WO2019187636A1 - 組成物、親水膜および親水膜の製造方法 - Google Patents

組成物、親水膜および親水膜の製造方法 Download PDF

Info

Publication number
WO2019187636A1
WO2019187636A1 PCT/JP2019/003873 JP2019003873W WO2019187636A1 WO 2019187636 A1 WO2019187636 A1 WO 2019187636A1 JP 2019003873 W JP2019003873 W JP 2019003873W WO 2019187636 A1 WO2019187636 A1 WO 2019187636A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
group
hydrophilic film
solid particles
titanium compound
Prior art date
Application number
PCT/JP2019/003873
Other languages
English (en)
French (fr)
Inventor
上野 巌
小林 信幸
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019187636A1 publication Critical patent/WO2019187636A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/06Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/06Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C09D201/08Carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic

Definitions

  • the present disclosure relates to a composition for forming a hydrophilic film and a hydrophilic film using the composition.
  • the said hydrophilic film is used suitably for housing members, such as lenses, glass, the display of an optical device, optical articles, such as a vehicle-mounted mirror, a bathroom, and a kitchen.
  • hydrophilicity is expressed by coating the surface of a base material with a hydrophilic material or blending a photocatalyst such as titanium oxide on the surface of the base material.
  • Patent Document 1 is a hydrophilic coating film containing inorganic oxide particles and a fluorine-based surfactant or a silicone-based surfactant, and there are many island-like portions of the hydrophilic coating film that are poorly hydrophilic in the sea. An existing hydrophilic coating is disclosed.
  • Patent Document 2 is an optical component having a light-transmitting optical thin film partially made of a hydrophilic metal oxide, and the optical thin film is a porous material in which metal oxide fine particles having voids inside are bound by a matrix.
  • An optical component is disclosed which is a quality structure.
  • hydrophilicity obtained by using only a hydrophilic material is not sufficient from the viewpoint of hydrophilic strength and sustainability.
  • a photocatalyst is combined, better hydrophilicity can be expressed, but there is a problem that the desired effect cannot be obtained due to a decrease in hydrophilicity due to the resin being damaged by the action of the photocatalyst. .
  • a hydrophilic film having excellent hydrophilicity and excellent hydrophilic durability.
  • compositions for forming a hydrophilic film containing solid particles having a specific BET value, an organic titanium compound, and a resin component or a resin component precursor are used.
  • this disclosure A composition comprising solid particles having a BET value of 10 to 2000 m 2 / g, an organic titanium compound, and a resin or a resin precursor; a hydrophilic film in which the composition is applied to a substrate surface; and the composition as a substrate
  • a method for producing a hydrophilic film which includes a coating step of applying to a surface and a heating step of generating titanium oxide from an organic titanium compound by heating.
  • composition in the present disclosure includes solid particles having a BET value of 10 to 2000 m 2 / g, an organic titanium compound, and a resin or resin precursor.
  • the solid particles in the present disclosure preferably have pores, more preferably porous particles having a large number of pores. Since the particle
  • the solid particles are, for example, zeolite, silica, activated carbon, porous clay mineral, and the like.
  • the zeolite may be a natural zeolite or a synthetic zeolite, specifically, for example, A type, ferrierite type, MCM-22 type, ZSM-5 type, silicalite type, mordenite type, L type, Y type, X-type, ⁇ -type, and metal substitutes thereof.
  • the zeolite is preferably at least one selected from the group consisting of A-type, X-type and Y-type.
  • the molar ratio Si / Al between the Si atoms and the Al atoms in the zeolite seed is preferably less than 5, more preferably less than 3 and even more preferably less than 1.5. Zeolite in these ranges can impart good hydrophilicity to the hydrophilic membrane. More preferable zeolites are A type 4A zeolite represented by the composition of Na 12 [(AlO 2 ) 12 (SiO 2 ) 12 ] ⁇ 27H 2 O or Na 86 [(AlO 2 ) 86 (SiO 2 ) 106 ] ⁇ 276H 2. It is an X-type 13X zeolite expressed by the composition of O.
  • silica examples include dry method silica, wet method silica, colloidal silica, and precipitated silica.
  • the silica may be mesoporous silica.
  • the activated carbon is made from, for example, wood, charcoal, fruit husk, coconut husk, peat, lignite and coal.
  • the porous clay mineral is, for example, bentonite, smectite (for example, montmorillonite), sepiolite, activated clay, and the like.
  • the BET value of the solid particles in the present disclosure is 10 to 2000 m 2 / g. From the viewpoint of hydrophilicity and hydrophilic sustainability, it may be 50 to 1500 m 2 / g, preferably 80 to 1200 m 2 / g, more preferably 100 to 900 m 2 / g.
  • the BET value of the particle is the specific surface area of the particle and can be determined by the BET method using nitrogen gas.
  • D50 (50% diameter) in volume-based particle size distribution measurement of solid particles in the present disclosure may be 10 to 250 nm, for example, 15 to 150 nm, preferably 20 to 100 nm, more preferably 25 to 80 nm.
  • Such nano-sized particles can usually be obtained through a refinement process such as a pulverization process.
  • a wet method or a dry method can be used.
  • a predetermined amount for example, 5 to 50 wt%) of the solid particle raw material before refinement is added to a solvent (hydrous solvent (for example, water) or an organic solvent) to obtain a slurry.
  • the obtained raw slurry is put in a pulverizer and rotated for a predetermined time (for example, 10 to 300 minutes) to produce solid particles having a desired particle size.
  • the solid particle raw material before refinement is pulverized in a non-solvent.
  • the solid particle raw material before miniaturization may be particles having a d50 larger than the above range, for example, solid particles having a particle size of the order of ⁇ m or mm.
  • various pulverizers such as a ball mill and a bead mill can be used.
  • the solid particles in the present disclosure may have a particle size of 10 to 250 nm of 50 vol% or more, preferably 60 vol% or more, and more preferably 75 vol% or more, based on the whole solid particles in the volume-based particle size distribution measurement. .
  • the particle size distribution measurement and the particle size measurement of the solid particles can be performed by a known method, for example, a laser diffraction method.
  • the amount of the solid particles may be 10 to 900 parts by weight with respect to 100 parts by weight of the resin or resin precursor, for example, 40 to 750 parts by weight, preferably 50 to 650, more preferably 100 to 620. Parts by weight.
  • the organic titanium compound in the present disclosure is a titanium compound containing an organic group, and preferably has a Ti—O—C bond.
  • the organic titanium compound is, for example, a titanium alkoxide compound having an alkoxy ligand, a titanium carboxylate compound having a carboxylic acid ligand, and a titanium chelate compound having a chelate ligand. Titanium in the organic titanium compound is preferably tetravalent. These organic titanium compounds may be used alone or in combination of two or more.
  • the titanium alkoxide compound has the general formula (1): Ti (OR 1 ) n R 2 4-n (1) [Wherein, each R 1 is the same or different alkyl group, R 2 is a monovalent organic group, and n is 1 to 4. ] The compound represented by these may be sufficient.
  • R 1 in the formula may have 1 to 8 carbon atoms, for example, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, t-butyl, n-pentyl, n-hexyl, n- Heptyl, n-octyl, 2-ethylhexyl and the like.
  • R 2 are methyl, ethyl, propyl, isopropyl, butyl, pentyl, hexyl group, heptyl, octyl, nonyl, decyl, stearyl, isostearyl; methanolate, ethanolate, propanolate, isopropanolate, butanolate, t-butanolate, Pentanolate, neopentanolate, hexanolate, octanolate, 1-naphtholate, phenolate, propylphenolate, 4-dodecylphenolate, quinolinolate, diethylene glycolate, pentanediolate, hexanediolate, 2-ethyl-1,3-hexanediol Lat, Holmiart, Acetate, Propionate, Butanoate, Isobutanoate, Pentanoart, Neopentanoart,
  • the titanium carboxylate compound has the general formula (2): Ti (OCOR 3 ) m R 2 4-m (2) [Wherein, each R 3 is the same or different alkyl group, R 2 is a monovalent organic group, and m is 1 to 4. ] The compound represented by these may be sufficient.
  • R 2 in the formula is the same as described for the titanium alkoxide compound.
  • the carbon number of R 3 in the formula may be 1 to 25, preferably 3 to 23, more preferably 10 to 22.
  • R 2 is, for example, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, 2-ethylhexyl, nonyl, decanyl, Neodecanyl, undecanyl, dodecanyl, lauryl, stearyl, behenyl and the like.
  • the titanium chelate compound may be a titanium compound having a chelate ligand capable of coordinating with a titanium atom.
  • phthalic acid, trimellitic acid, trimesic acid, hemimellitic acid, pyromellitic acid Hydroxy polyvalent carboxylic acids such as polyvalent carboxylic acid, malic acid, citric acid, ethylenediaminetetraacetic acid, nitrilotripropionic acid, carboxyiminodiacetic acid, carboxymethyliminodipropionic acid, diethylenetriaminopentaacetic acid, triethylenetetraminohexaacetic acid, imino
  • Nitrogen-containing polycarboxylic acids such as diacetic acid, iminodipropionic acid, hydroxyethyliminodiacetic acid, hydroxyethyliminodipropionic acid, and methoxyethyliminodiacetic acid.
  • the titanium chelate compound may have a ligand (organic group)
  • the organic titanium compound may be obtained by oligomerizing one or more compounds selected from the group consisting of the organic titanium compounds.
  • the amount of the organic titanium compound is, for example, 1 to 750 parts by weight, preferably 30 to 500 parts by weight (for example, 90 to 330 parts by weight) with respect to 100 parts by weight of the resin or resin precursor.
  • the total amount of the solid particles and the organic titanium compound may be 10 parts by weight or more, for example, 40 parts by weight or more, preferably 80 parts by weight or more, more preferably 200 parts by weight with respect to 100 parts by weight of the resin or resin precursor. Part or more, more preferably 500 parts by weight, especially 750 parts by weight or more.
  • the total amount of the solid particles and the organic titanium compound may be 2500 parts by weight or less, for example, 2000 parts by weight or less, preferably 1500 parts by weight or less, more preferably 100 parts by weight of the resin or resin precursor. 1000 parts by weight or less.
  • the resin or resin precursor in the present disclosure is an organic resin, an inorganic resin, an organic-inorganic hybrid resin having an organic portion and an inorganic portion, and a precursor thereof. Only one type of resin or resin precursor may be used, or two or more types may be used in combination.
  • the resin has improved hydrophilicity by having a hydrophilic group such as a hydroxyl group, an amino group, an amide group, a carboxyl group, a urethane group, an ionic group, an ethylene oxide group, or a siloxane group as a part of the repeating unit.
  • a hydrophilic group such as a hydroxyl group, an amino group, an amide group, a carboxyl group, a urethane group, an ionic group, an ethylene oxide group, or a siloxane group
  • a resin hydrophilic resin
  • Specific examples include polyamide resins, polyvinyl alcohol resins, sugar chain polymers, epoxy resins, hydrophilic group-containing acrylic resins, and siloxane resins (silicate resins, silicone resins).
  • the resin precursor is a polymerizable compound that becomes a precursor of the resin, and is a monomer, an oligomer, or the like.
  • the resin precursor preferably includes a monomer having a hydrophilic group.
  • a hydrophilic functional group-containing resin is preferable from the viewpoint of hydrophilicity and hydrophilic durability, for example, a hydrophilic functional group-containing acrylic resin, an epoxy resin, a siloxane-based resin, or their Precursors are preferred.
  • the resin precursor preferably contains a crosslinkable monomer.
  • the crosslinkable monomer is a monomer having two or more reactive functional groups or polymerizable functional groups, such as diacrylate, poly (meth) acrylate, bis (meth) acrylamide, poly (meth). Examples include chloramide, epoxy (meth) acrylate, diglycidyl ether, polyglycidyl ether, and silane coupling agents.
  • the resin precursor may be a silicon group-containing resin precursor or a silicon group-free resin precursor.
  • silicon group-containing resin precursors examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, and isobutyltrimethoxysilane.
  • the silicon group-free resin precursor is a resin precursor not containing a silicon group.
  • Silicon group-free resin precursors include, for example, pentaerythritol triacrylate, dipentaerythritol hexaacrylate, pentaerythritol tetraacrylate, trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, tetramethylolmethane triacrylate, Tetramethylol methane tetraacrylate methyl methacrylate, trimethylol propane trimethacrylate, methoxytriethylene glycol dimethacrylate, ethoxylated pentaerythritol tetraacrylate, ethoxylated glycerin triacrylate, propoxylated trimethylolpropane triacrylate, dipentaerythritol polyacrylate , Tricyclodecane dimethanol diacrylate, ,
  • the composition in the present disclosure may contain a dispersant.
  • the dispersant include nonionic surfactants and ionic surfactants (for example, cationic surfactants and anionic surfactants).
  • the amount of the dispersant may be 10 parts by weight to 200 parts by weight, for example, 50 parts by weight to 150 parts by weight with respect to 100 parts by weight of the organic titanium compound in the dispersion liquid of the composition.
  • the composition in the present disclosure may contain a solvent.
  • the solvent can be appropriately changed depending on the type of resin or resin precursor to be used, and particles, and examples thereof include an aqueous solvent, a non-aqueous solvent, and a water / organic mixed solvent.
  • the amount of the solvent may be 20 to 1000 parts by weight, for example 50 to 500 parts by weight, with respect to 100 parts by weight of the resin or resin precursor in the composition.
  • a hydrophilic organic solvent such as methanol.
  • the composition in the present disclosure includes an initiator, a curing agent, a blocking agent, an antifoaming agent, a thickening agent, a film forming aid, a plasticizer, an antifreezing agent, an antiseptic, and an antifungal agent. , Pigments, fillers and the like.
  • the method for producing the composition in the present disclosure is not particularly limited.
  • solid particles, an organic titanium compound, and a resin or a resin precursor may be directly added and dispersed in a solvent together with a dispersant as necessary.
  • the method is used.
  • the mixing method may be a known method and is not particularly limited.
  • a propeller mixer, a high speed mixer, a homogenizer and the like are preferably used.
  • the organic titanium compound is dissolved in the dispersion liquid of the composition.
  • the type of solvent may be appropriately selected.
  • the hydrophilic film in the present disclosure can be produced through an application process in which the composition obtained as described above is applied to the substrate surface and a heating process in which titanium oxide is generated from organic titanium by heating.
  • the base material is, for example, metal, resin, glass, ceramic or the like.
  • a transparent substrate is preferred for optical applications.
  • the coating method of the composition may be appropriately changed according to the type of resin used, the concentration of the dispersion, and the like, for example, spin coating method, bar coating method, spray coating method and the like.
  • a known method can be used, and a hot plate, an oven, or the like may be used. Heating may be performed in the air, under a nitrogen atmosphere, under an argon atmosphere, under vacuum, or under reduced pressure with a controlled oxygen concentration.
  • the heating temperature is adjusted depending on the type of organic titanium compound used, the type of resin or resin precursor, etc., from the viewpoint of appropriately controlling the titanium oxide production reaction.
  • the heating temperature may be 100 to 500 ° C, preferably 150 to 450 ° C.
  • the heating temperature may be 50 to 250 ° C, preferably 60 to 160 ° C, more preferably 80 to 120 ° C.
  • the heating temperature is preferably 150 to 500 ° C, preferably 200 to 450 ° C, more preferably 300 to 430 ° C.
  • the heating temperature is adjusted within the above temperature range according to the ratio of the organic component portion to the inorganic component.
  • the heating time is adjusted depending on the type of organic titanium compound used, the type of resin or resin precursor, and the like from the viewpoint of appropriately controlling the titanium oxide production reaction.
  • the heating time may be 1 to 120 minutes, preferably 5 to 100 minutes.
  • Titanium oxide is generated from the organic titanium compound by the above heating, but it is not always necessary to convert all the organic titanium compounds to titanium oxide. If some of the organic titanium compounds are titanium oxide in the resulting hydrophilic film, It may remain.
  • the amount of the organic titanium compound may be 1 to 50% by weight, for example 5 to 40% by weight, based on the total amount of the titanium compound.
  • the amount of the organic titanium compound in the hydrophilic film obtained after heating can be adjusted by the heating temperature, the heating time, and the like.
  • the curing of the resin or the resin precursor may proceed by the above heating, but it is also possible to perform heating and light irradiation separately only to advance the curing reaction of the resin before the heating.
  • the thickness of the hydrophilic film may be 30 to 1000 nm, for example, 60 to 800 nm, preferably 100 to 600 nm, more preferably 200 to 500 nm.
  • the contact angle was measured and a 85 ° C. and 85% moisture resistance test was performed.
  • the contact angle was measured using a contact angle meter (DMs401 manufactured by Kyowa Interface Science Co., Ltd.).
  • the 85 ° C. and 85% humidity resistance test was performed using a constant temperature and humidity chamber (SH-222 manufactured by Espec Corp.).
  • a dew panel test dew panel weather meter test was also conducted. In any test, since the contact angle after 30 hours exceeding 30 ° is considered to be due to the deterioration of the surface, it was judged that the performance of the submerged film was inferior.
  • the dew panel test is a test to check durability repeatedly with a moisture resistance test (63 ° C 50% for 4 hours) and ultraviolet irradiation (UV irradiation (UV-B) 4 hours) as a cycle.
  • Dew panel weather meter (Suga test) (DPWL-5R manufactured by Kikai Co., Ltd.).
  • the dispersion prepared above was dropped on a glass plate having a diameter of 30 mm with a disposable syringe, and spin coating was performed under the condition of 5000 rpm ⁇ 60 seconds. Then, it baked for 30 minutes at 400 degreeC in the baking furnace, and obtained the hydrophilic film.
  • the solid particles ZA were produced by a wet bead mill using a water slurry.
  • the initial contact angle of the finished sample was 5 °, and the contact angle after 800 hours of the Dew panel test was 15 °. Further, the contact angle after the elapse of 800 hours at room temperature for the sample having an initial contact angle of 6 ° was 20 °.
  • the solid particles ZX were produced by a wet bead mill using a water slurry.
  • the initial contact angle of the finished sample was 4 °, and the contact angle after 800 hours from the Dew panel test was 13 °. Further, the contact angle of the sample with an initial contact angle of 5 ° after the elapse of 800 hours at room temperature was 16 °.
  • the initial contact angle of the finished sample was 6 °, and the contact angle after 800 hours of the Dew panel test was 21 °. Further, the contact angle of the sample having an initial contact angle of 7 ° after standing for 800 hours at room temperature was 25 °.
  • a hydrophilic film was obtained in the same manner as in Example 1 except that the temperature was changed to 60 minutes at 60C.
  • the initial contact angle of the finished sample was 10 °, and the contact angle after 800 hours from the Dew panel test was 25 °. Further, the contact angle of the sample having an initial contact angle of 8 ° after a lapse of 800 hours at room temperature was 15 °.
  • the initial contact angle of the finished sample was 1 °, and the contact angle after 800 hours of the Dew panel test was 10 °. Further, the contact angle of the sample having an initial contact angle of 2 ° after 12 hours of standing at room temperature was 12 °.
  • Example 6 A hydrophilic film was obtained in the same manner as in Example 1 except that the solid particles were silica gel (solid particles Sc).
  • the initial contact angle of the completed sample was 15 °, and the contact angle after 800 hours from the Dew panel test was 25 °. Further, the contact angle of the sample with an initial contact angle of 16 ° after the elapse of 800 hours at room temperature was 28 °.
  • Example 7 A hydrophilic film was obtained in the same manner as in Example 1 except that 0.2 g of DMPS was added instead of the siloxane-based resin precursor and the polymerization initiator and the amount of the solvent was 55 g.
  • the initial contact angle of the finished sample was 13 °, and the contact angle after 800 hours of Dew panel test was 26 °. Further, the contact angle of the sample having an initial contact angle of 13 ° after standing for 800 hours at room temperature was 27 °.
  • Example 1 A hydrophilic film was obtained in the same manner as in Example 1 except that no organic titanium compound was added and 0.2 g of solid particles HS was added instead of the solid particles ZA.
  • the initial contact angle of the completed sample was 14 °, and the contact angle after 800 hours of the Dew panel test deteriorated to 37 °. In addition, the contact angle of the sample with an initial contact angle of 13 ° after the elapse of 800 hours at room temperature was deteriorated to 38 °.
  • the initial contact angle of the finished sample was 15 ° and the contact angle after 800 hours of the Dew panel test deteriorated to 40 °. Further, the contact angle of the sample having an initial contact angle of 17 ° after the elapse of 800 hours at room temperature deteriorated to 38 °.
  • the initial contact angle of the finished sample was 12 °, and the contact angle after 800 hours of the Dew panel test deteriorated to 34 °. Further, the contact angle of the sample having an initial contact angle of 11 ° after the elapse of 800 hours at room temperature deteriorated to 36 °.
  • the initial contact angle of the finished sample was 11 °, and the contact angle after 800 hours of the Dew panel test deteriorated to 32 °. Further, the contact angle after the elapse of 800 hours at room temperature for a sample having an initial contact angle of 10 ° deteriorated to 32 °.
  • composition of the dispersion is shown in Table 1, and the test results are shown in Table 2.
  • Si A siloxane-based resin precursor manufactured by Panasonic (Examples 1 to 3, 5 to 6, Comparative Examples 1 to 4) Ac: 2-hydroxy-3-acryloyloxypropyl methacrylate (Example 4)
  • DMPS dimethylpolysiloxane solid particles ZA: 4A zeolite manufactured by Panasonic (BET value: 800 m 2 / g, d50: 50 nm (volume basis; the same applies hereinafter))
  • Solid particles ZX 13X zeolite manufactured by Panasonic Corporation (BET value: 600 m 2 / g, d50: 200 nm)
  • Solid particles ZL 13X zeolite manufactured by Union Showa (BET value: 600 m 2 / g, d50: 3 ⁇ m)
  • Solid particles Sc silica gel manufactured by Toyoda Chemical (BET value: 400 m 2 / g, d50: 100 ⁇ m)
  • Solid particle HS HSZ-700 manufactured by Tososo
  • the hydrophilic film in the present disclosure can be used for the purpose of improving the antifouling property or antifogging property of the article due to its hydrophilicity.
  • it is suitably used for water-related members such as bathrooms and kitchens.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

10~2000m/gのBET値を有する固体粒子、有機チタン化合物および、樹脂または樹脂前駆体を含む組成物;ならびに、10~2000m/gのBET値を有する固体粒子、有機チタン化合物および、樹脂または樹脂前駆体を含む組成物を基材表面に塗布する塗布工程と、加熱により有機チタン化合物から酸化チタンを生成する加熱工程と、を含む親水膜の製造方法。

Description

組成物、親水膜および親水膜の製造方法
 本開示は親水膜形成用の組成物およびそれを用いた親水膜に関する。当該親水膜はレンズ、ガラス、光学機器のディスプレイ、車載ミラーなどの光学物品、浴室、キッチンなどの住宅部材に好適に用いられる。
 近年、防汚性や防曇性を基材表面に付与するために、当該基材表面を親水性にする技術が開発されている。当該技術においては、基材表面を親水性材料でコーティングしたり、基材表面に酸化チタンなどの光触媒を配合したりすることにより親水性を発現させている。
 特許文献1は、無機酸化物粒子と、フッ素系界面活性剤もしくはシリコーン系界面活性剤を含む親水性塗膜であって、親水性塗膜の海に親水性に劣る部分が島状に多数点在する親水性塗膜を開示している。
 特許文献2は、一部が親水性金属酸化物からなる光透過性の光学薄膜を有する光学部品であって、前記光学薄膜が、マトリックスによって内部に空隙を有する金属酸化物微粒子が結合された多孔質構造である、光学部品を開示している。
特許第4005831号公報 特開2013-105846号公報
 親水性材料のみを用いても得られる親水性は、親水性の強度および持続性の観点からみて十分でない。一方、光触媒を組み合わせればより良好な親水性を発現させることができるが、光触媒の作用により樹脂がダメージを受けるなどして、親水性が低下して所望の効果が得られなくなるという課題がある。良好な親水性を有しながらも、親水性の持続性に優れた親水膜が求められている。
 本願発明者らは、上記課題に鑑み鋭意検討を重ねた結果、特定のBET値を有する固体粒子、有機チタン化合物および、樹脂成分または樹脂成分前駆体を含む親水膜形成用の組成物を用いることにより、上記課題を解決できることを見いだした。すなわち、本開示は、
 10~2000m/gのBET値を有する固体粒子、有機チタン化合物および、樹脂または樹脂前駆体を含む組成物;前記組成物が基材表面に塗布された親水膜;および前記組成物を基材表面に塗布する塗布工程と、加熱により有機チタン化合物から酸化チタンを生成する加熱工程と、を含む親水膜の製造方法
を提供する。
 本開示によれば、良好な親水性を有し、親水性の持続性に優れた親水膜を提供することができる。
<組成物>
 本開示における組成物は、10~2000m/gのBET値を有する固体粒子、有機チタン化合物および、樹脂または樹脂前駆体を含む。
[固体粒子]
 本開示における固体粒子は細孔を有することが好ましく、より好ましくは多数の細孔を有する多孔性粒子である。本開示における粒子は水分子を吸着することができるため、膜が本開示の粒子を含有することにより、膜に親水性が付与されやすくなる。固体粒子は、例えば、ゼオライト、シリカ、活性炭、多孔性粘土鉱物などである。
 ゼオライトは、天然ゼオライトまたは合成ゼオライトであってよく、具体的には、例えば、A型、フェリエライト型、MCM-22型、ZSM-5型、シリカライト型、モルデナイト型、L型、Y型、X型、β型、これらの金属置換体などである。親水膜に良好な親水性を付与する観点から、ゼオライトはA型、X型もしくはY型からなる群から選択される少なくとも1種であることが好ましい。
 ゼオライト種中のSi原子とAl原子のモル比Si/Alは好ましくは5未満、より好ましくは3未満、さらに好ましくは1.5未満である。これらの範囲のゼオライトは親水膜に良好な親水性を付与することができる。より好ましいゼオライトは、Na12[(AlO12(SiO12]・27HOの組成で表せるA型の4AゼオライトまたはNa86[(AlO86(SiO106]・276HOの組成で表せるX型の13Xゼオライトである。
 シリカは、例えば、乾式法シリカ、湿式法シリカ、コロイダルシリカ、沈降シリカなどである。シリカはメソポーラスシリカであってよい。
 活性炭は、例えば、木材、木炭、果実殻、ヤシ殻、泥炭、亜炭、石炭などを原料とするものである。
 多孔性粘土鉱物は、例えば、ベントナイト、スメクタイト(例えばモンモリロナイト)、セピオライト、活性白土等である。
 本開示における固体粒子のBET値は10~2000m/gである。親水性および親水性の持続性の観点から50~1500m/gであってよく、好ましくは80~1200m/gであり、より好ましくは100~900m/gである。ここで、粒子のBET値とは、粒子の比表面積のことであり、窒素ガスを用いるBET法により求めることができる。
 本開示における固体粒子の体積基準粒度分布測定におけるd50(50%径)は、10~250nmであってよく、例えば15~150nm、好ましくは20~100nm、より好ましくは25~80nmである。このようなナノサイズの粒子は通常、粉砕工程などの微細化工程を経ることにより得ることができる。粉砕工程においては、湿式法または乾式法を用いることができる。湿式法においては、溶媒中(含水溶媒(例えば水)または有機溶媒中)に所定量(例えば5~50wt%)の微細化前の固体粒子原料を添加してスラリーを得る。得られた原料スラリーを粉砕機中に入れ、所定時間(例えば10~300分)回転させ、所望の粒径の固体粒子を作製することができる。乾式法においては、非溶媒下、微細化前の固体粒子原料を粉砕する。ここで、微細化前の固体粒子原料は、d50が上記範囲より大きい粒子であってよく、例えばμmオーダー、mmオーダーの粒径を有する固体粒子であってよい。粉砕機としては、ボールミル、ビーズミルなどの各種粉砕機を用いることができる。
 本開示における固体粒子は、体積基準粒度分布測定において、粒径10~250nmの粒子が固体粒子全体に対して50vol%以上であってよく、好ましくは60vol%以上、より好ましくは75vol%以上である。
 固体粒子の粒度分布測定および粒径の測定は公知の方法により行われることができ、例えばレーザー回折法により行われる。
 固体粒子の量は樹脂または樹脂前駆体100重量部に対して、10~900重量部であってよく、例えば、40~750重量部であり、好ましくは50~650、より好ましくは、100~620重量部である。
[有機チタン化合物]
 本開示における有機チタン化合物は有機基を含むチタン化合物であり、Ti-O-C結合を有することが好ましい。有機チタン化合物は、例えば、アルコキシ配位子を有するチタンアルコキシド化合物、カルボン酸配位子を有するカルボン酸チタン化合物およびキレート配位子を有するチタンキレート化合物である。有機チタン化合物におけるチタンは好ましくは4価である。これらの有機チタン化合物は一種のみを用いてもよいし、二種以上を組み合わせて用いてもよい。
 チタンアルコキシド化合物は、一般式(1):
  Ti(OR 4-n(1)
[式中、それぞれのRは同一または異なるアルキル基、Rは1価の有機基、nは1~4である。]
で表される化合物であってよい。
 式中のRの炭素数は、1~8であってよく、例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、t-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、2-エチルヘキシルなどである。
 Rの具体例はメチル、エチル、プロピル、イソプロピル、ブチル、ペンチル、ヘキシル基、ヘプチル、オクチル、ノニル、デシル、ステアリル、イソステアリル;メタノラート、エタノラート、プロパノラート、イソプロパノラート、ブタノラート、t-ブタノラート、ペンタノラート、ネオペンタノラート、ヘキサノラート、オクタノラート、1-ナフトラート、フェノラート、プロピルフェノラート、4-ドデシルフェノラート、キノリノラート、ジエチレングリコラート、ペンタンジオラート、ヘキサンジオラート、2-エチル-1,3-ヘキサンジオラート、ホルミアート、アセタート、プロピオノアート、ブタノアート、イソブタノアート、ペンタノアート、ネオペンタノアート、ヘキサノアート、シクロヘキサノアート、ヘプタノアート、オクタノアート、2-エチルヘキサノアート、ノナノアート、デカノアート、ネオデカノアート、ウンデカノアート、ドデカノアート、ステアラート、ラクタート、オレアート、シトラート、ベンゾアート、サリチラートおよびフェニルアセタート、ヒドロキシヘキサノアート;アセチルアセトナート(2,4-ペンタンジオナート)、2,2,6,6-テトラメチル-3,5-ヘプタンジオナート、1,3-ジフェニル-1,3-プロパンジオナート(ジベンゾイルメタナート)、1-フェニル-1,3-ブタンジオナートおよび2-アセチルシクロヘキサノナート;オキシナート;メチルアセトアセタート、エチルアセトアセタート、エチル-2-メチルアセトアセタート、エチル-2-エチルアセトアセタート、エチル-2-ヘキシルアセトアセタート、エチル-2-フェニルアセトアセタート、プロピルアセトアセタート、イソプロピルアセトアセタート、ブチルアセトアセタート、t-ブチルアセトアセタート、エチル-3-オキソバレラート、エチル-3-オキソヘキサノアートおよび2-オキソ-シクロヘキサンカルボン酸エチルエステラート;ジエタノールアミンまたはトリエタノールアミンなどである。
 カルボン酸チタン化合物は、一般式(2):
  Ti(OCOR 4-m    (2)
[式中、それぞれのRは同一または異なるアルキル基であり、Rは1価の有機基、mは1~4である。]
で表される化合物であってよい。
 式中のRは、上述のチタンアルコキシド化合物について説明したものと同様である。
 式中のRの炭素数は、1~25であってよく、好ましくは3~23、より好ましくは10~22である。Rは、例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、t-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、2-エチルヘキシル、ノニル、デカニル、ネオデカニル、ウンデカニル、ドデカニル、ラウリル、ステアリル、ベヘニルなどである。
 チタンキレート化合物は、チタン原子に配位する能力を持ったキレート配位子を有するチタン化合物であればよく、例えば、フタル酸、トリメリット酸、トリメシン酸、ヘミメリット酸、ピロメリット酸などの多価カルボン酸、リンゴ酸、クエン酸などのヒドロキシ多価カルボン酸、エチレンジアミン四酢酸、ニトリロ三プロピオン酸、カルボキシイミノ二酢酸、カルボキシメチルイミノ二プロピオン酸、ジエチレントリアミノ五酢酸、トリエチレンテトラミノ六酢酸、イミノ二酢酸、イミノ二プロピオン酸、ヒドロキシエチルイミノ二酢酸、ヒドロキシエチルイミノ二プロピオン酸、メトキシエチルイミノ二酢酸などの含窒素多価カルボン酸である。チタンキレート化合物は、上記のRに該当するような配位子(有機基)を有していてよい。
 有機チタン化合物は、前記有機チタン化合物からなる群より選ばれる1種以上の化合物をオリゴマー化したものであってもよい。
 有機チタン化合物の量は樹脂または樹脂前駆体100重量部に対して、例えば1~750重量部であり、好ましくは30~500重量部(例えば90~330重量部)である。
 固体粒子と有機チタン化合物との合計量は樹脂または樹脂前駆体100重量部に対して、10量部以上であってよく、例えば40重量部以上、好ましくは80重量部以上、より好ましくは200重量部以上、さらに好ましくは500重量部、特別に750重量部以上である。また、固体粒子と有機チタン化合物との合計量は樹脂または樹脂前駆体100重量部に対して、2500量部以下であってよく、例えば2000重量部以下、好ましくは1500重量部以下、より好ましくは1000重量部以下である。
[樹脂または樹脂前駆体]
 本開示における樹脂または樹脂前駆体とは、有機樹脂、無機樹脂、有機部分および無機部分を有する有機無機ハイブリッド樹脂およびこれらの前駆体である。樹脂または樹脂前駆体は一種のみを用いてもよいし、二種以上を組み合わせて用いてもよい。
 本開示において、樹脂は水酸基、アミノ基、アミド基、カルボキシル基、ウレタン基、イオン性基、エチレンオキサイド基、シロキサン基などの親水性基を繰り返し単位の一部に有することで親水性が向上した樹脂(親水性樹脂)であってよい。具体的には、ポリアミド系樹脂、ポリビニルアルコール系樹脂、糖鎖系高分子、エポキシ樹脂、親水性基含有アクリル系樹脂、シロキサン系樹脂(シリケート樹脂、シリコーン樹脂)などである。
 樹脂前駆体は、樹脂の前駆体となる重合性の化合物であって、単量体、オリゴマーなどである。樹脂前駆体は、親水性基を有する単量体を含むことが好ましい。
 樹脂および樹脂前駆体のなかでも、親水性および親水性の持続性の観点から、親水性官能基含有樹脂が好ましく、例えば、親水性官能基含有アクリル樹脂、エポキシ樹脂、シロキサン系樹脂、またはそれらの前駆体が好ましい。
 本開示において、樹脂前駆体は好ましくは架橋性単量体を含む。架橋性単量体は2個以上の、反応性官能基または重合性官能基を有する単量体であって、例えば、ジアクリレート、ポリ(メタ)アクリレート、ビス(メタ)アクリルアミド、ポリ(メタ)クリルアミド、エポキシ(メタ)アクリレート、ジグリシジルエーテル、ポリグリシジルエーテル、シランカップリング剤などである。
 樹脂前駆体はケイ素基含有樹脂前駆体であってよいし、ケイ素基非含有樹脂前駆体であってもよい。
 ケイ素基含有樹脂前駆体は例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシシラン、テトラブトキシシラン、メチルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3-トリフルオロプロピルトリメトキシシラン、メチル-3,3,3-トリフルオロプロピルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシメチルトリメトキシシラン、γ-グリシドキシメチルトリエキシシラン、γ-グリシドキシエチルトリメトキシシラン、γ-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-(β-グリシドキシエトキシ)プロピルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラン、γ-(メタ)アクリロオキシエチルトリメトキシシラン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、ブチルトリメトキシシラン、イソブチルトリエトキシシラン、へキシルトリエトキシシラオクチルトリエトキシシラン、デシルトリエトキシシラン、ブチルトリエトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、3-ウレイドイソプロピルプロピルトリエトキシシラン、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、ビストリメトキシシリルヘキサン、メチルトリクロロシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジイソプロピルジメトキシシラン、ジイソブチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-(メタ)アクリロオキシプロピルメチルジエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、ジメチルジクロロシラン、シクロヘキシルメチルジメトキシシラン、ヘキサメチルジシラザン、トリメチルシラノール、トリフェニルシラノール、トリメチルメトキシシラン、トリメチルクロロシラン、n-オクチルジメチルクロロシランである。
 ケイ素基非含有樹脂前駆体はケイ素基を非含有しない樹脂前駆体である。ケイ素基非含有樹脂前駆体は例えば、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールテトラアクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレートメチルメタクリレート、トリメチロールプロパントリメタクリレート、メトキシトリエチレングリコールジメタクルレート、エトキシ化ペンタエリストールテトラアクリレート、エトキシ化グリセリントリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート、ジペンタエリストールポリアクリレート、トリシクロデカンジメタノールジアクリレート、1,6-ヘキサンジオールジメタクリレート、1,4ブタンジオールジメタクレート、1,9ノナンジオールジメタクレート、1,10デカンジオールジメタクレート、ジメチロールトリシクロデカンジアクリレート、パーフルオロオクチルエチルメタクリレート、トリフロロエチルメテクリレート、フェニルグリシジルエーテルアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、フェニルグリシジルエーテルアクリレートトルエンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートトルエンジイソシアネートウレタンプレポリマージエチルアミノメチルメタクリレート、ジメチルアミノメチルメタクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、2-ヒドロキシエチルメタクレート、2-ヒドロキシプロピルメタクレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルメタクレート、2-ヒドロキシ3フェノキシプロピルアクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルアクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、メトキシトリエチレングリコールジメタクリレート、ブトキシジエチレングリコールメタクリレート、トリエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、テトラエチレンジアクリレート、1,6-ヘキサンジオールジグリシジルエーテルアクリレート、ネオペンチルグリコールジグリシジルエーテルアクリレート、ジエチレングリコールジグリシジルエーテルジアクリレート、ジプロピレングリコールジグリシジルエーテルジアクリレート、2-メタクリロイロキシエチルコハク酸、2-アクロイロキシエチルコハク酸、2-アクロイロキシエチルフタル酸、2-メタクリロイロキシエチルヘキサヒドロフタル酸、2-アクロイロキシエチル-2-ヒドロキシエチルフタル酸、2-メタクリロイロキシエチルアシッドホスフェート、2-メタクリロイロキシエチルアシッドホスフェート、2-アクロイロキシエチルアシッドフォスフェート、2ヒドロキシ-3フェノキシプロピルアクリレート、ビスフェノールAジグリシジルエーテルメタクリル酸付加物、ビスフェノールAジグリシジルエーテルアクリル酸付加物、クレゾールノボラック型エポキシアクリレート、フェノールノボラック型エポキシアクリレート、ビスフェノールAジグリシジルエーテルアクリル酸付加物、ペンタエリスリトールポリグリシジルエーテルアクリレート、ネオペンチルグリコールジグリシジルエーテルアクリレート、2ブチル-2エチル-1,3プロパンジオールジグリシジルエーテルアクリレート、2エチルヘキシルグリシジルエーテルアクリレート、O-フタル酸ジグリシジルエーテルアクリレート、シクロヘキサンジメタノールジグリシジルエーテルアクリレート、ジグリセリンポリグリシジルエーテルメタクレート、グリセリンポリグリシジルエーテルアクリレート、エチレングリコールジグリシジルエーテルアクリレート、ポリエチレングリコールジグリシジルエーテルアクリレート、ジプロピレングリコールジグリシジルエーテルアクリレート、ポリプロピレングリコールジグリシジルエーテルアクリレートである。
 本開示における組成物は分散剤を含んでいてよい。分散剤は、例えば、ノニオン性界面活性剤、イオン性界面活性剤(例えば、カチオン性界面活性剤およびアニオン性界面活性剤)などである。分散剤の量は、組成物の分散液中の有機チタン化合物100重量部に対して、10重量部~200重量部であってよく、例えば50重量部~150重量部である。
 本開示における組成物は溶媒を含んでいてよい。溶媒は、使用する樹脂または樹脂前駆体、および粒子の種類などに応じて適宜変更でき、例えば、水系溶媒、非水系溶媒、水/有機混合溶媒などである。溶媒の量は、組成物中の樹脂または樹脂前駆体100重量部に対して、20重量部~1000重量部であってよく、例えば50重量部~500重量部である。分散性を高めるために、メタノールなどの親水性有機溶媒を用いることが好ましい。
 本開示における組成物は、必要により、その他添加剤として、開始剤、硬化剤、ブロック剤、消泡剤、増粘剤、成膜助剤、可塑剤、凍結防止剤、防腐剤、防カビ剤、顔料、フィラーなどを含んでいてよい。
 本開示における組成物を製造する方法は特に限定されないが、例えば、固体粒子、有機チタン化合物および、樹脂または樹脂前駆体を、必要に応じて分散剤等とともに、溶媒中に直接添加して分散させる方法が使用される。混合方法は公知の方法を採用すればよく特に限定されない。例えば、プロペラミキサー、ハイスピードミキサー、ホモジナイザーなどが好適に用いられる。組成物の分散液に有機チタン化合物が溶解していることが好ましい。有機チタン化合物を分散させるために溶媒の種類は適宜選択されてよい。
<親水膜製造方法>
 本開示における親水膜は、上記により得られた組成物を基材表面に塗布する塗布工程と、加熱により有機チタンから酸化チタンを生成する加熱工程、を経ることにより、作製することができる。
 基材は、例えば、金属、樹脂、ガラス、セラミックなどである。光学的応用のためには透明な基材であることが好ましい。
 組成物の塗布方法は、使用する樹脂の種類、分散液の濃度などに応じて適宜変更すればよく、例えば、スピンコート法、バーコート法、スプレーコート法などである。
 塗布された組成物の加熱方法は、公知の方法が使用でき、ホットプレート、オーブンなどを使用してよい。加熱は大気下、窒素雰囲気下、アルゴン雰囲気下、真空下、酸素濃度をコントロールした減圧下などで行なってよい。
 加熱温度は、酸化チタンの生成反応を適切に制御する観点から、使用する有機チタン化合物の種類、樹脂または樹脂前駆体の種類などによって調整される。加熱温度は100~500℃であってよく、好ましくは150~450℃である。有機樹脂またはその前駆体を用いる場合、加熱温度は50~250℃であってよく、好ましくは60~160℃であり、より好ましくは80~120℃である。無機樹脂またはその前駆体を用いる場合、加熱温度は好ましくは150~500℃であり、好ましくは200~450℃より好ましくは300~430℃である。有機無機ハイブリッド樹脂またはその前駆体を用いる場合、加熱温度は上記温度範囲内で、有機成分部分と無機成分の比率に応じて調節される。
 加熱時間は、酸化チタンの生成反応を適切に制御する観点から、使用する有機チタン化合物の種類、樹脂または樹脂前駆体の種類などによって調整される。加熱時間は1~120分であってよく、好ましくは5~100分である。
 上記加熱により、有機チタン化合物から酸化チタンが生成されるが、必ずしもすべての有機チタン化合物が酸化チタンへと変化する必要はなく、得られる親水膜中、一部の有機チタン化合物が酸化チタンとならずに残っていてもよい。加熱後得られる親水膜において、有機チタン化合物の量は、チタン化合物全量に対して1~50重量%であってよく、例えば5~40重量%である。加熱後得られる親水膜における有機チタン化合物の量は加熱温度、加熱時間などにより調整できる。
 樹脂または樹脂前駆体の硬化は上記加熱により進行してもよいが、上記加熱を行う前に、樹脂の硬化反応を進めるためだけに別途、加熱、光照射を行うことも可能である。
 親水膜の膜厚は、30~1000nmであってよく、例えば60~800nm、好ましくは100~600nm、より好ましくは200~500nmである。
 以下に実施例を挙げて詳細を説明するが、本開示はこれら実施例にのみ限定されるものではない。
〔測定および試験方法〕
 接触角の測定と85℃85%耐湿テストを行った。接触角の測定は、接触角計(協和界面科学社製DMs401)を用いて測定した。85℃85%耐湿テストは、恒温恒湿槽(エスペック社製SH-222)を用いて実施した。それとは別に、デューパネル試験(デューパネルウエザーメータテスト)も行なった。なお、いずれのテストにおいても、800時間後の接触角が30°を越えたものは表面の劣化によるものと考えられるため、浸水膜の性能が劣ると判断した。
 デューパネル試験は、耐湿テスト(63℃50%4時間)と紫外線照射(UV照射(UV-B)4時間)で1サイクルとして、繰り返して耐久性を調べるテストで、デューパネルウェザーメータ(スガ試験機社製DPWL-5R)で行った。
(実施例1)
 シロキサン系樹脂前駆体0.2gに対し重合開始剤0.02gと溶媒15gと分散剤0.06gを添加し、攪拌機(株式会社シンキー社製あわとり錬太郎ARE-310)を用い2000rpmで15分間撹拌した。その後、固体粒子ZAを0.14g、有機チタン化合物を0.06g添加後、撹拌用の直径1mmのガラスビーズを5g添加し、再び攪拌機で30分間撹拌して分散液を得た(樹脂前駆体:粒子+有機チタン化合物=1:1)。10分静置後、直径30mmのガラス板上にディスポ注射器で上記作製の分散液を滴下し、5000rpm×60秒の条件でスピンコートを行った。その後、焼成炉にて400℃で30分焼成して親水膜を得た。なお、固体粒子ZAは、水スラリーを用いた湿式ビーズミルにより作製した。
 出来上がったサンプルの初期接触角は5°であり、デューパネル試験800時間経過後の接触角は15°であった。また、初期接触角6°のサンプルの室温放置試験800時間経過後の接触角は20°であった。
(実施例2)
 樹脂前駆体0.2gに対し溶媒25gと分散剤0.2gを添加した点、固体粒子ZAに代えて固体粒子ZXを0.4g、有機チタン化合物を0.2g添加した点(樹脂前駆体:粒子+有機チタン化合物=1:3)以外は実施例1と同様にして親水膜を得た。なお、固体粒子ZXは、水スラリーを用いた湿式ビーズミルにより作製した。
 出来上がったサンプルの初期接触角は4°であり、デューパネル試験800時間経過後の接触角は13°であった。また、初期接触角5°のサンプルの室温放置試験800時間経過後の接触角は16°であった。
(実施例3)
 樹脂前駆体0.2gに対し溶媒35gと分散剤0.02gを添加した点と、固体粒子ZAを0.07g、有機チタン化合物を0.03g添加した点(樹脂前駆体:粒子+有機チタン化合物=1:0.5)以外は実施例1と同様にして親水膜を得た。
 出来上がったサンプルの初期接触角は6°であり、デューパネル試験800時間経過後の接触角は21°であった。また、初期接触角7°のサンプルの室温放置試験800時間経過後の接触角は25°であった。
(実施例4)
 樹脂前駆体がアクリル系樹脂前駆体である点(樹脂前駆体:粒子+有機チタン化合物=1:1)と、重合開始剤ZCに代えて重合開始剤IRを用いた点、および加熱条件を100℃で60分に変更した以外は実施例1と同様にして親水膜を得た。
 出来上がったサンプルの初期接触角は10°であり、デューパネル試験800時間経過後の接触角は25°であった。また、初期接触角8°のサンプルの室温放置試験800時間経過後の接触角は15°であった。
(実施例5)
 樹脂前駆体0.2gに対し重合開始剤0.02gと溶媒55gと分散剤0.6gを添加した点と、あらかじめ固体粒子ZAを1.2g、有機チタン化合物を0.6g添加し撹拌・被覆した材料を添加した点(樹脂前駆体:粒子+有機チタン化合物=1:9)以外は実施例1と同様にして親水膜を得た。
 出来上がったサンプルの初期接触角は1°であり、デューパネル試験800時間経過後の接触角は10°であった。また、初期接触角2°のサンプルの室温放置試験800時間経過後の接触角は12°であった。
(実施例6)
 固体粒子がシリカゲル(固体粒子Sc)である点以外は実施例1と同様にして親水膜を得た。
 出来上がったサンプルの初期接触角は15°であり、デューパネル試験800時間経過後の接触角は25°であった。また、初期接触角16°のサンプルの室温放置試験800時間経過後の接触角は28°であった。
(実施例7)
 シロキサン系樹脂前駆体と重合開始剤に代えて、DMPS0.2gを添加した点、溶媒量を55gとした点以外は実施例1と同様にして親水膜を得た。
 出来上がったサンプルの初期接触角は13°であり、デューパネル試験800時間経過後の接触角は26°であった。また、初期接触角13°のサンプルの室温放置試験800時間経過後の接触角は27°であった。
(比較例1)
 有機チタン化合物を添加していない点と固体粒子ZAに代えて固体粒子HSを0.2g添加した点以外は実施例1と同様にして親水膜を得た。
 出来上がったサンプルの初期接触角は14°であり、デューパネル試験800時間経過後の接触角は37°と劣化した。また、初期接触角13°のサンプルの室温放置試験800時間経過後の接触角は38°と劣化した。
(比較例2)
 有機チタン化合物を添加していない点と固体粒子ZAに代えて固体粒子ZLを0.2g使用した点(樹脂前駆体:粒子=1:1)以外は実施例1と同様にして親水膜を得た。
 出来上がったサンプルの初期接触角は15°であり、デューパネル試験800時間経過後の接触角は40°と劣化した。また、初期接触角17°のサンプルの室温放置試験800時間経過後の接触角は38°と劣化した。
(比較例3)
 有機チタン化合物を添加していない点(樹脂前駆体:粒子=1:1)と固体粒子ZAの量を0.2gとした点以外は実施例1と同様にして親水膜を得た。
 出来上がったサンプルの初期接触角は12°であり、デューパネル試験800時間経過後の接触角は34°と劣化した。また、初期接触角11°のサンプルの室温放置試験800時間経過後の接触角は36°と劣化した。
(比較例4)
 固体粒子ZAに代えて固体粒子ZXを0.2g使用した点、有機チタン化合物を添加していない点(樹脂前駆体:粒子=1:1)以外は実施例1と同様にして親水膜を得た。
 出来上がったサンプルの初期接触角は11°であり、デューパネル試験800時間経過後の接触角は32°と劣化した。また、初期接触角10°のサンプルの室温放置試験800時間経過後の接触角は32°と劣化した。
 分散液の組成を表1に、試験結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
 各成分は具体的には次のとおりである。
Si:パナソニック社製シロキサン系樹脂前駆体(実施例1~3、5~6、比較例1~4)
Ac:2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート(実施例4)
DMPS:ジメチルポリシロキサン
固体粒子ZA:パナソニック社製4Aゼオライト(BET値:800m/g、d50:50nm(体積基準。以下同じ。))
固体粒子ZX:パナソニック社製13Xゼオライト(BET値:600m/g、d50:200nm)
固体粒子ZL:ユニオン昭和社製13Xゼオライト(BET値:600m/g、d50:3μm)
固体粒子Sc:豊田化工製シリカゲル(BET値:400m/g、d50:100μm)
固体粒子HS:東ソー社製HSZ-700(BET値170m/g、d50:20μm)
有機チタン化合物:日本化学産業社製ナーセムチタン(チタンジ-n-ブトキサイド(ビス-2,4-ペンタンジオネート))
溶媒:メチルアルコール
分散材:BYK社製102
重合開始剤ZC:マツモトファインケミカル社製 ZC580
重合開始剤IR:メルク社製 Irgacure184
Figure JPOXMLDOC01-appb-T000002
 本開示における親水膜は、その親水性により物品の防汚性または防曇性を向上させる目的で、利用することができる。具体的には、レンズ、ガラス、光学機器のディスプレイなどの光学物品に加えて、浴室、キッチンなどの水周り部材に好適に用いられる。

Claims (11)

  1.  10~2000m/gのBET値を有する固体粒子、有機チタン化合物および、樹脂または樹脂前駆体を含む、組成物。
  2.  前記固体粒子の体積基準粒度分布測定におけるd50が10nm~250nmである、請求項1に記載の組成物。
  3.  前記固体粒子はゼオライト、シリカ、活性炭および多孔性粘土鉱物からなる群から選択される少なくとも1種である、請求項1または2に記載の組成物。
  4.  前記有機チタン化合物はチタンアルコキシド化合物、カルボン酸チタン化合物およびチタンキレート化合物からなる群から選択される少なくとも1種である、請求項1~3のいずれか1項に記載の組成物。
  5.  前記樹脂または樹脂前駆体は、水酸基、アミノ基、アミド基、カルボキシル基、ウレタン基、イオン性基、エチレンオキサイド基およびシロキサン基からなる群から選択される少なくとも1種を有する樹脂またはその前駆体からなる群から選択される少なくとも1種である、請求項1~4のいずれか1項に記載の組成物。
  6.  分散剤および溶媒を含む分散液である、請求項1~5のいずれか1項に記載の組成物。
  7.  前記固体粒子と前記有機チタン化合物との合計量は前記樹脂または樹脂前駆体100重量部に対して200重量部以上である、請求項1~6のいずれか1項に記載の組成物。
  8.  請求項1~7のいずれか1項に記載の組成物が基材表面に塗布された親水膜。
  9.  請求項1~7のいずれか1項に記載の組成物を基材表面に塗布する塗布工程と、加熱により有機チタン化合物から酸化チタンを生成する加熱工程と、を含む親水膜の製造方法。
  10.  得られる親水膜が少なくとも有機チタン化合物を含有する、請求項9に記載の親水膜の製造方法。
  11.  得られる親水膜の膜厚が30~1000nmである、請求項9または10に記載の親水膜の製造方法。
PCT/JP2019/003873 2018-03-26 2019-02-04 組成物、親水膜および親水膜の製造方法 WO2019187636A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-058550 2018-03-26
JP2018058550A JP2021100987A (ja) 2018-03-26 2018-03-26 樹脂組成物、親水膜および親水膜の製造方法

Publications (1)

Publication Number Publication Date
WO2019187636A1 true WO2019187636A1 (ja) 2019-10-03

Family

ID=68061314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003873 WO2019187636A1 (ja) 2018-03-26 2019-02-04 組成物、親水膜および親水膜の製造方法

Country Status (2)

Country Link
JP (1) JP2021100987A (ja)
WO (1) WO2019187636A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632987A (ja) * 1992-07-16 1994-02-08 Shin Etsu Chem Co Ltd 流動性及び充填剤分離性の改良されたシリコーンゴム組成物
JPH1112539A (ja) * 1997-06-20 1999-01-19 Nippon Parkerizing Co Ltd 機能性塗料組成物、および機能性塗膜の形成方法
JP2000302441A (ja) * 1999-04-12 2000-10-31 Jsr Corp 二酸化チタン前駆体組成物および二酸化チタン
JP2014109014A (ja) * 2012-12-04 2014-06-12 Shin Etsu Chem Co Ltd ミラブル型シリコーンゴムコンパウンド及びシリコーンゴム組成物の製造方法
JP2015214635A (ja) * 2014-05-09 2015-12-03 信越化学工業株式会社 ミラブル型シリコーンゴムコンパウンド及びミラブル型シリコーンゴム組成物の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632987A (ja) * 1992-07-16 1994-02-08 Shin Etsu Chem Co Ltd 流動性及び充填剤分離性の改良されたシリコーンゴム組成物
JPH1112539A (ja) * 1997-06-20 1999-01-19 Nippon Parkerizing Co Ltd 機能性塗料組成物、および機能性塗膜の形成方法
JP2000302441A (ja) * 1999-04-12 2000-10-31 Jsr Corp 二酸化チタン前駆体組成物および二酸化チタン
JP2014109014A (ja) * 2012-12-04 2014-06-12 Shin Etsu Chem Co Ltd ミラブル型シリコーンゴムコンパウンド及びシリコーンゴム組成物の製造方法
JP2015214635A (ja) * 2014-05-09 2015-12-03 信越化学工業株式会社 ミラブル型シリコーンゴムコンパウンド及びミラブル型シリコーンゴム組成物の製造方法

Also Published As

Publication number Publication date
JP2021100987A (ja) 2021-07-08

Similar Documents

Publication Publication Date Title
JP7128250B2 (ja) シリカ粒子分散体およびシリカ粒子含有樹脂組成物の製造方法
KR101414294B1 (ko) 개질된 나노입자를 포함하는 필름 형성 조성물 및 필름 형성 조성물에 사용되는 개질된 나노입자
JP7087059B2 (ja) 高耐久防曇塗膜およびコーティング組成物
US8962727B2 (en) Inorganic fine particle dispersant and inorganic fine particle dispersion using the same
CN106164190B (zh) 透明被膜形成用的涂布液及其制造方法、有机树脂分散溶胶、以及带透明被膜的基材及其制造方法
JP2015527430A (ja) 無機粒子からなる高分子接着剤組成物を製造する方法
JPH10279886A (ja) コーティング組成物、親水性膜、及び親水性膜を有する被覆物品
WO2014112470A1 (ja) 形状記憶性シート及びその製造方法
KR101753606B1 (ko) 표면개질된 결정성 금속산화물 및 그의 제조방법
JP5754884B2 (ja) リン酸(ただし、リン酸の塩を除く)処理金属酸化物微粒子およびその製造方法、該リン酸(ただし、リン酸の塩を除く)処理金属酸化物微粒子を含む透明被膜形成用塗布液ならびに透明被膜付基材
JP2021031620A (ja) 高耐久防曇塗膜およびコーティング組成物
JP6198379B2 (ja) 改質ジルコニア微粒子粉末、改質ジルコニア微粒子分散ゾルおよびその製造方法
WO2019187636A1 (ja) 組成物、親水膜および親水膜の製造方法
JP6456669B2 (ja) 機能膜
WO2009099106A1 (ja) コーティング液、硬化膜及び樹脂積層体
JP2007291162A (ja) アルミナ微粒子の分散組成液及びそれを用いた成型体
JP4484260B2 (ja) 水性塗料組成物
KR100758280B1 (ko) 광학 수지용 첨가제 및 광학 수지 조성물
KR102019698B1 (ko) 개질 지르코니아 미립자 분말, 개질 지르코니아 미립자 분산졸 및 그의 제조방법
JP2008266472A (ja) 金属酸化物ポリマー被覆微粒子およびその製造方法
JP2007246799A (ja) 紫外線遮断性水系コーティング用樹脂組成物
JP2014196215A (ja) 改質金属酸化物微粒子粉末およびその製造方法
JP7328829B2 (ja) コーティング組成物及び防曇塗膜
EP2783845A1 (en) Photocatalyst-supporting structure
JP6285152B2 (ja) 積層体の製造方法、積層体、太陽電池用カバーガラス、及び太陽熱発電用ミラー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP