結晶基板4(4A)側の端部における酸素比率xBを0.005以上とすることが更に好ましく、また、0.3以下とすることが更に好ましい。
 更に、好適な実施形態においては、接合層2A、12Aの圧電性単結晶基板4(4A)側の端部における酸素比率xB、接合層2A、12Aの支持基板1側の端部における酸素比率xAが、共に0.001以上、0.408以下である。これによって接合強度を一層向上させることができ、またQ値も高く保持できる。この観点からは、接合層2A、12Aの圧電性単結晶基板4(4A)側の端部における酸素比率xB、接合層2A、12Aの支持基板1側の端部における酸素比率xAを、共に0.005以上とすることが更に好ましく、また、0.3以下とすることが更に好ましい。
 なお、接合層2A、12Aの圧電性単結晶基板4(4A)側の端部における酸素比率xB、接合層2A、12Aの支持基板1側の端部における酸素比率xA、及び、接合層2A、12Aの厚さ方向の中央部における酸素比率xOは、実施例記載のように測定するものとする。
 以下、本発明の各構成要素について更に説明する。
 本発明では、支持基板1は多結晶セラミック材料または単結晶材料からなる。支持基板1を構成する単結晶材料としては、シリコンおよびサファイアが好ましい。また多結晶セラミックス材料としては、ムライト、コージェライト、透光性アルミナ、およびサイアロンからなる群より選ばれた材質が好ましい。
 圧電性単結晶基板4、4Aの材質は、具体的には、タンタル酸リチウム(LT)単結晶、ニオブ酸リチウム(LN)単結晶、ニオブ酸リチウム-タンタル酸リチウム固溶体単結晶、水晶、ホウ酸リチウムを例示できる。このうち、LT又はLNであることがより好ましい。LTやLNは、弾性表面波の伝搬速度が速く、電気機械結合係数が大きいため、高周波数且つ広帯域周波数用の弾性表面波デバイスとして適している。また、圧電性単結晶基板4、4Aの主面の法線方向は、特に限定されないが、例えば、圧電性単結晶基板4、4AがLTからなるときには、弾性表面波の伝搬方向であるX軸を中心に、Y軸からZ軸に36~47°(例えば42°)回転した方向のものを用いるのが伝搬損失が小さいため好ましい。圧電性単結晶基板4がLNからなるときには、弾性表面波の伝搬方向であるX軸を中心に、Y軸からZ軸に60~68°(例えば64°)回転した方向のものを用いるのが伝搬損失が小さいため好ましい。更に、圧電性単結晶基板4、4Aの大きさは、特に限定されないが、例えば、直径50~150mm,厚さが0.2~60μmである。
 接合層2、2A、12、12Aの電気抵抗率は4.8×10Ω・cm以上であることが好ましく、5.8×10Ω・cm以上であることが更に好ましく、6.2×10Ω・cm以上が特に好ましい。一方、接合層2、2A、12、12Aの電気抵抗率は、一般に1.0×10Ω・cm以下となる。
 接合層2、2A、12、12Aの厚さTは、特に限定されないが、製造コストの観点からは0.01~10μmが好ましく、0.05~0.5μmが更に好ましい。
 接合層2、2A、12、12Aの成膜方法は限定されないが、スパッタリング(sputtering)法、化学的気相成長法(CVD)、蒸着を例示できる。ここで、特に好ましくは、スパッタターゲットをSiとした反応性スパッタリングの際に、チャンバー内に流す酸素ガス量を調整することによって、接合層2、2A、12、12Aの酸素比率(x)をコントロールすることが可能である。すなわち、一つの接合層2、2A、12、12Aを成膜する間に、酸素ガス量を増加させることで酸素比率xを増加させることができ、酸素ガス量を減少させることで酸素比率xを低下させることができる。
 接合層2、2A、12、12Aの具体的な製造条件はチャンバー仕様によるので適宜選択するが、好適例では、全圧を0.28~0.34Paとし、酸素分圧を1.2×10―3~5.7×10-2Paとし、成膜温度を常温とする。また、SiターゲットとしてはBドープSiを例示できる。
 好適な実施形態においては、接合層12、12Aの表面12bと圧電性単結晶基板4の表面4aとが直接接合されており、または接合層2、2Aの表面2bと支持基板1の表面1aとが直接接合されている。この場合には、接合層2、2A、12、12Aの表面2b、12bの算術平均粗さRaが1nm以下であることが好ましく、0.3nm以下であることが更に好ましい。また、圧電性単結晶基板4の前記表面4a、支持基板1の表面1aの算術平均粗さRaが1nm以下であることが好ましく、0.3nm以下であることが更に好ましい。これによって圧電性単結晶基板4または支持基板1と接合層2、2A、12、12Aとの接合強度が一層向上する。
 接合層2、2A、12、12Aの表面2b、12b、及び、圧電性単結晶基板4、支持基板1の表面4a、1aを平坦化する方法は、ラップ(lap)研磨、化学機械研磨加工(CMP)などがある。
 好適な実施形態においては、中性化ビームによって、接合層2、2Aの表面2b、及び、圧電性単結晶基板4、支持基板1の表面4a、1aを活性化できる。特に、接合層2、2A、12、12Aの表面2b、12b、及び、圧電性単結晶基板4の表面4a、支持基板1の表面1aが平坦面である場合には、直接接合しやすい。
 中性化ビームによる表面活性化を行う際には、特許文献3に記載のような装置を使用して中性化ビームを発生させ、照射することが好ましい。すなわち、ビーム源として、サドルフィールド型の高速原子ビーム源を使用する。そして、チャンバーに不活性ガスを導入し、電極へ直流電源から高電圧を印加する。これにより、電極(正極)と筺体(負極)との間に生じるサドルフィールド型の電界により、電子eが運動して、不活性ガスによる原子とイオンのビームが生成される。グリッドに達したビームのうち、イオンビームはグリッドで中和されるので、中性原子のビームが高速原子ビーム源から出射される。ビームを構成する原子種は、不活性ガス(アルゴン、窒素等)が好ましい。
 ビーム照射による活性化時の電圧は0.5~2.0kVとすることが好ましく、電流は50~200mAとすることが好ましい。
 次いで、真空雰囲気で、活性化面同士を接触させ、接合する。この際の温度は常温であるが、具体的には40℃以下が好ましく、30℃以下が更に好ましい。また、接合時の温度は20℃以上、25℃以下が特に好ましい。接合時の圧力は、100~20000Nが好ましい。
 本発明の接合体5、5A、15、15Aの用途は特に限定されず、例えば、弾性波素子や光学素子に好適に適用できる。
 弾性波素子7、17としては、弾性表面波デバイスやラム波素子、薄膜共振子(FBAR)などが知られている。例えば、弾性表面波デバイスは、圧電性単結晶基板の表面に、弾性表面波を励振する入力側のIDT(Interdigital Transducer)電極(櫛形電極、すだれ状電極ともいう)と弾性表面波を受信する出力側のIDT電極とを設けたものである。入力側のIDT電極に高周波信号を印加すると、電極間に電界が発生し、弾性表面波が励振されて圧電基板上を伝搬していく。そして、伝搬方向に設けられた出力側のIDT電極から、伝搬された弾性表面波を電気信号として取り出すことができる。
 圧電性単結晶基板4、4Aの底面に金属膜を有していてもよい。金属膜は、弾性波デバイスとしてラム波素子を製造した際に、圧電基板の裏面近傍の電気機械結合係数を大きくする役割を果たす。この場合、ラム波素子は、圧電性単結晶基板4、4Aの表面4b、4cに櫛歯電極が形成され、支持基板1に設けられたキャビティによって圧電性単結晶基板4、4Aの金属膜が露出した構造となる。こうした金属膜の材質としては、例えばアルミニウム、アルミニウム合金、銅、金などが挙げられる。なお、ラム波素子を製造する場合、底面に金属膜を有さない圧電性単結晶基板4、4Aを備えた複合基板を用いてもよい。
 また、圧電性単結晶基板4、4Aの底面に金属膜と絶縁膜を有していてもよい。金属膜は、弾性波デバイスとして薄膜共振子を製造した際に、電極の役割を果たす。この場合、薄膜共振子は、圧電性単結晶基板4、4Aの表裏面に電極が形成され、絶縁膜をキャビティにすることによって圧電性単結晶基板の金属膜が露出した構造となる。こうした金属膜の材質としては、例えば、モリブデン、ルテニウム、タングステン、クロム、アルミニウムなどが挙げられる。また、絶縁膜の材質としては、例えば、二酸化ケイ素、リンシリカガラス、ボロンリンシリカガラスなどが挙げられる。
 また、光学素子としては、光スイッチング素子、波長変換素子、光変調素子を例示できる。また、圧電性単結晶基板4、4A中に周期分極反転構造を形成することができる。
 本発明を光学素子に適用した場合には、光学素子の小型化が可能であり、また特に周期分極反転構造を形成した場合には、加熱処理による周期分極反転構造の劣化を防止できる。更に、本発明の接合層2、2A、12、12Aの材料は、高絶縁材料でもあるので、接合前の中性化ビームによる処理時に、分極反転の発生が抑制され、また圧電性単結晶基板4、4Aに形成された周期分極反転構造の形状を乱すことがほとんどない。
(実験A)
 図1~図3を参照しつつ説明した方法に従って、表1に示す各例の接合体5、5Aおよび弾性波素子7を作製した。
 具体的には、OF部を有し、直径が4インチ,厚さが250μmのタンタル酸リチウム基板(LT基板)を、圧電性単結晶基板4として使用した。LT基板は、弾性表面波(SAW)の伝搬方向をXとし、切り出し角が回転Yカット板である46°YカットX伝搬L
T基板を用いた。圧電性単結晶基板4の表面4aは、算術平均粗さRaが0.3nmとなるように鏡面研磨しておいた。ただし、Raは、原子間力顕微鏡(AFM)によって10μm×10μmの視野で測定する。
 次いで、圧電性単結晶基板4の表面4aに、直流スパッタリング法によって接合層2を成膜した。ターゲットにはボロンドープのSiを使用した。また、酸素源として酸素ガスを導入した。この際、酸素ガス導入量を変化させることによって、チャンバー内の雰囲気の全圧と酸素分圧を変化させ、これによって接合層2の酸素比率(x)を変化させた。接合層2の厚さは100~200nmとした。接合層2の表面2aの算術平均粗さRaは0.2~0.6nmであった。次いで、接合層2を化学機械研磨加工(CMP)し、膜厚を80~190nmとし、Raを0.08~0.4nmとした。
 一方、支持基板1として、オリエンテーションフラット(OF)部を有し、直径が4インチ,厚さが500μmのSiからなる支持基板1を用意した。支持基板1の表面1a、1bは、化学機械研磨加工(CMP)によって仕上げ加工されており、各算術平均粗さRaは0.2nmとなっている。
 次いで、接合層2Aの平坦面2bと支持基板1の表面1aとを洗浄し、汚れを取った後、真空チャンバーに導入した。10-6Pa台まで真空引きした後、それぞれの基板の接合面1a、2bに高速原子ビーム(加速電圧1kV、Ar流量27sccm)を120sec間照射した。ついで、接合層2Aのビーム照射面(活性化面)2bと支持基板1の活性化面1aとを接触させた後、10000Nで2分間加圧して両基板1、4を接合した(図2(a)参照)。次いで、得られた各例の接合体5を100℃で20時間加熱した。
 次いで、圧電性単結晶基板4の表面4bを厚みが当初の250μmから1μmになるように研削及び研磨して、接合体5Aを得た(図2(b)参照)。
 得られた各例の接合体5Aおよび弾性波素子7について、以下の特性を評価した。
(接合層2A中の酸素比率(x))
 接合層2Aを、ラザフォード後方散乱法によって以下の条件で評価した。
 装置:National Electrostatics Corporation製Pelletron 3SDH
 条件:入射イオン:4He++
 入射エネルギー:2300keV
 入射角:0~4deg
 散乱角:110deg
 試料電流:10nA
 ビーム径:2mmφ
 面内回転:無し
 照射量:70μC
得られた結果を解析し、接合層2Aの深さ方向の元素分布を得た。解析には以下のパラメータを用いた。
 接合層2Aの膜厚:光学式非接触膜厚測定装置(ナノメトリクス社 ナノスペック膜厚測定器モデル5000)にて測定した値
 タンタル酸リチウムの原子数密度:9.52×1022atoms/cm3 
 上記のようにして得られた接合層2Aの膜厚の測定値と、接合層2Aの深さ(厚さ)方向の元素分布(酸素比率分布を含む)とを照合することによって、接合層2Aの圧電性単結晶基板4A側の端部における酸素比率xB、接合層2Aの中央部における酸素比率xOおよび接合層2Aの支持基板1側の酸素比率xAを読み取った。
 この際、各端部における酸素比率の測定値xB、xAは、各界面から厚さ5nmの範囲内における測定値である。
 また、接合層2Aの中央部とは、上述した膜厚測定装置にて測定した接合層2Aの膜厚のうち、中間(言い換えると、界面Aから接合層2Aの中央部までの距離と、界面Bから接合層2Aの中央部までの距離とが、ほぼ等しい位置)を意味する。
(接合強度)
 各例の接合体5Aについて、クラックオープニング法によって接合強度を測定した。
(Q値)
 次いで、弾性波素子7を作製し、Q値を測定した。
 具体的には、弾性表面波を発生させるIDT電極6は、フォトリソグラフィー工程を経て形成した。電極6を形成後、ダイシングにより小片化し、伝搬方向5mm、その垂直方向4mmの弾性波素子チップを得た。
 これらの測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 実施例1と比較例1、2とを比較すると、実施例1では、本発明の条件を満足しているが、接合強度およびQ値が高い(Q値:1700)。一方、比較例1では、接合層2Aにおける酸素比率xが一定であるため、接合層2A全体における酸素比率の平均値は実施例1と同程度であるにもかかわらず、Q値が顕著に低下した(Q値:1200)。比較例2では、接合層2Aの中央部における酸素比率xOが、接合層2Aの支持基板1側の端部における酸素比率xAおよび接合層2Aの圧電性単結晶基板4A側の端部における酸素比率xBよりも高いが、しかし0.009と低いため、やはりQ値が顕著に低下していた(Q値:1100)。
(実験B)
 実験Aと同様にして接合体5Aおよび弾性波素子7を作製した。ただし、実験Aにおいて、接合層5Aにおける酸素比率xを、表2に示すように変更した。得られた各接合体5Aおよび弾性波素子7について、実施例Aと同様にして接合強度およびQ値を測定し、結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 実施例2、3と比較例3~5とを比較すると、実施例2、3では、高い接合強度とQ値とが得られた(ともに、Q値:2000)。これに対して、比較例3では、接合層2Aにおける酸素比率xが一定であり、かつ接合層2Aにおける酸素比率xが0.001と低いため、Q値が低くなっていた(Q値:1000)。また、比較例5では、接合層2Aにおける酸素比率xが一定であり、かつ接合層2Aにおける酸素比率xが0.666と高いため、接合強度が低く、弾性波素子を作製できなかった。比較例4では、接合層2Aにおける酸素比率xが一定であり、かつ0.333としたが、実施例2、3に比べてQ値が劣っていた(Q値:1900)。
(実験C)
 実験Aと同様にして接合体5Aおよび弾性波素子7を作製した。ただし、実験Bの実施例2において、支持基板1の材質を、表3に示すように変更した。すなわち、支持基板1の材質を、実施例4ではサファイア、実施例5ではムライト、実施例6ではコージェライト、実施例7では透光性アルミナ焼結体、実施例8ではサイアロンとした。得られた各接合体5Aおよび弾性波素子7について、実施例Aと同様にして接合強度およびQ値を測定し、結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 
 実施例4~8においては、支持基板1の材質をサファイアや各種セラミックスに変更したが、やはり高い接合強度とQ値とが得られることが確認された(実施例4では、Q値:2200、実施例5では、Q値:2500、実施例6では、Q値:2500、実施例7では、Q値:2300、実施例8では、Q値:2500)。
 なお、上述した実施例1~8では、接合体5Aおよび弾性波素子7について説明したが、接合体15Aおよび弾性波素子17に関しても、同様な結果が得られた。

 

Claims (6)

  1.  多結晶セラミック材料または単結晶材料からなる支持基板、
     圧電性単結晶基板、および
     前記支持基板と前記圧電性単結晶基板との間に設けられた接合層を備えており、前記接合層がSi(1-x)(xは酸素比率である)の組成を有しており、前記接合層の厚さ方向の中央部における前記酸素比率xが、前記接合層の前記圧電性単結晶基板側の端部における前記酸素比率xおよび前記接合層の前記支持基板側の端部における前記酸素比率xよりも高く、前記接合層の厚さ方向の前記中央部における前記酸素比率xが0.013以上、0.666以下であることを特徴とする、接合体。
  2.  前記支持基板と前記接合層との前記界面が、直接接合された界面であり、前記接合層の前記支持基板側の前記端部における前記酸素比率xが0.001以上、0.408以下であることを特徴とする、請求項1記載の接合体。
  3.  前記圧電性単結晶基板と前記接合層との前記界面が、直接接合された界面であり、前記接合層の前記圧電性単結晶基板側の前記端部における前記酸素比率xが0.001以上、0.408以下であることを特徴とする、請求項1または2記載の接合体。
  4.  前記支持基板が、シリコン、サファイア、ムライト、コージェライト、透光性アルミナおよびサイアロンからなる群より選ばれた材質からなることを特徴とする、請求項1~3のいずれか一つの請求項に記載の接合体。
  5.  前記圧電性単結晶基板が、ニオブ酸リチウム、タンタル酸リチウムまたはニオブ酸リチウム-タンタル酸リチウム固溶体からなることを特徴とする、請求項1~4のいずれか一つの請求項に記載の接合体。
  6.  請求項1~5のいずれか一つの請求項に記載の接合体、および
     前記圧電性単結晶基板上に設けられた電極を備えていることを特徴とする、弾性波素子。

     
PCT/JP2019/010572 2018-03-29 2019-03-14 接合体および弾性波素子 WO2019188350A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207027020A KR102249061B1 (ko) 2018-03-29 2019-03-14 접합체 및 탄성파 소자
CN201980016922.2A CN111937306B (zh) 2018-03-29 2019-03-14 接合体和弹性波元件
DE112019001648.2T DE112019001648B4 (de) 2018-03-29 2019-03-14 Verbindung und elastische welle-element
JP2019531181A JP6605184B1 (ja) 2018-03-29 2019-03-14 接合体および弾性波素子
US17/034,828 US11070189B2 (en) 2018-03-29 2020-09-28 Joint and elastic wave element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-063941 2018-03-29
JP2018063941 2018-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/034,828 Continuation US11070189B2 (en) 2018-03-29 2020-09-28 Joint and elastic wave element

Publications (1)

Publication Number Publication Date
WO2019188350A1 true WO2019188350A1 (ja) 2019-10-03

Family

ID=68061616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010572 WO2019188350A1 (ja) 2018-03-29 2019-03-14 接合体および弾性波素子

Country Status (7)

Country Link
US (1) US11070189B2 (ja)
JP (1) JP6605184B1 (ja)
KR (1) KR102249061B1 (ja)
CN (1) CN111937306B (ja)
DE (1) DE112019001648B4 (ja)
TW (1) TWI787475B (ja)
WO (1) WO2019188350A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI791099B (zh) * 2018-03-29 2023-02-01 日商日本碍子股份有限公司 接合體及彈性波元件
TWI815970B (zh) * 2018-11-09 2023-09-21 日商日本碍子股份有限公司 壓電性材料基板與支持基板的接合體、及其製造方法
US11525674B2 (en) * 2019-10-28 2022-12-13 General Electric Company Systems and methods for measuring properties using bulk acoustic waves

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124648A1 (ja) * 2011-03-14 2012-09-20 株式会社村田製作所 圧電デバイス、圧電デバイスの製造方法
WO2013129572A1 (ja) * 2012-02-29 2013-09-06 京セラ株式会社 複合基板
WO2017051747A1 (ja) * 2015-09-26 2017-03-30 信越化学工業株式会社 接合基板及びその製造方法とこの接合基板を用いた弾性表面波デバイス
WO2018016169A1 (ja) * 2016-07-20 2018-01-25 信越化学工業株式会社 弾性表面波デバイス用複合基板の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7105980B2 (en) 2002-07-03 2006-09-12 Sawtek, Inc. Saw filter device and method employing normal temperature bonding for producing desirable filter production and performance characteristics
JP3774782B2 (ja) 2003-05-14 2006-05-17 富士通メディアデバイス株式会社 弾性表面波素子の製造方法
JP2009035720A (ja) * 2007-07-11 2009-02-19 Seiko Epson Corp 接合膜付き基材、接合方法および接合体
JP2010187373A (ja) 2009-01-19 2010-08-26 Ngk Insulators Ltd 複合基板及びそれを用いた弾性波デバイス
WO2011158636A1 (ja) 2010-06-15 2011-12-22 日本碍子株式会社 複合基板
JP2014086400A (ja) 2012-10-26 2014-05-12 Mitsubishi Heavy Ind Ltd 高速原子ビーム源およびそれを用いた常温接合装置
ES2739176T3 (es) * 2015-11-30 2020-01-29 Emberion Oy Aparato fotodetector de puntos cuánticos y procedimientos asociados
WO2018180827A1 (ja) * 2017-03-31 2018-10-04 日本碍子株式会社 接合体および弾性波素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124648A1 (ja) * 2011-03-14 2012-09-20 株式会社村田製作所 圧電デバイス、圧電デバイスの製造方法
WO2013129572A1 (ja) * 2012-02-29 2013-09-06 京セラ株式会社 複合基板
WO2017051747A1 (ja) * 2015-09-26 2017-03-30 信越化学工業株式会社 接合基板及びその製造方法とこの接合基板を用いた弾性表面波デバイス
WO2018016169A1 (ja) * 2016-07-20 2018-01-25 信越化学工業株式会社 弾性表面波デバイス用複合基板の製造方法

Also Published As

Publication number Publication date
KR20200115653A (ko) 2020-10-07
US11070189B2 (en) 2021-07-20
DE112019001648B4 (de) 2022-02-17
TW201941938A (zh) 2019-11-01
TWI787475B (zh) 2022-12-21
KR102249061B1 (ko) 2021-05-10
JPWO2019188350A1 (ja) 2020-04-30
CN111937306A (zh) 2020-11-13
JP6605184B1 (ja) 2019-11-13
US20210013864A1 (en) 2021-01-14
DE112019001648T5 (de) 2020-12-10
CN111937306B (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
JP6375471B1 (ja) 接合体および弾性波素子
JP6427714B2 (ja) 接合体および弾性波素子
WO2018203430A1 (ja) 弾性波素子およびその製造方法
CN111066243B (zh) 弹性波元件及其制造方法
US11070189B2 (en) Joint and elastic wave element
WO2018096797A1 (ja) 接合体
WO2019244461A1 (ja) 接合体および弾性波素子
JP6612002B1 (ja) 接合体および弾性波素子
JP6621574B1 (ja) 接合体および弾性波素子
WO2021002047A1 (ja) 接合体および弾性波素子
WO2021002046A1 (ja) 接合体および弾性波素子
JP6393015B1 (ja) 弾性波素子およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019531181

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207027020

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19776204

Country of ref document: EP

Kind code of ref document: A1