WO2019184689A1 - 量测设备及基板的量测方法 - Google Patents

量测设备及基板的量测方法 Download PDF

Info

Publication number
WO2019184689A1
WO2019184689A1 PCT/CN2019/077650 CN2019077650W WO2019184689A1 WO 2019184689 A1 WO2019184689 A1 WO 2019184689A1 CN 2019077650 W CN2019077650 W CN 2019077650W WO 2019184689 A1 WO2019184689 A1 WO 2019184689A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
measuring
measurement
rotating mechanism
robot arm
Prior art date
Application number
PCT/CN2019/077650
Other languages
English (en)
French (fr)
Inventor
李�昊
潘国辉
汪斌
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US16/467,983 priority Critical patent/US20200180144A1/en
Publication of WO2019184689A1 publication Critical patent/WO2019184689A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0014Gripping heads and other end effectors having fork, comb or plate shaped means for engaging the lower surface on a object to be transported
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0084Programme-controlled manipulators comprising a plurality of manipulators
    • B25J9/0087Dual arms
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133351Manufacturing of individual cells out of a plurality of cells, e.g. by dicing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays

Definitions

  • the present application relates to the field of display technologies, and in particular, to a measuring device and a measuring method of a substrate.
  • the frame glue provides a substrate for the array substrate and the color film substrate to be laminated to the synthetic liquid crystal cell, but the sealant easily overflows to the peripheral circuit region of the adjacent array substrate during coating, causing contamination of the liquid crystal panel.
  • the array substrate can be used back to back (Back By Back) typesetting design. Based on the existing edge-to-edge design, the array substrate adjacent to the short side of the array substrate is rotated by 180° to improve the contamination of the peripheral drive circuit wiring area by the sealant.
  • the measuring device such as the array substrate electrical yield measuring device. Due to the mechanism design of some measuring equipment, etc., when measuring the substrate, the substrate needs to be placed on the measuring device to meet the requirements of direction and position.
  • the current measuring equipment is mainly used for measuring the Side By Side substrate, and does not consider the special distribution of the Side By Side substrate.
  • the present application provides a measuring device and a measuring method of a substrate to solve the measurement equipment required for the placement position and direction of the measuring substrate in the prior art, and cannot measure and flow the back-to-back substrate. The problem.
  • a measuring device for automatically measuring a substrate, the measuring device comprising: a measuring mechanism, a robot arm, a rotating mechanism;
  • the measuring mechanism is configured to measure the substrate, the measuring mechanism comprises: a measuring platform for placing the substrate, a measuring unit for measuring the substrate, and a first clamping plate ;
  • the measurement platform is divided into a first measurement area and a second measurement area, the first measurement area is a vertical substrate area, and the second measurement area is a horizontal substrate area;
  • the robot arm is used for picking up and transferring the substrate, the robot arm includes: a first robot arm and a second robot arm;
  • the rotating mechanism is disposed above the measuring mechanism for rotating the substrate to a desired angle, and the rotating mechanism comprises: a rotating unit for rotating the substrate, and a fixing for fixing the substrate a unit, a support unit, and a control unit for accepting an instruction;
  • the array substrate is arranged on the substrate, the array substrate comprises a display area and a peripheral circuit area, and when the substrate is measured, the display area is placed corresponding to the direction of the console, the periphery The circuit area is placed corresponding to the direction of the robot arm.
  • the mechanical arm includes a bifurcation, and the number of bifurcations of the second mechanical arm is greater than the number of bifurcations of the first mechanical arm;
  • the substrate is operated by the first robot arm, and when the short side of the substrate faces the robot arm, the second robot arm is operated The substrate.
  • the substrate comprises: a horizontal back-to-back substrate, a vertical back-to-back substrate, a horizontal non-back-back substrate, and a vertical non-back-back substrate.
  • the rotating unit is a rotating electrical machine
  • the fixing unit includes a second clamping plate for fixing four sides of the substrate, and a vacuum adsorber for adsorbing the substrate, wherein the control unit is controlled by a PLC.
  • a method for measuring a substrate is provided, and the substrate is measured by the measuring device, and the measuring method of the substrate includes:
  • Step S10 The CIM system generates the instruction according to the type of the substrate and transmits the instruction to the measuring mechanism, the robot arm, and the rotating mechanism.
  • Step S20 after receiving the instruction, the robot arm takes out the substrate from the storage device and places it at the rotating mechanism, and the rotating mechanism rotates the substrate to a target angle, and then the machine The arm transfers the substrate to the measuring mechanism, and the measurement of the substrate is completed through mutual cooperation between the mechanical arm, the rotating mechanism and the measuring mechanism;
  • Step S30 the robot arm places the substrate in a designated area of the storage device.
  • the step S20 when the substrate is a vertical non-back-to-back substrate, the step S20 includes:
  • the substrate After receiving the instruction, the substrate is directly taken out from the storage device and placed at the rotating mechanism to rotate by 0° or 180°, and then the substrate is transferred to the first measurement area, The substrate is measured, and after the measurement is completed, the substrate is restored to the original angle by the rotating mechanism to complete the measurement of the substrate.
  • the step S20 when the substrate is a horizontal non-back-to-back substrate, the step S20 includes:
  • the substrate After receiving the instruction, the substrate is taken out from the storage device and placed at the rotating mechanism for 90° or 270°, and then the substrate is transferred to the second measurement area. The substrate is measured until the measurement is completed, and the substrate is restored to the original angle by the rotating structure to complete the measurement of the substrate.
  • the back-to-back substrate when the substrate is a back-to-back substrate, the back-to-back substrate includes a first array substrate and a second array substrate, and a direction of the first array substrate and the measuring platform are The demand direction of the array substrate is the same.
  • the step S20 when the substrate is a vertical back-to-back substrate, the step S20 includes:
  • the substrate After receiving the instruction, the substrate is taken out from the storage device and directly transferred to the first measurement area, the first array substrate is measured, and the substrate is placed in the Rotating the rotating mechanism to 180°, transferring the substrate to the first measuring area, measuring the second array substrate, and recovering the substrate to an original angle by the rotating mechanism, completing the pair Measurement of the substrate.
  • the step S20 when the substrate is a horizontal back-to-back substrate, the step S20 includes:
  • the substrate After receiving the instruction, the substrate is taken out of the storage device and transferred to the rotating mechanism for rotation by 90°, and the substrate is transferred to the second measurement area, for the first array
  • the substrate is measured, and then the substrate is transferred to the rotating mechanism for rotation by 180°, that is, rotated by 270° with respect to the initial position of the substrate, and the substrate is transferred to the second measurement area,
  • the substrate is returned to the original angle by the rotating mechanism to complete the measurement of the substrate.
  • a method for measuring a substrate is provided, and the measuring device is measured by the measuring device, and the method includes:
  • Step S10 The CIM system generates the instruction according to the type of the substrate and transmits the instruction to the measuring mechanism, the robot arm, and the rotating mechanism.
  • Step S20 after receiving the instruction, the robot arm takes out the substrate from the storage device and places it at the rotating mechanism, and the rotating mechanism rotates the substrate to a target angle, and then the machine The arm transfers the substrate to the measuring mechanism, and the measurement of the substrate is completed through mutual cooperation between the mechanical arm, the rotating mechanism and the measuring mechanism;
  • Step S30 the robot arm places the substrate in a designated area of the storage device
  • the substrate is a glass substrate.
  • the step S20 when the substrate is a vertical non-back-to-back substrate, the step S20 includes:
  • the substrate After receiving the instruction, the substrate is directly taken out from the storage device and placed at the rotating mechanism to rotate by 0° or 180°, and then the substrate is transferred to the first measurement area, The substrate is measured, and after the measurement is completed, the substrate is restored to the original angle by the rotating mechanism to complete the measurement of the substrate.
  • the step S20 when the substrate is a horizontal non-back-to-back substrate, the step S20 includes:
  • the substrate After receiving the instruction, the substrate is taken out from the storage device and placed at the rotating mechanism for 90° or 270°, and then the substrate is transferred to the second measurement area. The substrate is measured until the measurement is completed, and the substrate is restored to the original angle by the rotating structure to complete the measurement of the substrate.
  • the back-to-back substrate when the substrate is a back-to-back substrate, includes a first array substrate and a second array substrate, and a direction of the first array substrate and the measuring platform are The demand direction of the array substrate is the same, and the direction of the second array substrate is opposite to the demand direction of the measurement platform to the array substrate.
  • the step S20 when the substrate is a vertical back-to-back substrate, the step S20 includes:
  • the substrate After receiving the instruction, the substrate is taken out from the storage device and directly transferred to the first measurement area, the first array substrate is measured, and the substrate is placed in the Rotating the rotating mechanism to 180°, transferring the substrate to the first measuring area, measuring the second array substrate, and recovering the substrate to an original angle by the rotating mechanism, completing the pair Measurement of the substrate.
  • the step S20 when the substrate is a horizontal back-to-back substrate, the step S20 includes:
  • the substrate After receiving the instruction, the substrate is taken out of the storage device and transferred to the rotating mechanism for rotation by 90°, and the substrate is transferred to the second measurement area, for the first array
  • the substrate is measured, and then the substrate is transferred to the rotating mechanism for rotation by 180°, that is, rotated by 270° with respect to the initial position of the substrate, and the substrate is transferred to the second measurement area,
  • the substrate is returned to the original angle by the rotating mechanism to complete the measurement of the substrate.
  • the mechanical arm includes a bifurcation, and the number of bifurcations of the second mechanical arm is greater than the number of bifurcations of the first mechanical arm;
  • the substrate is operated by the first robot arm, and when the short side of the substrate faces the robot arm, the second robot arm is operated The substrate.
  • the substrate includes a horizontal back-to-back substrate, a vertical back-to-back substrate, a horizontal non-back-back substrate, and a vertical non-back-back substrate.
  • the rotating unit includes a rotating electrical machine
  • the fixing unit includes a second clamping plate for fixing four sides of the substrate, and a vacuum adsorber for adsorbing the substrate
  • the control unit includes PLC control a unit, the support unit comprising a frame of the rotating mechanism.
  • FIG. 1 is a schematic structural view of a vertical back-to-back substrate
  • FIG. 2 is a schematic structural view of a rotating mechanism in an embodiment of the present application.
  • FIG. 3 is a schematic structural view of a first mechanical arm in an embodiment of the present application.
  • FIG. 4 is a schematic structural view of a second robot arm in the embodiment of the present application.
  • Figure 5 is a schematic view showing the overall structure of a robot arm in the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a measuring mechanism in an embodiment of the present application.
  • FIG. 7 is a schematic flow chart of a method for measuring a substrate according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a rotation angle of a back-to-back substrate in a measurement process according to an embodiment of the present application.
  • the measuring device for measuring the placement position and direction of the measuring substrate in the prior art cannot realize the measurement and the flow sheet of the back-to-back substrate, and the measurement device and the substrate are measured. method.
  • FIG. 1 is a schematic structural view of a vertical back-to-back substrate.
  • FIG. 2 is a schematic structural diagram of a rotating mechanism according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a first mechanical arm according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a second robot arm according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a measuring mechanism in an embodiment of the present application.
  • the present application provides a measuring device for automatically measuring a substrate, the measuring device comprising a measuring mechanism 63, a rotating mechanism 61, a robot arm 62;
  • the measuring mechanism 63 is configured to measure the substrate, the measuring mechanism 63 includes a measuring platform 631 for placing the substrate, a measuring unit 632 for measuring the substrate, and First splint 633.
  • the measurement platform is divided into a first measurement area 631a and a second measurement area 631b, the first measurement area 631a is a vertical substrate area, and the second measurement area 631b is a horizontal substrate area.
  • the robot arm 62 is used to pick up and transfer the substrate, and the robot arm 62 includes a first robot arm 621 and a second robot arm 622 for picking up and transferring the substrate.
  • the rotating mechanism 61 is disposed above the measuring mechanism 63 for rotating the substrate to a desired angle, and includes: a rotating unit 611 for rotating the substrate, and a fixing unit for fixing the substrate 612. A support unit 613 and a control unit 614 for accepting the instructions.
  • the array substrate 11 is arranged on the substrate, and the array substrate 11 includes a display area 111 and a peripheral circuit area 112.
  • the display area 111 corresponds to an operation.
  • the stage direction 5b is placed, and the peripheral circuit area 112 is placed corresponding to the robot arm direction 5a.
  • FIG. 5 is a schematic diagram of the overall structure of the mechanical arm in the embodiment of the present application.
  • the robot arm 62 includes a bifurcation, and the number of forks of the second robot arm 622 is greater than the number of forks of the first robot arm 621.
  • the first mechanical arm 621 is used as the substrate, and when the short side of the substrate faces the robot arm, the second machine is adopted.
  • the arm 622 operates the substrate, and the arrangement is advantageous in that the stability of the robot arm during the grasping transfer process can be improved by picking up the substrate by the second mechanical arm 622 having a large number of bifurcations, and the rotation of the substrate during the measurement process is required. The characteristics, in turn, effectively prevent the substrate from slipping.
  • the substrate includes a horizontal back-to-back substrate, a vertical back-to-back substrate, a horizontal non-back-back substrate, and a vertical non-back-back substrate.
  • the control mechanism can output corresponding commands by identifying different substrates. In turn, measurement and flow sheeting of the unused substrate are realized.
  • the rotating unit 611 is a rotating electrical machine
  • the fixing unit 612 includes a second clamping plate 6121 for fixing four sides of the substrate and a vacuum adsorber 6122 for adsorbing the substrate
  • the control unit 614 is A PLC control unit
  • the support unit 613 is a frame of the rotating mechanism 61.
  • the amount of the substrate Test methods include:
  • Step S10 The CIM system generates the instruction according to the type of the substrate and transmits the instruction to the measuring mechanism, the robot arm, and the rotating mechanism.
  • Step S20 after receiving the instruction, the robot arm 62 takes out the substrate from the storage device and places it at the rotating mechanism 61. After the rotating mechanism 61 rotates the substrate to a target angle, the The robot arm 62 transfers the substrate to the measuring mechanism 61, and the measurement of the substrate is completed through mutual cooperation between the robot arm 62, the rotating mechanism 61 and the measuring mechanism 63;
  • Step S30 the robot arm 62 places the substrate in a designated area of the storage device.
  • the CIM system is a computer integrated manufacturing system for uniformly controlling the actual operation of each device in the substrate production measurement process through instructions.
  • the substrate is a vertical non-back-to-back substrate
  • the specific operation of the step S20 is:
  • the substrate After receiving the instruction, the substrate is directly taken out from the storage device and placed at the rotation mechanism 61 to rotate by 0° or 180°, and then the substrate is transferred to the first measurement area 631a. Measuring the substrate until the measurement is completed, the substrate is restored to the original angle by the rotating mechanism 61, and the measurement of the substrate is completed, and the step involves picking up and transferring the substrate. Both are implemented by the robot arm 62 during the process.
  • the substrate is a horizontal non-back-to-back substrate
  • the operation of the step S20 is:
  • the substrate After receiving the instruction, the substrate is taken out from the storage device and placed at the rotation mechanism 61 by 90° or 270°, and then the substrate is transferred to the second measurement area 631b. The substrate is measured, and after the measurement is completed, the substrate is restored to the original angle by the rotating structure 61, and the measurement of the substrate is completed.
  • the above steps involve the process of picking up and transferring the substrate. Both are implemented by the robot arm 62.
  • the back-to-back substrate When the substrate is a back-to-back substrate, the back-to-back substrate includes a first array substrate 11a and a second array substrate 11b, a direction of the first array substrate 11a and a requirement of the measuring platform for the array substrate The direction is the same, and the direction of the second array substrate 11b is opposite to the demand direction of the measurement platform to the array substrate.
  • step S20 when the substrate is a vertical back-to-back substrate, the specific operation of the step S20 is:
  • the substrate After receiving the instruction, the substrate is taken out from the storage device and directly transferred to the first measurement area 631a, the first array substrate 11a is measured, and the substrate is placed on the substrate.
  • the rotating mechanism 61 is rotated by 180°, the substrate is transferred to the first measuring area 631a, the second substrate 11b is measured, and the substrate is restored by the rotating mechanism 61 to At the original angle, the measurement of the substrate is completed, and the above-mentioned steps are performed by the robot arm 62 during the process of picking up and transferring the substrate.
  • the substrate is a horizontal back-to-back substrate
  • the specific operation of the step S20 is:
  • the substrate After receiving the instruction, the substrate is taken out from the storage device and transferred to the rotating mechanism 62 to rotate by 90°, and the substrate is transferred to the second measurement area 631b.
  • An array substrate 11a is measured, and then the substrate is transferred to the rotating mechanism 61 for rotation by 180°, that is, rotated by 270° with respect to the initial position of the substrate, and the substrate is transferred to the second amount.
  • the substrate On the measuring area 631b, the substrate is restored to the original angle by the rotating mechanism 61, and the measurement of the substrate is completed.
  • the above steps involve the robot arm 62 in the process of picking up and transferring the substrate. .
  • the working principle of the measuring method of the substrate in the embodiment of the present application is consistent with the working principle of the measuring device.
  • the working principle of the measuring device refer to the working principle of the measuring device, and details are not described herein.
  • the present application provides a measuring device and a measuring method of a substrate.
  • a rotating mechanism By adding a rotating mechanism to the measuring device, and improving the mechanical arm and the measuring mechanism, the rotating mechanism, the robot arm and the measuring mechanism are matched with each other, thereby realizing different pairs. Measurement and flow sheet of type substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本申请提供了量测设备及基板的量测方法,所述量测设备包括实施量测的量测机构、拾取和转移基板的机械手臂、将基板进行方向调整的旋转机构。本申请通过在量测设备上增加旋转机构,以及改进机械手臂和量测机构,使旋转机构、机械手臂和量测机构相互配合,进而实现对不同类型基板的量测和流片。

Description

量测设备及基板的量测方法 技术领域
本申请涉及显示技术领域,具体涉及一种量测设备及基板的量测方法。
背景技术
在液晶盒制程中,框胶为阵列基板和彩膜基板贴合成液晶盒提供基材,但是框胶在进行涂布时易外溢至相邻阵列基板的外围电路区域,造成对液晶面板的污染。
为了改善框胶对外围电路区域的污染问题,可采用阵列基板背靠背(Back By Back)的排版设计。在现有边靠边的设计基础上,将阵列基板短边相邻的阵列基板旋转180°,以改善框胶对外围驱动电路接线区的污染问题。
在液晶面板的制程中,需要对基板上各部件的功能进行量测,这一过程需要在量测设备上进行,如阵列基板电性良率量测设备。因部分量测设备的机构设计等原因,在对基板进行量测的时候,需将基板放置在量测设备上符合方向和位置的要求。
但是目前的量测设备主要是针对边靠边(Side By Side)式基板进行量测,并未考虑边靠边(Side By Side)式基板的特殊分布。
因此目前亟需一种量测设备及基板的量测方法,能够既完成对边靠边(Side By Side)式基板的量测,也能完成背靠背(Back By Back)式基板的量测。
技术问题
本申请提供了一种量测设备及基板的量测方法,以解决现有技术中对待量测基板的放置位置和方向有要求的量测设备,无法实现对背对背式基板进行量测和流片的问题。
技术解决方案
为实现上述目的,本申请提供的技术方案如下:
根据本申请的一个方面,提供了一种量测设备,用于对基板进行自动量测,所述量测设备包括:量测机构、机械手臂、旋转机构;
所述量测机构用于对所述基板进行量测,所述量测机构包括:用于放置所述基板的量测平台、用于对所述基板进行量测的量测单元和第一夹板;
所述量测平台分为第一量测区域和第二量测区域,所述第一量测区域为竖版基板区域,所述第二量测区域为横版基板区域;
所述机械手臂用于拾取和转移所述基板,所述机械手臂包括:第一机械手臂和第二机械手臂;
所述旋转机构设置于所述量测机构的上方,用于将所述基板旋转至所需角度,所述旋转机构包括:用于旋转所述基板的旋转单元、用于固定所述基板的固定单元、支撑单元以及用于接受指令的控制单元;
其中,所述基板上排布有阵列基板,所述阵列基板包括显示区域和外围电路区域,在对所述基板进行量测时,所述显示区域对应于所述操作台方向放置,所述外围电路区域对应于所述机械手臂方向放置。
根据本申请一实施例,所述机械手臂包括分叉,所述第二机械手臂的分叉数大于所述第一机械手臂的分叉数;
当所述基板的长边面对所述机械手臂时,采用所述第一机械手臂操作所述基板,当所述基板的短边面对所述机械手臂时,采用所述第二机械手臂操作所述基板。
根据本申请一实施例,所述基板包括:横版背靠背式基板、竖版背靠背式基板、横版非背靠背式基板和竖版非背靠背式基板。
根据本申请一实施例,所述旋转单元为旋转电机,所述固定单元包括用于固定所述基板四边的第二夹板以及用于吸附所述基板的真空吸附器,所述控制单元为PLC控制单元,所述支撑单元为所述旋转机构的框架。
根据本申请的另一个方面,提供了一种基板的量测方法,采用所述量测设备对所述基板进行量测,所述基板的量测方法包括:
步骤S10、CIM系统根据所述基板的类型生成所述指令传送给所述量测机构、所述机械手臂和所述旋转机构;
步骤S20、所述机械手臂在接收所述指令后将所述基板从存储设备中取出并放置在所述旋转机构处,所述旋转机构将所述基板旋转至目标角度后,再由所述机械手臂将所述基板转移至所述量测机构上,经过所述机械手臂、所述旋转机构和所述量测机构之间的相互配合,完成所述基板的量测;
步骤S30、所述机械手臂将所述基板放置在所述存储设备的指定区域。
根据本申请一实施例,当所述基板为竖版非背靠背式基板时,所述步骤S20包括:
在接收所述指令后直接将所述基板从所述存储设备中取出并放置在所述旋转机构处旋转0°或180°,再将所述基板转移至所述第一量测区域上,对所述基板进行量测,直到量测完成后,通过所述旋转机构将所述基板恢复至原始角度,完成对所述基板的量测。
根据本申请一实施例,当所述基板为横版非背靠背式基板时,所述步骤S20包括:
在接收所述指令后将所述基板从所述存储设备中取出并放置在所述旋转机构处旋转90°或270°,再将所述基板转移至所述第二量测区域上,对所述基板进行量测,直到量测完成后,通过所述旋转结构将所述基板恢复至原始角度,完成对所述基板的量测。
根据本申请一实施例,当所述基板为背靠背式基板时,所述背靠背式基板包括第一阵列基板和第二阵列基板,所述第一阵列基板的方向与所述量测平台对所述阵列基板的需求方向相同。
根据本申请一实施例,当所述基板为竖版背靠背式基板时,所述步骤S20包括:
在接收所述指令后将所述基板从所述存储设备中取出并直接转移至所述第一量测区域上,对所述第一阵列基板进行量测,再将所述基板放置在所述旋转机构处旋转180°,再将所述基板转移至所述第一量测区域上,对所述第二阵列基板进行量测,通过所述旋转机构将所述基板恢复至原始角度,完成对所述基板的量测。
根据本申请一实施例,当所述基板为横版背靠背式基板时,所述步骤S20包括:
在接收所述指令后将所述基板从所述存储设备中取出并转移至所述旋转机构处旋转90°,将所述基板转移至所述第二量测区域上,对所述第一阵列基板进行量测,随后将所述基板转移至所述旋转机构处旋转180°,即相对于所述基板的初始位置旋转了270°,将所述基板转移至所述第二量测区域上,通过所述旋转机构将所述基板恢复至原始角度,完成对所述基板的量测。
根据本申请的又一个方面,还提供了一种基板的量测方法,采用所述量测设备对所述基板进行量测,其包括:
步骤S10、CIM系统根据所述基板的类型生成所述指令传送给所述量测机构、所述机械手臂和所述旋转机构;
步骤S20、所述机械手臂在接收所述指令后将所述基板从存储设备中取出并放置在所述旋转机构处,所述旋转机构将所述基板旋转至目标角度后,再由所述机械手臂将所述基板转移至所述量测机构上,经过所述机械手臂、所述旋转机构和所述量测机构之间的相互配合,完成所述基板的量测;
步骤S30、所述机械手臂将所述基板放置在所述存储设备的指定区域;
其中,所述基板为玻璃基板。
根据本申请一实施例,当所述基板为竖版非背靠背式基板时,所述步骤S20包括:
在接收所述指令后直接将所述基板从所述存储设备中取出并放置在所述旋转机构处旋转0°或180°,再将所述基板转移至所述第一量测区域上,对所述基板进行量测,直到量测完成后,通过所述旋转机构将所述基板恢复至原始角度,完成对所述基板的量测。
根据本申请一实施例,当所述基板为横版非背靠背式基板时,所述步骤S20包括:
在接收所述指令后将所述基板从所述存储设备中取出并放置在所述旋转机构处旋转90°或270°,再将所述基板转移至所述第二量测区域上,对所述基板进行量测,直到量测完成后,通过所述旋转结构将所述基板恢复至原始角度,完成对所述基板的量测。
根据本申请一实施例,当所述基板为背靠背式基板时,所述背靠背式基板包括第一阵列基板和第二阵列基板,所述第一阵列基板的方向与所述量测平台对所述阵列基板的需求方向相同,所述第二阵列基板的方向与所述量测平台对所述阵列基板的需求方向相反。
根据本申请一实施例,当所述基板为竖版背靠背式基板时,所述步骤S20包括:
在接收所述指令后将所述基板从所述存储设备中取出并直接转移至所述第一量测区域上,对所述第一阵列基板进行量测,再将所述基板放置在所述旋转机构处旋转180°,再将所述基板转移至所述第一量测区域上,对所述第二阵列基板进行量测,通过所述旋转机构将所述基板恢复至原始角度,完成对所述基板的量测。
根据本申请一实施例,当所述基板为横版背靠背式基板时,所述步骤S20包括:
在接收所述指令后将所述基板从所述存储设备中取出并转移至所述旋转机构处旋转90°,将所述基板转移至所述第二量测区域上,对所述第一阵列基板进行量测,随后将所述基板转移至所述旋转机构处旋转180°,即相对于所述基板的初始位置旋转了270°,将所述基板转移至所述第二量测区域上,通过所述旋转机构将所述基板恢复至原始角度,完成对所述基板的量测。
根据本申请一实施例,所述机械手臂包括分叉,所述第二机械手臂的分叉数大于所述第一机械手臂的分叉数;
当所述基板的长边面对所述机械手臂时,采用所述第一机械手臂操作所述基板,当所述基板的短边面对所述机械手臂时,采用所述第二机械手臂操作所述基板。
根据本申请一实施例,所述基板包括横版背靠背式基板、竖版背靠背式基板、横版非背靠背式基板和竖版非背靠背式基板。
根据本申请一实施例,所述旋转单元包括旋转电机,所述固定单元包括用于固定所述基板四边的第二夹板以及用于吸附所述基板的真空吸附器,所述控制单元包括PLC控制单元,所述支撑单元包括所述旋转机构的框架。
有益效果
本申请通过在量测设备上增加旋转机构,以及改进机械手臂和量测机构,使旋转机构、机械手臂和量测机构相互配合,进而实现对不同类型基板的量测和流片。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为竖版背靠背式基板结构示意图;
图2为本申请实施例中旋转机构的结构示意图;
图3为本申请实施例中第一机械手臂的结构示意图;
图4为本申请实施例中第二机械手臂的结构示意图;
图5为本申请实施例中机械手臂的整体结构示意图;
图6为本申请实施例中量测机构的结构示意图;
图7为本申请实施例中基板的量测方法的流程示意图;
图8为本申请实施例中背对背式基板在量测过程中旋转角度的示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
本申请针现有技术中对待量测基板的放置位置和方向有要求的量测设备,无法实现对背对背式基板进行量测和流片的问题,提出了一种量测设备及基板的量测方法。
下面结合附图和具体实施例对本申请做进一步的说明:
请参阅图1,图1为竖版背靠背式基板结构示意图。
请参阅图2,图2为本申请实施例中旋转机构的结构示意图。
请参阅图3,图3为本申请实施例中第一机械手臂的结构示意图。
请参阅图4,图4为本申请实施例中第二机械手臂的结构示意图。
请参阅图6,图6为本申请实施例中量测机构的结构示意图。
本申请提供了一种量测设备,用于对基板进行自动量测,所述量测设备包括量测机构63、旋转机构61、机械手臂62;
所述量测机构63用于对所述基板进行量测,所述量测机构63包括用于放置所述基板的量测平台631、用于对所述基板进行量测的量测单元632和第一夹板633。
所述量测平台分为第一量测区域631a和第二量测区域631b,所述第一量测区域631a为竖版基板区域,所述第二量测区域631b为横版基板区域。
所述机械手臂62用于拾取和转移所述基板,所述机械手臂62包括:第一机械手臂621和第二机械手臂622,所述机械手臂62用于拾取和转移所述基板。
所述旋转机构61设置于所述量测机构63的上方,用于将所述基板旋转至所需角度,包括:用于旋转所述基板的旋转单元611、用于固定所述基板的固定单元612、支撑单元613以及用于接受所述指令的控制单元614。
其中,所述基板上排布有阵列分布的阵列基板11,所述阵列基板11包括显示区域111和外围电路区域112,在对所述基板11进行量测时,所述显示区域111对应于操作台方向5b放置,所述外围电路区域112对应于所述机械手臂方向5a放置。
请参阅图5,图5为本申请实施例中机械手臂的整体结构示意图。
所述机械手臂62包括分叉,所述第二机械手臂622的分叉数大于所述第一机械手臂621的分叉数。
当所述基板的长边面对所述机械手臂时,采用所述第一机械手臂操621作所述基板,当所述基板的短边面对所述机械手臂时,采用所述第二机械手臂622操作所述基板,这样设置的好处在于,通过将分叉数多的第二机械手臂622拾取基板可以能够提升机械手臂在抓取转移过程的稳定性,针对基板量测过程中的需旋转的特性,进而有效地防止基板的滑落。
具体的,所述基板包括横版背靠背式基板、竖版背靠背式基板、横版非背靠背式基板和竖版非背靠背式基板,在本申请中控制机构可以通过识别不同基板进而输出相对应的指令,进而实现对不用基板的量测和流片。
在一实施例中,所述旋转单元611为旋转电机,所述固定单元612包括固定所述基板四边的第二夹板6121和用于吸附所述基板的真空吸附器6122,所述控制单元614为PLC控制单元,所述支撑单元613为所述旋转机构61的框架。
如图7所示,根据本申请的另一方面,还提供了一种基板的量测方法,采用权利要求1-4所述的量测设备对所述基板进行量测,所述基板的量测方法包括:
步骤S10、CIM系统根据所述基板的类型生成所述指令传送给所述量测机构、所述机械手臂和所述旋转机构;
步骤S20、所述机械手臂62在接收所述指令后将所述基板从存储设备中取出并放置在所述旋转机构61处,所述旋转机构61将所述基板旋转至目标角度后,所述机械手臂62将所述基板转移至所述量测机构61上,经过所述机械手臂62、所述旋转机构61和所述量测机构63之间的相互配合,完成所述基板的量测;
步骤S30、所述机械手臂62将所述基板放置在所述存储设备的指定区域。
其中,CIM系统为计算机集成制造系统,用于通过指令统一控制基板生产量测过程中各个设备的实际运行。
具体的,在实施例2中,所述基板为竖版非背靠背式基板,所述步骤S20的具体操作为:
在接收所述指令后直接将所述基板从所述存储设备中取出并放置在所述旋转机构61处旋转0°或180°,再将所述基板转移至所述第一量测区域631a上,对所述基板进行量测,直到量测完成后,通过所述旋转机构61将所述基板恢复至原始角度,完成对所述基板的量测,上述步骤中涉及到基板的拾取和转移的过程中均由所述机械手臂62实现。
在实施例3中,所述基板为横版非背靠背式基板,所述步骤S20的操作为:
在接收所述指令后将所述基板从所述存储设备中取出并放置在所述旋转机构61处旋转90°或270°,再将所述基板转移至所述第二量测区域631b上,对所述基板进行量测,直到量测完成后,通过所述旋转结构61将所述基板恢复至原始角度,完成对所述基板的量测,上述步骤中涉及到基板的拾取和转移的过程中均由所述机械手臂62实现。
当所述基板为背靠背式基板时,所述背靠背式基板包括第一阵列基板11a和第二阵列基板11b,所述第一阵列基板11a的方向与所述量测平台对所述阵列基板的需求方向相同,所述第二阵列基板11b的方向与所述量测平台对所述阵列基板的需求方向相反。
在实施例4中,所述基板为竖版背靠背式基板时,所述步骤S20的具体操作为:
在接收所述指令后将所述基板从所述存储设备中取出并直接转移至所述第一量测区域631a上,对所述第一阵列基板11a进行量测,再将所述基板放置在所述旋转机构61处旋转180°,再将所述基板转移至所述第一量测区域631a上,对所述第二基板11b进行量测,通过所述旋转机构61将所述基板恢复至原始角度,完成对所述基板的量测,上述步骤中涉及到基板的拾取和转移的过程中均由所述机械手臂62实现。
在实施例5中,所述基板为横版背靠背式基板,所述步骤S20的具体操作为:
在接收所述指令后将所述基板从所述存储设备中取出并转移至所述旋转机构62处旋转90°,将所述基板转移至所述第二量测区域631b上,对所述第一阵列基板11a进行量测,随后将所述基板转移至所述旋转机构61处旋转180°,即相对于所述基板的初始位置旋转了270°,将所述基板转移至所述第二量测区域631b上,通过所述旋转机构61将所述基板恢复至原始角度,完成对所述基板的量测, 上述步骤中涉及到基板的拾取和转移的过程中均由所述机械手臂62实现。
进一步的,实施例5中的背对背式基板在量测过程中旋转角度如图8所示。
本申请实施例中基板的量测方法的工作原理跟所述量测设备的工作原理一致,具体可参考所述量测设备的工作原理,此处不再做赘述。
本申请提供了量测设备及基板的量测方法,通过在量测设备上增加旋转机构,以及改进机械手臂和量测机构,使旋转机构、机械手臂和量测机构相互配合,进而实现对不同类型基板的量测和流片。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (19)

  1. 一种量测设备,用于对基板进行自动量测,其包括量测机构、机械手臂、旋转机构;
    所述量测机构用于对所述基板进行量测,所述量测机构包括用于放置所述基板的量测平台、用于对所述基板进行量测的量测单元和第一夹板;
    所述量测平台分为第一量测区域和第二量测区域,所述第一量测区域为竖版基板区域,所述第二量测区域为横版基板区域;
    所述机械手臂用于拾取和转移所述基板,所述机械手臂包括:第一机械手臂和第二机械手臂;
    所述旋转机构设置于所述量测机构的上方,用于将所述基板旋转至所需角度,所述旋转机构包括用于旋转所述基板的旋转单元、用于固定所述基板的固定单元、支撑单元以及用于接受指令的控制单元;
    其中,所述基板上排布有阵列基板,所述阵列基板包括显示区域和外围电路区域;在对所述基板进行量测时,所述显示区域对应于操作台方向放置,所述外围电路区域对应于所述机械手臂方向放置。
  2. 根据权利要求1所述的量测设备,其中,所述机械手臂包括分叉,所述第二机械手臂的分叉数大于所述第一机械手臂的分叉数;
    当所述基板的长边面对所述机械手臂时,采用所述第一机械手臂操作所述基板,当所述基板的短边面对所述机械手臂时,采用所述第二机械手臂操作所述基板。
  3. 根据权利要求1所述的量测设备,其中,所述基板包括横版背靠背式基板、竖版背靠背式基板、横版非背靠背式基板和竖版非背靠背式基板。
  4. 根据权利要求1所述的量测设备,其中,所述旋转单元包括旋转电机,所述固定单元包括用于固定所述基板四边的第二夹板以及用于吸附所述基板的真空吸附器,所述控制单元包括PLC控制单元,所述支撑单元包括所述旋转机构的框架。
  5. 一种基板的量测方法,采用权利要求1所述的量测设备对所述基板进行量测,其包括:
    步骤S10、CIM系统根据所述基板的类型生成所述指令传送给所述量测机构、所述机械手臂和所述旋转机构;
    步骤S20、所述机械手臂在接收所述指令后将所述基板从存储设备中取出并放置在所述旋转机构处,所述旋转机构将所述基板旋转至目标角度后,再由所述机械手臂将所述基板转移至所述量测机构上,经过所述机械手臂、所述旋转机构和所述量测机构之间的相互配合,完成所述基板的量测;
    步骤S30、所述机械手臂将所述基板放置在所述存储设备的指定区域。
  6. 根据权利要求5所述的基板的量测方法,其中,当所述基板为竖版非背靠背式基板时,所述步骤S20包括:
    在接收所述指令后直接将所述基板从所述存储设备中取出并放置在所述旋转机构处旋转0°或180°,再将所述基板转移至所述第一量测区域上,对所述基板进行量测,直到量测完成后,通过所述旋转机构将所述基板恢复至原始角度,完成对所述基板的量测。
  7. 根据权利要求5所述的基板的量测方法,其中,当所述基板为横版非背靠背式基板时,所述步骤S20的操作为:
    在接收所述指令后将所述基板从所述存储设备中取出并放置在所述旋转机构处旋转90°或270°,再将所述基板转移至所述第二量测区域上,对所述基板进行量测,直到量测完成后,通过所述旋转结构将所述基板恢复至原始角度,完成对所述基板的量测。
  8. 根据权利要求5所述的基板的量测方法,其中,当所述基板为背靠背式基板时,所述背靠背式基板包括第一阵列基板和第二阵列基板,所述第一阵列基板的方向与所述量测平台对所述阵列基板的需求方向相同,所述第二阵列基板的方向与所述量测平台对所述阵列基板的需求方向相反。
  9. 根据权利要求8所述的基板的量测方法,其中,当所述基板为竖版背靠背式基板时,所述步骤S20包括:
    在接收所述指令后将所述基板从所述存储设备中取出并直接转移至所述第一量测区域上,对所述第一阵列基板进行量测,再将所述基板放置在所述旋转机构处旋转180°,再将所述基板转移至所述第一量测区域上,对所述第二阵列基板进行量测,通过所述旋转机构将所述基板恢复至原始角度,完成对所述基板的量测。
  10. 根据权利要求8所述的基板的量测方法,其中,当所述基板为横版背靠背式基板时,所述步骤S20包括:
    在接收所述指令后将所述基板从所述存储设备中取出并转移至所述旋转机构处旋转90°,将所述基板转移至所述第二量测区域上,对所述第一阵列基板进行量测,随后将所述基板转移至所述旋转机构处旋转180°,即相对于所述基板的初始位置旋转了270°,将所述基板转移至所述第二量测区域上,通过所述旋转机构将所述基板恢复至原始角度,完成对所述基板的量测。
  11. 一种基板的量测方法,采用权利要求1所述的量测设备对所述基板进行量测,其包括:
    步骤S10、CIM系统根据所述基板的类型生成所述指令传送给所述量测机构、所述机械手臂和所述旋转机构;
    步骤S20、所述机械手臂在接收所述指令后将所述基板从存储设备中取出并放置在所述旋转机构处,所述旋转机构将所述基板旋转至目标角度后,再由所述机械手臂将所述基板转移至所述量测机构上,经过所述机械手臂、所述旋转机构和所述量测机构之间的相互配合,完成所述基板的量测;
    步骤S30、所述机械手臂将所述基板放置在所述存储设备的指定区域;
    其中,所述基板为玻璃基板。
  12. 根据权利要求11所述的基板的量测方法,其中,当所述基板为竖版非背靠背式基板时,所述步骤S20包括:
    在接收所述指令后直接将所述基板从所述存储设备中取出并放置在所述旋转机构处旋转0°或180°,再将所述基板转移至所述第一量测区域上,对所述基板进行量测,直到量测完成后,通过所述旋转机构将所述基板恢复至原始角度,完成对所述基板的量测。
  13. 根据权利要求11所述的基板的量测方法,其中,当所述基板为横版非背靠背式基板时,所述步骤S20包括:
    在接收所述指令后将所述基板从所述存储设备中取出并放置在所述旋转机构处旋转90°或270°,再将所述基板转移至所述第二量测区域上,对所述基板进行量测,直到量测完成后,通过所述旋转结构将所述基板恢复至原始角度,完成对所述基板的量测。
  14. 根据权利要求11所述的基板的量测方法,其中,当所述基板为背靠背式基板时,所述背靠背式基板包括第一阵列基板和第二阵列基板,所述第一阵列基板的方向与所述量测平台对所述阵列基板的需求方向相同,所述第二阵列基板的方向与所述量测平台对所述阵列基板的需求方向相反。
  15. 根据权利要求14所述的基板的量测方法,其中,当所述基板为竖版背靠背式基板时,所述步骤S20包括:
    在接收所述指令后将所述基板从所述存储设备中取出并直接转移至所述第一量测区域上,对所述第一阵列基板进行量测,再将所述基板放置在所述旋转机构处旋转180°,再将所述基板转移至所述第一量测区域上,对所述第二阵列基板进行量测,通过所述旋转机构将所述基板恢复至原始角度,完成对所述基板的量测。
  16. 根据权利要求14所述的基板的量测方法,其中,当所述基板为横版背靠背式基板时,所述步骤S20包括:
    在接收所述指令后将所述基板从所述存储设备中取出并转移至所述旋转机构处旋转90°,将所述基板转移至所述第二量测区域上,对所述第一阵列基板进行量测,随后将所述基板转移至所述旋转机构处旋转180°,即相对于所述基板的初始位置旋转了270°,将所述基板转移至所述第二量测区域上,通过所述旋转机构将所述基板恢复至原始角度,完成对所述基板的量测。
  17. 根据权利要求11所述的基板的量测方法,其中,所述机械手臂包括分叉,所述第二机械手臂的分叉数大于所述第一机械手臂的分叉数;
    当所述基板的长边面对所述机械手臂时,采用所述第一机械手臂操作所述基板,当所述基板的短边面对所述机械手臂时,采用所述第二机械手臂操作所述基板。
  18. 根据权利要求11所述的基板的量测方法,其中,所述基板包括横版背靠背式基板、竖版背靠背式基板、横版非背靠背式基板和竖版非背靠背式基板。
  19. 根据权利要求11所述的基板的量测方法,其中,所述旋转单元包括旋转电机,所述固定单元包括用于固定所述基板四边的第二夹板以及用于吸附所述基板的真空吸附器,所述控制单元包括PLC控制单元,所述支撑单元包括所述旋转机构的框架。
PCT/CN2019/077650 2018-03-27 2019-03-11 量测设备及基板的量测方法 WO2019184689A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/467,983 US20200180144A1 (en) 2018-03-27 2019-03-11 Measuring apparatus and substrate measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810259642.1A CN108508639B (zh) 2018-03-27 2018-03-27 离线量测设备及玻璃基板的离线量测方法
CN201810259642.1 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019184689A1 true WO2019184689A1 (zh) 2019-10-03

Family

ID=63378672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077650 WO2019184689A1 (zh) 2018-03-27 2019-03-11 量测设备及基板的量测方法

Country Status (3)

Country Link
US (1) US20200180144A1 (zh)
CN (1) CN108508639B (zh)
WO (1) WO2019184689A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108508639B (zh) * 2018-03-27 2020-02-11 武汉华星光电技术有限公司 离线量测设备及玻璃基板的离线量测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076965A (ja) * 2005-09-15 2007-03-29 Shiraitekku:Kk 分断された基板の仕分け取り上げ装置
JP2011007851A (ja) * 2009-06-23 2011-01-13 Micronics Japan Co Ltd 表示パネルの受け渡し装置及び検査装置
CN102540509A (zh) * 2010-12-30 2012-07-04 塔工程有限公司 阵列测试装置
CN206696560U (zh) * 2017-05-09 2017-12-01 东莞技研新阳电子有限公司 一种基于aoi的液晶面板检测设备
CN108508639A (zh) * 2018-03-27 2018-09-07 武汉华星光电技术有限公司 离线量测设备及玻璃基板的离线量测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3290288B2 (ja) * 1994-03-23 2002-06-10 株式会社指月電機製作所 表示盤
JPH10115575A (ja) * 1996-10-11 1998-05-06 Micronics Japan Co Ltd 液晶表示パネルの検査装置
CN101672626A (zh) * 2008-09-12 2010-03-17 家登精密工业股份有限公司 薄基板间距量测装置
CN102650941B (zh) * 2011-02-23 2016-08-17 罗普特(厦门)科技集团有限公司 影像离线编程系统及方法
CN105549338B (zh) * 2016-02-18 2018-02-16 武汉华星光电技术有限公司 曝光量测装置及其量测平台

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076965A (ja) * 2005-09-15 2007-03-29 Shiraitekku:Kk 分断された基板の仕分け取り上げ装置
JP2011007851A (ja) * 2009-06-23 2011-01-13 Micronics Japan Co Ltd 表示パネルの受け渡し装置及び検査装置
CN102540509A (zh) * 2010-12-30 2012-07-04 塔工程有限公司 阵列测试装置
CN206696560U (zh) * 2017-05-09 2017-12-01 东莞技研新阳电子有限公司 一种基于aoi的液晶面板检测设备
CN108508639A (zh) * 2018-03-27 2018-09-07 武汉华星光电技术有限公司 离线量测设备及玻璃基板的离线量测方法

Also Published As

Publication number Publication date
CN108508639B (zh) 2020-02-11
CN108508639A (zh) 2018-09-07
US20200180144A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
CN102472901B (zh) 液晶显示装置的制造装置和液晶显示装置的制造方法
JP5028468B2 (ja) 電気泳動表示素子の製造ライン及び製造方法
KR20150092398A (ko) 기판 박리 장치, 및 기판 박리 방법
KR101265277B1 (ko) 패널 부착장치
KR101328742B1 (ko) 편광필름 부착장치
WO2014201726A1 (zh) 一种液晶面板的切割装置及切割方法
WO2019184689A1 (zh) 量测设备及基板的量测方法
US20150234326A1 (en) Developing device and developing method
WO2018072297A1 (zh) Oled显示面板的制作方法
KR101826592B1 (ko) 수직형 기판 이송장치
CN105197635A (zh) 一种显示面板加工平台
KR20190121556A (ko) 디스플레이 패널 상에 필름을 부착하기 위한 장치
KR20220026754A (ko) 기판 처리 설비에서 기판의 얼라인 장치 및 얼라인 방법
KR101902604B1 (ko) 디스플레이 셀 검사 장치
KR20120053852A (ko) 액정표시장치의 진공 척
KR100781536B1 (ko) 도포장치 및 도포방법
WO2007010714A1 (ja) 液晶滴下装置及びこれを用いた液晶滴下方法
CN103165503A (zh) 翘曲片工装、使用方法及其交接片装置
TWI685119B (zh) 染料敏化電池之貼膜方法
KR20130085594A (ko) 필름 라이네이팅 장치
JP2013176873A (ja) 印刷装置および印刷方法
JP5894466B2 (ja) パターン形成方法およびパターン形成装置
KR101170423B1 (ko) 디스플레이 패널의 실링방법 및 이를 적용한 실링장치
KR101727980B1 (ko) 평판 디스플레이 셀의 실란트 도포 장치
JP2000286321A (ja) 真空処理装置及び基板起立装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776205

Country of ref document: EP

Kind code of ref document: A1