WO2019187814A1 - 基板保持装置およびドライブリングの製造方法 - Google Patents

基板保持装置およびドライブリングの製造方法 Download PDF

Info

Publication number
WO2019187814A1
WO2019187814A1 PCT/JP2019/006313 JP2019006313W WO2019187814A1 WO 2019187814 A1 WO2019187814 A1 WO 2019187814A1 JP 2019006313 W JP2019006313 W JP 2019006313W WO 2019187814 A1 WO2019187814 A1 WO 2019187814A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact surface
polishing
drive ring
ring
flatness
Prior art date
Application number
PCT/JP2019/006313
Other languages
English (en)
French (fr)
Inventor
並木 計介
誠 福島
鍋谷 治
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to US16/980,995 priority Critical patent/US20210138606A1/en
Priority to SG11202009004VA priority patent/SG11202009004VA/en
Publication of WO2019187814A1 publication Critical patent/WO2019187814A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers
    • B24B37/30Work carriers for single side lapping of plane surfaces
    • B24B37/32Retaining rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a substrate holding apparatus for holding a substrate such as a wafer, and more particularly to a substrate holding apparatus used for polishing a surface of a substrate by pressing the substrate against a polishing tool such as a polishing pad.
  • the present invention also relates to a method for manufacturing a drive ring used in the substrate holding apparatus.
  • a polishing apparatus In a semiconductor device manufacturing process, a polishing apparatus is widely used to polish a wafer surface.
  • This type of polishing apparatus includes a polishing table that supports a polishing pad having a polishing surface, a substrate holding device called a polishing head for holding a wafer, and a polishing liquid supply nozzle that supplies polishing liquid to the polishing surface. I have.
  • the polishing apparatus polishes the wafer as follows.
  • the polishing liquid is supplied to the polishing surface from the polishing liquid supply nozzle while rotating the polishing table together with the polishing pad.
  • the wafer is held by the substrate holding device, and the wafer is further rotated about its axis.
  • the substrate holding device presses the surface of the wafer against the polishing surface of the polishing pad and causes the surface of the wafer to slide against the polishing surface in the presence of the polishing liquid.
  • the surface of the wafer is polished by the mechanical action of abrasive grains contained in the polishing liquid and the chemical action of the polishing liquid.
  • Such a polishing apparatus is also called a CMP (Chemical Mechanical Polishing) apparatus.
  • the substrate holding device is provided with a retainer ring.
  • the retainer ring is disposed so as to surround the wafer, and presses the polishing pad outside the wafer.
  • the substrate holding device further includes a drive ring that transmits torque to the retainer ring, and the retainer ring is fixed to the drive ring.
  • the retainer ring has a role of controlling the polishing rate of the peripheral portion of the wafer by controlling the rebound amount of the polishing pad in addition to the role of preventing the wafer from being detached from the substrate holding device during the polishing of the wafer.
  • the pressure applied from the retainer ring to the polishing pad is non-uniform in the circumferential direction, the repulsive force of the polishing pad on the wafer also becomes non-uniform in the circumferential direction depending on this.
  • the non-uniformity in the circumferential direction of the pressure applied from the retainer ring to the polishing pad is one of the factors that cause variations in the polishing rate in the circumferential direction of the wafer.
  • an object of the present invention is to provide a substrate holding device that can suppress variations in polishing rate in the circumferential direction of a substrate such as a wafer. Furthermore, an object of this invention is to provide the manufacturing method of the drive ring used for such a board
  • a polishing head main body a drive ring disposed below the polishing head main body, and a retainer ring fixed to the drive ring, the drive ring being an annular contact that contacts the retainer ring
  • the contact surface has a flatness in the circumferential direction of 4.6 ⁇ m or less, and the flatness represents a difference in height between the highest position and the lowest position of the contact surface.
  • the flatness in the circumferential direction of the inner region of the contact surface is 4.6 ⁇ m or less, and the inner region is a region including an innermost end portion of the contact surface. In one aspect, the flatness in the circumferential direction of the outer region of the contact surface is 4.6 ⁇ m or less, and the outer region is a region including the outermost end portion of the contact surface. In one aspect, the flatness in the circumferential direction of the intermediate region of the contact surface is 4.6 ⁇ m or less, the intermediate region is located radially outside the innermost end of the contact surface, and the contact It is characterized by being located radially inward from the outermost end of the surface.
  • a plurality of reinforcing pins inserted into the retainer ring are fixed to the lower portion of the drive ring, and the plurality of reinforcing pins are arranged apart from each other along the circumferential direction. It is characterized by.
  • a spherical bearing that supports the drive ring and the retainer ring in a tiltable manner is further provided.
  • the rigidity of the drive ring is larger than the rigidity of the retainer ring.
  • a method of manufacturing a drive ring used in a substrate holding device for pressing a substrate against a polishing pad wherein the flatness in the circumferential direction of the contact surface of the drive ring is 4.6 ⁇ m or less.
  • the contact surface is polished, and the contact surface is an annular contact surface that contacts a retainer ring used in the substrate holding device, and the flatness is determined by the highest position and the lowest position of the contact surface. It is a manufacturing method characterized by expressing a difference in height.
  • the step of polishing the contact surface so that the flatness is 4.6 ⁇ m or less includes grinding the contact surface of the drive ring, and then grinding between the drive ring and a polishing tool.
  • the contact surface is polished until the flatness becomes 4.6 ⁇ m or less by relatively moving the drive ring and the polishing tool while pressing the contact surface against the polishing tool in the presence of grains. It is a process.
  • the contact surface of the drive ring is as flat as 4.6 ⁇ m, unevenness in the circumferential direction of the pressure applied from the retainer ring to the polishing pad can be suppressed.
  • the substrate holding device can suppress variations in the polishing rate in the circumferential direction of the substrate.
  • FIG. 7A is a cross-sectional view taken along line AA in FIG. 7B is a cross-sectional view taken along line BB in FIG.
  • FIG. 8A is a diagram illustrating an example of height variation in the circumferential direction of the contact surface of the drive ring.
  • FIG. 8B is a diagram showing the polishing rate of the peripheral portion of the wafer when the drive ring of FIG. 8A is used.
  • FIG. 9A is a diagram illustrating an example of height variation in the circumferential direction of the contact surface of the drive ring in the present embodiment.
  • FIG. 9B is a diagram showing the polishing rate of the peripheral portion of the wafer in the present embodiment. It is a graph which shows the relationship between the flatness in the circumferential direction of the contact surface of a drive ring, and the dispersion
  • FIG. 15A is a diagram illustrating a state in which the connecting member moves up and down with respect to the spherical bearing.
  • FIG. 15B is a diagram illustrating a state in which the connecting member is tilted together with the inner ring.
  • FIG. 15C is a diagram illustrating a state in which the connecting member is tilted together with the inner ring. It is an expanded sectional view which shows the other structural example of a spherical bearing.
  • FIG. 17A is a diagram illustrating a state in which the connecting member moves up and down with respect to the spherical bearing.
  • FIG. 17B is a diagram illustrating a state in which the connecting member is tilted together with the intermediate wheel.
  • FIG. 17C is a diagram illustrating a state in which the connecting member is tilted together with the intermediate wheel.
  • 18A is a cross-sectional view of the drive ring and retainer ring shown in FIG. 18B is a bottom view showing a part of the drive ring shown in FIG.
  • FIG. 1 is a schematic view showing a polishing apparatus provided with a substrate holding apparatus according to an embodiment of the present invention.
  • the polishing apparatus includes a polishing head 1 as a substrate holding apparatus that holds and rotates a wafer W that is an example of a substrate, a polishing table 3 that supports a polishing pad 2, and a polishing liquid on the polishing pad 2.
  • a polishing liquid supply nozzle 5 that supplies (slurry) and a film thickness sensor 7 that acquires a film thickness signal that changes according to the film thickness of the wafer W are provided.
  • the film thickness sensor 7 is installed in the polishing table 3, and generates film thickness signals in a plurality of regions including the central portion of the wafer W every time the polishing table 3 rotates once.
  • Examples of the film thickness sensor 7 include an optical sensor and an eddy current sensor.
  • the polishing head 1 is configured to hold the wafer W by vacuum suction on the lower surface thereof.
  • the polishing head 1 and the polishing table 3 rotate in the same direction as indicated by arrows, and in this state, the polishing head 1 presses the wafer W against the polishing surface 2 a of the polishing pad 2.
  • a polishing liquid is supplied from the polishing liquid supply nozzle 5 onto the polishing pad 2, and the wafer W is polished by sliding contact with the polishing pad 2 in the presence of the polishing liquid.
  • the film thickness sensor 7 rotates together with the polishing table 3 and generates a film thickness signal while crossing the surface of the wafer W as indicated by symbol A.
  • This film thickness signal is an index value indicating the film thickness directly or indirectly, and changes as the film thickness of the wafer W decreases.
  • the film thickness sensor 7 is connected to the polishing control unit 9, and a film thickness signal is sent to the polishing control unit 9.
  • the polishing control unit 9 ends the polishing of the wafer W when the film thickness of the wafer W indicated by the film thickness signal reaches a predetermined target value.
  • FIG. 2 is a diagram showing a detailed configuration of the polishing apparatus.
  • the polishing table 3 is connected to a motor 13 disposed below the table via a table shaft 3a, and is rotatable around the table shaft 3a.
  • a polishing pad 2 is affixed to the upper surface of the polishing table 3, and the upper surface of the polishing pad 2 constitutes a polishing surface 2 a for polishing the wafer W.
  • the polishing surface 2 a moves relative to the polishing head 1 by rotating the polishing table 3 by the motor 13. Therefore, the motor 13 constitutes a polishing surface moving mechanism that moves the polishing surface 2a in the horizontal direction.
  • the polishing head 1 is connected to a polishing head shaft 11, and the polishing head shaft 11 moves up and down with respect to the polishing head swing arm 16 by a vertical movement mechanism 27. By the vertical movement of the polishing head shaft 11, the entire polishing head 1 is moved up and down with respect to the polishing head swinging arm 16 to be positioned.
  • a rotary joint 25 is attached to the upper end of the polishing head shaft 11.
  • the vertical movement mechanism 27 that moves the polishing head shaft 11 and the polishing head 1 up and down includes a bridge 28 that rotatably supports the polishing head shaft 11 via a bearing 26, a ball screw 32 attached to the bridge 28, and a column 30. And a servo motor 38 provided on the support base 29.
  • a support base 29 that supports the servo motor 38 is fixed to the polishing head rocking arm 16 via a support 30.
  • the ball screw 32 includes a screw shaft 32a connected to the servo motor 38 and a nut 32b into which the screw shaft 32a is screwed.
  • the polishing head shaft 11 moves up and down integrally with the bridge 28. Accordingly, when the servo motor 38 is driven, the bridge 28 moves up and down via the ball screw 32, whereby the polishing head shaft 11 and the polishing head 1 move up and down.
  • the polishing head shaft 11 is connected to the rotary cylinder 12 via a key (not shown).
  • the rotary cylinder 12 has a timing pulley 14 on the outer periphery thereof.
  • a polishing head motor 18 is fixed to the polishing head swing arm 16, and the timing pulley 14 is connected to a timing pulley 20 provided in the polishing head motor 18 via a timing belt 19. Therefore, when the polishing head motor 18 is driven to rotate, the rotary cylinder 12 and the polishing head shaft 11 rotate together via the timing pulley 20, the timing belt 19, and the timing pulley 14, and the polishing head 1 has its axis centered. Rotate as center.
  • the polishing head motor 18, the timing pulley 20, the timing belt 19, and the timing pulley 14 constitute a rotation mechanism that rotates the polishing head 1 about its axis.
  • the polishing head swing arm 16 is supported by a support shaft 21 that is rotatably supported by a frame (not shown).
  • the polishing head 1 can hold a substrate such as a wafer W on its lower surface.
  • the polishing head rocking arm 16 is configured to be pivotable about the support shaft 21.
  • the polishing of the wafer W is performed as follows.
  • the polishing head 1 and the polishing table 3 are rotated, and the polishing liquid is supplied onto the polishing pad 2 from the polishing liquid supply nozzle 5 provided above the polishing table 3.
  • the polishing head 1 holding the wafer W on the lower surface is moved above the polishing table 3 from the receiving position of the wafer W by the turning of the polishing head swing arm 16. Then, the polishing head 1 is lowered to press the wafer W against the polishing surface 2 a of the polishing pad 2.
  • the wafer W is slidably contacted with the polishing surface 2a in the presence of the polishing liquid, and the surface of the wafer W is polished by the mechanical action of abrasive grains contained in the polishing liquid and the chemical action of the polishing liquid.
  • FIG. 3 is a cross-sectional view of the polishing head 1 shown in FIG.
  • the polishing head 1 includes an elastic film 45 for pressing the wafer W against the polishing surface 2 a of the polishing pad 2, a polishing head body 10 that holds the elastic film 45, and the polishing head body 10.
  • An annular drive ring 81 disposed below and an annular retainer ring 40 fixed to the lower surface of the drive ring 81 are provided.
  • the elastic film 45 is attached to the lower part of the polishing head body 10.
  • the polishing head body 10 is fixed to the end of the polishing head shaft 11, and the polishing head body 10, the elastic film 45, the drive ring 81, and the retainer ring 40 are rotated together by the rotation of the polishing head shaft 11. It is configured.
  • the retainer ring 40 and the drive ring 81 are configured to be movable up and down relatively with respect to the polishing head body 10.
  • the polishing head main body 10 is formed of a resin such as engineering plastic (for example, PEEK).
  • pressure chambers 50, 51, 52, 53 are provided between the elastic film 45 and the polishing head body 10.
  • the pressure chambers 50, 51, 52 and 53 are formed by the elastic film 45 and the polishing head body 10.
  • the central pressure chamber 50 is circular, and the other pressure chambers 51, 52, 53 are annular. These pressure chambers 50, 51, 52 and 53 are arranged concentrically.
  • the gas transfer lines F1, F2, F3, and F4 are connected to the pressure chambers 50, 51, 52, and 53, respectively.
  • One ends of the gas transfer lines F1, F2, F3, and F4 are connected to a compressed gas supply source (not shown) as a utility provided in a factory where a polishing apparatus is installed.
  • Compressed gas such as compressed air is supplied to the pressure chambers 50, 51, 52, and 53 through gas transfer lines F1, F2, F3, and F4, respectively.
  • the gas transfer line F3 communicating with the pressure chamber 52 is connected to a vacuum line (not shown) so that a vacuum can be formed in the pressure chamber 52.
  • An opening is formed in a portion of the elastic film 45 constituting the pressure chamber 52, and the wafer W is attracted and held by the polishing head 1 by forming a vacuum in the pressure chamber 52.
  • the wafer W is released from the polishing head 1 by supplying compressed gas to the pressure chamber 52.
  • the elastic film 45 is formed of a rubber material having excellent strength and durability, such as ethylene propylene rubber (EPDM), polyurethane rubber, and silicone rubber.
  • the retainer ring 40 is an annular member disposed around the elastic film 45 and in contact with the polishing surface 2a of the polishing pad 2.
  • the retainer ring 40 is disposed so as to surround the outer peripheral edge of the wafer W, and prevents the wafer W from jumping out of the polishing head 1 during polishing of the wafer W.
  • the upper part of the drive ring 81 is connected to an annular retainer ring pressing mechanism 60.
  • the retainer ring pressing mechanism 60 applies a downward load to the entire upper surface 40 b of the retainer ring 40 via the drive ring 81, thereby pressing the lower surface 40 a of the retainer ring 40 against the polishing surface 2 a of the polishing pad 2.
  • the retainer ring pressing mechanism 60 includes an annular piston 61 fixed to the upper part of the drive ring 81 and an annular rolling diaphragm 62 connected to the upper surface of the piston 61.
  • a retaining ring pressure chamber 63 is formed inside the rolling diaphragm 62.
  • the retainer ring pressure chamber 63 is connected to the compressed gas supply source via a gas transfer line F5. The compressed gas is supplied into the retainer ring pressure chamber 63 through the gas transfer line F5.
  • the rolling diaphragm 62 pushes down the piston 61, the piston 61 pushes down the drive ring 81, and the drive ring 81 moves down the entire retainer ring 40. Press down. In this way, the retainer ring pressing mechanism 60 presses the lower surface 40a of the retainer ring 40 against the polishing surface 2a of the polishing pad 2.
  • the drive ring 81 is detachably connected to the retainer ring pressing mechanism 60. More specifically, the piston 61 and the drive ring 81 are mechanically connected by a fastening member or the like. A resin fixing member, a magnet, or a metal bolt may be used as the fastening member.
  • the gas transfer lines F 1, F 2, F 3, F 4 and F 5 extend through a rotary joint 25 attached to the polishing head shaft 11.
  • Pressure regulators R1, R2, R3, R4, and R5 are provided in the gas transfer lines F1, F2, F3, F4, and F5 communicating with the pressure chambers 50, 51, 52, and 53 and the retainer ring pressure chamber 63, respectively. Yes.
  • the compressed gas from the compressed gas supply source is independently supplied into the pressure chambers 50 to 53 and the retainer ring pressure chamber 63 through the pressure regulators R1 to R5.
  • the pressure regulators R1 to R5 are configured to adjust the pressure of the compressed gas in the pressure chambers 50 to 53 and the retainer ring pressure chamber 63.
  • the pressure regulators R1 to R5 can change the internal pressures of the pressure chambers 50 to 53 and the retainer ring pressure chamber 63 independently of each other. It is possible to independently adjust the polishing pressure on the part, the inner intermediate part, the outer intermediate part, and the edge part, and the pressing force of the retainer ring 40 on the polishing pad 2.
  • the gas transfer lines F1, F2, F3, F4, and F5 are also connected to an atmosphere release valve (not shown), respectively, and the pressure chambers 50 to 53 and the retainer ring pressure chamber 63 can be opened to the atmosphere. .
  • the elastic membrane 45 forms four pressure chambers 50 to 53. However, in one embodiment, the elastic membrane 45 may form fewer than four pressure chambers or more than four pressure chambers. Good.
  • FIG. 4 is a sectional view of the drive ring 81 and the retainer ring 40
  • FIG. 5 is a bottom view of the drive ring 81.
  • the drive ring 81 has an annular contact surface 81 a that contacts the retainer ring 40.
  • the lower surface of the drive ring 81 forms a contact surface 81a.
  • the upper surface 40b of the retainer ring 40 is fixed to the lower surface (contact surface 81a) of the drive ring 81.
  • a plurality of screw holes 40 c into which a plurality of bolts 84 are screwed are formed on the upper surface of the retainer ring 40, and a plurality of through holes 81 f through which the bolts 84 pass are formed in the drive ring 81.
  • FIG. 4 only one through hole 81f, one screw hole 40c, and one bolt 84 are depicted.
  • the upper surface 40b of the retainer ring 40 is fixed to the lower surface (contact surface 81a) of the drive ring 81 by screwing the bolts 84 into the screw holes 40c through the through holes 81f.
  • the contact surface 81 a of the drive ring 81 is flat in the circumferential direction of the drive ring 81. More specifically, the flatness in the circumferential direction of the contact surface 81a is 4.6 ⁇ m or less. In this specification, the flatness is defined as a difference in height between the highest position and the lowest position of the contact surface 81a. In the present embodiment, in the three regions of the contact surface 81a, the flatness in the circumferential direction of each region is 4.6 ⁇ m or less. The three regions are an inner region 81b, an outer region 81c, and an intermediate region 81d. As shown in FIG. 5, the inner region 81b is a region including the innermost end of the contact surface 81a.
  • the outer region 81c is a region including the outermost end portion of the contact surface 81a.
  • the intermediate region 81d is a region sandwiched between the inner region 81b and the outer region 81c. That is, the intermediate region 81d is located on the radially outer side than the innermost end portion of the contact surface 81a and is located on the radially inner side of the outermost end portion of the contact surface 81a.
  • the inner region 81b, the intermediate region 81d, and the outer region 81c have the same width, but may have different widths.
  • the flatness in the circumferential direction of the contact surface 81a is 4.6 ⁇ m or less over the entire contact surface 81a (that is, in the inner region 81b, the intermediate region 81d, and the outer region 81c). In one embodiment, the flatness in the circumferential direction of the contact surface 81a may be 4.6 ⁇ m or less in at least one of the inner region 81b, the intermediate region 81d, and the outer region 81c.
  • FIG. 6 is a side view schematically showing a state in which the retainer ring 40 presses the polishing surface 2 a of the polishing pad 2.
  • the rigidity of the drive ring 81 is larger than the rigidity of the retainer ring 40. Therefore, as shown in FIG. 6, when the retainer ring 40 is fixed to the drive ring 81, the shape of the upper surface 40 b and the lower surface 40 a of the retainer ring 40 follows the shape of the contact surface 81 a of the drive ring 81.
  • Examples of the material of the drive ring 81 include stainless steel and ceramic.
  • An example of the material of the retainer ring 40 is polyphenylene sulfide (PPS) resin.
  • FIG. 7A is a cross-sectional view taken along the line AA in FIG. 6, and FIG. 7B is a cross-sectional view taken along the line BB in FIG.
  • the pressure applied from the retainer ring 40 to the polishing surface 2 a of the polishing pad 2 can vary depending on the shape of the contact surface 81 a of the drive ring 81. That is, as shown in FIGS. 7A and 7B, the lower the position of the contact surface 81a, the lower the position of the retainer ring 40. As a result, the pressure applied from the retainer ring 40 to the polishing surface 2a of the polishing pad 2 (polishing pad 2). (Push-in amount) increases.
  • the polishing surface 2a of the polishing pad 2 is recessed and the other part of the polishing surface 2a is raised upward.
  • the portion of the polishing surface 2 a that rises upward applies an upward force to the peripheral edge of the wafer W.
  • this upward force is referred to as a repulsive force.
  • the repulsive force of the polishing pad 2 against the wafer W depends on the pressure applied from the retainer ring 40 to the polishing pad 2. Therefore, the shape of the contact surface 81 a of the drive ring 81 affects the repulsive force with respect to the peripheral portion of the wafer W.
  • the pressure applied to the polishing pad 2 from the retainer ring 40 shown in FIG. 7A is larger than the pressure shown in FIG. 7B, and the repulsive force of the polishing pad 2 against the peripheral edge of the wafer W shown in FIG. 7A is shown in FIG. 7B. It becomes larger than the repulsive force.
  • the polishing rate of the peripheral portion of the wafer W can vary depending on the shape of the contact surface 81 a of the drive ring 81.
  • FIG. 8A is a diagram showing an example of the variation in height in the circumferential direction of the contact surface of the drive ring
  • FIG. 8B is a diagram showing the polishing rate of the peripheral portion of the wafer when the drive ring of FIG. 8A is used. is there.
  • the vertical axis in FIG. 8A represents the height of the contact surface of the drive ring from the virtual reference plane
  • the horizontal axis in FIG. 8A represents the angle from a certain reference point on the contact surface of the drive ring.
  • the flatness in the circumferential direction of the contact surface of the drive ring in FIG. 8A is 14 ⁇ m.
  • the vertical axis in FIG. 8B represents the polishing rate at the peripheral edge of the wafer
  • the horizontal axis in FIG. 8B represents the angle from a certain reference point on the peripheral edge of the wafer.
  • the reference point in FIG. 8A and the reference point in FIG. 8B match in the radial direction.
  • FIG. 9A is a diagram illustrating an example of height variation in the circumferential direction of the contact surface 81a of the drive ring 81 in the present embodiment
  • FIG. 9B illustrates a polishing rate of the peripheral portion of the wafer W in the present embodiment
  • FIG. 9A represents the height of the contact surface 81a of the drive ring 81 from the virtual reference plane
  • the horizontal axis of FIG. 9A represents the angle from a certain reference point on the contact surface 81a of the drive ring 81.
  • the flatness in the circumferential direction of the contact surface 81a surface of the drive ring 81 in FIG. 9A is 4.6 ⁇ m or less.
  • FIG. 9B represents the polishing rate of the peripheral portion of the wafer W, and the horizontal axis of FIG. 9B represents an angle from a reference point on the peripheral portion of the wafer W.
  • the reference point in FIG. 9A and the reference point in FIG. 9B coincide in the radial direction.
  • the polishing rate in the circumferential direction of the peripheral edge portion of the wafer varies depending on the shape in the circumferential direction of the contact surface of the drive ring. Therefore, when the flatness in the circumferential direction of the contact surface of the drive ring is large, the variation in the polishing rate in the circumferential direction of the peripheral portion of the wafer becomes large, and when the flatness in the circumferential direction of the contact surface of the drive ring is small, The variation in the polishing rate in the circumferential direction of the peripheral edge portion is reduced.
  • FIG. 10 is a graph showing the relationship between the flatness in the circumferential direction of the contact surface of the drive ring and the variation in the polishing rate in the circumferential direction of the peripheral edge of the wafer.
  • the wafer used in FIG. 10 is a test blanket wafer in which a film such as an oxide film is uniformly formed on the entire surface of the silicon wafer.
  • the horizontal axis in FIG. 10 represents the flatness in the circumferential direction of the contact surface of the drive ring.
  • the vertical axis in FIG. 10 represents the magnitude of variation in the polishing rate in the circumferential direction of the peripheral edge of the test wafer.
  • N is the number of wafers
  • ⁇ i is the standard deviation of the polishing rate distributed in the circumferential direction of the i-th wafer
  • RA i is the average value of the polishing rate of the i-th wafer.
  • the flatness in the circumferential direction of the contact surface 81a is 4 over the entire contact surface 81a (that is, in the inner region 81b, the intermediate region 81d, and the outer region 81c shown in FIG. 5). .6 ⁇ m or less.
  • the polishing rate at the peripheral edge of the wafer W is affected by the pressure applied to the polishing pad 2 at the inner portion of the retainer ring 40. Therefore, in one embodiment, at least the circumferential direction in the inner region 81b.
  • the flatness at is 4.6 ⁇ m or less.
  • the drive ring 81 is manufactured by polishing the contact surface 81a so that the flatness in the circumferential direction of the contact surface 81a is 4.6 ⁇ m or less.
  • An embodiment of a method for manufacturing the drive ring 81 will be described with reference to a flowchart shown in FIG. First, the contact surface 81a of the drive ring 81 is roughly cut by grinding (step 1). An example of such grinding is lathe processing.
  • the contact surface 81a of the drive ring 81 is polished by a lapping apparatus for finish polishing until the flatness in the circumferential direction of the contact surface 81a is 4.6 ⁇ m or less (step 2). More specifically, in a state where abrasive grains exist between the drive ring 81 and the polishing tool of the lapping apparatus, the drive ring 81 and the polishing are pressed while pressing the contact surface 81a of the drive ring 81 against the polishing tool. The contact surface 81a is polished by moving the tool relative to the tool (step 2).
  • step 3 the flatness in the circumferential direction of the contact surface 81a is measured (step 3).
  • the flatness is 4.6 ⁇ m or less
  • the series of manufacturing steps is finished.
  • Step 2 is repeated again to further polish the contact surface 81a.
  • the measurement of the flatness in the circumferential direction of the contact surface 81a is performed in each circumferential direction at three or more positions in the radial direction. Such measurement is performed at predetermined intervals on each circumference.
  • the distance described above is determined based on the distance between the plurality of bolts 84 that fix the retainer ring 40 and the drive ring 81.
  • the flatness in the circumferential direction may be 4.6 ⁇ m or less at any radial position regardless of the radial position of the contact surface 81a. Furthermore, in one embodiment, the flatness in the circumferential direction may be 4.6 ⁇ m on one circumference on the predetermined contact surface 81a.
  • FIG. 12 is a cross-sectional view of another embodiment of the polishing head 1.
  • the configuration related to the present embodiment that is not particularly described is the same as the embodiment described with reference to FIGS. 1 to 10, and thus redundant description thereof is omitted.
  • the polishing head body 10 of this embodiment includes a circular flange 41, a spacer 42 attached to the lower surface of the flange 41, and a carrier 43 attached to the lower surface of the spacer 42.
  • the flange 41 is connected to the polishing head shaft 11.
  • the carrier 43 is connected to the flange 41 via the spacer 42, and the flange 41, the spacer 42, and the carrier 43 rotate integrally and move up and down.
  • the polishing head body 10 including the flange 41, the spacer 42, and the carrier 43 is formed of a resin such as engineering plastic (for example, PEEK).
  • the flange 41 may be made of a metal such as SUS or aluminum.
  • FIG. 13 is a plan view showing the drive ring 81 and the connecting member 75.
  • the connecting member 75 includes a shaft portion 76 disposed at the center portion of the polishing head body 10, a hub 77 fixed to the shaft portion 76, and a plurality of radially extending from the hub 77. Spoke 78.
  • One end of the spoke 78 is fixed to the hub 77, and the other end of the spoke 78 is fixed to the drive ring 81.
  • the hub 77, the spoke 78, and the drive ring 81 are integrally formed.
  • a plurality of pairs of drive pins 80, 80 are fixed to the carrier 43.
  • Each pair of drive pins 80, 80 is disposed on both sides of each spoke 78, and the rotation of the carrier 43 is transmitted to the drive ring 81 and the retainer ring 40 via the drive pins 80, 80. 10 and the retainer ring 40 rotate integrally.
  • the shaft portion 76 extends in the vertical direction inside the spherical bearing 85.
  • the carrier 43 is formed with a plurality of radial grooves 43a in which the spokes 78 are accommodated, and each of the spokes 78 is movable in the vertical direction within each groove 43a.
  • the shaft portion 76 of the connecting member 75 is supported by a spherical bearing 85 disposed at the center of the polishing head body 10 so as to be movable in the vertical direction.
  • the connecting member 75 and the drive ring 81 and the retainer ring 40 connected to the connecting member 75 are movable in the vertical direction with respect to the polishing head body 10.
  • the drive ring 81 and the retainer ring 40 are supported by a spherical bearing 85 so as to be tiltable.
  • FIG. 14 is a view showing the spherical bearing 85.
  • the shaft portion 76 is fixed to the hub 77 by a plurality of screws 79.
  • a through hole 88 extending in the vertical direction is formed in the shaft portion 76.
  • the through-hole 88 acts as an air vent hole when the shaft portion 76 moves in the vertical direction with respect to the spherical bearing 85, so that the retainer ring 40 can move smoothly in the vertical direction with respect to the polishing head body 10. ing.
  • the spherical bearing 85 includes an annular inner ring 101 and an outer ring 102 that slidably supports the outer peripheral surface of the inner ring 101.
  • the inner ring 101 is connected to the drive ring 81 and the retainer ring 40 via a connecting member 75.
  • the outer ring 102 is fixed to a support member 103, and this support member 103 is fixed to the carrier 43.
  • the support member 103 is disposed in the recess 43 b of the carrier 43.
  • the outer peripheral surface of the inner ring 101 has a spherical shape with the upper and lower parts cut out, and the center point (fulcrum) O of the spherical shape is located at the center of the inner ring 101.
  • the inner peripheral surface of the outer ring 102 is constituted by a concave surface along the outer peripheral surface of the inner ring 101, and the outer ring 102 supports the inner ring 101 slidably. Therefore, the inner ring 101 can tilt in all directions (360 °) with respect to the outer ring 102.
  • the inner peripheral surface of the inner ring 101 constitutes a through hole 101a into which the shaft portion 76 is inserted.
  • the shaft portion 76 can move only in the vertical direction with respect to the inner ring 101. Therefore, the retainer ring 40 connected to the shaft portion 76 is not allowed to move in the lateral direction, and the lateral (horizontal) position of the retainer ring 40 is fixed by the spherical bearing 85.
  • the spherical bearing 85 retains the retainer ring while receiving a lateral force (force directed outward in the radial direction of the wafer) that the retainer ring 40 receives from the wafer due to friction between the wafer and the polishing pad 2 during polishing of the wafer. It functions as a support mechanism that restricts the lateral movement of the 40 (ie, fixes the horizontal position of the retainer ring 40).
  • FIG. 15A shows a state in which the connecting member 75 is moved up and down with respect to the spherical bearing 85
  • FIGS. 15B and 15C show a state in which the connecting member 75 is tilted together with the inner ring 101.
  • FIG. The retainer ring 40 connected to the connecting member 75 can tilt about the fulcrum O integrally with the inner ring 101 and can move up and down with respect to the inner ring 101.
  • FIG. 16 is an enlarged cross-sectional view showing another configuration example of the spherical bearing 85.
  • the spherical bearing 85 includes an intermediate ring 91 connected to the retainer ring 40 via a connecting member 75, an outer ring 92 that supports the intermediate ring 91 slidably from above, and an intermediate ring 91. And an inner ring 93 that is slidably supported from below.
  • the intermediate ring 91 has a partial spherical shell shape smaller than the upper half of the spherical shell, and is sandwiched between the outer ring 92 and the inner ring 93.
  • the outer ring 92 is disposed in the recess 43b.
  • the outer ring 92 has a collar 92a on the outer peripheral portion thereof, and the outer ring 92 is fixed to the carrier 43 by fixing the collar 92a to the stepped portion of the recess 43b with a bolt (not shown). Pressure can be applied to the ring 91 and the inner ring 93.
  • the inner ring 93 is disposed on the bottom surface of the recess 43b, and supports the intermediate ring 91 from below so that a gap is formed between the lower surface of the intermediate ring 91 and the bottom surface of the recess 43b.
  • the inner surface 92b of the outer ring 92, the outer surface 91a and the inner surface 91b of the intermediate ring 91, and the outer surface 93a of the inner ring 93 are substantially hemispherical surfaces with the fulcrum O as the center.
  • the outer surface 91 a of the intermediate ring 91 is slidably in contact with the inner surface 92 b of the outer ring 92, and the inner surface 91 b of the intermediate wheel 91 is slidably in contact with the outer surface 93 a of the inner ring 93.
  • the inner surface 92b (sliding contact surface) of the outer ring 92, the outer surface 91a and inner surface 91b (sliding contact surface) of the intermediate ring 91, and the outer surface 93a (sliding contact surface) of the inner ring 93 have partial spherical shapes smaller than the upper half of the spherical surface.
  • the intermediate wheel 91 can tilt in all directions (360 °) with respect to the outer ring 92 and the inner ring 93, and the fulcrum O that is the center of tilting is positioned below the spherical bearing 85.
  • the outer ring 92, the intermediate ring 91, and the inner ring 93 are formed with through holes 92c, 91c, 93b into which the shaft portion 76 is inserted, respectively.
  • a gap is formed between the through hole 92 c of the outer ring 92 and the shaft portion 76.
  • a gap is formed between the through hole 93 b of the inner ring 93 and the shaft portion 76.
  • the through hole 91 c of the intermediate wheel 91 has a smaller diameter than the through holes 92 c and 93 b of the outer ring 92 and the inner ring 93, and the shaft portion 76 can move only in the vertical direction with respect to the intermediate wheel 91. . Therefore, the retainer ring 40 connected to the shaft portion 76 is not substantially allowed to move in the lateral direction, and the lateral direction (horizontal direction) position of the retainer ring 40 is fixed by the spherical bearing 85.
  • FIG. 17A shows a state in which the connecting member 75 moves up and down with respect to the spherical bearing 85
  • FIGS. 17B and 17C show a state in which the connecting member 75 is tilted together with the intermediate wheel 91.
  • the retainer ring 40 connected to the connecting member 75 can be tilted around the fulcrum O integrally with the intermediate wheel 91 and can move up and down with respect to the intermediate wheel 91. It has become.
  • the spherical bearing 85 shown in FIG. 16 is the same as the spherical bearing 85 shown in FIG.
  • the height of the fulcrum O can be the same as or lower than the surface of the polishing pad 2.
  • FIG. 18A is a cross-sectional view of the drive ring 81 and the retainer ring 40 shown in FIG. 12, and FIG. 18B is a bottom view showing a part of the drive ring 81 shown in FIG.
  • a plurality of holes 124 are formed in the retainer ring 40 along the circumferential direction (only one hole 124 is shown in FIG. 18A). More specifically, these holes 124 are formed in the upper surface 40 b of the retainer ring 40.
  • a plurality of stainless steel reinforcing pins 82 that can be connected to the retainer ring 40 are fixed to the lower portion of the drive ring 81, and the plurality of reinforcing pins 82 are arranged apart from each other along the circumferential direction. .
  • Each of the plurality of reinforcing pins 82 is inserted into each of the plurality of holes 124 of the retainer ring 40.
  • the strength of the retainer ring 40 is reinforced by the reinforcing pins 82.
  • the configuration of the embodiment described with reference to FIGS. 18A and 18B can also be applied to each embodiment described with reference to FIGS.
  • the flatness in the circumferential direction of the contact surface 81a of the drive ring 81 in each of the above-described embodiments is as flat as 4.6 ⁇ m, uneven pressure in the circumferential direction applied from the retainer ring 40 to the polishing pad 2 is suppressed. be able to. As a result, the polishing head 1 can suppress variations in the polishing rate in the circumferential direction of the wafer W.
  • the present invention can be applied to a substrate holding device used for polishing a surface of a substrate by pressing the substrate against a polishing tool such as a polishing pad. Further, the present invention can be used in a method for manufacturing a drive ring used in the substrate holding apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

本発明は、基板を研磨パッドなどの研磨具に押し付けて基板の表面を研磨するために使用される基板保持装置に関するものである。また、本発明は、上記基板保持装置に使用されるドライブリングの製造方法に関するものである。基板保持装置(1)は、研磨ヘッド本体(10)と、研磨ヘッド本体(10)の下方に配置されたドライブリング(81)と、ドライブリング(81)に固定されたリテーナリング(40)とを備える。ドライブリング(81)は、リテーナリング(40)に接触する環状の接触面(81a)を有し、接触面(81a)の周方向における平面度は4.6μm以下である。平面度は、接触面(81a)の最も高い位置と、最も低い位置との高さの差を表す。

Description

基板保持装置およびドライブリングの製造方法
 本発明は、ウェハなどの基板を保持する基板保持装置に関し、特に基板を研磨パッドなどの研磨具に押し付けて基板の表面を研磨するために使用される基板保持装置に関する。また、本発明は、上記基板保持装置に使用されるドライブリングの製造方法に関する。
 半導体デバイスの製造工程では、ウェハの表面を研磨するために研磨装置が広く使用されている。この種の研磨装置は、研磨面を有する研磨パッドを支える研磨テーブルと、ウェハを保持するための研磨ヘッドと称される基板保持装置と、研磨液を研磨面に供給する研磨液供給ノズルとを備えている。
 研磨装置は次のようにしてウェハを研磨する。研磨パッドとともに研磨テーブルを回転させながら、研磨液供給ノズルから研磨液を研磨面に供給する。基板保持装置によりウェハを保持し、さらにウェハをその軸心を中心として回転させる。この状態で、基板保持装置はウェハの表面を研磨パッドの研磨面に押し付け、研磨液の存在下でウェハの表面を研磨面に摺接させる。ウェハの表面は、研磨液に含まれる砥粒の機械的作用と、研磨液の化学的作用により研磨される。このような研磨装置はCMP(化学機械研磨)装置とも呼ばれる。
 ウェハの研磨中、ウェハの表面は回転する研磨パッドに摺接されるため、ウェハには摩擦力が作用する。そこで、ウェハの研磨中にウェハが基板保持装置から外れないようにするために、基板保持装置はリテーナリングを備えている。このリテーナリングは、ウェハを囲むように配置され、ウェハの外側で研磨パッドを押し付けている。基板保持装置は、リテーナリングにトルクを伝えるドライブリングをさらに備えており、リテーナリングはドライブリングに固定される。
特開2017-74639号公報
 リテーナリングは、ウェハの研磨中にウェハが基板保持装置から外れないようにする役割に加えて、研磨パッドのリバウンド量を制御することで、ウェハの周縁部の研磨レートを制御する役割も持つ。しかしながら、リテーナリングから研磨パッドに加えられる圧力が周方向において不均一であると、これに依存してウェハに対する研磨パッドの反発力も周方向において不均一になる。リテーナリングから研磨パッドに加えられる圧力の周方向における不均一は、ウェハの周方向における研磨レートのばらつきを引き起こす要因の1つとなる。
 そこで、本発明は、ウェハなどの基板の周方向における研磨レートのばらつきを抑制することができる基板保持装置を提供することを目的とする。さらに、本発明は、このような基板保持装置に使用されるドライブリングの製造方法を提供することを目的とする。
 一態様では、研磨ヘッド本体と、前記研磨ヘッド本体の下方に配置されたドライブリングと、前記ドライブリングに固定されたリテーナリングとを備え、前記ドライブリングは、前記リテーナリングに接触する環状の接触面を有し、前記接触面の周方向における平面度は4.6μm以下であり、前記平面度は、前記接触面の最も高い位置と、最も低い位置との高さの差を表すことを特徴とする基板保持装置である。
 一態様では、前記接触面の内側領域の周方向における平面度が4.6μm以下であり、前記内側領域は、前記接触面の最も内側の端部を含む領域であることを特徴とする。
 一態様では、前記接触面の外側領域の周方向における平面度が4.6μm以下であり、前記外側領域は、前記接触面の最も外側の端部を含む領域であることを特徴とする。
 一態様では、前記接触面の中間領域の周方向における平面度が4.6μm以下であり、前記中間領域は、前記接触面の最も内側の端部よりも径方向外側に位置し、かつ前記接触面の最も外側の端部よりも径方向内側に位置することを特徴とする。
 一態様では、前記ドライブリングの下部には、前記リテーナリングに挿入された複数の補強ピンが固定されており、前記複数の補強ピンは、周方向に沿って互いに離間して配列されていることを特徴とする。
 一態様では、前記ドライブリングおよび前記リテーナリングを傾動可能に支持する球面軸受をさらに備えていることを特徴とする。
 一態様では、前記ドライブリングの剛性は、前記リテーナリングの剛性よりも大きいことを特徴とする。
 一態様では、基板を研磨パッドに押し付けるための基板保持装置に使用されるドライブリングの製造方法であって、前記ドライブリングの接触面の周方向における平面度が4.6μm以下となるように前記接触面を研磨し、前記接触面は、前記基板保持装置に使用されるリテーナリングに接触する環状の接触面であり、前記平面度は、前記接触面の最も高い位置と、最も低い位置との高さの差を表すことを特徴とする製造方法である。
 一態様では、前記平面度が4.6μm以下となるように前記接触面を研磨する工程は、前記ドライブリングの前記接触面を研削加工し、その後、前記ドライブリングと研磨具との間に砥粒が存在する状態で、前記接触面を前記研磨具に押し付けながら、前記ドライブリングと前記研磨具とを相対運動させることによって、前記平面度が4.6μm以下になるまで前記接触面を研磨する工程であることを特徴とする。
 ドライブリングの接触面は、4.6μmと平坦であるため、リテーナリングから研磨パッドに加えられる圧力の周方向における不均一を抑制することができる。結果として、基板保持装置は、基板の周方向における研磨レートのばらつきを抑制することができる。
本発明の一実施形態に係る基板保持装置を備えた研磨装置を示す模式図である。 研磨装置の詳細な構成を示す図である。 図1に示す研磨ヘッドの断面図である。 ドライブリングおよびリテーナリングの断面図である。 ドライブリングの下面図である。 リテーナリングが研磨パッドの研磨面を押圧している状態を模式的に示した側面図である。 図7Aは、図6のA-A線断面図である。 図7Bは、図6のB-B線断面図である。 図8Aは、ドライブリングの接触面の周方向における高さのばらつきの一例を示す図である。 図8Bは、図8Aのドライブリングを使用したときのウェハの周縁部の研磨レートを示す図である。 図9Aは、本実施形態における、ドライブリングの接触面の周方向における高さのばらつきの一例を示す図である。 図9Bは、本実施形態におけるウェハの周縁部の研磨レートを示す図である。 ドライブリングの接触面の周方向における平面度と、ウェハの周縁部の周方向における研磨レートのばらつきの関係を示すグラフである。 ドライブリングの製造方法を説明するフローチャートである。 研磨ヘッドの他の実施形態の断面図である。 ドライブリングおよび連結部材を示す平面図である。 球面軸受を示す図である。 図15Aは、連結部材が球面軸受に対して上下動している様子を示す図である。 図15Bは、連結部材が内輪と共に傾動している様子を示す図である。 図15Cは、連結部材が内輪と共に傾動している様子を示す図である。 球面軸受の他の構成例を示す拡大断面図である。 図17Aは、連結部材が球面軸受に対して上下動している様子を示す図である。 図17Bは、連結部材が中間輪と共に傾動している様子を示している図である。 図17Cは、連結部材が中間輪と共に傾動している様子を示している図である。 図18Aは、図12に示すドライブリングおよびリテーナリングの断面図である。 図18Bは、図12に示すドライブリングの一部を示す下面図である。
 以下、本発明の実施形態について図面を参照して説明する。図1は、本発明の一実施形態に係る基板保持装置を備えた研磨装置を示す模式図である。図1に示すように、研磨装置は、基板の一例であるウェハWを保持し回転させる基板保持装置としての研磨ヘッド1と、研磨パッド2を支持する研磨テーブル3と、研磨パッド2に研磨液(スラリー)を供給する研磨液供給ノズル5と、ウェハWの膜厚に従って変化する膜厚信号を取得する膜厚センサ7とを備えている。膜厚センサ7は、研磨テーブル3内に設置されており、研磨テーブル3が1回転するたびに、ウェハWの中心部を含む複数の領域での膜厚信号を生成する。膜厚センサ7の例としては、光学式センサや渦電流センサが挙げられる。
 研磨ヘッド1は、その下面に真空吸着によりウェハWを保持できるように構成されている。研磨ヘッド1および研磨テーブル3は、矢印で示すように同じ方向に回転し、この状態で研磨ヘッド1は、ウェハWを研磨パッド2の研磨面2aに押し付ける。研磨液供給ノズル5からは研磨液が研磨パッド2上に供給され、ウェハWは、研磨液の存在下で研磨パッド2との摺接により研磨される。ウェハWの研磨中、膜厚センサ7は研磨テーブル3と共に回転し、記号Aに示すようにウェハWの表面を横切りながら膜厚信号を生成する。この膜厚信号は、膜厚を直接または間接に示す指標値であり、ウェハWの膜厚の減少に従って変化する。膜厚センサ7は研磨制御部9に接続されており、膜厚信号は研磨制御部9に送られるようになっている。研磨制御部9は、膜厚信号によって示されるウェハWの膜厚が所定の目標値に達したときに、ウェハWの研磨を終了させる。
 図2は、研磨装置の詳細な構成を示す図である。研磨テーブル3は、テーブル軸3aを介してその下方に配置されるモータ13に連結されており、そのテーブル軸3a周りに回転可能になっている。研磨テーブル3の上面には研磨パッド2が貼付されており、研磨パッド2の上面がウェハWを研磨する研磨面2aを構成している。モータ13により研磨テーブル3を回転させることにより、研磨面2aは研磨ヘッド1に対して相対的に移動する。したがって、モータ13は、研磨面2aを水平方向に移動させる研磨面移動機構を構成する。
 研磨ヘッド1は、研磨ヘッドシャフト11に接続されており、この研磨ヘッドシャフト11は、上下動機構27により研磨ヘッド揺動アーム16に対して上下動するようになっている。この研磨ヘッドシャフト11の上下動により、研磨ヘッド揺動アーム16に対して研磨ヘッド1の全体を昇降させ位置決めするようになっている。研磨ヘッドシャフト11の上端にはロータリージョイント25が取り付けられている。
 研磨ヘッドシャフト11および研磨ヘッド1を上下動させる上下動機構27は、軸受26を介して研磨ヘッドシャフト11を回転可能に支持するブリッジ28と、ブリッジ28に取り付けられたボールねじ32と、支柱30により支持された支持台29と、支持台29上に設けられたサーボモータ38とを備えている。サーボモータ38を支持する支持台29は、支柱30を介して研磨ヘッド揺動アーム16に固定されている。
 ボールねじ32は、サーボモータ38に連結されたねじ軸32aと、このねじ軸32aが螺合するナット32bとを備えている。研磨ヘッドシャフト11は、ブリッジ28と一体となって上下動するようになっている。したがって、サーボモータ38を駆動すると、ボールねじ32を介してブリッジ28が上下動し、これにより研磨ヘッドシャフト11および研磨ヘッド1が上下動する。
 また、研磨ヘッドシャフト11はキー(図示せず)を介して回転筒12に連結されている。この回転筒12はその外周部にタイミングプーリ14を備えている。研磨ヘッド揺動アーム16には研磨ヘッド用モータ18が固定されており、上記タイミングプーリ14は、タイミングベルト19を介して研磨ヘッド用モータ18に設けられたタイミングプーリ20に接続されている。したがって、研磨ヘッド用モータ18を回転駆動することによってタイミングプーリ20、タイミングベルト19、およびタイミングプーリ14を介して回転筒12および研磨ヘッドシャフト11が一体に回転し、研磨ヘッド1がその軸心を中心として回転する。研磨ヘッド用モータ18、タイミングプーリ20、タイミングベルト19、およびタイミングプーリ14は、研磨ヘッド1をその軸心を中心として回転させる回転機構を構成する。研磨ヘッド揺動アーム16は、フレーム(図示せず)に回転可能に支持された支軸21によって支持されている。研磨ヘッド1は、その下面にウェハWなどの基板を保持できるようになっている。研磨ヘッド揺動アーム16は支軸21を中心として旋回可能に構成されている。
 ウェハWの研磨は次のようにして行われる。研磨ヘッド1および研磨テーブル3をそれぞれ回転させ、研磨テーブル3の上方に設けられた研磨液供給ノズル5から研磨パッド2上に研磨液を供給する。下面にウェハWを保持した研磨ヘッド1は、研磨ヘッド揺動アーム16の旋回によりウェハWの受取位置から研磨テーブル3の上方に移動される。そして、研磨ヘッド1を下降させてウェハWを研磨パッド2の研磨面2aに押圧する。ウェハWは、研磨液の存在下で研磨面2aに摺接され、ウェハWの表面は、研磨液に含まれる砥粒の機械的作用と、研磨液の化学的作用により研磨される。
 次に、基板保持装置を構成する研磨ヘッド1について説明する。図3は、図1に示す研磨ヘッド1の断面図である。図3に示すように、研磨ヘッド1は、ウェハWを研磨パッド2の研磨面2aに対して押し付けるための弾性膜45と、弾性膜45を保持する研磨ヘッド本体10と、研磨ヘッド本体10の下方に配置された環状のドライブリング81と、ドライブリング81の下面に固定された環状のリテーナリング40とを備えている。弾性膜45は、研磨ヘッド本体10の下部に取り付けられている。研磨ヘッド本体10は、研磨ヘッドシャフト11の端部に固定されており、研磨ヘッド本体10、弾性膜45、ドライブリング81、およびリテーナリング40は、研磨ヘッドシャフト11の回転により一体に回転するように構成されている。リテーナリング40およびドライブリング81は、研磨ヘッド本体10に対して相対的に上下動可能に構成されている。研磨ヘッド本体10は、エンジニアリングプラスティック(例えば、PEEK)などの樹脂により形成されている。
 弾性膜45と研磨ヘッド本体10との間には、4つの圧力室50,51,52,53が設けられている。圧力室50,51,52,53は弾性膜45と研磨ヘッド本体10によって形成されている。中央の圧力室50は円形であり、他の圧力室51,52,53は環状である。これらの圧力室50,51,52,53は、同心上に配列されている。
 圧力室50,51,52,53にはそれぞれ気体移送ラインF1,F2,F3,F4が接続されている。気体移送ラインF1,F2,F3,F4の一端は、研磨装置が設置されている工場に設けられたユーティリティとしての圧縮気体供給源(図示せず)に接続されている。圧縮空気等の圧縮気体は、気体移送ラインF1,F2,F3,F4を通じて圧力室50,51,52,53にそれぞれ供給されるようになっている。
 圧力室52に連通する気体移送ラインF3は、図示しない真空ラインに接続されており、圧力室52内に真空を形成することが可能となっている。圧力室52を構成する、弾性膜45の部位には開口が形成されており、圧力室52に真空を形成することによりウェハWが研磨ヘッド1に吸着保持される。また、この圧力室52に圧縮気体を供給することにより、ウェハWが研磨ヘッド1からリリースされる。弾性膜45は、エチレンプロピレンゴム(EPDM)、ポリウレタンゴム、シリコーンゴム等の強度および耐久性に優れたゴム材によって形成されている。
 リテーナリング40は、弾性膜45の周囲に配置されており、研磨パッド2の研磨面2aに接触する環状の部材である。リテーナリング40は、ウェハWの外周縁を囲むように配置されており、ウェハWの研磨中にウェハWが研磨ヘッド1から飛び出してしまうことを防止する。
 ドライブリング81の上部は、環状のリテーナリング押圧機構60に連結されている。リテーナリング押圧機構60は、ドライブリング81を介してリテーナリング40の上面40bの全体に下向きの荷重を与え、これによりリテーナリング40の下面40aを研磨パッド2の研磨面2aに対して押圧する。
 リテーナリング押圧機構60は、ドライブリング81の上部に固定された環状のピストン61と、ピストン61の上面に接続された環状のローリングダイヤフラム62とを備えている。ローリングダイヤフラム62の内部にはリテーナリング圧力室63が形成されている。このリテーナリング圧力室63は、気体移送ラインF5を介して上記圧縮気体供給源に連結されている。圧縮気体は、気体移送ラインF5を通じてリテーナリング圧力室63内に供給される。
 上記圧縮気体供給源からリテーナリング圧力室63に圧縮気体を供給すると、ローリングダイヤフラム62がピストン61を下方に押し下げ、ピストン61はドライブリング81を押し下げ、さらにドライブリング81はリテーナリング40の全体を下方に押し下げる。このようにして、リテーナリング押圧機構60は、リテーナリング40の下面40aを研磨パッド2の研磨面2aに対して押圧する。
 ドライブリング81は、リテーナリング押圧機構60に着脱可能に連結されている。より具体的には、ピストン61とドライブリング81を締結部材等により機械的に連結している。なお、締結部材として、樹脂固定部材、磁石や金属ボルトを用いてもよい。
 気体移送ラインF1,F2,F3,F4,F5は、研磨ヘッドシャフト11に取り付けられたロータリージョイント25を経由して延びている。圧力室50,51,52,53、およびリテーナリング圧力室63に連通する気体移送ラインF1,F2,F3,F4,F5には、それぞれ圧力レギュレータR1,R2,R3,R4,R5が設けられている。圧縮気体供給源からの圧縮気体は、圧力レギュレータR1~R5を通って圧力室50~53、およびリテーナリング圧力室63内にそれぞれ独立に供給される。圧力レギュレータR1~R5は、圧力室50~53、およびリテーナリング圧力室63内の圧縮気体の圧力を調節するように構成されている。
 圧力レギュレータR1~R5は、圧力室50~53、およびリテーナリング圧力室63の内部圧力を互いに独立して変化させることが可能であり、これにより、ウェハWの対応する4つの領域、すなわち、中央部、内側中間部、外側中間部、およびエッジ部に対する研磨圧力、およびリテーナリング40の研磨パッド2への押圧力を独立に調節することができる。気体移送ラインF1,F2,F3,F4,F5は大気開放弁(図示せず)にもそれぞれ接続されており、圧力室50~53、およびリテーナリング圧力室63を大気開放することも可能である。本実施形態では、弾性膜45は、4つの圧力室50~53を形成するが、一実施形態では、弾性膜45は4つよりも少ない、または4つよりも多い圧力室を形成してもよい。
 図4は、ドライブリング81およびリテーナリング40の断面図であり、図5は、ドライブリング81の下面図である。図4および図5に示すように、ドライブリング81は、リテーナリング40に接触する環状の接触面81aを有している。本実施形態では、ドライブリング81の下面は、接触面81aを形成している。リテーナリング40の上面40bは、ドライブリング81の下面(接触面81a)に固定される。より具体的には、リテーナリング40の上面には、複数のボルト84がそれぞれねじ込まれる複数のねじ穴40cが形成されており、ドライブリング81にはボルト84が貫通する複数の通孔81fが形成されている。図4では、1つの通孔81f、1つのねじ穴40c、および1つのボルト84のみが描かれている。複数のボルト84を通孔81fを通じて複数のねじ穴40cにそれぞれねじ込むことによって、リテーナリング40の上面40bはドライブリング81の下面(接触面81a)に固定される。
 ドライブリング81の接触面81aは、ドライブリング81の周方向において平坦である。より具体的には、接触面81aの周方向における平面度は4.6μm以下である。本明細書において、平面度とは、接触面81aの最も高い位置と、最も低い位置との高さの差と定義される。本実施形態では、接触面81aの3つの領域において、それぞれの領域の周方向における平面度が4.6μm以下である。上記3つの領域とは、内側領域81b、外側領域81c、中間領域81dである。図5に示すように、内側領域81bは、接触面81aの最も内側の端部を含む領域である。外側領域81cは、接触面81aの最も外側の端部を含む領域である。中間領域81dは、内側領域81bと外側領域81cとに挟まれた領域である。すなわち、中間領域81dは、接触面81aの最も内側の端部よりも径方向外側に位置し、かつ接触面81aの最も外側の端部よりも径方向内側に位置する。本実施形態では、内側領域81b、中間領域81d、および外側領域81cは同じ幅を有するが、異なる幅を有してもよい。
 本実施形態では、接触面81aの周方向における平面度は、接触面81aの全体において(すなわち、内側領域81b、中間領域81d、および外側領域81cにおいて)、4.6μm以下である。一実施形態では、内側領域81b、中間領域81d、および外側領域81cのうちの少なくともいずれか1つにおいて接触面81aの周方向における平面度が4.6μm以下であってもよい。
 図6は、リテーナリング40が研磨パッド2の研磨面2aを押圧している状態を模式的に示した側面図である。ドライブリング81の剛性は、リテーナリング40の剛性よりも大きい。そのため、図6に示すように、リテーナリング40をドライブリング81に固定したとき、リテーナリング40の上面40bおよび下面40aの形状は、ドライブリング81の接触面81aの形状に沿う。ドライブリング81の材質の例として、ステンレス鋼やセラミックが挙げられる。リテーナリング40の材質の一例として、ポリフェニレンサルファイド(PPS)樹脂が挙げられる。
 図7Aは、図6のA-A線断面図であり、図7Bは、図6のB-B線断面図である。リテーナリング40から研磨パッド2の研磨面2aに加えられる圧力は、ドライブリング81の接触面81aの形状に依存して変わりうる。すなわち、図7Aおよび図7Bに示すように、接触面81aの位置が低いほどリテーナリング40の位置が下がり、結果として、リテーナリング40から研磨パッド2の研磨面2aに加えられる圧力(研磨パッド2の押し込み量)が大きくなる。
 図7Aおよび図7Bに示すように、リテーナリング40を研磨パッド2に押し付けると、研磨パッド2の研磨面2aが窪むとともに、研磨面2aの他の部分が上方に盛り上がる。上方に盛り上がった研磨面2aの部分はウェハWの周縁部に上向きの力を加える。以下の説明では、この上向きの力を反発力と称する。ウェハWに対する研磨パッド2の反発力は、リテーナリング40から研磨パッド2に加えられる圧力に依存する。したがって、ドライブリング81の接触面81aの形状は、ウェハWの周縁部に対する反発力に影響する。
 図7Aに示すリテーナリング40から研磨パッド2に加えられる圧力は、図7Bに示す上記圧力よりも大きくなり、図7Aに示すウェハWの周縁部に対する研磨パッド2の反発力は、図7Bに示す上記反発力よりも大きくなる。ウェハWの周縁部に対する研磨パッド2の反発力が大きいとき、その箇所におけるウェハWの研磨レートが大きくなり、上述の反発力が小さいとき、その箇所におけるウェハWの研磨レートが小さくなる。したがって、ウェハWの周縁部の研磨レートは、ドライブリング81の接触面81aの形状に依存して変わりうる。
 図8Aは、ドライブリングの接触面の周方向における高さのばらつきの一例を示す図であり、図8Bは、図8Aのドライブリングを使用したときのウェハの周縁部の研磨レートを示す図である。図8Aの縦軸は、仮想の基準平面からのドライブリングの接触面の高さを表し、図8Aの横軸は、ドライブリングの接触面上のある基準点からの角度を表している。図8Aにおけるドライブリングの接触面の周方向における平面度は、14μmである。図8Bの縦軸は、ウェハの周縁部の研磨レートを表し、図8Bの横軸は、ウェハの周縁部上のある基準点からの角度を表している。図8Aの基準点と図8Bの基準点は、径方向において一致している。
 図9Aは、本実施形態における、ドライブリング81の接触面81aの周方向における高さのばらつきの一例を示す図であり、図9Bは、本実施形態におけるウェハWの周縁部の研磨レートを示す図である。図9Aの縦軸は、仮想の基準平面からのドライブリング81の接触面81aの高さを表し、図9Aの横軸は、ドライブリング81の接触面81a上のある基準点からの角度を表している。図9Aにおけるドライブリング81の接触面81a面の周方向における平面度は、4.6μm以下である。図9Bの縦軸は、ウェハWの周縁部の研磨レートを表し、図9Bの横軸は、ウェハWの周縁部上のある基準点からの角度を表している。図9Aの基準点と図9Bの基準点は、径方向において一致している。
 図8A、図8B、図9A、および図9Bに示すように、ウェハの周縁部の周方向における研磨レートは、ドライブリングの接触面の周方向における形状に依存して変わる。したがって、ドライブリングの接触面の周方向における平面度が大きいとき、ウェハの周縁部の周方向における研磨レートのばらつきが大きくなり、ドライブリングの接触面の周方向における平面度が小さいとき、ウェハの周縁部の周方向における研磨レートのばらつきは小さくなる。
 上記平面度の上限値である4.6μmは、ウェハの周縁部における研磨レートのばらつきの大きさに基づいて決定される。図10は、ドライブリングの接触面の周方向における平面度と、ウェハの周縁部の周方向における研磨レートのばらつきの関係を示すグラフである。図10において使用されたウェハは、シリコンウェハの表面の全体に酸化膜等の膜が均一に形成された試験用のブランケットウェハである。図10の横軸は、ドライブリングの接触面の周方向における平面度を表している。図10の縦軸は、試験用ウェハの周縁部の周方向における研磨レートのばらつきの大きさを表している。より具体的には、図10の縦軸の値は、以下の式で与えられる。
Figure JPOXMLDOC01-appb-M000001
ただし、Nはウェハの枚数、σは、i番目のウェハの周方向に分布する研磨レートの標準偏差、RAはi番目のウェハの研磨レートの平均値である。
 図10に示すように、研磨レートのばらつきの大きさは、ドライブリングの接触面の周方向における平面度が4.6μm以下ではほとんど変わらないことがわかる。この測定結果から、ドライブリング81の接触面81aの周方向における平面度は4.6μm以下に決定された。
 上述したように、本実施形態では、接触面81aの周方向における平面度は、接触面81aの全体において(すなわち、図5に示す内側領域81b、中間領域81d、および外側領域81cにおいて)、4.6μm以下である。図7Aおよび図7Bから分かるように、ウェハWの周縁部の研磨レートは、リテーナリング40の内側部位の研磨パット2に対する圧力に影響されるので、一実施形態では、少なくとも内側領域81bにおける周方向における平面度は、4.6μm以下である。
 ドライブリング81は、接触面81aの周方向における平面度が4.6μm以下となるように接触面81aを研磨することによって製造される。ドライブリング81の製造方法の一実施形態について、図11に示すフローチャートに沿って説明する。最初にドライブリング81の接触面81aを研削加工によって粗削りする(ステップ1)。このような研削加工の一例として、旋盤加工が挙げられる。
 次に、仕上げ研磨用のラッピング装置によって、接触面81aの周方向における平面度が4.6μm以下となるまでドライブリング81の接触面81aを研磨する(ステップ2)。より具体的には、ドライブリング81と、上記ラッピング装置の研磨具との間に砥粒が存在する状態で、ドライブリング81の接触面81aを上記研磨具に押し付けながら、ドライブリング81と上記研磨具とを相対運動させることによって、接触面81aを研磨する(ステップ2)。
 接触面81aの研磨終了後、接触面81aの周方向における平面度を測定する(ステップ3)。上記平面度が4.6μm以下のときは、一連の製造工程を終了する。上記平面度が4.6μmよりも大きいときは、再びステップ2を繰り返し、接触面81aをさらに研磨する。
 接触面81aの周方向における平面度の測定は、径方向の3箇所以上の位置におけるそれぞれの周方向において行われる。このような測定は、それぞれの円周で予め定められた一定の間隔毎に行われる。上述の間隔は、リテーナリング40とドライブリング81を固定する複数のボルト84の間隔に基づいて決定される。
 一実施形態では、接触面81aの径方向の位置にかかわらず、径方向のどの位置においても周方向の平面度が4.6μm以下であってもよい。さらに一実施形態では、予め定められた接触面81a上の1つの円周において、その周方向における平面度が4.6μmであってもよい。
 図12は、研磨ヘッド1の他の実施形態の断面図である。特に説明しない本実施形態に関する構成は、図1乃至図10を参照して説明した実施形態と同じであるので、その重複する説明を省略する。本実施形態の研磨ヘッド本体10は、円形のフランジ41と、フランジ41の下面に取り付けられたスペーサ42と、スペーサ42の下面に取り付けられたキャリア43とを備えている。フランジ41は、研磨ヘッドシャフト11に連結されている。キャリア43は、スペーサ42を介してフランジ41に連結されており、フランジ41、スペーサ42、およびキャリア43は、一体に回転し、かつ上下動する。フランジ41、スペーサ42、およびキャリア43から構成される研磨ヘッド本体10は、エンジニアリングプラスティック(例えば、PEEK)などの樹脂により形成されている。なお、フランジ41をSUS、アルミニウムなどの金属で形成してもよい。
 リテーナリング40は、ドライブリング81および連結部材75を介して球面軸受85に連結されている。この球面軸受85は、リテーナリング40の半径方向内側に配置されている。図13は、ドライブリング81および連結部材75を示す平面図である。図13に示すように、連結部材75は、研磨ヘッド本体10の中心部に配置された軸部76と、この軸部76に固定されたハブ77と、このハブ77からから放射状に延びる複数のスポーク78とを備えている。
 スポーク78の一方の端部は、ハブ77に固定されており、スポーク78の他方の端部は、ドライブリング81に固定されている。ハブ77と、スポーク78と、ドライブリング81とは一体に形成されている。キャリア43には、複数対の駆動ピン80,80が固定されている。各対の駆動ピン80,80は各スポーク78の両側に配置されており、キャリア43の回転は、駆動ピン80,80を介してドライブリング81およびリテーナリング40に伝達され、これにより研磨ヘッド本体10とリテーナリング40とは一体に回転する。
 図12に示すように、軸部76は球面軸受85内を縦方向に延びている。図13に示すように、キャリア43には、スポーク78が収容される複数の放射状の溝43aが形成されており、各スポーク78は各溝43a内で縦方向に移動自在となっている。連結部材75の軸部76は、研磨ヘッド本体10の中央部に配置された球面軸受85に縦方向に移動自在に支持されている。このような構成により、連結部材75およびこれに連結されたドライブリング81およびリテーナリング40は、研磨ヘッド本体10に対して縦方向に移動可能となっている。さらに、ドライブリング81およびリテーナリング40は、球面軸受85により傾動可能に支持されている。
 図14は、球面軸受85を示す図である。軸部76は、複数のねじ79によりハブ77に固定されている。軸部76には縦方向に延びる貫通穴88が形成されている。この貫通穴88は軸部76が球面軸受85に対して縦方向に移動する際の空気抜き穴として作用し、これによりリテーナリング40は研磨ヘッド本体10に対して縦方向にスムーズに移動可能となっている。
 球面軸受85は、環状の内輪101と、内輪101の外周面を摺動自在に支持する外輪102とを備えている。内輪101は、連結部材75を介してドライブリング81およびリテーナリング40に連結されている。外輪102は支持部材103に固定されており、この支持部材103はキャリア43に固定されている。支持部材103はキャリア43の凹部43b内に配置されている。
 内輪101の外周面は、上部および下部を切り欠いた球面形状を有しており、その球面形状の中心点(支点)Oは、内輪101の中心に位置している。外輪102の内周面は、内輪101の外周面に沿った凹面から構成されており、外輪102は内輪101を摺動自在に支持している。したがって、内輪101は、外輪102に対して全方向(360°)に傾動可能となっている。
 内輪101の内周面は、軸部76が挿入される貫通孔101aを構成している。軸部76は内輪101に対して縦方向にのみ移動可能となっている。したがって、軸部76に連結されたリテーナリング40は、横方向に移動することは許容されず、リテーナリング40の横方向(水平方向)の位置は球面軸受85によって固定される。球面軸受85は、ウェハの研磨中に、ウェハと研磨パッド2との摩擦に起因してリテーナリング40がウェハから受ける横方向の力(ウェハの半径方向外側に向かう力)を受けつつ、リテーナリング40の横方向の移動を制限する(すなわちリテーナリング40の水平方向の位置を固定する)支持機構として機能する。
 図15Aは、連結部材75が球面軸受85に対して上下動している様子を示し、図15Bおよび図15Cは、連結部材75が内輪101と共に傾動している様子を示している。連結部材75に連結されたリテーナリング40は、内輪101と一体に支点Oを中心として傾動可能であり、かつ内輪101に対して上下に移動可能となっている。
 図16は、球面軸受85の他の構成例を示す拡大断面図である。図16に示すように、球面軸受85は、連結部材75を介してリテーナリング40に連結された中間輪91と、中間輪91を上から摺動自在に支持する外輪92と、中間輪91を下から摺動自在に支持する内輪93とを備えている。中間輪91は、球殻の上半分よりも小さい部分球殻形状を有し、外輪92と内輪93との間に挟まれている。
 外輪92は凹部43b内に配置されている。外輪92は、その外周部につば92aを有しており、このつば92aを凹部43bの段部にボルト(図示せず)により固定することにより、外輪92がキャリア43に固定されるとともに、中間輪91および内輪93に圧力を掛けることが可能となっている。内輪93は凹部43bの底面上に配置されており、中間輪91の下面と凹部43bの底面との間に隙間が形成されるように、中間輪91を下から支えている。
 外輪92の内面92b、中間輪91の外面91aおよび内面91b、および内輪93の外面93aは、支点Oを中心とした略半球面から構成されている。中間輪91の外面91aは、外輪92の内面92bに摺動自在に接触し、中間輪91の内面91bは、内輪93の外面93aに摺動自在に接触している。外輪92の内面92b(摺接面)、中間輪91の外面91aおよび内面91b(摺接面)、および内輪93の外面93a(摺接面)は、球面の上半分よりも小さい部分球面形状を有している。このような構成により、中間輪91は、外輪92および内輪93に対して全方向(360°)に傾動可能であり、かつ傾動中心である支点Oは球面軸受85よりも下方に位置する。
 外輪92、中間輪91、および内輪93には、軸部76が挿入される貫通孔92c,91c,93bがそれぞれ形成されている。外輪92の貫通孔92cと軸部76との間には隙間が形成されており、同様に、内輪93の貫通孔93bと軸部76との間には隙間が形成されている。中間輪91の貫通孔91cは、外輪92および内輪93の貫通孔92c,93bよりも小さな直径を有しており、軸部76は中間輪91に対して縦方向にのみ移動可能となっている。したがって、軸部76に連結されたリテーナリング40は、横方向に移動することは実質的に許容されず、リテーナリング40の横方向(水平方向)の位置は球面軸受85によって固定される。
 図17Aは、連結部材75が球面軸受85に対して上下動している様子を示し、図17Bおよび図17Cは、連結部材75が中間輪91と共に傾動している様子を示している。図17A乃至図17Cに示すように、連結部材75に連結されたリテーナリング40は、中間輪91と一体に支点Oを中心として傾動可能であり、かつ中間輪91に対して上下に移動可能となっている。図16に示す球面軸受85は、傾動の中心である支点Oがリテーナリング40の中心軸線上にある点では図14に示す球面軸受85と同じであるが、図16に示す支点Oは図14に示す支点Oよりも低い位置にある点で異なっている。図16に示す球面軸受85は、支点Oの高さを研磨パッド2の表面と同じか、それよりも低くすることができる。
 図18Aは、図12に示すドライブリング81およびリテーナリング40の断面図であり、図18Bは図12に示すドライブリング81の一部を示す下面図である。リテーナリング40には、その周方向に沿って複数の穴124が形成されている(図18Aでは1つの穴124のみを示す)。より具体的には、これらの穴124は、リテーナリング40の上面40bに形成されている。ドライブリング81の下部には、リテーナリング40に接続可能なステンレス製の複数の補強ピン82が固定されており、これら複数の補強ピン82は、周方向に沿って互いに離間して配列されている。複数の補強ピン82のそれぞれは、リテーナリング40の複数の穴124のそれぞれに挿入されている。リテーナリング40の強度は補強ピン82によって補強される。図18Aおよび図18Bを参照して説明した実施形態の構成は、図1乃至図10を参照して説明した各実施形態にも適用することができる。
 上述した各実施形態におけるドライブリング81の接触面81aの周方向における平面度は、4.6μmと平坦であるため、リテーナリング40から研磨パッド2に加えられる周方向における圧力の不均一を抑制することができる。結果として、研磨ヘッド1は、ウェハWの周方向における研磨レートのばらつきを抑制することができる。
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。
 本発明は、基板を研磨パッドなどの研磨具に押し付けて基板の表面を研磨するために使用される基板保持装置に利用可能である。また、本発明は、上記基板保持装置に使用されるドライブリングの製造方法に利用可能である。
 1   研磨ヘッド
 2   研磨パッド
 2a  研磨面
 3   研磨テーブル
 3a  テーブル軸
 5   研磨液供給ノズル
 7   膜厚センサ
 9   研磨制御部
10   研磨ヘッド本体
11   研磨ヘッドシャフト
12   回転筒
13   モータ
14   タイミングプーリ
16   研磨ヘッド揺動アーム
18   研磨ヘッド用モータ
19   タイミングベルト
20   タイミングプーリ
21   支軸
25   ロータリージョイント
26   軸受
27   上下動機構
28   ブリッジ
29   支持台
30   支柱
32   ボールねじ
32a  ねじ軸
32b  ナット
38   サーボモータ
40   リテーナリング
40a  下面
40b  上面
40c  ねじ穴
41   フランジ
42   スペーサ
43   キャリア
45   弾性膜
50~53  圧力室
60   リテーナリング押圧機構
61   ピストン
62   ローリングダイヤフラム
63   リテーナリング圧力室
75   連結部材
76   軸部
77   ハブ
78   スポーク
79   ねじ
80   駆動ピン
81   ドライブリング
81a  接触面
81b  内側領域
81c  外側領域
81d  中間領域
81f  通孔
82   補強ピン
84   ボルト
85   球面軸受
88   貫通穴
91   中間輪
92,102 外輪
93,101 内輪
124  穴

Claims (9)

  1.  研磨ヘッド本体と、
     前記研磨ヘッド本体の下方に配置されたドライブリングと、
     前記ドライブリングに固定されたリテーナリングとを備え、
     前記ドライブリングは、前記リテーナリングに接触する環状の接触面を有し、
     前記接触面の周方向における平面度は4.6μm以下であり、
     前記平面度は、前記接触面の最も高い位置と、最も低い位置との高さの差を表すことを特徴とする基板保持装置。
  2.  前記接触面の内側領域の周方向における平面度が4.6μm以下であり、
     前記内側領域は、前記接触面の最も内側の端部を含む領域であることを特徴とする請求項1に記載の基板保持装置。
  3.  前記接触面の外側領域の周方向における平面度が4.6μm以下であり、
     前記外側領域は、前記接触面の最も外側の端部を含む領域であることを特徴とする請求項1または2に記載の基板保持装置。
  4.  前記接触面の中間領域の周方向における平面度が4.6μm以下であり、
     前記中間領域は、前記接触面の最も内側の端部よりも径方向外側に位置し、かつ前記接触面の最も外側の端部よりも径方向内側に位置することを特徴とする請求項1乃至3のいずれか一項に記載の基板保持装置。
  5.  前記ドライブリングの下部には、前記リテーナリングに挿入された複数の補強ピンが固定されており、
     前記複数の補強ピンは、周方向に沿って互いに離間して配列されていることを特徴とする請求項1乃至4のいずれか一項に記載の基板保持装置。
  6.  前記ドライブリングおよび前記リテーナリングを傾動可能に支持する球面軸受をさらに備えていることを特徴とする請求項1乃至5のいずれか一項に記載の基板保持装置。
  7.  前記ドライブリングの剛性は、前記リテーナリングの剛性よりも大きいことを特徴とする請求項1乃至6のいずれか一項に記載の基板保持装置。
  8.  基板を研磨パッドに押し付けるための基板保持装置に使用されるドライブリングの製造方法であって、
     前記ドライブリングの接触面の周方向における平面度が4.6μm以下となるように前記接触面を研磨し、
     前記接触面は、前記基板保持装置に使用されるリテーナリングに接触する環状の接触面であり、
     前記平面度は、前記接触面の最も高い位置と、最も低い位置との高さの差を表すことを特徴とする製造方法。
  9.  前記平面度が4.6μm以下となるように前記接触面を研磨する工程は、前記ドライブリングの前記接触面を研削加工し、その後、前記ドライブリングと研磨具との間に砥粒が存在する状態で、前記接触面を前記研磨具に押し付けながら、前記ドライブリングと前記研磨具とを相対運動させることによって、前記平面度が4.6μm以下になるまで前記接触面を研磨する工程であることを特徴とする請求項8に記載の製造方法。
PCT/JP2019/006313 2018-03-27 2019-02-20 基板保持装置およびドライブリングの製造方法 WO2019187814A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/980,995 US20210138606A1 (en) 2018-03-27 2019-02-20 Substrate holding apparatus and method of manufacturing a drive ring
SG11202009004VA SG11202009004VA (en) 2018-03-27 2019-02-20 Substrate holding apparatus and method of manufacturing a drive ring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-059670 2018-03-27
JP2018059670A JP7219009B2 (ja) 2018-03-27 2018-03-27 基板保持装置およびドライブリングの製造方法

Publications (1)

Publication Number Publication Date
WO2019187814A1 true WO2019187814A1 (ja) 2019-10-03

Family

ID=68059818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006313 WO2019187814A1 (ja) 2018-03-27 2019-02-20 基板保持装置およびドライブリングの製造方法

Country Status (4)

Country Link
US (1) US20210138606A1 (ja)
JP (1) JP7219009B2 (ja)
SG (1) SG11202009004VA (ja)
WO (1) WO2019187814A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210114163A1 (en) * 2019-10-22 2021-04-22 Samsung Display Co., Ltd. Polishing head, substrate processing apparatus including the same and processing method of substrate using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038259A1 (ja) * 2004-09-30 2006-04-13 Renesas Technology Corp. 半導体装置の製造方法
WO2006114854A1 (ja) * 2005-04-12 2006-11-02 Nippon Seimitsu Denshi Co., Ltd. Cmp装置用リテーナリングとその製造方法、および、cmp装置
JP2007266068A (ja) * 2006-03-27 2007-10-11 Sumco Techxiv株式会社 研磨方法及び研磨装置
JP2008023603A (ja) * 2006-07-18 2008-02-07 Nippon Seimitsu Denshi Co Ltd 2層構造のリテーナリング
JP2017074639A (ja) * 2015-10-14 2017-04-20 株式会社荏原製作所 基板保持装置および基板研磨装置ならびに基板保持装置の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231428B1 (en) * 1999-03-03 2001-05-15 Mitsubishi Materials Corporation Chemical mechanical polishing head assembly having floating wafer carrier and retaining ring
US6293139B1 (en) * 1999-11-03 2001-09-25 Memc Electronic Materials, Inc. Method of determining performance characteristics of polishing pads
ATE468941T1 (de) * 2003-11-13 2010-06-15 Applied Materials Inc Haltering mit geformter fläche
TWI315886B (en) * 2005-04-08 2009-10-11 Ohara Kk A substrate and a method for polishing a substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038259A1 (ja) * 2004-09-30 2006-04-13 Renesas Technology Corp. 半導体装置の製造方法
WO2006114854A1 (ja) * 2005-04-12 2006-11-02 Nippon Seimitsu Denshi Co., Ltd. Cmp装置用リテーナリングとその製造方法、および、cmp装置
JP2007266068A (ja) * 2006-03-27 2007-10-11 Sumco Techxiv株式会社 研磨方法及び研磨装置
JP2008023603A (ja) * 2006-07-18 2008-02-07 Nippon Seimitsu Denshi Co Ltd 2層構造のリテーナリング
JP2017074639A (ja) * 2015-10-14 2017-04-20 株式会社荏原製作所 基板保持装置および基板研磨装置ならびに基板保持装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210114163A1 (en) * 2019-10-22 2021-04-22 Samsung Display Co., Ltd. Polishing head, substrate processing apparatus including the same and processing method of substrate using the same
US11919122B2 (en) * 2019-10-22 2024-03-05 Samsung Display Co., Ltd. Polishing head, substrate processing apparatus including the same and processing method of substrate using the same

Also Published As

Publication number Publication date
JP2019171492A (ja) 2019-10-10
JP7219009B2 (ja) 2023-02-07
SG11202009004VA (en) 2020-10-29
US20210138606A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
KR102208160B1 (ko) 기판 보유 지지 장치, 연마 장치, 연마 방법 및 리테이너 링
TWI639485B (zh) Substrate holding device, polishing device, and polishing method
US10213896B2 (en) Elastic membrane, substrate holding apparatus, and polishing apparatus
US12068189B2 (en) Elastic membrane, substrate holding device, and polishing apparatus
US9833875B2 (en) Polishing apparatus and retainer ring configuration
CN100447958C (zh) 用于半导体晶圆的化学机械抛光机的装载装置
KR20120021190A (ko) 연마 장치
KR20110055483A (ko) 반도체 웨이퍼 폴리싱 장치 및 폴리싱 방법
JP5922965B2 (ja) 基板保持装置、研磨装置、および研磨方法
US10486284B2 (en) Substrate holding device, and substrate polishing apparatus
WO2019187814A1 (ja) 基板保持装置およびドライブリングの製造方法
KR101346995B1 (ko) 화학 기계적 연마 장치의 캐리어 헤드
US11731235B2 (en) Polishing apparatus and polishing method
TW201827160A (zh) 工件硏磨頭
JP6630231B2 (ja) リテーナリング、基板保持装置及び基板研磨装置
JP7164865B2 (ja) リテーナリング、これを有する研磨ヘッド及び研磨加工装置
CN111266993A (zh) 化学机械式研磨装置用承载头的卡环及具备其的承载头
US20220258301A1 (en) Dual loading retaining ring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776973

Country of ref document: EP

Kind code of ref document: A1