WO2019186037A1 - Procédé de détection de la fracture d'un substrat fragilise par implantation d'espèces atomiques - Google Patents

Procédé de détection de la fracture d'un substrat fragilise par implantation d'espèces atomiques Download PDF

Info

Publication number
WO2019186037A1
WO2019186037A1 PCT/FR2019/050659 FR2019050659W WO2019186037A1 WO 2019186037 A1 WO2019186037 A1 WO 2019186037A1 FR 2019050659 W FR2019050659 W FR 2019050659W WO 2019186037 A1 WO2019186037 A1 WO 2019186037A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
fracture
heating chamber
recording
sound
Prior art date
Application number
PCT/FR2019/050659
Other languages
English (en)
Inventor
François RIEUTORD
Frédéric Mazen
Didier Landru
Oleg Kononchuck
Nadia Ben Mohamed
Original Assignee
Soitec
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soitec, Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Soitec
Priority to JP2020551816A priority Critical patent/JP7426551B2/ja
Priority to SG11202009544XA priority patent/SG11202009544XA/en
Priority to EP19718441.9A priority patent/EP3776639A1/fr
Priority to US17/042,755 priority patent/US20210028036A1/en
Priority to KR1020207031050A priority patent/KR102526747B1/ko
Publication of WO2019186037A1 publication Critical patent/WO2019186037A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67754Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a batch of workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2697Wafer or (micro)electronic parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Definitions

  • the present invention relates to the detection of the fracture ("splitting" according to the English terminology) of a substrate previously weakened by an implantation of atomic species, and its application to the monitoring of a heat treatment applied to said substrate to cause said fracture.
  • the Smart Cut TM process makes it possible to transfer a layer of a first substrate, referred to as a donor substrate, to a second substrate, referred to as a receiving substrate.
  • the method comprises a step of implanting atomic species into the donor substrate, so as to form an embrittlement zone located at a depth corresponding to the thickness of the layer to be transferred.
  • Said atomic species are typically hydrogen and / or helium.
  • the implanted species create defects called "micro-fissures", in the form of cavities extending in a plane parallel to the main surface of the donor substrate.
  • the donor substrate is then assembled to the receiving substrate.
  • a thermal fracture step is then carried out, in which the plate resulting from the assembly of the donor substrate and the receiving substrate is raised to a sufficiently high temperature to allow the development of micro-cracks.
  • the plate is installed in an annealing furnace whose temperature is controlled.
  • the annealing causes an increase in the pressure in the cavities, until the fracture of the donor substrate along the embrittlement zone.
  • the fracture Once the fracture has been initiated in a region of the zone of weakness, it propagates almost instantaneously along said zone.
  • quasi-instantaneous means that the duration of the fracture is of the order of 100 ps for a substrate of 300 mm in diameter.
  • the two parts of the plate remain in contact with each other on either side of the fracture plane.
  • the plate is discharged from the annealing furnace for separation of the two parts of the plate.
  • the separation is for example performed by inserting a blade between the two parts.
  • this process is carried out batchwise, each batch comprising a plurality of plates which are placed together in the annealing furnace. Fracture detection is an important parameter in the layer transfer process.
  • the document FR 2 902 926 proposes to equip the support which holds the plate in the annealing furnace of a piezoelectric sensor.
  • the vibration generated within the plate is transmitted to the piezoelectric sensor and converted into an electrical signal which is recorded by a controller of the annealing furnace.
  • a treatment of this signal makes it possible to detect characteristic peaks of a fracture.
  • the plate and the sensor it is essential to have a mechanical connection between the plate and the sensor so that it can detect the fracture.
  • the nacelles containing the substrates are deposited directly in contact with the furnace wall which is capable of transmitting the vibrations generated by fractures but also by shocks related to its environment. These configurations are therefore unfavorable for the detection of the fracture because they do not contain a suitable support for the piezoelectric sensors.
  • the sensor can generally not be placed directly in the oven itself in contact with the nacelles or substrates due to limitations as to the temperature it can withstand the contaminations that it is likely to generate on substrates.
  • the signal provided by the piezoelectric sensor does not easily determine the characteristics of the fracture, for example its energy or its duration.
  • An object of the invention is to overcome the problems mentioned and to design a method for accurately detecting the fracture moment of a substrate, and this, for each substrate of a batch present in the annealing furnace.
  • This method must also make it possible to detect that a substrate of the batch has not fractured, or that a substrate has broken during the fracture.
  • the invention proposes a method for monitoring a heat treatment applied to a substrate comprising an embrittlement zone formed by implantation of atomic species in order to fracture said substrate along said weakening zone, the substrate being arranged in a heating chamber, characterized in that it comprises a recording of the sound inside or in the vicinity of the heating chamber and the detection, in said recording, of a sound emitted by the substrate during its fracture along the weakened zone.
  • vicinity of the heating chamber means an area sufficiently close to the chamber so that the sound emitted during the fracture can be detected.
  • the size and location of this area may depend on the environment of the oven, but the skilled person is able, by means of a few prior sound recordings, to verify that the intended location of the recording is either sufficiently good quality so that the sound of the fracture can be detected there.
  • the advantage of this sound recording is that the sound emitted by the substrate during its fracture is very specific and can not be confused with the sound produced during another event in the environment of the annealing furnace. Moreover, besides the simple determination of the moment at which the fracture occurs, the recorded sound lends itself to an analysis (for example spectrum of frequencies, duration, intensity, etc.) which makes it possible to determine characteristic quantities of the fracture, for example, the energy released, the fracture rate, the occurrence of a breakage, etc.
  • said recording is performed by a microphone arranged inside the heating chamber.
  • said recording is performed by a microphone arranged on an outer wall of an annealing furnace containing said heating chamber.
  • said recording is carried out by a microphone arranged between a heat shield and a door of an annealing furnace giving access to the heating chamber.
  • said recording is performed by a microphone arranged in a tube opening inside the heating chamber.
  • said method further comprises, from the recording of sound inside or in the vicinity of the heating chamber, the detection of a breakage of the substrate.
  • a batch of substrates to be fractured is loaded into the heating chamber, said method comprising detecting, in the sound recording, the sound emitted by each substrate during its fracture.
  • the method comprises recording the sound inside or in the vicinity of the heating chamber by means of two microphones distant from each other, and from a time lag between the sounds of the fracture of a substrate detected in the recording of each of said microphones, the location within the batch of the substrate for which the fracture has occurred.
  • said microphones are arranged in opposite regions of the heating chamber.
  • the heat treatment is stopped as soon as the fracture of each substrate of the batch has been detected.
  • the batch is unloaded for manual separation of the fractured substrates.
  • a vibration frequency of the substrate is determined during the fracture and a fracture rate of the substrate is deduced from said vibration frequency.
  • the substrate comprises at least one semiconductor material.
  • Another object of the invention relates to a device for the heat treatment of a batch of substrates to be fractured.
  • the device comprises an annealing furnace comprising a heating chamber for simultaneously receiving all of said batch, at least one microphone configured to record sounds in or near the heating chamber, and a configured processing system. to detect, from a sound recording produced by said microphone, a sound emitted by a fracture of a substrate.
  • the microphone is arranged in a tube opening inside the heating chamber.
  • the device comprises at least two microphones distant from each other.
  • the processing system is configured to, from a time offset between the sounds of the fracture of a substrate detected in the recording of each of said microphones, locate within the batch the substrate for which fracture occurred.
  • the device further comprises an oven control system configured to stop the heat treatment as soon as the fracture of all the substrates of the batch has been detected.
  • FIG. 1 is a representation of the acoustic signature of the fracture of a silicon substrate
  • FIG. 2 is a diagram of the establishment of a microphone according to a first embodiment inside the annealing furnace
  • FIG. 3 is a diagram of the establishment of a microphone according to a second embodiment, on the outer wall of the annealing furnace;
  • FIG. 4 is a diagram of the establishment of a microphone according to a third embodiment, between the door and the heat shield of the annealing furnace;
  • FIG. 5 is a diagram of the establishment of a microphone according to a fourth embodiment, in a tube in fluid connection with the interior of the annealing furnace;
  • FIG. 6 is a diagram of the placement of two microphones according to a fifth embodiment, at two opposite locations in the annealing furnace;
  • FIG. 7 shows a calibration curve between the frequency of the vibrations emitted during the fracture (in Hz) and the fracture speed (in m / s).
  • the present invention is based on the fact that the fracture of a substrate, in particular a semiconductor substrate, along an embrittlement zone previously formed by implantation of atomic species has a specific acoustic signature, which can therefore be detected at within a sound recording in or near the heat treatment furnace in which said substrate is located.
  • the substrate may be alone or assembled to another substrate. This last case applies especially when it is desired to transfer a layer of said substrate to the other substrate by the Smart Cut TM process.
  • FIG. 1 illustrates the acoustic signature of the fracture of a silicon substrate, that is to say the sound intensity as a function of time detected in the oven following the fracture of the substrate.
  • the unit of the time axis is the second.
  • This signature is in the form of a sudden increase in the loudness then a fast decay, of exponential type, over a duration of 1 to 2 s.
  • Such a signature is specific to a fracture, and can not be confused with the signature of other events likely to occur in or near the annealing furnace.
  • This signature can be obtained with any microphone sensitive to frequencies of a few tens of kHz, possibly adapted to operate at high temperature depending on the intended location.
  • the detection of the fracture provides at least one qualitative information on the fracture method (fracture or not of a substrate), even quantitative as will be explained in detail below.
  • the sound caused by the fracture has a much longer duration, of the order of 1 to 2 s.
  • This phenomenon seems to be explained by an induced oscillation of the substrate on either side of the fracture plane, under the effect of a difference between the pressure generated within the micro-cracks and the gas pressure surrounding the substrate.
  • the sound spectrum is relatively complex (composed of several frequencies), it has a characteristic signature of the fracture that can be detected by means of signal processing.
  • FIGS 2 to 6 illustrate various embodiments of the invention.
  • the oven 1 has a generally tubular shape extending along a horizontal axis.
  • the inner wall 10 of the furnace defines a heating chamber 11 in which the substrates S to be fractured are arranged.
  • heat treatment is not performed for a single substrate but for a batch of substrates.
  • the substrates are stored in a vertical position in one or more nacelles 2 which are placed side by side in the oven.
  • the introduction of the nacelles is done by a door 12 located at one end of the tube.
  • the door 12 is thermally insulated from the heating chamber 11 by a heat shield 13.
  • the end of the tube opposite the door is generally blind.
  • Heating elements 14 are arranged around the wall of the furnace to raise the heating chamber to the desired temperature for the fracture.
  • the temperature applied to fracture silicon substrates is generally in the range of 100 to 500 ° C, preferably 300 to 500 ° C.
  • the star surrounded by circles symbolizes the occurrence of a fracture in a substrate and the propagation of sound that results.
  • the microphone transmits the recorded data in real time to a control station comprising a computer (indicated in FIG. 6 by reference numeral 4) making it possible to process the recordings by implementing a processing software the appropriate signal.
  • the data transmission can be carried out wired or wireless, by any appropriate protocol.
  • Said control station is advantageously configured to, depending on the results of the data processing, trigger a stop of the oven, or issue an alert to the attention of an operator responsible for monitoring the oven.
  • FIG. 2 illustrates a first embodiment, in which a microphone 3 is arranged directly in the heating chamber 11.
  • a microphone adapted to high temperatures that is to say temperatures tolerant, is chosen. at 300 ° C, or 850 ° C, which are commercially available.
  • the microphone is closer to the substrates and is less sensitive to noises caused outside the oven.
  • the microphone is placed on the wall opposite the door
  • FIG. 3 illustrates a second embodiment, in which a microphone 3 is arranged on an outer wall of the oven, for example opposite the door 12.
  • the sound detection is less efficient but sufficient for the detection of the fracture.
  • a substrate Furthermore, this alternative embodiment eliminates a microphone adapted to high temperatures.
  • FIG. 4 illustrates a third embodiment, in which the microphone 3 is arranged between the door 12 and the heat shield 13 of the oven. Compared to the first embodiment, the microphone is subjected to lower temperatures, but it must of course be chosen adapted to these temperatures.
  • FIG. 5 illustrates a fourth embodiment, comprising a particular mounting of the microphone 3.
  • This mounting comprises a tube 30 of small diameter, substantially corresponding to the size of the microphone 3, for example of the order of 1 to 5 mm.
  • the length of the tube is typically of the order of 1 to 10 cm.
  • Said tube 30 opens into the heating chamber 11 through a hole drilled in the wall of the oven, for example the wall opposite to the door 12.
  • FIG. 6 illustrates a fifth embodiment, in which two microphones 3 are arranged in the oven, each close to one end of the tube. Each microphone records the sounds that occur within the heating chamber 11.
  • the temporal offset of the acoustic signatures of the same event makes it possible to estimate the location, within the batch, of the substrate in which the fracture occurred. It is thus possible to determine the substrate that has fractured.
  • Exploitation of the fracture detection of a substrate can take different forms.
  • the counting of all detected fractures and the comparison with the number of substrates present in the furnace makes it possible to check whether each substrate has fractured well.
  • the number of detected fractures is smaller than the number of substrates, it is possible to deduce that one or more substrates have not fractured. In such a case, it is preferable not to send this batch on an automated separation machine, because the presence of a non-fractured substrate may cause an inadvertent shutdown of the machine. The batch concerned is thus unloaded for manual separation of the fractured substrates.
  • a substrate does not necessarily translate into a specific signature. Indeed, the sound produced during a break can be linked to the falling of pieces of the substrate or to the breaking of the substrate and can therefore have variable characteristics. However, since the sound produced by the fracture of a substrate is well identified, any other sound occurring in the chamber may be related to a breakage. In this case, it is advantageous to take the batch out of the oven in order to process it manually, so that a broken substrate does not disturb the operation of the automatic separation machine.
  • the interior of the oven is cleaned before the introduction of a new batch of substrates to be fractured.
  • the inventors have demonstrated a correlation between the maximum sound frequency corresponding to the intensity peak and the speed of the fracture wave propagating in the substrate.
  • This correlation is shown schematically in FIG. 7, which represents the relationship between the frequency of the vibrations emitted (in Hz) and the speed of the fracture wave (in m / s). Thanks to such a curve, which is built beforehand for a given type of substrate and determined implantation conditions, it is possible to determine, from the sound recording of each substrate, the speed of the corresponding fracture. It is then possible to check the homogeneity of the fracture characteristics within the batch.
  • the energy released during the fracture is directly proportional to the maximum detected sound intensity. Consequently, the relative variation of the maximum loudness and its comparison with the average value detected on identical substrates makes it possible to estimate the energy released from the fracture of the substrate, which is an indicator of the quality of the fracture. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

L'invention concerne un procédé de surveillance d'un traitement thermique appliqué à un substrat comprenant une zone de fragilisation formée par implantation d'espèces atomiques en vue de fracturer ledit substrat le long de ladite zone de fragilisation, le substrat (S) étant agencé dans une chambre de chauffage (11), caractérisé en ce qu'il comprend un enregistrement du son à l'intérieur ou au voisinage de la chambre de chauffage (11) et la détection, dans ledit enregistrement, d'un son émis par le substrat (S) lors de sa fracture le long de la zone de fragilisation. L'invention concerne également un dispositif pour le traitement thermique d'un lot de substrats, comprenant un four de recuit (1) comprenant une chambre de chauffage (11) destinée à recevoir ledit lot, au moins un microphone (3) configuré pour enregistrer les sons à l'intérieur ou au voisinage de la chambre de chauffage (11), et un système de traitement configuré pour détecter, à partir d'un enregistrement sonore produit par ledit microphone, un son émis par une fracture d'un substrat.

Description

PROCEDE DE DETECTION DE LA FRACTURE D’UN SUBSTRAT FRAGILISE PAR IMPLANTATION D’ESPECES ATOMIQUES
DOMAINE DE L'INVENTION
La présente invention concerne la détection de la fracture (« splitting » selon la terminologie anglo-saxonne) d’un substrat préalablement fragilisé par une implantation d’espèces atomiques, et son application à la surveillance d’un traitement thermique appliqué audit substrat pour provoquer ladite fracture.
ETAT DE LA TECHNIQUE
Le procédé Smart Cut™ permet de transférer une couche d’un premier substrat, dit substrat donneur, vers un second substrat, dit substrat receveur.
A cet effet, le procédé comprend une étape d’implantation d’espèces atomiques dans le substrat donneur, de sorte à y former une zone de fragilisation située à une profondeur correspondant à l’épaisseur de la couche à transférer. Lesdites espèces atomiques sont typiquement de l’hydrogène et/ou de l’hélium. Au niveau de la zone de fragilisation, les espèces implantées créent des défauts nommés « micro-fissures », se présentant sous la forme de cavités s’étendant dans un plan parallèle à la surface principale du substrat donneur.
Le substrat donneur est ensuite assemblé au substrat receveur.
Une étape de fracture thermique est ensuite mise en oeuvre, dans laquelle on porte la plaque résultant de l’assemblage du substrat donneur et du substrat receveur à une température suffisamment élevée pour permettre le développement des micro-fissures. A cet effet, la plaque est installée dans un four de recuit dont la température est contrôlée. Le recuit provoque une augmentation de la pression dans les cavités, jusqu’à la fracture du substrat donneur le long de la zone de fragilisation. Une fois que la fracture a été initiée en une région de la zone de fragilisation, elle se propage de manière quasi instantanée le long de ladite zone. Par quasi instantanée, on entend que la durée de la fracture est de l’ordre de 100 ps pour un substrat de 300 mm de diamètre.
Après la fracture, les deux parties de la plaque restent en contact l’une de l’autre de part et d’autre du plan de fracture.
La plaque est déchargée du four de recuit en vue de la séparation des deux parties de la plaque. La séparation est par exemple effectuée par insertion d’une lame entre les deux parties.
Généralement, ce procédé est mis en oeuvre par lot, chaque lot comprenant une pluralité de plaques qui sont placées ensemble dans le four de recuit. La détection de la fracture est un paramètre important du procédé de transfert de couche.
En effet, on cherche généralement à minimiser le budget thermique de recuit en stoppant le recuit dès que la fracture s’est produite pour l’ensemble du lot, afin d’éviter d’endommager les plaques avec un budget thermique trop élevé, et optimiser le rendement du four de recuit.
Par ailleurs, il peut arriver que, malgré l’application du budget thermique prévu, la fracture ne se produise pas pour une ou plusieurs plaques d’un même lot. Une telle situation peut perturber la réalisation de l’étape de séparation, qui est généralement automatisée, en provoquant un blocage de la machine de séparation. Il est donc souhaitable de pouvoir détecter si une plaque ne s’est pas fracturée, afin de pouvoir isoler le lot de fabrication concerné pour le traiter manuellement et ne pas perturber la suite du procédé.
A cet effet, le document FR 2 902 926 propose d’équiper le support qui maintient la plaque dans le four de recuit d’un capteur piézoélectrique. Lors de la fracture, la vibration engendrée au sein de la plaque est transmise au capteur piézoélectrique et convertie en un signal électrique qui est enregistré par un contrôleur du four de recuit. Un traitement de ce signal permet de détecter des pics caractéristiques d’une fracture.
Cependant, l’utilisation d’un tel capteur piézoélectrique pose un certain nombre de problèmes.
D’une part, il est indispensable d’avoir une liaison mécanique entre la plaque et le capteur pour que celui-ci puisse détecter la fracture. Or, selon le type d’équipement employé, il peut être difficile d’assurer une telle liaison mécanique. En effet, dans certains fours, les nacelles contenant les substrats sont déposées directement en contact avec la paroi du four qui est susceptible de transmettre les vibrations engendrées par des fractures mais aussi par des chocs liés à son environnement. Ces configurations sont donc défavorables pour la détection de la fracture car elles ne contiennent pas de support adapté pour les capteurs piézoélectriques. En outre, le capteur ne peut généralement pas être placé directement dans le four lui-même au contact des nacelles ou des substrats en raison de limitations quant à la température qu’il peut supporter et aux contaminations qu’il est susceptible de générer sur les substrats.
D’autre part, il peut arriver qu’une plaque se casse ou soit endommagée pendant la fracture, ce qui est susceptible de perturber la séparation. Comme dans le cas où la fracture n’est pas intervenue, il est nécessaire d’isoler le lot concerné afin de le traiter manuellement. Or, le capteur piézoélectrique n’est pas adapté pour détecter un tel événement. En effet, le choc induit par la rupture d’un substrat dépend de la taille et de la chute des morceaux sur le support, qui sont aléatoires. Enfin, il a été montré que les caractéristiques du substrat après fracture (notamment sa rugosité) dépendent largement de l’énergie mécanique relâchée lors de la fracture. Il serait donc avantageux de pouvoir évaluer cette grandeur.
Cependant, le signal fourni par le capteur piézoélectrique ne permet pas facilement de déterminer les caractéristiques de la fracture, par exemple son énergie ou sa durée.
Actuellement, on accède à cette énergie de manière très indirecte en tentant de corréler les caractéristiques de la surface fracturée à une énergie. Mais cela est complexe, car cela dépend du substrat et d’un grand nombre de paramètres non forcément contrôlés ou identifiés.
Une manière plus directe d’estimer l’énergie libérée lors de la fracture est de mesurer l’instant de la fracture à l’aide d’un capteur piézoélectrique susmentionné. On fait alors l’hypothèse que l’énergie libérée est uniquement fonction du budget thermique reçu par la plaque. Cependant, cette hypothèse n’est vraie qu’en première approximation. En effet, des plaques peuvent se fracturer au même moment mais en libérant des énergies différentes à cause de mécanismes d’initiation différents.
EXPOSE DE L'INVENTION
Un but de l’invention est de remédier aux problèmes mentionnés et de concevoir un procédé permettant de détecter avec précision l’instant de fracture d’un substrat, et ce, pour chaque substrat d’un lot présent dans le four de recuit.
Ce procédé doit également permettre de détecter qu’un substrat du lot ne s’est pas fracturé, ou qu’un substrat s’est cassé pendant la fracture.
A cet effet, l’invention propose un procédé de surveillance d’un traitement thermique appliqué à un substrat comprenant une zone de fragilisation formée par implantation d’espèces atomiques en vue de fracturer ledit substrat le long de ladite zone de fragilisation, le substrat étant agencé dans une chambre de chauffage, caractérisé en ce qu’il comprend un enregistrement du son à l’intérieur ou au voisinage de la chambre de chauffage et la détection, dans ledit enregistrement, d’un son émis par le substrat lors de sa fracture le long de la zone de fragilisation.
Par « voisinage de la chambre de chauffage », on entend une zone suffisamment proche de la chambre pour que le son émis lors de la fracture puisse être détecté. La taille et l’emplacement de cette zone peuvent dépendre de l’environnement du four, mais l’homme du métier est à même, au moyen de quelques enregistrements sonores préalables, de vérifier qu’à l’emplacement prévu l’enregistrement soit de suffisamment bonne qualité pour que le son de la fracture puisse y être détecté.
L’avantage de cet enregistrement sonore est que le son émis par le substrat lors de sa fracture est très spécifique et ne peut être confondu avec le son produit lors d’un autre événement dans l’environnement du four de recuit. Par ailleurs, outre la simple détermination de l’instant auquel se produit la fracture, le son enregistré se prête à une analyse (par exemple spectre de fréquences, durée, intensité, etc.) qui permet de déterminer des grandeurs caractéristiques de la fracture, par exemple l’énergie libérée, la vitesse de fracture, la survenue d’une casse, etc.
Selon un premier mode de réalisation, ledit enregistrement est réalisé par un microphone agencé à l’intérieur de la chambre de chauffage.
Selon un deuxième mode de réalisation, ledit enregistrement est réalisé par un microphone agencé sur une paroi extérieure d’un four de recuit contenant ladite chambre de chauffage.
Selon un troisième mode de réalisation, ledit enregistrement est réalisé par un microphone agencé entre un écran thermique et une porte d’un four de recuit donnant accès à la chambre de chauffage.
Selon un quatrième mode de réalisation, ledit enregistrement est réalisé par un microphone agencé dans un tube débouchant à l’intérieur de la chambre de chauffage.
De manière avantageuse, ledit procédé comprend en outre, à partir de l’enregistrement du son à l’intérieur ou au voisinage de la chambre de chauffage, la détection d’une casse du substrat.
Dans une application dudit procédé, un lot de substrats à fracturer est chargé dans la chambre de chauffage, ledit procédé comprenant la détection, dans l’enregistrement sonore, du son émis par chaque substrat lors de sa fracture.
Selon une forme d’exécution, le procédé comprend un enregistrement du son à l’intérieur ou au voisinage de la chambre de chauffage au moyen de deux microphones distants l’un de l’autre, et à partir d’un décalage temporel entre les sons de la fracture d’un substrat détectés dans l’enregistrement de chacun desdits microphones, la localisation au sein du lot du substrat pour lequel la fracture s’est produite.
De préférence, lesdits microphones sont agencés dans des régions opposées de la chambre de chauffage.
De manière avantageuse, on arrête le traitement thermique dès que la fracture de chaque substrat du lot a été détectée.
Si, après une durée prédéterminée, le nombre de fractures détectées est inférieur au nombre de substrats, on décharge le lot en vue d’une séparation manuelle des substrats fracturés.
De manière avantageuse, on détermine, à partir d’une fréquence maximale du son généré par la fracture d’un substrat, une fréquence de vibration du substrat lors de la fracture et on déduit de ladite fréquence de vibration une vitesse de fracture du substrat.
Par ailleurs, on peut déterminer, à partir de l’intensité du son généré par la fracture d’un substrat, une énergie libérée lors de ladite fracture. On peut également déterminer la vitesse d’une onde de fracture se propageant dans un substrat à partir de la fréquence maximale correspondant au pic d’intensité sonore.
De préférence, le substrat comprend au moins un matériau semi-conducteur.
Un autre objet de l’invention concerne un dispositif pour le traitement thermique d’un lot de substrats à fracturer.
Ledit dispositif comprend un four de recuit comprenant une chambre de chauffage destinée à recevoir simultanément l’ensemble dudit lot, au moins un microphone configuré pour enregistrer les sons à l’intérieur ou au voisinage de la chambre de chauffage, et un système de traitement configuré pour détecter, à partir d’un enregistrement sonore produit par ledit microphone, un son émis par une fracture d’un substrat.
Selon un mode de réalisation, le microphone est agencé dans un tube débouchant à l’intérieur de la chambre de chauffage.
De manière particulièrement avantageuse, le dispositif comprend au moins deux microphones distants l’un de l’autre.
Selon une forme d’exécution, le système de traitement est configuré pour, à partir d’un décalage temporel entre les sons de la fracture d’un substrat détectés dans l’enregistrement de chacun desdits microphones, localiser au sein du lot le substrat pour lequel la fracture s’est produite.
De manière avantageuse, le dispositif comprend en outre un système de contrôle du four configuré pour stopper le traitement thermique dès que la fracture de l’ensemble des substrats du lot a été détectée. DESCRIPTION DES FIGURES
D’autres caractéristiques et avantages de l’invention ressortiront de la description détaillée qui va suivre, en référence aux dessins annexés sur lesquels :
- la figure 1 est une représentation de la signature acoustique de la fracture d’un substrat de silicium ;
- la figure 2 est un schéma de la mise en place d’un microphone selon un premier mode de réalisation à l’intérieur du four de recuit;
- la figure 3 est un schéma de la mise en place d’un microphone selon un deuxième mode de réalisation, sur la paroi extérieure du four de recuit ;
- la figure 4 est un schéma de la mise en place d’un microphone selon un troisième mode de réalisation, entre la porte et l’écran thermique du four de recuit ;
- la figure 5 est un schéma de la mise en place d’un microphone selon un quatrième mode de réalisation, dans un tube en liaison fluidique avec l’intérieur du four de recuit ; - la figure 6 est un schéma de la mise en place de deux microphones selon un cinquième mode de réalisation, à deux emplacements opposés dans le four de recuit ;
- la figure 7 présente une courbe de calibration entre la fréquence des vibrations émises lors de la fracture (en Hz) et la vitesse de la fracture (en m/s).
DESCRIPTION DETAILLEE DE MODES DE REALISATION DE L'INVENTION
La présente invention repose sur le fait que la fracture d’un substrat, notamment un substrat semi-conducteur, le long d’une zone de fragilisation préalablement formée par implantation d’espèces atomiques présente une signature acoustique spécifique, qui peut donc être détectée au sein d’un enregistrement sonore dans ou au voisinage du four de traitement thermique dans lequel se trouve ledit substrat. Le substrat peut être seul ou assemblé à un autre substrat. Ce dernier cas s’applique notamment lorsque l’on souhaite transférer une couche dudit substrat sur l’autre substrat par le procédé Smart Cut™.
La figure 1 illustre la signature acoustique de la fracture d’un substrat de silicium, c’est-à-dire l’intensité sonore en fonction du temps détectée dans le four suite à la fracture du substrat. L’unité de l’axe du temps est la seconde. Cette signature se présente sous la forme d’une augmentation brutale de l’intensité sonore puis une décroissance rapide, de type exponentiel, sur une durée de 1 à 2 s.
Une telle signature est spécifique d’une fracture, et ne peut être confondue avec la signature d’autres événements susceptibles de se produire dans ou au voisinage du four de recuit.
Cette signature peut être obtenue avec tout microphone sensible à des fréquences de quelques dizaines de kHz, éventuellement adapté pour fonctionner à haute température selon l’emplacement prévu.
La détection de la fracture fournit au moins une information qualitative sur le procédé de fracture (fracture ou non d’un substrat), voire quantitative comme cela sera exposé en détail plus bas.
Ainsi, les inventeurs sont allés à l’encontre de l’enseignement du document FR 2 902 926 selon lequel un enregistrement sonore n’est pas adapté à la détection de la fracture d’un substrat, et ont au contraire démontré que l’on peut extraire du spectre sonore davantage d’informations qu’à partir du signal d’un capteur piézoélectrique en contact avec le substrat.
En particulier, de manière surprenante, alors que la fracture est quasiment instantanée (de l’ordre de 100 ps), le son provoqué par la fracture présente une durée beaucoup plus importante, de l’ordre de 1 à 2 s. Ce phénomène semble s’expliquer par une oscillation induite du substrat de part et d’autre du plan de fracture, sous l’effet d’une différence entre la pression générée au sein des micro-fissures et la pression de gaz entourant le substrat. Bien que le spectre sonore soit relativement complexe (composé de plusieurs fréquences), il présente une signature caractéristique de la fracture qui peut être détectée à l’aide d’un traitement du signal.
Les figures 2 à 6 illustrent différents modes de réalisation de l’invention.
Sur chacune de ces figures, la structure du four est identique et sera donc décrite une seule fois ici. Un même signe de référence utilisé d’une figure à l’autre désigne un élément identique ou remplissant la même fonction. Pour des raisons de lisibilité des figures, les différents éléments ne sont pas nécessairement représentés à l’échelle.
Le four 1 présente une forme générale tubulaire s’étendant selon un axe horizontal. La paroi intérieure 10 du four définit une chambre de chauffage 11 dans laquelle sont disposés les substrats S à fracturer. En général, le traitement thermique n’est pas réalisé pour un substrat unique mais pour un lot de substrats. A cet effet, les substrats sont rangés en position verticale dans une ou plusieurs nacelles 2 qui sont mises en place côte à côte dans le four. L’introduction des nacelles se fait par une porte 12 située à une extrémité du tube. La porte 12 est isolée thermiquement de la chambre de chauffage 11 par un écran thermique 13. L’extrémité du tube opposée à la porte est généralement borgne. Des éléments chauffants 14 sont agencés autour de la paroi du four pour porter la chambre de chauffage à la température souhaitée pour la fracture. Par exemple, la température appliquée pour fracturer des substrats de silicium est généralement de l’ordre de 100 à 500°C, de préférence 300 à 500°C.
L’homme du métier est naturellement en mesure d’adapter l’enseignement fourni ci- après à tout autre type de four.
L’étoile entourée de cercles symbolise l’occurrence d’une fracture dans un substrat et la propagation du son qui en résulte.
Quel que soit l’emplacement du microphone, celui-ci transmet les données enregistrées en temps réel à un poste de contrôle comprenant un ordinateur (désigné sur la figure 6 par le repère 4) permettant de traiter les enregistrements en implémentant à un logiciel de traitement du signal approprié. La transmission des données peut être effectuée de manière filaire ou sans fil, par tout protocole approprié.
Ledit poste de contrôle est avantageusement configuré pour, en fonction des résultats du traitement des données, déclencher un arrêt du four, ou émettre une alerte à l’attention d’un opérateur chargé de la surveillance du four.
La figure 2 illustre un premier mode de réalisation, dans lequel un microphone 3 est agencé directement dans la chambre de chauffage 1 1. Pour cette application, on choisit un microphone adapté aux hautes températures, c’est-à-dire tolérant des températures jusqu’à 300°C, voire 850°C, qui sont disponibles dans le commerce. Ainsi, le microphone est au plus près des substrats et est moins sensible aux bruits provoqués à l’extérieur du four. De manière avantageuse, le microphone est placé sur la paroi opposée à la porte
12.
La figure 3 illustre un deuxième mode de réalisation, dans lequel un microphone 3 est agencé sur une paroi extérieure du four, par exemple à l’opposé de la porte 12. La détection sonore est moins efficace mais suffisante pour la détection de la fracture d’un substrat. Par ailleurs, cette variante d’exécution permet de s’affranchir d’un microphone adapté aux hautes températures.
La figure 4 illustre un troisième mode de réalisation, dans lequel le microphone 3 est agencé entre la porte 12 et l’écran thermique 13 du four. Par rapport au premier mode de réalisation, le microphone est soumis à des températures plus basses, mais il faut naturellement le choisir adapté à ces températures.
La figure 5 illustre un quatrième mode de réalisation, comprenant un montage particulier du microphone 3. Ce montage comprend un tube 30 de faible diamètre, correspondant sensiblement à la taille du microphone 3, par exemple de l’ordre de 1 à 5 mm. La longueur du tube est typiquement de l’ordre de 1 à 10 cm. Ledit tube 30 débouche dans la chambre de chauffage 11 au travers d’un trou percé dans la paroi du four, par exemple la paroi opposée à la porte 12. Ainsi, même si le microphone est en contact avec l’atmosphère du four, la dissipation thermique qui se produit le long du tube est suffisante pour garantir une température compatible avec le fonctionnement du microphone, même si celui-ci n’est pas spécialement adapté aux hautes températures.
La figure 6 illustre un cinquième mode de réalisation, dans lequel deux microphones 3 sont agencés dans le four, chacun au voisinage d’une extrémité du tube. Chaque microphone enregistre les sons qui se produisent au sein de la chambre de chauffage 11. Lors du traitement des enregistrements transmis par chaque microphone, le décalage temporel des signatures acoustiques d’un même événement permet d’estimer la localisation, au sein du lot, du substrat dans lequel a eu lieu la fracture. Il est ainsi possible de déterminer le substrat qui s’est fracturé.
Naturellement, les différents modes de réalisation décrits ci-dessus peuvent être combinés.
L’exploitation de la détection de la fracture d’un substrat peut prendre différentes formes.
D’une part, le comptage de l’ensemble des fractures détectées et la comparaison avec le nombre de substrats présents dans le four permet de vérifier si chaque substrat s’est bien fracturé. Dans cette hypothèse, il peut être avantageux de déclencher l’arrêt du traitement thermique dès que le nombre de fractures détectées atteint le nombre de substrats, puisque le traitement thermique devient sans objet. On peut ainsi optimiser le temps de cycle, minimiser le budget thermique appliqué aux substrats et réduire la consommation d’énergie. En revanche, si, à l’issue d’une durée prédéterminée du traitement thermique, le nombre de fractures détectées est inférieur au nombre de substrats, il est possible d’en déduire qu’un ou plusieurs substrats ne se sont pas fracturés. Dans un tel cas, il est préférable de ne pas envoyer ce lot sur une machine de séparation automatisée, car la présence d’un substrat non fracturé pourra provoquer un arrêt intempestif de la machine. On décharge donc le lot concerné en vue d’une séparation manuelle des substrats fracturés.
La casse d’un substrat ne se traduit pas nécessairement par une signature spécifique. En effet, le son produit lors d’une casse peut être lié à la chute de morceaux du substrat ou bien à la rupture du substrat et peut donc présenter des caractéristiques variables. Cependant, dans la mesure où le son produit par la fracture d’un substrat est bien identifié, tout autre son survenant dans la chambre peut être lié à une casse. Dans ce cas, il est avantageux de sortir le lot du four en vue de le traiter manuellement, afin qu’un substrat cassé ne vienne perturber le fonctionnement de la machine de séparation automatique. Avantageusement, l’intérieur du four est nettoyé avant l’introduction d’un nouveau lot de substrats à fracturer.
Par ailleurs, outre l’exploitation qualitative qui vient d’être décrite, les inventeurs ont mis en évidence une corrélation entre la fréquence sonore maximale correspondant au pic d’intensité et la vitesse de l’onde de fracture qui se propage dans le substrat. Cette corrélation est schématisée sur la figure 7, qui représente la relation entre la fréquence des vibrations émises (en Hz) et la vitesse de l’onde de fracture (en m/s). Grâce à une telle courbe, qui est construite au préalable pour un type de substrat donné et des conditions d’implantation déterminées, il est possible de déterminer, à partir de l’enregistrement sonore de chaque substrat, la vitesse de la fracture correspondante. Il est ensuite possible de vérifier l’homogénéité des caractéristiques de fracture au sein du lot.
Par ailleurs, l’énergie libérée lors de la fracture est directement proportionnelle à l’intensité sonore maximale détectée. Par conséquent, la variation relative de l’intensité sonore maximale et sa comparaison par rapport à la valeur moyenne détectée sur des substrats identiques permet d’estimer l’énergie libérée de la fracture du substrat, qui est un indicateur de la qualité de la fracture.
REFERENCES
FR 2 902 926

Claims

REVENDICATIONS
1. Procédé de surveillance d’un traitement thermique appliqué à un substrat comprenant une zone de fragilisation formée par implantation d’espèces atomiques en vue de fracturer ledit substrat le long de ladite zone de fragilisation, le substrat (S) étant agencé dans une chambre de chauffage (1 1 ), caractérisé en ce qu’il comprend un enregistrement du son à l’intérieur ou au voisinage de la chambre de chauffage (1 1 ) et la détection, dans ledit enregistrement, d’un son émis par le substrat lors de sa fracture le long de la zone de fragilisation.
2. Procédé selon la revendication 1 , dans lequel ledit enregistrement est réalisé par un microphone (3) agencé à l’intérieur de la chambre de chauffage (1 1 ).
3. Procédé selon la revendication 1 , dans lequel ledit enregistrement est réalisé par un microphone (3) agencé sur une paroi extérieure d’un four de recuit (1 ) contenant ladite chambre de chauffage (1 1 ).
4. Procédé selon la revendication 1 , dans lequel ledit enregistrement est réalisé par un microphone (3) agencé entre un écran thermique (13) et une porte (12) d’un four de recuit (1 ) donnant accès à la chambre de chauffage (1 1 ).
5. Procédé selon la revendication 1 , dans lequel ledit enregistrement est réalisé par un microphone (3) agencé dans un tube (30) débouchant à l’intérieur de la chambre de chauffage (1 1 ).
6. Procédé selon l’une des revendications 1 à 5, comprenant en outre, à partir de l’enregistrement du son à l’intérieur ou au voisinage de la chambre de chauffage (1 1 ), la détection d’une casse du substrat.
7. Procédé selon l’une des revendications 1 à 6, dans lequel un lot de substrats à fracturer est chargé dans la chambre de chauffage, ledit procédé comprenant la détection, dans l’enregistrement sonore, du son émis par chaque substrat lors de sa fracture.
8. Procédé selon la revendication 7, comprenant un enregistrement du son à l’intérieur ou au voisinage de la chambre de chauffage (11 ) au moyen de deux microphones (3) distants l’un de l’autre, et à partir d’un décalage temporel entre les sons de la fracture d’un substrat détectés dans l’enregistrement de chacun desdits microphones, la localisation au sein du lot du substrat pour lequel la fracture s’est produite.
9. Procédé selon la revendication 8, dans lequel les microphones (3) sont agencés dans des régions opposées de la chambre de chauffage (1 1 ).
10. Procédé selon l’une des revendications 7 à 9, dans lequel on arrête le traitement thermique dès que la fracture de chaque substrat a été détectée.
1 1. Procédé selon l’une des revendications 7 à 9, dans lequel, après une durée prédéterminée, le nombre de fractures détectées est inférieur au nombre de substrats, et on décharge le lot en vue d’une séparation manuelle des substrats fracturés.
12. Procédé selon l’une des revendications 1 à 11 , dans lequel on détermine, à partir d’une fréquence maximale du son généré par la fracture d’un substrat, une fréquence de vibration du substrat lors de la fracture et on déduit de ladite fréquence de vibration une vitesse de fracture du substrat.
13. Procédé selon l’une des revendications 1 à 12, dans lequel on détermine, à partir de l’intensité du son généré par la fracture d’un substrat, une énergie libérée lors de ladite fracture.
14. Procédé selon l’une des revendications 1 à 13, dans lequel on détermine la vitesse d’une onde de fracture se propageant dans un substrat à partir de la fréquence maximale correspondant au pic d’intensité sonore.
15. Procédé selon l’une des revendications 1 à 14, dans lequel chaque substrat comprend au moins un matériau semi-conducteur.
16. Dispositif pour le traitement thermique d’un lot de substrats comprenant chacun une zone de fragilisation formée par implantation d’espèces atomiques en vue de fracturer ledit substrat le long de ladite zone de fragilisation, comprenant un four de recuit (1 ) comprenant une chambre de chauffage (11 ) configurée pour recevoir simultanément l’ensemble dudit lot, au moins un microphone (3) configuré pour enregistrer les sons à l’intérieur ou au voisinage de la chambre de chauffage, et un système de traitement (4) configuré pour détecter, à partir d’un enregistrement sonore produit par ledit microphone, un son émis par une fracture d’un substrat le long de la zone de fragilisation.
17. Dispositif selon la revendication 16, dans lequel le microphone (3) est agencé dans un tube (30) débouchant à l’intérieur de la chambre de chauffage (1 1 ).
18. Dispositif selon l’une des revendications 16 ou 17, comprenant au moins deux microphones (3) distants l’un de l’autre.
19. Dispositif selon la revendication 18, dans lequel le système de traitement (4) est configuré pour, à partir d’un décalage temporel entre les sons de la fracture d’un substrat détectés dans l’enregistrement de chacun desdits microphones, localiser au sein du lot le substrat pour lequel la fracture s’est produite.
20. Dispositif selon l’une des revendications 16 à 19, comprenant en outre un système de contrôle du four configuré pour stopper le traitement thermique dès que la fracture de l’ensemble des substrats du lot a été détectée.
PCT/FR2019/050659 2018-03-28 2019-03-22 Procédé de détection de la fracture d'un substrat fragilise par implantation d'espèces atomiques WO2019186037A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020551816A JP7426551B2 (ja) 2018-03-28 2019-03-22 原子種の注入により弱化させた基板の分割を検出するための方法
SG11202009544XA SG11202009544XA (en) 2018-03-28 2019-03-22 Method for detecting the splitting of a substrate weakened by implanting atomic species
EP19718441.9A EP3776639A1 (fr) 2018-03-28 2019-03-22 Procédé de détection de la fracture d'un substrat fragilise par implantation d'espèces atomiques
US17/042,755 US20210028036A1 (en) 2018-03-28 2019-03-22 Method for detecting the splitting of a substrate weakened by implanting atomic species
KR1020207031050A KR102526747B1 (ko) 2018-03-28 2019-03-22 원자 종들을 임플란팅 함으로써 약해진 기판의 분할을 검출하기 위한 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1852683A FR3079658B1 (fr) 2018-03-28 2018-03-28 Procede de detection de la fracture d'un substrat fragilise par implantation d'especes atomiques
FR1852683 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019186037A1 true WO2019186037A1 (fr) 2019-10-03

Family

ID=62751062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/050659 WO2019186037A1 (fr) 2018-03-28 2019-03-22 Procédé de détection de la fracture d'un substrat fragilise par implantation d'espèces atomiques

Country Status (7)

Country Link
US (1) US20210028036A1 (fr)
EP (1) EP3776639A1 (fr)
JP (1) JP7426551B2 (fr)
KR (1) KR102526747B1 (fr)
FR (1) FR3079658B1 (fr)
SG (1) SG11202009544XA (fr)
WO (1) WO2019186037A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681472A1 (fr) * 1991-09-18 1993-03-19 Commissariat Energie Atomique Procede de fabrication de films minces de materiau semiconducteur.
FR2902926A1 (fr) 2006-06-22 2007-12-28 Commissariat Energie Atomique Procede et dispositif de suivi d'un traitement thermique d'un substrat microtechnologique.
JP2009231697A (ja) * 2008-03-25 2009-10-08 Dainippon Screen Mfg Co Ltd 熱処理装置
US20100039128A1 (en) * 2008-08-13 2010-02-18 Alois Nitsch Method and Apparatus for Detecting a Crack in a Semiconductor Wafer, and a Wafer Chuck
US20130213137A1 (en) * 2007-03-10 2013-08-22 Sergei Ostapenko Method and apparatus for detecting cracks and delamination in composite materials

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4379943B2 (ja) * 1999-04-07 2009-12-09 株式会社デンソー 半導体基板の製造方法および半導体基板製造装置
JP3541359B2 (ja) * 2001-09-19 2004-07-07 独立行政法人 科学技術振興機構 超音波プローブの一部を内蔵した基板載置台及び超音波プローブ貫通孔の密閉装置
US7461535B2 (en) * 2006-03-01 2008-12-09 Memsic, Inc. Multi-temperature programming for accelerometer
JP2009283582A (ja) * 2008-05-21 2009-12-03 Shin Etsu Handotai Co Ltd 貼り合わせウェーハの製造方法及び貼り合わせウェーハ
US20110016975A1 (en) * 2009-07-24 2011-01-27 Gregory Scott Glaesemann Method and Apparatus For Measuring In-Situ Characteristics Of Material Exfoliation
FR2973157B1 (fr) * 2011-03-25 2014-03-14 Soitec Silicon On Insulator Procédé de réalisation d'ilots de matériau contraint au moins partiellement relaxe
FR2974944B1 (fr) * 2011-05-02 2013-06-14 Commissariat Energie Atomique Procédé de formation d'une fracture dans un matériau
FR3020175B1 (fr) * 2014-04-16 2016-05-13 Soitec Silicon On Insulator Procede de transfert d'une couche utile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681472A1 (fr) * 1991-09-18 1993-03-19 Commissariat Energie Atomique Procede de fabrication de films minces de materiau semiconducteur.
FR2902926A1 (fr) 2006-06-22 2007-12-28 Commissariat Energie Atomique Procede et dispositif de suivi d'un traitement thermique d'un substrat microtechnologique.
US20130213137A1 (en) * 2007-03-10 2013-08-22 Sergei Ostapenko Method and apparatus for detecting cracks and delamination in composite materials
JP2009231697A (ja) * 2008-03-25 2009-10-08 Dainippon Screen Mfg Co Ltd 熱処理装置
US20100039128A1 (en) * 2008-08-13 2010-02-18 Alois Nitsch Method and Apparatus for Detecting a Crack in a Semiconductor Wafer, and a Wafer Chuck

Also Published As

Publication number Publication date
FR3079658A1 (fr) 2019-10-04
FR3079658B1 (fr) 2021-12-17
JP2021519512A (ja) 2021-08-10
EP3776639A1 (fr) 2021-02-17
KR102526747B1 (ko) 2023-04-27
SG11202009544XA (en) 2020-10-29
US20210028036A1 (en) 2021-01-28
KR20200136981A (ko) 2020-12-08
TW201942999A (zh) 2019-11-01
JP7426551B2 (ja) 2024-02-02

Similar Documents

Publication Publication Date Title
US20230334645A1 (en) Systems and methods for damage detection
EP0267823B1 (fr) Dispositif de détection de la présence de givre et/ou de mesure de l'épaisseur de givre par ultra-sons et sonde de givrage utilisable dans un tel dispositif
EP0541434B1 (fr) Procédé et dispositif de contrÔle interne de pièces par ultrasons
EP1917497A2 (fr) Procede et dispositif de surveillance d'une structure d'un avion
FR2931648A1 (fr) Autocuiseur equipe de moyens de controle
FR2650772A1 (fr) Procede et dispositif pour effectuer la detection d'une percee de facon acoustique
WO2019186037A1 (fr) Procédé de détection de la fracture d'un substrat fragilise par implantation d'espèces atomiques
FR3066218A1 (fr) Systeme d'ouvrant d'explosion, batiment et procede associes
EP1023512B1 (fr) Serrure gerant l'evolution d'un parametre lie a l'environnement
EP2030231B1 (fr) Procede et dispositif de suivi d'un traitement thermique d'un substrat microtechnologique
EP4116034B1 (fr) Dispositif de coupe equipe d'une buse d'aspiration
FR2610110A1 (fr) Dispositif de detection de defauts structurels
KR20080059059A (ko) 기판의 스티킹 발생을 검출하는 방법 및 그 시스템
TWI840349B (zh) 用以檢測藉植入原子物種而弱化之基體的分裂之方法
FR2777654A1 (fr) Dispositif de mesure de la pression d'une atmosphere
US6612172B2 (en) Sol-gel tube crack detection apparatus and method
FR2864235A1 (fr) Systeme de test et procede pour mesurer l'etancheite de gants, notamment dans des installations pharmaceutiques
WO2015185859A1 (fr) Procede et systeme d'exploitation et de surveillance d'un puits d'extraction ou de stockage de fluide
FR3089465A1 (fr) Système de batterie mettant en œuvre un procédé de détection d’impacts par mesure sonore
FR2632482A1 (fr) Systeme de detection de particules libres dans un boitier de composant et procede de detection
FR2894335A1 (fr) Procede et dispositif de mesure de conductivite thermique
EP4027098B1 (fr) Dispositif de contrôle de la mise à poste d'un projectile dans le tube d'une arme et procédé de contrôle mettant en oeuvre un tel dispositif
EP0173606B1 (fr) Dispositifs de surveillance par sceau thermique d'un conteneur calogène renfermant notamment de la matière calogène
FR2523723A1 (fr) Procede de detection d'une baisse de pression interne de gaz dans les produits du type recipient
FR3126483A1 (fr) Système de contrôle de la mise á poste d'un projectile dans un tube d'arme et procédé de contrôle mis en oeuvre par un tel système

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19718441

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020551816

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207031050

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019718441

Country of ref document: EP

Effective date: 20201028