WO2019188090A1 - 網状構造体製造装置及び網状構造体の製造方法 - Google Patents

網状構造体製造装置及び網状構造体の製造方法 Download PDF

Info

Publication number
WO2019188090A1
WO2019188090A1 PCT/JP2019/009102 JP2019009102W WO2019188090A1 WO 2019188090 A1 WO2019188090 A1 WO 2019188090A1 JP 2019009102 W JP2019009102 W JP 2019009102W WO 2019188090 A1 WO2019188090 A1 WO 2019188090A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
network structure
water tank
manufacturing apparatus
transfer device
Prior art date
Application number
PCT/JP2019/009102
Other languages
English (en)
French (fr)
Inventor
拓勇 井上
中村 隆徳
浩之 辻井
小淵 信一
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018063113A external-priority patent/JP7077715B2/ja
Priority claimed from JP2018063111A external-priority patent/JP7077713B2/ja
Priority claimed from JP2018063112A external-priority patent/JP7077714B2/ja
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to EP19774345.3A priority Critical patent/EP3779017B1/en
Priority to CN201980022277.5A priority patent/CN111989430B/zh
Priority to US16/981,838 priority patent/US11926941B2/en
Priority to CN202211245766.7A priority patent/CN115627592A/zh
Publication of WO2019188090A1 publication Critical patent/WO2019188090A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/04Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles
    • D04H3/045Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles for net manufacturing
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • D01D5/0885Cooling filaments, threads or the like, leaving the spinnerettes by means of a liquid
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D7/00Collecting the newly-spun products
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/03Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments at random
    • D04H3/037Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments at random reorientation by liquid
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Definitions

  • the present invention relates to an apparatus for manufacturing a network structure and a method for manufacturing the network structure.
  • the network structure has the same durability as the foam-crosslinked urethane, has excellent moisture permeability and air permeability, and has the advantage of being less stuffy due to less heat storage. Furthermore, since it consists of a thermoplastic resin, there are advantages that it is easy to recycle, there is no worry about residual chemicals, and it is environmentally friendly.
  • Conveyors having endless members that are provided opposite to each other and that have a gap between them, and an outlet hole that is provided in an inner region of the conveyor and that jets cooling water from the gap toward the assembly or through the gap from the vicinity of the assembly.
  • a forced convection member including at least one of the suction holes for sucking the liquid, and the aggregate is taken up by the conveyor at a speed slower than the descending speed of the filaments and cooled in the water tank, so that the aggregate becomes a three-dimensional network structure.
  • a three-dimensional network-structure manufacturing apparatus see, for example, Patent Document 1).
  • an extrusion step in which molten thermoplastic resin is extruded downward as a plurality of filaments and lowered, and a collection of filaments in which the filaments contact the water surface or descend are sandwiched.
  • a cooling step of cooling the body in water there is a method of producing a three-dimensional net-like structure characterized by having a (e.g., see Patent Document 1).
  • the manufacturing apparatus and the manufacturing method of the network structure as disclosed in Patent Document 1 jet the cooling water toward the network structure when manufacturing the network structure, and the surface portion of the network structure directly hit with the cooling water.
  • the degree of cooling between the inside and the inside where the cooling water is not applied, and cooling spots are generated in the thickness direction of the network structure.
  • the internal repeated compression residual strain that was insufficiently cooled is large, the hardness retention after repeated compression is small, and the durability of the network structure is extremely inferior. There is a problem that it ends up.
  • the present invention was devised to solve the above-described problems of the prior art, and its purpose is to cool the network structure in the thickness direction when the network structure is cooled during the manufacture of the network structure.
  • An object of the present invention is to provide a manufacturing apparatus and a manufacturing method for a net-like structure which is less likely to cause spots and has sufficient durability.
  • the first reticulated structure manufacturing apparatus of the present invention that has solved the above-mentioned problems is a nozzle having discharge holes for extruding molten thermoplastic resin as a line, and a water tank disposed below the nozzle. And a transport device for transporting a net-like structure having a linear resin, and a gas discharge device for discharging a gas that is provided in the water bath. Is.
  • the gas release device is preferably provided below the transfer device.
  • the gas discharge device preferably has a discharge hole for discharging a gas, and the normal direction of the discharge hole is preferably directed to the water surface of the water tank.
  • the transport device is composed of at least a first transport device and a second transport device, and the network structure is between the first transport device and the second transport device.
  • the gas discharge device has a discharge hole for discharging a gas, and the normal direction of the discharge hole is directed to the network structure between the transfer devices.
  • the amount of gas released from the gas releasing device increases as the amount of resin pushed out from the nozzle increases.
  • the amount of gas released by the gas release device increases as the speed of the transfer device increases.
  • the transport device preferably has a mesh belt and a driving roller.
  • the first net-like structure manufacturing apparatus of the present invention has a net-like structure pulling device that pulls the net-like structure on one side of the water tank, and the transport device is at least a first transport device and a second transport device. It is preferable that the gas discharge device is disposed on the network structure pulling device side with respect to the vertical plane including the midpoint between the first transfer device and the second transfer device.
  • the gas release device includes at least a first gas release device and a second gas release device
  • the transfer device includes at least the first transfer device and the second transfer device.
  • the first gas release device is provided below the first transfer device in the vertical direction
  • the second gas release device is provided below the second transfer device in the vertical direction. Is preferred.
  • the first method for producing a network structure according to the present invention includes a step of extruding a molten thermoplastic resin into a line, and a network structure having the resin of the line by a conveying means. It has the step which conveys a body in a water tank, and the step which discharge
  • the second network structure manufacturing apparatus of the present invention that has solved the above problems includes a nozzle having a discharge hole for extruding molten thermoplastic resin as a line, and a water tank disposed under the nozzle.
  • a transport device that is provided in the water tank and transports the network structure having the resin of the filaments, and a water discharge device that is provided in the water tank and discharges water in a predetermined direction.
  • the transfer device is composed of at least a first transfer device and a second transfer device, and there is a network structure between the first transfer device and the second transfer device, and the network structure between the transfer devices is: It does not exist on the extended line of the water discharge
  • the water discharge direction of the water discharge device is directed to the water surface of the water tank.
  • the water discharge direction of the water discharge apparatus is on the network structure side between the transfer devices rather than the vertical direction.
  • the water discharge device has a discharge hole for discharging water, and the discharge hole is disposed 0.1 mm or more and 400 mm or less below the water surface of the water tank. Preferably it is.
  • the water discharge device is disposed inside the transport device.
  • the transport device has a mesh belt and a driving roller.
  • the drive roller is composed of at least an upper drive roller and a lower drive roller, the upper drive roller is above the inside of the transport device, and the lower drive roller is the transport device. It is respectively arrange
  • the amount of water discharged by the water discharge device increases as the amount of resin pushed out from the nozzle increases.
  • the amount of water released by the water discharge device increases as the speed of the transfer device increases.
  • the direction of water discharged by the water discharge device is linked to the amount of resin pushed out from the nozzle.
  • the direction of water discharged by the water discharge device is linked to the speed of the transfer device.
  • the water discharge device has a discharge hole for discharging water, and the position of the discharge hole from the water surface of the water tank is linked to the amount of resin extruded from the nozzle. It is preferable.
  • the water discharge device has a discharge hole for discharging water, and the position of the discharge hole from the water surface of the water tank is linked to the speed of the transport device. Is preferred.
  • the second method for producing a network structure according to the present invention includes a step of extruding a molten thermoplastic resin as a filament, and a line formed by the first conveying device and the second conveying device.
  • the third network-structure manufacturing apparatus of the present invention that has solved the above-mentioned problems is a nozzle having a discharge hole for extruding a molten thermoplastic resin as a line, a water tank disposed below the nozzle, The water tank is provided with a transport device for transporting a network structure having a linear resin, and a drain outlet provided at the bottom of the water tank.
  • the third network structure manufacturing apparatus of the present invention has a partition plate around the drain outlet in the water tank.
  • the third network structure manufacturing apparatus of the present invention it is preferable to have a heat exchanger for cooling the water discharged from the drain port and circulate the water.
  • the transport device has a mesh belt and a driving roller.
  • the transport device is composed of at least a first transport device and a second transport device, and the drain port is a midpoint between the first transport device and the second transport device. It is preferable to be provided at a position including the intersection of the perpendicular line extending from the bottom to the bottom of the water tank and the bottom of the water tank.
  • a network structure pulling device that pulls the network structure is provided on one side of the water tank, and the transfer device includes at least a first transfer device and a second transfer device.
  • the first transport device is disposed closer to the network structure traction device than the second transport device, and the drain port is provided closer to the network structure traction device than the first transport device. Preferably it is.
  • a network structure pulling device that pulls the network structure is provided on one side of the water tank, and the transfer device includes at least a first transfer device and a second transfer device.
  • the first transport device is arranged on the reticulated structure pulling device side with respect to the second transport device, and the drain outlet is on the opposite side of the reticulated structure pulling device side with respect to the second transport device. It is preferable to be provided.
  • the shape of the drain port viewed from the direction perpendicular to the water surface of the water tank is a rectangle.
  • the third network structure manufacturing apparatus of the present invention it is preferable to have a drainage amount adjusting means for adjusting the drainage amount from the drainage port.
  • the drainage amount adjusting means increases the drainage amount from the drain port when the amount of resin pushed out from the nozzle increases.
  • the drainage amount adjusting means increases the drainage amount from the drain port when the speed of the transfer device increases.
  • the third method for producing a network structure of the present invention that has solved the above problems includes a step of extruding a molten thermoplastic resin into a line, and a network structure having the resin of the line by a conveying means.
  • the water discharged from the drain port is cooled by a heat exchanger, supplied to a water tank and circulated.
  • the gas discharge device provided in the water tank releases gas, thereby causing convection in the water in the water tank, and the surface portion of the network structure. It becomes easy to cool the inside uniformly. Therefore, cooling spots are less likely to occur in the thickness direction of the network structure, and a network structure with sufficient durability can be manufactured.
  • the water discharge device provided in the water tank discharges water
  • the network structure between the transfer devices extends the water discharge direction of the water discharge device. Since it does not exist on the line, convection is caused in the water in the water tank, and the surface portion and the inside of the network structure are easily cooled uniformly. As a result, it is difficult for cooling spots to occur in the thickness direction of the network structure, and a network structure with sufficient durability can be manufactured.
  • a drain outlet is provided at the bottom of the aquarium, and by discharging the water in the aquarium from this drain outlet, the vicinity of the resin of the filaments in the aquarium, In particular, the water having a high temperature inside the network structure can be discharged, and the temperature of the water in the entire water tank can be prevented from rising. Therefore, it becomes easy to uniformly cool the surface portion and the inside of the network structure, and it is difficult for cooling spots to occur in the thickness direction of the network structure, and a network structure having sufficient durability can be manufactured.
  • the side view (partial cross section figure) of the 1st network-structure manufacturing apparatus in embodiment of this invention is represented.
  • the side view (partial cross section figure) of an example of the 2nd network-structure manufacturing apparatus in embodiment of this invention is represented.
  • the side view (partial sectional view) of another example of the second network structure manufacturing apparatus in the embodiment of the present invention is shown.
  • the side view (partial cross section figure) of an example of the 3rd network-structure manufacturing apparatus in embodiment of this invention is represented.
  • the side view (partial sectional view) of another example of the third network structure manufacturing apparatus in the embodiment of the present invention is shown.
  • the side view (partial sectional view) of still another example of the third network structure manufacturing apparatus in the embodiment of the present invention is shown.
  • the first network structure manufacturing apparatus of the present invention will be described below.
  • the first network structure manufacturing apparatus is provided in a water tank, a nozzle having a discharge hole for extruding a molten thermoplastic resin as a filament, a water tank disposed below the nozzle, It has the conveyance apparatus which conveys the net-like structure which has the resin of a filament, and the gas discharge
  • the network structure of the present invention has a three-dimensional random loop joining structure in which a linear resin made of a thermoplastic resin is twisted to form a random loop, and the respective loops are brought into contact with each other in a molten state. It is a structure.
  • FIG. 1 is a side view of a first network structure manufacturing apparatus according to an embodiment of the present invention.
  • the network structure manufacturing apparatus 1 includes a nozzle 10, a water tank 20, a transfer device 30, and a gas release device 40.
  • the nozzle 10 has a discharge hole 11 for extruding a molten thermoplastic resin as a line. That is, the linear resin 12 is formed by extruding the thermoplastic resin melted by heating from the discharge hole 11 of the nozzle 10.
  • the number of ejection holes 11 that the nozzle 10 has may be one or plural.
  • the plurality of protruding holes 11 may be arranged in one row, but are preferably arranged in a plurality of rows. Since the nozzle 10 has the plurality of discharge holes 11, a plurality of linear resin 12 can be formed at the same time, and the production efficiency of the network structure 60 can be increased.
  • the number of discharge holes 11 provided in the nozzle 10 can be adjusted according to the hardness and cushioning properties of the network structure 60 to be manufactured.
  • the cross-sectional shape of the outlet of the discharge hole 11 is not particularly limited, and examples thereof include a circle, an ellipse, and a polygon.
  • the cross-sectional shape of the outlet of the discharge hole 11 is preferably circular or elliptical. Since the discharge holes 11 are configured in this way, the cross-sectional shape of the resin 12 of the filaments extruded from the discharge holes 11 is also circular or elliptical. Therefore, when forming the above-mentioned three-dimensional random loop joining structure, the area where the linear resins 12 contact each other can be increased, and the network structure 60 having high elasticity and durability can be manufactured.
  • the cross-sectional shape of the linear resin 12 extruded from the discharge hole 11 may be solid or hollow.
  • a configuration having a mandrel such as a mandrel inside the discharge hole 11 may be used.
  • the cross-sectional shape of the outlet of the discharge hole 11 is a so-called C-type nozzle in which the inner side and the outer side of the discharge hole 11 are partially communicated, or a bridge is provided in the discharge hole 11 so that the discharge hole 11 is formed.
  • a so-called three-point bridge nozzle or the like divided in the circumferential direction can be used.
  • the length in the major axis direction of the cross-sectional shape of the outlet of the discharge hole 11 is preferably 0.1 mm or more, more preferably 0.5 mm or more, and further preferably 1.0 mm or more.
  • the network structure 60 is improved in durability, and the network structure 60 can withstand repeated compression. Can do.
  • the length in the major axis direction of the cross-sectional shape of the outlet of the discharge hole 11 is preferably 10 mm or less, more preferably 7 mm or less, and further preferably 5 mm or less.
  • the size of the cross-sectional shape of the outlet of each discharge hole 11 may be the same or different. If the size of the cross-sectional shape of the outlets of all the discharge holes 11 included in the nozzle 10 is the same, the network structure 60 in which the thickness of the resin 12 of the filaments is uniform can be obtained.
  • the line inside the reticulated structure 60 Since the strip resin 12 is thinner than the filament resin 12 on the surface portion of the network structure 60, the temperature inside the mesh structure 60 is likely to be lower than the surface portion. Therefore, it is possible to manufacture a network structure 60 having a structure in which cooling spots hardly occur.
  • thermoplastic resin extruded from the discharge hole 11 examples include polyester-based thermoplastic elastomers, polyolefin-based thermoplastic elastomers, polystyrene-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, ethylene vinyl acetate copolymers, and the like. Is mentioned.
  • the thermoplastic resin preferably contains at least one of a polyester-based thermoplastic elastomer, a polyolefin-based thermoplastic elastomer, and a polystyrene-based thermoplastic elastomer.
  • thermoplastic resin contains at least one of a polyester-based thermoplastic elastomer, a polyolefin-based thermoplastic elastomer, and a polystyrene-based thermoplastic elastomer
  • processability is improved and the production of the network structure 60 is facilitated.
  • thermoplastic resin contains a polyester-based thermoplastic elastomer.
  • the thermoplastic resin contains a polyester-based thermoplastic elastomer, repeated compression residual strain can be reduced.
  • the thermoplastic resin contains the polyester-based thermoplastic elastomer, the hardness retention after repeated compression of the network structure 60 can be increased, and the highly durable network structure 60 can be manufactured. it can.
  • the water tank 20 is disposed below the nozzle 10 and is configured to receive the linear resin 12 extruded from the discharge hole 11 of the nozzle 10.
  • the water tank 20 has water for cooling the linear resin 12 extruded from the discharge hole 11 of the nozzle 10.
  • the linear resin 12 extruded from the discharge hole 11 of the nozzle 10 lands on the water surface in the water tank 20 and twists to form a random loop.
  • the random loops are in contact with adjacent random loops in a molten state, thereby forming a structure in which the random loops are joined in a three-dimensional direction, and at the same time, the structure is cooled and fixed by water. In this way, the network structure 60 is obtained.
  • the conveying device 30 is provided in the water tank 20 and conveys the network structure 60 having the linear resin 12. That is, the transport device 30 transports the network structure 60 having the linear resin 12 that is pushed out from the discharge hole 11 of the nozzle 10 and received in the water tank 20 in the water tank 20.
  • the transport device 30 preferably transports the network structure 60 from the water surface of the water tank 20 toward the bottom of the water tank 20.
  • the conveying apparatus 30 is provided in the water tank 20.
  • the kind of the conveying apparatus 30 is not specifically limited, For example, conveyors, such as a belt conveyor, a net conveyor, a slat conveyor, are mentioned. Details of the transport device 30 will be described later.
  • the gas discharge device 40 is provided in the water tank 20 and discharges gas.
  • the gas discharged from the gas discharge device 40 is preferably a gas compressed by a device (not shown) for compressing the gas.
  • a device not shown
  • convection can be generated in the water in the water tank 20.
  • convection occurs in the water in the water tank 20
  • not only the water in the vicinity of the surface portion of the network structure 60 in the water tank 20 but also the water in the network structure 60 is moved through the gaps in the network structure 60. And new water is supplied. Therefore, both the surface part and the inside of the network structure 60 in the water tank 20 can be uniformly cooled, and cooling spots are less likely to occur.
  • a high network structure 60 can be manufactured.
  • the gas include air, oxygen gas, nitrogen gas, and the like, and air is preferable.
  • the gas discharge device 40 is preferably provided below the transfer device 30. Since the water in the vicinity of the water surface where the linear resin 12 extruded from the discharge hole 11 of the nozzle 10 comes into contact with the water in the water tank 20 becomes the highest temperature, the gas discharge device 40 is provided below the transport device 30. Thus, the water below the conveying device 30 that is lower in temperature than the water near the water surface can be fed into the resin 12 in the vicinity of the water surface, and the resin 12 in the vicinity of the water surface can be efficiently cooled. it can.
  • the gas discharge device 40 may be provided between the lower end of the transfer device 30 and the bottom of the water tank 20, or may be provided at the bottom of the water tank 20.
  • the gas discharge device 40 has a gas discharge hole 43 for discharging gas, and the normal direction of the gas discharge hole 43 is preferably directed to the water surface of the water tank 20.
  • the normal line of the gas discharge hole 43 indicates a line perpendicular to the surface including the opening of the gas discharge hole 43. Since the normal direction of the gas discharge hole 43 is directed to the water surface of the water tank 20, water convection can be caused from the vicinity of the gas discharge device 40 toward the water surface where the water temperature is high, thereby cooling the network structure 60. Can be done efficiently.
  • the gas discharge device 40 has a plurality of gas discharge holes 43, it is preferable that the normal direction of at least one gas discharge hole 43 faces the water surface of the water tank 20.
  • the number of the gas discharge holes 43 included in the gas discharge device 40 may be one or plural. If the number of the gas discharge holes 43 is one, it becomes easy to adjust the direction of the gas discharged from the gas discharge holes 43. Moreover, if the number of the gas discharge holes 43 is plural, the gas discharged from the gas discharge holes 43 can be diffused, and a large convection can be caused in the water in the water tank 20. Can be increased.
  • the transport device 30 includes at least a first transport device 31 and a second transport device 32, and a net-like structure 60 is provided between the first transport device 31 and the second transport device 32.
  • the normal direction of the gas discharge hole 43 is directed to the network structure 60 located between the transfer devices 30. That is, it is preferable that the normal direction of the gas discharge hole 43 is directed to the network structure 60 located between the first transfer device 31 and the second transfer device 32. Since the normal direction of the gas discharge hole 43 is directed to the network structure 60 located between the transfer devices 30, it becomes easier to feed water into the network structure 60 and cooling is likely to be insufficient. It becomes easy to cool the inside of the body 60.
  • the normal direction of the gas discharge hole 43 faces the water surface of the water tank 20 and the net-like structure 60 located between the transfer device 30. Since the gas discharge holes 43 are configured in this way, convection of water can be generated from the gas discharge device 40 through the inside of the network structure 60 toward the water surface of the water tank 20, and the network structure. Cooling spots hardly occur in the thickness direction of 60.
  • the amount of gas discharged from the gas discharge device 40 increases as the amount of resin pushed out from the nozzle 10 increases. That is, the volume (m 3 / min) of gas discharged from the gas discharge device 40 (measured value at 1 atm and normal temperature) and the extrusion amount (g / min) of the resin extruded from the nozzle 10 are linked. Is preferred. For example, when the amount of the resin 12 of the filaments extruded from the nozzle 10 is increased in order to increase the resilience of the network structure 60, the temperature near the water surface of the water tank 20 tends to become higher. Cooling efficiency becomes worse.
  • the network structure 60 becomes dense, so that the inside of the network structure 60 is difficult to be cooled, and cooling spots are generated in the thickness direction of the network structure 60. It tends to occur. Therefore, the convection of water in the water tank 20 is increased by increasing the gas discharge amount of the gas discharge device 40 with the increase in the amount of the linear resin 12 extruded from the nozzle 10. Cooling efficiency can be increased and cooling spots can be prevented.
  • the volume (m 3 / min) of gas released from the gas release device 40 is proportional to the extrusion amount (g / min) of the resin from the nozzle 10. . Since the volume of the gas discharged from the gas discharge device 40 and the extrusion amount of the resin from the nozzle 10 are in such a relationship, the cooling efficiency of the network structure 60 can be further increased, and cooling spots occur. It becomes difficult.
  • the amount of gas released by the gas release device 40 increases as the speed of the transfer device 30 increases. That is, it is preferable that the volume (m 3 / min) of gas discharged from the gas discharge device 40 (measured value at 1 atm and normal temperature) and the transport speed of the network structure 60 by the transport device 30 are linked.
  • the speed of the transfer device 30 is increased for the purpose of reducing the density of the network structure 60 in order to reduce the hardness of the network structure 60, the next step is performed while the inside of the network structure 60 is not sufficiently cooled. May move to.
  • the process proceeds to the next step, the repeated compression residual strain inside the network structure 60 is large, the hardness retention after repeated compression is small, and the durability is inferior. There is a possibility that the network structure 60 is obtained. Therefore, as the speed of the transfer device 30 increases, the amount of gas released from the gas release device 40 is increased, thereby increasing the convection of water in the water tank 20 and increasing the cooling efficiency of the network structure 60. Not only the surface portion of the structure 60 but also the inside can be sufficiently cooled.
  • the volume (m 3 / min) of gas released by the gas release device 40 is proportional to the speed (m / min) of the transfer device 30. Since the volume of the gas discharged from the gas discharge device 40 and the speed of the transfer device 30 are in such a relationship, the cooling efficiency of the network structure 60 can be further increased, and the occurrence of cooling spots can be prevented. .
  • the amount of gas discharged from the gas discharge device 40 increases as the amount of resin pushed out from the nozzle 10 increases and increases as the speed of the transfer device 30 increases. That is, the volume (m 3 / min) of gas released from the gas releasing device 40 (measured value at 1 atm and normal temperature) is the amount of resin extruded from the nozzle 10 (g / min) and the speed of the conveying device 30. More preferably, it is proportional to (m / min). Since the amount of the gas released from the gas discharge device 40 is as described above, for example, the amount of the linear resin 12 extruded from the nozzle 10 is increased for the purpose of increasing the productivity of the network structure 60. Even when the speed of the transfer device 30 is increased, the reticular structure 60 can be sufficiently cooled by increasing the convection of the water in the water tank 20, and cooling spots in the thickness direction of the reticular structure 60 are less likely to occur. be able to.
  • the upper end portion of the transfer device 30 is above the water surface of the water tank 20.
  • the conveying device 30 preferably has a conveyor belt 33.
  • Conveyor belt 33 is a net conveyor belt meshed by continuously weaving or weaving rubber or resin flat belts or metal wires, or attaching metal plates to conveyor chains continuously. Slat conveyor belts.
  • the conveyor belt 33 is preferably a net conveyor belt because it has good gripping performance and excellent water passage performance. That is, the conveying device 30 is preferably a net conveyor conveying device having a mesh belt and a driving roller 34. Since the transport device 30 is configured in this way, water and gas can pass through the transport device 30, and therefore the transport device 30 is unlikely to interfere with the convection of the water in the water tank 20 by the gas discharge device 40. The cooling efficiency of the structure 60 can be increased.
  • the conveyor belt 33 is preferably endless. Since the conveyor belt 33 is configured to be endless, the endless conveyor belt 33 rotates without interruption by the rotation of the driving roller 34, and the conveying device 30 can be operated continuously. As a result, the network structure 60 can be efficiently transported.
  • the drive roller 34 is plural, and it is preferable that the drive roller 34 is provided at the upper part and the lower part inside the endless conveyor belt 33, respectively. That is, it is preferable that the upper drive roller 34 a is provided at the upper part inside the conveyor belt 33 and the lower drive roller 34 b is provided at the lower part inside the conveyor belt 33. Since the driving roller 34 is configured in this way, it is difficult for the conveyor belt 33 to bend, and the rotation of the driving roller 34 can prevent the conveyor belt 33 from spinning and causing the conveyance device 30 to malfunction.
  • the transfer device 30 is composed of at least a first transfer device 31 and a second transfer device 32, and it is preferable that a reticulated structure 60 is present between the first transfer device 31 and the second transfer device 32. Since the transport device 30 is configured in this way, the reticulated structure 60 can be transported in a state sandwiched between the first transport device 31 and the second transport device 32, so that the surface is prepared, and The network structure 60 having a constant thickness can be obtained.
  • the distance between the lower drive roller 34b of the first transport device 31 and the lower drive roller 34b of the second transport device 32 is the distance between the upper drive roller 34a of the first transport device 31 and the upper drive roller 34a of the second transport device 32. Is preferably smaller. That is, it is preferable that the distance between the 1st conveying apparatus 31 and the 2nd conveying apparatus 32 is smaller in the lower part than the upper part, and becomes narrow as it goes to the lower part. Since the transport device 30 is configured as described above, the mesh structure 60 can be sandwiched between the lower portions of the transport device 30. As a result, the linear resin 12 and the network structure 60 can be easily drawn into the water tank 20, and the network structure 60 can be easily cooled.
  • the network structure manufacturing apparatus 1 preferably includes a network structure pulling apparatus 50 that pulls the network structure 60 and pulls it up from the water tank 20. Since the network structure manufacturing apparatus 1 includes the network structure pulling device 50, the network structure 60 is automatically pulled up from the water tank 20 after the network structure 60 is cooled, and the network structure 60 is dried. Since it can move, the productivity of the net-like structure 60 can be raised.
  • a network structure pulling device 50 that pulls the network structure 60 is provided on one side of the water tank 20, and the transport device 30 includes at least a first transport device 31 and a second transport device 32, and gas It is preferable that the discharge device 40 is disposed closer to the network structure pulling device 50 than the vertical plane p1 including the midpoint P1 between the first transfer device 31 and the second transfer device 32.
  • the vertical plane p1 is located on the vertical plane p1 on the opposite side of the mesh structure pulling device 50 side.
  • the gas release device 40 includes at least a first gas release device 41 and a second gas release device 42
  • the transfer device 30 includes at least a first transfer device 31 and a second transfer device 32.
  • the first gas discharge device 41 is preferably provided below the first transfer device 31 in the vertical direction
  • the second gas discharge device 42 is preferably provided below the second transfer device 32 in the vertical direction.
  • the normal direction of the gas discharge hole 43 of the first gas discharge device 41 may be the same as or different from the normal direction of the gas discharge hole 43 of the second gas discharge device 42.
  • the normal direction of the gas discharge hole 43 of the first gas discharge device 41 is the vertical direction toward the water surface
  • the normal direction of the gas discharge hole 43 of the second gas discharge device 42 is also the vertical direction. If the direction is toward the water surface, convection of water can be caused equally on both sides of the net-like structure 60 in the water tank 20, and the convection is balanced between the first gas release device 41 and the second gas release device 42. Can be generated.
  • the first gas discharge device 41 and the second gas The discharge device 42 can cause convection of water in different places, and can preferentially cause convection in places where convection is desired.
  • the normal direction of the gas discharge hole 43 of the first gas discharge device 41 and the normal direction of the gas discharge hole 43 of the second gas discharge device 42 are the upper drive roller 34 a of the first transport device 31. It is also preferable to be between the center point of the upper drive roller 34 a of the second transport device 32. Since the first gas release device 41 and the second gas release device 42 are configured in this manner, the filaments pushed out from the discharge hole 11 of the nozzle 10, which is the place where the water temperature is highest in the water tank 20. Thus, convection can be efficiently generated at the place where the resin 12 and the water in the water tank 20 are in contact with each other, and the network structure 60 can be efficiently cooled.
  • the distance from the first gas discharge device 41 to the bottom of the water tank 20 may be the same as or different from the distance from the second gas discharge device 42 to the bottom of the water tank 20. That is, the distance from the gas discharge hole 43 of the first gas discharge device 41 to the bottom of the water tank 20 may be the same as the distance from the gas discharge hole 43 of the second gas discharge device 42 to the bottom of the water tank 20, May be different. If the distance from the first gas discharge device 41 to the bottom of the water tank 20 is the same as the distance from the second gas discharge device 42 to the bottom of the water tank 20, the convection caused by the first gas discharge device 41 and the second gas discharge The convection caused by the device 42 can be similar. Therefore, convection can be caused in the water tank 20 with a good balance between the first gas release device 41 and the second gas release device 42.
  • the distance from the first gas discharge device 41 to the bottom of the water tank 20 is different from the distance from the second gas discharge device 42 to the bottom of the water tank 20, and on the side where the net-like structure pulling device 50 is provided.
  • the first gas release device 41 is arranged and the distance from the first gas release device 41 to the bottom of the water tank 20 is larger than the distance from the second gas discharge device 42 to the bottom of the water tank 20, the first gas The discharge device 41 is provided at a location close to the linear resin 12. Therefore, convection can be caused more largely in the vicinity of the network structure 60, and the cooling efficiency of the network structure 60 can be improved.
  • the amount of gas released by the first gas release device 41 may be the same as or different from the amount of gas released by the second gas release device 42. If the amount of gas released by the first gas release device 41 is the same as the amount of gas released by the second gas release device 42, the first gas release device 41 and the second gas release device 42 are in the water tank 20. The same degree of convection can be generated in the water, and convection can be generated in a well-balanced manner in the water tank 20.
  • the amount of gas released by the first gas release device 41 is different from the amount of gas released by the second gas release device 42, and the first gas release is performed on the side where the network structure pulling device 50 is provided. If the device 41 is disposed and the amount of gas released by the first gas release device 41 is larger than the amount of gas released by the second gas release device 42, the first gas release device 41 closer to the network structure 60 is obtained. The generated water convection can be increased, and the network structure 60 can be efficiently cooled.
  • the water in the water tank 20 may be discharged and new low-temperature water may be supplied to the water tank 20.
  • the water in the water tank 20 may be discharged by so-called overflow, in which water is discharged from a pipe or the like provided in the upper part of the water tank 20.
  • new low-temperature water is supplied from the lower part of the water tank 20 to the water tank 20 to overflow the water whose temperature has increased.
  • the first method for producing a network structure according to the present invention includes a step of extruding a molten thermoplastic resin into a line, a step of conveying the network structure having the resin of the line in a water tank by a conveying means, And a step of releasing the gas into the water in the water tank by the gas releasing device.
  • thermoplastic resin that is the material of the network structure is heated and melted to extrude the resin so as to form a filament.
  • the molten thermoplastic resin may be extruded from a nozzle or the like having a discharge hole.
  • the resin of the extruded filament is received in a water tank that stores water.
  • the linear resin forms a random loop by landing on the water surface in the water tank and winding.
  • the random loops are in contact with the adjacent random loops in a molten state, thereby forming a structure in which the random loops are joined together in the three-dimensional direction, and at the same time, the structure is fixed by cooling with water. It is formed.
  • the network structure is transported in the water tank by the transport means.
  • the conveying means preferably conveys the network structure downward from the water surface in the water tank.
  • the extruded linear resin is continuously formed into a sheet-like net-like structure, and has a size suitable as a cushion material for bedding or a seat.
  • a network structure can be produced.
  • a conveying device such as the aforementioned conveyor can be used.
  • the network structure after cooling can be produced by lifting the network structure from the water tank and drying it. Before and after drying the network structure, it is preferable to perform a pseudo crystallization treatment in which heating is performed for a predetermined time at a temperature lower than the melting point of the resin used for the material of the network structure.
  • a pseudo crystallization treatment in which heating is performed for a predetermined time at a temperature lower than the melting point of the resin used for the material of the network structure.
  • the durability of the network structure can be increased.
  • the resin hard segments are rearranged by heating to form a metastable intermediate phase, and a pseudo-crystallization-like cross-linking point is formed, such as the heat resistance and sag resistance of the network structure. It is thought that the durability is improved.
  • the first network-structure manufacturing apparatus of the present invention includes a nozzle having a discharge hole for extruding a molten thermoplastic resin as a line, a water tank disposed below the nozzle, and a water tank. And a transport device that transports the net-like structure having a linear resin, and a gas discharge device that is provided in the water tank and discharges gas. Since the network structure manufacturing apparatus has such a configuration, the gas release device provided in the water tank can release gas to cause convection in the water in the water tank, and the surface portion and the inside of the network structure It becomes easy to cool efficiently. Therefore, it is possible to provide a manufacturing apparatus that manufactures a network structure that is less likely to generate cooling spots in the thickness direction of the network structure and has sufficient durability.
  • the second network structure manufacturing apparatus of the present invention will be described below.
  • the second network-structure manufacturing apparatus is provided in a water tank, a nozzle having a discharge hole for extruding a molten thermoplastic resin as a filament, a water tank disposed below the nozzle, A transport device that transports the net-like structure having a linear resin, and a water discharge device that is provided in the water tank and discharges water in a predetermined direction, and the transport device is at least a first transport And a second transport device, and there is a network structure between the first transport device and the second transport device, and the network structure between the transport devices is the water discharge direction of the water discharge device. It is characterized by not existing on the extension line.
  • the network structure of the present invention has a three-dimensional random loop joining structure in which a linear resin made of a thermoplastic resin is twisted to form a random loop, and the respective loops are brought into contact with each other in a molten state. It is a structure.
  • the network structure manufacturing apparatus 1 includes a nozzle 10, a water tank 20, a transport device 30, and a water discharge device 70.
  • the nozzle 10 has a discharge hole 11 for extruding a molten thermoplastic resin as a line. That is, the linear resin 12 is formed by extruding the thermoplastic resin melted by heating from the discharge hole 11 of the nozzle 10.
  • the number of ejection holes 11 that the nozzle 10 has may be one or plural.
  • the plurality of protruding holes 11 may be arranged in one row, but are preferably arranged in a plurality of rows. Since the nozzle 10 has the plurality of discharge holes 11, a plurality of linear resin 12 can be formed at the same time, and the production efficiency of the network structure 60 can be increased.
  • the number of the discharge holes 11 which the nozzle 10 has can be adjusted according to the hardness, cushioning properties, etc. of the network structure 60 to be manufactured.
  • the cross-sectional shape of the outlet of the discharge hole 11 is not particularly limited, and examples thereof include a circle, an ellipse, and a polygon.
  • the cross-sectional shape of the outlet of the discharge hole 11 is preferably circular or elliptical. Since the discharge holes 11 are configured in this way, the cross-sectional shape of the resin 12 of the filaments extruded from the discharge holes 11 is also circular or elliptical. Therefore, when forming the above-mentioned three-dimensional random loop joint structure, the area where the linear resins 12 come into contact with each other can be increased, and the network structure 60 having high elasticity and durability can be manufactured.
  • the cross-sectional shape of the linear resin 12 extruded from the discharge hole 11 may be solid or hollow.
  • a configuration having a mandrel such as a mandrel inside the discharge hole 11 may be used.
  • the cross-sectional shape of the outlet of the discharge hole 11 is a so-called C-type nozzle in which the inner side and the outer side of the discharge hole 11 are partially communicated, or a bridge is provided in the discharge hole 11 so that the discharge hole 11 is formed.
  • a so-called three-point bridge nozzle or the like divided in the circumferential direction can be used.
  • the length in the major axis direction of the cross-sectional shape of the outlet of the discharge hole 11 is preferably 0.1 mm or more, more preferably 0.5 mm or more, and further preferably 1.0 mm or more.
  • the network structure 60 is improved in durability, and the network structure 60 can withstand repeated compression. Can do.
  • the length in the major axis direction of the cross-sectional shape of the outlet of the discharge hole 11 is preferably 10 mm or less, more preferably 7 mm or less, and further preferably 5 mm or less.
  • the size of the cross-sectional shape of the outlet of each discharge hole 11 may be the same or different. If the size of the cross-sectional shape of the outlets of all the discharge holes 11 included in the nozzle 10 is the same, the network structure 60 in which the thickness of the resin 12 of the filaments is uniform can be obtained. Further, for example, when the size of the cross-sectional shape of the outlet of the discharge hole 11 at the center of the nozzle 10 is made smaller than the size of the cross-sectional shape of the outlet of the discharge hole 11 at the outer peripheral portion, the line inside the reticulated structure 60 is obtained. The strip resin 12 is thinner than the strip resin 12 on the surface of the network structure 60. Therefore, the temperature inside the network structure 60 is likely to be lower than that of the surface portion, and the network structure 60 having a structure in which cooling spots hardly occur can be manufactured.
  • thermoplastic resin extruded from the discharge hole 11 examples include polyester-based thermoplastic elastomer, polyolefin-based thermoplastic elastomer, polystyrene-based thermoplastic elastomer, polyurethane-based thermoplastic elastomer, polyamide-based thermoplastic elastomer, ethylene vinyl acetate copolymer, and the like. Is mentioned.
  • the thermoplastic resin preferably contains at least one of a polyester-based thermoplastic elastomer, a polyolefin-based thermoplastic elastomer, and a polystyrene-based thermoplastic elastomer.
  • thermoplastic resin contains at least one of a polyester-based thermoplastic elastomer, a polyolefin-based thermoplastic elastomer, and a polystyrene-based thermoplastic elastomer
  • processability is improved and the production of the network structure 60 is facilitated.
  • thermoplastic resin contains a polyester-based thermoplastic elastomer. Since the thermoplastic resin contains the polyester-based thermoplastic elastomer, the repeated compressive residual strain can be reduced, and the hardness retention after repeated compression can be increased, and the highly durable network structure 60 is manufactured. be able to.
  • the water tank 20 is disposed below the nozzle 10 and is configured to receive the linear resin 12 extruded from the discharge hole 11 of the nozzle 10.
  • the water tank 20 has water for cooling the linear resin 12 extruded from the discharge hole 11 of the nozzle 10.
  • the linear resin 12 extruded from the discharge hole 11 of the nozzle 10 lands on the water surface in the water tank 20 and twists to form a random loop.
  • the random loops are in contact with adjacent random loops in a molten state, thereby forming a structure in which the random loops are joined in the three-dimensional direction, and simultaneously cooled by water to fix the structure. In this way, the network structure 60 is obtained.
  • the conveying device 30 is provided in the water tank 20 and conveys the network structure 60 having the linear resin 12. That is, the transport device 30 transports the network structure 60 having the linear resin 12 that is pushed out from the discharge hole 11 of the nozzle 10 and received in the water tank 20 in the water tank 20.
  • the transport device 30 preferably transports the network structure 60 from the water surface of the water tank 20 toward the bottom of the water tank 20.
  • the conveying apparatus 30 is provided in the water tank 20.
  • the transfer device 30 includes at least a first transfer device 31 and a second transfer device 32, and a network structure 60 is provided between the first transfer device 31 and the second transfer device 32.
  • the transport device 30 By configuring the transport device 30 in this way, the mesh structure 60 can be transported in a state of being sandwiched between the first transport device 31 and the second transport device 32. Therefore, the network structure 60 having a uniform surface and a constant thickness can be obtained.
  • the kind of the conveying apparatus 30 is not specifically limited, For example, conveyors, such as a belt conveyor, a net conveyor, a slat conveyor, are mentioned. Details of the transport device 30 will be described later.
  • the water discharge device 70 is provided in the water tank 20 and discharges water in a predetermined direction. On the extension line of the water discharge direction of the water discharge device 70, the network structure 60 between the transfer devices 30 does not exist. Since the water discharge device 70 discharges water in the water in the water tank 20 and the network structure 60 located between the transfer devices 30 is not present on the extended line in the water discharge direction, the surface portion of the network structure 60 is obtained. The water is not directly applied to the water and cooled, but convection is generated in the water in the water tank 20, and the network structure 60 is cooled by this water. Thereby, both the surface part and the inside of the net-like structure 60 in the water tank 20 can be cooled uniformly, and it becomes difficult to generate
  • cooling spots are generated in the thickness direction of the network structure 60, and an increase in repetitive compressive residual strain in a portion where cooling is insufficient or There was a problem of a decrease in hardness retention after repeated compression.
  • the network-structure manufacturing apparatus 1 since the cooling spots are less likely to occur, it is possible to prevent an increase in repeated compression residual strain and a decrease in hardness retention after repeated compression, and a highly durable network structure 60. Can be manufactured.
  • the water discharge direction of the water discharge device 70 is directed to the water surface of the water tank 20. Since the water in the vicinity of the water surface where the linear resin 12 extruded from the discharge hole 11 of the nozzle 10 comes into contact with the water in the water tank 20 becomes the highest temperature, the water discharge direction is directed to the water surface, so Water having a temperature lower than that of the vicinity of the water surface can be fed, and the network structure 60 can be efficiently cooled.
  • the water discharge direction of the water discharge device 70 is on the network structure 60 side than the vertical direction. That is, it is more preferable that the water discharge direction of the water discharge device 70 is directed to the water surface of the water tank 20 and is on the reticulated structure 60 side between the transfer devices than the vertical direction with respect to the water surface of the water tank 20. . Since the water discharge direction of the water discharge device 70 is as described above, the vicinity of the water surface where the resin 12 of the line extruded from the discharge hole 11 of the nozzle 10 where the water reaches the highest temperature comes into contact with the water in the water tank 20. In addition, low-temperature water can be fed more efficiently. As a result, uniform cooling of the surface portion and the inside of the network structure 60 is facilitated.
  • the water discharge device 70 has a water discharge hole 73 for discharging water, and the water discharge hole 73 is preferably disposed 0.1 mm or more below the water surface of the water tank 20, and is disposed 1 mm or more below. More preferably, it is more preferably arranged 10 mm or more below.
  • the water discharge hole 73 is disposed 400 mm or less below the water surface of the water tank 20, more preferably 350 mm or less and more preferably 300 mm or less.
  • the distance D1 between the water discharge hole 73 and the water surface of the water tank 20 is preferably as described above.
  • the number of water discharge holes 73 included in the water discharge device 70 may be one or plural. If the number of the water discharge holes 73 is one, it becomes easy to adjust the direction of the water discharged from the water discharge holes 73. Moreover, if the number of the water discharge holes 73 is plural, the water discharged from the water discharge holes 73 can be diffused and a large convection can be caused in the water in the water tank 20, and the cooling efficiency of the network structure 60 can be increased. Can be increased.
  • the water discharge device 70 is disposed inside the transfer device 30. By disposing the water discharge device 70 in this way, the water discharged from the water discharge device 70 is less likely to directly hit the network structure 60, and the water convection is more efficiently performed near the water surface where the water temperature becomes high. Since it can raise
  • the upper end portion of the transfer device 30 is above the water surface of the water tank 20.
  • the conveying device 30 preferably has a conveyor belt 33 and a driving roller 34.
  • Conveyor belt 33 is a net conveyor belt meshed by continuously weaving or weaving rubber or resin flat belts or metal wires, or attaching metal plates to conveyor chains continuously. Slat conveyor belts.
  • the conveyor belt 33 is preferably a net conveyor belt because it has good gripping performance and excellent water passage performance. That is, it is preferable that the conveying apparatus 30 is a net conveyor conveying apparatus having a mesh belt and a driving roller. Since the transport device 30 is configured in this way, water can pass through the transport device 30, so that the transport device 30 is unlikely to interfere with the convection of the water in the water tank 20 by the water discharge device 70, and the network structure. The cooling efficiency of 60 can be increased.
  • the conveyor belt 33 is preferably endless. Since the conveyor belt 33 is configured to be endless, the endless conveyor belt 33 rotates without interruption by the rotation of the driving roller 34, and the conveying device 30 can be operated continuously. As a result, the network structure 60 can be efficiently transported.
  • the drive roller 34 is plural, and it is preferable that the drive roller 34 is provided at the upper part and the lower part inside the endless conveyor belt 33, respectively. That is, it is preferable that the upper drive roller 34 a is provided at the upper part inside the conveyor belt 33 and the lower drive roller 34 b is provided at the lower part inside the conveyor belt 33. Since the driving roller 34 is configured in this way, it is difficult for the conveyor belt 33 to bend, and the rotation of the driving roller 34 can prevent the conveyor belt 33 from spinning and causing the conveyance device 30 to malfunction.
  • the driving roller 34 includes at least an upper driving roller 34 a and a lower driving roller 34 b, and the upper driving roller 34 a is disposed above the inside of the transport device 30, and the lower driving roller 34 b is disposed below the inside of the transport device 30.
  • the direction of the water discharged by the water discharge device 70 is preferably the direction toward the upper drive roller 34a.
  • the distance between the lower drive roller 34b of the first transport device 31 and the lower drive roller 34b of the second transport device 32 is the distance between the upper drive roller 34a of the first transport device 31 and the upper drive roller 34a of the second transport device 32. Is preferably smaller. That is, it is preferable that the distance between the 1st conveying apparatus 31 and the 2nd conveying apparatus 32 is smaller in the lower part than the upper part, and becomes narrow as it goes to the lower part. Since the transport device 30 is configured as described above, the mesh structure 60 can be sandwiched between the lower portions of the transport device 30. Therefore, it becomes easy to draw the linear resin 12 and the network structure 60 into the water tank 20, and the network structure 60 can be easily cooled.
  • the amount of water discharged from the water discharge device 70 increases as the amount of resin pushed out from the nozzle 10 increases. That is, it is preferable that the volume (m 3 / min) of water discharged from the water discharge device 70 and the extrusion amount (g / min) of the resin from the nozzle 10 are linked.
  • the amount of the resin 12 of the filaments extruded from the nozzle 10 is increased in order to increase the resilience of the network structure 60, the temperature near the water surface of the water tank 20 tends to become higher. Cooling efficiency becomes worse.
  • the inside of the network structure 60 is difficult to be cooled, and cooling spots are easily generated in the thickness direction of the network structure 60.
  • the convection of water in the water tank 20 is increased by increasing the amount of water discharged from the water discharge device 70 as the linear resin 12 pushed out from the nozzle 10 increases, and the cooling efficiency of the network structure 60 is increased. Can be improved and cooling spots can be prevented.
  • the volume (m 3 / min) of water discharged from the water discharge device 70 is proportional to the amount of resin extruded from the nozzle 10 (g / min).
  • the amount of water released by the water release device 70 increases as the speed of the transfer device 30 increases. That is, it is preferable that the volume (m 3 / min) of water discharged from the water discharge device 70 and the transport speed of the network structure 60 by the transport device 30 are linked.
  • the speed of the transfer device 30 is increased for the purpose of reducing the density of the network structure 60 in order to reduce the hardness of the network structure 60
  • the next step is performed while the inside of the network structure 60 is not sufficiently cooled. It will move to.
  • the next step is performed in a state where the inside of the network structure 60 is insufficiently cooled, the repeated compressive residual strain inside the network structure 60 is large, and the hardness retention after repeated compression is small.
  • the inferior network structure 60 is obtained. Therefore, as the speed of the transfer device 30 increases, the water discharge amount of the water discharge device 70 is increased, thereby increasing the convection of the water in the water tank 20 and increasing the cooling efficiency of the network structure 60 near the water surface. In addition, not only the surface portion of the network structure 60 but also the inside can be sufficiently cooled.
  • the volume (m 3 / min) of water discharged by the water discharge device 70 is proportional to the speed (m / min) of the transport device 30. Since the volume of water discharged from the water discharge device 70 and the speed of the transfer device 30 are in such a relationship, the cooling efficiency of the network structure 60 can be further improved and the occurrence of cooling spots can be prevented. it can.
  • the amount of water discharged from the water discharge device 70 increases as the amount of resin pushed out from the nozzle 10 increases and increases as the speed of the transport device 30 increases. That is, the volume (m 3 / min) of water discharged from the water discharge device 70 is proportional to the resin extrusion amount (g / min) from the nozzle 10 and the speed (m / min) of the transport device 30. It is more preferable.
  • the volume (m 3 / min) of water discharged by the water discharge device 70 is as described above, for example, for the purpose of increasing the productivity of the network structure 60, the filaments pushed out from the nozzle 10 Even if the amount of the resin 12 is increased and the speed of the conveying device 30 is increased, the resin 12 of the filaments can be sufficiently cooled by increasing the convection of water in the water tank 20. As a result, cooling spots in the thickness direction of the network structure 60 can be made difficult to occur.
  • the direction of water discharged from the water discharge device 70 is preferably linked to the amount of resin pushed out from the nozzle 10.
  • the amount of the linear resin 12 extruded from the nozzle 10 is increased in order to increase the resilience of the network structure 60, the temperature in the vicinity of the water surface of the water tank 20 tends to become higher, and the network structure 60 is cooled. The efficiency is reduced, and spots are easily generated in the cooling of the network structure 60. Therefore, the water surface which is likely to become high temperature by bringing the water discharge direction of the water discharge device 70 closer to the center of the line resin 12 on the water surface of the water tank 20 as the line resin 12 pushed out from the nozzle 10 increases. The convection to the nearby water can be increased so that the inside of the network structure 60 is sufficiently cooled, and cooling spots can be prevented.
  • the direction of water discharged by the water discharge device 70 is preferably linked to the speed of the transfer device 30. If the speed of the conveying device 30 is increased for the purpose of reducing the density of the network structure 60 in order to reduce the hardness of the network structure 60, the internal cooling of the network structure 60 remains insufficient. The durability of the network structure 60 may be lowered. Therefore, as the speed of the conveying device 30 increases, the cooling direction of the linear resin 12 is improved by bringing the water discharging direction of the water discharging device 70 closer to the center of the linear resin 12 on the water surface of the water tank 20. The cooling efficiency of both the surface portion and the inside of the network structure 60 can be increased.
  • the direction of water discharged from the water discharge device 70 is linked to the amount of resin pushed out from the nozzle 10 and the speed of the transport device 30. Since the direction of the water discharged by the water discharge device 70 is as described above, the amount of the linear resin 12 pushed out from the nozzle 10 is increased for the purpose of, for example, increasing the productivity of the network structure 60. Even if the speed of the transport device 30 is increased, the water discharge direction of the water discharge device 70 is brought close to the center of the resin 12 of the filaments on the water surface of the water tank 20 so that a large convection of water is generated in the water tank 20. it can. As a result, the cooling efficiency of the network structure 60 in the vicinity of the water surface can be increased, and the occurrence of cooling spots on the network structure 60 can be prevented.
  • the water discharge device 70 has a water discharge hole 73 for discharging water, and the position of the water discharge hole 73 from the water surface of the water tank 20 is preferably linked to the amount of resin pushed out from the nozzle 10. That is, the position of the water discharge hole 73 of the water discharge device 70 can be moved, and the position of the water discharge hole 73 from the water surface of the water tank 20 is moved in conjunction with the amount of resin pushed out from the nozzle 10. It is preferable that it is possible. For example, when the amount of the linear resin 12 extruded from the nozzle 10 is increased in order to increase the resilience of the network structure 60, the temperature in the vicinity of the water surface of the water tank 20 tends to become higher, and the network structure 60 is cooled.
  • the efficiency is reduced, and spots are easily generated in the cooling of the network structure 60. Therefore, as the linear resin 12 extruded from the nozzle 10 increases, the distance D1 between the water surface of the water tank 20 and the water discharge hole 73 is reduced to cause convection to move to high-temperature water near the water surface.
  • the cooling efficiency of the network structure 60 in the vicinity of the water surface can be increased, and cooling spots in the thickness direction of the network structure 60 can be prevented.
  • the water discharge device 70 has a water discharge hole 73 for discharging water, and the position of the water discharge hole 73 from the water surface of the water tank 20 is preferably linked to the speed of the transport device 30. If the speed of the conveying device 30 is increased for the purpose of reducing the density of the network structure 60 in order to reduce the hardness of the network structure 60, the internal cooling of the network structure 60 remains insufficient. The durability of the network structure 60 may be lowered. Therefore, as the speed of the conveying device 30 increases, the distance D1 between the water surface of the water tank 20 and the water discharge hole 73 is reduced so that the surface portion and the inside of the network structure 60 are sufficiently cooled. Further, it is possible to prevent the cooling spots from occurring in the network structure 60.
  • the position of the water discharge hole 73 of the water discharge device 70 from the water surface of the water tank 20 is linked to the amount of resin pushed out from the nozzle 10 and the speed of the transport device 30. Since the direction of the water discharged by the water discharge device 70 is as described above, the amount of the linear resin 12 pushed out from the nozzle 10 is increased for the purpose of, for example, increasing the productivity of the network structure 60. Even if the speed of the transfer device 30 is increased, the distance D1 between the water surface of the water tank 20 and the water discharge hole 73 is decreased to generate a large amount of water convection, thereby improving the cooling efficiency of the network structure 60. It can raise and can prevent that the cooling spot arises in the net-like structure 60.
  • the network structure manufacturing apparatus 1 preferably includes a network structure pulling apparatus 50 that pulls the network structure 60 and pulls it up from the water tank 20. Since the network structure manufacturing apparatus 1 includes the network structure pulling device 50, the network structure 60 is automatically pulled up from the water tank 20 after the network structure 60 is cooled, and the network structure 60 is dried. Can move. Therefore, the productivity of the network structure 60 can be increased.
  • a network structure pulling device 50 that pulls the network structure 60 is provided, and the transport device 30 includes at least a first transport device 31 and a second transport device 32, It is preferable that the discharge device 70 is disposed closer to the net-like structure pulling device 50 than the vertical plane p1 including the midpoint P1 between the first transfer device 31 and the second transfer device 32.
  • the vertical plane p1 is located on the vertical plane p1 on the opposite side of the mesh structure pulling device 50 side.
  • the water discharge device 70 includes at least a first water discharge device 71 and a second water discharge device 72
  • the transfer device 30 includes at least a first transfer device 31 and a second transfer device 32. It is preferable that the 1 water discharge device 71 is provided inside the first transfer device 31 and the second water discharge device 72 is provided inside the second transfer device 32.
  • the water discharge direction of the first water discharge device 71 may be the same as or different from the water discharge direction of the second water discharge device 72.
  • the water discharge direction of the first water discharge device 71 is the vertical direction toward the water surface
  • the water discharge direction of the second water discharge device 72 is also the vertical direction toward the water surface.
  • water convection can be caused equally on both sides of the linear resin 12 in the water tank 20, and the first water discharge device 71 and the second water discharge device 72 can generate convection in a balanced manner.
  • the first water discharge device 71 and the second water discharge device 72 are different. Convection of water can be caused at a place, and convection can be preferentially caused at a place where convection is desired.
  • the distance D1 between the water discharge hole 73 of the first water discharge device 71 and the water surface of the water tank 20 may be the same as or different from the distance between the water discharge hole 73 of the second water discharge device 72 and the water surface of the water tank 20. It may be. If the distance D1 between the water discharge hole 73 of the first water discharge device 71 and the water surface of the water tank 20 is the same as the distance between the water discharge hole 73 of the second water discharge device 72 and the water surface of the water tank 20, the first water The convection generated by the discharge device 71 and the convection generated by the second water discharge device 72 can be made similar, and the first water discharge device 71 and the second water discharge device 72 can convect the water tank 20 in a well-balanced manner. Can be caused.
  • the distance D1 between the water discharge hole 73 of the first water discharge device 71 and the water surface of the water tank 20 is different from the distance between the water discharge hole 73 of the second water discharge device 72 and the water surface of the water tank 20, and the network structure.
  • the first water discharge device 71 is arranged on the side where the body pulling device 50 is provided, and the distance D1 between the water discharge hole 73 of the first water discharge device 71 and the water surface of the water tank 20 is the second water discharge device.
  • the first water discharge device 71 is provided at a location close to the network structure 60, so that convection may occur more in the vicinity of the network structure 60. it can. Therefore, the cooling efficiency of the network structure 60 can be increased.
  • the amount of water released by the first water release device 71 may be the same as or different from the amount of water released by the second water release device 72. If the amount of water discharged by the first water discharge device 71 is the same as the amount of water discharged by the second water discharge device 72, the first water discharge device 71 and the second water discharge device 72 will be in the water tank 20. The same degree of convection can be generated in the water, and convection can be generated in a well-balanced manner in the water tank 20.
  • the amount of water discharged by the first water discharge device 71 is different from the amount of water discharged by the second water discharge device 72, and the first water discharge is performed on the side where the net-like structure pulling device 50 is provided. If the device 71 is disposed and the amount of water discharged by the first water discharge device 71 is larger than the amount of water discharged by the second water discharge device 72, the first water discharge device closer to the mesh structure 60 The convection of water caused by 71 can be increased, and the network structure 60 can be efficiently cooled.
  • the water in the water tank 20 may be discharged and new low-temperature water may be supplied to the water tank 20.
  • the water in the water tank 20 may be discharged by so-called overflow, in which water is discharged from a pipe or the like provided in the upper part of the water tank 20.
  • the method for producing a second network structure includes a step of extruding a molten thermoplastic resin as a line, and a network structure having the resin of the line by a first conveying device and a second conveying device. And a step of discharging water in a direction other than toward the network structure between the first transfer device and the second transfer device by the water discharge device. is there.
  • thermoplastic resin that is the material of the network structure is heated and melted to extrude the resin so as to form a filament.
  • the molten thermoplastic resin may be extruded from a nozzle or the like having a discharge hole.
  • the resin of the extruded filament is received in a water tank that stores water. Random loops are formed by linear resin landing on the water surface in the water tank and winding. The random loops are in contact with the adjacent random loops in a molten state, thereby forming a structure in which the random loops are joined together in the three-dimensional direction, and at the same time, the structure is fixed by cooling with water. It is formed.
  • the net structure is transported in the water tank by the first transport device and the second transport device.
  • the conveying means preferably conveys the network structure downward from the water surface in the water tank.
  • the transport means By transporting the net-like structure by the transport means in this way, the extruded linear resin is continuously formed into a sheet-like net-like structure, and has a size suitable as a cushioning material for bedding and seats.
  • a network structure can be produced.
  • a conveying device such as the aforementioned conveyor can be used as the conveying device.
  • Water is discharged into the water in the aquarium by the water discharge device.
  • the water discharge direction of the water discharge device is a direction other than the direction toward the network structure between the first transfer device and the second transfer device.
  • the network structure is efficiently cooled so that not only the surface portion of the resin of the filaments but also the inside can be sufficiently cooled, and a network structure having high durability is produced that is less likely to generate cooling spots. be able to.
  • the network structure after cooling can be produced by lifting the network structure from the water tank and drying it. Before and after drying the network structure, it is preferable to perform “pseudo crystallization treatment” in which heating is performed for a certain time at a temperature lower than the melting point of the resin used for the material of the network structure.
  • the durability of the network structure can be increased by performing pseudo-crystallization treatment on the resin of the filament. In the pseudo-crystallization treatment, the resin hard segments are rearranged by heating to form a metastable intermediate phase, and a pseudo-crystallization-like cross-linking point is formed, such as the heat resistance and sag resistance of the network structure. It is thought that the durability is improved.
  • the second network structure manufacturing apparatus of the present invention is provided with a nozzle having a discharge hole for extruding a molten thermoplastic resin as a line, a water tank disposed below the nozzle, and a water tank. And a transport device that transports the net-like structure having the resin of the filaments, and a water discharge device that is provided in the water tank and discharges water in a predetermined direction. It is composed of at least a first transfer device and a second transfer device, and there is a network structure between the first transfer device and the second transfer device, and the network structure between the transfer devices is a water discharge device. It does not exist on the extended line in the direction of water discharge.
  • a manufacturing apparatus for manufacturing a network structure having durability can be provided.
  • the third network structure manufacturing apparatus of the present invention will be described below.
  • a third network structure manufacturing apparatus is provided in a water tank, a nozzle having a discharge hole for extruding a molten thermoplastic resin as a line, a water tank disposed below the nozzle, It has the conveyance apparatus which conveys the net-like structure which has the resin of a filament, and the drain outlet provided in the bottom part of the water tank, It is characterized by the above-mentioned.
  • the network structure of the present invention has a three-dimensional random loop joining structure in which a linear resin made of a thermoplastic resin is twisted to form a random loop, and the respective loops are brought into contact with each other in a molten state. It is a structure.
  • the network structure manufacturing apparatus 1 includes a nozzle 10, a water tank 20, a transfer device 30, and a drain port 80.
  • the nozzle 10 has a discharge hole 11 for extruding a molten thermoplastic resin as a line. That is, the linear resin 12 is formed by extruding the thermoplastic resin melted by heating from the discharge hole 11 of the nozzle 10.
  • the number of ejection holes 11 that the nozzle 10 has may be one or plural.
  • the plurality of protruding holes 11 may be arranged in one row, but are preferably arranged in a plurality of rows. Since the nozzle 10 has the plurality of discharge holes 11, a plurality of linear resin 12 can be formed at the same time, and the production efficiency of the network structure can be increased.
  • the number of discharge holes 11 provided in the nozzle 10 can be adjusted according to the hardness and cushioning properties of the network structure 60 to be manufactured.
  • the cross-sectional shape of the outlet of the discharge hole 11 is not particularly limited, and examples thereof include a circle, an ellipse, and a polygon.
  • the cross-sectional shape of the outlet of the discharge hole 11 is preferably circular or elliptical. Since the discharge holes 11 are configured in this way, the cross-sectional shape of the resin 12 of the filaments extruded from the discharge holes 11 is also circular or elliptical. Therefore, when forming the above-mentioned three-dimensional random loop joining structure, the area where the linear resins 12 contact each other can be increased, and the network structure 60 having high elasticity and durability can be manufactured.
  • the cross-sectional shape of the linear resin 12 extruded from the discharge hole 11 may be solid or hollow.
  • a configuration having a mandrel such as a mandrel inside the discharge hole 11 may be used.
  • the cross-sectional shape of the outlet of the discharge hole 11 is a so-called C-type nozzle in which the inner side and the outer side of the discharge hole 11 are partially communicated, or a bridge is provided in the discharge hole 11 so that the discharge hole 11 is formed.
  • a so-called three-point bridge nozzle or the like divided in the circumferential direction can be used.
  • the length in the major axis direction of the cross-sectional shape of the outlet of the discharge hole 11 is preferably 0.1 mm or more, more preferably 0.5 mm or more, and further preferably 1.0 mm or more.
  • the network structure 60 is improved in durability, and the network structure 60 can withstand repeated compression. Can do.
  • the length in the major axis direction of the cross-sectional shape of the outlet of the discharge hole 11 is preferably 10 mm or less, more preferably 7 mm or less, and further preferably 5 mm or less.
  • the size of the cross-sectional shape of the outlet of each discharge hole 11 may be the same or different. If the size of the cross-sectional shape of the outlets of all the discharge holes 11 included in the nozzle 10 is the same, the network structure 60 in which the thickness of the resin 12 of the filaments is uniform can be obtained. Further, for example, when the size of the cross-sectional shape of the outlet of the discharge hole 11 at the center of the nozzle 10 is made smaller than the size of the cross-sectional shape of the outlet of the discharge hole 11 at the outer peripheral portion, the line inside the reticulated structure 60 is obtained. The strip resin 12 is thinner than the strip resin 12 on the surface of the network structure 60. Therefore, the temperature inside the network structure 60 is likely to be lower than that of the surface portion, and the network structure 60 having a structure in which cooling spots hardly occur can be manufactured.
  • thermoplastic resin extruded from the discharge hole 11 examples include polyester-based thermoplastic elastomer, polyolefin-based thermoplastic elastomer, polystyrene-based thermoplastic elastomer, polyurethane-based thermoplastic elastomer, polyamide-based thermoplastic elastomer, ethylene vinyl acetate copolymer, and the like. Is mentioned.
  • the thermoplastic resin preferably contains at least one of a polyester-based thermoplastic elastomer, a polyolefin-based thermoplastic elastomer, and a polystyrene-based thermoplastic elastomer.
  • thermoplastic resin contains at least one of a polyester-based thermoplastic elastomer, a polyolefin-based thermoplastic elastomer, and a polystyrene-based thermoplastic elastomer
  • processability is improved and the production of the network structure 60 is facilitated.
  • thermoplastic resin contains a polyester-based thermoplastic elastomer. Since the thermoplastic resin contains the polyester-based thermoplastic elastomer, the repeated compressive residual strain can be reduced, and the hardness retention after repeated compression can be increased, and the highly durable network structure 60 is manufactured. be able to.
  • the water tank 20 is disposed below the nozzle 10 and is configured to receive the linear resin 12 extruded from the discharge hole 11 of the nozzle 10.
  • the water tank 20 has water for cooling the linear resin 12 extruded from the discharge hole 11 of the nozzle 10.
  • the linear resin 12 extruded from the discharge hole 11 of the nozzle 10 lands on the water surface in the water tank 20 and twists to form a random loop.
  • the random loops are in contact with adjacent random loops in a molten state, thereby forming a structure in which the random loops are joined in the three-dimensional direction, and simultaneously cooled by water to fix the structure. In this way, the network structure 60 is obtained.
  • the conveying device 30 is provided in the water tank 20 and conveys the network structure 60 having the linear resin 12. That is, the transport device 30 transports the network structure 60 having the linear resin 12 that is pushed out from the discharge hole 11 of the nozzle 10 and received in the water tank 20 in the water tank 20.
  • the transport device 30 preferably transports the network structure 60 from the water surface of the water tank 20 toward the bottom of the water tank 20.
  • the conveying apparatus 30 is provided in the water tank 20.
  • the kind of the conveying apparatus 30 is not specifically limited, For example, conveyors, such as a belt conveyor, a net conveyor, a slat conveyor, are mentioned. Details of the transport device 30 will be described later.
  • the drain port 80 is provided at the bottom of the water tank 20 and discharges the water in the water tank 20.
  • the drain outlet 80 for discharging water at the bottom of the water tank 20
  • water in the vicinity of the network structure 60 in the water tank 20 which is likely to become high temperature, in particular, the water in the network structure 60 is discharged.
  • the temperature of the water in the entire water tank 20 is prevented from rising.
  • discharging the water inside the network structure 60 where cooling spots are likely to occur a large temperature difference is hardly caused between the surface portion and the inside of the network structure 60, and both the surface portion and the inside of the network structure 60. Can be uniformly cooled, and cooling spots are less likely to occur.
  • a high network structure 60 can be manufactured.
  • the network-structure manufacturing apparatus 1 is configured in this manner, the temperature of the water in the entire water tank 20 rises in order to supply low-temperature water after discharging the water that has become hot in the water tank 20. Can be prevented. Moreover, since water is newly supplied to the water tank 20 after draining, it is possible to prevent the water level in the water tank 20 from becoming too low.
  • the drain port 80 has a partition plate 81 around the inner surface of the water tank 20, water in the upper part of the drain port 80 in the vertical direction can be discharged preferentially, and the discharge of water is adjusted. It becomes possible.
  • the partition plate 81 may be provided in a part of the periphery of the drain port 80, but is preferably provided in the entire periphery. By providing the partition plate 81 on the entire circumference of the drainage port 80, it becomes easier to adjust the discharge of water in the water tank 20 by the drainage port 80.
  • the shape of the drain port 80 viewed from the direction perpendicular to the water surface of the water tank 20 may be a circle, an ellipse, a polygon, or the like. Especially, it is preferable that the shape of the drain port 80 is a rectangle. Since the shape of the drainage port 80 is rectangular, water in the vicinity of the linear resin 12 can be efficiently discharged, and water having a temperature lower than the drained water is supplied in the vicinity of the linear resin 12. Therefore, it becomes easy to cool the surface portion and the inside of the resin 12 of the filaments uniformly.
  • the network structure manufacturing apparatus 1 has a heat exchanger that cools the water discharged from the drain port 80 and circulates the water. Since the network structure manufacturing apparatus 1 is configured in this way, the amount of water discarded in manufacturing the network structure 60 can be reduced by reusing discharged water, and water resources can be preserved. Can do.
  • the upper end portion of the transfer device 30 is above the water surface of the water tank 20.
  • the conveying device 30 preferably has a conveyor belt 33 and a driving roller 34.
  • Conveyor belt 33 is a net conveyor belt meshed by continuously weaving or weaving rubber or resin flat belts or metal wires, or attaching metal plates to conveyor chains continuously. Slat conveyor belts.
  • the conveyor belt 33 is preferably a net conveyor belt because it has good gripping performance and excellent water passage performance. That is, the conveying device 30 is preferably a net conveyor conveying device having a mesh belt and a driving roller 34. Since the transport device 30 is configured in this way, water can pass through the transport device 30, and therefore transports the water in the water tank 20 through the drain port 80 and the movement of water accompanying the water discharge. The apparatus 30 is difficult to block, and the cooling efficiency of the network structure 60 can be increased.
  • the conveyor belt 33 is preferably endless. Since the conveyor belt 33 is configured to be endless, the endless conveyor belt 33 rotates without interruption by the rotation of the driving roller 34, and the conveying device 30 can be operated continuously. As a result, the network structure 60 can be efficiently transported.
  • the drive roller 34 is plural, and it is preferable that the drive roller 34 is provided at the upper part and the lower part inside the endless conveyor belt 33, respectively. That is, it is preferable that the upper drive roller 34 a is provided at the upper part inside the conveyor belt 33 and the lower drive roller 34 b is provided at the lower part inside the conveyor belt 33. Since the driving roller 34 is configured in this way, it is difficult for the conveyor belt 33 to bend, and the rotation of the driving roller 34 can prevent the conveyor belt 33 from spinning and causing the conveyance device 30 to malfunction.
  • the transfer device 30 is composed of at least a first transfer device 31 and a second transfer device 32, and it is preferable that a reticulated structure 60 is present between the first transfer device 31 and the second transfer device 32. Since the transport device 30 is configured in this manner, the mesh structure 60 can be transported in a state of being sandwiched between the first transport device 31 and the second transport device 32, so that the surface is prepared. The network structure 60 having a constant thickness can be obtained.
  • the distance between the lower drive roller 34b of the first transport device 31 and the lower drive roller 34b of the second transport device 32 is the distance between the upper drive roller 34a of the first transport device 31 and the upper drive roller 34a of the second transport device 32. Is preferably smaller. That is, it is preferable that the distance between the 1st conveying apparatus 31 and the 2nd conveying apparatus 32 is smaller in the lower part than the upper part, and becomes narrow as it goes to the lower part. Since the transport device 30 is configured as described above, the mesh structure 60 can be sandwiched between the lower portions of the transport device 30. As a result, the network structure 60 can be easily drawn into the water tank 20, and the network structure 60 can be easily cooled.
  • the transport device 30 includes at least a first transport device 31 and a second transport device 32, and the drain port 40 is a midpoint between the first transport device 31 and the second transport device 32. It is preferable to be provided at a position including an intersection P2 between the perpendicular line L1 lowered from P1 to the bottom of the water tank 20 and the bottom of the water tank 20.
  • the water in the vicinity of the water surface where the linear resin 12 extruded from the discharge hole 11 of the nozzle 10 comes into contact with the water in the water tank 20 has the highest temperature, and the water surface where the extruded linear resin 12 contacts the water.
  • the temperature of water below the vertical direction also tends to increase.
  • the drainage port 40 at such a position, the water in the vicinity of the water surface where the resin 12 and the water of the extruded filaments and the water that become high temperature come into contact with each other and the water in the lower part in the vertical direction are given priority. It can discharge
  • the network structure manufacturing apparatus 1 preferably includes a network structure pulling apparatus 50 that pulls the network structure 60 and pulls it up from the water tank 20. Since the network structure manufacturing apparatus 1 includes the network structure pulling device 50, the network structure 60 is automatically pulled up from the water tank 20 after the network structure 60 is cooled, and the network structure 60 is dried. Since it can move, the productivity of the net-like structure 60 can be raised.
  • a network structure pulling device 50 that pulls the network structure 60 is provided on one side of the water tank 20, and the transfer device 30 includes at least a first transfer device 31 and a second transfer device 32.
  • the first transport device 31 is disposed closer to the net-like structure pulling device 50 than the second transport device 32, and the drainage port 80 is more like the net-like structure pulling device than the first transport device 31. It is also preferable that it is provided on the 50 side.
  • the drainage port 80 is provided closer to the mesh structure pulling device 50 than the first transfer device 31 is that the end of the drainage port 80 opposite to the mesh structure pulling device 50 side is the first transfer device. 31 indicates that it is arranged on the network structure pulling device 50 side rather than the end opposite to the network structure pulling device 50 side.
  • the network structure 60 is pulled by the network structure pulling device 50, and the water tank 20 having the network structure pulling device 50 is attached to the network structure 60 and the water whose temperature is increased by cooling the network structure 60. There is a tendency to move to one side. Therefore, by providing the drain outlet 80 at such a position, water having a high temperature in the water tank 20 can be efficiently discharged, and the cooling efficiency of the network structure 60 can be increased. .
  • the water tank 20 has a net-like structure pulling device 50 that pulls the linear resin 12 on one side
  • the transfer device 30 includes at least a first transfer device 31 and a second transfer device 30.
  • the first transport device 31 is arranged closer to the network structure pulling device 50 than the second transport device 32
  • the drain port 80 has a network structure than the second transport device 32. It is also preferable to be provided on the opposite side of the body traction device 50 side.
  • the drainage port 80 is provided on the opposite side of the network structure pulling device 50 from the second transfer device 32. The end of the drainage port 80 on the network structure pulling device 50 side is the second transfer device 32.
  • the number of drain outlets 80 may be one or plural. If the number of the drain outlets 80 is one, the water of the upper direction of the perpendicular direction of the part in which the drain outlet 80 is provided can be discharged
  • the length from the front end of the drainage port 80 to the back end is determined from the front end of the transport device 30 with the front side of the page being the front side and the back side of the page being the back side. It is preferable that it is larger than the length to the back end. Since the size of the drainage port 80 is as described above, water at a high temperature inside the network structure 60 in the water tank 20 can be sufficiently discharged, and the water temperature in the entire water tank 20 is increased. This can be prevented and the cooling efficiency of the network structure 60 can be increased.
  • the side on which the first transport device 31 is disposed is one side, and the side opposite to the side on which the second transport device 32 is disposed is the other side. It is preferable that the length from the other end to the other end is larger than the length from the first transport device 31 to the second transport device 32.
  • the drainage port 40 Due to the size of the drainage port 40 as described above, not only the water inside the network structure 60 in the water tank 20 but also a part of the transfer device 30 that is in contact with the network structure 60 and has a high temperature. Nearby water can also be discharged. Therefore, the temperature of the water in the entire water tank 20 can be prevented from rising, and the network structure 60 can be efficiently cooled.
  • the network structure manufacturing apparatus 1 preferably has a drainage amount adjusting means 82 for adjusting the drainage amount from the drainage port 80. Since the network-structure manufacturing apparatus 1 includes the drainage amount adjusting means 82, the amount of water discharged from the drainage port 80 and the amount of water supplied to the water tank 20 can be balanced. Specifically, for example, when the amount of water discharged from the drain port 80 is excessively larger than the amount of water supplied to the aquarium 20, the amount of drainage is reduced by the drainage amount adjusting means 82, and the water level of the aquarium 20 is increased. Prevent it from becoming too low.
  • the amount of water discharged from the drain port 80 is excessively smaller than the amount of water supplied to the water tank 20, the amount of water discharged is increased by the waste water amount adjusting means 82, and the water overflows from the water tank 20.
  • the drainage amount adjusting means 82 for example, a valve, a slide type opening / closing lid, a pump or the like can be used.
  • the drainage amount adjusting means 82 preferably increases the drainage amount from the drainage port 80 when the amount of resin pushed out from the nozzle 10 increases. That is, it is preferable that the drainage amount (m 3 / min) from the drainage port 80 adjusted by the drainage amount adjusting means 82 and the extrusion amount (g / min) of the resin from the nozzle 10 are linked. For example, when the amount of the resin 12 of the filaments extruded from the nozzle 10 is increased in order to increase the resilience of the network structure 60, the temperature near the water surface of the water tank 20 tends to become higher. Cooling efficiency becomes worse.
  • the amount of the linear resin 12 extruded from the nozzle 10 is increased, the inside of the network structure 60 is difficult to be cooled, and cooling spots are easily generated in the thickness direction of the network structure 60. Therefore, by increasing the amount of drainage from the drainage port 80 with the increase in the resin 12 of the filaments extruded from the nozzle 10, the hot water is quickly discharged from the aquarium 20, and the water in the entire aquarium 20 is discharged. By preventing the temperature from rising, the cooling efficiency of the network structure 60 can be increased and cooling spots can be prevented.
  • the drainage amount (m 3 / min) from the drainage port 80 adjusted by the drainage amount adjusting means 82 is proportional to the resin extrusion amount (g / min) from the nozzle 10.
  • the drainage amount adjusting means 82 increases the amount of drainage from the drainage port 80 when the speed of the transfer device 30 increases. That is, it is preferable that the amount of drainage (m 3 / min) from the drainage port 80 adjusted by the drainage amount adjusting unit 82 and the transport speed of the network structure 60 by the transport device 30 are linked. If the speed of the conveying device 30 is increased for the purpose of reducing the density of the network structure 60 in order to reduce the hardness of the network structure 60, the next process is performed with insufficient cooling inside the network structure 60. It will move. When the inside of the network structure 60 is not sufficiently cooled, the process proceeds to the next step, the repeated compression residual strain inside the network structure 60 is large, the hardness retention after repeated compression is small, and the durability is inferior.
  • the network structure 60 is obtained. Therefore, as the speed of the transport device 30 increases, the amount of drainage from the drainage port 80 is increased, so that the water at the high temperature in the water tank 20 is quickly discharged from the water tank 20 and the water in the entire water tank 20 is discharged. The temperature can be prevented from rising, the cooling efficiency of the network structure 60 can be increased, and not only the surface portion of the network structure 60 but also the inside can be sufficiently cooled.
  • the drainage amount (m 3 / min) from the drainage port 80 adjusted by the drainage amount adjusting means 82 is proportional to the speed (m / min) of the transfer device 30. Since the amount of drainage from the drainage port 80 and the speed of the transfer device 30 are in such a relationship, the cooling efficiency of the network structure 60 can be further improved, and the occurrence of cooling spots can be prevented.
  • the drainage amount from the drainage port 80 adjusted by the drainage amount adjusting means 82 increases as the amount of resin pushed out from the nozzle 10 increases and increases as the speed of the transport device 30 increases. That is, it is more preferable that the amount of drainage (m 3 / min) from the drainage port 80 is proportional to the amount of resin extrusion (g / min) from the nozzle 10 and the speed (m / min) of the conveying device 30. . Since the drainage amount (m 3 / min) from the drainage port 80 is as described above, for example, the amount of the resin 12 of the filaments extruded from the nozzle 10 for the purpose of increasing the productivity of the network structure 60 or the like.
  • the network structure 60 can be sufficiently cooled, and cooling spots in the thickness direction of the network structure 60 can be made difficult to occur.
  • a drainage means may be provided.
  • other drainage means of the drainage port 80 although not shown, so-called overflow or the like for discharging water from a pipe or the like provided in the upper part of the water tank 20 can be cited.
  • the method for producing a third network structure includes a step of extruding a molten thermoplastic resin into a line, a step of conveying the network structure having the resin of the line in a water tank by a conveying means, It has a step of discharging water in the tank from a drain outlet provided at the bottom of the tank, and a step of supplying water having a temperature lower than that discharged from the drain outlet to the tank. .
  • thermoplastic resin that is the material of the network structure is heated and melted to extrude the resin so as to form a filament.
  • the molten thermoplastic resin may be extruded from a nozzle or the like having a discharge hole.
  • the resin of the extruded filament is received in a water tank that stores water.
  • the linear resin forms a random loop by landing on the water surface in the water tank and winding.
  • the random loops are in contact with adjacent random loops in a molten state to form a structure in which the random loops are joined together in the three-dimensional direction.
  • the network structure is formed. It is formed.
  • the network structure is transported in the water tank by the transport means.
  • the conveying means preferably conveys the network structure downward from the water surface in the water tank.
  • the transport means By transporting the net-like structure by the transport means in this way, the extruded linear resin is continuously formed into a sheet-like net-like structure, and has a size suitable as a cushioning material for bedding and seats.
  • a network structure can be produced.
  • a conveying device such as the aforementioned conveyor can be used as the conveying device.
  • Water in the tank is drained from a drain outlet provided at the bottom of the tank.
  • a drain outlet provided at the bottom of the tank.
  • Water that is cooler than the water discharged from the drain is supplied to the aquarium.
  • the water temperature in the entire aquarium is lowered.
  • the network structure is efficiently cooled so that not only the surface portion but also the inside of the network structure can be sufficiently cooled, cooling spots hardly occur, and a highly durable network structure is manufactured. Can do.
  • the water discharged from the drain outlet is cooled by a heat exchanger, supplied to a water tank and circulated.
  • a heat exchanger supplied to a water tank and circulated.
  • the network structure after cooling can be produced by lifting the network structure from the water tank and drying it. It is preferable to perform a so-called pseudo crystallization treatment in which heating is performed for a certain period of time at a temperature lower than the melting point of the resin used for the resin material of the filament before and after drying the network structure.
  • the durability of the network structure can be increased by performing pseudo-crystallization treatment on the resin of the filament. In the pseudo-crystallization treatment, the resin hard segments are rearranged by heating to form a metastable intermediate phase, and a pseudo-crystallization-like cross-linking point is formed, such as the heat resistance and sag resistance of the network structure. It is thought that the durability is improved.
  • the third network structure manufacturing apparatus of the present invention is provided with a nozzle having a discharge hole for extruding a molten thermoplastic resin as a line, a water tank disposed below the nozzle, and a water tank. It has a conveyance device which conveys the net-like structure which has resin of a line, and a drain outlet provided in the bottom of a water tank, It is characterized by the above-mentioned.
  • Reticulated structure manufacturing apparatus 10 Nozzle 11: Ejection hole 12: Line resin 20: Water tank 30: Conveyance apparatus 31: 1st conveyance apparatus 32: 2nd conveyance apparatus 33: Conveyor belt 34: Drive roller 34a: Upper part Drive roller 34b: Lower drive roller 40: Gas discharge device 41: First gas discharge device 42: Second gas discharge device 43: Gas discharge hole 50: Reticulated structure traction device 60: Reticulated structure 70: Water discharge device 71: First water discharge device 72: Second water discharge device 73: Water discharge hole 80: Drain port 81: Partition plate 82: Drainage amount adjusting means P1: Midpoint between the first transfer device and the second transfer device L1: Lowered from the midpoint P1 to the bottom of the water tank Vertical line P2: intersection of L1 and bottom of water tank p1: vertical plane including midpoint P1 D1: distance between water discharge hole and water surface of water tank

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

溶融した熱可塑性樹脂を線条にして押し出す吐出孔(11)を有するノズル(10)と、ノズル(10)の下方に配置されている水槽(20)と、水槽(20)に設けられており、線条の樹脂(12)を有する網状構造体(60)を搬送する搬送装置(30)と、水槽(20)に設けられており、気体を放出する気体放出装置(40)と、を有している網状構造体製造装置(1)。

Description

網状構造体製造装置及び網状構造体の製造方法
 本発明は、網状構造体を製造する装置及び網状構造体を製造する方法に関するものである。
 現在、家具、ベッド等の寝具、電車や自動車、二輪車等の車両用の座席に用いられるクッション材として、網状構造体が広く使用されつつある。網状構造体は、発泡-架橋型ウレタンと比べて、同程度の耐久性を有し、透湿透水性や通気性に優れており、蓄熱性が少ないため蒸れにくいという利点がある。さらに、熱可塑性樹脂からなるため、リサイクルが容易であり、残留薬品の心配もなく、環境に優しいという利点も挙げられる。
 網状構造体の製造装置として、溶融した熱可塑性樹脂を線条として下方に押し出して降下させる複数の押出孔を有する口金と、線条の集合体を冷却する水槽と、押出孔の下方で一対が対向して設けられ、周設される無端部材が間隙を有するコンベアと、該コンベアの内部領域に設けられ、間隙から集合体に向かって冷却水を噴出する噴出孔または集合体付近から間隙を通して水を吸引する吸引孔の少なくとも一方を含む強制対流部材と、を備え、線条の降下速度より遅い速度で集合体をコンベアにより引き取り、水槽で冷却することにより、集合体を立体網状構造体となす立体網状構造体製造装置がある(例えば、特許文献1参照)。
 また、網状構造体の製造方法として、溶融した熱可塑性樹脂を複数の線条として下方に押し出して降下させる押出ステップと、線条が水面に接触し、または、降下する線条の集合体を挟んで対向する一対の案内部材もしくは該案内部材の下方で対向するコンベアに接触し、線条が不規則に絡まり合い、その絡合部が熱溶着するループ形成ステップと、コンベアにより集合体を挟持して線条の降下速度より遅い速度で水中に引き取る引取ステップと、コンベアに周設される無端部材が間隙を有し、一対のコンベアに挟まれる引取領域に向かってコンベアの内部領域から該間隙を通して冷却水を噴出するか、または引取領域からコンベアの内部領域へ該間隙を通して水を吸引することにより、水の強制対流を起こし、引取ステップと並行して集合体を水中で冷却する冷却ステップと、を備えたことを特徴とする立体網状構造体の製造方法がある(例えば、特許文献1参照)。
特開2015-155588号公報
 しかし、特許文献1のような網状構造体の製造装置及び製造方法は、網状構造体の製造時に網状構造体に向かって冷却水を噴出しており、直接冷却水が当たる網状構造体の表面部と冷却水が当たらない内部とで冷却の度合いに差があり、網状構造体の厚み方向で冷却斑が発生する。網状構造体の製造において冷却斑があると、冷却が不十分であった内部の繰り返し圧縮残留歪みが大きく、また、繰り返し圧縮後の硬度保持率が小さくなり、網状構造体の耐久性が著しく劣ってしまうという問題がある。
 本発明は、上記従来技術の問題点を解消するために創案されたものであり、その目的は、網状構造体の製造時において、網状構造体を冷却する際に網状構造体の厚み方向に冷却斑が発生しにくく、十分な耐久性を備えた網状構造体の製造装置及び製造方法を提供することにある。
 前記課題を解決することができた本発明の第1の網状構造体製造装置は、溶融した熱可塑性樹脂を線条にして押し出す吐出孔を有するノズルと、ノズルの下方に配置されている水槽と、水槽に設けられており、線条の樹脂を有する網状構造体を搬送する搬送装置と、水槽に設けられており、気体を放出する気体放出装置と、を有していることを特徴とするものである。
 上記発明の第1の網状構造体製造装置において、気体放出装置は、搬送装置よりも下方に設けられていることが好ましい。
 上記発明の第1の網状構造体製造装置において、気体放出装置は、気体を放出する放出孔を有しており、放出孔の法線方向が水槽の水面に向いていることが好ましい。
 上記発明の第1の網状構造体製造装置において、搬送装置は、少なくとも第1搬送装置と第2搬送装置から構成されており、第1搬送装置と第2搬送装置との間に網状構造体があり、気体放出装置は、気体を放出する放出孔を有しており、放出孔の法線方向が搬送装置の間にある網状構造体に向いていることが好ましい。
 上記発明の第1の網状構造体製造装置において、気体放出装置が放出する気体の量は、ノズルから押し出される樹脂の量が増えると増加することが好ましい。
 上記発明の第1の網状構造体製造装置において、気体放出装置が放出する気体の量は、搬送装置の速度が大きくなると増加することが好ましい。
 上記発明の第1の網状構造体製造装置において、搬送装置は、メッシュ状ベルトと駆動ローラーとを有していることが好ましい。
 上記発明の第1の網状構造体製造装置は、水槽の一方側に、網状構造体を牽引する網状構造体牽引装置を有しており、搬送装置は、少なくとも第1搬送装置と第2搬送装置から構成されており、気体放出装置は、第1搬送装置と第2搬送装置との中点を含む鉛直平面よりも網状構造体牽引装置側に配置されていることが好ましい。
 上記発明の第1の網状構造体製造装置において、気体放出装置は、少なくとも第1気体放出装置と第2気体放出装置から構成されており、搬送装置は、少なくとも第1搬送装置と第2搬送装置から構成されており、第1気体放出装置は、第1搬送装置の鉛直方向の下方に設けられており、第2気体放出装置は、第2搬送装置の鉛直方向の下方に設けられていることが好ましい。
 また、前記課題を解決することができた本発明の第1の網状構造体の製造方法は、溶融した熱可塑性樹脂を線条にして押し出すステップと、搬送手段によって線条の樹脂を有する網状構造体を水槽内で搬送するステップと、気体放出装置によって水槽内の水中に気体を放出するステップと、を有することを特徴とするものである。
 前記課題を解決することができた本発明の第2の網状構造体製造装置は、溶融した熱可塑性樹脂を線条にして押し出す吐出孔を有するノズルと、ノズルの下方に配置されている水槽と、水槽に設けられており、線条の樹脂を有する網状構造体を搬送する搬送装置と、水槽に設けられており、所定の方向へ水を放出する水放出装置と、を有しており、搬送装置は、少なくとも第1搬送装置と第2搬送装置から構成されており、第1搬送装置と第2搬送装置との間に網状構造体があり、搬送装置の間にある網状構造体は、水放出装置の水の放出方向の延長線上には存在していないことを特徴とするものである。
 上記発明の第2の網状構造体製造装置において、水放出装置の水の放出方向は、水槽の水面に向いていることが好ましい。
 上記発明の第2の網状構造体製造装置において、水放出装置の水の放出方向は、鉛直方向よりも搬送装置の間にある網状構造体側であることが好ましい。
 上記発明の第2の網状構造体製造装置において、水放出装置は、水を放出する放出孔を有しており、放出孔が、水槽の水面よりも0.1mm以上400mm以下下方に配置されていることが好ましい。
 上記発明の第2の網状構造体製造装置において、水放出装置は、搬送装置の内部に配置されていることが好ましい。
 上記発明の第2の網状構造体製造装置において、搬送装置は、メッシュ状ベルトと駆動ローラーとを有していることが好ましい。
 上記発明の第2の網状構造体製造装置において、駆動ローラーは、少なくとも上部駆動ローラー及び下部駆動ローラーから構成されており、上部駆動ローラーが搬送装置の内部の上方に、下部駆動ローラーが搬送装置の内部の下方にそれぞれ配置されており、水放出装置が放出する水の方向は、上部駆動ローラーに向かう方向であることが好ましい。
 上記発明の第2の網状構造体製造装置において、水放出装置が放出する水の量は、ノズルから押し出される樹脂の量が増えると増加することが好ましい。
 上記発明の第2の網状構造体製造装置において、水放出装置が放出する水の量は、搬送装置の速度が大きくなると増加することが好ましい。
 上記発明の第2の網状構造体製造装置において、水放出装置が放出する水の方向は、ノズルから押し出される樹脂の量に連動していることが好ましい。
 上記発明の第2の網状構造体製造装置において、水放出装置が放出する水の方向は、搬送装置の速度に連動していることが好ましい。
 上記発明の第2の網状構造体製造装置において、水放出装置は水を放出する放出孔を有しており、水槽の水面からの放出孔の位置は、ノズルから押し出される樹脂の量に連動していることが好ましい。
 上記発明の第2の網状構造体製造装置において、水放出装置は水を放出する放出孔を有しており、水槽の水面からの放出孔の位置は、搬送装置の速度に連動していることが好ましい。
 また、前記課題を解決することができた本発明の第2の網状構造体の製造方法は、溶融した熱可塑性樹脂を線条にして押し出すステップと、第1搬送装置及び第2搬送装置によって線条の樹脂を有する網状構造体を水槽内で搬送するステップと、水放出装置によって第1搬送装置と第2搬送装置との間にある網状構造体に向かう方向以外の方向へ水を放出するステップと、を有することを特徴とするものである。
 前記課題を解決することができた本発明の第3の網状構造体製造装置は、溶融した熱可塑性樹脂を線条にして押し出す吐出孔を有するノズルと、ノズルの下方に配置されている水槽と、水槽に設けられており、線条の樹脂を有する網状構造体を搬送する搬送装置と、水槽の底部に設けられている排水口と、を有していることを特徴とするものである。
 上記発明の第3の網状構造体製造装置は、水槽内において、排水口の周囲に仕切り板を有していることが好ましい。
 上記発明の第3の網状構造体製造装置において、排水口から排出した水を冷却する熱交換器を有し、水を循環させることが好ましい。
 上記発明の第3の網状構造体製造装置において、搬送装置は、メッシュ状ベルトと駆動ローラーとを有していることが好ましい。
 上記発明の第3の網状構造体製造装置において、搬送装置は、少なくとも第1搬送装置と第2搬送装置から構成されており、排水口は、第1搬送装置と第2搬送装置との中点から水槽の底に下ろした垂線と、水槽の底との交点を含む位置に設けられていることが好ましい。
 上記発明の第3の網状構造体製造装置において、水槽の一方側に、網状構造体を牽引する網状構造体牽引装置を有しており、搬送装置は、少なくとも第1搬送装置と第2搬送装置から構成されており、第1搬送装置は、第2搬送装置よりも網状構造体牽引装置側に配置されており、排水口は、第1搬送装置よりも網状構造体牽引装置側に設けられていることが好ましい。
 上記発明の第3の網状構造体製造装置において、水槽の一方側に、網状構造体を牽引する網状構造体牽引装置を有しており、搬送装置は、少なくとも第1搬送装置と第2搬送装置から構成されており、第1搬送装置は、第2搬送装置よりも網状構造体牽引装置側に配置されており、排水口は、第2搬送装置よりも網状構造体牽引装置側の反対側に設けられていることが好ましい。
 上記発明の第3の網状構造体製造装置において、水槽の水面に垂直な方向から見た排水口の形状は、長方形であることが好ましい。
 上記発明の第3の網状構造体製造装置において、排水口からの排水量を調節する排水量調節手段を有していることが好ましい。
 上記発明の第3の網状構造体製造装置において、排水量調節手段は、ノズルから押し出される樹脂の量が増えると排水口からの排水量を増加させることが好ましい。
 上記発明の第3の網状構造体製造装置において、排水量調節手段は、搬送装置の速度が大きくなると排水口からの排水量を増加させることが好ましい。
 また、前記課題を解決することができた本発明の第3の網状構造体の製造方法は、溶融した熱可塑性樹脂を線条にして押し出すステップと、搬送手段によって線条の樹脂を有する網状構造体を水槽内で搬送するステップと、水槽の底部に設けられている排水口から水槽内の水を排出するステップと、排水口から排出した水よりも低温の水を水槽に供給するステップと、を有することを特徴とするものである。
 上記発明の第3の網状構造体の製造方法において、排水口から排出した水を熱交換器によって冷却し、水槽に供給して循環させることが好ましい。
 本発明の第1の網状構造体製造装置によれば、水槽に設けられている気体放出装置が気体を放出することにより、水槽の水に対流を起こすことができ、網状構造体の表面部と内部とを均一に冷却しやすくなる。そのため、網状構造体の厚み方向に冷却斑が発生しにくく、十分な耐久性を備えた網状構造体を製造することができる。
 本発明の第2の網状構造体製造装置によれば、水槽に設けられている水放出装置が水を放出し、搬送装置の間にある網状構造体が水放出装置の水の放出方向の延長線上には存在していないことにより、水槽の水に対流を起こして網状構造体の表面部と内部とを均一に冷却しやすくなる。その結果、網状構造体の厚み方向に冷却斑が発生しにくく、十分な耐久性を備えた網状構造体を製造することができる。
 本発明の第3の網状構造体製造装置によれば、水槽の底部に排水口が設けられており、この排水口から水槽内の水を排出することにより、水槽内の線条の樹脂付近、特に網状構造体の内部の高温となった水を排出し、水槽内全体の水の温度が上昇することを防ぐことができる。そのため、網状構造体の表面部と内部とを均一に冷却しやすくなり、網状構造体の厚み方向に冷却斑が発生しにくく、十分な耐久性を備えた網状構造体を製造することができる。
本発明の実施の形態における第1の網状構造体製造装置の側面図(一部断面図)を表す。 本発明の実施の形態における第2の網状構造体製造装置の一例の側面図(一部断面図)を表す。 本発明の実施の形態における第2の網状構造体製造装置の他の一例の側面図(一部断面図)を表す。 本発明の実施の形態における第3の網状構造体製造装置の一例の側面図(一部断面図)を表す。 本発明の実施の形態における第3の網状構造体製造装置の他の一例の側面図(一部断面図)を表す。 本発明の実施の形態における第3の網状構造体製造装置のさらに他の一例の側面図(一部断面図)を表す。
 以下、本発明に関して、図面を参照しつつ具体的に説明するが、本発明はもとより図示例に限定される訳ではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
 本発明の第1の網状構造体製造装置について、以下に説明する。
 本発明に係る第1の網状構造体製造装置は、溶融した熱可塑性樹脂を線条にして押し出す吐出孔を有するノズルと、ノズルの下方に配置されている水槽と、水槽に設けられており、線条の樹脂を有する網状構造体を搬送する搬送装置と、水槽に設けられており、気体を放出する気体放出装置と、を有していることを特徴とするものである。
 本発明の網状構造体は、熱可塑性樹脂からなる線条の樹脂を曲がりくねらせてランダムループを形成し、夫々のループを互いに溶融状態で接触せしめて接合させた三次元ランダムループ接合構造を持つ構造体である。
 図1は、本発明の実施の形態における第1の網状構造体製造装置の側面図である。網状構造体製造装置1は、ノズル10、水槽20、搬送装置30、及び気体放出装置40を有している。
 ノズル10は、溶融した熱可塑性樹脂を線条にして押し出す吐出孔11を有している。即ち、加熱によって溶融した熱可塑性樹脂をノズル10の吐出孔11から押し出すことにより、線条の樹脂12を形成している。
 ノズル10が有している吐出孔11の数は、1つであってもよく、複数であってもよい。ノズル10が複数の突出孔11を有している場合、複数の突出孔11は、1列に配置されていてもよいが、複数列に配置されていることが好ましい。ノズル10が複数の吐出孔11を有していることにより、同時に複数の線条の樹脂12を形成することができ、網状構造体60の生産効率を高めることができる。ノズル10が有している吐出孔11の数は、製造する網状構造体60の硬度やクッション性に応じて調節することができる。
 吐出孔11の出口の断面形状は特に限定されず、例えば、円形、楕円形、多角形等が挙げられる。吐出孔11の出口の断面形状は、中でも、円形または楕円形であることが好ましい。吐出孔11がこのように構成されていることにより、吐出孔11から押し出された線条の樹脂12の断面形状も円形または楕円形となる。そのため、前述の三次元ランダムループ接合構造を形成する際に、線条の樹脂12同士が接触する面積を増やして、高い弾力性と耐久性を有する網状構造体60を製造することができる。
 また、吐出孔11から押し出された線条の樹脂12の断面形状は、中実であってもよく、中空であってもよい。線条の樹脂12の断面形状を中空とするためには、例えば、吐出孔11の内側に心棒のような心金部を有する構成であればよい。具体的には、吐出孔11の出口の断面形状が、吐出孔11の内側と外側とが一部連通している、所謂C型ノズルや、吐出孔11にブリッジを設けて、吐出孔11を周方向に分割した、所謂3点ブリッジ形状ノズル等が挙げられる。
 吐出孔11の出口の断面形状の長軸方向の長さは、0.1mm以上であることが好ましく、0.5mm以上であることがより好ましく、1.0mm以上であることがさらに好ましい。吐出孔11の出口の断面形状の長軸方向の長さの下限値をこのように設定することにより、網状構造体60の耐久性を高め、繰り返しの圧縮に耐えられる網状構造体60とすることができる。また、吐出孔11の出口の断面形状の長軸方向の長さは、10mm以下であることが好ましく、7mm以下であることがより好ましく、5mm以下であることがさらに好ましい。吐出孔11の出口の断面形状の長軸方向の長さの上限値をこのように設定することにより、クッション性のよい網状構造体60を製造することができる。
 ノズル10が複数の吐出孔11を有している場合、各吐出孔11の出口の断面形状の大きさは同じであってもよく、異なっていてもよい。ノズル10が有している全ての吐出孔11の出口の断面形状の大きさを同じにすれば、線条の樹脂12の太さが均一である網状構造体60とすることができる。また、例えば、ノズル10の中央部の吐出孔11の出口の断面形状の大きさを、その外周部の吐出孔11の出口の断面形状の大きさよりも小さくすると、網状構造体60の内部の線条の樹脂12が網状構造体60の表面部の線条の樹脂12よりも細くなるため、網状構造体60の内部の温度が表面部よりも下がりやすくなる。そのため、冷却斑が起こりにくい構造の網状構造体60を製造することができる。
 吐出孔11から押し出す熱可塑性樹脂としては、例えば、ポリエステル系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、エチレン酢酸ビニル共重合体等が挙げられる。熱可塑性樹脂は、中でも、ポリエステル系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、及びポリスチレン系熱可塑性エラストマーの少なくともいずれかを含んでいることが好ましい。熱可塑性樹脂がポリエステル系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、及びポリスチレン系熱可塑性エラストマーの少なくともいずれかを含んでいることにより、加工性が向上し、網状構造体60の製造が容易となる。また、熱可塑性樹脂は、ポリエステル系熱可塑性エラストマーを含んでいることがより好ましい。熱可塑性樹脂がポリエステル系熱可塑性エラストマーを含んでいることにより、繰り返し圧縮残留歪みを小さくすることができる。また、熱可塑性樹脂がポリエステル系熱可塑性エラストマーを含んでいることにより、網状構造体60の繰り返し圧縮後の硬度保持率を大きくすることができ、耐久性の高い網状構造体60を製造することができる。
 水槽20は、ノズル10の下方に配置されており、ノズル10の吐出孔11から押し出された線条の樹脂12を受け入れ可能に構成されている。水槽20は、ノズル10の吐出孔11から押し出された線条の樹脂12を冷却する水を有している。ノズル10の吐出孔11から押し出された線条の樹脂12は、水槽20内の水面に着水して曲がりくねることによってランダムループを形成する。このランダムループが隣接するランダムループと互いに溶融状態で接触することで、三次元方向にランダムループ同士が接合した構造体を形成し、同時に、水によって冷却されその構造が固定される。このようにして網状構造体60が得られる。
 搬送装置30は、水槽20に設けられており、線条の樹脂12を有する網状構造体60を搬送する。つまり、搬送装置30は、ノズル10の吐出孔11から押し出され、水槽20内に受け入れた線条の樹脂12を有する網状構造体60を水槽20内で搬送する。搬送装置30は、水槽20の水面から水槽20の底部に向かって、網状構造体60を搬送することが好ましい。また、搬送装置30は、水槽20内に設けられていることが好ましい。
 搬送装置30の種類は特に限定されず、例えば、ベルトコンベア、ネットコンベア、スラットコンベア等のコンベアが挙げられる。搬送装置30の詳細については後述する。
 気体放出装置40は、水槽20に設けられており、気体を放出する。気体放出装置40が放出する気体は、気体を圧縮する装置(図示せず)によって圧縮された気体であることが好ましい。気体放出装置40が水槽20内の水中において気体を放出することにより、水槽20内の水に対流を発生させることができる。水槽20内の水に対流が起こると、水槽20内の網状構造体60の表面部付近にある水だけでなく、網状構造体60の内部にある水も、網状構造体60の空隙を通じて移動させられ、新たな水が供給される。そのため、水槽20内の網状構造体60の表面部及び内部の両方を均一に冷却することができ、冷却斑が発生しにくくなる。冷却斑が発生しにくいことにより、網状構造体60の製造において、冷却が不十分であることによる繰り返し圧縮残留歪みの増大や、繰り返し圧縮後の硬度保持率の低下を防ぐことができ、耐久性の高い網状構造体60を製造することができる。気体の種類は、例えば、空気、酸素ガス、窒素ガス等が挙げられるが、空気であることが好ましい。
 気体放出装置40は、搬送装置30よりも下方に設けられていることが好ましい。ノズル10の吐出孔11から押し出された線条の樹脂12が水槽20の水と接触する水面付近の水が最も高温になるため、搬送装置30よりも下方に気体放出装置40が設けられていることにより、水面付近の水よりも低温である搬送装置30の下方の水を、水面付近の線条の樹脂12へ送り込むことができ、効率よく水面付近の線条の樹脂12を冷却することができる。気体放出装置40は、搬送装置30の下端と水槽20の底との間に設けられていてもよく、水槽20の底部に設けられていてもよい。
 気体放出装置40は、気体を放出する気体放出孔43を有しており、気体放出孔43の法線方向が水槽20の水面に向いていることが好ましい。気体放出孔43の法線とは、気体放出孔43の開口部を含む面に垂直な線を指す。気体放出孔43の法線方向が水槽20の水面に向いていることにより、気体放出装置40付近から水温の高い水面付近に向かって水の対流を起こすことができ、網状構造体60の冷却を効率的に行うことができる。なお、気体放出装置40が複数の気体放出孔43を有している場合は、少なくとも1つの気体放出孔43の法線方向が水槽20の水面に向いていることが好ましい。
 気体放出装置40が有している気体放出孔43の数は、1つであってもよく、複数であってもよい。気体放出孔43の数が1つであれば、気体放出孔43から放出する気体の方向を調整することが容易となる。また、気体放出孔43の数が複数であれば、気体放出孔43から放出する気体を拡散させることができて水槽20内の水に大きく対流を起こすことができ、網状構造体60の冷却効率を高めることができる。
 また、後述するように、搬送装置30が少なくとも第1搬送装置31と第2搬送装置32から構成されており、第1搬送装置31と第2搬送装置32との間に網状構造体60がある場合は、気体放出孔43の法線方向が搬送装置30の間にある網状構造体60に向いていることも好ましい。つまり、気体放出孔43の法線方向が第1搬送装置31と第2搬送装置32との間にある網状構造体60に向いていることが好ましい。気体放出孔43の法線方向が搬送装置30の間にある網状構造体60に向いていることにより、水を網状構造体60の内部へより送り込みやすくなり、冷却が不十分になりやすい網状構造体60の内部を冷却しやすくなる。
 気体放出孔43の法線方向は、水槽20の水面、及び搬送装置30の間にある網状構造体60に向いていることがより好ましい。気体放出孔43がこのように構成されていることにより、気体放出装置40から網状構造体60の内部を通って、水槽20の水面に向かって水の対流を発生させることができ、網状構造体60の厚み方向に冷却斑が起こりにくくなる。
 気体放出装置40が放出する気体の量は、ノズル10から押し出される樹脂の量が増えると増加することが好ましい。つまり、気体放出装置40が放出する気体の体積(m/min)(1気圧、常温での測定値)とノズル10から押し出される樹脂の押出量(g/min)とが連動していることが好ましい。例えば、網状構造体60の反発性を高めるためにノズル10から押し出される線条の樹脂12の量を増やすと、水槽20の水面付近の温度がより高温になりやすくなるため、網状構造体60の冷却の効率が悪くなる。また、ノズル10から押し出される線条の樹脂12の量を増やすと、網状構造体60が密になるため、網状構造体60の内部が冷却されにくく、網状構造体60の厚み方向に冷却斑が発生しやすくなる。そのため、ノズル10から押し出される線条の樹脂12の量の増加に伴って気体放出装置40の気体の放出量を増加することにより、水槽20内の水の対流を大きくし、網状構造体60の冷却効率を高め、冷却斑を防止することができる。
 気体放出装置40が放出する気体の体積(m/min)(1気圧、常温での測定値)は、ノズル10からの樹脂の押出量(g/min)と比例していることがより好ましい。気体放出装置40が放出する気体の体積とノズル10からの樹脂の押出量とがこのような関係にあることにより、さらに網状構造体60の冷却の効率をさらに高めることができ、冷却斑が起こりにくくなる。
 気体放出装置40が放出する気体の量は、搬送装置30の速度が大きくなると増加することも好ましい。つまり、気体放出装置40が放出する気体の体積(m/min)(1気圧、常温での測定値)と搬送装置30による網状構造体60の搬送速度とが連動していることが好ましい。網状構造体60の硬さを低くするために網状構造体60の密度を下げる等の目的で、搬送装置30の速度を速めると、網状構造体60の内部の冷却が不十分なまま次の工程へ移ってしまうことがある。網状構造体60の内部の冷却が不十分な状態で次の工程に移ると、網状構造体60の内部の繰り返し圧縮残留歪みが大きく、繰り返し圧縮後の硬度保持率が小さい、耐久性の劣った網状構造体60となるおそれがある。そのため、搬送装置30の速度が速まるのに伴い、気体放出装置40の気体の放出量を増加することにより、水槽20内の水の対流を大きくし、網状構造体60の冷却効率を高め、網状構造体60の表面部だけでなく内部も十分に冷却することができる。
 気体放出装置40が放出する気体の体積(m/min)(1気圧、常温での測定値)は、搬送装置30の速度(m/min)と比例していることがより好ましい。気体放出装置40が放出する気体の体積と搬送装置30の速度とがこのような関係にあることにより、網状構造体60の冷却効率をより高めることができ、冷却斑の発生を防ぐことができる。
 また、気体放出装置40が放出する気体の量は、ノズル10から押し出される樹脂の量が増えると増加し、かつ、搬送装置30の速度が大きくなると増加することがより好ましい。つまり、気体放出装置40が放出する気体の体積(m/min)(1気圧、常温での測定値)は、ノズル10からの樹脂の押出量(g/min)、及び搬送装置30の速度(m/min)と比例していることがより好ましい。気体放出装置40が放出する気体の量がこのようになっていることにより、例えば、網状構造体60の生産性を高める等の目的で、ノズル10から押し出される線条の樹脂12の量を増やし、搬送装置30の速度を速めても、水槽20内の水の対流を大きくすることによって網状構造体60を十分に冷却することができ、網状構造体60の厚み方向の冷却斑を起こりにくくすることができる。
 搬送装置30の上端部は、水槽20の水面よりも上方にあることが好ましい。搬送装置30がこのように配置されていることにより、ノズル10の吐出孔11から押し出された線条の樹脂12が水槽20内の水に接触する際に、線条の樹脂12が水面上で自由に移動することを妨げ、網状構造体60の厚みが過度に大きくならないようにすることができる。
 搬送装置30は、コンベアベルト33を有していることが好ましい。コンベアベルト33は、ゴムや樹脂製の平ベルト、金属製のワイヤーを連続的に編み込んだり、織り込んだりすることでメッシュ状にしたネットコンベアベルトや、コンベアチェーンに連続的に金属製の板を取り付けたスラットコンベアベルトが挙げられる。
 コンベアベルト33は、中でも、把持性能がよく、通水性能に優れることより、ネットコンベアベルトであることが好ましい。即ち、搬送装置30は、メッシュ状ベルトと駆動ローラー34とを有している、ネットコンベア搬送装置であることが好ましい。搬送装置30がこのように構成されていることにより、搬送装置30を水や気体が通過することができるため、気体放出装置40による水槽20内の水の対流を搬送装置30が妨げにくく、網状構造体60の冷却効率を高めることができる。
 コンベアベルト33は、無端状であることが好ましい。コンベアベルト33が無端状に構成されていることにより、駆動ローラー34の回転によって無端状のコンベアベルト33が途切れることなく回り、搬送装置30を連続して作動させることができる。その結果、網状構造体60の搬送を効率的に行うことができる。
 駆動ローラー34は複数であり、無端状のコンベアベルト33の内部の上部及び下部にそれぞれ設けられていることが好ましい。つまり、コンベアベルト33の内部の上部に上部駆動ローラー34aが設けられ、コンベアベルト33の内部の下部に下部駆動ローラー34bが設けられていることが好ましい。駆動ローラー34がこのように構成されていることにより、コンベアベルト33に撓みが生じにくくなり、駆動ローラー34の回転によってコンベアベルト33が空回りして搬送装置30が動作不良を起こすことを防止できる。
 搬送装置30は、少なくとも第1搬送装置31と第2搬送装置32から構成されており、第1搬送装置31と第2搬送装置32との間に網状構造体60があることが好ましい。搬送装置30がこのように構成されていることにより、網状構造体60を第1搬送装置31と第2搬送装置32とで挟んだ状態で搬送することができるため、表面が整っており、かつ、厚みが一定である網状構造体60とすることができる。
 第1搬送装置31の下部駆動ローラー34bと第2搬送装置32の下部駆動ローラー34bとの距離は、第1搬送装置31の上部駆動ローラー34aと第2搬送装置32の上部駆動ローラー34aとの距離よりも小さいことが好ましい。つまり、第1搬送装置31と第2搬送装置32との間の距離は、上部よりも下部の方が小さく、下部にいくにつれて狭くなっていることが好ましい。搬送装置30がこのように構成されていることにより、搬送装置30の下部で網状構造体60を挟み込むことができる。その結果、線条の樹脂12及び網状構造体60を水槽20内へ引き込みやすくなって、網状構造体60の冷却が行いやすくなる。
 網状構造体製造装置1は、網状構造体60を牽引して水槽20から引き上げる網状構造体牽引装置50を有していることが好ましい。網状構造体製造装置1が網状構造体牽引装置50を有していることにより、網状構造体60の冷却後に水槽20から網状構造体60を自動的に引き上げて、網状構造体60の乾燥工程に移ることができるため、網状構造体60の生産性を上げることができる。
 水槽20の一方側に、網状構造体60を牽引する網状構造体牽引装置50を有しており、搬送装置30は、少なくとも第1搬送装置31と第2搬送装置32から構成されており、気体放出装置40は、第1搬送装置31と第2搬送装置32との中点P1を含む鉛直平面p1よりも網状構造体牽引装置50側に配置されていることが好ましい。水槽20内において、鉛直平面p1よりも網状構造体牽引装置50側に網状構造体60が存在しているため、鉛直平面p1の網状構造体牽引装置50側の反対側よりも、鉛直平面p1の網状構造体牽引装置50側の方に水の対流をより多く起こす方が、網状構造体60を効率よく冷却する上で好ましい。そのため、気体放出装置40がこのように配置されていることにより、網状構造体60付近の水に対してより効率的に対流を起こすことができ、網状構造体60の冷却効率を高めることができる。
 気体放出装置40は、少なくとも第1気体放出装置41と第2気体放出装置42から構成されており、搬送装置30は、少なくとも第1搬送装置31と第2搬送装置32から構成されており、第1気体放出装置41は、第1搬送装置31の鉛直方向の下方に設けられており、第2気体放出装置42は、第2搬送装置32の鉛直方向の下方に設けられていることが好ましい。第1気体放出装置41と第2気体放出装置42がこのように配置されていることにより、網状構造体60の両側に水の対流を発生させることができ、網状構造体60付近だけでなく、水槽20全体の水を動かすことが可能となり、網状構造体60の冷却の効率をより向上させることができる。
 第1気体放出装置41の気体放出孔43の法線方向は、第2気体放出装置42の気体放出孔43の法線方向と同じであってもよく、異なっていてもよい。例えば、第1気体放出装置41の気体放出孔43の法線方向が鉛直方向であって水面に向かう方向であり、第2気体放出装置42の気体放出孔43の法線方向も同じく鉛直方向であって水面に向かう方向であれば、水槽20内の網状構造体60の両側で等しく水の対流を起こすことができ、第1気体放出装置41と第2気体放出装置42とでバランスよく対流を発生させることができる。また、第1気体放出装置41の気体放出孔43の法線方向と第2気体放出装置42の気体放出孔43の法線方向とが異なっていれば、第1気体放出装置41と第2気体放出装置42とで、それぞれ異なる場所に水の対流を起こすことができ、対流を発生させたい場所にそれぞれ優先的に対流を起こすことができる。
 図1に示すように、第1気体放出装置41の気体放出孔43の法線方向と第2気体放出装置42の気体放出孔43の法線方向が、第1搬送装置31の上部駆動ローラー34aの中心点と第2搬送装置32の上部駆動ローラー34aの中心点との間に向かっていることも好ましい。第1気体放出装置41と第2気体放出装置42とがこのように構成されていることにより、水槽20内で最も水温が高くなる場所である、ノズル10の吐出孔11から押し出された線条の樹脂12と水槽20の水が接する場所に効率的に対流を起こすことができ、網状構造体60の冷却を効率よく行うことができる。
 第1気体放出装置41から水槽20の底までの距離は、第2気体放出装置42から水槽20の底までの距離と同じであってもよく、異なっていてもよい。つまり、第1気体放出装置41の気体放出孔43から水槽20の底までの距離は、第2気体放出装置42の気体放出孔43から水槽20の底までの距離と同じであってもよく、異なっていてもよい。第1気体放出装置41から水槽20の底までの距離が、第2気体放出装置42から水槽20の底までの距離と同じであれば、第1気体放出装置41が起こす対流と第2気体放出装置42が起こす対流とを同程度のものとすることができる。そのため、第1気体放出装置41と第2気体放出装置42とでバランスよく水槽20内に対流を起こすことができる。
 また、第1気体放出装置41から水槽20の底までの距離が、第2気体放出装置42から水槽20の底までの距離と異なっており、網状構造体牽引装置50が設けられている側に第1気体放出装置41が配置されており、第1気体放出装置41から水槽20の底までの距離が、第2気体放出装置42から水槽20の底までの距離よりも大きい場合、第1気体放出装置41が線条の樹脂12に近い場所に設けられる。そのため、網状構造体60付近により大きく対流を起こすことができ、網状構造体60の冷却効率を高めることができる。
 第1気体放出装置41が放出する気体の量は、第2気体放出装置42が放出する気体の量と同じであってもよく、異なっていてもよい。第1気体放出装置41が放出する気体の量が、第2気体放出装置42が放出する気体の量と同じであれば、第1気体放出装置41と第2気体放出装置42とで水槽20内の水に同程度の対流を起こすことができ、水槽20内にバランスよく対流を発生させることができる。
 また、第1気体放出装置41が放出する気体の量が、第2気体放出装置42が放出する気体の量と異なっており、網状構造体牽引装置50が設けられている側に第1気体放出装置41が配置され、第1気体放出装置41が放出する気体の量が、第2気体放出装置42が放出する気体の量よりも多ければ、網状構造体60により近い第1気体放出装置41が起こす水の対流を大きくすることができ、網状構造体60の冷却を効率よく行うことができる。
 水槽20内の水を排出して、新たに低温の水を水槽20に供給してもよい。水槽20の水の排出としては、図示していないが、水槽20の上部に設けられている配管等から水を排出する、所謂オーバーフローにより排出すればよい。具体的には、例えば、水槽20の下部から新たな低温の水を水槽20へ供給し、温度の高くなった水をオーバーフローさせる等が挙げられる。
 本発明に係る第1の網状構造体の製造方法は、溶融した熱可塑性樹脂を線条にして押し出すステップと、搬送手段によって線条の樹脂を有する網状構造体を水槽内で搬送するステップと、気体放出装置によって水槽内の水中に気体を放出するステップと、を有することを特徴とするものである。
 網状構造体の材料となる熱可塑性樹脂を加熱して溶融させ、線条となるように樹脂を押し出す。樹脂を線条とするには、吐出孔を有するノズル等から溶融した熱可塑性樹脂を押し出す等すればよい。
 押し出した線条の樹脂を、水を貯留している水槽内に受け入れる。線条の樹脂が水槽内の水面に着水して曲がりくねることによってランダムループを形成する。このランダムループが隣接するランダムループと互いに溶融状態で接触することで、三次元方向にランダムループ同士が接合した構造体を形成し、同時に水によって冷却されその構造が固定されて、網状構造体が形成される。
 搬送手段によって網状構造体を水槽内で搬送する。搬送手段は、網状構造体を水槽内の水面から下方に向かって搬送することが好ましい。このような搬送手段によって網状構造体を搬送することにより、押し出された線条の樹脂が連続してシート状の網状構造体となって形成され、寝具や座席のクッション材として適した大きさの網状構造体を製造することができる。搬送手段としては、例えば、前述のコンベア等の搬送装置を用いることができる。
 気体放出装置によって、水槽内の水中に気体を放出する。水中で気体を放出することにより、水槽内の水に対流が発生し、水面付近の高温となった水が移動して低温の水が供給される。これにより、網状構造体が効率よく冷却されて網状構造体の表面部だけでなく内部も十分に冷却することができ、冷却斑が発生しにくく、高い耐久性を有する網状構造体を製造することができる。
 冷却後の網状構造体を水槽から引き上げ、乾燥させることにより、網状構造体を製造できる。網状構造体の乾燥前後に、網状構造体の材料に用いた樹脂の融点よりも低い温度で一定時間加熱する、疑似結晶化処理を行うことが好ましい。網状構造体に疑似結晶化処理を行うことにより、網状構造体の耐久性を高めることができる。疑似結晶化処理は、加熱によって樹脂のハードセグメントが再配列され、準安定中間相を形成し、疑似結晶化様の架橋点が形成されて、網状構造体の耐熱性や耐へたり性等の耐久性を向上しているのではないかと考えられる。
 以上のように、本発明の第1の網状構造体製造装置は、溶融した熱可塑性樹脂を線条にして押し出す吐出孔を有するノズルと、ノズルの下方に配置されている水槽と、水槽に設けられており、線条の樹脂を有する網状構造体を搬送する搬送装置と、水槽に設けられており、気体を放出する気体放出装置と、を有していることを特徴とする。網状構造体製造装置がこのような構成であることにより、水槽に設けられている気体放出装置が気体を放出して水槽の水に対流を起こすことができ、網状構造体の表面部と内部とを効率よく冷却しやすくなる。そのため、網状構造体の厚み方向に冷却斑が発生しにくく、十分な耐久性を備えた網状構造体を製造する製造装置を提供することができる。
 本発明の第2の網状構造体製造装置について、以下に説明する。
 本発明に係る第2の網状構造体製造装置は、溶融した熱可塑性樹脂を線条にして押し出す吐出孔を有するノズルと、ノズルの下方に配置されている水槽と、水槽に設けられており、線条の樹脂を有する網状構造体を搬送する搬送装置と、水槽に設けられており、所定の方向へ水を放出する水放出装置と、を有しており、搬送装置は、少なくとも第1搬送装置と第2搬送装置から構成されており、第1搬送装置と第2搬送装置との間に網状構造体があり、搬送装置の間にある網状構造体は、水放出装置の水の放出方向の延長線上には存在していないことを特徴とするものである。
 本発明の網状構造体は、熱可塑性樹脂からなる線条の樹脂を曲がりくねらせてランダムループを形成し、夫々のループを互いに溶融状態で接触せしめて接合させた三次元ランダムループ接合構造を持つ構造体である。
 図2及び図3は、本発明の実施の形態における第2の網状構造体製造装置の側面図である。網状構造体製造装置1は、ノズル10、水槽20、搬送装置30、及び水放出装置70を有している。
 ノズル10は、溶融した熱可塑性樹脂を線条にして押し出す吐出孔11を有している。即ち、加熱によって溶融した熱可塑性樹脂をノズル10の吐出孔11から押し出すことにより、線条の樹脂12を形成している。
 ノズル10が有している吐出孔11の数は、1つであってもよく、複数であってもよい。ノズル10が複数の突出孔11を有している場合、複数の突出孔11は、1列に配置されていてもよいが、複数列に配置されていることが好ましい。ノズル10が複数の吐出孔11を有していることにより、同時に複数の線条の樹脂12を形成することができ、網状構造体60の生産効率を高めることができる。ノズル10が有している吐出孔11の数は、製造する網状構造体60の硬度やクッション性等に応じて調節することができる。
 吐出孔11の出口の断面形状は特に限定されず、例えば、円形、楕円形、多角形等が挙げられる。吐出孔11の出口の断面形状は、中でも、円形または楕円形であることが好ましい。吐出孔11がこのように構成されていることにより、吐出孔11から押し出された線条の樹脂12の断面形状も円形または楕円形となる。そのため、前述の三次元ランダムループ接合構造を形成する際に、線条の樹脂12同士が接触する面積を増やして、高い弾性力と耐久性を有する網状構造体60を製造することができる。
 また、吐出孔11から押し出された線条の樹脂12の断面形状は、中実であってもよく、中空であってもよい。線条の樹脂12の断面形状を中空とするためには、例えば、吐出孔11の内側に心棒のような心金部を有する構成であればよい。具体的には、吐出孔11の出口の断面形状が、吐出孔11の内側と外側とが一部連通している、所謂C型ノズルや、吐出孔11にブリッジを設けて、吐出孔11を周方向に分割した、所謂3点ブリッジ形状ノズル等が挙げられる。
 吐出孔11の出口の断面形状の長軸方向の長さは、0.1mm以上であることが好ましく、0.5mm以上であることがより好ましく、1.0mm以上であることがさらに好ましい。吐出孔11の出口の断面形状の長軸方向の長さの下限値をこのように設定することにより、網状構造体60の耐久性を高め、繰り返しの圧縮に耐えられる網状構造体60とすることができる。また、吐出孔11の出口の断面形状の長軸方向の長さは、10mm以下であることが好ましく、7mm以下であることがより好ましく、5mm以下であることがさらに好ましい。吐出孔11の出口の断面形状の長軸方向の長さの上限値をこのように設定することにより、クッション性のよい網状構造体60を製造することができる。
 ノズル10が複数の吐出孔11を有している場合、各吐出孔11の出口の断面形状の大きさは同じであってもよく、異なっていてもよい。ノズル10が有している全ての吐出孔11の出口の断面形状の大きさを同じにすれば、線条の樹脂12の太さが均一である網状構造体60とすることができる。また、例えば、ノズル10の中央部の吐出孔11の出口の断面形状の大きさを、その外周部の吐出孔11の出口の断面形状の大きさよりも小さくすると、網状構造体60の内部の線条の樹脂12が網状構造体60の表面部の線条の樹脂12よりも細くなる。そのため、網状構造体60の内部の温度が表面部よりも下がりやすくなり、冷却斑が起こりにくい構造の網状構造体60を製造することができる。
 吐出孔11から押し出す熱可塑性樹脂としては、例えば、ポリエステル系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、エチレン酢酸ビニル共重合体等が挙げられる。熱可塑性樹脂は、中でも、ポリエステル系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、及びポリスチレン系熱可塑性エラストマーの少なくともいずれかを含んでいることが好ましい。熱可塑性樹脂がポリエステル系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、及びポリスチレン系熱可塑性エラストマーの少なくともいずれかを含んでいることにより、加工性が向上し、網状構造体60の製造が容易となる。また、熱可塑性樹脂は、ポリエステル系熱可塑性エラストマーを含んでいることがより好ましい。熱可塑性樹脂がポリエステル系熱可塑性エラストマーを含んでいることにより、繰り返し圧縮残留歪みを小さく、かつ、繰り返し圧縮後の硬度保持率を大きくすることができ、耐久性の高い網状構造体60を製造することができる。
 水槽20は、ノズル10の下方に配置されており、ノズル10の吐出孔11から押し出された線条の樹脂12を受け入れ可能に構成されている。水槽20は、ノズル10の吐出孔11から押し出された線条の樹脂12を冷却する水を有している。ノズル10の吐出孔11から押し出された線条の樹脂12は、水槽20内の水面に着水して曲がりくねることによってランダムループを形成する。このランダムループが隣接するランダムループと互いに溶融状態で接触することで、三次元方向にランダムループ同士が接合した構造体を形成し、同時に水によって冷却されその構造が固定される。このようにして網状構造体60が得られる。
 搬送装置30は、水槽20に設けられており、線条の樹脂12を有する網状構造体60を搬送する。つまり、搬送装置30は、ノズル10の吐出孔11から押し出され、水槽20内に受け入れた線条の樹脂12を有する網状構造体60を水槽20内で搬送する。搬送装置30は、水槽20の水面から水槽20の底部に向かって、網状構造体60を搬送することが好ましい。また、搬送装置30は、水槽20内に設けられていることが好ましい。
 搬送装置30は、少なくとも第1搬送装置31と第2搬送装置32から構成されており、第1搬送装置31と第2搬送装置32との間に網状構造体60がある。搬送装置30がこのように構成されていることにより、網状構造体60を第1搬送装置31と第2搬送装置32とで挟んだ状態で搬送することができる。そのため、表面が整っており、また、厚みが一定である網状構造体60とすることができる。
 搬送装置30の種類は特に限定されず、例えば、ベルトコンベア、ネットコンベア、スラットコンベア等のコンベアが挙げられる。搬送装置30の詳細については後述する。
 水放出装置70は、水槽20に設けられており、所定の方向へ水を放出する。水放出装置70の水の放出方向の延長線上には、搬送装置30の間にある網状構造体60は存在していない。水放出装置70が水槽20内の水中において水を放出し、水の放出方向の延長線上に搬送装置30の間にある網状構造体60が存在していないことにより、網状構造体60の表面部に直接水を当てて冷却するのではなく、水槽20内の水に対流を発生させ、この水によって網状構造体60を冷却する。これにより、水槽20内の網状構造体60の表面部及び内部の両方を均一に冷却することができ、冷却斑が発生しにくくなる。従来の網状構造体60の表面部に水を当てて冷却する製造装置では、網状構造体60の厚み方向に冷却斑が発生し、冷却が不十分であった部分の繰り返し圧縮残留歪みの増大や、繰り返し圧縮後の硬度保持率の低下という問題があった。しかし、網状構造体製造装置1では、冷却斑が発生しにくいことにより、繰り返し圧縮残留歪みの増大や、繰り返し圧縮後の硬度保持率の低下を防ぐことができ、耐久性の高い網状構造体60を製造することができる。
 水放出装置70の水の放出方向は、水槽20の水面に向いていることが好ましい。ノズル10の吐出孔11から押し出された線条の樹脂12が水槽20の水と接触する水面付近の水が最も高温になるため、水の放出方向が水面に向いていることにより、水面付近に水面付近よりも低温の水を送り込むことができ、効率よく網状構造体60を冷却することができる。
 さらに、水放出装置70の水の放出方向は、鉛直方向よりも網状構造体60側であることがより好ましい。つまり、水放出装置70の水の放出方向は、水槽20の水面に向いており、かつ、水槽20の水面に対する鉛直方向よりも搬送装置の間にある網状構造体60側であることがより好ましい。水放出装置70の水の放出方向がこのようになっていることにより、水が最も高温となるノズル10の吐出孔11から押し出された線条の樹脂12が水槽20の水と接触する水面付近に、より効率的に低温の水を送り込むことができる。その結果、網状構造体60の表面部及び内部の均一な冷却を行いやすくなる。
 水放出装置70は、水を放出する水放出孔73を有しており、水放出孔73が水槽20の水面よりも0.1mm以上下方に配置されていることが好ましく、1mm以上下方に配置されていることがより好ましく、10mm以上下方に配置されていることがさらに好ましい。水放出孔73と水槽20の水面との距離D1の下限値を上記の通り設定することにより、水槽20内の水へ十分に対流を発生させることができ、網状構造体60の冷却効率を高めることができる。また、水放出孔73が水槽20の水面よりも400mm以下下方に配置されていることが好ましく、350mm以下下方に配置されていることがより好ましく、300mm以下下方に配置されていることがさらに好ましく、250mm以下下方に配置されていることが最も好ましい。水放出孔73と水槽20の水面との距離D1の上限値を上記の通り設定することにより、水放出装置70から水温の高い水面付近に向かって水の対流を起こすことができる。水面付近は、最も網状構造体60の表面部と内部の冷却度合いの差が大きくなる箇所であり、この水面付近で水の対流を起こすことで、網状構造体60の冷却をより均一に行うことができる。なお、水放出装置70が複数の水放出孔73を有している場合は、少なくとも1つの水放出孔73と水槽20の水面との距離D1が上記のようになっていることが好ましい。
 水放出装置70が有している水放出孔73の数は、1つであってもよく、複数であってもよい。水放出孔73の数が1つであれば、水放出孔73から放出する水の方向を調整することが容易となる。また、水放出孔73の数が複数であれば、水放出孔73から放出する水を拡散させることができて水槽20内の水に大きく対流を起こすことができ、網状構造体60の冷却効率を高めることができる。
 水放出装置70は、搬送装置30の内部に配置されていることが好ましい。水放出装置70がこのように配置されていることにより、水放出装置70から放出される水が網状構造体60に直接当たりにくく、かつ、水温が高くなる水面付近でさらに効率よく水の対流を起こすことができるため、網状構造体60の表面部と内部とをより均一に効率よく冷却することができる。
 搬送装置30の上端部は、水槽20の水面よりも上方にあることが好ましい。搬送装置30がこのように配置されていることにより、ノズル10の吐出孔11から押し出された線条の樹脂12が水槽20内の水に接触する際に、線条の樹脂12が水面上で自由に移動することを妨げ、網状構造体60の厚みが過度に大きくならないようにすることができる。
 搬送装置30は、コンベアベルト33と駆動ローラー34とを有していることが好ましい。コンベアベルト33は、ゴムや樹脂製の平ベルト、金属製のワイヤーを連続的に編み込んだり、織り込んだりすることでメッシュ状にしたネットコンベアベルトや、コンベアチェーンに連続的に金属製の板を取り付けたスラットコンベアベルトが挙げられる。
 コンベアベルト33は、中でも、把持性能がよく、通水性能に優れることより、ネットコンベアベルトであることが好ましい。即ち、搬送装置30は、メッシュ状ベルトと駆動ローラーを有している、ネットコンベア搬送装置であることが好ましい。搬送装置30がこのように構成されていることにより、搬送装置30を水が通過することができるため、水放出装置70による水槽20内の水の対流を搬送装置30が妨げにくく、網状構造体60の冷却効率を高めることができる。
 コンベアベルト33は、無端状であることが好ましい。コンベアベルト33が無端状に構成されていることにより、駆動ローラー34の回転によって無端状のコンベアベルト33が途切れることなく回り、搬送装置30を連続して作動させることができる。その結果、網状構造体60の搬送を効率的に行うことができる。
 駆動ローラー34は複数であり、無端状のコンベアベルト33の内部の上部及び下部にそれぞれ設けられていることが好ましい。つまり、コンベアベルト33の内部の上部に上部駆動ローラー34aが設けられ、コンベアベルト33の内部の下部に下部駆動ローラー34bが設けられていることが好ましい。駆動ローラー34がこのように構成されていることにより、コンベアベルト33に撓みが生じにくくなり、駆動ローラー34の回転によってコンベアベルト33が空回りして搬送装置30が動作不良を起こすことを防止できる。
 駆動ローラー34は、少なくとも上部駆動ローラー34a及び下部駆動ローラー34bから構成されており、上部駆動ローラー34aが搬送装置30の内部の上方に、下部駆動ローラー34bが搬送装置30の内部の下方にそれぞれ配置されており、水放出装置70が放出する水の方向は、上部駆動ローラー34aに向かう方向であることが好ましい。水放出装置70の水の放出方向をこのように設定することにより、水放出装置70から放出された水が上部駆動ローラー34aに当たって水が拡散する。その結果、水槽20内の水に対流が起こりやすくなるため、網状構造体60の冷却効率を高めることができる。
 第1搬送装置31の下部駆動ローラー34bと第2搬送装置32の下部駆動ローラー34bとの距離は、第1搬送装置31の上部駆動ローラー34aと第2搬送装置32の上部駆動ローラー34aとの距離よりも小さいことが好ましい。つまり、第1搬送装置31と第2搬送装置32との間の距離は、上部よりも下部の方が小さく、下部にいくにつれて狭くなっていることが好ましい。搬送装置30がこのように構成されていることにより、搬送装置30の下部で網状構造体60を挟み込むことができる。そのため、線条の樹脂12及び網状構造体60を水槽20内へ引き込みやすくなって、網状構造体60の冷却が行いやすくなる。
 水放出装置70が放出する水の量は、ノズル10から押し出される樹脂の量が増えると増加することが好ましい。つまり、水放出装置70が放出する水の体積(m/min)とノズル10からの樹脂の押出量(g/min)とが連動していることが好ましい。例えば、網状構造体60の反発性を高めるためにノズル10から押し出される線条の樹脂12の量を増やすと、水槽20の水面付近の温度がより高温になりやすくなるため、網状構造体60の冷却の効率が悪くなる。また、網状構造体60の内部が冷却されにくく、網状構造体60の厚み方向に冷却斑が発生しやすくなる。そのため、ノズル10から押し出される線条の樹脂12の増加に伴って水放出装置70の水の放出量を増加することにより、水槽20内の水の対流を大きくし、網状構造体60の冷却効率を高め、冷却斑を防止することができる。
 水放出装置70が放出する水の体積(m/min)は、ノズル10からの樹脂の押出量(g/min)と比例していることがより好ましい。水放出装置70が放出する水の体積とノズル10からの樹脂の押出量とがこのような関係にあることにより、網状構造体60の冷却の効率をさらに高めることができ、冷却斑が起こりにくくなる。
 水放出装置70が放出する水の量は、搬送装置30の速度が大きくなると増加することも好ましい。つまり、水放出装置70が放出する水の体積(m/min)と搬送装置30による網状構造体60の搬送速度とが連動していることが好ましい。網状構造体60の硬さを低くするために網状構造体60の密度を下げる等の目的で、搬送装置30の速度を速めると、網状構造体60の内部の冷却が不十分なまま次の工程へ移ってしまう。網状構造体60の内部の冷却が不十分な状態で次の工程に移ると、網状構造体60の内部の繰り返し圧縮残留歪みが大きく、また、繰り返し圧縮後の硬度保持率が小さい、耐久性の劣った網状構造体60となるおそれがある。そのため、搬送装置30の速度が速まるのに伴い、水放出装置70の水の放出量を増加させることにより、水槽20内の水の対流を大きくし、水面付近の網状構造体60の冷却効率を高め、網状構造体60の表面部だけでなく内部も十分に冷却することができる。
 水放出装置70が放出する水の体積(m/min)は、搬送装置30の速度(m/min)と比例していることがより好ましい。水放出装置70が放出する水の体積と搬送装置30の速度とがこのような関係にあることにより、網状構造体60の冷却効率をより向上させることができ、冷却斑の発生を防ぐことができる。
 また、水放出装置70が放出する水の量は、ノズル10から押し出される樹脂の量が増えると増加し、かつ、搬送装置30の速度が大きくなると増加することがより好ましい。つまり、水放出装置70が放出する水の体積(m/min)は、ノズル10からの樹脂の押出量(g/min)、及び搬送装置30の速度(m/min)と比例していることがより好ましい。水放出装置70が放出する水の体積(m/min)がこのようになっていることにより、例えば、網状構造体60の生産性を高める等の目的で、ノズル10から押し出される線条の樹脂12の量を増やし、搬送装置30の速度を速めても、水槽20内の水の対流を大きくすることによって線条の樹脂12を十分に冷却することができる。その結果、網状構造体60の厚み方向の冷却斑を起こりにくくすることができる。
 水放出装置70が放出する水の方向は、ノズル10から押し出される樹脂の量に連動していることが好ましい。例えば、網状構造体60の反発性を高めるためにノズル10から押し出される線条の樹脂12の量を増やすと、水槽20の水面付近の温度がより高温になりやすくなって網状構造体60の冷却の効率が悪くなり、網状構造体60の冷却に斑が発生しやすくなる。そのため、ノズル10から押し出される線条の樹脂12の増加に伴って水放出装置70の水の放出方向を水槽20の水面における線条の樹脂12の中心部に近づけることにより、高温になりやすい水面付近の水への対流を大きくして、網状構造体60の内部が十分に冷却されるようにし、冷却斑を防ぐことができる。
 水放出装置70が放出する水の方向は、搬送装置30の速度に連動していることが好ましい。網状構造体60の硬さを低くするために網状構造体60の密度を下げる等の目的で、搬送装置30の速度を速めると、網状構造体60の内部の冷却が不十分なままとなってしまって網状構造体60の耐久性が低くなるおそれがある。そのため、搬送装置30の速度が速まるのに伴い、水放出装置70の水の放出方向を水槽20の水面における線条の樹脂12の中心部に近づけることにより、線条の樹脂12の冷却効率を高め、網状構造体60の表面部と内部の両方の冷却効率を高めることができる。
 また、水放出装置70が放出する水の方向は、ノズル10から押し出される樹脂の量、及び搬送装置30の速度に連動していることがより好ましい。水放出装置70が放出する水の方向がこのようになっていることにより、例えば、網状構造体60の生産性を高める等の目的で、ノズル10から押し出される線条の樹脂12の量を増やし、搬送装置30の速度を速めても、水放出装置70の水の放出方向を水槽20の水面における線条の樹脂12の中心部に近づけて水槽20内に水の対流を大きく発生させることができる。その結果、水面付近の網状構造体60の冷却効率を高めることができ、網状構造体60に冷却斑が起こることを防ぐことができる。
 水放出装置70は水を放出する水放出孔73を有しており、水槽20の水面からの水放出孔73の位置は、ノズル10から押し出される樹脂の量に連動していることが好ましい。つまり、水放出装置70の水放出孔73の位置を移動させることが可能であり、水槽20の水面からの水放出孔73の位置を、ノズル10から押し出される樹脂の量に連動して移動させることが可能であることが好ましい。例えば、網状構造体60の反発性を高めるためにノズル10から押し出される線条の樹脂12の量を増やすと、水槽20の水面付近の温度がより高温になりやすくなって網状構造体60の冷却の効率が悪くなり、網状構造体60の冷却に斑が発生しやすくなる。そのため、ノズル10から押し出される線条の樹脂12の増加に伴って、水槽20の水面と水放出孔73との距離D1を小さくすることにより、水面付近の高温の水へ対流を起こして移動させ、水面付近の網状構造体60の冷却効率を高めて、網状構造体60の厚み方向の冷却斑を防止することができる。
 水放出装置70は水を放出する水放出孔73を有しており、水槽20の水面からの水放出孔73の位置は、搬送装置30の速度に連動していることが好ましい。網状構造体60の硬さを低くするために網状構造体60の密度を下げる等の目的で、搬送装置30の速度を速めると、網状構造体60の内部の冷却が不十分なままとなってしまって網状構造体60の耐久性が低くなるおそれがある。そのため、搬送装置30の速度が速まるのに伴って、水槽20の水面と水放出孔73との距離D1を小さくすることにより、網状構造体60の表面部及び内部が十分に冷却されるようにし、網状構造体60に冷却斑が発生しないようにすることができる。
 また、水槽20の水面からの水放出装置70の水放出孔73の位置は、ノズル10から押し出される樹脂の量、及び搬送装置30の速度に連動していることがより好ましい。水放出装置70が放出する水の方向がこのようになっていることにより、例えば、網状構造体60の生産性を高める等の目的で、ノズル10から押し出される線条の樹脂12の量を増やし、搬送装置30の速度を速めても、水槽20の水面と水放出孔73との距離D1を小さくして水槽20内に水の対流を大きく発生させることにより、網状構造体60の冷却効率を高めることができ、網状構造体60に冷却斑が起こることを防ぐことができる。
 網状構造体製造装置1は、網状構造体60を牽引して水槽20から引き上げる網状構造体牽引装置50を有していることが好ましい。網状構造体製造装置1が網状構造体牽引装置50を有していることにより、網状構造体60の冷却後に水槽20から網状構造体60を自動的に引き上げて、網状構造体60の乾燥工程に移ることができる。そのため、網状構造体60の生産性を上げることができる。
 水槽20の一方側に、網状構造体60を牽引する網状構造体牽引装置50を有しており、搬送装置30は、少なくとも第1搬送装置31と第2搬送装置32から構成されており、水放出装置70は、第1搬送装置31と第2搬送装置32との中点P1を含む鉛直平面p1よりも網状構造体牽引装置50側に配置されていることが好ましい。水槽20内において、鉛直平面p1よりも網状構造体牽引装置50側に網状構造体60が存在しているため、鉛直平面p1の網状構造体牽引装置50側の反対側よりも、鉛直平面p1の網状構造体牽引装置50側の方に水の対流をより多く起こす方が、網状構造体60を効率よく冷却する上で好ましい。そのため、水放出装置70がこのように配置されていることにより、網状構造体60付近の水に対してより効率的に対流を起こすことができ、網状構造体60の冷却効率を高めることができる。
 水放出装置70は、少なくとも第1水放出装置71と第2水放出装置72から構成されており、搬送装置30は、少なくとも第1搬送装置31と第2搬送装置32から構成されており、第1水放出装置71は、第1搬送装置31の内部に設けられており、第2水放出装置72は、第2搬送装置32の内部に設けられていることが好ましい。第1水放出装置71と第2水放出装置72がこのように配置されていることにより、網状構造体60の両側に水の対流を発生させることができる。そのため、網状構造体60付近だけでなく、水槽20全体の水を動かすことが可能となり、網状構造体60の冷却の効率をより向上させることができる。
 第1水放出装置71の水の放出方向は、第2水放出装置72の水の放出方向と同じであってもよく、異なっていてもよい。例えば、第1水放出装置71の水の放出方向が鉛直方向であって水面に向かう方向であり、第2水放出装置72の水の放出方向も同じく鉛直方向であって水面に向かう方向であれば、水槽20内の線条の樹脂12の両側で等しく水の対流を起こすことができ、第1水放出装置71と第2水放出装置72とでバランスよく対流を発生させることができる。
 また、第1水放出装置71の水の放出方向と第2水放出装置72の水の放出方向とが異なっていれば、第1水放出装置71と第2水放出装置72とで、それぞれ異なる場所に水の対流を起こすことができ、対流を発生させたい場所にそれぞれ優先的に対流を起こすことができる。
 第1水放出装置71の水放出孔73と水槽20の水面との距離D1は、第2水放出装置72の水放出孔73と水槽20の水面との距離と同じであってもよく、異なっていてもよい。第1水放出装置71の水放出孔73と水槽20の水面との距離D1が、第2水放出装置72の水放出孔73と水槽20の水面との距離と同じであれば、第1水放出装置71が起こす対流と第2水放出装置72が起こす対流とを同程度のものとすることができ、第1水放出装置71と第2水放出装置72とでバランスよく水槽20内に対流を起こすことができる。
 また、第1水放出装置71の水放出孔73と水槽20の水面との距離D1が、第2水放出装置72の水放出孔73と水槽20の水面との距離と異なっており、網状構造体牽引装置50が設けられている側に第1水放出装置71が配置されており、第1水放出装置71の水放出孔73と水槽20の水面との距離D1が、第2水放出装置72の水放出孔73と水槽20の水面との距離よりも大きい場合、第1水放出装置71が網状構造体60に近い場所に設けられるため、網状構造体60付近により大きく対流を起こすことができる。そのため、網状構造体60の冷却効率を高めることができる。
 第1水放出装置71が放出する水の量は、第2水放出装置72が放出する水の量と同じであってもよく、異なっていてもよい。第1水放出装置71が放出する水の量が、第2水放出装置72が放出する水の量と同じであれば、第1水放出装置71と第2水放出装置72とで水槽20内の水に同程度の対流を起こすことができ、水槽20内にバランスよく対流を発生させることができる。
 また、第1水放出装置71が放出する水の量が、第2水放出装置72が放出する水の量と異なっており、網状構造体牽引装置50が設けられている側に第1水放出装置71が配置されており、第1水放出装置71が放出する水の量が、第2水放出装置72が放出する水の量よりも多ければ、網状構造体60により近い第1水放出装置71が起こす水の対流を大きくすることができ、網状構造体60の冷却を効率よく行うことができる。
 水槽20内の水を排出して、新たに低温の水を水槽20に供給してもよい。水槽20の水の排出としては、図示していないが、水槽20の上部に設けられている配管等から水を排出する、所謂オーバーフローにより排出すればよい。
 本発明に係る第2の網状構造体の製造方法は、溶融した熱可塑性樹脂を線条にして押し出すステップと、第1搬送装置及び第2搬送装置によって線条の樹脂を有する網状構造体を水槽内で搬送するステップと、水放出装置によって第1搬送装置と第2搬送装置との間にある網状構造体に向かう以外の方向へ水を放出するステップと、を有することを特徴とするものである。
 網状構造体の材料となる熱可塑性樹脂を加熱して溶融させ、線条となるように樹脂を押し出す。樹脂を線条とするには、吐出孔を有するノズル等から溶融した熱可塑性樹脂を押し出す等すればよい。
 押し出した線条の樹脂を、水を貯留している水槽内に受け入れる。線状の樹脂が水槽内の水面に着水して曲がりくねることによってランダムループを形成する。このランダムループが隣接するランダムループと互いに溶融状態で接触することで、三次元方向にランダムループ同士が接合した構造体を形成し、同時に水によって冷却されその構造が固定されて、網状構造体が形成される。
 第1搬送装置及び第2搬送装置によって網状構造体を水槽内で搬送する。搬送手段は、網状構造体を水槽内の水面から下方に向かって搬送することが好ましい。このように搬送手段によって網状構造体を搬送することにより、押し出された線条の樹脂が連続してシート状の網状構造体となって形成され、寝具や座席のクッション材として適した大きさの網状構造体を製造することができる。搬送手段としては、例えば、前述のコンベア等の搬送装置を用いることができる。
 水放出装置によって、水槽内の水中に水を放出する。水放出装置の水の放出方向は、第1搬送装置と第2搬送装置との間にある網状構造体に向かう方向以外の方向とする。このように、水中で水を放出することにより、水槽内の水に対流が発生し、水面付近の高温となった水が移動して低温の水が供給される。これにより、網状構造体が効率よく冷却されて線条の樹脂の表面部だけでなく内部も十分に冷却することができ、冷却斑が発生しにくく、高い耐久性を有する網状構造体を製造することができる。
 冷却後の網状構造体を水槽から引き上げ、乾燥させることにより、網状構造体を製造できる。網状構造体の乾燥前後に、網状構造体の材料に用いた樹脂の融点よりも低い温度で一定時間加熱する「疑似結晶化処理」を行うことが好ましい。線条の樹脂に疑似結晶化処理を行うことにより、網状構造体の耐久性を高めることができる。疑似結晶化処理は、加熱によって樹脂のハードセグメントが再配列され、準安定中間相を形成し、疑似結晶化様の架橋点が形成されて、網状構造体の耐熱性や耐へたり性等の耐久性を向上しているのではないかと考えられる。
 以上のように、本発明の第2の網状構造体製造装置は、溶融した熱可塑性樹脂を線条にして押し出す吐出孔を有するノズルと、ノズルの下方に配置されている水槽と、水槽に設けられており、線条の樹脂を有する網状構造体を搬送する搬送装置と、水槽に設けられており、所定の方向へ水を放出する水放出装置と、を有しており、搬送装置は、少なくとも第1搬送装置と第2搬送装置から構成されており、第1搬送装置と第2搬送装置との間に網状構造体があり、搬送装置の間にある網状構造体は、水放出装置の水の放出方向の延長線上には存在していないことを特徴とする。このような構成であることにより、水槽の水に対流を起こして網状構造体の表面部と内部とを均一に冷却しやすくなり、網状構造体の厚み方向に冷却斑が発生しにくく、十分な耐久性を備えた網状構造体を製造する製造装置を提供することができる。
 本発明の第3の網状構造体製造装置について、以下に説明する。
 本発明に係る第3の網状構造体製造装置は、溶融した熱可塑性樹脂を線条にして押し出す吐出孔を有するノズルと、ノズルの下方に配置されている水槽と、水槽に設けられており、線条の樹脂を有する網状構造体を搬送する搬送装置と、水槽の底部に設けられている排水口と、を有していることを特徴とするものである。
 本発明の網状構造体は、熱可塑性樹脂からなる線条の樹脂を曲がりくねらせてランダムループを形成し、夫々のループを互いに溶融状態で接触せしめて接合させた三次元ランダムループ接合構造を持つ構造体である。
 図4~図6は、本発明の実施の形態における第3の網状構造体製造装置の側面図である。網状構造体製造装置1は、ノズル10、水槽20、搬送装置30、及び排水口80を有している。
 ノズル10は、溶融した熱可塑性樹脂を線条にして押し出す吐出孔11を有している。即ち、加熱によって溶融した熱可塑性樹脂をノズル10の吐出孔11から押し出すことにより、線条の樹脂12を形成している。
 ノズル10が有している吐出孔11の数は、1つであってもよく、複数であってもよい。ノズル10が複数の突出孔11を有している場合、複数の突出孔11は、1列に配置されていてもよいが、複数列に配置されていることが好ましい。ノズル10が複数の吐出孔11を有していることにより、同時に複数の線条の樹脂12を形成することができ、網状構造体の生産効率を高めることができる。ノズル10が有している吐出孔11の数は、製造する網状構造体60の硬度やクッション性に応じて調節することができる。
 吐出孔11の出口の断面形状は特に限定されず、例えば、円形、楕円形、多角形等が挙げられる。吐出孔11の出口の断面形状は、中でも、円形または楕円形であることが好ましい。吐出孔11がこのように構成されていることにより、吐出孔11から押し出された線条の樹脂12の断面形状も円形または楕円形となる。そのため、前述の三次元ランダムループ接合構造を形成する際に、線条の樹脂12同士が接触する面積を増やして、高い弾力性と耐久性を有する網状構造体60を製造することができる。
 また、吐出孔11から押し出された線条の樹脂12の断面形状は、中実であってもよく、中空であってもよい。線条の樹脂12の断面形状を中空とするためには、例えば、吐出孔11の内側に心棒のような心金部を有する構成であればよい。具体的には、吐出孔11の出口の断面形状が、吐出孔11の内側と外側とが一部連通している、所謂C型ノズルや、吐出孔11にブリッジを設けて、吐出孔11を周方向に分割した、所謂3点ブリッジ形状ノズル等が挙げられる。
 吐出孔11の出口の断面形状の長軸方向の長さは、0.1mm以上であることが好ましく、0.5mm以上であることがより好ましく、1.0mm以上であることがさらに好ましい。吐出孔11の出口の断面形状の長軸方向の長さの下限値をこのように設定することにより、網状構造体60の耐久性を高め、繰り返しの圧縮に耐えられる網状構造体60とすることができる。また、吐出孔11の出口の断面形状の長軸方向の長さは、10mm以下であることが好ましく、7mm以下であることがより好ましく、5mm以下であることがさらに好ましい。吐出孔11の出口の断面形状の長軸方向の長さの上限値をこのように設定することにより、クッション性のよい網状構造体60を製造することができる。
 ノズル10が複数の吐出孔11を有している場合、各吐出孔11の出口の断面形状の大きさは同じであってもよく、異なっていてもよい。ノズル10が有している全ての吐出孔11の出口の断面形状の大きさを同じにすれば、線条の樹脂12の太さが均一である網状構造体60とすることができる。また、例えば、ノズル10の中央部の吐出孔11の出口の断面形状の大きさを、その外周部の吐出孔11の出口の断面形状の大きさよりも小さくすると、網状構造体60の内部の線条の樹脂12が網状構造体60の表面部の線条の樹脂12よりも細くなる。そのため、網状構造体60の内部の温度が表面部よりも下がりやすくなり、冷却斑が起こりにくい構造の網状構造体60を製造することができる。
 吐出孔11から押し出す熱可塑性樹脂としては、例えば、ポリエステル系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、エチレン酢酸ビニル共重合体等が挙げられる。熱可塑性樹脂は、中でも、ポリエステル系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、及びポリスチレン系熱可塑性エラストマーの少なくともいずれかを含んでいることが好ましい。熱可塑性樹脂がポリエステル系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、及びポリスチレン系熱可塑性エラストマーの少なくともいずれかを含んでいることにより、加工性が向上し、網状構造体60の製造が容易となる。また、熱可塑性樹脂は、ポリエステル系熱可塑性エラストマーを含んでいることがより好ましい。熱可塑性樹脂がポリエステル系熱可塑性エラストマーを含んでいることにより、繰り返し圧縮残留歪みを小さく、かつ、繰り返し圧縮後の硬度保持率を大きくすることができ、耐久性の高い網状構造体60を製造することができる。
 水槽20は、ノズル10の下方に配置されており、ノズル10の吐出孔11から押し出された線条の樹脂12を受け入れ可能に構成されている。水槽20は、ノズル10の吐出孔11から押し出された線条の樹脂12を冷却する水を有している。ノズル10の吐出孔11から押し出された線条の樹脂12は、水槽20内の水面に着水して曲がりくねることによってランダムループを形成する。このランダムループが隣接するランダムループと互いに溶融状態で接触することで、三次元方向にランダムループ同士が接合した構造体を形成し、同時に水によって冷却されその構造が固定される。このようにして網状構造体60が得られる。
 搬送装置30は、水槽20に設けられており、線条の樹脂12を有する網状構造体60を搬送する。つまり、搬送装置30は、ノズル10の吐出孔11から押し出され、水槽20内に受け入れた線条の樹脂12を有する網状構造体60を水槽20内で搬送する。搬送装置30は、水槽20の水面から水槽20の底部に向かって、網状構造体60を搬送することが好ましい。また、搬送装置30は、水槽20内に設けられていることが好ましい。
 搬送装置30の種類は特に限定されず、例えば、ベルトコンベア、ネットコンベア、スラットコンベア等のコンベアが挙げられる。搬送装置30の詳細については後述する。
 排水口80は、水槽20の底部に設けられており、水槽20内の水を排出する。水槽20の底部に水を排出する排水口80が設けられていることにより、高温となりやすい水槽20内の網状構造体60付近、特に網状構造体60の内部の水が排出される。水槽20内の高温となった水を排出することにより、水槽20内全体の水の温度が上昇することを防ぐ。また、冷却斑が起こりやすい網状構造体60の内部の水を排出することにより、網状構造体60の表面部と内部とで大きな温度差が生じにくく、網状構造体60の表面部及び内部の両方を均一に冷却することができ、冷却斑が発生しにくくなる。冷却斑が発生しにくいことにより、網状構造体60の製造において、冷却が不十分であることによる繰り返し圧縮残留歪みの増大や、繰り返し圧縮後の硬度保持率の低下を防ぐことができ、耐久性の高い網状構造体60を製造することができる。
 水槽20の底部の排水口80から水槽20内の水を排出した後、排出した水の水温よりも低温の水を新たに供給することが好ましい。低温の水の供給は、図示していないが、給水管等を水槽20に設け、この給水管から低温の水を水槽に入れる等すればよい。網状構造体製造装置1がこのように構成されていることにより、水槽20内の高温となった水を排出した後に低温の水を供給するため、水槽20内全体の水の温度が上昇することを防ぐことができる。また、排水後に水槽20へ新たに給水するため、水槽20内の水位が低くなりすぎることを防止できる。
 水槽20内において、排水口80の周囲に仕切り板81を有していることが好ましい。排水口80が、水槽20の内側面で周囲に仕切り板81を有していることにより、排水口80の鉛直方向の上部の水を優先的に排出することができ、水の排出を調節することが可能となる。
 仕切り板81は、排水口80の周囲の一部に設けられていてもよいが、周囲の全てに設けられていることが好ましい。排水口80の全周に仕切り板81が設けられていることにより、排水口80による水槽20内の水の排出の調節がより行いやすくなる。
 水槽20の水面に垂直な方向から見た排水口80の形状は、円形、楕円形、多角形等が挙げられる。中でも、排水口80の形状は、長方形であることが好ましい。排水口80の形状が長方形であることにより、線条の樹脂12付近の水を効率的に排出することができ、排水した水よりも低温の水が線条の樹脂12付近に供給されることによって、線条の樹脂12の表面部及び内部を均一に冷却しやすくなる。
 図示していないが、網状構造体製造装置1は、排水口80から排出した水を冷却する熱交換器を有し、水を循環させることが好ましい。網状構造体製造装置1がこのように構成されていることにより、排出した水を再利用することによって網状構造体60の製造において廃棄する水の量を減らすことができ、水資源を保全することができる。
 搬送装置30の上端部は、水槽20の水面よりも上方にあることが好ましい。搬送装置30がこのように配置されていることにより、ノズル10の吐出孔11から押し出された線条の樹脂12が水槽20内の水に接触する際に、線条の樹脂12が水面上で自由に移動することを妨げ、網状構造体60の厚みが過度に大きくならないようにすることができる。
 搬送装置30は、コンベアベルト33と駆動ローラー34とを有していることが好ましい。コンベアベルト33は、ゴムや樹脂製の平ベルト、金属製のワイヤーを連続的に編み込んだり、織り込んだりすることでメッシュ状にしたネットコンベアベルトや、コンベアチェーンに連続的に金属製の板を取り付けたスラットコンベアベルトが挙げられる。
 コンベアベルト33は、中でも、把持性能がよく、通水性能に優れることより、ネットコンベアベルトであることが好ましい。即ち、搬送装置30は、メッシュ状ベルトと駆動ローラー34とを有している、ネットコンベア搬送装置であることが好ましい。搬送装置30がこのように構成されていることにより、搬送装置30を水が通過することができるため、排水口80による水槽20内の水の排出や、水の排出に伴う水の移動を搬送装置30が妨げにくく、網状構造体60の冷却効率を高めることができる。
 コンベアベルト33は、無端状であることが好ましい。コンベアベルト33が無端状に構成されていることにより、駆動ローラー34の回転によって無端状のコンベアベルト33が途切れることなく回り、搬送装置30を連続して作動させることができる。その結果、網状構造体60の搬送を効率的に行うことができる。
 駆動ローラー34は複数であり、無端状のコンベアベルト33の内部の上部及び下部にそれぞれ設けられていることが好ましい。つまり、コンベアベルト33の内部の上部に上部駆動ローラー34aが設けられ、コンベアベルト33の内部の下部に下部駆動ローラー34bが設けられていることが好ましい。駆動ローラー34がこのように構成されていることにより、コンベアベルト33に撓みが生じにくくなり、駆動ローラー34の回転によってコンベアベルト33が空回りして搬送装置30が動作不良を起こすことを防止できる。
 搬送装置30は、少なくとも第1搬送装置31と第2搬送装置32から構成されており、第1搬送装置31と第2搬送装置32との間に網状構造体60があることが好ましい。搬送装置30がこのように構成されていることにより、網状構造体60を第1搬送装置31と第2搬送装置32とで挟んだ状態で搬送することができるため、表面が整っており、また、厚みが一定である網状構造体60とすることができる。
 第1搬送装置31の下部駆動ローラー34bと第2搬送装置32の下部駆動ローラー34bとの距離は、第1搬送装置31の上部駆動ローラー34aと第2搬送装置32の上部駆動ローラー34aとの距離よりも小さいことが好ましい。つまり、第1搬送装置31と第2搬送装置32との間の距離は、上部よりも下部の方が小さく、下部にいくにつれて狭くなっていることが好ましい。搬送装置30がこのように構成されていることにより、搬送装置30の下部で網状構造体60を挟み込むことができる。その結果、網状構造体60を水槽20内へ引き込みやすくなって、網状構造体60の冷却が行いやすくなる。
 図1に示すように、搬送装置30は、少なくとも第1搬送装置31と第2搬送装置32から構成されており、排水口40は、第1搬送装置31と第2搬送装置32との中点P1から水槽20の底に下ろした垂線L1と、水槽20の底との交点P2を含む位置に設けられていることが好ましい。ノズル10の吐出孔11から押し出された線条の樹脂12が水槽20の水と接触する水面付近の水が最も高温となり、また、押し出された線条の樹脂12と水とが接触する水面の鉛直方向下方の水の温度も高くなる傾向にある。そのため、排水口40がこのような位置に設けられていることにより、高温となる押し出された線条の樹脂12と水とが接触する水面付近及びこの部分の鉛直方向下方の水を優先的に排出することができ、線条の樹脂12及び網状構造体60を効率よく冷却することができる。
 網状構造体製造装置1は、網状構造体60を牽引して水槽20から引き上げる網状構造体牽引装置50を有していることが好ましい。網状構造体製造装置1が網状構造体牽引装置50を有していることにより、網状構造体60の冷却後に水槽20から網状構造体60を自動的に引き上げて、網状構造体60の乾燥工程に移ることができるため、網状構造体60の生産性を上げることができる。
 図2に示すように、水槽20の一方側に、網状構造体60を牽引する網状構造体牽引装置50を有しており、搬送装置30は、少なくとも第1搬送装置31と第2搬送装置32から構成されており、第1搬送装置31は、第2搬送装置32よりも網状構造体牽引装置50側に配置されており、排水口80は、第1搬送装置31よりも網状構造体牽引装置50側に設けられていることも好ましい。排水口80が第1搬送装置31よりも網状構造体牽引装置50側に設けられているとは、排水口80の網状構造体牽引装置50側とは反対側の端部が、第1搬送装置31の網状構造体牽引装置50側とは反対側の端部よりも、網状構造体牽引装置50側に配置されていることを指す。網状構造体60が網状構造体牽引装置50に牽引されており、網状構造体60を冷却して温度の上がった水も網状構造体60に付随して、網状構造体牽引装置50のある水槽20の一方側に移動する傾向がある。そのため、排水口80がこのような位置に設けられていることにより、水槽20内の温度の高くなった水を効率的に排出することができ、網状構造体60の冷却効率を高めることができる。
 また、図3に示すように、水槽20の一方側に、線条の樹脂12を牽引する網状構造体牽引装置50を有しており、搬送装置30は、少なくとも第1搬送装置31と第2搬送装置32から構成されており、第1搬送装置31は、第2搬送装置32よりも網状構造体牽引装置50側に配置されており、排水口80は、第2搬送装置32よりも網状構造体牽引装置50側の反対側に設けられていることも好ましい。排水口80が第2搬送装置32よりも網状構造体牽引装置50側の反対側に設けられているとは、排水口80の網状構造体牽引装置50側の端部が、第2搬送装置32の網状構造体牽引装置50側の端部よりも、網状構造体牽引装置50側の反対側に配置されていることを指す。線条の樹脂12の材質や線径、密度等によっては、排水口80からの水の排出による水の流れが網状構造体60を変形させたり、破損させたりする等の悪影響を及ぼすことがある。そのため、排水口80がこのような位置に設けられていることにより、網状構造体60に与える影響を軽減しつつ、水槽20内の温度の高くなった水は排出し、網状構造体60の冷却を効率的に行うことができる。
 排水口80の数は、1つであってもよく、複数であってもよい。排水口80の数が1つであれば、排水口80が設けられている部分の鉛直方向の上方の水を優先的に排出することができる。また、排水口80の数が複数であれば、水槽20内の複数の部分において水を排出することができ、水槽20の容量が少ない等の水槽20の水の温度が高くなりやすい場合に、水槽20内の高温の水と、新たに供給する低温の水とを早急に入れ替えることができる。
 図4~図6において、紙面の表側を手前側、紙面の裏側を奥側として、排水口80の手前側端部から奥側端部までの長さは、搬送装置30の手前側端部から奥側端部までの長さよりも大きいことが好ましい。排水口80の大きさがこのようになっていることにより、水槽20内における網状構造体60の内部の、高温となった水を十分に排出することができ、水槽20内全体の水温が上昇することを防ぎ、網状構造体60の冷却効率を高めることができる。
 図4~図6において、第1搬送装置31が配置されている側を一方側とし、第2搬送装置32が配置されている側の反対側を他方側として、排水口80の一方側端部から他方側端部までの長さは、第1搬送装置31から第2搬送装置32までの長さよりも大きいことが好ましい。網状構造体60が搬送装置30と接することによって、網状構造体60と接した搬送装置30の一部の温度が上昇し、この搬送装置30の一部付近の水の温度も上昇する。つまり、網状構造体60の熱が搬送装置30を介して、網状構造体60と直接接していない水に移動する。排水口40の大きさがこのようになっていることにより、水槽20内における網状構造体60の内部の水だけでなく、網状構造体60と接して温度の高くなった搬送装置30の一部付近の水も排出することができる。そのため、水槽20内全体の水の温度が上がることを防止して、網状構造体60の冷却を効率よく行うことができる。
 網状構造体製造装置1は、排水口80からの排水量を調節する排水量調節手段82を有していることが好ましい。網状構造体製造装置1が排水量調節手段82を有していることにより、排水口80から排出される水の量と、水槽20に供給される水の量とのバランスをとることができる。具体的には、例えば、排水口80から排出される水の量が水槽20に供給される水の量よりも過度に多い場合には、排水量調節手段82によって排水量を減らし、水槽20の水位が低くなりすぎることを防止する。また、例えば、排水口80から排出される水の量が水槽20に供給される水の量よりも過度に少ない場合には、排水量調節手段82によって排水量を増やし、水槽20から水があふれることを防止する。排水量調節手段82としては、例えば、バルブ、スライド式開閉蓋、ポンプ等を用いることができる。
 排水量調節手段82は、ノズル10から押し出される樹脂の量が増えると排水口80からの排水量を増加させることが好ましい。つまり、排水量調節手段82が調節する排水口80からの排水量(m/min)とノズル10からの樹脂の押出量(g/min)とが連動していることが好ましい。例えば、網状構造体60の反発性を高めるためにノズル10から押し出される線条の樹脂12の量を増やすと、水槽20の水面付近の温度がより高温になりやすくなるため、網状構造体60の冷却の効率が悪くなる。また、ノズル10から押し出される線条の樹脂12の量を増やすと、網状構造体60の内部が冷却されにくく、網状構造体60の厚み方向に冷却斑が発生しやすくなる。そのため、ノズル10から押し出される線条の樹脂12の増加に伴って排水口80からの排水量を増加することにより、高温となった水を早急に水槽20から排出して、水槽20全体の水の温度が上昇することを防ぐことによって、網状構造体60の冷却効率を高め、冷却斑を防止することができる。
 排水量調節手段82が調節する排水口80からの排水量(m/min)は、ノズル10からの樹脂の押出量(g/min)と比例していることがより好ましい。排水口80からの排水量とノズル10からの樹脂の押出量とがこのような関係にあることにより、さらに網状構造体60の冷却の効率を高めることができ、冷却斑が起こりにくくなる。
 排水量調節手段82は、搬送装置30の速度が大きくなると排水口80からの排水量を増加させることも好ましい。つまり、排水量調節手段82が調節する排水口80からの排水量(m/min)と搬送装置30による網状構造体60の搬送速度とが連動していることが好ましい。網状構造体60の硬度を低くするために網状構造体60の密度を下げる等の目的で、搬送装置30の速度を速めると、網状構造体60の内部の冷却が不十分なまま次の工程へ移ってしまう。網状構造体60の内部の冷却が不十分な状態で次の工程に移ると、網状構造体60の内部の繰り返し圧縮残留歪みが大きく、繰り返し圧縮後の硬度保持率が小さい、耐久性の劣った網状構造体60となるおそれがある。そのため、搬送装置30の速度が速まるのに伴い、排水口80からの排水量を増加することにより、水槽20内の高温となった水を早急に水槽20から排出して水槽20内全体の水の温度が上がることを防止することができ、網状構造体60の冷却効率を高め、網状構造体60の表面部だけでなく内部も十分に冷却することができる。
 排水量調節手段82が調節する排水口80からの排水量(m/min)は、搬送装置30の速度(m/min)と比例していることがより好ましい。排水口80からの排水量と搬送装置30の速度とがこのような関係にあることにより、網状構造体60の冷却効率をより向上させることができ、冷却斑の発生を防ぐことができる。
 また、排水量調節手段82が調節する排水口80からの排水量は、ノズル10から押し出される樹脂の量が増えると増加し、かつ、搬送装置30の速度が大きくなると増加することがより好ましい。つまり、排水口80からの排水量(m/min)は、ノズル10からの樹脂の押出量(g/min)、及び搬送装置30の速度(m/min)と比例していることがより好ましい。排水口80からの排水量(m/min)がこのようになっていることにより、例えば、網状構造体60の生産性を高める等の目的で、ノズル10から押し出される線条の樹脂12の量を増やし、搬送装置30の速度を速めても、水槽20内の高温となった水の排出速度を大きくすることによって水槽20内の全体の水温が上昇することを防ぐことができる。そのため、網状構造体60を十分に冷却することができ、網状構造体60の厚み方向の冷却斑を起こりにくくすることができる。
 水槽20の底部に設けられている排水口80の他に、排水手段を有していてもよい。排水口80の他の排水手段としては、図示していないが、水槽20の上部に設けられている配管等から水を排出する、所謂オーバーフロー等が挙げられる。
 本発明に係る第3の網状構造体の製造方法は、溶融した熱可塑性樹脂を線条にして押し出すステップと、搬送手段によって線条の樹脂を有する網状構造体を水槽内で搬送するステップと、水槽の底部に設けられている排水口から水槽内の水を排出するステップと、排水口から排出した水よりも低温の水を水槽に供給するステップと、を有することを特徴とするものである。
 網状構造体の材料となる熱可塑性樹脂を加熱して溶融させ、線条となるように樹脂を押し出す。樹脂を線条とするには、吐出孔を有するノズル等から溶融した熱可塑性樹脂を押し出す等すればよい。
 押し出した線条の樹脂を、水を貯留している水槽内に受け入れる。線条の樹脂が水槽内の水面に着水して曲がりくねることによってランダムループを形成する。このランダムループが隣接するランダムループと互いに溶融状態で接触することで、三次元方向にランダムループ同士が接合した構造体を形成し、同時に水によって冷却されその構造が固定されると網状構造体が形成される。
 搬送手段によって網状構造体を水槽内で搬送する。搬送手段は、網状構造体を水槽内の水面から下方に向かって搬送することが好ましい。このように搬送手段によって網状構造体を搬送することにより、押し出された線条の樹脂が連続してシート状の網状構造体となって形成され、寝具や座席のクッション材として適した大きさの網状構造体を製造することができる。搬送手段としては、例えば、前述のコンベア等の搬送装置を用いることができる。
 水槽の底部に設けられている排水口から水槽内の水を排出する。押し出された線条の樹脂によって水温が上昇した水槽内の水を排水口から排出することにより、水槽内全体の水温が上昇して網状構造体の冷却効率が低下することを防止する。
 排水口から排出した水よりも低温の水を水槽に供給する。水槽内に低温の水を供給することにより、水槽内全体の水温を低下させる。これにより、網状構造体が効率よく冷却されて網状構造体の表面部だけでなく内部も十分に冷却することができ、冷却斑が発生しにくく、高い耐久性を有する網状構造体を製造することができる。
 排水口から排出した水を熱交換器によって冷却し、水槽に供給して循環させることが好ましい。排水口から排出した水の温度を低下させ、排出した水を循環し、再利用することによって、網状構造体の製造において廃棄する水の量を減らすことができ、水資源を保全することができる。
 冷却後の網状構造体を水槽から引き上げ、乾燥させることにより、網状構造体を製造できる。網状構造体の乾燥前後に、線条の樹脂の材料に用いた樹脂の融点よりも低い温度で一定時間加熱する、所謂、疑似結晶化処理を行うことが好ましい。線条の樹脂に疑似結晶化処理を行うことにより、網状構造体の耐久性を高めることができる。疑似結晶化処理は、加熱によって樹脂のハードセグメントが再配列され、準安定中間相を形成し、疑似結晶化様の架橋点が形成されて、網状構造体の耐熱性や耐へたり性等の耐久性を向上しているのではないかと考えられる。
 以上のように、本発明の第3の網状構造体製造装置は、溶融した熱可塑性樹脂を線条にして押し出す吐出孔を有するノズルと、ノズルの下方に配置されている水槽と、水槽に設けられており、線条の樹脂を有する網状構造体を搬送する搬送装置と、水槽の底部に設けられている排水口と、を有していることを特徴とする。このような構成であることにより、水槽の底部に設けられている排水口から、水槽内の網状構造体付近、特に網状構造体の内部の高温となった水を排出し、水槽内全体の水の温度が上昇することを防ぐことができる。その結果、網状構造体の表面部と内部とを均一に冷却しやすくなり、網状構造体の厚み方向に冷却斑が発生しにくく、十分な耐久性を備えた網状構造体を製造することができる。
 本願は、2018年3月28日に出願された日本国特許出願第2018-063111号、日本国特許出願第2018-063112号、および日本国特許出願第2018-063113号に基づく優先権の利益を主張するものである。2018年3月28日に出願された日本国特許出願第2018-063111号、日本国特許出願第2018-063112号、および日本国特許出願第2018-063113号の明細書の全内容が、本願に参考のため援用される。
 1:網状構造体製造装置
 10:ノズル
 11:吐出孔
 12:線条の樹脂
 20:水槽
 30:搬送装置
 31:第1搬送装置
 32:第2搬送装置
 33:コンベアベルト
 34:駆動ローラー
 34a:上部駆動ローラー
 34b:下部駆動ローラー 
 40:気体放出装置
 41:第1気体放出装置
 42:第2気体放出装置
 43:気体放出孔
 50:網状構造体牽引装置
 60:網状構造体
 70:水放出装置
 71:第1水放出装置
 72:第2水放出装置
 73:水放出孔
 80:排水口
 81:仕切り板
 82:排水量調節手段
 P1:第1搬送装置と第2搬送装置との中点
 L1:中点P1から水槽の底に下ろした垂線
 P2:L1と水槽の底との交点
 p1:中点P1を含む鉛直平面
 D1:水放出孔と水槽の水面との距離

Claims (37)

  1.  溶融した熱可塑性樹脂を線条にして押し出す吐出孔を有するノズルと、
     前記ノズルの下方に配置されている水槽と、
     前記水槽に設けられており、前記線条の樹脂を有する網状構造体を搬送する搬送装置と、
     前記水槽に設けられており、気体を放出する気体放出装置と、を有している網状構造体製造装置。
  2.  前記気体放出装置は、前記搬送装置よりも下方に設けられている請求項1に記載の網状構造体製造装置。
  3.  前記気体放出装置は、気体を放出する放出孔を有しており、
     前記放出孔の法線方向が前記水槽の水面に向いている請求項1または2に記載の網状構造体製造装置。
  4.  前記搬送装置は、少なくとも第1搬送装置と第2搬送装置から構成されており、
     前記第1搬送装置と前記第2搬送装置との間に前記網状構造体があり、
     前記気体放出装置は、気体を放出する放出孔を有しており、
     前記放出孔の法線方向が前記搬送装置の間にある網状構造体に向いている請求項1~3のいずれか一項に記載の網状構造体製造装置。
  5.  前記気体放出装置が放出する気体の量は、前記ノズルから押し出される樹脂の量が増えると増加する請求項1~4のいずれか一項に記載の網状構造体製造装置。
  6.  前記気体放出装置が放出する気体の量は、前記搬送装置の速度が大きくなると増加する請求項1~5のいずれか一項に記載の網状構造体製造装置。
  7.  前記搬送装置は、メッシュ状ベルトと駆動ローラーとを有している請求項1~6のいずれか一項に記載の網状構造体製造装置。
  8.  前記水槽の一方側に、前記網状構造体を牽引する網状構造体牽引装置を有しており、
     前記搬送装置は、少なくとも第1搬送装置と第2搬送装置から構成されており、
     前記気体放出装置は、前記第1搬送装置と前記第2搬送装置との中点を含む鉛直平面よりも前記網状構造体牽引装置側に配置されている請求項1~7のいずれか一項に記載の網状構造体製造装置。
  9.  前記気体放出装置は、少なくとも第1気体放出装置と第2気体放出装置から構成されており、
     前記搬送装置は、少なくとも第1搬送装置と第2搬送装置から構成されており、
     前記第1気体放出装置は、前記第1搬送装置の鉛直方向の下方に設けられており、
     前記第2気体放出装置は、前記第2搬送装置の鉛直方向の下方に設けられている請求項1~8のいずれか一項に記載の網状構造体製造装置。
  10.  溶融した熱可塑性樹脂を線条にして押し出すステップと、
     搬送手段によって前記線条の樹脂を有する網状構造体を水槽内で搬送するステップと、
     気体放出装置によって前記水槽内の水中に気体を放出するステップと、を有することを特徴とする網状構造体の製造方法。
  11.  溶融した熱可塑性樹脂を線条にして押し出す吐出孔を有するノズルと、
     前記ノズルの下方に配置されている水槽と、
     前記水槽に設けられており、前記線条の樹脂を有する網状構造体を搬送する搬送装置と、
     前記水槽に設けられており、所定の方向へ水を放出する水放出装置と、を有しており、
     前記搬送装置は、少なくとも第1搬送装置と第2搬送装置から構成されており、
     前記第1搬送装置と前記第2搬送装置との間に前記網状構造体があり、
     前記搬送装置の間にある網状構造体は、前記水放出装置の水の放出方向の延長線上には存在していない網状構造体製造装置。
  12.  前記水放出装置の水の放出方向は、前記水槽の水面に向いている請求項11に記載の網状構造体製造装置。
  13.  前記水放出装置の水の放出方向は、鉛直方向よりも前記搬送装置の間にある網状構造体側である請求項12に記載の網状構造体製造装置。
  14.  前記水放出装置は、水を放出する放出孔を有しており、 
     前記放出孔が、前記水槽の水面よりも0.1mm以上400mm以下下方に配置されている請求項11~13のいずれか一項に記載の網状構造体製造装置。
  15.  前記水放出装置は、前記搬送装置の内部に配置されている請求項11~14のいずれか一項に記載の網状構造体製造装置。
  16.  前記搬送装置は、メッシュ状ベルトと駆動ローラーとを有している請求項11~15のいずれか一項に記載の網状構造体製造装置。
  17.  前記駆動ローラーは、少なくとも上部駆動ローラー及び下部駆動ローラーから構成されており、
     前記上部駆動ローラーが前記搬送装置の内部の上方に、前記下部駆動ローラーが前記搬送装置の内部の下方にそれぞれ配置されており、
     前記水放出装置が放出する水の方向は、前記上部駆動ローラーに向かう方向である請求項16に記載の網状構造体製造装置。
  18.  前記水放出装置が放出する水の量は、前記ノズルから押し出される樹脂の量が増えると増加する請求項11~17のいずれか一項に記載の網状構造体製造装置。
  19.  前記水放出装置が放出する水の量は、前記搬送装置の速度が大きくなると増加する請求項11~18のいずれか一項に記載の網状構造体製造装置。
  20.  前記水放出装置が放出する水の方向は、前記ノズルから押し出される樹脂の量に連動している請求項11~19のいずれか一項に記載の網状構造体製造装置。
  21.  前記水放出装置が放出する水の方向は、前記搬送装置の速度に連動している請求項11~20のいずれか一項に記載の網状構造体製造装置。
  22.  前記水放出装置は水を放出する放出孔を有しており、
     前記水槽の水面からの前記放出孔の位置は、前記ノズルから押し出される樹脂の量に連動している請求項11~21のいずれか一項に記載の網状構造体製造装置。
  23.  前記水放出装置は水を放出する放出孔を有しており、
     前記水槽の水面からの前記放出孔の位置は、前記搬送装置の速度に連動している請求項11~22のいずれか一項に記載の網状構造体製造装置。
  24.  溶融した熱可塑性樹脂を線条にして押し出すステップと、
     第1搬送装置及び第2搬送装置によって前記線条の樹脂を有する網状構造体を水槽内で搬送するステップと、
     水放出装置によって前記第1搬送装置と前記第2搬送装置との間にある網状構造体に向かう方向以外の方向へ水を放出するステップと、を有することを特徴とする網状構造体の製造方法。
  25.  溶融した熱可塑性樹脂を線条にして押し出す吐出孔を有するノズルと、
     前記ノズルの下方に配置されている水槽と、
     前記水槽に設けられており、前記線条の樹脂を有する網状構造体を搬送する搬送装置と、
     前記水槽の底部に設けられている排水口と、を有している網状構造体製造装置。
  26.  前記水槽内において、前記排水口の周囲に仕切り板を有している請求項25に記載の網状構造体製造装置。
  27.  前記排水口から排出した水を冷却する熱交換器を有し、前記水を循環させる請求項25または26に記載の網状構造体製造装置。
  28.  前記搬送装置は、メッシュ状ベルトと駆動ローラーとを有している請求項25~27のいずれか一項に記載の網状構造体製造装置。
  29.  前記搬送装置は、少なくとも第1搬送装置と第2搬送装置から構成されており、
     前記排水口は、前記第1搬送装置と前記第2搬送装置との中点から前記水槽の底に下ろした垂線と、前記水槽の底との交点を含む位置に設けられている請求項25~28のいずれか一項に記載の網状構造体製造装置。
  30.  前記水槽の一方側に、前記網状構造体を牽引する網状構造体牽引装置を有しており、
     前記搬送装置は、少なくとも第1搬送装置と第2搬送装置から構成されており、
     前記第1搬送装置は、前記第2搬送装置よりも前記網状構造体牽引装置側に配置されており、
     前記排水口は、前記第1搬送装置よりも前記網状構造体牽引装置側に設けられている請求項25~28のいずれか一項に記載の網状構造体製造装置。
  31.  前記水槽の一方側に、前記線条の樹脂を牽引する網状構造体牽引装置を有しており、
     前記搬送装置は、少なくとも第1搬送装置と第2搬送装置から構成されており、
     前記第1搬送装置は、前記第2搬送装置よりも前記網状構造体牽引装置側に配置されており、
     前記排水口は、前記第2搬送装置よりも前記網状構造体牽引装置側の反対側に設けられている請求項25~28のいずれか一項に記載の網状構造体製造装置。
  32.  前記水槽の水面に垂直な方向から見た前記排水口の形状は、長方形である請求項25~31のいずれか一項に記載の網状構造体製造装置。
  33.  前記排水口からの排水量を調節する排水量調節手段を有している請求項25~32のいずれか一項に記載の網状構造体製造装置。
  34.  前記排水量調節手段は、前記ノズルから押し出される樹脂の量が増えると前記排水口からの排水量を増加させる請求項33に記載の網状構造体製造装置。
  35.  前記排水量調節手段は、前記搬送装置の速度が大きくなると前記排水口からの排水量を増加させる請求項33または34に記載の網状構造体製造装置。
  36.  溶融した熱可塑性樹脂を線条にして押し出すステップと、
     搬送手段によって前記線条の樹脂を有する網状構造体を水槽内で搬送するステップと、
     前記水槽の底部に設けられている排水口から前記水槽内の水を排出するステップと、
     前記排水口から排出した水よりも低温の水を前記水槽に供給するステップと、を有することを特徴とする網状構造体の製造方法。
  37.  前記排水口から排出した水を熱交換器によって冷却し、前記水槽に供給して循環させる請求項36に記載の網状構造体の製造方法。
PCT/JP2019/009102 2018-03-28 2019-03-07 網状構造体製造装置及び網状構造体の製造方法 WO2019188090A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19774345.3A EP3779017B1 (en) 2018-03-28 2019-03-07 Net structure manufacturing apparatus and net structure manufacturing method
CN201980022277.5A CN111989430B (zh) 2018-03-28 2019-03-07 网状结构体制造装置和网状结构体的制造方法
US16/981,838 US11926941B2 (en) 2018-03-28 2019-03-07 Net structure manufacturing apparatus and net structure manufacturing method
CN202211245766.7A CN115627592A (zh) 2018-03-28 2019-03-07 网状结构体制造装置和网状结构体的制造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018063113A JP7077715B2 (ja) 2018-03-28 2018-03-28 網状構造体製造装置及び網状構造体の製造方法
JP2018063111A JP7077713B2 (ja) 2018-03-28 2018-03-28 網状構造体製造装置及び網状構造体の製造方法
JP2018-063112 2018-03-28
JP2018-063113 2018-03-28
JP2018-063111 2018-03-28
JP2018063112A JP7077714B2 (ja) 2018-03-28 2018-03-28 網状構造体製造装置及び網状構造体の製造方法

Publications (1)

Publication Number Publication Date
WO2019188090A1 true WO2019188090A1 (ja) 2019-10-03

Family

ID=68059878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009102 WO2019188090A1 (ja) 2018-03-28 2019-03-07 網状構造体製造装置及び網状構造体の製造方法

Country Status (5)

Country Link
US (1) US11926941B2 (ja)
EP (1) EP3779017B1 (ja)
CN (2) CN111989430B (ja)
TW (1) TWI815871B (ja)
WO (1) WO2019188090A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113622085A (zh) * 2020-05-07 2021-11-09 新丽企业股份有限公司 可调密度的纤维结构体的制造装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881664A (ja) * 1981-11-09 1983-05-17 三井化学株式会社 嵩高網状体の製造方法
JPH07138864A (ja) * 1993-11-11 1995-05-30 Towa:Kk マットの製造方法
JP2015155588A (ja) 2014-01-14 2015-08-27 株式会社シーエンジ 立体網状構造体の製造方法および立体網状構造体の製造装置
JP2017110310A (ja) * 2015-12-16 2017-06-22 株式会社エコ・ワールド 編成樹脂の製造装置
JP2018028161A (ja) * 2016-08-18 2018-02-22 株式会社エアウィーヴ フィラメント3次元結合体製造装置
JP2018063111A (ja) 2017-12-20 2018-04-19 東芝ライフスタイル株式会社 貯蔵庫用カメラ装置及びこれを備えた貯蔵庫
JP2018063112A (ja) 2013-06-25 2018-04-19 キム・ミエKIM, Mie−ae 平面鏡を利用して均一に集光された光ビームおよび直接接触による冷却法を利用した太陽光発電装置および方法
JP2018063113A (ja) 2016-10-10 2018-04-19 株式会社デンソー 圧電センサユニット及び圧電センサユニットの製造方法並びに燃焼圧センサ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197457A (ja) * 1984-10-11 1986-05-15 森村興産株式会社 立体網状集合体の製造方法
US5314737A (en) * 1991-09-30 1994-05-24 Kimberly-Clark Corporation Area thinned thin sheet materials
JPH05106153A (ja) * 1991-10-17 1993-04-27 Kansai Kako Kk 合成樹脂製立体網状構造体の製造方法
JP3057537B2 (ja) * 1992-04-28 2000-06-26 株式会社リスロン フィラメントループ集合体からなるマットの製造方法
US10328618B2 (en) * 2000-03-15 2019-06-25 C-Eng Co., Ltd. Three dimensional netted structure
DE10065859B4 (de) * 2000-12-22 2006-08-24 Gerking, Lüder, Dr.-Ing. Verfahren und Vorrichtung zur Herstellung von im Wesentlichen endlosen feinen Fäden
JP4181878B2 (ja) 2003-01-10 2008-11-19 アイン株式会社総合研究所 網状構造体ループ形成装置、網状構造体製造装置、網状構造体製造方法及び網状構造体
RU2584124C2 (ru) * 2011-05-18 2016-05-20 С-Энг Ко., Лтд. Трехмерная сетчатая структура, способ изготовления трехмерной сетчатой структуры и устройство для изготовления трехмерной сетчатой структуры
WO2015061877A1 (pt) * 2013-10-29 2015-05-07 Braskem S.A. Sistema e método de dosagem de uma mistura de polímero com um primeiro solvente, dispositivo, sistema e método de extração de solvente de pelo menos um fio polimérico, sistema e método de pré-recuperação mecânica de pelo menos um líquido em pelo menos um fio polimérico, e sistema e método contínuos para a produção de pelo menos um fio polimérico
WO2015125497A1 (ja) * 2014-02-23 2015-08-27 株式会社シーエンジ クッション用中材及びクッション
US10988861B2 (en) * 2015-08-27 2021-04-27 Refenhaeuser Gmbh & Co. Kg Maschinenfabrik Apparatus for making a spunbond web from filaments
US10889071B2 (en) * 2016-01-08 2021-01-12 Airweave Inc. Device for manufacturing filament three-dimensional bonded member and method for manufacturing filament three-dimensional bonded member
EP3508636B1 (en) * 2016-08-31 2024-05-08 Seiko Epson Corporation Sheet production device
CN111155183B (zh) * 2019-12-31 2021-08-31 中国纺织科学研究院有限公司 一种纤维素纤维连续制备方法
BR112022024283A2 (pt) * 2020-06-02 2023-01-31 Biologiq Inc Materiais não tecidos e fibras, incluindo materiais poliméricos à base de amido

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881664A (ja) * 1981-11-09 1983-05-17 三井化学株式会社 嵩高網状体の製造方法
JPH07138864A (ja) * 1993-11-11 1995-05-30 Towa:Kk マットの製造方法
JP2018063112A (ja) 2013-06-25 2018-04-19 キム・ミエKIM, Mie−ae 平面鏡を利用して均一に集光された光ビームおよび直接接触による冷却法を利用した太陽光発電装置および方法
JP2015155588A (ja) 2014-01-14 2015-08-27 株式会社シーエンジ 立体網状構造体の製造方法および立体網状構造体の製造装置
JP2017110310A (ja) * 2015-12-16 2017-06-22 株式会社エコ・ワールド 編成樹脂の製造装置
JP2018028161A (ja) * 2016-08-18 2018-02-22 株式会社エアウィーヴ フィラメント3次元結合体製造装置
JP2018063113A (ja) 2016-10-10 2018-04-19 株式会社デンソー 圧電センサユニット及び圧電センサユニットの製造方法並びに燃焼圧センサ
JP2018063111A (ja) 2017-12-20 2018-04-19 東芝ライフスタイル株式会社 貯蔵庫用カメラ装置及びこれを備えた貯蔵庫

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3779017A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113622085A (zh) * 2020-05-07 2021-11-09 新丽企业股份有限公司 可调密度的纤维结构体的制造装置及方法

Also Published As

Publication number Publication date
US20210115607A1 (en) 2021-04-22
TW201942436A (zh) 2019-11-01
CN111989430A (zh) 2020-11-24
EP3779017A4 (en) 2021-12-29
US11926941B2 (en) 2024-03-12
TWI815871B (zh) 2023-09-21
EP3779017A1 (en) 2021-02-17
CN111989430B (zh) 2023-03-03
EP3779017B1 (en) 2024-04-24
CN115627592A (zh) 2023-01-20

Similar Documents

Publication Publication Date Title
JP5802849B2 (ja) 立体網状構造体の製造方法および立体網状構造体の製造装置
JP2016194190A (ja) 立体網状構造体の製造方法
TWI507578B (zh) 碳纖維束製造用碳化爐及碳纖維束的製造方法
WO2019188090A1 (ja) 網状構造体製造装置及び網状構造体の製造方法
JP2005193494A (ja) 押出機用ダイインサート
JP6300552B2 (ja) 立体網状構造体製造装置及び立体網状構造体製造方法
JP7077713B2 (ja) 網状構造体製造装置及び網状構造体の製造方法
JP2014051069A (ja) 立体網状構造体製造装置及び立体網状構造体製造方法
JP6783584B2 (ja) フィラメント3次元結合体製造装置
JP5855736B2 (ja) 立体網状構造体製造装置及び立体網状構造体製造方法
JP2019173219A (ja) 網状構造体製造装置及び網状構造体の製造方法
JP7077714B2 (ja) 網状構造体製造装置及び網状構造体の製造方法
JP4386599B2 (ja) ベルト方式による合成樹脂中空体シート成形システム
JP6644161B2 (ja) フィラメント3次元結合体
KR101979506B1 (ko) 우레탄폼 보드 제조장치
CN114108188A (zh) 一种pet双取向熔喷非织造布及其制备工艺
CN1321572A (zh) 纤维集料形成方法、通过所述方法形成的纤维集料以及纤维集料形成装置
JP7126680B2 (ja) 編成樹脂構造体整形機、編成樹脂構造体製造装置、及び編成樹脂構造体製造方法
JP3482502B2 (ja) ゴム押出成形物の加硫方法
JP6664239B2 (ja) フィラメント3次元結合体製造装置、及びフィラメント3次元結合体
CN208724800U (zh) 一种茶叶摊凉输送机
CN219199903U (zh) 一种智能连续式多层烘干机
KR102498347B1 (ko) 냉각 효율이 향상된 다공형 원사 제조 장치 및 방법
KR100780082B1 (ko) 매트 제조장치 및 그 물건
WO2003004247A1 (en) Device for extruding a thermoplastic polymer into a tube, and an extruder head therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019774345

Country of ref document: EP

Effective date: 20201028