WO2019188291A1 - エポキシ樹脂組成物及びその硬化物 - Google Patents

エポキシ樹脂組成物及びその硬化物 Download PDF

Info

Publication number
WO2019188291A1
WO2019188291A1 PCT/JP2019/010276 JP2019010276W WO2019188291A1 WO 2019188291 A1 WO2019188291 A1 WO 2019188291A1 JP 2019010276 W JP2019010276 W JP 2019010276W WO 2019188291 A1 WO2019188291 A1 WO 2019188291A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
pitch
formula
short fibers
Prior art date
Application number
PCT/JP2019/010276
Other languages
English (en)
French (fr)
Inventor
大神 浩一郎
梶 正史
山田 尚史
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Priority to JP2020509869A priority Critical patent/JPWO2019188291A1/ja
Publication of WO2019188291A1 publication Critical patent/WO2019188291A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to an epoxy resin composition and a cured product excellent in thermal conductivity, fluidity and moldability.
  • Epoxy resins are used in a wide range of industrial applications, but their required performance is becoming increasingly sophisticated. Under such circumstances, in semiconductor devices that are being developed in recent years, further improvement in the power density of the devices is required, and as a result, the temperature of the chip surface during operation reaches 200 ° C. or more, Development of peripheral materials that can withstand the temperature is desired. And in order to solve the subject derived from such heat, development of the material which is excellent in heat dissipation is desired.
  • carbon fibers are said to be superior in thermal conductivity compared to other synthetic polymers, and in recent years, high heat dissipation materials using these carbon fibers have been studied.
  • the thermal conductivity of polyacrylonitrile (PAN) -based carbon fibers is about 200 W / m ⁇ K
  • pitch-based carbon fibers are more thermally conductive than PAN-based carbon fibers. It is said to be about 900 W / m ⁇ K. For this reason, attention is focused on the study of high heat dissipation materials using pitch-based carbon fibers.
  • Patent Documents 1 and 2 disclose pitch-based graphitized short fibers using a thermoplastic resin as a base resin, and a heat conductive composition containing graphite particles. It has been shown to be excellent in resistance.
  • the thermoplastic resins represented by the polycarbonate resins shown in Patent Documents 1 and 2 are high molecular weight polymers, and thus have a high melt viscosity, and there is a problem in achieving both moldability and thermal conductivity.
  • patent document 1 mentions the thermosetting resin in addition to the detailed examination which uses polycarbonate resin as a thermoplastic resin, the concrete examination was not performed.
  • An object of the present invention is an epoxy resin composition useful for a molding material that gives a cured product excellent in thermal conductivity, fluidity, moldability, etc., in applications such as molding, casting, lamination, adhesion and the like that require high heat dissipation. It is to provide a product and to provide a cured product thereof.
  • the present invention provides an epoxy resin composition
  • an epoxy resin composition comprising an epoxy resin, a curing agent, pitch-based graphitized short fibers, and graphite particles as essential components, and the total content of pitch-based graphitized short fibers and graphite particles is 60 to 90 wt. % Epoxy resin composition.
  • the content of pitch-based graphitized short fibers is preferably 5 to 80% by weight and the content of graphite particles is 20 to 20% with respect to the total of pitch-based graphitized short fibers and graphite particles. It is good that it is 95 weight%.
  • the epoxy resin preferably has a melt viscosity at 150 ° C. of 0.001 to 1.0 Pa ⁇ s.
  • the epoxy resin may be an epoxy resin represented by the following general formula (1) or (2).
  • R 1 and R 2 represent hydrogen or a hydrocarbon group having 1 to 6 carbon atoms
  • A represents —C (CH 3 ) 2 —, —CH 2 —, —O—, —S -, -SO 2- , or a single bond
  • G is a glycidyl group
  • m is a number from 0 to 10.
  • R 1, G has the same meaning as R 1, G in formula (1).
  • n represents a number from 1 to 20.
  • the curing agent may be a polyvalent hydroxy compound represented by the following general formula (3) or (4).
  • R 1 has the same meaning as R 1 in Formula (1)
  • n is synonymous with n in formula (2).
  • R 1, R 2 and A have the same meanings as R 1, R 2 and A in Formula (1).
  • the average fiber length of the pitch-based graphitized short fibers is preferably 300 ⁇ m or less.
  • this invention is a hardened
  • the epoxy resin composition of the present invention is excellent in thermal conductivity and fluidity, and gives an epoxy resin composition and a cured product excellent in moldability, and can be suitably used for heat dissipation material applications.
  • the total of pitch-based graphitized short fibers and graphite particles in the composition is 60 to 90% by weight. If the total of pitch-based graphitized short fibers and graphite particles is less than 60% by weight, thermal conductivity cannot be expected. On the other hand, when the total of the pitch-based graphitized short fibers and the graphite particles exceeds 90% by weight, the fluidity of the epoxy resin composition is lowered and the moldability tends to be lowered. More preferably, it is 70 to 90% by weight.
  • the epoxy resin composition of the present invention has a pitch-based graphitized short fiber content of 5 to 80% by weight and a graphite particle content of 20-95 based on the total of pitch-based graphitized short fibers and graphite particles. % By weight.
  • a pitch-based graphitized short fiber content of 5 to 80% by weight
  • a graphite particle content of 20-95 based on the total of pitch-based graphitized short fibers and graphite particles. % By weight.
  • the pitch-based graphitized short fibers are less than 5% by weight, the heat conductivity cannot be expected because the content of the short fibers having higher heat conductivity is reduced. Further, when the pitch-based short fibers exceed 80% by weight, the graphite particles filled between the short fibers are reduced, and the short fibers are easily oriented in the XY axis direction, so that the thermal conductivity in the Z axis direction is difficult to develop. .
  • the content of pitch-based graphitized short fibers is more preferably 5 to 50% by weight, and the content of graphite particles is 50 to 95% by weight.
  • Pitch-based graphitized short fibers and graphite particles In order to improve the thermal conductivity of the cured product, it is necessary to highly fill a filler having excellent thermal conductivity. Pitch-based graphitized short fibers and graphite particles generally exhibit high thermal conductivity. In order to obtain an epoxy resin cured product having excellent thermal conductivity, the thermal conductivity of pitch-based graphitized short fibers is preferably 500 W / m ⁇ K or more. The thermal conductivity of the graphite particles is preferably 150 W / m ⁇ K or more.
  • the average pitch length of the pitch-based graphitized short fibers is 300 ⁇ m or less. As the average fiber length is longer, the filling property tends to be inferior, and the thermal conductivity may not be exhibited as expected. Moreover, since it is inferior to fluidity
  • the average particle size of soot graphite particles is 1 to 20 ⁇ m.
  • the average particle diameter is less than 1 ⁇ m, the viscosity when dispersed with the resin increases, it becomes difficult to uniformly disperse the graphite particles in the resin, and it becomes difficult to obtain a cured product having excellent thermal conductivity.
  • the average particle diameter exceeds 20 ⁇ m, the graphite particles are hardly filled in the gaps between the pitch-based graphitized short fibers and the dispersibility is lowered, and the thermal conductivity is greatly lowered.
  • the thickness is preferably 5 to 20 ⁇ m.
  • soot graphite particle Although there is no limitation in particular as a soot graphite particle, As a specific example, massive graphite, scale-like graphite, earth-like graphite, expanded graphite, etc. are mentioned as natural graphite, Pyrolytic graphite etc. are mentioned as artificial graphite.
  • the pitch-based graphitized short fibers may be subjected to a surface treatment or a sizing treatment for the purpose of further improving the affinity with the resin component and improving the handling properties. Further, sizing treatment may be performed after surface treatment as necessary.
  • the surface treatment method is not particularly limited, and specific examples include electrodeposition treatment, plating treatment, ozone treatment, plasma treatment, and acid treatment.
  • the sizing agent used for the sizing treatment is not particularly limited, and specifically, an epoxy compound, a water-soluble polyamide compound, a saturated polyester, an unsaturated polyester, vinyl acetate, alcohol, and glycol can be used alone or in a mixture thereof.
  • the sizing agent may be attached in an amount of 0.01 to 10% by weight based on the graphitized short fibers. A preferable adhesion amount is 0.1 to 2.5% by weight.
  • epoxy resin all normal epoxy resins having two or more epoxy groups in the molecule can be used.
  • examples include bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4 ′ -biphenol, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxybiphenyl, resorcin, naphthalenediols Trivalent or more epoxides of divalent phenols such as tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolak, o-cresol novolak, etc.
  • These epoxy resins can be used alone or in combination of two or more.
  • an epoxy resin represented by the following general formula (1) or (2) is preferable from the viewpoint of improving thermal conductivity and fluidity.
  • R 1 and R 2 represent hydrogen or a hydrocarbon group having 1 to 6 carbon atoms
  • A represents —C (CH 3 ) 2 —, —CH 2 —, —O—, —S -, -SO 2- , or a single bond
  • G is a glycidyl group
  • m is a number from 0 to 10.
  • R 1, G has the same meaning as R 1, G in formula (1).
  • n represents a number from 1 to 20.
  • the bisphenol type epoxy resin represented by the general formula (1) is excellent in low viscosity, it becomes possible to highly fill graphitized short fibers and graphite particles, and an improvement in thermal conductivity can be expected. In addition, fluidity can be improved due to low viscosity.
  • a compound in which A is represented by —O— is preferable because of excellent thermal conductivity of the resin itself.
  • m is a number from 0 to 10, and is preferably from 0 to 5 because it is excellent in low viscosity and can be expected to improve thermal conductivity and fluidity.
  • the average number (number average) of m is 0.5 to 4.0.
  • the epoxy resin can be produced by reacting a polyvalent hydroxy resin and epichlorohydrin. This reaction can be performed in the same manner as a normal epoxidation reaction. For example, after dissolving a polyvalent hydroxy resin in excess epichlorohydrin, the reaction is carried out at 50 to 150 ° C., preferably 60 to 120 ° C. for 1 to 10 hours in the presence of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide. The method of letting it be mentioned. At this time, the amount of the alkali metal hydroxide used is 0.8 to 1.2 mol, preferably 0.9 to 1.0 mol, based on 1 mol of the hydroxyl group in the polyvalent hydroxy compound.
  • Epichlorohydrin is used in excess with respect to the hydroxyl group in the polyvalent hydroxy resin, but is usually 1.5 to 15 mol, preferably 2 to 8 mol, based on 1 mol of the hydroxyl group in the polyvalent hydroxy compound. After completion of the reaction, excess epichlorohydrin is distilled off, and the residue is dissolved in a solvent such as toluene, methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the solvent is distilled off to obtain an epoxy resin. Can be obtained.
  • a solvent such as toluene, methyl isobutyl ketone
  • the epoxy equivalent is preferably 100 to 500 g / eq. Can be used.
  • the softening point or melting point of the epoxy resin can be easily adjusted by changing the molar ratio of the biphenols and the cross-linking agent when synthesizing the polyvalent hydroxy resin that is the raw material of the epoxy resin, but the mixing treatment of the epoxy resin composition
  • the softening point or melting point is preferably 130 ° C. or lower, more preferably 120 ° C. or lower, from the viewpoint of suppressing deterioration in physical properties due to undissolved remaining high melting point components. When the softening point or melting point is higher than this, physical properties such as curability and heat resistance tend to be lowered.
  • the melt viscosity at 150 ° C. of the epoxy resin used in the present invention is 0.001 to 1.0 Pa ⁇ s from the viewpoint of kneadability when making an epoxy resin composition and improving the fluidity of the epoxy resin composition during molding.
  • the range of is preferable. In order to highly fill pitch-based graphitized short fibers and graphite particles, the range of 0.001 to 0.5 Pa ⁇ s is more preferable, and the range of 0.001 to 0.1 Pa ⁇ s is more preferable. If the melt viscosity is higher than this, the kneadability, fluidity, moldability and the like tend to be lowered.
  • the epoxy resin composition of the present invention contains pitch-based graphitized short fibers and graphite particles, and contains an epoxy resin and a curing agent as essential components.
  • polyhydric phenols As the curing agent, polyhydric phenols, dicyandiamide, aromatic and aliphatic amines, acid anhydrides and the like which are general as epoxy resin curing agents can be used. Of these, polyhydric phenols are preferably used as curing agents. Below, the specific example of a hardening
  • polyhydric phenol curing agent examples include bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, dihydric phenols such as hydroquinone, resorcin, catechol, biphenols, naphthalenediols, tris- (4 -Hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolak, o-cresol novolak, naphthol novolak, dicyclopentadiene type phenol resin, phenol aralkyl resin 3 More than the number of phenols, further phenols, naphthols, or bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4 ′ -biphenol, 2,2′-biphenol, Dihydric phenols such as idroquinone, resorcin, catechol, naphthalenediol and formaldehyde, ace
  • a polyvalent hydroxy compound represented by the following general formula (3) or (4) is preferable from the viewpoint of improving thermal conductivity.
  • R 1 has the same meaning as R 1 in Formula (1)
  • n is synonymous with n in formula (2).
  • R 1, R 2 and A have the same meanings as R 1, R 2 and A in Formula (1).
  • the crosslinking density of the cured product is increased, the degree of orientation of the molded product is increased, and an improvement in thermal conductivity can be expected.
  • the bisphenol compound represented by the general formula (4) is excellent in low viscosity, it becomes possible to highly fill graphitized short fibers and graphite particles, and an improvement in thermal conductivity can be expected. In addition, fluidity can be improved due to low viscosity.
  • amine-based curing agent examples include aliphatic amines, polyether polyamines, alicyclic amines, aromatic amines and the like, preferably aromatic diamines such as tetrachloro- p-xylenediamine, m-xylenediamine, p-xylenediamine, m-phenylenediamine, p-phenylenediamine, 4,4 '-diaminodiphenylmethane, 4,4' -diamino-1,2'-diphenylethane, 4,4 Examples include ' ⁇ -diaminodiphenylsulfone, diaminodiethyldimethyldiphenylmethane, ⁇ , ⁇ '-bis (4-aminophenyl) -p-diisopropylbenzene.
  • aromatic diamines such as tetrachloro- p-xylenediamine, m-xylenediamine
  • the acid anhydride curing agent examples include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, 3,3 ′, 4,4 ′ -diphenylsulfone tetracarboxylic anhydride 3,3 ′, 4,4 ′ -diphenyl ether tetracarboxylic acid anhydride and the like.
  • one or more of these curing agents can be mixed and used.
  • the amount of the curing agent is blended in consideration of an equivalent balance between the epoxy group in the epoxy resin and the functional group of the curing agent (a hydroxyl group in the case of polyhydric phenols).
  • the equivalent ratio of the epoxy resin and the curing agent is usually in the range of 0.2 to 5.0, preferably in the range of 0.5 to 2.0, and more preferably in the range of 0.8 to 1.5. It is. If it is larger or smaller than this, the curability of the epoxy resin composition is lowered, and the heat resistance, mechanical strength and the like of the cured product are lowered.
  • a curing accelerator can be used in the epoxy resin composition of the present invention as necessary.
  • examples include amines, imidazoles, organic phosphines, Lewis acids, etc., specifically 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, Tertiary amines such as ethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 2- Imidazoles such as heptadecylimidazole, organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, and phenylphosphine, tetraphenylphosphonium tetraphenylbor
  • inorganic fillers can be used in combination as long as the effects of the present invention are not impaired.
  • examples of the inorganic filler include silica powder such as spherical or crushed fused silica and crystalline silica, alumina powder, glass powder, or mica, talc, calcium carbonate, alumina, hydrated alumina, and the like.
  • the content thereof is preferably less than 30% by weight, more preferably less than 10% by weight in the composition.
  • These other inorganic fillers are preferably those having higher thermal conductivity so as not to hinder the effects of pitch-based graphitized short fibers and graphite particles.
  • it is 20 W / m ⁇ K or more, more preferably 50 W / m ⁇ K or more.
  • inorganic fillers having such thermal conductivity include inorganic powder fillers such as boron nitride, aluminum nitride, silicon nitride, silicon carbide, titanium nitride, zinc oxide, tungsten carbide, alumina, and magnesium oxide. It is done.
  • an oligomer or a polymer compound such as polyester, polyamide, polyimide, polyether, polyurethane, petroleum resin, indene resin, indene-coumarone resin, phenoxy resin, etc. is used as another modifier. You may mix
  • the addition amount is usually in the range of 2 to 30 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • the epoxy resin composition of the present invention may contain additives such as pigments, refractory agents, thixotropic agents, coupling agents, fluidity improvers and the like.
  • pigment examples include organic or inorganic extender pigments, scaly pigments, and the like.
  • thixotropic agent examples include silicon-based, castor oil-based, aliphatic amide wax, polyethylene oxide wax, and organic bentonite.
  • the resin composition of the present invention includes a release agent such as carnauba wax and OP wax, a coupling agent such as ⁇ -glycidoxypropyltrimethoxysilane, a colorant such as carbon black, and trioxide. Flame retardants such as antimony and lubricants such as calcium stearate can be used.
  • the epoxy resin composition of the present invention can also be used in a varnish state (referred to as varnish) in which a part or all of the epoxy resin composition is dissolved in an organic solvent. It is not necessary to dissolve the pitch-based graphitized short fibers and graphite particles, but it is desirable that the pitch-based graphitized short fibers and the graphite particles be suspended to form a graded and uniform solution. It is desirable to dissolve all of the epoxy resin in the resin composition. If a part of the epoxy resin in the varnish becomes a solid and separates, the properties of the cured product are inferior.
  • the epoxy resin composition of the present invention contains essential components such as pitch-based graphitized short fibers and graphite particles, and is preferably made into a composition (varnish) in which the resin component is dissolved in a solvent.
  • a fibrous base material such as an aramid non-woven fabric or a liquid crystal polymer polyester non-woven fabric and then removing the solvent, a prepreg in which the epoxy resin composition and the fibrous base material are combined can be obtained. .
  • it can be set as a laminated body by apply
  • it can be set as a laminated body also by laminating
  • the epoxy resin composition of the present invention is cured by heating, an epoxy resin cured product can be obtained, and this cured product is excellent in terms of low hygroscopicity, high heat resistance, adhesion, flame retardancy, and the like. Become.
  • This cured product can be obtained by molding the epoxy resin composition by a method such as casting, compression molding, transfer molding or the like. The temperature at this time is usually in the range of 120 to 220 ° C.
  • Epoxy resin A Glucidyl etherified product of 4,4′-dihydroxydiphenyl ether (YSLV-80DE manufactured by Nippon Steel Chemical & Materials, epoxy equivalent of 163 g / eq., Melt viscosity at 150 ° C. 0.006 Pa ⁇ s)
  • Epoxy resin B Phenol novolak glycidyl etherified product (YDPN-6300, manufactured by Nippon Steel Chemical & Materials, epoxy equivalent of 174 g / eq., Melt viscosity at 150 ° C.
  • Epoxy resin C bisphenol A type epoxy resin (YD-128, manufactured by Nippon Steel Chemical & Materials, epoxy equivalent of 190 g / eq., Melt viscosity at 150 ° C. of 0.01 Pa ⁇ s)
  • Epoxy resin D bisphenol A type epoxy resin (YD-011 manufactured by Nippon Steel Chemical & Materials, epoxy equivalent: 475 g / eq., Melt viscosity at 150 ° C .: 1.8 Pa ⁇ s)
  • Curing agent A Phenol novolak (manufactured by Aika Industries, OH equivalent 105)
  • Curing agent B 4,4′-dihydroxydiphenyl ether (Reagent manufactured by Tokyo Chemical Industry Co., Ltd., OH equivalent 101)
  • Filler pitch-based graphitized short fiber average fiber length 100 ⁇ m, thermal conductivity 900 W / m ⁇ K
  • Graphite particles average particle size 16 ⁇ m, thermal conductivity 200 W / m ⁇ K
  • Curing accelerator Triphenylphosphine (Tokyo Chemical Industry Reagent)
  • the epoxy resin composition was prepared by kneading with the blending amounts shown in Table 1.
  • the filler content in the table is the total amount (% by weight) of pitch-based graphitized short fibers and graphite particles in the composition.
  • surface shows the weight part in a mixing
  • the mixing ratio of the epoxy resin and the curing agent was 1.0 for the epoxy resin / curing agent functional group equivalent ratio.
  • Test conditions for the epoxy resin, the epoxy resin composition and the cured product are shown below.
  • Thermal conductivity of the molded product was measured by an unsteady hot wire method using an LFA447 type thermal conductivity meter manufactured by NETZSCH.
  • the epoxy resin composition of the present invention can be suitably used for various uses such as molding, casting, lamination, adhesion and the like that require high heat dissipation, and particularly for heat dissipation materials for power semiconductor devices.

Abstract

高放熱性が求められる成形、注型、積層、接着等の用途において、熱伝導性、流動性、成形性等に優れた硬化物を与える成形材料に有用なエポキシ樹脂組成物を提供すること、及びその硬化物を提供する。 エポキシ樹脂、硬化剤、ピッチ系黒鉛化短繊維及び黒鉛粒子を必須成分としてなるエポキシ樹脂組成物において、ピッチ系黒鉛化短繊維及び黒鉛粒子の合計含有率が60~90重量%であるエポキシ樹脂組成物。

Description

エポキシ樹脂組成物及びその硬化物
 本発明は、熱伝導性、流動性および成形性に優れるエポキシ樹脂組成物及び硬化物に関する。
 エポキシ樹脂は工業的に幅広い用途で使用されているが、その要求性能はますます高度化している。この様な中で、近年開発が進められている半導体デバイスにおいては、デバイスのパワー密度の更なる向上が求められており、その結果、動作時のチップ表面の温度は200℃以上にも達し、その温度に耐え得る周辺材料の開発が望まれている。そして、このような熱に由来する課題を解決するために、放熱性に優れる材料開発が望まれている。
 一般に炭素繊維は、他の合成高分子と比較して熱伝導性に優れると言われており、近年、この炭素繊維を用いた高放熱材料の検討が行われている。市販されている炭素繊維の中では、ポリアクリロニトリル(PAN)系炭素繊維の熱伝導率は200W/m・K程度であり、一方、ピッチ系炭素繊維は、PAN系炭素繊維に比べて熱伝導率が高く900W/m・K程度と言われている。このため、ピッチ系炭素繊維を用いた高放熱材料の検討が着目されている。
 このような中、特許文献1、2には、ベース樹脂として熱可塑性樹脂を用いたピッチ系黒鉛化短繊維、黒鉛粒子を含む熱伝導性組成物が開示されており、熱伝導性、電気比抵抗に優れることが示されている。しかしながら、特許文献1、2に示されるポリカーボネート樹脂に代表される熱可塑性樹脂は、高分子量ポリマーであることから溶融粘度が高く、成形性と熱伝導性の両立に課題があった。また、熱伝導性を担う黒鉛化短繊維や黒鉛粒子を高充填することが難しく、熱伝導率向上の面でも課題があった。なお、特許文献1は、熱可塑性樹脂としてポリカーボネート樹脂を使用した詳細な検討に加えて、熱硬化性樹脂にも言及しているものの、具体的な検討は行われていなかった。
特開2012-188488号公報 特開2013-256578号公報
 本発明の目的は、高放熱性が求められる成形、注型、積層、接着等の用途において、熱伝導性、流動性、成形性等に優れた硬化物を与える成形材料に有用なエポキシ樹脂組成物を提供すること、及びその硬化物を提供することにある。
  すなわち、本発明は、エポキシ樹脂、硬化剤、ピッチ系黒鉛化短繊維及び黒鉛粒子を必須成分としてなるエポキシ樹脂組成物において、ピッチ系黒鉛化短繊維及び黒鉛粒子の合計含有率が60~90重量%であることを特徴とするエポキシ樹脂組成物である。
  上記エポキシ樹脂組成物において、ピッチ系黒鉛化短繊維及び黒鉛粒子の合計に対し、ピッチ系黒鉛化短繊維の含有率が5~80重量%であることがよく、黒鉛粒子の含有率が20~95重量%であることがよい。
  上記エポキシ樹脂組成物において、エポキシ樹脂の150℃での溶融粘度が、0.001~1.0Pa・sであることがよい。
  エポキシ樹脂は、下記一般式(1)又は(2)で表されるエポキシ樹脂であることがよい。
Figure JPOXMLDOC01-appb-C000005
 
 式(1)において、R、Rは、水素又は炭素数1~6の炭化水素基を示し、Aは、-C(CH3)2-、-CH2-、-O-、-S-、-SO2-、または単結合であり、Gは、グリシジル基であり、mは0~10の数を示す。
Figure JPOXMLDOC01-appb-C000006
 
 式(2)において、R、Gは、式(1)におけるR、Gと同義である。nは1~20の数を示す。
  硬化剤は、下記一般式(3)又は(4)で表される多価ヒドロキシ化合物であることがよい。
Figure JPOXMLDOC01-appb-C000007
 
 式(3)において、Rは式(1)におけるRと同義であり、nは式(2)におけるnと同義である。
Figure JPOXMLDOC01-appb-C000008
 
 式(4)において、R、R及びAは、式(1)におけるR、R及びAと同義である。
  上記エポキシ樹脂組成物において、ピッチ系黒鉛化短繊維の平均繊維長が300μm以下であることがよい。
 更に本発明は、上記のエポキシ樹脂組成物を加熱硬化してなる硬化物である。
  本発明のエポキシ樹脂組成物は、熱伝導性、流動性に優れるとともに、成形性に優れるエポキシ樹脂組成物および硬化物を与え、放熱材料用途に好適に使用することが可能である。
  本発明のエポキシ樹脂組成物は、組成物中におけるピッチ系黒鉛化短繊維と黒鉛粒子の合計が60~90重量%である。ピッチ系黒鉛化短繊維と黒鉛粒子の合計が60重量%未満だと、熱伝導性が期待できない。逆にピッチ系黒鉛化短繊維と黒鉛粒子の合計が90重量%を超えると、エポキシ樹脂組成物の流動性が低くなり、成形性が低下する傾向にある。より好ましくは70~90重量%である。
  本発明のエポキシ樹脂組成物は、ピッチ系黒鉛化短繊維及び黒鉛粒子の合計に対し、ピッチ系黒鉛化短繊維の含有率が5~80重量%であり、黒鉛粒子の含有率が20~95重量%である。ピッチ系黒鉛化短繊維と黒鉛粒子の含有率がこの範囲にある場合、黒鉛粒子、ピッチ系黒鉛化短繊維を単独で使用した場合と比較して熱伝導性に優れたエポキシ樹脂組成物が得られる。これは短繊維と黒鉛粒子を併用することで、短繊維がZ軸方向にも配向し易くなると考えられるためである。ピッチ系黒鉛化短繊維が5重量%未満の場合、より熱伝導性の高い短繊維の含有率が低くなるため熱伝導性が期待できない。またピッチ系短繊維が80重量%を超える場合、短繊維の間に充填される黒鉛粒子が減少し、短繊維はXY軸方向に配向し易くなるためZ軸方向の熱伝導性は発現し難い。ピッチ系黒鉛化短繊維の含有率は、より好ましくは5~50重量%であり、黒鉛粒子の含有率は50~95重量%である。
  硬化物の熱伝導率を向上させるには、熱伝導性に優れるフィラーを高充填する必要がある。ピッチ系黒鉛化短繊維および黒鉛粒子は一般的に高い熱伝導性を示す。熱伝導性に優れるエポキシ樹脂硬化物を得るには、ピッチ系黒鉛化短繊維の熱伝導率は500W/m・K以上が好ましい。また、黒鉛粒子の熱伝導率は150W/m・K以上であることが好ましい。      
  ピッチ系黒鉛化短繊維は平均繊維長が300μm以下であることが好ましい。平均繊維長が長い程、充填性に劣る傾向にあり、熱伝導性が期待ほど発現しないことがある。また、流動性にも劣るため、成形性も低下する傾向にある。より好ましくは200μm以下、さらに好ましくは150μm以下である。
  黒鉛粒子の平均粒子径は1~20μmである。平均粒子径が1μmを下回ると、樹脂と分散した時の粘度が高くなり、黒鉛粒子を樹脂に均一に分散するのが困難となり、熱伝導性に優れる硬化物を得るのが困難になる。平均粒子径が20μmを超えると、黒鉛粒子がピッチ系黒鉛化短繊維同士の隙間に充填されにくくなって分散性が低下する事になり、熱伝導性の低下が大きくなる。好ましくは5~20μmである。
  黒鉛粒子として特に限定は無いが、好ましい具体例として天然黒鉛として塊状黒鉛、鱗片状黒鉛、土状黒鉛、膨張黒鉛等が挙げられ、人造黒鉛として熱分解黒鉛等が挙げられる。
  本発明においてピッチ系黒鉛化短繊維は、樹脂成分との親和性をより高め、ハンドリング性の向上を目的として、表面処理やサイジング処理をしても良い。また、必要に応じて表面処理した後にサイジング処理をしても良い。表面処理の方法として特に限定は無いが、具体的には、電着処理、めっき処理、オゾン処理、プラズマ処理、酸処理などが挙げられる。サイジング処理に用いるサイジング剤に特に限定は無いが、具体的にはエポキシ化合物、水溶性ポリアミド化合物、飽和ポリエステル、不飽和ポリエステル、酢酸ビニル、アルコール、グリコールを単独又はこれらの混合物で用いることができる。サイジング剤は黒鉛化短繊維に対し0.01~10重量%、付着させても良い。好ましい付着量は0.1~2.5重量%である。
  次に、本発明のエポキシ樹脂組成物に用いるエポキシ樹脂について述べる。
 エポキシ樹脂としては、分子中にエポキシ基を2個以上有する通常のエポキシ樹脂をすべて使用できる。例を挙げれば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4' -ビフェノール、3,3',5,5’-テトラメチル-4,4’-ジヒドロキシビフェニル、レゾルシン、ナフタレンジオール類等の2価のフェノール類のエポキシ化物、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノールノボラック、o-クレゾールノボラック等の3価以上のフェノール類のエポキシ化物、ジシクロペンタジエンとフェノール類から得られる共縮合樹脂のエポキシ化物、クレゾール類とホルムアルデヒドとアルコキシ基置換ナフタレン類から得られる共縮合樹脂のエポキシ化物、フェノール類とパラキシリレンジクロライド等から得られるフェノールアラルキル樹脂のエポキシ化物、フェノール類とビスクロロメチルビフェニル等から得られるビフェニルアラルキル型フェノール樹脂のエポキシ化物、ナフトール類とパラキシリレンジクロライド等から合成されるナフトールアラルキル樹脂類のエポキシ化物等がある。これらのエポキシ樹脂は、1種又は2種以上を混合して用いることができる。
 上記の中でも、下記一般式(1)又は(2)で表されるエポキシ樹脂が熱伝導性および流動性向上の観点から好ましい。
Figure JPOXMLDOC01-appb-C000009
 
 式(1)において、R、Rは、水素又は炭素数1~6の炭化水素基を示し、Aは、-C(CH3)2-、-CH2-、-O-、-S-、-SO2-、または単結合であり、Gは、グリシジル基であり、mは0~10の数を示す。
Figure JPOXMLDOC01-appb-C000010
 
 式(2)において、R、Gは、式(1)におけるR、Gと同義である。nは1~20の数を示す。
 一般式(1)で表されるビスフェノール型エポキシ樹脂は、低粘度性に優れることから、黒鉛化短繊維および黒鉛粒子を高充填化することが可能となり、熱伝導性向上が期待できる。また、低粘度性に起因して流動性向上も期待できる。
 特に、Aが-O-で表される化合物が樹脂自体の熱伝導性にも優れ好ましい。また、mは0~10の数であるが、0~5であると低粘度性に優れ、熱伝導性および流動性向上が期待できるため好ましい。mの平均数(数平均)は、0.5~4.0である。
 一般式(2)で表される多官能エポキシ樹脂は狭分散エポキシ樹脂であることが好ましい。具体的には、ゲルパーミエーションクロマトグラフィーで測定した面積%でn=1成分が15%以下であり、n=2及びn=3成分の合計が50%以上であり、Mw/Mnが1.5以下である。低分子量のn=2及びn=3成分が主成分であるため、低粘度性に優れ、熱伝導性および流動性向上が期待できる。nの平均数(数平均)は、1.5~3.5である。
 エポキシ樹脂は、多価ヒドロキシ樹脂とエピクロルヒドリンとを反応させることにより製造することができる。この反応は、通常のエポキシ化反応と同様に行うことができる。例えば、多価ヒドロキシ樹脂を過剰のエピクロルヒドリンに溶解した後、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の存在下に50~150℃、好ましくは60~120℃で1~10時間反応させる方法が挙げられる。この際、アルカリ金属水酸化物の使用量は、多価ヒドロキシ化合物中の水酸基1モルに対し、0.8~1.2モル、好ましくは0.9~1.0モルである。また、エピクロルヒドリンは多価ヒドロキシ樹脂中の水酸基に対して過剰に用いられるが、通常多価ヒドロキシ化合物中の水酸基1モルに対し、1.5~15モル、好ましくは2~8モルである。反応終了後、過剰のエピクロルヒドリンを留去し、残留物をトルエン、メチルイソブチルケトン等の溶剤に溶解し、濾過し、水洗して無機塩を除去し、次いで溶剤を留去することにより、エポキシ樹脂を得ることができる。なお、エポキシ化する際に、生成したエポキシ化合物のエポキシ基が開環、縮合してオリゴマー化したエポキシ化合物が少量副生する場合が、かかるエポキシ化合物が存在しても差し支えない。
 エポキシ当量は、好ましくは100~500g/eq.のものを使用できる。
 エポキシ樹脂の軟化点又は融点は、エポキシ樹脂原料である多価ヒドロキシ樹脂を合成する際のビフェノール類と架橋剤のモル比を変えることにより容易に調整可能であるが、エポキシ樹脂組成物の混合処理する際の高融点成分の溶け残りによる物性低下を抑制する観点より、その軟化点又は融点は130℃以下が好ましく、さらに好ましくは120℃以下である。これより軟化点又は融点が高い場合、硬化性や耐熱性等の物性低下を生じる傾向にある。
 本発明に用いるエポキシ樹脂の150℃での溶融粘度は、エポキシ樹脂組成物とする際の混練性、成形時のエポキシ樹脂組成物の流動性向上の観点より、0.001~1.0Pa・sの範囲が好ましい。ピッチ系黒鉛化短繊維及び黒鉛粒子を高充填させるためには、0.001~0.5Pa・sの範囲がより好ましく、さらに好ましくは0.001~0.1Pa・sの範囲である。これより溶融粘度が高い場合、混練性、流動性、成形性等の低下を生じる傾向にある。
 本発明のエポキシ樹脂組成物は、ピッチ系黒鉛化短繊維及び黒鉛粒子を含有し、かつ、エポキシ樹脂と硬化剤を必須成分とする。
 硬化剤としては、エポキシ樹脂の硬化剤として一般的な多価フェノール類、ジシアンジアミド、芳香族及び脂肪族アミン類、酸無水物類等が使用できる。この中でも多価フェノール類を硬化剤として用いることが好ましい。以下に、硬化剤の具体例を示す。
 多価フェノール系硬化剤の具体例としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、ハイドロキノン、レゾルシン、カテコール、ビフェノール類、ナフタレンジオール類等の2価のフェノール類、更にはトリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノールノボラック、o-クレゾールノボラック、ナフトールノボラック、ジシクロペンタジエン型フェノール樹脂、フェノールアラルキル樹脂等に代表される3価以上のフェノール類、更にはフェノール類、ナフトール類又は、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4' -ビフェノール、2,2'-ビフェノール、ハイドロキノン、レゾルシン、カテコール、ナフタレンジオール類等の2価のフェノール類とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、p-キシリレングリコール、p-キシリレングリコールジメチルエーテル、ジビニルベンゼン、ジイソプロペニルベンゼン、ジメトキシメチルビフェニル類、ジビニルビフェニル、ジイソプロペニルビフェニル類等の架橋剤との反応により合成される多価フェノール性化合物、フェノール類とビスクロロメチルビフェニル等から得られるビフェニルアラルキル型フェノール樹脂、ナフトール類とパラキシリレンジクロライド等から合成されるナフトールアラルキル樹脂類等が挙げられる。
 上記の中でも、下記一般式(3)又は(4)で表される多価ヒドロキシ化合物が熱伝導性向上の観点から好ましい。
Figure JPOXMLDOC01-appb-C000011
 
 式(3)において、Rは式(1)におけるRと同義であり、nは式(2)におけるnと同義である。
Figure JPOXMLDOC01-appb-C000012
 
 式(4)において、R、R及びAは、式(1)におけるR、R及びAと同義である。
 一般式(3)で表される多価ヒドロキシ化合物を用いた場合、硬化物の架橋密度が上昇し、成形物の配向度が高くなり熱伝導性向上が期待できる。
 一般式(4)で表されるビスフェノール化合物は、低粘度性に優れることから、黒鉛化短繊維および黒鉛粒子を高充填化することが可能となり、熱伝導性向上が期待できる。また、低粘度性に起因して流動性向上も期待できる。
 アミン系硬化剤の具体例としては、脂肪族アミン類、ポリエーテルポリアミン類、脂環式アミン類、芳香族アミン類等が挙げられるが、好ましくは芳香族ジアミン類であり、例えば、テトラクロロ‐p‐キシレンジアミン、m‐キシレンジアミン、p‐キシレンジアミン、m‐フェニレンジアミン、p‐フェニレンジアミン、4,4' -ジアミノジフェニルメタン、4,4' -ジアミノ‐1,2 -ジフェニルエタン、4,4' -ジアミノジフェニルスルホン、ジアミノジエチルジメチルジフェニルメタン、α,α’‐ビス(4‐アミノフェニル)‐p‐ジイソプロピルベンゼン等を挙げることができる。
 酸無水物系硬化剤の具体例としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、3,3' ,4,4' -ジフェニルスルホンテトラカルボン酸無水物、3,3' ,4,4' -ジフェニルエーテルテトラカルボン酸無水物等が挙げられる。
 本発明のエポキシ樹脂組成物には、これら硬化剤の1種又は2種以上を混合して用いることができる。
 硬化剤の配合量は、エポキシ樹脂中のエポキシ基と硬化剤の官能基(多価フェノール類の場合は水酸基)との当量バランスを考慮して配合する。エポキシ樹脂及び硬化剤の当量比は、通常、0.2~5.0の範囲であり、好ましくは0.5~2.0の範囲であり、さらに好ましくは0.8~1.5の範囲である。これより大きくても小さくても、エポキシ樹脂組成物の硬化性が低下するとともに、硬化物の耐熱性、力学強度等が低下する。
 更に、本発明のエポキシ樹脂組成物には必要に応じて硬化促進剤を用いることができる。例を挙げれば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等があり、具体的には、1,8-ジアザビシクロ(5,4,0)ウンデセン-7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどの三級アミン、2-メチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-へプタデシルイミダゾールなどのイミダゾール類、トリブチルホスフィン、メチルジフェニルホスフイン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィンなどの有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレートなどのテトラ置換ホスホニウム・テトラ置換ボレート、2-エチル-4-メチルイミダゾール・テトラフェニルボレート、N-メチルモルホリン・テトラフェニルボレートなどのテトラフェニルボロン塩などがある。添加量としては、通常、エポキシ樹脂100重量部に対して、0.2~5重量部の範囲である。
 本発明のエポキシ樹脂組成物には、上記必須成分の他に、他の添加剤等を加えることができる。
 ピッチ系黒鉛化短繊維及び黒鉛粒子とともに、本発明の効果を阻害しない限り、その他の無機充填材を併用して配合することもできる。この場合、無機充填材としては、例えば、球状あるいは、破砕状の溶融シリカ、結晶シリカ等のシリカ粉末、アルミナ粉末、ガラス粉末、又はマイカ、タルク、炭酸カルシウム、アルミナ、水和アルミナ等が挙げられる。これら他の無機充填材を配合する場合であっても、その含有量は、組成物中において、好ましくは30重量%未満、より好ましくは10重量%未満である。
 これら他の無機充填材は、ピッチ系黒鉛化短繊維及び黒鉛粒子の効果を阻害しないために、熱伝導率が高いものほど好ましい。好ましくは20W/m・K以上、より好ましくは50W/m・K以上である。
 この様な熱伝導率を有する無機充填材の例としては、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、窒化チタン、酸化亜鉛、炭化タングステン、アルミナ、酸化マグネシウム等の無機粉末充填材等が挙げられる。
 本発明のエポキシ樹脂組成物中には、ポリエステル、ポリアミド、ポリイミド、ポリエーテル、ポリウレタン、石油樹脂、インデン樹脂、インデン・クマロン樹脂、フェノキシ樹脂等のオリゴマー又は高分子化合物を他の改質剤等として適宜配合してもよい。添加量は、通常、エポキシ樹脂100重量部に対して、2~30重量部の範囲である。
 また、本発明のエポキシ樹脂組成物には、顔料、難然剤、揺変性付与剤、カップリング剤、流動性向上剤等の添加剤を配合できる。
 顔料としては、有機系又は、無機系の体質顔料、鱗片状顔料等がある。揺変性付与剤としては、シリコン系、ヒマシ油系、脂肪族アマイドワックス、酸化ポリエチレンワックス、有機ベントナイト系等を挙げることができる。
 更に必要に応じて、本発明の樹脂組成物には、カルナバワックス、OPワックス等の離型剤、γ-グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック等の着色剤、三酸化アンチモン等の難燃剤、ステアリン酸カルシウム等の滑剤等を使用できる。
 本発明のエポキシ樹脂組成物は、有機溶剤に一部又は全部を溶解させたワニス状態(ワニスという。)として使用することもできる。ピッチ系黒鉛化短繊維及び黒鉛粒子などは、それを溶解させる必要はないが、懸濁状態にして、可級的に均一の溶液とすることが望ましい。樹脂組成物中の、エポキシ樹脂は全部を溶解させることが望ましい。ワニス中のエポキシ樹脂の一部が固形物となって分離すると、これの硬化物の特性が劣るものとなる。
 本発明のエポキシ樹脂組成物は、ピッチ系黒鉛化短繊維及び黒鉛粒子等の必須成分を配合し、有利には樹脂分を溶剤に溶解させた状態の組成物(ワニス)とした後に、ガラスクロス、アラミド不織布、液晶ポリマー系のポリエステル不織布等の繊維状の基材に含浸させ、その後に溶剤除去を行うことにより、エポキシ樹脂組成物と繊維状の基材を複合化したプリプレグとすることができる。また、場合により銅箔、ステンレス箔、ポリイミドフィルム、ポリエステルフィルム等のシート状物上に上記ワニスを塗布することにより積層物とすることができる。また、上記プリプレグを複数積層することにより、プリプレグと上記シート状物を積層することによっても、積層物とすることができる。
 本発明のエポキシ樹脂組成物を加熱硬化させれば、エポキシ樹脂硬化物とすることができ、この硬化物は低吸湿性、高耐熱性、密着性、難燃性等の点で優れたものとなる。この硬化物は、エポキシ樹脂組成物を注型、圧縮成形、トランスファー成形等の方法により、成形加工して得ることができる。この際の温度は通常、120~220℃の範囲である。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。実施例及び比較例の樹脂組成物を得るために使用した原料とその略号は以下の通りである。
1.エポキシ樹脂
エポキシ樹脂A:4,4’-ジヒドロキシジフェニルエーテルのグルシジルエーテル化物(YSLV-80DE 日鉄ケミカル&マテリアル製、エポキシ当量163g/eq.、150℃での溶融粘度0.006Pa・s)
エポキシ樹脂B:フェノールノボラックのグルシジルエーテル化物(YDPN-6300 日鉄ケミカル&マテリアル製、エポキシ当量174g/eq.、150℃での溶融粘度0.02Pa・s)
エポキシ樹脂C:ビスフェノールA型エポキシ樹脂(YD-128 日鉄ケミカル&マテリアル製、エポキシ当量190g/eq.、150℃での溶融粘度0.01Pa・s)
エポキシ樹脂D:ビスフェノールA型エポキシ樹脂(YD-011 日鉄ケミカル&マテリアル製、エポキシ当量475g/eq.、150℃での溶融粘度1.8Pa・s)
2.硬化剤
硬化剤A:フェノールノボラック(アイカ工業製、OH当量105)
硬化剤B:4,4’-ジヒドロキシジフェニルエーテル(東京化成工業製試薬、OH当量101)
3.充填剤
ピッチ系黒鉛化短繊維:平均繊維長100μm、熱伝導率900W/m・K
黒鉛粒子:平均粒子径16μm、熱伝導率200W/m・K
4.硬化促進剤
硬化促進剤:トリフェニルホスフィン(東京化成工業製試薬)
実施例1~9、比較例1、2
 上記で示した原料を用いて、表1に示す配合量で混練してエポキシ樹脂組成物を調整した。表中のフィラー含有率は、組成物中におけるピッチ系黒鉛化短繊維と黒鉛粒子の合計量(重量%)である。表中の数値は配合における重量部を示す。エポキシ樹脂と硬化剤の配合比率は全て、エポキシ樹脂/硬化剤の官能基が当量比で1.0とした。
 エポキシ樹脂、エポキシ樹脂組成物及び硬化物の試験条件を次に示す。
1)エポキシ当量
 電位差滴定装置を用い、溶剤としてメチルエチルケトンを使用し、臭素化テトラエチルアンモニウム酢酸溶液を加え、電位差滴定装置にて0.1mol/L過塩素酸-酢酸溶液を用いて測定した。
2)溶融粘度
 BROOKFIELD製、CAP2000H型回転粘度計を用いて、150℃にて測定した。
3)スパイラルフロー
 規格(EMMI-1-66)に準拠したスパイラルフロー測定用金型でエポキシ樹脂組成物をスパイラルフローの注入圧力(150Kgf/cm)、硬化温度170℃、硬化時間3分の条件で成形して流動長を調べた。
4)成形性
 エポキシ樹脂組成物を150Kgf/cmの圧力で成形し、170℃、3分の条件で硬化させ成形物を得た。成形物の表面状態を目視により、〇、△、×の3段階で評価した。〇:凹凸がなく光沢あり、△:所々に凹凸があるものの光沢あり、×:凹凸があり光沢なし
5)ガラス転移点(Tg)
 熱機械的分析装置(TMA測定装置、セイコーインスツル製)を用い、成形物を圧縮モードにおいて、200ml/分の窒素気流下、昇温速度10℃/分で200℃まで昇温、スキャンすることにより求めた。
6)融点
 示差走査熱量分析装置(DSC測定装置、セイコーインスツル製)を用い、50ml/分の窒素気流下、昇温速度10℃/分で220℃まで昇温、スキャンし、成形物の結晶の融点に基づく吸熱ピークにより求めた。
7)熱伝導率
 成形物の熱伝導率は、NETZSCH製LFA447型熱伝導率計を用いて非定常熱線法により測定した。
Figure JPOXMLDOC01-appb-T000013
 
  本発明のエポキシ樹脂組成物は、高放熱性が求められる成形、注型、積層、接着等の各種用途、特にパワー半導体デバイスの放熱材料用途に好適に利用できる。 

Claims (7)

  1.   エポキシ樹脂、硬化剤、ピッチ系黒鉛化短繊維及び黒鉛粒子を必須成分としてなるエポキシ樹脂組成物において、ピッチ系黒鉛化短繊維及び黒鉛粒子の合計含有率が60~90重量%であることを特徴とするエポキシ樹脂組成物。
  2.  ピッチ系黒鉛化短繊維及び黒鉛粒子の合計に対し、ピッチ系黒鉛化短繊維の含有率が5~80重量%であり、黒鉛粒子の含有率が20~95重量%である請求項1に記載のエポキシ樹脂組成物。
  3.   エポキシ樹脂の150℃での溶融粘度が、0.001~1.0Pa・sである請求項1又は2に記載のエポキシ樹脂組成物。
  4.  エポキシ樹脂が、下記一般式(1)又は(2)で表されるエポキシ樹脂である請求項1~3のいずれか一項に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     
     式(1)において、R、Rは、水素又は炭素数1~6の炭化水素基を示し、Aは、-C(CH3)2-、-CH2-、-O-、-S-、-SO2-、または単結合であり、Gは、グリシジル基であり、mは0~10の数を示す。
    Figure JPOXMLDOC01-appb-C000002
     
     式(2)において、R、Gは、式(1)におけるR、Gと同義である。nは1~20の数を示す。
  5.  硬化剤が、下記一般式(3)又は(4)で表される多価ヒドロキシ化合物であることを特徴とする請求項1~4のいずれか一項に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
     
     式(3)において、Rは式(1)におけるRと同義であり、nは式(2)におけるnと同義である。
    Figure JPOXMLDOC01-appb-C000004
     
     式(4)において、R、R及びAは、式(1)におけるR、R及びAと同義である。
  6.   ピッチ系黒鉛化短繊維の平均繊維長が300μm以下である請求項1~5のいずれか一項に記載のエポキシ樹脂組成物。
  7.   請求項1~6のいずれか一項に記載のエポキシ樹脂組成物を硬化させたことを特徴とするエポキシ樹脂硬化物。 
PCT/JP2019/010276 2018-03-27 2019-03-13 エポキシ樹脂組成物及びその硬化物 WO2019188291A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020509869A JPWO2019188291A1 (ja) 2018-03-27 2019-03-13 エポキシ樹脂組成物及びその硬化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-059842 2018-03-27
JP2018059842 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019188291A1 true WO2019188291A1 (ja) 2019-10-03

Family

ID=68061429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010276 WO2019188291A1 (ja) 2018-03-27 2019-03-13 エポキシ樹脂組成物及びその硬化物

Country Status (2)

Country Link
JP (1) JPWO2019188291A1 (ja)
WO (1) WO2019188291A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075322A1 (ja) * 2007-12-12 2009-06-18 Starlite Co., Ltd. 樹脂炭素複合材料
JP2016162762A (ja) * 2015-02-26 2016-09-05 住友ベークライト株式会社 熱伝導性シート、熱伝導性シートの硬化物および半導体装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5324094B2 (ja) * 2005-05-10 2013-10-23 新日鉄住金化学株式会社 エポキシ樹脂組成物および硬化物
JP2012188488A (ja) * 2011-03-09 2012-10-04 Teijin Ltd 熱伝導性組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075322A1 (ja) * 2007-12-12 2009-06-18 Starlite Co., Ltd. 樹脂炭素複合材料
JP2016162762A (ja) * 2015-02-26 2016-09-05 住友ベークライト株式会社 熱伝導性シート、熱伝導性シートの硬化物および半導体装置

Also Published As

Publication number Publication date
JPWO2019188291A1 (ja) 2021-04-22

Similar Documents

Publication Publication Date Title
WO2015146606A1 (ja) エポキシ樹脂、エポキシ樹脂組成物、及びその硬化物
JP5584538B2 (ja) エポキシ樹脂組成物、成形物、ワニス、フィルム状接着剤及びフィルム状接着剤付き銅箔
JP6605828B2 (ja) 多価ヒドロキシ樹脂、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及びその硬化物
TWI494341B (zh) Epoxy resin compositions and shaped articles
JP5457304B2 (ja) フェノール性樹脂、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及び硬化物
JP5209556B2 (ja) エポキシ樹脂組成物および成形物
WO2008050879A1 (fr) Composition de resine epoxy et produit durci
JP2015003972A (ja) エポキシ樹脂、エポキシ樹脂組成物、及びその硬化物
JP5091052B2 (ja) エポキシ樹脂組成物および成形物
JP2019214736A (ja) 多価ヒドロキシ樹脂、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及びその硬化物
JP5037370B2 (ja) エポキシ樹脂組成物及び硬化物
JP5314912B2 (ja) エポキシ樹脂組成物および成形物
JP5734603B2 (ja) フェノール性樹脂、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及び硬化物
WO2019188291A1 (ja) エポキシ樹脂組成物及びその硬化物
JP7257216B2 (ja) エポキシ樹脂組成物及びその硬化物
JP5199847B2 (ja) エポキシ樹脂組成物および成形物
JP4237137B2 (ja) アセナフチレン変性フェノール性樹脂及びエポキシ樹脂組成物
WO2023276851A1 (ja) エポキシ樹脂、エポキシ樹脂組成物、及びその硬化物
JP2015160893A (ja) エポキシ樹脂組成物及びその硬化物
WO2022186292A1 (ja) エポキシ樹脂、それらの製造方法、それらを用いたエポキシ樹脂組成物及び硬化物
JP5681152B2 (ja) エポキシ樹脂組成物および成形物
JP2008231071A (ja) 新規多価ヒドロキシ化合物並びにエポキシ樹脂組成物及びその硬化物
JP7158228B2 (ja) 多価ヒドロキシ樹脂、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及びその硬化物
JP5390491B2 (ja) エポキシ樹脂、その製造方法、エポキシ樹脂組成物及び硬化物
JP2022016887A (ja) エポキシ樹脂組成物及び硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774614

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509869

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19774614

Country of ref document: EP

Kind code of ref document: A1