WO2019184346A1 - 有机发光二极管及其制备方法、显示面板 - Google Patents

有机发光二极管及其制备方法、显示面板 Download PDF

Info

Publication number
WO2019184346A1
WO2019184346A1 PCT/CN2018/113466 CN2018113466W WO2019184346A1 WO 2019184346 A1 WO2019184346 A1 WO 2019184346A1 CN 2018113466 W CN2018113466 W CN 2018113466W WO 2019184346 A1 WO2019184346 A1 WO 2019184346A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
light emitting
emitting diode
light reflecting
Prior art date
Application number
PCT/CN2018/113466
Other languages
English (en)
French (fr)
Inventor
宋振
王国英
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/466,737 priority Critical patent/US11539032B2/en
Publication of WO2019184346A1 publication Critical patent/WO2019184346A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • Embodiments of the present disclosure relate to an organic light emitting diode, a method of fabricating the same, and a display panel.
  • Organic Light Emitting Diode has the characteristics of self-luminous, wide viewing angle, wide color gamut, fast response, high luminous efficiency and low operating voltage, and is widely used in display panels and the like.
  • Organic light emitting diodes typically include an anode, a cathode, and an organic functional layer between the anode and the cathode, such as a light emitting layer. When an appropriate voltage is applied to the anode and cathode of the organic light emitting diode, holes injected from the anode and electrons injected from the cathode are combined in the light emitting layer and excited to generate light.
  • At least one embodiment of the present disclosure provides an organic light emitting diode including a light emitting structure and a first electrode structure.
  • the first electrode structure is configured to drive the light emitting structure to emit light and includes a first electrode and a light reflecting layer, the light reflecting layer being disposed on a side of the first electrode remote from the light emitting structure, at least part of the light
  • An insulating layer is disposed at least partially between the at least a portion of the light reflecting layer and the first electrode, wherein the reflective layer is overlapped with the first electrode in a first direction and overlapped, the first direction being perpendicular to The surface of the light reflecting layer.
  • the light emitting structure and the at least part of the light reflecting layer at least partially overlap in a first direction.
  • the organic light emitting diode provided by at least one embodiment of the present disclosure further includes a thin film transistor disposed on a side of the first electrode structure away from the light emitting structure.
  • the insulating layer includes a first planar layer.
  • an optical thickness of the first planar layer is an integral multiple of a half wavelength of light emitted by the light emitting structure at a position where it is located.
  • the first flat layer is disposed between the at least a portion of the light reflecting layer and the first electrode that are overlapped, and the light reflecting layer is The first electrode is insulated, the thin film transistor includes a source and a drain, the first planar layer has a first via hole, and the first electrode passes through the first via and the source or The drain is electrically connected.
  • the first flat layer is disposed between the at least partially portion of the light reflecting layer and the first electrode that are overlapped, and the light reflecting layer includes a first portion overlapping and electrically insulated from the first electrode in a first direction and a second portion electrically connected to the first electrode, the insulation being disposed between the first portion and the first electrode a layer having a second interval between the first portion and the second portion, the thin film transistor including a source and a drain, the first planar layer having a first via, and the second portion being at least partially Located in the first via, the first electrode is electrically connected to the source or the drain via the second via and through the first via.
  • the first electrode structure further includes a transition layer; the transition layer is disposed on a side of the light reflecting layer away from the first electrode and The light reflecting layers are adjacent and conformal.
  • the first electrode structure further includes a second planar layer disposed on the transition layer or the light reflective layer away from the One side of the first flat layer.
  • the second planar layer has a second via, and the second via is in communication with the first via; the light reflective layer The first electrode is insulated, and the first electrode is electrically connected to the source or the drain through the first via and the second via.
  • the second planar layer has a second via, and the second via is in communication with the first via;
  • the light reflective layer includes a first portion of the first electrode overlapping and insulating in a first direction and a second portion electrically connected to the first electrode, the insulating layer being disposed between the first portion and the first electrode
  • the first electrode is electrically connected to the source or drain via the second portion and through the first via and the second via.
  • the material of the first electrode includes one or a combination of ITO, IZO, and GZO; and the material of the light reflective layer includes one or a combination of Ag, Al, and AlNd. .
  • At least one embodiment of the present disclosure provides a display panel including a plurality of pixel units, each of the pixel units including the organic light emitting diode described in any of the above embodiments.
  • the light reflecting layers of the organic light emitting diodes adjacent to the pixel unit are seamlessly connected.
  • At least one embodiment of the present disclosure provides a method of fabricating an organic light emitting diode, comprising: forming a light emitting structure; forming a first electrode structure.
  • the first electrode structure is formed to drive the light emitting structure to emit light
  • the first electrode structure includes a first electrode and a light reflecting layer formed on a side of the first electrode away from the light emitting structure, wherein at least part
  • the light reflecting layer is formed with an insulating layer at least partially formed between the at least a portion of the light reflecting layer and the first electrode formed by overlapping and overlapping the first electrode in the first direction, the first layer The direction is perpendicular to the face of the light reflecting layer.
  • 1 is a schematic view of an organic light emitting display panel
  • FIG. 2 is a schematic view showing an electrode structure of an organic light emitting display panel
  • FIG. 3 is a schematic diagram of an organic light emitting diode according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of another organic light emitting diode according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a display panel according to an embodiment of the present disclosure.
  • FIG. 6 is a partial cross-sectional view of a display panel according to an embodiment of the present disclosure.
  • FIG. 7A-7F are schematic cross-sectional views of an organic light emitting diode in a preparation process according to an embodiment of the present disclosure.
  • FIG. 1 shows a schematic view of an organic light emitting display panel.
  • the organic light emitting display panel 10 includes a plurality of pixel units 11, each of which includes an organic light emitting diode.
  • the electrode structure of the organic light emitting diode such as an anode structure, tends to be a stacked structure.
  • the anode structure includes, for example, a first layer 12, a second layer 13, and a third layer 14; wherein, the first layer 12 is, for example, an ITO layer, and the second layer 13 is, for example, an Ag metal layer,
  • the three layers 14 are, for example, ITO layers, thereby forming an anode structure of an ITO/Ag/ITO stack.
  • the first layer 12 is used, for example, as an electrode, and since the ITO layer serving as an electrode is disposed adjacent to the Ag metal layer, the Ag metal pulls down the work function of the ITO electrode to some extent.
  • the organic light emitting diode has a high work function on the anode material, and this setting affects the power consumption and lifetime of the organic light emitting diode.
  • each of the laminates constituting the anode structure is often obtained by continuous deposition and continuous etching of the respective laminate materials, and the anode of each of the organic light-emitting diodes is formed when the organic light-emitting diodes of the respective pixel units 11 in the organic light-emitting display panel 10 are formed.
  • the structure often has a large interval, for example, a gap of 5 to 7 um is formed. Therefore, the anode structure cannot completely shield the thin film transistor in the display panel 10, affecting functions such as switching of the thin film transistor, and thus affecting the display panel. display effect.
  • At least one embodiment of the present disclosure provides an organic light emitting diode including a light emitting structure and a first electrode structure.
  • the first electrode structure is configured to drive the light emitting structure to emit light
  • the first electrode structure includes the first electrode and the light reflecting layer.
  • the light reflecting layer is disposed on a side of the first electrode remote from the light emitting structure. At least a portion of the light reflecting layer and the first electrode are disposed in an overlapping manner in the first direction and are disposed at least partially between the at least partially light reflecting layer and the first electrode, and the first direction is perpendicular to the The surface where the light reflection layer is located.
  • the organic light emitting diode can be applied to a display panel, the first direction being a normal direction of a display surface of the display panel.
  • the first electrode has a single layer structure, can have a high work function and has low roughness, improves the preparation yield of the organic light emitting diode, and enhances the reliability level of the product.
  • a display panel includes a plurality of pixel units; wherein each of the pixel units includes the above-described organic light emitting diode.
  • At least one embodiment of the present disclosure provides a method of fabricating an organic light emitting diode, comprising: forming a light emitting structure and forming a first electrode structure.
  • the first electrode structure is formed to drive the light emitting structure to emit light
  • the first electrode structure includes a first electrode and a light reflecting layer formed on a side of the first electrode away from the light emitting structure, wherein at least a portion of the light reflecting layer and the first electrode are An insulating layer is formed at least partially between the at least a portion of the light reflecting layer and the first electrode which are formed alternately and overlapped in the first direction, the first direction being perpendicular to a surface of the light reflecting layer.
  • At least one embodiment of the present disclosure provides an organic light emitting diode including a light emitting structure 101 and a first electrode structure 100 as shown in FIG.
  • the first electrode structure 100 is configured to drive the light emitting structure 101 to emit light.
  • the first electrode structure 100 includes a first electrode 102 and a light reflecting layer 103.
  • the light reflecting layer 103 is disposed on a side of the first electrode 102 away from the light emitting structure 101, and at least a portion of the light reflecting layer 103 and the first electrode 102 are at the first
  • An insulating layer is disposed between at least a portion of the light reflecting layer 103 and the first electrode 102 which are overlapped and disposed in a direction (ie, a direction indicated by an arrow " ⁇ " in FIG. 3).
  • the first direction is perpendicular to the face of the light reflecting layer 103.
  • the light emitting structure at least partially overlaps at least a portion of the light reflecting layer in a first direction, the at least partially light reflecting layer being disposed in a first direction overlapping the first electrode.
  • the light emitting structure 101, the first electrode 102, and the light reflecting layer 103 overlap each other in the same region.
  • the insulating layer includes a first planar layer 104 disposed between the first electrode 102 and at least a portion of the light reflecting layer 103 such that the first electrode 102 and the first planar layer 104 are At least a portion of the light reflecting layers 103 are disposed overlapping.
  • the first planarization layer 104 spaces the first portion 103A of the light reflective layer 103 from the first electrode 102.
  • the insulating layer may also include other insulating structures, which is not limited by at least one embodiment of the present disclosure.
  • the first electrode 102 can serve as an anode of the light emitting structure 101.
  • the first electrode 102 and the light reflecting layer 103 are overlapped and in which an insulating layer is disposed.
  • the first electrode 102 is made to have a higher work function without being pulled down by the light reflecting layer 103, so that the turn-on voltage of the organic light emitting diode can be lowered, the life of the organic light emitting diode can be improved, and the like.
  • the single layer of the first electrode 102 may have a lower surface roughness, for example, its surface roughness may be less than 1 nm, which is greatly reduced compared to a conventional electrode structure.
  • the first electrode 102 having a low surface roughness can improve the preparation yield of the organic light emitting diode, improve the reliability level of the product, and the like.
  • the optical thickness of the first planar layer is an integer multiple of a half wavelength of light emitted by the light emitting structure at its location.
  • the light emitting structure may emit light having a range of wavelengths
  • the optical thickness of the first flat layer may be set to an integral multiple of 1/2 of the center wavelength of the certain wavelength range.
  • the optical thickness of the first planar layer 104 can be set, for example, to an integral multiple of the wavelength of the light emitted by the light emitting structure 101 at the location where it is located, which can enhance the microcavity of the organic light emitting diode.
  • the microcavity effect can be the interference construct of the light, further improving the illuminating effect of the organic light emitting diode.
  • the optical thickness of the first planarization layer 104 is the product of the actual thickness of the first planarization layer 104 and the refractive index.
  • the microcavity effect means that when the light emitting region of the organic light emitting diode is located in a resonant cavity formed by a total reflection film and a semi-reflective film, when the wavelength of the light emitted by the light emitting region is the same order of magnitude as the optical cavity length of the resonant cavity, Light of a particular wavelength will be selected and enhanced.
  • the first electrode structure 100 may further include a transition layer 105, and the transition layer 105 may be disposed on a side of the light reflecting layer 103 away from the first electrode 102 and The light reflecting layer 103 is adjacent and conformal.
  • the transition layer 105 can make the bonding between the light reflecting layer 103 and other film layers of the organic light emitting diode more compact, for example, the bonding with the second flat layer 106 which will be described later.
  • the organic light emitting diode may further include a thin film transistor 110.
  • the thin film transistor 110 is disposed on a side of the first electrode structure 100 away from the light emitting structure 101.
  • the light reflecting layer 103 can also have the effect of shielding the thin film transistor 110 from being exposed to light, thereby preventing the thin film transistor 110 from being affected by normal operation, thereby improving the illumination stability of the organic light emitting diode.
  • the light reflecting layer 103 includes a first portion 103A that is in an insulating relationship with the first electrode 102 and is electrically connected to the first electrode 102.
  • the second portion 103B has a first planar layer 104 between the first portion 103A and the first electrode 102, and a second interval 103C between the first portion 103A and the second portion 103B.
  • a portion of the at least partially light reflecting layer 103 and the first electrode 102 disposed overlappingly is provided with a first flat layer 104.
  • the thin film transistor 110 includes, for example, a gate, a gate insulating layer, an active layer, a source 111, and a drain 112.
  • the first planar layer 104 has a first via 1040 therein, and the second portion 103B is at least partially located in the first via.
  • the first electrode 102 is electrically connected to the source 111 or the drain 112 via the second via 103B and through the first via 1040 (the first electrode 102 and the second portion 103B and the drain 112 are shown in FIG. 3). Electrical connection).
  • the width of the second interval 103C between the first portion 103A and the second portion 103B of the light reflecting layer 103 may be about 1 ⁇ m to 3 ⁇ m, for example, 1.5 ⁇ m, 2 ⁇ m, or 2.5 ⁇ m or the like.
  • the width of the second interval 103C is small, so that the light-shielding effect of the light-reflecting layer 103 is better.
  • the contact area of the second portion 103B of the light reflecting layer 103 with the first electrode 102 is small, so that the work function of the first electrode 102 is less affected, and the work function of the first electrode 102 is maintained at a higher level.
  • the light reflecting layer 103 is insulated from the first electrode 102.
  • the first flat layer 104 is disposed between at least a portion of the light reflecting layer 103 and the first electrode 102 that are overlapped.
  • a first planar layer 104 is disposed between the light reflecting layer 103 and the first electrode 102.
  • the first planar layer 104 has a first via 1040 therein, and the first electrode 102 passes through the first via 1040 and the source 111 or the drain.
  • the pole 112 is electrically connected (shown in FIG. 4 is that the first electrode 102 is electrically connected to the drain 112).
  • the light reflecting layer 103 overlaps the first electrode 102 in the first direction and is insulated, so that the work function of the first electrode 102 is determined only by the first electrode 102 itself, and thus the first electrode 102 It can have a higher work function, and can achieve technical effects such as lowering the turn-on voltage of the organic light emitting diode and increasing the life of the organic light emitting diode.
  • the light reflecting layer 103 is continuously disposed except that a gap is formed at a position where the first electrode 102 and the drain electrode 112 are electrically connected, and thus the light reflecting layer 103 is disposed in the present embodiment. Larger, it can more effectively shield the thin film transistor.
  • the first electrode structure 100 may further include a second planar layer 106 disposed on the transition layer 105 (when the organic light emitting diode includes The transition layer 105) or the side of the light reflecting layer 103 that is away from the first planar layer 104.
  • the second planarization layer 106 is located between the thin film transistor 110 and the first electrode structure 100, and the thin film transistor 110 can be planarized to continue to form a high flatness on the thin film transistor 110 in the process of preparing the organic light emitting diode.
  • Other functional elements such as an electrode structure 100 improve the uniformity of illumination of the organic light emitting diode.
  • the second planarization layer 106 has a second via 1060 that communicates with the first via 1040.
  • the light reflecting layer 103 includes a first portion 103A that is insulated and disposed in a first direction with the first electrode 102, and a second portion 103B that is electrically connected to the first electrode 102, the first portion 103A and the first electrode
  • a first flat layer 104 is disposed between the first electrodes 102, and the first electrode 102 is electrically connected to the source 111 or the drain 112 via the first via 103B and through the first via 1040 and the second via 1060 (shown in FIG. 3).
  • the first electrode 102 and the second portion 103B are electrically connected to the drain 112).
  • the second via layer 106 has a second via hole 1060 in communication with the first via hole 1040, and in FIG. 4, the light reflecting layer 103 and the first An electrode 102 is insulated.
  • a first planar layer 104 is disposed between the light reflecting layer 103 and the first electrode 102.
  • the first electrode 102 passes through the first via 1040 and the second via 1060 and the source 111 or the drain 112. Electrical connection (shown in the figure is that the first electrode 102 is electrically connected to the drain 112).
  • the first electrode structure may include two flat layers, that is, a first flat layer 104 and a second flat layer 106, and the arrangement of the double flat layer may improve the flatness of the organic light emitting diode,
  • the step difference between the functional layers inside the small organic light emitting diode can improve the uniformity of illumination of the organic light emitting diode.
  • the first electrode may be a transparent electrode, and the material thereof may include, for example, one or a combination of ITO, IZO, and GZO.
  • the light reflecting layer may, for example, be a metal reflective material such as a metal material whose material has high light reflecting properties, for example, including one or a combination of Ag, Al, and AlNd.
  • the transition layer can be, for example, a metal material, an oxide material or other material having good adhesion.
  • ITO, Mo, Ti or Mo/Ti alloy can be used to adhere the light reflection layer to the second flat layer or other film layers. The material that is put together.
  • the first flat layer and the second flat layer may be formed, for example, of an organic insulating material, for example, a material such as a silicone-based material, an acrylic-based material, or a polyimide-based material. Also, the materials of the first flat layer and the second flat layer may be the same or different. At least one embodiment of the present disclosure does not specifically limit the material of each functional layer.
  • At least one embodiment of the present disclosure provides a display panel.
  • the display panel includes a plurality of pixel units 102, each of which includes the organic light emitting diode of any of the above embodiments.
  • the light reflecting layers 103 of the organic light emitting diodes in the adjacent pixel units 102 of the display panel are seamlessly connected, so that when the display panel is prepared, adjacent pixel units are
  • a light reflecting layer 103 which may be formed as a whole surface having only a portion exposing the source or the drain of the thin film transistor (for example, the portion shown by the small square S in FIG. 5)
  • the electrode of the organic light emitting diode is connected to the thin film transistor at this portion.
  • the portion shown by the small block S and its cross-sectional view ie, the cross-sectional view along line AA
  • the first electrode 102 is directly electrically connected to the drain 112 of the thin film transistor (ie, FIG. 4 shows The situation arises such that the first electrode 102 can have a higher work function.
  • the light reflecting layer 103 when the light reflecting layer 103 includes the first portion 103A that is overlapped and disposed in the first direction with the first electrode 102 and the second portion 103B that is electrically connected to the first electrode 102, A small gap between the first portion 103A and the second portion 103B is formed in the light reflecting layer 103 for separating the first portion 103A and the second portion 103B, and the first electrode 102 is connected to the thin film transistor via the second portion 103B
  • the drain 112 is electrically connected, in which case (ie, the case shown in FIG. 3), the first electrode 102 may also have a higher work function, and in addition to the smaller portion for separating the first portion 103A and the second portion 103B. Except for the gap, the remaining light reflecting layers 103 are continuously disposed, which is larger than the light reflecting layer formed with a large gap between different pixel units, and can be more effectively used as a film.
  • the transistor acts as a shading.
  • the light-reflecting layer 103 of the whole-surface design or the near-surface design can effectively shield the thin film transistor in the display panel from light, and prevent the thin film transistor from being affected by illumination. , thereby improving the light stability of the display panel, thereby improving the display effect of the display panel.
  • At least one embodiment of the present disclosure provides a method of fabricating an organic light emitting diode, the method comprising: forming a light emitting structure and a first electrode structure, the first electrode structure being formed to drive the light emitting structure to emit light.
  • the first electrode structure includes a first electrode and a light reflecting layer formed on a side of the first electrode away from the light emitting structure, and at least a portion of the light reflecting layer is spaced apart from the first electrode in a direction perpendicular to a surface of the light reflecting layer form.
  • the first electrode has a single layer structure, can have a high work function and has low roughness, improves the preparation yield of the organic light emitting diode, and improves the reliability level of the product.
  • FIGS. 7A-7F show schematic cross-sectional views of the organic light emitting diode during fabrication.
  • a thin film transistor is formed, which may include, for example, an active layer 114, a gate insulating layer 115, a gate electrode 116, a source electrode 111, and a drain electrode 112.
  • the formation process of each functional layer may include, for example, forming a material layer by a method such as sputtering or deposition, patterning the material layer by a patterning process, or the like.
  • the patterning process may include, for example, a process of coating, exposing, developing, and etching a photoresist.
  • the active layer 114 may be formed using a material such as an oxide material, a silicon material, or an organic material, for example, a material such as a-IGZO, ZnON, IZTO, a-Si, p-Si, hexathiophene, or polythiophene.
  • the gate insulating layer 115 can be formed, for example, of an inorganic material or an organic material, such as an inorganic material such as SiOx, SiNx or SiON, a material having a high dielectric constant such as AlOx, HfOx, TaOx or an organic material such as polyimide.
  • the gate electrode 116, the source electrode 111, and the drain electrode 112 may be formed of, for example, a metal material such as Ag, Cu, Al, or Mo, or a metal alloy material such as AlNd or MoNb, or a plurality of metal materials such as MoNb. /Cu/MoNb, etc., or a multilayer structure formed of a metal and a transparent conductive oxide (for example, ITO, AZO, etc.), such as ITO/Ag/ITO.
  • the materials of the gate 116, the source 111, and the drain 112 may be the same or different.
  • the forming material and the forming method of each functional layer are not specifically limited.
  • the type of the thin film transistor is not limited to the top gate type thin film transistor illustrated in FIG. 7A, and may be configured as a bottom gate type thin film transistor, a double gate type thin film transistor, or other types.
  • Thin film transistor in the case where the thin film transistor is a bottom gate type thin film transistor, the reflective electrode can block the light emitted from the light emitting structure from being incident on the thin film transistor (for example, an active layer therein), so that it is not necessary to additionally provide light shielding on the active layer.
  • the layer simplifies the fabrication process of the thin film transistor and reduces the cost.
  • a base substrate may be provided, and then a thin film transistor is formed on the base substrate.
  • the base substrate may be a rigid substrate or a flexible substrate for use in the field of flexible display.
  • the base substrate may be a glass plate, a quartz plate, a resin plate or the like.
  • the material of the base substrate may include an organic material, for example, the organic material may be polyimide, polycarbonate, polyacrylate, polyetherimide, polyether. Resin-based materials such as sulfone, polyethylene terephthalate and polyethylene naphthalate.
  • a passivation layer 113 may be formed on the thin film transistor, and a third via hole 1130 may be formed in the passivation layer 113.
  • a passivation material layer may be first formed by deposition or the like, and then the passivation material layer is patterned by a photolithography process to form a third via hole 1130 to drain the drain electrode 112 of the thin film transistor and other conductive structures. (for example, the second part 103B/105B described below) is connected.
  • the material of the passivation layer may be an inorganic material or an organic material, such as an inorganic material such as SiOx, SiNx or SiON, a material having a high dielectric constant such as AlOx, HfOx, TaOx or a polyimide. Organic materials such as amines.
  • the second planarization layer 106 may be formed, and a second via hole 1060 communicating with the third via hole 1130 may be formed in the second planarization layer 106.
  • a second planar material layer may be formed by deposition, and then the second planar material layer is patterned by a photolithography process to form a second via 1060 to drain the drain 112 of the thin film transistor from other conductive layers.
  • the structure e.g., the second portion 103B/105B described below
  • the second flat layer 106 may be, for example, an organic insulating material such as a silicone-based material, an acrylic-based material, a polyimide-based material, or the like.
  • the transition layer 105 and the light reflecting layer 103 may be formed.
  • the transition layer 105 and the light reflecting layer 103 may be conformal. Therefore, the transition material layer and the light reflective material layer may be continuously deposited, and then the transition material layer and the light reflective material layer are simultaneously patterned by a single photolithography process to form a conformal
  • the transition layer 105 and the light reflecting layer 103 each include a second portion 103B/105B formed to be electrically connected to the drain electrode 112 of the thin film transistor and a first portion 103A/105A insulated from the second portion 103B/105B.
  • a second spacer 103C may be formed between the second portion 103B/105B and the first portion 103A/105A during the photolithography process to insulate the second portion 103B/105B from the first portion 103A/105A.
  • the formation width of the second interval 103C may be, for example, about 1 ⁇ m to 3 ⁇ m, for example, 1.5 ⁇ m, 2 ⁇ m, or 2.5 ⁇ m or the like.
  • the transition layer 105 may be, for example, a metal material, an oxide material, or other material having good adhesion, such as a material such as ITO, Mo, Ti, or a Mo/Ti alloy.
  • the light-reflecting layer 103 can be, for example, a material having a high reflectance to light such as a metal material, for example, a metal material such as Ag, Al or AlNd.
  • the transition layer 105 can better bond the light reflecting layer 103 and the second flat layer 106 together.
  • the first flat layer 104 may be formed, and the first via hole 1040 may be formed in the first flat layer 104.
  • a first planar material layer may be first formed by a deposition method, and then the first planar material layer is patterned by a photolithography process to form the exposed transition layer 105 and the second portion 103B/105B of the light reflective layer 103.
  • the first via 1040 is configured to electrically connect the drain 112 of the thin film transistor to other conductive structures (eg, the first electrode 102).
  • the first flat layer 104 may be formed of an organic insulating material, for example, a silicone-based material, an acrylic-based material, a polyimide-based material, or the like.
  • the first electrode 102 can be formed.
  • a layer of a first electrode material may be formed by deposition (eg, physical or chemical vapor deposition, magnetron sputtering, etc.), the first electrode material layer being formed on the first planar layer 104 and the exposed transition layer 105.
  • the second portion 103B/105B of the light reflecting layer 103, and then the first electrode material layer is patterned by a photolithography process to form the first electrode 102, the first electrode 102 via the transition layer 105 and the light reflecting layer 103.
  • the second portion 103B/105B is electrically coupled to the drain 112 of the thin film transistor.
  • the material of the first electrode 102 may be a transparent conductive material such as ITO, IZO or GZO.
  • the light emitting structure 101 may be an organic light emitting material.
  • the first electrode 102 and the second electrode may serve as an anode and a cathode of the organic light emitting diode, respectively, for driving the light emitting structure 101 to emit light.
  • the preparation method thereof when preparing the organic light emitting diode shown in FIG. 4, the preparation method thereof may be substantially the same as the preparation method of the above embodiment, except that the transition material layer and the light reflective material are continuously deposited. After the layer, the pattern of the transition material layer and the light reflecting material layer are different. Illustratively, the patterned transition layer and the light reflective layer are not formed in the vias of the second planar layer, that is, all of the transition layer and the light reflective layer are not in contact with the first electrode and an insulating layer is disposed therebetween.
  • the preparation method of other structures reference may be made to the foregoing embodiments, and details are not described herein again.
  • the first electrode 102 and the light reflecting layer 103 are formed in an overlapping manner and the insulating layer is formed therein so that the first electrode 102 has a higher work function without being pulled down by the light reflecting layer 103, thereby The turn-on voltage of the organic light emitting diode can be lowered, the life of the organic light emitting diode can be improved, and the like.
  • the single layer of the first electrode 102 may have a lower surface roughness, for example, its surface roughness may be less than 1 nm, which is greatly reduced compared to a conventional electrode structure.
  • the first electrode 102 having a low surface roughness can improve the preparation yield of the organic light emitting diode, improve the reliability level of the product, and the like.
  • the light reflecting layer 103 can also shield the thin film transistor from light, thereby preventing the thin film transistor from being affected by illumination, thereby improving the light stability of the organic light emitting diode.
  • the first electrode structure may include two flat layers, which can improve the flatness of the organic light emitting diode and reduce the step difference between the functional layers inside the organic light emitting diode, thereby improving the light emission of the organic light emitting diode. Uniformity.
  • At least one embodiment of the present disclosure also provides a method of fabricating a display panel, the method comprising: forming a plurality of pixel units, and forming an organic light emitting diode in each of the pixel units by the above method.
  • the light reflecting layers 103 of the organic light emitting diodes in the adjacent pixel units 102 are formed to be seamlessly connected.
  • the light reflecting layer 103 may be formed as a whole surface, and then the entire surface light reflecting layer 103 is patterned by a photolithography process to form a patterned light reflecting layer 103.
  • the light reflecting layer 103 of the whole surface design can more effectively shield the thin film transistor in the display panel from being blocked by the thin film transistor.
  • the illumination affects its normal operation, thereby improving the illumination stability of the display panel, thereby improving the display effect of the display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种有机发光二极管及其制备方法、显示面板。该有机发光二极管包括发光结构(101)和第一电极结构(100)。第一电极结构(100)构造为驱动发光结构(101)发光并且包括第一电极(102)和光反射层(103),光反射层(103)设置在第一电极(102)的远离发光结构(101)的一侧,至少部分光反射层(103)与第一电极(102)在第一方向上交叠设置且交叠设置的所述至少部分光反射层和第一电极(102)之间设置有绝缘层,第一方向垂直于光反射层所在面。该有机发光二极管的第一电极可以具有较高的功函数。

Description

有机发光二极管及其制备方法、显示面板
本申请要求于2018年3月30日递交的中国专利申请第201810276547.2号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种有机发光二极管及其制备方法、显示面板。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)具有自发光、视角广、色域宽、反应速度快、发光效率高、工作电压低等特性,广泛应用于显示面板等领域。有机发光二极管通常包括阳极、阴极以及位于阳极与阴极之间的有机功能层,例如发光层。当对有机发光二极管的阳极与阴极施加适当电压时,从阳极注入的空穴与从阴极注入的电子会在发光层中结合并激发产生光。
发明内容
本公开至少一实施例提供一种有机发光二极管,该有机发光二极管包括发光结构和第一电极结构。所述第一电极结构构造为驱动所述发光结构发光并且包括第一电极和光反射层,所述光反射层设置在所述第一电极的远离所述发光结构的一侧,至少部分所述光反射层与所述第一电极在第一方向上交叠设置且交叠设置的所述至少部分光反射层和所述第一电极之间至少部分设置有绝缘层,所述第一方向垂直于所述光反射层所在面。
例如,本公开至少一实施例提供的有机发光二极管中,所述发光结构与所述至少部分光反射层在第一方向上至少部分交叠。
例如,本公开至少一实施例提供的有机发光二极管还包括薄膜晶体管,所述薄膜晶体管设置于所述第一电极结构的远离所述发光结构的一侧。
例如,本公开至少一实施例提供的有机发光二极管中,所述绝缘层包括第一平坦层。
例如,本公开至少一实施例提供的有机发光二极管中,所述第一平坦层的光学厚度为其所在位置处的所述发光结构所发出的光的半波长的整数倍。
例如,本公开至少一实施例提供的有机发光二极管中,交叠设置的所述至少部分光反射层和所述第一电极之间全部设置有所述第一平坦层,所述光反射层与所述第一电极绝缘,所述薄膜晶体管包括源极和漏极,所述第一平坦层中具有第一过孔,所述第一电极通过所述第一过孔与所述源极或所述漏极电连接。
例如,本公开至少一实施例提供的有机发光二极管中,交叠设置的所述至少部分光反射层和所述第一电极之间部分设置有所述第一平坦层,所述光反射层包括与所述第一电极在第一方向上交叠且绝缘设置的第一部分和与所述第一电极电连接的第二部分,所述第一部分与所述第一电极之间设置有所述绝缘层,所述第一部分和所述第二部分之间具有第二间隔,所述薄膜晶体管包括源极和漏极,所述第一平坦层中具有第一过孔,所述第二部分至少部分位于所述第一过孔中,所述第一电极经由所述第二部分并通过所述第一过孔与所述源极或所述漏极电连接。
例如,本公开至少一实施例提供的有机发光二极管中,所述第一电极结构还包括过渡层;所述过渡层设置于所述光反射层的远离所述第一电极的一侧并与所述光反射层邻接且共形。
例如,本公开至少一实施例提供的有机发光二极管中,所述第一电极结构还包括第二平坦层,所述第二平坦层设置于所述过渡层或所述光反射层的远离所述第一平坦层的一侧。
例如,本公开至少一实施例提供的有机发光二极管中,所述第二平坦层具有第二过孔,所述第二过孔与所述第一过孔相连通;所述光反射层与所述第一电极绝缘,所述第一电极通过所述第一过孔和所述第二过孔与所述源极或漏极电连接。
例如,本公开至少一实施例提供的有机发光二极管中,所述第二平坦层具有第二过孔,所述第二过孔与所述第一过孔相连通;所述光反射层包括与所述第一电极在第一方向上交叠且绝缘设置的第一部分和与所述第一电极电连接的第二部分,所述第一部分与所述第一电极之间设置有所述绝缘层,所述第一电极经由所述第二部分并通过所述第一过孔和所述第二过 孔与所述源极或漏极电连接。
例如,本公开至少一实施例提供的有机发光二极管中,所述第一电极的材料包括ITO、IZO和GZO之一或组合;所述光反射层的材料包括Ag、Al和AlNd之一或组合。
本公开至少一实施例提供一种显示面板,所述显示面板包括多个像素单元,每个所述像素单元包括上述任一实施例所述的有机发光二极管。
例如,本公开至少一实施例提供的显示面板中,相邻所述像素单元中的所述有机发光二极管的所述光反射层无缝连接。
本公开至少一实施例提供一种有机发光二极管的制备方法,包括:形成发光结构;形成第一电极结构。所述第一电极结构形成为驱动所述发光结构发光,并且所述第一电极结构包括第一电极和形成在所述第一电极远离所述发光结构的一侧的光反射层,其中至少部分所述光反射层与所述第一电极在第一方向上交叠形成且交叠形成的所述至少部分光反射层和所述第一电极之间至少部分形成有绝缘层,所述第一方向垂直于所述光反射层所在面。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为一种有机发光显示面板的示意图;
图2为一种有机发光显示面板的电极结构示意图;
图3为本公开一实施例提供的一种有机发光二极管的示意图;
图4为本公开一实施例提供的另一种有机发光二极管的示意图;
图5为本公开一实施例提供的一种显示面板的示意图;
图6为本公开一实施例提供的一种显示面板的部分截面示意图;以及
图7A-图7F为本公开一实施例提供的一种有机发光二极管的在制备过程中的截面示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本 发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
图1示出了一种有机发光显示面板的示意图。在图1中,有机发光显示面板10包括多个像素单元11,每个像素单元11包括一个有机发光二极管。通常情况下,该有机发光二极管的电极结构,例如阳极结构往往为叠层结构。例如,如图2所示,该阳极结构例如包括第一层12、第二层13以及第三层14;其中,第一层12例如为ITO层,第二层13例如为Ag金属层,第三层14例如为ITO层,从而形成ITO/Ag/ITO叠层的阳极结构。在该结构中,第一层12例如用作电极,由于用作电极的ITO层与Ag金属层相邻设置,Ag金属在一定程度上会拉低ITO电极的功函数。有机发光二极管对阳极材料的功函数要求较高,该设置会影响有机发光二极管的功耗以及寿命。另外,构成阳极结构的各叠层往往通过对各叠层材料的连续沉积和连续刻蚀而得到,在形成有机发光显示面板10中各像素单元11的有机发光二极管时,各有机发光二极管的阳极结构间往往具有较大的间隔,例如形成5~7um的间隔,因此该阳极结构无法完全为显示面板10中的薄膜晶体管起到遮光的作用,影响薄膜晶体管的开关等功能,进而影响显示面板的显示效果。
本公开至少一实施例提供一种有机发光二极管,该有机发光二极管包括发光结构和第一电极结构。第一电极结构构造为驱动发光结构发光,并且第一电极结构包括第一电极和光反射层。光反射层设置在第一电极的远 离发光结构的一侧。至少部分光反射层与第一电极在第一方向上交叠设置且交叠设置的所述至少部分光反射层和所述第一电极之间至少部分设置有绝缘层,第一方向垂直于所述光反射层所在面。例如,该有机发光二极管可以应用至显示面板,该第一方向为该显示面板的显示面的法线方向。如此,第一电极为单层结构,可以具有高功函数并且具有低粗糙度,提升有机发光二极管的制备良率,提升产品的信赖水平等。
本公开至少一实施例提供的一种显示面板,包括多个像素单元;其中,每个像素单元包括上述有机发光二极管。
本公开至少一实施例提供一种有机发光二极管的制备方法,包括:形成发光结构和形成第一电极结构。第一电极结构形成为驱动发光结构发光,并且所述第一电极结构包括第一电极和形成在第一电极远离发光结构的一侧的光反射层,其中至少部分光反射层与第一电极在第一方向上交叠形成且交叠形成的所述至少部分光反射层和所述第一电极之间至少部分形成有绝缘层,所述第一方向垂直于光反射层所在面。
下面,结合附图对对本公开至少一个实施例提供的有机发光二极管及其制备方法、显示面板进行说明。
本公开至少一个实施例提供一种有机发光二极管,如图3所示,该有机发光二极管包括发光结构101和第一电极结构100。该第一电极结构100构造为驱动发光结构101发光。该第一电极结构100包括第一电极102和光反射层103,光反射层103设置在第一电极102的远离发光结构101的一侧,并且至少部分光反射层103与第一电极102在第一方向(即图3中的箭头“↑”表示的方向)上交叠设置且交叠设置的至少部分光反射层103和第一电极102之间设置有绝缘层。例如,第一方向垂直于所述光反射层103所在面。
例如,在本公开至少一个实施例中,发光结构与至少部分光反射层在第一方向上至少部分交叠,该至少部分光反射层与第一电极在第一方向上交叠设置。示例性的,如图3所示,沿第一方向,发光结构101、第一电极102和光反射层103在同一区域内彼此交叠。
例如,如图3所示,绝缘层包括第一平坦层104,第一平坦层104设置于第一电极102和至少部分光反射层103之间,从而第一电极102、第一平坦层104与至少部分光反射层103交叠设置。例如,在图3中,第一 平坦层104将光反射层103的第一部分103A与第一电极102间隔。例如绝缘层还可以包括其他绝缘结构,本公开至少一个实施例对此不做限定。
例如,在本公开至少一个实施例中,如图3所示,第一电极102可以作为发光结构101的阳极,此时第一电极102和光反射层103交叠设置并且其中设置有绝缘层,可以使第一电极102具有较高的功函数,而不会被光反射层103拉低,从而可以降低有机发光二极管的开启电压,提高有机发光二极管的寿命等。另外,单层的第一电极102可以具有较低的表面粗糙度,例如其表面粗糙度可以小于1纳米,相比于普通的电极结构来说有很大程度的降低。表面粗糙度较低的第一电极102可以提高有机发光二极管的制备良率,提升产品的信赖水平等。
例如,在本公开至少一个实施例中,第一平坦层的光学厚度为其所在位置处的发光结构所发出的光的半波长的整数倍。例如,发光结构可以发出具有一定波长范围的光,第一平坦层的光学厚度可以设置为该一定波长范围的中心波长的1/2的整数倍。示例性的,如图3所示,第一平坦层104的光学厚度例如可以设置为其所在位置处的发光结构101所发出的光的波长的整数倍,该设置可以增强有机发光二极管的微腔效应,例如,该微腔效应可以为光的干涉相长,进一步提高有机发光二极管的发光效果。第一平坦层104的光学厚度为第一平坦层104的实际厚度与折射率的乘积。其中,微腔效应是指当有机发光二极管的发光区位于一个全反射膜和半反射膜构成的谐振腔内时,发光区发出的光的波长与谐振腔的光学腔长在同一数量级时,该特定波长的光会得到选择和加强。
例如,在本公开至少一个实施例中,如图3所示,第一电极结构100还可以包括过渡层105,过渡层105可以设置于光反射层103的远离第一电极102的一侧并与光反射层103邻接且共形。本实施例中,过渡层105可以使光反射层103与有机发光二极管的其他膜层之间的粘结更加紧密,例如与之后将要描述到的第二平坦层106的粘结更加紧密。
例如,在本公开至少一个实施例中,如图3所示,有机发光二极管还可以包括薄膜晶体管110。例如,薄膜晶体管110设置于第一电极结构100的远离发光结构101的一侧。此时,光反射层103还可以为薄膜晶体管110起到遮光的效果,防止薄膜晶体管110受到光照而影响其正常工作,从而提高有机发光二极管的光照稳定性。
例如,在本公开至少一个实施例中,如图3所示,光反射层103包括与第一电极102在第一方向上交叠且绝缘设置的第一部分103A和与第一电极102电连接的第二部分103B,第一部分103A和与第一电极102之间具有第一平坦层104,第一部分103A和第二部分103B之间具有第二间隔103C。例如,交叠设置的至少部分光反射层103和第一电极102之间部分设置有第一平坦层104。薄膜晶体管110例如包括栅极、栅绝缘层、有源层、源极111和漏极112等结构,第一平坦层104中具有第一过孔1040,第二部分103B至少部分位于第一过孔1040中,第一电极102经由第二部分103B并通过第一过孔1040与源极111或漏极112电连接(图3中示出的为第一电极102以及第二部分103B与漏极112电连接)。
例如,如图3所示,光反射层103的第一部分103A和第二部分103B之间的第二间隔103C的宽度可以为1μm-3μm左右,例如1.5μm、2μm或2.5μm等。第二间隔103C的宽度很小,使得光反射层103的遮光效果更好。同时,光反射层103的第二部分103B与第一电极102的接触面积较小,因此对第一电极102的功函数影响较小,使第一电极102的功函数保持在较高的水平。
例如,在本公开至少一个实施例中,如图4所示,光反射层103与第一电极102绝缘。例如,交叠设置的至少部分光反射层103和第一电极102之间全部设置有所述第一平坦层104。例如,光反射层103与第一电极102之间设置有第一平坦层104,第一平坦层104中具有第一过孔1040,第一电极102通过第一过孔1040与源极111或漏极112电连接(图4中示出的为第一电极102与漏极112电连接)。
例如,如图4所示,光反射层103与第一电极102在第一方向上交叠且绝缘设置,从而第一电极102的功函数只由第一电极102本身决定,因此第一电极102可以具有较高的功函数,可以实现降低有机发光二极管的开启电压,提高有机发光二极管的寿命等技术效果。此外,光反射层103除了在第一电极102与漏极112电连接的位置处形成有间隙外,其余光反射层103都是连续设置的,因此本实施例中的光反射层103的设置面积更大,可以更有效地为薄膜晶体管起到遮光作用。
例如,在本公开至少一个实施例中,如图3和图4所示,第一电极结构100还可以包括第二平坦层106,第二平坦层106设置于过渡层105(当 有机发光二极管包括过渡层105时)或光反射层103的远离第一平坦层104的一侧。第二平坦层106位于薄膜晶体管110和第一电极结构100之间,可以对薄膜晶体管110进行平坦化,以便于在制备有机发光二极管的过程中在薄膜晶体管110上继续形成具有高平坦度的第一电极结构100等其他功能元件,提高有机发光二极管的发光均匀性。
例如,在本公开至少一个实施例中,如图3所示,第二平坦层106具有第二过孔1060,第二过孔1060与第一过孔1040相连通。图3中,光反射层103包括与第一电极102在第一方向上交叠且绝缘设置的第一部分103A和与第一电极102电连接的第二部分103B,第一部分103A和与第一电极102之间设置有第一平坦层104,第一电极102经由第二部分103B并通过第一过孔1040和第二过孔1060与源极111或漏极112电连接(图3中示出的为第一电极102以及第二部分103B与漏极112电连接)。
例如,在本公开至少一个实施例中,如图4所示,第二平坦层106具有的第二过孔1060与第一过孔1040相连通,并且在图4中,光反射层103与第一电极102绝缘,例如,光反射层103与第一电极102之间设置有第一平坦层104,第一电极102通过第一过孔1040和第二过孔1060与源极111或漏极112电连接(图中示出的为第一电极102与漏极112电连接)。
在本公开至少一个实施例中,第一电极结构可以包括两个平坦层,即第一平坦层104和第二平坦层106,该双层平坦层的设置可以提高有机发光二极管的平整度,减小有机发光二极管内部各功能层之间的段差,从而可以提高有机发光二极管的发光均匀性。
例如,在本公开至少一个实施例中,第一电极可以为透明电极,其材料例如可以包括ITO、IZO和GZO等之一或组合。光反射层例如可以采用金属反光材料,例如其材料具有高反光性质的金属材料,例如包括Ag、Al和AlNd等之一或组合。过渡层例如可以采用金属材料、氧化物材料或其他具有较好粘结性的材料,例如采用ITO、Mo、Ti或Mo/Ti合金等可以将光反射层与第二平坦层或其他膜层粘结起来的材料。第一平坦层和第二平坦层例如可以采用有机绝缘材料形成,例如采用聚硅氧烷系材料,亚克力系材料或聚酰亚胺系材料等材料。并且,第一平坦层和第二平坦层的材料可以相同,也可以不同。本公开至少一个实施例对各个功能层的材料不作具体限定。
本公开至少一个实施例提供一种显示面板,如图5所示,该显示面板包括多个像素单元102,每个像素单元102包括上述任一实施例中的有机发光二极管。
例如,本公开一些实施例中,如图5所示,显示面板的相邻像素单元102中的有机发光二极管的光反射层103无缝连接,从而在制备该显示面板时,相邻像素单元之间也具有光反射层103,光反射层103可以形成为一整面,该整面中仅具有暴露薄膜晶体管的源极或漏极的部分(例如图5中的小方框S示出的部分),在该部分处有机发光二极管的电极连接到薄膜晶体管。例如,该小方框S示出的部分及其附近的截面图(即沿线A-A的截面图)如图6所示,第一电极102直接与薄膜晶体管的漏极112电连接(即图4示出的情况),从而第一电极102可以具有较高的功函数。
例如,在本公开另一些实施例中,当光反射层103包括与第一电极102在第一方向上交叠且绝缘设置的第一部分103A和与第一电极102电连接的第二部分103B时,光反射层103中形成有在第一部分103A和第二部分103B之间的较小的间隙用于隔开第一部分103A和第二部分103B,第一电极102经由第二部分103B与与薄膜晶体管的漏极112电连接,该情况下(即图3示出的情况),第一电极102还可以具有较高的功函数,并且除了用于隔开第一部分103A和第二部分103B的较小间隙之外,其余光反射层103都是连续设置的,这与不同像素单元之间形成有较大间隙的光反射层相比,光反射层103的设置面积更大,可以更有效地为薄膜晶体管起到遮光作用。
在本公开至少一个实施例中,整面设计或者接近整面设计的的光反射层103可以有效地对显示面板中的薄膜晶体管起到遮光的效果,防止薄膜晶体管因受到光照而影响其正常工作,从而提高显示面板的光照稳定性,进而提高显示面板的显示效果。
本公开至少一个实施例提供一种有机发光二极管的制备方法,该方法包括:形成发光结构与第一电极结构,该第一电极结构形成为驱动发光结构发光。该第一电极结构包括第一电极和光反射层,光反射层形成在第一电极远离发光结构的一侧,并且至少部分光反射层与第一电极在垂直于光反射层所在面的方向上间隔形成。例如,至少部分光反射层与所述第一电极在第一方向上交叠形成且交叠形成的至少部分光反射层和第一电极之间 至少部分形成有绝缘层,第一方向垂直于光反射层所在面。在利用该制备方法获得的有机发光二极管中,第一电极为单层结构,可以具有高功函数并且具有低粗糙度,提升有机发光二极管的制备良率,提升产品的信赖水平等。
例如,以制备图3所示的有机发光二极管为例对本公开至少一个实施例提供的制备方法进行详细介绍。例如,图7A-图7F示出了该有机发光二极管在制备过程中的截面示意图。
如图7A所示,形成薄膜晶体管,该薄膜晶体管例如可以包括有源层114、栅绝缘层115、栅极116、源极111以及漏极112等结构。每个功能层的形成过程例如可以包括采用溅射或沉积等方法形成材料层以及采用构图工艺对材料层进行构图等。该构图工艺例如可以包括光刻胶的涂覆、曝光、显影和刻蚀等过程。例如,有源层114可以采用氧化物材料、硅材料或者有机物材料等材料形成,例如采用a-IGZO、ZnON、IZTO、a-Si、p-Si、六噻吩或聚噻吩等材料。栅绝缘层115例如可以采用无机材料或有机材料形成,例如SiOx、SiNx或SiON等无机材料,具有高介电常数的例如AlOx,HfOx,TaOx等材料或者聚酰亚胺等有机材料。栅极116、源极111以及漏极112例如可以采用金属材料形成,例如Ag、Cu、Al或Mo等,或者采用金属的合金材料,如AlNd或MoNb等,或者采用多层金属材料,例如MoNb/Cu/MoNb等,又或者采用金属和透明导电氧化物(例如ITO、AZO等)形成的多层结构,例如ITO/Ag/ITO等。另外,栅极116、源极111以及漏极112的材料可以相同,也可以不同。本实施例对各功能层的形成材料以及形成方法不做具体限定。
需要说明的是,在本公开至少一个实施例中,薄膜晶体管的类型不限于图7A所示的顶栅型薄膜晶体管,还可以设置为底栅型薄膜晶体管、双栅型薄膜晶体管或其它类型的薄膜晶体管。例如,在薄膜晶体管为底栅型薄膜晶体管的情况下,反射电极可以遮挡发光结构发出的光线射向薄膜晶体管(例如其中的有源层),如此,可以不需要在有源层上额外设置遮光层,简化薄膜晶体管的制备工艺,降低成本。
例如,可以提供衬底基板,然后在衬底基板上形成薄膜晶体管。该衬底基板可以为刚性基板,也可以为柔性基板以用于柔性显示领域。例如,在衬底基板为刚性基板的情况下,衬底基板可以为玻璃板、石英板或树脂 板等。例如,在衬底基板为柔性基板的情况下,衬底基板的材料可以包括有机材料,例如该有机材料可以为聚酰亚胺、聚碳酸酯、聚丙烯酸酯、聚醚酰亚胺、聚醚砜、聚对苯二甲酸乙二醇酯和聚萘二甲酸乙二醇酯等树脂类材料。
如图7B所示,在薄膜晶体管形成后,可以在薄膜晶体管上形成钝化层113,并在钝化层113中形成第三过孔1130。例如,可以采用沉积等方法首先形成一层钝化材料层,然后采用光刻工艺对钝化材料层进行图案化处理以形成第三过孔1130,以将薄膜晶体管的漏极112与其他导电结构(例如下述的第二部分103B/105B)连接。
在本公开至少一个实施例中,钝化层的材料可以采用无机材料或有机材料,例如SiOx、SiNx或SiON等无机材料,具有高介电常数的例如AlOx,HfOx,TaOx等材料或者聚酰亚胺等有机材料。
例如,如图7B所示,在钝化层113形成后,可以形成第二平坦层106,并在第二平坦层106中形成与第三过孔1130相连通的第二过孔1060。例如,可以采用沉积的方法形成一层第二平坦材料层,然后采用光刻工艺对第二平坦材料层进行图案化处理以形成第二过孔1060,以将薄膜晶体管的漏极112与其他导电结构(例如下述的第二部分103B/105B)连接。例如,第二平坦层106例如可以采用有机绝缘材料,例如聚硅氧烷系材料,亚克力系材料或聚酰亚胺系材料等。
如图7C所示,第二平坦层106形成后,可以形成过渡层105以及光反射层103。例如,过渡层105以及光反射层103可以共形,因此,可以连续沉积过渡材料层和光反射材料层,然后采用一次光刻工艺对过渡材料层和光反射材料层同时进行构图,以形成共形的过渡层105以及光反射层103。本示例中,过渡层105以及光反射层103均包括形成为与薄膜晶体管的漏极112电连接的第二部分103B/105B和与第二部分103B/105B相绝缘的第一部分103A/105A。例如,在进行光刻工艺时,可以在第二部分103B/105B与第一部分103A/105A之间形成第二间隔103C,从而将第二部分103B/105B与第一部分103A/105A相绝缘。第二间隔103C的形成宽度例如可以为1μm-3μm左右,例如1.5μm、2μm或2.5μm等。过渡层105例如可以采用金属材料、氧化物材料或其他具有较好粘结性的材料,例如采用ITO、Mo、Ti或Mo/Ti合金等材料。光反射层103例如可以采用金属 材料等对光具有高反射率的材料,例如Ag、Al或AlNd等金属材料。过渡层105可以将光反射层103与第二平坦层106更好地粘结在一起。
如图7D所示,过渡层105以及光反射层103形成后,可形成第一平坦层104,并在第一平坦层104中形成第一过孔1040。例如,可以采用沉积的方法首先形成一层第一平坦材料层,然后采用光刻工艺对第一平坦材料层进行图案化处理以形成暴露过渡层105以及光反射层103的第二部分103B/105B的第一过孔1040,以便于将薄膜晶体管的漏极112与其他导电结构(例如第一电极102)电连接。例如,第一平坦层104可以采用有机绝缘材料形成,例如采用聚硅氧烷系材料,亚克力系材料或聚酰亚胺系材料等。
如图7E所示,第一平坦层104形成后,可以形成第一电极102。例如,可以采用沉积(例如物理或者化学蒸镀、磁控溅射等)的方法形成一层第一电极材料层,该第一电极材料层形成在第一平坦层104以及被暴露的过渡层105以及光反射层103的第二部分103B/105B上,然后采用光刻工艺对第一电极材料层进行图案化处理以形成第一电极102,该第一电极102经由过渡层105以及光反射层103的第二部分103B/105B与薄膜晶体管的漏极112电连接。例如,第一电极102的材料可以为透明导电材料,例如ITO、IZO或GZO等。
如图7F所示,第一电极102形成后,可以形成发光结构101以及第二电极(图7F中未示出)等其他结构。例如,发光结构101可以采用有机发光材料,此时第一电极102和第二电极可以分别作为有机发光二极管的阳极和阴极,用于驱动发光结构101发光。
例如,在本一些实施例中,在制备图4所示的有机发光二极管时,其制备方法与上述实施例的制备方法可以基本相同,其不同之处在于,在连续沉积过渡材料层和光反射材料层后,对过渡材料层和光反射材料层的构图图案有所不同。示例性的,构图后的过渡层和光反射层不形成在第二平坦层的过孔中,即全部过渡层和光反射层不与第一电极接触且二者间设置有绝缘层。其他结构的制备方法可参照前述实施例,在此不再赘述。
本公开至少一个实施例中,第一电极102和光反射层103交叠形成且其中形成有绝缘层可以使第一电极102具有较高的功函数,而不会被光反射层103拉低,从而可以降低有机发光二极管的开启电压,提高有机发光 二极管的寿命等。另外,单层的第一电极102可以具有较低的表面粗糙度,例如其表面粗糙度可以小于1纳米,相比于普通的电极结构来说有很大程度的降低。表面粗糙度较低的第一电极102可以提高有机发光二极管的制备良率,提升产品的信赖水平等。
在本公开至少一个实施例中,光反射层103还可以为薄膜晶体管起到遮光的效果,防止薄膜晶体管受到光照而影响其正常工作,从而提高有机发光二极管的光照稳定性。另外,第一电极结构可以包括两个平坦层,该双层平坦层设计可以提高有机发光二极管的平整度,减小有机发光二极管内部各功能层之间的段差,从而可以提高有机发光二极管的发光均匀性。
本公开至少一个实施例还提供一种显示面板的制备方法,该方法包括:形成多个像素单元,并且在每个像素单元内采用上述方法形成有机发光二极管。
例如,相邻像素单元102中的有机发光二极管的光反射层103形成为无缝连接。例如,光反射层103可以形成为一整面,然后采用光刻工艺对该整面光反射层103进行构图以形成图案化的光反射层103。这与不同像素单元之间形成有较大间隙的光反射层相比,该整面设计的光反射层103可以更有效地对显示面板中的薄膜晶体管起到遮光的效果,防止薄膜晶体管因受到光照而影响其正常工作,从而提高显示面板的光照稳定性,进而提高显示面板的显示效果。
还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开 的保护范围应以权利要求的保护范围为准。

Claims (17)

  1. 一种有机发光二极管,包括:
    发光结构;
    第一电极结构,构造为驱动所述发光结构发光,并且包括:
    第一电极;
    光反射层,设置在所述第一电极的远离所述发光结构的一侧,
    其中,至少部分所述光反射层与所述第一电极在第一方向上交叠设置且交叠设置的所述至少部分光反射层和所述第一电极之间至少部分设置有绝缘层,所述第一方向垂直于所述光反射层所在面。
  2. 根据权利要求1所述的有机发光二极管,其中,
    所述发光结构与所述至少部分光反射层在第一方向上至少部分交叠。
  3. 根据权利要求1或2所述的有机发光二极管,还包括:
    薄膜晶体管,设置于所述第一电极结构的远离所述发光结构的一侧。
  4. 根据权利要求1-3任一所述的有机发光二极管,其中,
    所述绝缘层包括第一平坦层。
  5. 根据权利要求4所述的有机发光二极管,其中,
    所述第一平坦层的光学厚度为其所在位置处的所述发光结构所发出的光的半波长的整数倍。
  6. 根据权利要求4或5所述的有机发光二极管,其中,交叠设置的所述至少部分光反射层和所述第一电极之间全部设置有所述第一平坦层,所述光反射层与所述第一电极绝缘,
    所述薄膜晶体管包括源极和漏极,所述第一平坦层中具有第一过孔,所述第一电极通过所述第一过孔与所述源极或所述漏极电连接。
  7. 根据权利要求4或5所述的有机发光二极管,其中,交叠设置的所述至少部分光反射层和所述第一电极之间部分设置有所述第一平坦层,所述光反射层包括与所述第一电极在所述第一方向上交叠且绝缘设置的第一部分和与所述第一电极电连接的第二部分,所述第一部分与所述第一电极之间设置有所述绝缘层,所述第一部分和所述第二部分之间具有第二间隔,
    所述薄膜晶体管包括源极和漏极,所述第一平坦层中具有第一过孔, 所述第二部分至少部分位于所述第一过孔中,所述第一电极经由所述第二部分并通过所述第一过孔与所述源极或所述漏极电连接。
  8. 根据权利要求6所述的有机发光二极管,其中,
    所述第一电极结构还包括过渡层;
    所述过渡层设置于所述光反射层的远离所述第一电极的一侧并与所述光反射层邻接且共形。
  9. 根据权利要求8所述的有机发光二极管,其中,
    所述第一电极结构还包括第二平坦层,
    所述第二平坦层设置于所述过渡层或所述光反射层的远离所述第一平坦层的一侧。
  10. 根据权利要求9所述的有机发光二极管,其中,
    所述第二平坦层具有第二过孔,所述第二过孔与所述第一过孔相连通;
    所述光反射层与所述第一电极绝缘,所述第一电极通过所述第一过孔和所述第二过孔与所述源极或漏极电连接。
  11. 根据权利要求7所述的有机发光二极管,其中,
    所述第一电极结构还包括过渡层;
    所述过渡层设置于所述光反射层的远离所述第一电极的一侧并与所述光反射层邻接且共形。
  12. 根据权利要求11所述的有机发光二极管,其中,
    所述第一电极结构还包括第二平坦层,
    所述第二平坦层设置于所述过渡层或所述光反射层的远离所述第一平坦层的一侧。
  13. 根据权利要求12所述的有机发光二极管,其中,
    所述第二平坦层具有第二过孔,所述第二过孔与所述第一过孔相连通;
    所述光反射层包括与所述第一电极在第一方向上交叠且绝缘设置的第一部分和与所述第一电极电连接的第二部分,所述第一部分与所述第一电极之间设置有所述绝缘层,所述第一电极经由所述第二部分并通过所述第一过孔和所述第二过孔与所述源极或漏极电连接。
  14. 根据权利要求1-13任一所述的有机发光二极管,其中,
    所述第一电极的材料包括ITO、IZO和GZO之一或组合;以及
    所述光反射层的材料包括Ag、Al和AlNd之一或组合。
  15. 一种显示面板,包括多个像素单元;其中,
    每个所述像素单元包括权利要求1-14任一所述的有机发光二极管。
  16. 根据权利要求15所述的显示面板,其中,
    相邻所述像素单元中的所述有机发光二极管的所述光反射层无缝连接。
  17. 一种有机发光二极管的制备方法,包括:
    形成发光结构;
    形成第一电极结构,形成为驱动所述发光结构发光,并且所述第一电极结构包括:
    第一电极;
    光反射层,形成在所述第一电极远离所述发光结构的一侧,
    其中,至少部分所述光反射层与所述第一电极在第一方向上交叠形成且交叠形成的所述至少部分光反射层和所述第一电极之间至少部分形成有绝缘层,所述第一方向垂直于所述光反射层所在面。
PCT/CN2018/113466 2018-03-30 2018-11-01 有机发光二极管及其制备方法、显示面板 WO2019184346A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/466,737 US11539032B2 (en) 2018-03-30 2018-11-01 Organic light emitting diode including electrode structure formed of transparent electrode and light emitting layer and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810276547.2A CN108470844B (zh) 2018-03-30 2018-03-30 有机发光二极管及其制备方法、显示面板
CN201810276547.2 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019184346A1 true WO2019184346A1 (zh) 2019-10-03

Family

ID=63262137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113466 WO2019184346A1 (zh) 2018-03-30 2018-11-01 有机发光二极管及其制备方法、显示面板

Country Status (3)

Country Link
US (1) US11539032B2 (zh)
CN (1) CN108470844B (zh)
WO (1) WO2019184346A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937095A (zh) * 2021-09-30 2022-01-14 厦门天马微电子有限公司 一种显示面板及显示装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470844B (zh) 2018-03-30 2019-12-03 京东方科技集团股份有限公司 有机发光二极管及其制备方法、显示面板
CN109659349B (zh) * 2019-01-11 2021-02-19 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置
CN110828483A (zh) * 2019-11-18 2020-02-21 京东方科技集团股份有限公司 顶发射oled显示背板及其制作方法和oled显示装置
WO2022073284A1 (zh) * 2020-10-10 2022-04-14 深圳市华星光电半导体显示技术有限公司 Oled显示面板及其制作方法
CN114859598A (zh) * 2022-04-22 2022-08-05 Tcl华星光电技术有限公司 发光板及发光板的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050218794A1 (en) * 2004-03-23 2005-10-06 Chang-Su Seo Top-emission type organic electroluminescence display device and method for fabricating the same
CN1698218A (zh) * 2003-03-26 2005-11-16 索尼株式会社 发光器件及其制造方法和显示单元
CN1838427A (zh) * 2005-03-25 2006-09-27 精工爱普生株式会社 发光装置
CN101548409A (zh) * 2007-06-12 2009-09-30 卡西欧计算机株式会社 显示设备及其制造方法
CN101800240A (zh) * 2009-02-06 2010-08-11 精工爱普生株式会社 有机电致发光装置、电子设备
CN108470844A (zh) * 2018-03-30 2018-08-31 京东方科技集团股份有限公司 有机发光二极管及其制备方法、显示面板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804918A (en) * 1994-12-08 1998-09-08 Nippondenso Co., Ltd. Electroluminescent device having a light reflecting film only at locations corresponding to light emitting regions
JP4362696B2 (ja) 2003-03-26 2009-11-11 ソニー株式会社 発光素子およびその製造方法、ならびに表示装置
CN100426552C (zh) * 2006-02-13 2008-10-15 友达光电股份有限公司 有机发光二极管及显示器
KR102227455B1 (ko) * 2013-10-08 2021-03-11 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN104091894A (zh) * 2014-06-30 2014-10-08 京东方科技集团股份有限公司 一种有机发光二极管、阵列基板及其制备方法、显示装置
CN105226197B (zh) 2014-07-04 2018-01-16 上海和辉光电有限公司 一种oled结构
KR102405695B1 (ko) * 2015-08-31 2022-06-03 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1698218A (zh) * 2003-03-26 2005-11-16 索尼株式会社 发光器件及其制造方法和显示单元
US20050218794A1 (en) * 2004-03-23 2005-10-06 Chang-Su Seo Top-emission type organic electroluminescence display device and method for fabricating the same
CN1838427A (zh) * 2005-03-25 2006-09-27 精工爱普生株式会社 发光装置
CN101548409A (zh) * 2007-06-12 2009-09-30 卡西欧计算机株式会社 显示设备及其制造方法
CN101800240A (zh) * 2009-02-06 2010-08-11 精工爱普生株式会社 有机电致发光装置、电子设备
CN108470844A (zh) * 2018-03-30 2018-08-31 京东方科技集团股份有限公司 有机发光二极管及其制备方法、显示面板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937095A (zh) * 2021-09-30 2022-01-14 厦门天马微电子有限公司 一种显示面板及显示装置
CN113937095B (zh) * 2021-09-30 2022-11-04 厦门天马微电子有限公司 一种显示面板及显示装置

Also Published As

Publication number Publication date
US11539032B2 (en) 2022-12-27
CN108470844A (zh) 2018-08-31
CN108470844B (zh) 2019-12-03
US20210328194A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
WO2019184346A1 (zh) 有机发光二极管及其制备方法、显示面板
JP4475942B2 (ja) 表示装置及びその製造方法
JP4439260B2 (ja) 表示装置の製造方法
US8895974B2 (en) Organic el display device and method for manufacturing the same
TWI557896B (zh) 有機發光二極體顯示器及其製造方法
WO2019196601A1 (zh) Oled显示面板及其制造方法、显示装置
US9006727B2 (en) Organic light emitting diode display and manufacturing method thereof
US9530989B2 (en) Organic light emitting diode display and manufacturing method thereof
TWI594414B (zh) 有機發光二極體顯示器及其製造方法
JP4637831B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法並びに表示装置
JP2007248484A (ja) 表示装置
US20140027735A1 (en) Organic light emitting diode display and manufacturing method thereof
US11227903B2 (en) Organic light emitting display device having a reflective barrier and method of manufacturing the same
JP2006278257A (ja) 有機発光装置およびその製造方法
JP2010211984A (ja) 有機el装置および有機el装置の製造方法、ならびに電子機器
KR101065404B1 (ko) 유기 발광 표시 장치
WO2022247157A1 (zh) 显示基板及其制作方法、显示装置
WO2021035549A1 (zh) 显示基板及其制备方法,电子设备
JP5117553B2 (ja) 表示装置の製造方法
US20220359631A1 (en) Display substrate and methof for manufacturing the same, and display device
WO2021176539A1 (ja) 表示装置
JP2006107745A (ja) 有機el表示装置
KR20210012415A (ko) 발광 표시 장치
KR20190043123A (ko) 유기 발광 표시 장치 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912461

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18912461

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08-04-21)

122 Ep: pct application non-entry in european phase

Ref document number: 18912461

Country of ref document: EP

Kind code of ref document: A1