WO2019188141A1 - 制動制御装置 - Google Patents

制動制御装置 Download PDF

Info

Publication number
WO2019188141A1
WO2019188141A1 PCT/JP2019/009469 JP2019009469W WO2019188141A1 WO 2019188141 A1 WO2019188141 A1 WO 2019188141A1 JP 2019009469 W JP2019009469 W JP 2019009469W WO 2019188141 A1 WO2019188141 A1 WO 2019188141A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
hydraulic pressure
hydraulic
current
electric parking
Prior art date
Application number
PCT/JP2019/009469
Other languages
English (en)
French (fr)
Inventor
照薫 浦岡
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Priority to US16/969,746 priority Critical patent/US11919493B2/en
Priority to CN201980021907.7A priority patent/CN111936361B/zh
Publication of WO2019188141A1 publication Critical patent/WO2019188141A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/741Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on an ultimate actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/221Procedure or apparatus for checking or keeping in a correct functioning condition of brake systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/24Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being gaseous
    • B60T13/46Vacuum systems
    • B60T13/52Vacuum systems indirect, i.e. vacuum booster units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/413Plausibility monitoring, cross check, redundancy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/88Pressure measurement in brake systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/02Fluid pressure
    • F16D2121/04Fluid pressure acting on a piston-type actuator, e.g. for liquid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/24Electric or magnetic using motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/02Fluid-pressure mechanisms
    • F16D2125/06Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/44Mechanical mechanisms transmitting rotation
    • F16D2125/46Rotating members in mutual engagement
    • F16D2125/48Rotating members in mutual engagement with parallel stationary axes, e.g. spur gears

Definitions

  • the present invention relates to a braking control device.
  • EPB Electric Parking Brake
  • the braking control device that controls the EPB generates an electric parking brake force by, for example, driving a wheel brake mechanism by a motor.
  • the braking control device determines a current target value that is a target value of the current input to the motor, and the detected current value of the motor is the current target value.
  • the current input to the motor is controlled so that
  • one of the problems of the present invention is to provide a braking control device that can estimate the hydraulic pressure of the hydraulic brake even when a correct hydraulic pressure detection value by a hydraulic pressure sensor cannot be obtained.
  • the present invention provides, for example, a hydraulic brake capable of generating a hydraulic braking force, which is a braking force generated by a hydraulic pressure on a vehicle wheel, and a wheel brake mechanism driven by a motor.
  • a braking control device applied to a vehicle including an electric parking brake that generates electric braking force that is power, and determines a current target value that is a target value of a current input to the motor based on the target braking force
  • an electric parking brake control unit that controls the electric parking brake based on the current target value.
  • the electric parking brake control unit estimates the hydraulic pressure of the hydraulic brake based on a detected current value that is a detected value of the current input to the motor.
  • FIG. 1 is a mimetic diagram showing the whole vehicular brake device outline of an embodiment.
  • FIG. 2 is a schematic cross-sectional view of a rear-wheel wheel brake mechanism provided in the vehicle brake device of the embodiment.
  • FIG. 3A is an explanatory diagram of the clearance between the propulsion shaft and the piston in the W / C of the embodiment.
  • Drawing 3B is an explanatory view of the clearance between a propulsion shaft and a piston in W / C of an embodiment.
  • FIG. 4 is a map 1 showing the relationship between the no-load determination time and the estimated W / C pressure in the embodiment.
  • FIG. 5 is a graph for explaining W / C pressure estimation in an unloaded state in the embodiment.
  • FIG. 1 is a mimetic diagram showing the whole vehicular brake device outline of an embodiment.
  • FIG. 2 is a schematic cross-sectional view of a rear-wheel wheel brake mechanism provided in the vehicle brake device of the embodiment.
  • FIG. 3A is an explanatory diagram of the clearance between the pro
  • FIG. 6 is an explanatory diagram of the relationship between changes in pedaling force and changes in hydraulic pressure and EPB pressure in the embodiment.
  • FIG. 7 is a map 2 showing the relationship between the current change rate and the estimated W / C pressure change rate in the embodiment.
  • FIG. 8 is a graph for explaining W / C pressure estimation in an applied state in the embodiment.
  • FIG. 9 is a flowchart illustrating a process performed by the braking control device of the embodiment.
  • FIG. 1 is a mimetic diagram showing the whole vehicular brake device outline of an embodiment.
  • FIG. 2 is a schematic cross-sectional view of a rear-wheel wheel brake mechanism provided in the vehicle brake device of the embodiment.
  • the vehicle brake device includes a service brake 1 that generates a service brake force (hydraulic braking force) based on the pedaling force of a driver (driver), and movement of the vehicle during parking.
  • a service brake force hydraulic braking force
  • EPB2 for regulating.
  • the service brake 1 is a hydraulic brake mechanism that generates a brake hydraulic pressure based on depression of the brake pedal 3 by a driver and generates a service brake force based on the brake hydraulic pressure. Specifically, the service brake 1 boosts the pedaling force according to the depression of the brake pedal 3 by the driver with the booster 4, and then applies the brake fluid pressure according to the boosted pedaling force to the master cylinder (hereinafter referred to as the master cylinder). , M / C). Then, this brake fluid pressure is transmitted to a wheel cylinder (hereinafter referred to as W / C) 6 provided in the wheel brake mechanism of each wheel, thereby generating a service brake force. Further, an actuator 7 for controlling the brake fluid pressure is provided between M / C 5 and W / C 6. The actuator 7 adjusts the service brake force generated by the service brake 1 and performs various controls (for example, anti-skid control) for improving the safety of the vehicle.
  • various controls for example, anti-skid control
  • ESC-ECU 8 that controls the service brake force.
  • the ESC-ECU 8 outputs a control current for controlling various control valves (not shown) provided in the actuator 7 and a motor for driving the pump, thereby controlling the hydraulic circuit provided in the actuator 7, and the W / C 6
  • the W / C pressure transmitted to is controlled.
  • the actuator 7 is a pressure increase control that controls whether the brake fluid pressure generated in the M / C5 or the brake fluid pressure generated by the pump drive is applied to the W / C6 for each wheel.
  • the actuator 7 can realize the automatic pressurizing function of the service brake 1, and automatically applies W / C6 even when there is no brake operation based on pump drive and control of various control valves. It is possible to press. Since the configuration of the actuator 7 is conventionally known, a detailed description thereof is omitted here.
  • the EPB 2 generates an electric parking brake force by driving a wheel brake mechanism by the motor 10, and an EPB control device (hereinafter referred to as EPB-ECU) 9 (braking control) that controls the driving of the motor 10. Device).
  • EPB-ECU 9 and the ESC-ECU 8 transmit and receive information by, for example, CAN (Controller Area Network) communication.
  • the wheel brake mechanism is a mechanical structure that generates a braking force in the vehicle brake device of the present embodiment.
  • the wheel brake mechanism of the front wheel system is configured to generate a service brake force by operating the service brake 1. Yes.
  • the rear-wheel wheel brake mechanism has a common structure for generating a braking force for both the operation of the service brake 1 and the operation of the EPB 2.
  • the front-wheel-type wheel brake mechanism is a wheel-brake mechanism that has been generally used in the past, in which a mechanism for generating an electric parking brake force based on the operation of the EPB 2 is eliminated from the rear-wheel-type wheel brake mechanism. Therefore, the description is omitted here, and the rear wheel wheel brake mechanism will be described below.
  • the wheel brake mechanism rotates the motor 10 directly fixed to the body 14 of the W / C 6 for pressing the brake pad 11 as shown in FIG. 2 in the caliper 13 shown in FIG.
  • the spur gear 15 provided on the drive shaft 10a of the motor 10 is rotated.
  • the brake pad 11 is moved by transmitting the rotational force (output) of the motor 10 to the spur gear 16 meshed with the spur gear 15, and the electric parking brake force by EPB2 is generated.
  • the W / C 6 can generate a W / C pressure in the hollow portion 14a which is a brake fluid storage chamber by introducing the brake fluid pressure into the hollow portion 14a of the cylindrical body 14 through the passage 14b.
  • the rotary shaft 17, the propulsion shaft 18, the piston 19 and the like are provided in the hollow portion 14a.
  • the rotating shaft 17 is connected to the spur gear 16 at one end through an insertion hole 14 c formed in the body 14.
  • the rotating shaft 17 is rotated with the rotation of the spur gear 16.
  • a male screw groove 17 a is formed on the outer peripheral surface of the rotary shaft 17 at the end of the rotary shaft 17 opposite to the end connected to the spur gear 16.
  • the other end of the rotating shaft 17 is pivotally supported by being inserted into the insertion hole 14c.
  • the insertion hole 14c is provided with a bearing 21 together with an O-ring 20 so that the brake fluid does not leak through the O-ring 20 between the rotary shaft 17 and the inner wall surface of the insertion hole 14c.
  • the bearing 21 supports the other end of the rotating shaft 17.
  • the propulsion shaft 18 is constituted by a nut made of a hollow cylindrical member, and a female screw groove 18a that is screwed with the male screw groove 17a of the rotary shaft 17 is formed on the inner wall surface.
  • the propulsion shaft 18 is configured in a columnar shape or a polygonal column shape having a key for preventing rotation, for example, so that even if the rotation shaft 17 is rotated, the propulsion shaft 18 is rotated around the rotation center of the rotation shaft 17. It has no structure. For this reason, when the rotating shaft 17 is rotated, the rotational force of the rotating shaft 17 is changed to a force for moving the propulsion shaft 18 in the axial direction of the rotating shaft 17 due to the engagement between the male screw groove 17a and the female screw groove 18a. Convert.
  • the propulsion shaft 18 When the driving of the motor 10 is stopped, the propulsion shaft 18 is stopped at the same position by the frictional force generated by the engagement between the male screw groove 17a and the female screw groove 18a. If the driving of the motor 10 is stopped at that time, the propulsion shaft 18 is held at that position, and a desired electric parking brake force can be held and self-locking (hereinafter simply referred to as “locking”) can be achieved. Yes.
  • the piston 19 is disposed so as to surround the outer periphery of the propulsion shaft 18, is configured by a bottomed cylindrical member or a polygonal cylindrical member, and the outer peripheral surface is in contact with the inner wall surface of the hollow portion 14 a formed in the body 14.
  • a seal member 22 is provided on the inner wall surface of the body 14 and W / C pressure can be applied to the end surface of the piston 19 so that no brake fluid leakage occurs between the outer peripheral surface of the piston 19 and the inner wall surface of the body 14. It is said that.
  • the seal member 22 is used to generate a reaction force for pulling back the piston 19 during release control after lock control.
  • the seal member 22 Since the seal member 22 is provided, basically, even if the brake pad 11 and the piston 19 are pushed in by the brake disc 12 inclined during turning within a range not exceeding the elastic deformation amount of the seal member 22, they are braked. It can be pushed back to the disc 12 side so that the gap between the brake disc 12 and the brake pad 11 is held with a predetermined clearance.
  • the propulsion shaft 18 When the propulsion shaft 18 is provided with a key for preventing rotation so that the piston 19 is not rotated about the rotation center of the rotation shaft 17 even if the rotation shaft 17 rotates, the key is When a sliding keyway is provided and the propulsion shaft 18 has a polygonal column shape, it has a polygonal cylindrical shape with a corresponding shape.
  • the brake pad 11 is disposed at the tip of the piston 19, and the brake pad 11 is moved in the left-right direction on the paper surface as the piston 19 moves.
  • the piston 19 can move to the left in the drawing as the propulsion shaft 18 moves, and at the end of the piston 19 (the end opposite to the end where the brake pad 11 is disposed).
  • W / C pressure By applying the W / C pressure, it is configured to be movable in the left direction on the paper surface independently of the propulsion shaft 18.
  • the propulsion shaft 18 is in a release position (a state before the motor 10 is rotated), which is a standby position when the propulsion shaft 18 is in a normal release state, the brake fluid pressure in the hollow portion 14a is not applied (W / C).
  • the piston 19 is moved to the right in the drawing by the elastic force of the seal member 22 described later, so that the brake pad 11 can be separated from the brake disk 12. Further, when the motor 10 is rotated and the propulsion shaft 18 is moved leftward from the initial position, even if the W / C pressure becomes zero, the propulsion shaft 18 that has moved moves the piston 19 rightward on the paper surface. The brake pad 11 is held at that location.
  • the brake pad 11 is braked by moving the piston 19 to the left in the drawing based on the W / C pressure generated thereby.
  • the disc 12 is pressed to generate a service brake force.
  • the spur gear 15 is rotated by driving the motor 10, and the spur gear 16 and the rotating shaft 17 are rotated accordingly, so that the male screw groove 17a and the female screw groove 18a are rotated.
  • the propulsion shaft 18 is moved to the brake disk 12 side (leftward in the drawing) based on the meshing of Along with this, the tip of the propulsion shaft 18 abuts against the bottom surface of the piston 19 to press the piston 19, and the piston 19 is also moved in the same direction, whereby the brake pad 11 is pressed against the brake disc 12, and the electric parking brake Generate power. Therefore, a common wheel brake mechanism that generates a braking force for both the operation of the service brake 1 and the operation of the EPB 2 can be provided.
  • the load on the propulsion shaft 18 is small and the load on the motor 10 is also small in a state where the propulsion shaft 18 is not in contact with the piston 19.
  • the small state is referred to as “no load state”.
  • the state in which the propulsion shaft 18 is in contact with the piston 19 is referred to as an “added load state”.
  • the current detection value of the motor 10 changes according to the magnitude of the load. For this reason, by confirming the current detection value by a current sensor (not shown) that detects the current of the motor 10, the generation state of the electric parking brake force by the EPB 2 can be confirmed, or the current detection value can be recognized. Can be done.
  • the front / rear G sensor 25 detects G (acceleration) in the front-rear direction (traveling direction) of the vehicle and transmits a detection signal to the EPB-ECU 9.
  • the M / C pressure sensor 26 detects the M / C pressure at the M / C 5 and transmits a detection signal to the EPB-ECU 9.
  • the temperature sensor 28 detects the temperature of the wheel brake mechanism (for example, a brake disc) and transmits a detection signal to the EPB-ECU 9.
  • the wheel brake mechanism for example, a brake disc
  • the wheel speed sensor 29 detects the rotational speed of each wheel and transmits a detection signal to the EPB-ECU 9. Although one wheel speed sensor 29 is actually provided for each wheel, detailed illustration and description are omitted here.
  • the EPB-ECU 9 is constituted by a known microcomputer having a CPU, ROM, RAM, I / O, etc., and performs parking brake control by controlling the rotation of the motor 10 according to a program stored in the ROM. It is.
  • the EPB-ECU 9 inputs, for example, a signal corresponding to the operation state of an operation switch (SW) 23 provided in an instrument panel (not shown) in the vehicle interior, and turns the motor 10 in accordance with the operation state of the operation SW 23. To drive. Further, the EPB-ECU 9 executes lock control and release control based on the detected current value of the motor 10, and the wheel is locked by the lock control being performed based on the control state. It is recognized that the wheel is in the release state (EPB release state) by being in release control and release control. Then, the EPB-ECU 9 outputs signals for causing the display lamp 24 provided in the instrument panel to perform various displays.
  • SW operation switch
  • the vehicle brake device configured as described above basically performs an operation of generating a braking force on the vehicle by generating a service brake force by the service brake 1 when the vehicle travels.
  • the driver presses the operation SW 23 to operate the EPB 2 to generate the electric parking brake force, and to maintain the stopped state, and then release the electric parking brake force.
  • the operation of the EPB 2 is to drive the motor 10 to move the piston 19 and press the brake pad 11 against the brake disk 12 to generate an electric parking brake force to lock the wheel, Is released from the brake disc 12 to release the electric parking brake force and release the wheel.
  • electric parking brake force is generated or released by lock / release control.
  • the EPB 2 is operated by rotating the motor 10 forward, and the rotation of the motor 10 is stopped at a position where the desired electric parking brake force can be generated by the EPB 2, and this state is maintained. Thereby, a desired electric parking brake force is generated.
  • release control EPB2 is operated by rotating motor 10 in reverse, and the electric parking brake force generated in EPB2 is released.
  • the hydraulic brake force by the hydraulic brake mechanism is also generated. If the electric parking brake force and the hydraulic brake force overlap, an extra brake force may be generated, so the electric parking brake force is reduced according to the brake fluid hydraulic pressure detected by the M / C pressure sensor 26. Let however, there may be a case where a correct hydraulic pressure detection value by the hydraulic pressure sensor cannot be obtained due to the failure of the M / C pressure sensor 26 or the absence of the hydraulic pressure sensor.
  • the EPB-ECU 9 executes various controls according to a program stored in a built-in ROM (not shown) using the brake system configured as described above.
  • the EPB-ECU 9 has a hydraulic brake that can generate a hydraulic braking force that is a hydraulic braking force on the vehicle wheel, and a wheel braking mechanism that is driven by the motor 10 with a braking force that is different from the hydraulic braking force applied to the wheel.
  • the present invention is applied to a vehicle including an electric parking brake that generates an electric braking force.
  • the EPB-ECU 9 determines a current target value that is a target value of the current input to the motor 10 based on a target braking force (for example, determined based on a road gradient or the like), and EPB2 ( Control the electric parking brake).
  • the EPB-ECU 9 sets the current target value based on the hydraulic pressure detected value by the M / C pressure sensor 26 to the EPB pressure ( Correct so that the pressure by the electric parking brake is reduced. Thereby, generation
  • the EPB-ECU 9 estimates the hydraulic pressure of the hydraulic brake based on the detected current value of the motor 10, and the current based on the estimated hydraulic pressure. The target value is corrected so that the EPB pressure decreases by the amount of the hydraulic pressure.
  • the hydraulic pressure estimation in the no-load state will be described with reference to FIGS. 3A to 5, and then the hydraulic pressure estimation in the loaded state will be described with reference to FIGS. 6 to 8. .
  • FIG. 3A is an explanatory diagram of the clearance between the propulsion shaft 18 and the piston 19 in the W / C 6 of the embodiment.
  • Drawing 3B is an explanatory view of the clearance between propulsion shaft 18 and piston 19 in W / C6 of an embodiment.
  • FIG. 3A shows the clearance W1 between the propulsion shaft 18 and the piston 19 when there is no load and the brake pedal 3 is not depressed by the driver.
  • FIG. 3B shows the clearance W2 between the propulsion shaft 18 and the piston 19 when the driver depresses the brake pedal 3 from that state. That is, when the brake pedal 3 is depressed by the driver, the clearance between the propulsion shaft 18 and the piston 19 increases from W1 to W2 as the piston 19 moves leftward due to the hydraulic pressure.
  • the hydraulic pressure (W / C pressure) can be estimated from the size of the clearance between the propulsion shaft 18 and the piston 19.
  • “calculating the estimated W / C pressure” is synonymous with “estimating the W / C pressure”.
  • FIG. 4 is a map 1 showing the relationship between the no-load determination time and the estimated W / C pressure in the embodiment.
  • Map 1 is stored in EPB-ECU 9.
  • the no-load determination time and the estimated W / C pressure (MPa) are associated with each other.
  • MPa the no-load determination time and the estimated W / C pressure
  • the EPB-ECU 9 can estimate the hydraulic pressure in the no-load state (details will be described later).
  • FIG. 5 is a graph for explaining W / C pressure estimation in an unloaded state in the embodiment.
  • the graph of FIG. 5A shows how the current detection value (A) of the motor 10 changes over time.
  • the graph in FIG. 5B shows how the load determination changes over time.
  • the operating load refers to a load state when the EPB 2 is operating.
  • the operation no-load refers to a no-load state when the EPB 2 is operating.
  • Inactive refers to a state where EPB 2 is not operating.
  • the graph of FIG. 5 (c) shows how the estimated W / C pressure calculated by the EPB-ECU 9 changes over time.
  • the EPB-ECU 9 starts the driving of the motor 10 (time t1), and then the length of time (time t1 ⁇ time t5) from when the current detection value reaches a predetermined threshold value for the first time other than the inrush current immediately after the start. : No load determination time) and map 1 (FIG. 4) to calculate the estimated W / C pressure.
  • the predetermined threshold is set corresponding to a hydraulic pressure of 3 MPa.
  • times t2, t3, t4, t5, and t6 correspond to hydraulic pressures of 0 MPa, 1 MPa, 2 MPa, 3 MPa, and 4 MPa, respectively.
  • FIG. 5A times t2, t3, t4, t5, and t6 correspond to hydraulic pressures of 0 MPa, 1 MPa, 2 MPa, 3 MPa, and 4 MPa, respectively.
  • FIG. 5A times t2, t3, t4, t5, and t6 correspond to hydraulic pressures of 0 MPa, 1 MPa, 2 MP
  • the EPB-ECU 9 calculates the estimated W / C pressure as 3 MPa because the current detection value of the motor 10 has reached a predetermined threshold at the time t5. . In this way, the EPB-ECU 9 can estimate the hydraulic pressure in the no-load state. Further, the EPB-ECU 9 corrects the target current value based on the estimated W / C pressure so that the EPB pressure decreases by the estimated W / C pressure.
  • FIG. 6 is an explanatory diagram of the relationship between changes in pedaling force and changes in hydraulic pressure and EPB pressure in the embodiment.
  • the repulsive force from the brake disc 12 (FIG. 2) to the W / C 6 (brake pad 11) is set to the magnitude shown in the upper part of FIG. 6, and the pedaling force on the brake pedal 3 by the driver is constant.
  • the hydraulic pressure and EPB pressure in this case are set to the magnitudes shown in FIG.
  • the change rate of the hydraulic pressure (W / C pressure change rate) can be estimated from the change rate of the current detection value of the motor 10 (hereinafter also referred to as “current change rate”).
  • FIG. 7 is a map 2 showing the relationship between the current change rate and the estimated W / C pressure change rate in the embodiment.
  • Map 2 is stored in EPB-ECU 9.
  • the current change rate (A / s) and the estimated W / C pressure change rate (MPa / s) are associated with each other.
  • the EPB-ECU 9 can estimate the hydraulic pressure in the applied state (details will be described later).
  • FIG. 8 is a graph for explaining W / C pressure estimation in an applied state in the embodiment.
  • the graph of FIG. 8A shows how the current detection value (A) of the motor 10 changes with time in an applied state.
  • the graph of FIG. 8B shows how the pedaling force change determination changes with time.
  • the graph of FIG. 8C shows how the estimated W / C pressure calculated by the EPB-ECU 9 changes over time.
  • the pedaling force is constant (FIG. 8 (b)), and the estimated W / C pressure is also constant (FIG. 8 (a)). Further, the pedaling force increases from time t11 to time t12 (FIG. 8B), and the EPB-ECU 9 calculates the estimated W / C pressure as follows.
  • the pedaling force is constant from time t12 to time t13 (FIG. 8 (b)), and the estimated W / C pressure is also constant (FIG. 8 (a)).
  • the pedal effort decreases from time t13 to time t14 (FIG. 8B), and the EPB-ECU 9 calculates the estimated W / C pressure in the same manner as when the pedal effort is increased.
  • the pedaling force is constant (FIG. 8B), and the estimated W / C pressure is also constant (FIG. 8A). In this way, the EPB-ECU 9 can estimate the hydraulic pressure in the applied state.
  • FIG. 9 is a flowchart illustrating a process performed by the braking control device of the embodiment.
  • step S1 the EPB-ECU 9 determines whether or not the user has performed an EPB control start operation using the operation SW 23. If Yes, the process proceeds to step S2. If No, the process returns to step S1.
  • step S2 the EPB-ECU 9 determines a target braking force.
  • step S3 the EPB-ECU 9 determines a current target value of the motor 10 based on the target braking force determined in step S2.
  • step S4 the EPB-ECU 9 starts EPB control based on the target current value determined in step S3.
  • step S5 the EPB-ECU 9 determines whether or not there is a no-load state. If Yes, the process proceeds to step S6, and if No, the process proceeds to step S9. Specifically, in step S5, the EPB-ECU 9 starts driving the motor 10 (time t1 in FIG. 5 (a)), and for the first time, the detected current value of the motor 10 is not predetermined except for the inrush current immediately after the start. Up to the threshold value (time t5 in FIG. 5A) is determined as a no-load state.
  • step S6 the EPB-ECU 9 counts the no-load determination time.
  • step S7 the EPB-ECU 9 determines whether or not the detected current value of the motor 10 exceeds the current target value. If Yes, the process proceeds to step S8, and if No, the process returns to step S5. In step S8, the EPB-ECU 9 ends the EPB control (completes the locking of the wheels).
  • step S9 the EPB-ECU 9 calculates the estimated W / C pressure based on the no-load determination time (FIG. 5B) and the map 1 (FIG. 4).
  • step S10 the EPB-ECU 9 corrects the current target value based on the estimated W / C pressure calculated in step S9 so that the EPB pressure decreases by the estimated W / C pressure.
  • step S11 the EPB-ECU 9 determines whether or not the current detection value of the motor 10 is equal to or greater than a predetermined threshold value. If Yes, the process proceeds to step S12. If No, the process proceeds to step S14.
  • This step S11 assumes that the current detection value of the motor 10 becomes less than a predetermined threshold value and proceeds to step S14 when the driver depresses the brake pedal 3 rapidly in the applied state. In other words, even when the driver is in a loaded state, if the driver depresses the brake pedal 3 rapidly, the tip of the propulsion shaft 18 moves away from the piston 19 in a short time, but the W / C pressure can be estimated. In this case, the current target value is set to a predetermined fixed value in step S14.
  • This fixed value is set in advance as a value for preventing an excessive load from being applied to the components and the like in consideration of the strength of the actuator 7 and the caliper 13 and the like.
  • the process proceeds to step S15.
  • the EPB-ECU 9 stops calculating the estimated W / C pressure until the current detection value of the motor 10 becomes equal to or greater than a predetermined threshold (Yes in step S11), and the current target value Is left at a fixed value.
  • step S12 the EPB-ECU 9 calculates the estimated W / C pressure change rate based on the rate of change of the current detection value (current change rate) and the map 2 (FIG. 7), and calculates the estimated W / C pressure change rate.
  • the estimated W / C pressure is calculated by the above equation (1).
  • step S13 the EPB-ECU 9 corrects the current target value based on the estimated W / C pressure calculated in step S12 so that the EPB pressure decreases by the estimated W / C pressure.
  • step S13 the process proceeds to step S15.
  • step S15 the EPB-ECU 9 determines whether or not the current detection value of the motor 10 exceeds the current target value. If Yes, the process proceeds to step S8, and if No, the process returns to step S11.
  • the EPB-ECU 9 (braking control device) of the present embodiment, even when a correct hydraulic pressure detection value by the hydraulic pressure sensor (M / C pressure sensor 26, etc.) cannot be obtained, The hydraulic pressure can be estimated. Therefore, for example, even when there is no hydraulic pressure sensor, the hydraulic pressure of the hydraulic brake can be estimated, so that the device related to the brake can be reduced in size and cost. Further, even if the M / C pressure sensor 26 breaks down, the hydraulic pressure of the hydraulic brake can be estimated, and by reducing the EPB pressure by the estimated hydraulic pressure, an excessive load is applied to the actuator 7, the caliper 13, etc. Can be avoided.
  • the EPB-ECU 9 determines the current based on the hydraulic pressure detected by the M / C pressure sensor 26. What is necessary is just to correct
  • the EPB-ECU 9 calculates an estimated W / C pressure as shown in the flowchart of FIG. 9, and based on the estimated W / C pressure.
  • the target current value may be corrected so that the EPB pressure decreases by the estimated W / C pressure.
  • the fact that the M / C pressure sensor 26 is not operating normally can be determined, for example, by the following two methods.
  • the first is a method in which a file flag is output when the M / C pressure sensor 26 fails due to a self-diagnosis function.
  • the second is a method for determining that the hydraulic pressure detection value by the M / C pressure sensor 26 and the amount of change are abnormal values. In the latter case, for example, even when the M / C pressure sensor 26 outputs a large hydraulic pressure detection value as an abnormal value, the EPB pressure is not calculated using the hydraulic pressure detection value but using the estimated W / C pressure. It can maintain appropriately, and the situation where the EPB pressure falls too much and the vehicle moves unintentionally can be avoided.
  • the estimated W / C pressure can be calculated by the above-described algorithm in the no-load state and in the applied state, respectively.
  • the current target value is set to a fixed value. By doing so, it is possible to prevent an excessive load from being applied to the actuator 7 and the caliper 13 more reliably.
  • the EPB-ECU 9 may correct the estimated W / C pressure based on the friction amount of the brake pad 11 (friction material) in the wheel brake mechanism. If it does so, the influence by abrasion of the brake pad 11 can be absorbed. In that case, the map 1 and the map 2 may be corrected according to the wear amount of the brake pad 11, or may be provided as a plurality of maps.
  • the estimated W / C pressure calculated by the EPB-ECU 9 may be used for predetermined control by a control unit other than the EPB-ECU 9 such as the ESC-ECU 8.
  • a control unit other than the EPB-ECU 9 such as the ESC-ECU 8.
  • the ESC-ECU 8 performs predetermined control using the hydraulic pressure detection value by the M / C pressure sensor 26, the estimation calculated by the EPB-ECU 9 even when the M / C pressure sensor 26 fails.
  • the predetermined control can be continued by substituting with the W / C pressure.
  • the target wheel to which EPB is applied is not limited to the rear wheel, but may be the front wheel.
  • the estimated W / C pressure may be calculated not only when the vehicle is parked but also when the vehicle is traveling. Further, the estimated W / C pressure may be corrected by other factors such as the temperature of the caliper 13 and the road gradient.
  • the map 1 and the map 2 may be prepared separately depending on the type of caliper 13 (type of structure, material, etc.).
  • the estimated W / C pressure is calculated by operating the EPB 2 until immediately before the EPB pressure is generated, and the calculated estimated W / C pressure is calculated as ESC-
  • the ECU 8 may be used for predetermined control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Braking Systems And Boosters (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Regulating Braking Force (AREA)

Abstract

本発明は、例えば、車両の車輪に対する液圧による制動力である液圧制動力を発生可能な液圧ブレーキと、モータによって駆動される車輪ブレーキ機構によって車輪に液圧制動力とは別の制動力である電動制動力を発生させる電動駐車ブレーキと、を備える車両に適用される制動制御装置であって、目標制動力に基いてモータに入力する電流の目標値である電流目標値を決定し、電流目標値に基いて電動駐車ブレーキを制御する電動駐車ブレーキ制御部を、備える。電動駐車ブレーキ制御部は、モータに入力された電流の検出値である電流検出値に基いて液圧ブレーキの液圧を推定する。

Description

制動制御装置
 本発明は、制動制御装置に関する。
 近年、乗用車等の各種の車両に電動駐車ブレーキ(以下、EPB(Electric Parking Brake)ともいう。)が多く採用されている。EPBを制御する制動制御装置は、例えば、モータによって車輪ブレーキ機構を駆動することで電動駐車ブレーキ力を発生させる。
 具体的には、例えば、制動制御装置は、電動駐車ブレーキ力を発生させる際に、モータに入力される電流の目標値である電流目標値を決定し、モータの電流検出値がその電流目標値となるように、モータに入力される電流を制御する。
 また、電動駐車ブレーキ力が発生している場合にドライバ(運転者)がブレーキペダルを踏むと、液圧ブレーキ機構による液圧ブレーキ力も併せて発生する。電動駐車ブレーキ力と液圧ブレーキ力が重複して発生すると余分なブレーキ力が発生する場合もあるため、液圧センサによって検出されたブレーキ液の液圧に応じて電動駐車ブレーキ力を低減させる技術がある。
特開2016-11081号公報
 しかしながら、上述の従来技術では、液圧センサによる正しい液圧検出値が必要となるので、液圧センサによる正しい液圧検出値が得られない場合には対応できないという問題がある。
 そこで、本発明の課題の一つは、例えば、液圧センサによる正しい液圧検出値が得られない場合でも液圧ブレーキの液圧を推定可能な制動制御装置を提供することである。
 本発明は、例えば、車両の車輪に対する液圧による制動力である液圧制動力を発生可能な液圧ブレーキと、モータによって駆動される車輪ブレーキ機構によって前記車輪に前記液圧制動力とは別の制動力である電動制動力を発生させる電動駐車ブレーキと、を備える車両に適用される制動制御装置であって、目標制動力に基いて前記モータに入力する電流の目標値である電流目標値を決定し、前記電流目標値に基いて前記電動駐車ブレーキを制御する電動駐車ブレーキ制御部を、備える。前記電動駐車ブレーキ制御部は、前記モータに入力された電流の検出値である電流検出値に基いて前記液圧ブレーキの前記液圧を推定する。
図1は、実施形態の車両用ブレーキ装置の全体概要を示す模式図である。 図2は、実施形態の車両用ブレーキ装置に備えられる後輪系の車輪ブレーキ機構の断面模式図である。 図3Aは、実施形態のW/Cにおける推進軸とピストンの間のクリアランスの説明図である。 図3Bは、実施形態のW/Cにおける推進軸とピストンの間のクリアランスの説明図である。 図4は、実施形態における無負荷判定時間と推定W/C圧の関係を示すマップ1である。 図5は、実施形態における無負荷状態でのW/C圧推定を説明するためのグラフである。 図6は、実施形態における踏力の変化と液圧やEPB圧の変化の関係の説明図である。 図7は、実施形態における電流変化率と推定W/C圧変化率の関係を示すマップ2である。 図8は、実施形態における加負荷状態でのW/C圧推定を説明するためのグラフである。 図9は、実施形態の制動制御装置による処理を示すフローチャートである。
 以下、本発明の例示的な実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用および結果(効果)は、例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能である。また、本発明によれば、以下の構成によって得られる種々の効果(派生的な効果も含む)のうち少なくとも一つを得ることが可能である。
 本実施形態では、後輪系にディスクブレーキタイプのEPBを適用している車両用ブレーキ装置を例に挙げて説明する。図1は、実施形態の車両用ブレーキ装置の全体概要を示す模式図である。図2は、実施形態の車両用ブレーキ装置に備えられる後輪系の車輪ブレーキ機構の断面模式図である。以下、これらの図を参照して説明する。
 図1に示すように、実施形態の車両用ブレーキ装置は、ドライバ(運転者)の踏力に基いてサービスブレーキ力(液圧制動力)を発生させるサービスブレーキ1と、駐車時などに車両の移動を規制するためのEPB2と、を備えている。
 サービスブレーキ1は、ドライバによるブレーキペダル3の踏み込みに基いてブレーキ液圧を発生させ、このブレーキ液圧に基いてサービスブレーキ力を発生させる液圧ブレーキ機構である。具体的には、サービスブレーキ1は、ドライバによるブレーキペダル3の踏み込みに応じた踏力を倍力装置4にて倍力したのち、この倍力された踏力に応じたブレーキ液圧をマスタシリンダ(以下、M/Cという。)5内に発生させる。そして、このブレーキ液圧を各車輪の車輪ブレーキ機構に備えられたホイールシリンダ(以下、W/Cという。)6に伝えることでサービスブレーキ力を発生させる。また、M/C5とW/C6との間にブレーキ液圧制御用のアクチュエータ7が備えられている。アクチュエータ7は、サービスブレーキ1により発生させるサービスブレーキ力を調整し、車両の安全性を向上させるための各種制御(例えば、アンチスキッド制御等)を行う。
 アクチュエータ7を用いた各種制御は、サービスブレーキ力を制御するESC(Electronic Stability Control)-ECU8にて実行される。例えば、アクチュエータ7に備えられる図示しない各種制御弁やポンプ駆動用のモータを制御するための制御電流をESC-ECU8が出力することにより、アクチュエータ7に備えられる液圧回路を制御し、W/C6に伝えられるW/C圧を制御する。これにより、車輪スリップの回避などを行い、車両の安全性を向上させる。例えば、アクチュエータ7は、各車輪毎に、W/C6に対してM/C5内に発生させられたブレーキ液圧もしくはポンプ駆動により発生させられたブレーキ液圧が加えられることを制御する増圧制御弁や、各W/C6内のブレーキ液をリザーバに供給することでW/C圧を減少させる減圧制御弁等を備えており、W/C圧を増圧・保持・減圧制御できる構成とされている。また、アクチュエータ7は、サービスブレーキ1の自動加圧機能を実現可能にしており、ポンプ駆動および各種制御弁の制御に基いて、ブレーキ操作がない状態であっても自動的にW/C6を加圧できるようにしている。このアクチュエータ7の構成に関しては、従来から周知であるため、ここでは詳細な説明を省略する。
 一方、EPB2は、モータ10によって車輪ブレーキ機構を駆動させることで電動駐車ブレーキ力を発生させるものであり、モータ10の駆動を制御するEPB制御装置(以下、EPB-ECUという。)9(制動制御装置)を有して構成されている。なお、EPB-ECU9とESC-ECU8は、例えばCAN(Controller Area Network)通信によって情報の送受信を行う。
 車輪ブレーキ機構は、本実施形態の車両用ブレーキ装置においてブレーキ力を発生させる機械的構造であり、まず、前輪系の車輪ブレーキ機構はサービスブレーキ1の操作によってサービスブレーキ力を発生させる構造とされている。一方、後輪系の車輪ブレーキ機構は、サービスブレーキ1の操作とEPB2の操作の双方に対してブレーキ力を発生させる共用の構造とされている。前輪系の車輪ブレーキ機構は、後輪系の車輪ブレーキ機構に対して、EPB2の操作に基いて電動駐車ブレーキ力を発生させる機構をなくした従来から一般的に用いられている車輪ブレーキ機構であるため、ここでは説明を省略し、以下では後輪系の車輪ブレーキ機構について説明する。
 後輪系の車輪ブレーキ機構では、サービスブレーキ1を作動させたときだけでなくEPB2を作動させたときにも、図2に示す摩擦材であるブレーキパッド11を押圧し、ブレーキパッド11によって被摩擦材であるブレーキディスク12(12RL、12RR、12FR、12FL)を挟み込むことにより、ブレーキパッド11とブレーキディスク12との間に摩擦力を発生させ、ブレーキ力を発生させる。
 具体的には、車輪ブレーキ機構は、図1に示すキャリパ13内において、図2に示すようにブレーキパッド11を押圧するためのW/C6のボディ14に直接固定されているモータ10を回転させることにより、モータ10の駆動軸10aに備えられた平歯車15を回転させる。そして、平歯車15に噛合わされた平歯車16にモータ10の回転力(出力)を伝えることによりブレーキパッド11を移動させ、EPB2による電動駐車ブレーキ力を発生させる。
 キャリパ13内には、W/C6およびブレーキパッド11に加えて、ブレーキパッド11に挟み込まれるようにしてブレーキディスク12の端面の一部が収容されている。W/C6は、シリンダ状のボディ14の中空部14a内に通路14bを通じてブレーキ液圧を導入することで、ブレーキ液収容室である中空部14a内にW/C圧を発生させられるようになっており、中空部14a内に回転軸17、推進軸18、ピストン19などを備えて構成されている。
 回転軸17は、一端がボディ14に形成された挿入孔14cを通じて平歯車16に連結され、平歯車16が回動させられると、平歯車16の回動に伴って回動させられる。この回転軸17における平歯車16と連結された端部とは反対側の端部において、回転軸17の外周面には雄ネジ溝17aが形成されている。一方、回転軸17の他端は、挿入孔14cに挿入されることで軸支されている。具体的には、挿入孔14cには、Oリング20と共に軸受け21が備えられており、Oリング20にて回転軸17と挿入孔14cの内壁面との間を通じてブレーキ液が漏れ出さないようにされながら、軸受け21により回転軸17の他端を軸支持している。
 推進軸18は、中空状の筒部材からなるナットにて構成され、内壁面に回転軸17の雄ネジ溝17aと螺合する雌ネジ溝18aが形成されている。この推進軸18は、例えば回転防止用のキーを備えた円柱状もしくは多角柱状に構成されることで、回転軸17が回動しても回転軸17の回動中心を中心として回動させられない構造になっている。このため、回転軸17が回動させられると、雄ネジ溝17aと雌ネジ溝18aとの噛合いにより、回転軸17の回転力を回転軸17の軸方向に推進軸18を移動させる力に変換する。推進軸18は、モータ10の駆動が停止されると、雄ネジ溝17aと雌ネジ溝18aとの噛合いによる摩擦力により同じ位置で止まるようになっており、目標とする電動駐車ブレーキ力になったときにモータ10の駆動を停止すれば、推進軸18がその位置で保持され、所望の電動駐車ブレーキ力を保持してセルフロック(以下、単に「ロック」という。)できるようになっている。
 ピストン19は、推進軸18の外周を囲むように配置されるもので、有底の円筒部材もしくは多角筒部材にて構成され、外周面がボディ14に形成された中空部14aの内壁面と接するように配置されている。ピストン19の外周面とボディ14の内壁面との間のブレーキ液漏れが生じないように、ボディ14の内壁面にシール部材22が備えられ、ピストン19の端面にW/C圧を付与できる構造とされている。シール部材22は、ロック制御後のリリース制御時にピストン19を引き戻すための反力を発生させるために用いられる。このシール部材22を備えてあるため、基本的には旋回中に傾斜したブレーキディスク12によってブレーキパッド11およびピストン19がシール部材22の弾性変形量を超えない範囲で押し込まれても、それらをブレーキディスク12側に押し戻してブレーキディスク12とブレーキパッド11との間が所定のクリアランスで保持されるようにできる。
 また、ピストン19は、回転軸17が回転しても回転軸17の回動中心を中心として回動させられないように、推進軸18に回転防止用のキーが備えられる場合にはそのキーが摺動するキー溝が備えられ、推進軸18が多角柱状とされる場合にはそれと対応する形状の多角筒状とされる。
 このピストン19の先端にブレーキパッド11が配置され、ピストン19の移動に伴ってブレーキパッド11を紙面左右方向に移動させるようになっている。具体的には、ピストン19は、推進軸18の移動に伴って紙面左方向に移動可能で、かつ、ピストン19の端部(ブレーキパッド11が配置された端部と反対側の端部)にW/C圧が付与されることで推進軸18から独立して紙面左方向に移動可能な構成とされている。そして、推進軸18が通常リリースのときの待機位置であるリリース位置(モータ10が回転させられる前の状態)のときに、中空部14a内のブレーキ液圧が付与されていない状態(W/C圧=0)であれば、後述するシール部材22の弾性力によりピストン19が紙面右方向に移動させられ、ブレーキパッド11をブレーキディスク12から離間させられるようになっている。また、モータ10が回転させられて推進軸18が初期位置から紙面左方向に移動させられているときには、W/C圧が0になっても、移動した推進軸18によってピストン19の紙面右方向への移動が規制され、ブレーキパッド11がその場所で保持される。
 このように構成された車輪ブレーキ機構では、サービスブレーキ1が操作されると、それにより発生させられたW/C圧に基いてピストン19が紙面左方向に移動させられることでブレーキパッド11がブレーキディスク12に押圧され、サービスブレーキ力を発生させる。また、EPB2が操作されると、モータ10が駆動されることで平歯車15が回転させられ、それに伴って平歯車16および回転軸17が回転させられるため、雄ネジ溝17aおよび雌ネジ溝18aの噛合いに基いて推進軸18がブレーキディスク12側(紙面左方向)に移動させられる。そして、それに伴って推進軸18の先端がピストン19の底面に当接してピストン19を押圧し、ピストン19も同方向に移動させられることでブレーキパッド11がブレーキディスク12に押圧され、電動駐車ブレーキ力を発生させる。このため、サービスブレーキ1の操作とEPB2の操作の双方に対してブレーキ力を発生させる共用の車輪ブレーキ機構とすることが可能となる。
 また、以下では、このような車輪ブレーキ機構において、EPB2を作動させたときに、推進軸18がピストン19に当接していない状態で、推進軸18にかかる負荷が小さくてモータ10への負荷も小さい状態のことを「無負荷状態」と称する。また、推進軸18がピストン19に当接している状態を「加負荷状態」と称する。
 そして、推進軸18がピストン19に当接している加負荷状態でブレーキパッド11にてブレーキディスク12を押圧するときには、EPB2による電動駐車ブレーキ力が発生させられることになり、モータ10に大きな負荷がかかり、その負荷の大きさに応じてモータ10の電流検出値が変化する。このため、モータ10の電流を検出する電流センサ(不図示)による電流検出値を確認することにより、EPB2による電動駐車ブレーキ力の発生状態を確認したり、その電流検出値を認識したりすることができるようになっている。
 前後Gセンサ25は、車両の前後方向(進行方向)のG(加速度)を検出し、検出信号をEPB-ECU9に送信する。
 M/C圧センサ26は、M/C5におけるM/C圧を検出して、検出信号をEPB-ECU9に送信する。
 温度センサ28は、車輪ブレーキ機構(例えばブレーキディスク)の温度を検出して、検出信号をEPB-ECU9に送信する。
 車輪速センサ29は、各車輪の回転速度を検出し、検出信号をEPB-ECU9に送信する。なお、車輪速センサ29は、実際には各車輪に対応して1つずつ設けられるが、ここでは、詳細な図示や説明を省略する。
 EPB-ECU9は、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムにしたがってモータ10の回転を制御することにより駐車ブレーキ制御を行うものである。
 EPB-ECU9は、例えば車室内のインストルメントパネル(図示せず)に備えられた操作スイッチ(SW)23の操作状態に応じた信号等を入力し、操作SW23の操作状態に応じてモータ10を駆動する。さらに、EPB-ECU9は、モータ10の電流検出値に基いてロック制御やリリース制御などを実行するものであり、その制御状態に基いてロック制御中であることやロック制御によって車輪がロック状態であること、および、リリース制御中であることやリリース制御によって車輪がリリース状態(EPB解除状態)であることを認識する。そして、EPB-ECU9は、インストルメントパネルに備えられた表示ランプ24に対し、各種表示を行わせるための信号を出力する。
 以上のように構成された車両用ブレーキ装置では、基本的には、車両走行時にサービスブレーキ1によってサービスブレーキ力を発生させることで車両に制動力を発生させるという動作を行う。また、サービスブレーキ1によって車両が停車した際に、ドライバが操作SW23を押下してEPB2を作動させて電動駐車ブレーキ力を発生させることで停車状態を維持したり、その後に電動駐車ブレーキ力を解除したりするという動作を行う。すなわち、サービスブレーキ1の動作としては、車両走行時にドライバによるブレーキペダル3の操作が行われると、M/C5に発生したブレーキ液圧がW/C6に伝えられることでサービスブレーキ力を発生させる。また、EPB2の動作としては、モータ10を駆動することでピストン19を移動させ、ブレーキパッド11をブレーキディスク12に押し付けることで電動駐車ブレーキ力を発生させて車輪をロック状態にしたり、ブレーキパッド11をブレーキディスク12から離すことで電動駐車ブレーキ力を解除して車輪をリリース状態にしたりする。
 具体的には、ロック・リリース制御により、電動駐車ブレーキ力を発生させたり解除したりする。ロック制御では、モータ10を正回転させることによりEPB2を作動させ、EPB2にて所望の電動駐車ブレーキ力を発生させられる位置でモータ10の回転を停止し、この状態を維持する。これにより、所望の電動駐車ブレーキ力を発生させる。リリース制御では、モータ10を逆回転させることによりEPB2を作動させ、EPB2にて発生させられている電動駐車ブレーキ力を解除する。
 また、電動駐車ブレーキ力が発生している場合にドライバがブレーキペダルを踏むと、液圧ブレーキ機構による液圧ブレーキ力も併せて発生する。電動駐車ブレーキ力と液圧ブレーキ力が重複して発生すると余分なブレーキ力が発生する場合もあるため、M/C圧センサ26によるブレーキ液の液圧検出値に応じて電動駐車ブレーキ力を低減させる。しかし、M/C圧センサ26が故障していたり、あるいは、もともと液圧センサが無かったりすることで、液圧センサによる正しい液圧検出値が得られない場合も考えられる。
 そこで、以下において、液圧センサによる正しい液圧検出値が得られない場合でも液圧ブレーキの液圧を推定する技術について説明する。具体的には、上記のように構成されたブレーキシステムを用いてEPB-ECU9が、図示しない内蔵のROMに記憶されたプログラムにしたがって各種制御を実行する。
 EPB-ECU9は、車両の車輪に対する液圧による制動力である液圧制動力を発生可能な液圧ブレーキと、モータ10によって駆動される車輪ブレーキ機構によって車輪に液圧制動力とは別の制動力である電動制動力を発生させる電動駐車ブレーキと、を備える車両に適用される。また、EPB-ECU9は、目標制動力(例えば道路の勾配等に基いて決定)に基いてモータ10に入力する電流の目標値である電流目標値を決定し、電流目標値に基いてEPB2(電動駐車ブレーキ)を制御する。
 そして、M/C圧センサ26が正常に作動している場合、EPB-ECU9は、M/C圧センサ26による液圧検出値に基いて電流目標値を、その液圧の分だけEPB圧(電動駐車ブレーキによる圧力)が下がるように、補正する。これによって、電動駐車ブレーキ力と液圧ブレーキ力が重複することによる余分なブレーキ力の発生を抑えることができる。
 また、M/C圧センサ26が正常に作動していない場合、EPB-ECU9は、モータ10の電流検出値に基いて液圧ブレーキの液圧を推定し、推定された液圧に基いて電流目標値を、その液圧の分だけEPB圧が下がるように、補正する。以下において、まず、図3A~図5を参照して無負荷状態のときの液圧推定について説明し、その後、図6~図8を参照して加負荷状態のときの液圧推定について説明する。
 図3Aは、実施形態のW/C6における推進軸18とピストン19の間のクリアランスの説明図である。図3Bは、実施形態のW/C6における推進軸18とピストン19の間のクリアランスの説明図である。図3Aは、無負荷状態で、かつ、ドライバによるブレーキペダル3の踏み込みがない場合の推進軸18とピストン19の間のクリアランスW1を示している。図3Bは、その状態から、ドライバによるブレーキペダル3の踏み込みがあった場合の推進軸18とピストン19の間のクリアランスW2を示している。つまり、ドライバによるブレーキペダル3の踏み込みがあると、液圧によってピストン19が紙面左方向に移動する分、推進軸18とピストン19の間のクリアランスはW1からW2に増加する。したがって、無負荷状態では、この推進軸18とピストン19の間のクリアランスの大きさによって、液圧(W/C圧)を推定することができる。なお、以下において、「推定W/C圧を算出する」は「W/C圧を推定する」と同義である。
 ここで、図4は、実施形態における無負荷判定時間と推定W/C圧の関係を示すマップ1である。マップ1はEPB-ECU9内に記憶されている。図4に示すマップ1では、無負荷判定時間と推定W/C圧(MPa)が対応付けられている。なお、図4に示すマップ1におけるT1の値や無負荷判定時間と推定W/C圧の対応を示す線分の傾き等は予め実験等によって定めておけばよい。このマップ1に基いて、EPB-ECU9は、無負荷状態での液圧を推定することができる(詳細は後述)。
 図5は、実施形態における無負荷状態でのW/C圧推定を説明するためのグラフである。図5(a)のグラフは、モータ10の電流検出値(A)の経時的変化の様子を示す。図5(b)のグラフは、負荷判定の経時的変化の様子を示す。負荷判定において、作動加負荷とは、EPB2が作動しているときの加負荷状態を指す。作動無負荷とは、EPB2が作動しているときの無負荷状態を指す。非作動とは、EPB2が作動していない状態を指す。図5(c)のグラフは、EPB-ECU9によって算出される推定W/C圧の経時的変化の様子を示す。
 時刻t0から時刻t1の直前までEPB2は非作動であり、時刻t1の時点でEPB2が作動開始したものとすると、その後、モータ10の電流検出値は図5(a)に示す通りに推移する。また、車輪ブレーキ機構においてモータ10によって推進軸18の先端がピストン19に当接しているか否かを判定するためのモータ10の電流検出値に関する所定の閾値が設定されているものとする。
 そして、EPB-ECU9は、モータ10の駆動を開始(時刻t1)してから、電流検出値が開始直後の突入電流以外で初めて所定の閾値に達するまでの時間の長さ(時刻t1→時刻t5:無負荷判定時間)とマップ1(図4)に基いて、推定W/C圧を算出する。ここでは、所定の閾値は、3MPaの液圧に対応して設定されている。なお、図5(a)に示す例では、時刻t2、t3、t4、t5、t6が、それぞれ、0MPa、1MPa、2MPa、3MPa、4MPaの液圧に対応している。この例では、EPB-ECU9は、図5(c)に示すように、時刻t5の時点でモータ10の電流検出値が所定の閾値に達しているので、推定W/C圧を3MPaと算出する。このようにして、EPB-ECU9は、無負荷状態における液圧を推定することができる。また、EPB-ECU9は、推定W/C圧に基いて電流目標値を、その推定W/C圧の分だけEPB圧が下がるように、補正する。
 次に、図6~図8を参照して加負荷状態のときの液圧推定について説明する。図6は、実施形態における踏力の変化と液圧やEPB圧の変化の関係の説明図である。加負荷状態のときのある瞬間において、ブレーキディスク12(図2)からのW/C6(ブレーキパッド11)に対する反発力を図6の上段に示す大きさとし、ドライバによるブレーキペダル3に対する踏力が一定の場合の液圧とEPB圧を図6(a)に示す大きさとする。
 その場合、ドライバによるブレーキペダル3に対する踏力が増加すると、図6(b)に示すように、液圧が増加し、その分、EPB圧は減少する。また、ドライバによるブレーキペダル3に対する踏力が減少すると、図6(c)に示すように、液圧が減少し、その分、EPB圧は増加する。
 つまり、液圧の変化率とEPB圧の変化率には相関関係がある。また、EPB圧の変化率とモータ10の電流検出値の変化率にも相関関係がある。したがって、加負荷状態では、モータ10の電流検出値の変化率(以下、「電流変化率」ともいう。)によって、液圧の変化率(W/C圧変化率)を推定することができる。
 ここで、図7は、実施形態における電流変化率と推定W/C圧変化率の関係を示すマップ2である。マップ2はEPB-ECU9内に記憶されている。図7に示すマップ2では、電流変化率(A/s)と推定W/C圧変化率(MPa/s)が対応付けられている。なお、図7に示すマップ2における電流変化率(A/s)と推定W/C圧変化率(MPa/s)の対応を示す線分の傾き等は予め実験等によって定めておけばよい。このマップ2に基いて、EPB-ECU9は、加負荷状態での液圧を推定することができる(詳細は後述)。
 図8は、実施形態における加負荷状態でのW/C圧推定を説明するためのグラフである。図8(a)のグラフは、加負荷状態でのモータ10の電流検出値(A)の経時的変化の様子を示す。図8(b)のグラフは、踏力変化判定の経時的変化の様子を示す。図8(c)のグラフは、EPB-ECU9によって算出される推定W/C圧の経時的変化の様子を示す。
 時刻t10から時刻t11までは、踏力が一定であり(図8(b))、推定W/C圧も一定である(図8(a))。また、時刻t11から時刻t12まで、踏力が増加しており(図8(b))、EPB-ECU9は、次のようにして、推定W/C圧を算出する。
 EPB-ECU9は、まず、電流変化率とマップ2(図7)に基いて、推定W/C圧変化率を算出する。その後、EPB-ECU9は、以下の式(1)により、推定W/C圧を算出する。
 推定W/C圧=推定W/C圧前回値+推定W/C圧変化率×サンプリング時間 ・・・式(1)
 また、時刻t12から時刻t13まで、踏力は一定であり(図8(b))、推定W/C圧も一定である(図8(a))。また、時刻t13から時刻t14まで、踏力が減少しており(図8(b))、EPB-ECU9は、踏力増加時と同様に推定W/C圧を算出する。また、時刻t14以降、踏力は一定であり(図8(b))、推定W/C圧も一定である(図8(a))。このようにして、EPB-ECU9は、加負荷状態における液圧を推定することができる。
 次に、図9を参照して、実施形態の制動制御装置による処理について説明する。図9は、実施形態の制動制御装置による処理を示すフローチャートである。
 ステップS1において、EPB-ECU9は、ユーザによって操作SW23を用いたEPB制御開始操作があったか否かを判定し、Yesの場合はステップS2に進み、Noの場合はステップS1に戻る。
 ステップS2において、EPB-ECU9は、目標制動力を決定する。次に、ステップS3において、EPB-ECU9は、ステップS2で決定された目標制動力に基いてモータ10の電流目標値を決定する。次に、ステップS4において、EPB-ECU9は、ステップS3で決定した電流目標値に基いてEPB制御を開始する。
 次に、ステップS5において、EPB-ECU9は、無負荷状態か否かを判定し、Yesの場合はステップS6に進み、Noの場合はステップS9に進む。ステップS5において、具体的には、EPB-ECU9は、モータ10の駆動を開始(図5(a)の時刻t1)してから、モータ10の電流検出値が開始直後の突入電流以外で初めて所定の閾値に達する(図5(a)の時刻t5)までを、無負荷状態と判定する。
 ステップS6において、EPB-ECU9は、無負荷判定時間をカウントする。次に、ステップS7において、EPB-ECU9は、モータ10の電流検出値が電流目標値を超えたか否かを判定し、Yesの場合はステップS8に進み、Noの場合はステップS5に戻る。ステップS8において、EPB-ECU9は、EPB制御を終了(車輪のロックを完了)する。
 ステップS9において、EPB-ECU9は、無負荷判定時間(図5(b))とマップ1(図4)に基いて、推定W/C圧を算出する。次に、ステップS10において、EPB-ECU9は、ステップS9で算出した推定W/C圧に基いて電流目標値を、その推定W/C圧の分だけEPB圧が下がるように、補正する。
 次に、ステップS11において、EPB-ECU9は、モータ10の電流検出値が所定の閾値以上であるか否かを判定し、Yesの場合はステップS12に進み、Noの場合はステップS14に進む。このステップS11は、加負荷状態のときにドライバがブレーキペダル3を急速に踏み込んだ場合にモータ10の電流検出値が所定の閾値未満となってステップS14に進むことを想定している。つまり、加負荷状態であっても、ドライバがブレーキペダル3を急速に踏み込むと、短時間ではあるが推進軸18の先端がピストン19から離れて無負荷状態となり、W/C圧の推定ができなくなるので、そのときは、ステップS14において、電流目標値を所定の固定値とする。この固定値は、アクチュエータ7やキャリパ13の強度等を考慮して、それらの部品等に過度な負荷がかからないための値として予め設定される。ステップS14の後、ステップS15に進む。つまり、EPB-ECU9は、ステップS14の後、モータ10の電流検出値が所定の閾値以上となる(ステップS11でYesになる)までは、推定W/C圧の算出を停止し、電流目標値を固定値のままとする。
 ステップS12において、EPB-ECU9は、電流検出値の変化率(電流変化率)とマップ2(図7)に基いて推定W/C圧変化率を算出し、その推定W/C圧変化率と上述の式(1)により推定W/C圧を算出する。
 次に、ステップS13において、EPB-ECU9は、ステップS12で算出された推定W/C圧に基いて電流目標値を、その推定W/C圧の分だけEPB圧が下がるように、補正する。ステップS13の後、ステップS15に進む。
 ステップS15において、EPB-ECU9は、モータ10の電流検出値が電流目標値を超えたか否かを判定し、Yesの場合はステップS8に進み、Noの場合はステップS11に戻る。
 このようにして、本実施形態のEPB-ECU9(制動制御装置)によれば、液圧センサ(M/C圧センサ26等)による正しい液圧検出値が得られない場合でも、液圧ブレーキの液圧を推定することができる。したがって、例えば、液圧センサが無い場合でも液圧ブレーキの液圧を推定することができるため、ブレーキに関連する装置の小型化やコスト低減を図ることができる。また、M/C圧センサ26があって故障したとしても液圧ブレーキの液圧を推定でき、推定された液圧の分だけEPB圧を下げることで、アクチュエータ7やキャリパ13等に過度な負荷がかかる事態を回避できる。
 例えば、図9のフローチャートでは図示していないが、例えば、M/C圧センサ26が正常に作動している場合、EPB-ECU9は、M/C圧センサ26による液圧検出値に基いて電流目標値を、その液圧の分だけEPB圧が下がるように、補正すればよい。これによって、電動駐車ブレーキ力と液圧ブレーキ力が重複することによる余分なブレーキ力の発生を抑えることができる。
 また、M/C圧センサ26が正常に作動していない場合に、EPB-ECU9は、図9のフローチャートで示すように、推定W/C圧を算出し、その推定W/C圧に基いて電流目標値を、その推定W/C圧の分だけEPB圧が下がるように、補正すればよい。これによって、M/C圧センサ26が正常に作動していない場合でも、電動駐車ブレーキ力と液圧ブレーキ力が重複することによる余分なブレーキ力の発生を抑えることができる。
 なお、M/C圧センサ26が正常に作動していないことは、例えば、次の2つの手法により判定できる。1つ目は、M/C圧センサ26が自己診断機能により故障時にファイルフラグを出力する手法である。2つ目は、M/C圧センサ26による液圧検出値やその変化量が異常値であることを判定する手法である。後者の場合、例えば、M/C圧センサ26が異常値として大きな液圧検出値を出力した場合でも、その液圧検出値を使用せず、推定W/C圧を使用することでEPB圧を適正に維持することができ、EPB圧が下がりすぎて車両が意図せず移動する事態等を回避することができる。
 また、EPB-ECU9によれば、無負荷状態のときと、加負荷状態のときで、それぞれ、上述のアルゴリズムにより推定W/C圧を算出することができる。
 また、加負荷状態のときでも、ドライバがブレーキペダル3を急速に踏み込んでモータ10の電流検出値が閾値未満に下がってW/C圧の推定ができなくなった場合は電流目標値を固定値とすることで、アクチュエータ7やキャリパ13等に過度な負荷がより確実にかからないようにすることができる。
 なお、EPB-ECU9は、車輪ブレーキ機構におけるブレーキパッド11(摩擦材)の摩擦量に基いて、推定W/C圧を補正してもよい。そうすれば、ブレーキパッド11の摩耗による影響を吸収できる。その場合、マップ1やマップ2を、ブレーキパッド11の摩耗量に応じて補正してもよいし、それぞれ複数のマップとして設けてもよい。
 また、EPB-ECU9で算出した推定W/C圧を、ESC-ECU8等のEPB-ECU9以外の制御部で所定の制御に用いてもよい。例えば、ESC-ECU8は、M/C圧センサ26による液圧検出値を用いて所定の制御を行っている場合に、M/C圧センサ26が故障したときでも、EPB-ECU9で算出した推定W/C圧で代用してその所定の制御を継続することができる。
 以上、本発明の実施形態が例示されたが、上記実施形態はあくまで例であって、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。また、各構成や、形状、等のスペック(構造や、種類、数等)は、適宜に変更して実施することができる。
 例えば、EPBを適用する対象の車輪は、後輪に限定されず、前輪でもよい。また、推定W/C圧の算出は、車両の駐車時だけではなく、車両の走行時に行ってもよい。また、キャリパ13の温度や道路の勾配等の他の要因によって推定W/C圧を補正してもよい。また、キャリパ13の種類(構造、材質等の種類)によって、マップ1やマップ2をそれぞれ別々に用意してもよい。
 また、EPB-ECU9によって、推定W/C圧を算出するために、EPB圧が発生する直前までEPB2を作動させて推定W/C圧を算出し、その算出した推定W/C圧をESC-ECU8で所定の制御に用いてもよい。

Claims (7)

  1.  車両の車輪に対する液圧による制動力である液圧制動力を発生可能な液圧ブレーキと、モータによって駆動される車輪ブレーキ機構によって前記車輪に前記液圧制動力とは別の制動力である電動制動力を発生させる電動駐車ブレーキと、を備える車両に適用される制動制御装置であって、
     目標制動力に基いて前記モータに入力する電流の目標値である電流目標値を決定し、前記電流目標値に基いて前記電動駐車ブレーキを制御する電動駐車ブレーキ制御部を、備え、
     前記電動駐車ブレーキ制御部は、
     前記モータに入力された電流の検出値である電流検出値に基いて前記液圧ブレーキの前記液圧を推定する、制動制御装置。
  2.  前記車輪ブレーキ機構において前記モータによって推進軸の先端がピストンに当接しているか否かを判定するための前記電流検出値に関する所定の閾値が設定されており、
     前記電動駐車ブレーキ制御部は、
     前記モータの駆動を開始してから、前記電流検出値が開始直後の突入電流以外で初めて前記所定の閾値に達するまでの時間の長さに基いて、前記液圧ブレーキの前記液圧を推定する、請求項1に記載の制動制御装置。
  3.  前記電動駐車ブレーキ制御部は、
     前記電流検出値が前記開始直後の突入電流以外で初めて前記所定の閾値に達した後、前記電流検出値の変化率に基いて、前記液圧ブレーキの前記液圧を推定する、請求項2に記載の制動制御装置。
  4.  前記電動駐車ブレーキ制御部は、
     前記電流検出値が前記開始直後の突入電流以外で初めて前記所定の閾値に達した後、前記電流検出値が所定値以上の変化率で前記所定の閾値未満に低下した場合、前記所定の閾値に達するまでは、前記液圧ブレーキの前記液圧を推定することを停止し、前記電流目標値を所定の固定値に設定する、請求項2に記載の制動制御装置。
  5.  前記電動駐車ブレーキ制御部は、
     前記車輪ブレーキ機構における摩擦材の摩擦量に基いて、推定した前記液圧を補正する、請求項1に記載の制動制御装置。
  6.  前記電動駐車ブレーキ制御部によって推定された前記液圧ブレーキの前記液圧を所定の制御に用いる、前記電動駐車ブレーキ制御部とは異なる制御部、をさらに備える、請求項1に記載の制動制御装置。
  7.  前記車両は、前記液圧を検出する液圧センサを備えており、
     前記電動駐車ブレーキ制御部は、
     前記液圧センサが正常に作動している場合、前記液圧センサによる前記液圧の検出値である液圧検出値に基いて前記電流目標値を補正し、
     前記液圧センサが正常に作動していない場合、前記電流検出値に基いて前記液圧ブレーキの前記液圧を推定し、推定された前記液圧に基いて前記電流目標値を補正する、請求項1に記載の制動制御装置。
PCT/JP2019/009469 2018-03-26 2019-03-08 制動制御装置 WO2019188141A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/969,746 US11919493B2 (en) 2018-03-26 2019-03-08 Brake control device
CN201980021907.7A CN111936361B (zh) 2018-03-26 2019-03-08 制动控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018058848A JP7056301B2 (ja) 2018-03-26 2018-03-26 制動制御装置
JP2018-058848 2018-03-26

Publications (1)

Publication Number Publication Date
WO2019188141A1 true WO2019188141A1 (ja) 2019-10-03

Family

ID=68058298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009469 WO2019188141A1 (ja) 2018-03-26 2019-03-08 制動制御装置

Country Status (4)

Country Link
US (1) US11919493B2 (ja)
JP (1) JP7056301B2 (ja)
CN (1) CN111936361B (ja)
WO (1) WO2019188141A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3974266A1 (en) * 2020-09-29 2022-03-30 Goodrich Corporation Hybrid brake system
CN115279634A (zh) * 2020-03-12 2022-11-01 日立安斯泰莫株式会社 电动驻车制动装置
US11970263B2 (en) 2022-02-10 2024-04-30 Goodrich Corporation Hybrid brake systems and methods for load cell calibration
US11999468B2 (en) 2022-02-10 2024-06-04 Goodrich Corporation Hybrid brake systems and methods

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7234877B2 (ja) * 2019-09-20 2023-03-08 株式会社三洋物産 遊技機
JP7234881B2 (ja) * 2019-09-20 2023-03-08 株式会社三洋物産 遊技機
JP7234880B2 (ja) * 2019-09-20 2023-03-08 株式会社三洋物産 遊技機
JP7234879B2 (ja) * 2019-09-20 2023-03-08 株式会社三洋物産 遊技機
JP7234882B2 (ja) * 2019-09-20 2023-03-08 株式会社三洋物産 遊技機
WO2023070635A1 (zh) * 2021-10-31 2023-05-04 华为技术有限公司 一种制动系统、车辆及制动系统的控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537130A (ja) * 2010-09-10 2013-09-30 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 車両の常用ブレーキまたは駐車ブレーキの故障を突き止める方法、方法を実施するための閉ループまたは開ループ制御器、および、このような閉ループまたは開ループ制御器を備える駐車ブレーキ
JP2014504231A (ja) * 2010-12-17 2014-02-20 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 駐車ブレーキによって加えられるクランプ力を調節するための方法
JP2017210031A (ja) * 2016-05-23 2017-11-30 日立オートモティブシステムズ株式会社 ブレーキシステム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008012338A1 (de) 2008-03-03 2009-09-10 Lucas Automotive Gmbh Technik zum Betätigen einer hydraulischen Feststellbremse
JP5998636B2 (ja) 2012-05-24 2016-09-28 株式会社アドヴィックス 車両用ブレーキ装置
JP5737224B2 (ja) * 2012-05-28 2015-06-17 株式会社アドヴィックス 車両用ブレーキ装置
JP6227333B2 (ja) * 2013-08-30 2017-11-08 日立オートモティブシステムズ株式会社 ブレーキシステム
JP6262993B2 (ja) * 2013-10-31 2018-01-17 日立オートモティブシステムズ株式会社 ブレーキ装置
JP5880523B2 (ja) * 2013-11-15 2016-03-09 トヨタ自動車株式会社 電動パーキングブレーキ用制御装置
JP2016011081A (ja) 2014-06-30 2016-01-21 株式会社ハイレックスコーポレーション 電動パーキングブレーキ制御装置
JP2017171215A (ja) * 2016-03-25 2017-09-28 日立オートモティブシステムズ株式会社 ブレーキシステム
JP6834839B2 (ja) * 2017-08-07 2021-02-24 トヨタ自動車株式会社 車両用ブレーキシステム
CN112292293B (zh) * 2018-06-27 2024-02-09 日立安斯泰莫株式会社 电动制动装置、电动制动控制装置以及制动控制装置
JP7153743B2 (ja) * 2018-12-26 2022-10-14 日立Astemo株式会社 電動ブレーキ装置
JP7186296B2 (ja) * 2019-06-26 2022-12-08 日立Astemo株式会社 電動ブレーキ装置、ブレーキ制御装置および制御パラメータ較正方法
CN115397707A (zh) * 2020-03-31 2022-11-25 日立安斯泰莫株式会社 电动制动装置以及电动制动控制装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537130A (ja) * 2010-09-10 2013-09-30 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 車両の常用ブレーキまたは駐車ブレーキの故障を突き止める方法、方法を実施するための閉ループまたは開ループ制御器、および、このような閉ループまたは開ループ制御器を備える駐車ブレーキ
JP2014504231A (ja) * 2010-12-17 2014-02-20 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 駐車ブレーキによって加えられるクランプ力を調節するための方法
JP2017210031A (ja) * 2016-05-23 2017-11-30 日立オートモティブシステムズ株式会社 ブレーキシステム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115279634A (zh) * 2020-03-12 2022-11-01 日立安斯泰莫株式会社 电动驻车制动装置
CN115279634B (zh) * 2020-03-12 2024-05-10 日立安斯泰莫株式会社 电动驻车制动装置
EP3974266A1 (en) * 2020-09-29 2022-03-30 Goodrich Corporation Hybrid brake system
US11970263B2 (en) 2022-02-10 2024-04-30 Goodrich Corporation Hybrid brake systems and methods for load cell calibration
US11999468B2 (en) 2022-02-10 2024-06-04 Goodrich Corporation Hybrid brake systems and methods

Also Published As

Publication number Publication date
JP2019171888A (ja) 2019-10-10
CN111936361B (zh) 2022-12-27
US20210001830A1 (en) 2021-01-07
US11919493B2 (en) 2024-03-05
JP7056301B2 (ja) 2022-04-19
CN111936361A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
WO2019188141A1 (ja) 制動制御装置
JP5273098B2 (ja) 車両用制動制御装置
WO2013047599A1 (ja) 駐車ブレーキ制御装置
US9260094B2 (en) Vehicle brake device
US11440524B2 (en) Brake control device
US20220017056A1 (en) Vehicle control device
US11858490B2 (en) Brake control device
JP7091887B2 (ja) 制動制御装置
JP7230523B2 (ja) ブレーキ制御装置
US20220410721A1 (en) Braking control device
JP6743780B2 (ja) 制動制御装置
CN113874262B (zh) 制动控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19774846

Country of ref document: EP

Kind code of ref document: A1