WO2022247157A1 - 显示基板及其制作方法、显示装置 - Google Patents

显示基板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2022247157A1
WO2022247157A1 PCT/CN2021/130335 CN2021130335W WO2022247157A1 WO 2022247157 A1 WO2022247157 A1 WO 2022247157A1 CN 2021130335 W CN2021130335 W CN 2021130335W WO 2022247157 A1 WO2022247157 A1 WO 2022247157A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
reflective layer
display substrate
display
Prior art date
Application number
PCT/CN2021/130335
Other languages
English (en)
French (fr)
Inventor
张粲
孟宪芹
陈小川
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2022247157A1 publication Critical patent/WO2022247157A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present disclosure relates to the field of display technology, in particular to a display substrate, a manufacturing method thereof, and a display device.
  • OLED Organic Light-Emitting Diode, organic light-emitting diode, referred to as OLED
  • OLED Organic Light-Emitting Diode
  • OLED organic light-emitting diode
  • the basic structure of an OLED device includes a cathode, an anode, and an organic electroluminescent material between the cathode and the anode.
  • the cathode and anode of the OLED device must be transparent/semi-transparent in the visible light region.
  • electrons and holes are injected into the light-emitting layer from the cathode and anode respectively. Electrons and holes form excitons in the light-emitting layer, and excitons are electrons in an excited state. The excitons recombine in the light-emitting layer, releasing energy in the form of light.
  • the technical problem to be solved in the present disclosure is to provide a display substrate, a manufacturing method thereof, and a display device, which can improve the light efficiency of the display device.
  • a display substrate including a base and pixel units arranged in an array on the base, the base includes a pixel circuit formed on the substrate, and each of the pixel units includes:
  • a first electrode located on one side of the substrate
  • a light emitting layer located on a side of the first electrode away from the substrate
  • a second electrode located on a side of the light-emitting layer away from the first electrode
  • the display substrate also includes:
  • the minimum distance between the via holes of adjacent pixel units is greater than the minimum distance between the first electrodes of adjacent pixel units.
  • the minimum distance between the orthographic projection of the via hole on the first electrode and the edge of the first electrode is D1
  • the orthographic projection of the via hole on the first electrode and the edge of the first electrode are The distance between the centers of the first electrodes is D2, and D1 is smaller than D2.
  • the reflective layers of different pixel units are connected as a whole.
  • the area ratio of the reflective layer to the display area of the display substrate is greater than 90%.
  • the reflective layer is a conductive reflective layer, and an insulating layer is separated between the conductive reflective layer and the first electrode.
  • the insulating layer has a thickness of 400-1000 angstroms.
  • the reflective layer adopts an insulating reflective layer
  • the insulating reflective layer includes at least one silicon dioxide film layer and at least one silicon nitride film layer, and the silicon dioxide film layer and the silicon nitride film layer Layers are stacked alternately.
  • the insulating light-reflecting layer includes three silicon dioxide film layers and three silicon nitride film layers, and the reflectance of the insulating light-reflecting layer to light with a wavelength of 400-700 nm is greater than 80%.
  • the thickness of the first electrode is 500-1200 angstroms.
  • An embodiment of the present disclosure provides a display device, including the above-mentioned display substrate and a driving circuit for driving the display substrate.
  • An embodiment of the present disclosure provides a method for manufacturing a display substrate, the display substrate includes a base and pixel units arranged in an array on the base, the base includes pixel circuits formed on the substrate, and the manufacturing Methods include:
  • the manufacturing method of the display substrate also includes:
  • a reflective layer is formed between the first electrode and the substrate, the first electrode is insulated from the reflective layer, and the first electrode is connected to the pixel circuit through a via hole penetrating through the reflective layer.
  • the reflective layer adopts a conductive reflective layer
  • the manufacturing method further includes:
  • An insulating layer is formed between the conductive reflective layer and the first electrode.
  • the reflective layer is an insulating reflective layer, and forming the reflective layer includes:
  • At least one silicon dioxide film layer and at least one silicon nitride film layer are formed, and the silicon dioxide film layer and the silicon nitride film layer are stacked alternately.
  • FIG. 1 is a schematic diagram of a related art display substrate
  • FIG. 2 is a schematic diagram of the size of a sub-pixel
  • Fig. 3 is a schematic diagram of the distance between adjacent film patterns
  • Fig. 4 is a schematic diagram of light not participating in resonant cavity resonance
  • FIG. 5 is a schematic plan view of a display substrate according to an embodiment of the present disclosure.
  • FIGS. 6 and 7 are schematic cross-sectional views of display substrates according to embodiments of the present disclosure.
  • FIG. 8 is a schematic diagram of a reflectivity curve of an insulating reflective layer according to an embodiment of the present disclosure.
  • Silicon-based OLED has the characteristics of small size and high resolution. It is made by mature integrated circuit technology and realizes active addressing of pixels. It is widely used in the fields of near-eye display, virtual reality and augmented reality.
  • the silicon-based OLED uses a silicon substrate, the silicon substrate is opaque, so the light-emitting device must use a top-emitting structure.
  • the light-emitting device with the top emission structure has a resonant cavity effect, which can improve the light efficiency.
  • the resonant cavity effect refers to the optical interference phenomenon between two reflective surfaces (or between a reflective surface and a semi-reflective surface), so the reflective electrode of the light-emitting device is crucial to the resonant cavity effect.
  • the silicon-based OLED display substrate in the related art includes a silicon-based substrate 01, a reflective electrode located on the silicon-based substrate 01, and the reflective electrode is composed of film layers 03, 04 and 05, wherein 03 can be a Ti layer, 04 may be an Ag or Al layer, 05 may be an ITO layer, and the reflective electrode is connected to the driving circuit in the silicon-based substrate through the via hole 02 .
  • the length of the sub-pixel is 5.1um and the width is 1.7um; um, but the distance between the layers 05 of adjacent sub-pixels is 0.4um, because the layer 05 needs to protect the layer 04, and the cross section of the protection layer 04 will not be oxidized, so the size of the layer 05 is larger than Dimensions of film layer 04.
  • the area of the reflective surface depends on the area of the film layer 04, and since the film layer 04 needs to keep a certain distance between adjacent sub-pixels, the area of the reflective surface is relatively small ; As shown in Figure 4, part of the light emitted from the light-emitting layer 06 will leak from the gap between the adjacent sub-pixel film layers 04, and will not participate in the resonance of the resonant cavity, which will lead to the reduction of the microcavity effect, and then reduce the light efficiency. .
  • Embodiments of the present disclosure provide a display substrate, a manufacturing method thereof, and a display device, which can improve the light efficiency of the display device.
  • An embodiment of the present disclosure provides a display substrate, including a substrate and pixel units arranged in an array on the substrate, the substrate includes a pixel circuit formed on the substrate, and each of the pixel units includes:
  • a first electrode located on one side of the substrate
  • a light emitting layer located on a side of the first electrode away from the substrate
  • a second electrode located on a side of the light-emitting layer away from the first electrode
  • the display substrate also includes:
  • a reflective layer independent of the first electrode is provided between the first electrode and the substrate, so that the design of the reflective layer is not limited by the first electrode, and the area of the reflective layer can be designed relatively large, which can improve
  • the reflectivity of the reflective layer is beneficial to enhance the resonant cavity effect of the display substrate, thereby improving the light efficiency and display brightness of the display device.
  • the first electrode may be one of the anode and the cathode
  • the second electrode may be the other of the anode and the cathode.
  • the display substrate may be a silicon-based display substrate, and the substrate may be a silicon-based substrate.
  • the base may include pixel circuitry formed on the substrate.
  • the pixel circuit has a drive transistor including a source, a drain and a gate. Wherein, the drain of the driving transistor is connected to the first electrode through the pixel circuit and the via hole 02, thereby driving the OLED device to emit light.
  • the minimum distance between the via holes of adjacent pixel units is greater than the minimum distance between the first electrodes of adjacent pixel units.
  • the minimum distance between the orthographic projection of the via hole on the first electrode and the edge of the first electrode is D1
  • the orthographic projection of the via hole on the first electrode and the edge of the first electrode are The distance between the centers of the first electrodes is D2, and D1 is smaller than D2.
  • the reflective layers of different pixel units are connected as one, so that in the display substrate, the reflective layer is continuous, which can increase the reflective area, improve the reflectivity of the reflective layer, and help enhance the resonant cavity effect of the display substrate , thereby improving the light efficiency and display brightness of the display device.
  • the area ratio of the reflective layer to the display area of the display substrate is greater than 90%, so as to ensure the reflectivity of the reflective layer.
  • the display substrate includes a substrate 01 , a via hole 02 penetrating through the substrate 01 , a reflective layer 07 on the substrate 01 , an insulating layer 09 , and a first electrode on the insulating layer 09 08.
  • the reflective layer 07 can be a conductive reflective layer, such as metal Al or Ag with good reflective performance, and the reflective layer 07 is continuous in the display area of the display substrate.
  • the electrode 08 is provided with an insulating layer 09 between the reflective layer 07 and the first electrode 08.
  • the insulating layer 09 can use inorganic insulating materials, such as silicon oxide, silicon nitride, etc., and the thickness of the insulating layer 09 is calculated according to the cavity length of the microcavity. Depending on the specific size, it can be 400-1000 angstroms, which can ensure the microcavity effect.
  • a via hole is provided in the reflective layer 07, and the via hole 02 is leaked, so that the conduction between the reflective layer 07 and the first electrode 08 can be avoided, and the size of the via hole in the reflective layer 07 is determined according to the size of the via hole 02, which can be omitted. greater than the size of via 02.
  • the dimension of the cross section of the via hole in the reflective layer 07 in the direction parallel to the substrate 01 may be 0.6*0.6um.
  • a via hole is provided in the insulating layer 09, and the via hole 02 is leaked, so that the first electrode 08 can be connected to the pixel circuit through the via hole 02, and at the same time, the via hole in the insulating layer 09 wraps the cross section of the reflective layer 07, so that the reflective layer 07 is insulated from the first electrode 08.
  • the size of the via hole in the insulating layer 09 is determined according to the size of the via hole 02 , and may be slightly larger than the size of the via hole 02 .
  • the dimension of the cross-section of the via hole in the insulating layer 09 in a direction parallel to the substrate 01 may be 0.4*0.4um.
  • the first electrode 08 can be made of a transparent conductive material, such as ITO, with a thickness of 500-1200 angstroms.
  • the first electrode 08 is connected to the pixel circuit through the via hole and the via hole 02 in the insulating layer 09 .
  • the ratio is beneficial to enhance the resonant cavity effect of the display substrate, thereby improving the light efficiency and display brightness of the display device.
  • the reflective layer can be an insulating reflective layer, so that the first electrode can be directly arranged on the reflective layer, and there is no need to arrange an insulating layer between the reflective layer and the first electrode, which can simplify the structure and manufacturing process of the display substrate.
  • the display substrate includes a base 01 , a via hole 02 penetrating through the base 01 , an insulating light-reflecting layer 10 on the base 01 , and a first electrode 08 on the insulating light-reflecting layer 10 .
  • the insulating reflective layer 10 can adopt a DBR (distributed Bragg reflection, distributed Bragg reflector) structure, and the DBR structure is a periodic structure composed of two materials with different refractive indices arranged alternately in an ABAB manner, and the optical thickness of each layer of material 1/4 of the central reflection wavelength.
  • the DBR structure is equivalent to a simple group of photonic crystals. Since the electromagnetic wave whose frequency falls within the energy gap range cannot penetrate, the reflectivity of the Bragg reflector can reach more than 99%.
  • a via hole is provided in the insulating reflective layer 10, and the via hole 02 is leaked, so that the first electrode 08 can be connected to the pixel circuit through the via hole 02, and the size of the via hole in the insulating reflective layer 10 is determined according to the size of the via hole 02, which can be Slightly larger than the size of via 02.
  • the dimension of the cross-section of the via hole in the insulating light-reflecting layer 10 in the direction parallel to the substrate 01 may be 0.4*0.4um.
  • the first electrode 08 can be made of a transparent conductive material, such as ITO, with a thickness of 500-1200 angstroms.
  • the first electrode 08 is connected to the pixel circuit through the via hole and the via hole 02 in the insulating layer 09 .
  • the ratio of the area of the insulating reflective layer 10 to the area of the display area of the display substrate can reach more than 93%, which greatly increases the proportion of the reflective surface, which is conducive to enhancing the resonant cavity effect of the display substrate, thereby improving the performance of the display device. Lighting effects and display brightness.
  • the insulating light-reflecting layer 10 includes at least one silicon dioxide film layer and at least one silicon nitride film layer, and the silicon dioxide film layer and the silicon nitride film layer are alternately stacked to form a DBR structure.
  • the insulating reflective layer may include three silicon dioxide film layers and three silicon nitride film layers, and the silicon dioxide film layer and silicon nitride film layer may be designed according to the required reflectivity.
  • the insulating reflective layer The layers are not limited to include three silicon dioxide film layers and three silicon nitride film layers, but may also include other numbers of silicon dioxide film layers and silicon nitride film layers.
  • the thickness of the first silicon dioxide film layer is 86.68nm
  • the thickness of the first silicon nitride film layer is 63.84nm
  • the thickness of the second silicon dioxide film layer is 87.91nm
  • the second The thickness of the silicon nitride film layer is 60.83nm
  • the thickness of the third silicon dioxide film layer is 145.55nm
  • the thickness of the third silicon nitride film layer is 97.09nm.
  • the reflectivity of the insulating light-reflecting layer 10 adopting this structure is The curve is shown in Figure 8, wherein, the ordinate is the reflectivity, and the abscissa is the wavelength of the reflected light, in nm.
  • the reflectivity of the insulating light-reflecting layer 10 to the light with a wavelength of 400-700nm is greater than 80 on average. %, can effectively enhance the resonant cavity effect of the display substrate, thereby improving the light efficiency and display brightness of the display device.
  • An embodiment of the present disclosure provides a display device, including the above-mentioned display substrate and a driving circuit for driving the display substrate.
  • the display device includes but not limited to: a radio frequency unit, a network module, an audio output unit, an input unit, a sensor, a display unit, a user input unit, an interface unit, a memory, a processor, and a power supply.
  • a radio frequency unit a network module
  • an audio output unit an input unit
  • a sensor a sensor
  • a display unit a user input unit
  • an interface unit a memory
  • a processor and a power supply.
  • the display device includes but is not limited to a monitor, a mobile phone, a tablet computer, a TV, a wearable electronic device, a navigation display device, and the like.
  • the display device can be any product or component with a display function such as a TV, a monitor, a digital photo frame, a mobile phone, and a tablet computer, wherein the display device also includes a flexible circuit board, a printed circuit board, and a backplane.
  • An embodiment of the present disclosure provides a method for manufacturing a display substrate, the display substrate includes a base and pixel units arranged in an array on the base, the base includes pixel circuits formed on the substrate, and the manufacturing Methods include:
  • the manufacturing method of the display substrate also includes:
  • a reflective layer is formed between the first electrode and the substrate, the first electrode is insulated from the reflective layer, and the first electrode is connected to the pixel circuit through a via hole penetrating through the reflective layer.
  • a reflective layer independent of the first electrode is provided between the first electrode and the substrate, so that the design of the reflective layer is not limited by the first electrode, and the area of the reflective layer can be designed relatively large, which can improve
  • the reflectivity of the reflective layer is beneficial to enhance the resonant cavity effect of the display substrate, thereby improving the light efficiency and display brightness of the display device.
  • the first electrode may be one of the anode and the cathode
  • the second electrode may be the other of the anode and the cathode.
  • the display substrate may be a silicon-based display substrate, and the substrate may be a silicon-based substrate.
  • the base may include pixel circuitry formed on the substrate.
  • the pixel circuit has a drive transistor including a source, a drain and a gate. Wherein, the drain of the driving transistor is connected to the first electrode through the pixel circuit and the via hole 02, thereby driving the OLED device to emit light.
  • the reflective layer adopts a conductive reflective layer
  • the manufacturing method further includes:
  • An insulating layer is formed between the conductive reflective layer and the first electrode.
  • the manufacturing method of this embodiment includes the following steps:
  • Step a providing a substrate 01, depositing a reflective layer 07 on the substrate 01, the reflective layer 07 can be metal Al or Ag with better reflective properties;
  • Step b Etching the reflective layer 07 to form a via hole and leak the via hole 02, so that the conduction between the reflective layer 07 and the first electrode 08 can be avoided.
  • the size of the via hole in the reflective layer 07 depends on the size of the via hole 02 Sure, it can be slightly larger than the size of via hole 02.
  • the size of the section of the via hole in the reflective layer 07 in the direction parallel to the substrate 01 may be 0.6*0.6um;
  • Step c depositing an inorganic insulating layer material to form an insulating layer 09 , the insulating layer 09 can separate the first electrode 08 from the reflective layer 07 .
  • the insulating layer 09 can be made of inorganic insulating materials, such as silicon oxide, silicon nitride, etc.
  • the thickness of the insulating layer 09 is determined according to the cavity length of the microcavity, specifically 400-1000 angstroms, which can ensure the microcavity effect;
  • Step d etch the insulating layer 09 to form a via hole, and leak the via hole 02, so that the first electrode 08 can be connected to the pixel circuit through the via hole 02, and the via hole in the insulating layer 09 connects the light-reflecting layer 07
  • the section is wrapped so that the reflective layer 07 is insulated from the first electrode 08 .
  • the size of the via hole in the insulating layer 09 is determined according to the size of the via hole 02 , and may be slightly larger than the size of the via hole 02 .
  • the dimension of the cross section of the via hole in the insulating layer 09 in the direction parallel to the substrate 01 may be 0.4*0.4um.
  • the first electrode 08 is connected to the pixel circuit through the via hole and the via hole 02 in the insulating layer 09 .
  • the ratio is beneficial to enhance the resonant cavity effect of the display substrate, thereby improving the light efficiency and display brightness of the display device.
  • the light-reflecting layer adopts an insulating light-reflecting layer, so that the first electrode can be directly arranged on the light-reflecting layer, and there is no need to arrange an insulating layer between the light-reflecting layer and the first electrode, which can simplify the structure and manufacturing process of the display substrate.
  • the display substrate includes a base 01 , a via hole 02 penetrating through the base 01 , an insulating light-reflecting layer 10 on the base 01 , and a first electrode 08 on the insulating light-reflecting layer 10 .
  • the insulating reflective layer 10 can adopt a DBR (distributed Bragg reflection, distributed Bragg reflector) structure, and the DBR structure is a periodic structure composed of two materials with different refractive indices arranged alternately in an ABAB manner, and the optical thickness of each layer of material 1/4 of the central reflection wavelength.
  • the DBR structure is equivalent to a simple group of photonic crystals. Since the electromagnetic wave whose frequency falls within the energy gap range cannot penetrate, the reflectivity of the Bragg reflector can reach more than 99%.
  • forming the reflective layer includes:
  • At least one silicon dioxide film layer and at least one silicon nitride film layer are formed, and the silicon dioxide film layer and the silicon nitride film layer are alternately stacked to form a DBR structure.
  • the insulating reflective layer may include three silicon dioxide film layers and three silicon nitride film layers, and the silicon dioxide film layer and silicon nitride film layer may be designed according to the required reflectivity.
  • the insulating reflective layer The layers are not limited to include three silicon dioxide film layers and three silicon nitride film layers, but may also include other numbers of silicon dioxide film layers and silicon nitride film layers.
  • the thickness of the first silicon dioxide film layer is 86.68nm
  • the thickness of the first silicon nitride film layer is 63.84nm
  • the thickness of the second silicon dioxide film layer is 87.91nm
  • the second The thickness of the silicon nitride film layer is 60.83nm
  • the thickness of the third silicon dioxide film layer is 145.55nm
  • the thickness of the third silicon nitride film layer is 97.09nm.
  • the reflectivity of the insulating light-reflecting layer 10 adopting this structure is The curve is shown in Figure 8, wherein, the ordinate is the reflectivity, and the abscissa is the wavelength of the reflected light, in nm.
  • the reflectivity of the insulating light-reflecting layer 10 to the light with a wavelength of 400-700nm is greater than 80 on average. %, can effectively enhance the resonant cavity effect of the display substrate, thereby improving the light efficiency and display brightness of the display device.
  • each embodiment in this specification is described in a progressive manner, the same and similar parts of each embodiment can be referred to each other, and each embodiment focuses on the differences from other embodiments.
  • the description is relatively simple, and for the related parts, please refer to the description of the product embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供了一种显示基板及其制作方法、显示装置,属于显示技术领域。其中,显示基板,包括基底以及位于所述基底上阵列排布的像素单元,所述基底包括在衬底上形成的像素电路,每个所述像素单元中均包括:第一电极,位于所述基底的一侧;发光层,位于所述第一电极远离所述基底的一侧;以及第二电极,位于所述发光层远离所述第一电极的一侧;所述显示基板还包括:位于所述第一电极和所述基底之间的反光层,所述第一电极通过贯穿所述反光层的过孔与所述像素电路连接。本公开的技术方案能够提高显示装置的光效。

Description

显示基板及其制作方法、显示装置
本申请是主张在2021年5月24日在中国提交的中国专利申请No.202110564436.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,特别是指一种显示基板及其制作方法、显示装置。
背景技术
OLED(Organic Light-Emitting Diode,有机发光二极管,简称OLED)器件由于具有薄、轻、宽视角、主动发光、发光颜色连续可调、成本低、响应速度快、能耗小、驱动电压低、工作温度范围宽、生产工艺简单、发光效率高及可柔性显示等优点,已被列为极具发展前景的下一代显示技术。
OLED器件的基本结构包括阴极、阳极以及阴极与阳极之间的有机电致发光材料。OLED器件的阴极与阳极必须一个在可见光区为透明/半透明状态。对OLED器件施加偏压后电子与空穴分别从阴极、阳极注入发光层。电子与空穴在发光层中形成激子,激子为激发态电子。激子在发光层中复合,以光的形式释放能量。
发明内容
本公开要解决的技术问题是提供一种显示基板及其制作方法、显示装置,能够提高显示装置的光效。
为解决上述技术问题,本公开的实施例提供技术方案如下:
一方面,提供一种显示基板,包括基底以及位于所述基底上阵列排布的像素单元,所述基底包括在衬底上形成的像素电路,每个所述像素单元中均包括:
第一电极,位于所述基底的一侧;
发光层,位于所述第一电极远离所述基底的一侧;以及
第二电极,位于所述发光层远离所述第一电极的一侧;
所述显示基板还包括:
位于所述第一电极和所述基底之间的反光层,所述第一电极与所述反光层绝缘设置,所述第一电极通过贯穿所述反光层的过孔与所述像素电路连接。
一些实施例中,相邻像素单元的所述过孔之间的最小距离大于相邻像素单元的所述第一电极之间的最小距离。
一些实施例中,所述过孔在所述第一电极上的正投影与所述第一电极边缘之间的最小距离为D1,所述过孔在所述第一电极上的正投影与所述第一电极中心的距离为D2,D1小于D2。
一些实施例中,不同像素单元的所述反光层连接为一体。
一些实施例中,所述反光层与所述显示基板的显示区域的面积比大于90%。
一些实施例中,所述反光层采用导电反光层,所述导电反光层与所述第一电极之间间隔有绝缘层。
一些实施例中,所述绝缘层的厚度为400-1000埃。
一些实施例中,所述反光层采用绝缘反光层,所述绝缘反光层包括至少一个二氧化硅膜层和至少一个氮化硅膜层,所述二氧化硅膜层和所述氮化硅膜层交替层叠。
一些实施例中,所述绝缘反光层包括三个二氧化硅膜层和三个氮化硅膜层,所述绝缘反光层对波长为400~700nm的光的反射率大于80%。
一些实施例中,所述第一电极的厚度为500~1200埃。
本公开的实施例提供了一种显示装置,包括上述的显示基板以及用于驱动所述显示基板的驱动电路。
本公开的实施例提供了一种显示基板的制作方法,所述显示基板包括基底以及位于所述基底上阵列排布的像素单元,所述基底包括在衬底上形成的像素电路,所述制作方法包括:
提供基底;
在所述基底上形成第一电极;
在所述第一电极远离所述基底的一侧形成发光层;以及
在所述发光层远离所述第一电极的一侧形成第二电极;
所述显示基板的制作方法还包括:
在所述第一电极和所述基底之间形成反光层,所述第一电极与所述反光层绝缘设置,所述第一电极通过贯穿所述反光层的过孔与所述像素电路连接。
一些实施例中,所述反光层采用导电反光层,所述制作方法还包括:
在所述导电反光层与所述第一电极之间形成绝缘层。
一些实施例中,所述反光层采用绝缘反光层,形成所述反光层包括:
形成至少一个二氧化硅膜层和至少一个氮化硅膜层,所述二氧化硅膜层和所述氮化硅膜层交替层叠。
附图说明
图1为相关技术显示基板的示意图;
图2为子像素的尺寸示意图;
图3为相邻膜层图形之间的距离示意图;
图4为不参与谐振腔共振的光的示意图;
图5为本公开实施例显示基板的平面示意图;
图6和图7为本公开实施例显示基板的截面示意图;
图8为本公开实施例的绝缘反射层的反射率曲线示意图。
附图标记
01 基底
02 过孔
03 Ti层
04 Ag或Al层
05 ITO层
06 发光层
07 反光层
08 第一电极
09 绝缘层
10 绝缘反光层
具体实施方式
为使本公开的实施例要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
硅基OLED具有体积小,分辨率高的特点,采用成熟的集成电路工艺制成,实现了像素的有源寻址,广泛应用于近眼显示与虚拟现实、增强现实领域中。
硅基OLED由于采用硅衬底,硅衬底不透明,因此发光器件必须使用顶发射结构。顶发射结构的发光器件有谐振腔效应,能够提升光效。谐振腔效应即指在两个反射面之间(或一个反射面一个半反射面之间)的光学干涉现象,因此发光器件的反射电极对谐振腔效应至关重要。
但在高PPI(像素密度)的硅基OLED中,由于像素的尺寸很小,反射电极的面积会大幅减小,从而影响了谐振腔效应,导致显示基板的显示亮度降低。
如图1所示,相关技术中的硅基OLED显示基板包括硅基基底01,位于硅基基底01上的反射电极,反射电极由膜层03、04和05组成,其中03可以为Ti层,04可以为Ag或Al层,05可以为ITO层,反射电极通过过孔02与硅基基底中的驱动电路连接。
如图2所示,对于5000PPI的硅基OLED,子像素的长度为5.1um,宽度为1.7um;如图3所示,反射电极中,相邻子像素的膜层04之间的距离为0.8um,但相邻子像素的膜层05之间的距离为0.4um,这是因为膜层05需要对膜层04进行保护,保护膜层04的截面不被氧化,所以膜层05的尺寸大于膜层04的尺寸。由于反射电极中是膜层04起反射作用,因此,反射面面积取决于膜层04的面积,而由于相邻子像素之间的膜层04需要保持一定距离,因此,反射面的面积比较小;如图4所示,发光层06出射的光线,会有一部分从相 邻子像素膜层04之间的间隙漏出,而不参与谐振腔共振,会导致微腔效应的降低,进而降低光效。
本公开实施例提供一种显示基板及其制作方法、显示装置,能够提高显示装置的光效。
本公开的实施例提供一种显示基板,包括基底以及位于所述基底上阵列排布的像素单元,所述基底包括在衬底上形成的像素电路,每个所述像素单元中均包括:
第一电极,位于所述基底的一侧;
发光层,位于所述第一电极远离所述基底的一侧;以及
第二电极,位于所述发光层远离所述第一电极的一侧;
所述显示基板还包括:
位于所述第一电极和所述基底之间的反光层,所述第一电极与所述反光层绝缘设置,所述第一电极通过贯穿所述反光层的过孔与所述像素电路连接。
本实施例中,在第一电极和基底之间设置有独立于第一电极的反光层,这样反光层的设计不受第一电极的限制,可以将反光层的面积设计的比较大,可以提高反光层的反射率,有利于增强显示基板的谐振腔效应,进而提高显示装置的光效和显示亮度。
其中,第一电极可以为阳极和阴极中的一者,第二电极可以为阳极和阴极中的另一者。显示基板可以为硅基显示基板,基底可以为硅基基底。
该基底可包括在衬底上形成的像素电路。该像素电路具有驱动晶体管,该驱动晶体管包括源极、漏极和栅极。其中,该驱动晶体管的漏极通过像素电路和过孔02与第一电极连接,进而驱动OLED器件发光。
一些实施例中,相邻像素单元的所述过孔之间的最小距离大于相邻像素单元的所述第一电极之间的最小距离。
一些实施例中,所述过孔在所述第一电极上的正投影与所述第一电极边缘之间的最小距离为D1,所述过孔在所述第一电极上的正投影与所述第一电极中心的距离为D2,D1小于D2。
一些实施例中,不同像素单元的所述反光层连接为一体,这样在显示基 板中,反光层为连续的,可以增加反射面积,提高反光层的反射率,有利于增强显示基板的谐振腔效应,进而提高显示装置的光效和显示亮度。
一些实施例中,所述反光层与所述显示基板的显示区域的面积比大于90%,这样可以保证反光层的反射率。
一些实施例中,如图5和图6所示,显示基板包括基底01,贯穿基底01的过孔02,位于基底01上的反光层07,绝缘层09,位于绝缘层09上的第一电极08。其中,反光层07可以采用导电反光层,比如采用反光性能较好的金属Al或Ag,反光层07在显示基板的显示区域为连续的,为了避免反光层07导通相邻子像素的第一电极08,在反光层07和第一电极08之间设置有绝缘层09,绝缘层09可以采用无机绝缘材料,比如氧化硅、氮化硅等,绝缘层09的厚度根据微腔的腔长计算而定,具体可以为400-1000埃,可以保证微腔效应。
其中,反光层07中设置有过孔,将过孔02漏出,这样可以避免反光层07与第一电极08导通,反光层07中的过孔的尺寸根据过孔02的尺寸确定,可以略大于过孔02的尺寸。一些实施例中,反光层07中的过孔在平行于基底01的方向上的截面的尺寸可以为0.6*0.6um。
绝缘层09中设置有过孔,将过孔02漏出,这样可以使得第一电极08通过过孔02与像素电路连接,同时绝缘层09中的过孔将反光层07的截面包裹,使得反光层07与第一电极08绝缘。绝缘层09中过孔的尺寸根据过孔02的尺寸确定,可以略大于过孔02的尺寸。一些实施例中,绝缘层09中过孔在平行于基底01的方向上的截面的尺寸可以为0.4*0.4um。
第一电极08可以采用透明导电材料,比如ITO,厚度可以为500~1200埃,第一电极08通过绝缘层09中的过孔、过孔02与像素电路连接。
本实施例中,反光层07的面积与显示基板的显示区的面积的比可以达到1-0.6*0.6/((1.7-0.4)*(5.1-0.4))=92.6%,大大提高了反射面占比,有利于增强显示基板的谐振腔效应,进而提高显示装置的光效和显示亮度。
一些实施例中,所述反光层可以采用绝缘反光层,这样可以直接在反光层上设置第一电极,无需再在反光层和第一电极之间设置绝缘层,能够简化 显示基板的结构和制程。如图7所示,显示基板包括基底01,贯穿基底01的过孔02,位于基底01上的绝缘反光层10,位于绝缘反光层10上的第一电极08。
其中,绝缘反光层10可以采用DBR(distributed Bragg reflection,分布式布拉格反射镜)结构,DBR结构是由两种不同折射率的材料以ABAB的方式交替排列组成的周期结构,每层材料的光学厚度为中心反射波长的1/4。DBR结构相当于简单的一组光子晶体。由于频率落在能隙范围内的电磁波无法穿透,布拉格反射镜的反射率可达99%以上。
绝缘反光层10中设置有过孔,将过孔02漏出,这样可以使得第一电极08通过过孔02与像素电路连接,绝缘反光层10中过孔的尺寸根据过孔02的尺寸确定,可以略大于过孔02的尺寸。一些实施例中,绝缘反光层10中过孔在平行于基底01的方向上的截面的尺寸可以为0.4*0.4um。
第一电极08可以采用透明导电材料,比如ITO,厚度可以为500~1200埃,第一电极08通过绝缘层09中的过孔、过孔02与像素电路连接。
本实施例中,绝缘反光层10的面积与显示基板的显示区的面积的比可以达到93%以上,大大提高了反射面占比,有利于增强显示基板的谐振腔效应,进而提高显示装置的光效和显示亮度。
一些实施例中,所述绝缘反光层10包括至少一个二氧化硅膜层和至少一个氮化硅膜层,所述二氧化硅膜层和所述氮化硅膜层交替层叠,组成DBR结构。
具体地,所述绝缘反光层可以包括三个二氧化硅膜层和三个氮化硅膜层,二氧化硅膜层和氮化硅膜层可以根据需要的反射率进行设计,当然,绝缘反光层并不局限于包括三个二氧化硅膜层和三个氮化硅膜层,还可以包括其他数目个二氧化硅膜层和氮化硅膜层。
一具体示例中,第一个二氧化硅膜层的厚度为86.68nm,第一个氮化硅膜层的厚度为63.84nm,第二个二氧化硅膜层的厚度为87.91nm,第二个氮化硅膜层的厚度为60.83nm,第三个二氧化硅膜层的厚度为145.55nm,第三个氮化硅膜层的厚度为97.09nm,采用该结构的绝缘反光层10的反射率曲线如 图8所示,其中,纵坐标为反射率,横坐标为反射的光的波长,单位为nm,可以看出,绝缘反光层10对波长为400~700nm的光的反射率平均大于80%,可以有效增强显示基板的谐振腔效应,进而提高显示装置的光效和显示亮度。
本公开的实施例提供了一种显示装置,包括上述的显示基板以及用于驱动所述显示基板的驱动电路。
该显示装置包括但不限于:射频单元、网络模块、音频输出单元、输入单元、传感器、显示单元、用户输入单元、接口单元、存储器、处理器、以及电源等部件。本领域技术人员可以理解,上述显示装置的结构并不构成对显示装置的限定,显示装置可以包括上述更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,显示装置包括但不限于显示器、手机、平板电脑、电视机、可穿戴电子设备、导航显示设备等。
所述显示装置可以为:电视、显示器、数码相框、手机、平板电脑等任何具有显示功能的产品或部件,其中,所述显示装置还包括柔性电路板、印刷电路板和背板。
本公开的实施例提供了一种显示基板的制作方法,所述显示基板包括基底以及位于所述基底上阵列排布的像素单元,所述基底包括在衬底上形成的像素电路,所述制作方法包括:
提供基底;
在所述基底上形成第一电极;
在所述第一电极远离所述基底的一侧形成发光层;以及
在所述发光层远离所述第一电极的一侧形成第二电极;
所述显示基板的制作方法还包括:
在所述第一电极和所述基底之间形成反光层,所述第一电极与所述反光层绝缘设置,所述第一电极通过贯穿所述反光层的过孔与所述像素电路连接。
本实施例中,在第一电极和基底之间设置有独立于第一电极的反光层,这样反光层的设计不受第一电极的限制,可以将反光层的面积设计的比较大,可以提高反光层的反射率,有利于增强显示基板的谐振腔效应,进而提高显示装置的光效和显示亮度。
其中,第一电极可以为阳极和阴极中的一者,第二电极可以为阳极和阴极中的另一者。显示基板可以为硅基显示基板,基底可以为硅基基底。
该基底可包括在衬底上形成的像素电路。该像素电路具有驱动晶体管,该驱动晶体管包括源极、漏极和栅极。其中,该驱动晶体管的漏极通过像素电路和过孔02与第一电极连接,进而驱动OLED器件发光。
一些实施例中,所述反光层采用导电反光层,所述制作方法还包括:
在所述导电反光层与所述第一电极之间形成绝缘层。
如图6所示,本实施例的制作方法包括以下步骤:
步骤a、提供基底01,在基底01上沉积反光层07,反光层07可以采用反光性能较好的金属Al或Ag;
步骤b、对反光层07进行刻蚀,形成过孔,将过孔02漏出,这样可以避免反光层07与第一电极08导通,反光层07中的过孔的尺寸根据过孔02的尺寸确定,可以略大于过孔02的尺寸。一些实施例中,反光层07中的过孔在平行于基底01的方向上的截面的尺寸可以为0.6*0.6um;
步骤c、沉积无机绝缘层材料形成绝缘层09,绝缘层09可以将第一电极08与反光层07分隔开。绝缘层09可以采用无机绝缘材料,比如氧化硅、氮化硅等,绝缘层09的厚度根据微腔的腔长计算而定,具体可以为400-1000埃,可以保证微腔效应;
步骤d、对绝缘层09进行刻蚀,形成过孔,将过孔02漏出,这样可以使得第一电极08通过过孔02与像素电路连接,同时绝缘层09中的过孔将反光层07的截面包裹,使得反光层07与第一电极08绝缘。绝缘层09中过孔的尺寸根据过孔02的尺寸确定,可以略大于过孔02的尺寸。一些实施例中,绝缘层09中过孔在平行于基底01的方向上的截面的尺寸可以为0.4*0.4um。
在绝缘层09上沉积透明导电材料,对透明导电材料进行构图形成第一电极08,厚度可以为500~1200埃,第一电极08通过绝缘层09中的过孔、过孔02与像素电路连接。
本实施例中,反光层07的面积与显示基板的显示区的面积的比可以达到1-0.6*0.6/((1.7-0.4)*(5.1-0.4))=92.6%,大大提高了反射面占比,有利 于增强显示基板的谐振腔效应,进而提高显示装置的光效和显示亮度。
一些实施例中,所述反光层采用绝缘反光层,这样可以直接在反光层上设置第一电极,无需再在反光层和第一电极之间设置绝缘层,能够简化显示基板的结构和制程。如图7所示,显示基板包括基底01,贯穿基底01的过孔02,位于基底01上的绝缘反光层10,位于绝缘反光层10上的第一电极08。
其中,绝缘反光层10可以采用DBR(distributed Bragg reflection,分布式布拉格反射镜)结构,DBR结构是由两种不同折射率的材料以ABAB的方式交替排列组成的周期结构,每层材料的光学厚度为中心反射波长的1/4。DBR结构相当于简单的一组光子晶体。由于频率落在能隙范围内的电磁波无法穿透,布拉格反射镜的反射率可达99%以上。
一些实施例中,形成所述反光层包括:
形成至少一个二氧化硅膜层和至少一个氮化硅膜层,所述二氧化硅膜层和所述氮化硅膜层交替层叠,组成DBR结构。
具体地,所述绝缘反光层可以包括三个二氧化硅膜层和三个氮化硅膜层,二氧化硅膜层和氮化硅膜层可以根据需要的反射率进行设计,当然,绝缘反光层并不局限于包括三个二氧化硅膜层和三个氮化硅膜层,还可以包括其他数目个二氧化硅膜层和氮化硅膜层。
一具体示例中,第一个二氧化硅膜层的厚度为86.68nm,第一个氮化硅膜层的厚度为63.84nm,第二个二氧化硅膜层的厚度为87.91nm,第二个氮化硅膜层的厚度为60.83nm,第三个二氧化硅膜层的厚度为145.55nm,第三个氮化硅膜层的厚度为97.09nm,采用该结构的绝缘反光层10的反射率曲线如图8所示,其中,纵坐标为反射率,横坐标为反射的光的波长,单位为nm,可以看出,绝缘反光层10对波长为400~700nm的光的反射率平均大于80%,可以有效增强显示基板的谐振腔效应,进而提高显示装置的光效和显示亮度。
需要说明,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于实施例而言,由于其基本相似于产品实施例, 所以描述得比较简单,相关之处参见产品实施例的部分说明即可。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种显示基板,包括基底以及位于所述基底上阵列排布的像素单元,所述基底包括在衬底上形成的像素电路,每个所述像素单元中均包括:
    第一电极,位于所述基底的一侧;
    发光层,位于所述第一电极远离所述基底的一侧;以及
    第二电极,位于所述发光层远离所述第一电极的一侧;
    其特征在于,所述显示基板还包括:
    位于所述第一电极和所述基底之间的反光层,所述第一电极与所述反光层绝缘设置,所述第一电极通过贯穿所述反光层的过孔与所述像素电路连接。
  2. 根据权利要求1所述的显示基板,其特征在于,相邻像素单元的所述过孔之间的最小距离大于相邻像素单元的所述第一电极之间的最小距离。
  3. 根据权利要求1或2所述的显示基板,其特征在于,所述过孔在所述第一电极上的正投影与所述第一电极边缘之间的最小距离为D1,所述过孔在所述第一电极上的正投影与所述第一电极中心的距离为D2,D1小于D2。
  4. 根据权利要求1所述的显示基板,其特征在于,不同像素单元的所述反光层连接为一体。
  5. 根据权利要求1或4所述的显示基板,其特征在于,所述反光层与所述显示基板的显示区域的面积比大于90%。
  6. 根据权利要求1所述的显示基板,其特征在于,所述反光层采用导电反光层,所述导电反光层与所述第一电极之间间隔有绝缘层。
  7. 根据权利要求6所述的显示基板,其特征在于,所述绝缘层的厚度为400-1000埃。
  8. 根据权利要求1所述的显示基板,其特征在于,所述反光层采用绝缘反光层,所述绝缘反光层包括至少一个二氧化硅膜层和至少一个氮化硅膜层,所述二氧化硅膜层和所述氮化硅膜层交替层叠。
  9. 根据权利要求8所述的显示基板,其特征在于,所述绝缘反光层包括三个二氧化硅膜层和三个氮化硅膜层,所述绝缘反光层对波长为400~700nm 的光的反射率大于80%。
  10. 根据权利要求1所述的显示基板,其特征在于,所述第一电极的厚度为500~1200埃。
  11. 一种显示装置,其特征在于,包括权利要求1-10中任一项所述的显示基板以及用于驱动所述显示基板的驱动电路。
  12. 一种显示基板的制作方法,所述显示基板包括基底以及位于所述基底上阵列排布的像素单元,所述基底包括在衬底上形成的像素电路,所述制作方法包括:
    提供基底;
    在所述基底上形成第一电极;
    在所述第一电极远离所述基底的一侧形成发光层;以及
    在所述发光层远离所述第一电极的一侧形成第二电极;
    其特征在于,所述显示基板的制作方法还包括:
    在所述第一电极和所述基底之间形成反光层,所述第一电极与所述反光层绝缘设置,所述第一电极通过贯穿所述反光层的过孔与所述像素电路连接。
  13. 根据权利要求12所述的显示基板的制作方法,其特征在于,所述反光层采用导电反光层,所述制作方法还包括:
    在所述导电反光层与所述第一电极之间形成绝缘层。
  14. 根据权利要求12所述的显示基板的制作方法,其特征在于,所述反光层采用绝缘反光层,形成所述反光层包括:
    形成至少一个二氧化硅膜层和至少一个氮化硅膜层,所述二氧化硅膜层和所述氮化硅膜层交替层叠。
PCT/CN2021/130335 2021-05-24 2021-11-12 显示基板及其制作方法、显示装置 WO2022247157A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110564436.3 2021-05-24
CN202110564436.3A CN113299858A (zh) 2021-05-24 2021-05-24 显示基板及其制作方法、显示装置

Publications (1)

Publication Number Publication Date
WO2022247157A1 true WO2022247157A1 (zh) 2022-12-01

Family

ID=77324178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130335 WO2022247157A1 (zh) 2021-05-24 2021-11-12 显示基板及其制作方法、显示装置

Country Status (2)

Country Link
CN (1) CN113299858A (zh)
WO (1) WO2022247157A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113299858A (zh) * 2021-05-24 2021-08-24 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置
CN115241304A (zh) * 2022-07-27 2022-10-25 武汉高芯科技有限公司 一种红外焦平面像元反光帘、红外焦平面阵列及芯片

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060232199A1 (en) * 2005-03-29 2006-10-19 Fuji Photo Film Co., Ltd. Organic electroluminescent display device
CN101000921A (zh) * 2006-01-13 2007-07-18 精工爱普生株式会社 发光装置以及电子设备
CN103000638A (zh) * 2012-12-12 2013-03-27 京东方科技集团股份有限公司 阵列基板及其制备方法、有机发光二极管显示装置
CN103022079A (zh) * 2012-12-12 2013-04-03 京东方科技集团股份有限公司 阵列基板及其制备方法、有机发光二极管显示装置
CN110718571A (zh) * 2019-10-14 2020-01-21 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN113299858A (zh) * 2021-05-24 2021-08-24 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3085115B2 (ja) * 1994-12-13 2000-09-04 日本ビクター株式会社 液晶表示装置
CN108242453B (zh) * 2016-12-23 2020-07-28 京东方科技集团股份有限公司 一种oled显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060232199A1 (en) * 2005-03-29 2006-10-19 Fuji Photo Film Co., Ltd. Organic electroluminescent display device
CN101000921A (zh) * 2006-01-13 2007-07-18 精工爱普生株式会社 发光装置以及电子设备
CN103000638A (zh) * 2012-12-12 2013-03-27 京东方科技集团股份有限公司 阵列基板及其制备方法、有机发光二极管显示装置
CN103022079A (zh) * 2012-12-12 2013-04-03 京东方科技集团股份有限公司 阵列基板及其制备方法、有机发光二极管显示装置
CN110718571A (zh) * 2019-10-14 2020-01-21 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN113299858A (zh) * 2021-05-24 2021-08-24 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置

Also Published As

Publication number Publication date
CN113299858A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
CN107195584B (zh) 一种显示面板的制备方法、显示面板及显示装置
CN109817832B (zh) 一种oled显示基板及其制备方法、显示装置
TWI637657B (zh) 有機發光二極體顯示器
WO2022247157A1 (zh) 显示基板及其制作方法、显示装置
US9269925B2 (en) Array substrate including wavy transflective layer
KR101972169B1 (ko) 유기 발광 표시 장치 및 그 제조방법
US11539032B2 (en) Organic light emitting diode including electrode structure formed of transparent electrode and light emitting layer and manufacturing method thereof
CN113078180B (zh) 显示面板与显示装置
WO2019223652A1 (zh) 一种显示面板及其制作方法、显示装置
CN108987609B (zh) 白光oled器件和显示装置
CN112714955B (zh) 显示基板、显示面板及显示基板的制备方法
KR20140128532A (ko) 유기 발광 표시 장치
WO2021035405A1 (zh) 显示装置及其制造方法和驱动基板
US20230422580A1 (en) Display module, manufacturing method thereof, and display device
WO2020168904A1 (zh) 显示基板、显示面板以及显示装置
WO2021035549A1 (zh) 显示基板及其制备方法,电子设备
US20210305540A1 (en) Organic light-emitting device and manufacturing method therefor
WO2021169608A1 (zh) 显示面板及其制造方法、显示装置
CN110993822B (zh) 一种显示面板、其制作方法及显示装置
KR20140099973A (ko) 다층 구조로 형성된 절연층을 포함하는 유기 발광 표시 장치
CN103730481A (zh) 有机发光显示器及其制作方法
KR20110058579A (ko) 유기발광다이오드 표시장치 및 이를 제조하는 방법
JP2009164067A (ja) バックライト及び液晶表示装置
US20220359631A1 (en) Display substrate and methof for manufacturing the same, and display device
US20220320468A1 (en) Display substrate and display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17913787

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE