WO2021169608A1 - 显示面板及其制造方法、显示装置 - Google Patents

显示面板及其制造方法、显示装置 Download PDF

Info

Publication number
WO2021169608A1
WO2021169608A1 PCT/CN2021/070159 CN2021070159W WO2021169608A1 WO 2021169608 A1 WO2021169608 A1 WO 2021169608A1 CN 2021070159 W CN2021070159 W CN 2021070159W WO 2021169608 A1 WO2021169608 A1 WO 2021169608A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
electrode
electrode layer
area
Prior art date
Application number
PCT/CN2021/070159
Other languages
English (en)
French (fr)
Inventor
金玉
王恩来
李如龙
习王锋
蒋际君
沈楠
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Publication of WO2021169608A1 publication Critical patent/WO2021169608A1/zh
Priority to US17/588,729 priority Critical patent/US20220158060A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Definitions

  • the embodiments of the present application relate to the field of display technology, and in particular, to a display panel, a display device, and a manufacturing method of the display panel.
  • terminal devices such as mobile phones and tablet computers usually have functional devices such as cameras, fingerprint recognition chips, speakers, and earpieces.
  • functional devices such as cameras, fingerprint recognition chips, speakers, and earpieces.
  • the purpose of some embodiments of the present application is to provide a display panel, a display device, and a manufacturing method of the display panel, so as to improve the display performance of the display panel.
  • an embodiment of the present application provides a display panel.
  • the display panel includes a transition area and a light-transmitting area, and the light transmittance of the light-transmitting area is greater than the light transmittance of the transition area;
  • the first driving circuit in the transition area, the first driving circuit has a first output terminal;
  • the first planarization layer is located in the transition area and the drive back plate of the light-transmitting area;
  • the first electrode layer is located in the transition area away from the first planarization layer One side of the driving backplane and passing through the first planarization layer to be electrically connected to the first output terminal;
  • the second planarization layer is located on the first planarization layer and the side of the first electrode layer away from the driving backplane;
  • the second electrode The second planarization layer located in the transition area and the light-transmitting area is far away from the driving backplane, and penetrates the second planarization layer to contact the first electrode layer.
  • the embodiment of the present application also provides a display device including the above-mentioned display panel.
  • the embodiment of the present application also provides a method for manufacturing a display panel, which can be used to manufacture the above-mentioned display panel.
  • the display panel includes a transition area and a light-transmitting area adjacent to each other, and the light transmittance of the light-transmitting area is greater than that of the transition area.
  • the light rate includes: providing a driving backplane, the driving backplane includes a first driving circuit located in the transition area, the first driving circuit has a first output terminal; forming a first planarization layer, the first planarization layer is located in the transition area and the transparent The driving backplane of the light area; forming a first electrode layer, the first electrode layer is located on the side of the first planarization layer of the transition area away from the driving backplane, and penetrates the first planarization layer to be electrically connected to the first output terminal
  • a second planarization layer the second planarization layer is located in the first planarization layer and the first electrode layer away from the side of the drive backplane; forming a second electrode layer, the second electrode layer is located in the transition area and the light-transmitting area
  • the second planarization layer is far away from the driving backplane, and penetrates the second planarization layer to contact the first electrode layer, and the light transmittance of the second electrode layer is greater than the light transmittance of the first electrode
  • FIG. 1 is a schematic diagram of a cross-sectional structure of a display panel provided by an embodiment of the application
  • FIG. 2 is a schematic top view of the structure of the first electrode layer of the display panel in FIG. 1;
  • FIG. 3 is a schematic top view of the structure of a second electrode layer, a transition area electrode, and a main screen area electrode of the display panel in FIG. 1;
  • FIG. 4 is a schematic diagram of a cross-sectional structure of a display panel provided by another embodiment of the application.
  • FIG. 5 is a schematic top view of the structure of the first electrode layer, the third electrode layer, and the fifth electrode layer of the display panel in FIG. 4;
  • FIG. 6 is a schematic top view of the structure of the second electrode layer, the fourth electrode layer, and the sixth electrode layer of the display panel in FIG. 4;
  • FIG. 7 to FIG. 11 are schematic diagrams of the structure corresponding to each step of the manufacturing method of the display panel provided by an embodiment of the present application.
  • the embodiments of the present application provide a display panel with superior structural performance.
  • the planarization layer and the electrode of the first light-emitting unit for electrically connecting the light-transmitting area are all new structures, which can improve the performance of the display panel.
  • FIG. 1 to 3 are schematic diagrams of the structure of a display panel provided by an embodiment of the application
  • FIG. 1 is a schematic cross-sectional structure of the display panel
  • FIG. 2 is a schematic top view of the structure of the first electrode layer of the display panel in FIG. 1
  • FIG. 3 is A schematic top view of the structure of the second electrode layer, the transition area electrode, and the main screen area electrode of the display panel in FIG. 1. It should be noted that the main screen area is not shown in FIG. 2.
  • the display panel includes a transition area 22 and a light-transmitting area 21, and the light transmittance of the light-transmitting area 21 is greater than the light transmittance of the transition area 22, the display panel includes: a driving backplane 200 ,
  • the driving backplane 200 includes a first driving circuit 211 located in the transition area 22, the first driving circuit 211 has a first output terminal 212; a first planarization layer 221, the first planarization layer 221 is located in the transition area 22 and the light-transmitting area 21 on the drive backplane 200; the first electrode layer 222, the first electrode layer 222 is located on the side of the first planarization layer 221 of the transition area 22 away from the drive backplane 200, and penetrates the first planarization layer 221 to be connected to the first planarization layer 221 An output terminal 212 is electrically connected; the second planarization layer 231, the second planarization layer 231 is located on the first planarization layer 221 and the side of the first electrode layer 222
  • the display panel can be an OLED display panel, an LCD display panel, an LED display panel or a Micro-LED display panel. Taking the display panel as an OLED display panel as an example, the OLED display panel may be a top-emitting display panel or a bottom-emitting display panel.
  • the transition area 22 and the light-transmitting area 21 both have a display function.
  • the difference is that the light transmittance of the light-transmitting area 21 is greater than that of the transition area 22, so that when the lighting component is used in the display panel , The lighting components arranged in the light-transmitting area 21 have good lighting performance, and the display panel can still realize full-screen display.
  • the display panel further includes a main screen area 23, and the transition area 22 is located between the main screen area 23 and the light-transmitting area 21.
  • the light transmittance of the light-transmitting area 21 is greater than the light transmittance of the main screen area 21.
  • the light transmittance of the main screen area 23 may be the same. In other embodiments, the light transmittance of the transition area may also be less than the light transmittance of the main screen area.
  • the driving backplane 200 includes a substrate 201 and a driving device layer 210 on the substrate 201.
  • the display panel can be applied to a flexible display device
  • the corresponding substrate 201 is a flexible substrate
  • the material of the flexible substrate is polyethylene (PE), polypropylene (PP), polystyrene (PS), poly-p-phenylene Ethylene Dicarboxylate (PET), Polyethylene Terephthalate (PEN) or Polyimide (PI).
  • the substrate 201 may also be an ultra-thin glass substrate, and the thickness of the ultra-thin glass substrate is less than 50 ⁇ m.
  • the driving backplane may further include a first transition layer 202 and a second transition layer 203 stacked in sequence between the substrate 201 and the driving device layer 210.
  • the material of the first transition layer 202 may be silicon nitride, and the material of the second transition layer 203 may be silicon oxide.
  • the substrate may also be a rigid substrate, such as rigid glass.
  • the driving device layer 210 provides a driving signal for the light emitting unit in the display panel to emit light.
  • the driving device layer 210 includes a multilayer film structure, specifically, includes: an active layer 204; a gate structure located on the active layer 204, the gate structure includes a gate dielectric layer 205 and a gate located on the gate dielectric layer 205 Electrode layer 206; the source region (source) in the active layer 204 on one side of the gate structure 206, the drain region (drain) in the active layer 204 on the other side of the gate structure; on the gate dielectric layer 205
  • the capacitive conductive layer 208 to form a storage capacitor; the insulating dielectric layer 209 covering the
  • the driving device layer 210 has a thin film transistor (TFT, Thin Film Transistor) and a storage capacitor, and the thin film transistor may be a low temperature polysilicon (LTPS, Low Temperature Poly-silicon) thin film transistor. It is understandable that the driving device layer 210 may also include other film layer structures, and the above only lists the structure of the thin film transistor as an example.
  • TFT Thin Film Transistor
  • LTPS Low Temperature Poly-silicon
  • the driving device layer 210 is used to form a driving circuit.
  • the driving circuit may include at least one thin film transistor and at least one storage capacitor.
  • the thin film transistor may be a switch tube and/or a driving tube.
  • the driving device layer 210 of the transition region 22 has a first driving circuit 211, and the first driving circuit 211 has a first output terminal 212.
  • the first output terminal 212 is the drain of the thin film transistor in the first driving circuit 211. pole.
  • the driving backplane 200 further includes a second driving circuit (not shown) located in the transition area 22, the second driving circuit has a second output terminal, and the second driving circuit is used for the light emitting unit of the transition area 22 Provide electrical signals.
  • the driving backplane 200 may further include a third driving circuit 213 located in the main panel area 23, and the third driving circuit 213 has a third output terminal 214.
  • the third output terminal 214 may be the drain of the thin film transistor in the second driving circuit. To provide electrical signals to the light-emitting units of the main screen area 23.
  • the first planarization layer 221 not only covers the driving backplane 200 of the light-transmitting area 21 and the transition area 22, but also covers the driving backplane 200 of the main screen area 23.
  • the first planarization layer 221 can provide a surface with relatively high flatness; on the other hand, the first planarization layer 221 also provides an interface basis for the first electrode layer 222.
  • the material of the first planarization layer 221 is a transparent material, specifically it can be an inorganic transparent material such as silicon oxide, or it can be an organic transparent material such as polyethylene (PE), polypropylene, polystyrene, polyethylene terephthalate Ester, polyethylene terephthalate or polyimide. In this embodiment, the material of the first planarization layer 221 is polyimide.
  • the thickness of the first planarization layer 221 may be 1.2 ⁇ m ⁇ 2.5 ⁇ m, and further, the thickness of the first planarization layer 221 may be 1.6 ⁇ m, 2 ⁇ m, or 2.3 ⁇ m.
  • the first planarization layer 221 of the transition region 22 has a first through hole (not labeled) exposing the first output terminal 212 for electrically connecting the first electrode layer 222 and the first output terminal 212 provide conditions.
  • the first electrode layer 222 is located on the surface of the first planarization layer 221 of the transition region 22 away from the driving backplane 200, and is also located on the sidewall of the first through hole and the surface of the first output terminal 212 exposed by the first through hole. In other words, at least part of the first electrode layer 222 passes through the first through hole to contact the surface of the first output terminal 212.
  • the first electrode layer 222 includes a first transparent electrode layer, a metal electrode layer, and a second transparent electrode layer stacked in sequence.
  • the material of the first transparent electrode layer and the second transparent electrode layer includes ITO (Indium Tin Oxide) or IZO (Zinc Tin Oxide), and the material of the metal electrode layer includes at least one of Mg, Ag, or Al.
  • the first electrode layer 222 may have a stacked structure of ITO layer/Ag layer/ITO layer.
  • the first electrode layer may also be a single-layer structure or a laminated structure, for example, it may be a laminated structure of an IZO layer/Ag layer/IZO layer.
  • the display panel also includes a plurality of first light-emitting units 224 located in the light-transmitting area 21, the first light-emitting units 224 are located on the side of the second electrode layer 225 away from the driving backplane 200, and the second electrode layers 225 are used to be located in the plurality of The first light emitting unit 224 provides electrical signals.
  • the display panel further includes: a plurality of discrete light-reflecting layers 223, the light-reflecting layer 223 is located on the side of the first planarization layer 221 of the light-transmitting area 21 away from the driving backplane 200, and each of the light-reflecting layers 223 and The position of each first light-emitting unit 224 corresponds.
  • the function of the light-reflecting layer 223 includes: the light-reflecting layer 223 serves as a fully reflective layer constituting the optical microcavity in the display panel, so that the light-transmitting area 21 can form an optical microcavity.
  • the light-reflecting layer 223, the first light-emitting unit 224 and the cathode 226 can be An optical microcavity is formed to improve the light-emitting characteristics of the light-transmitting area 21; in addition, the arrangement of the light-reflecting layer 223 is also beneficial to reduce the cavity length difference between the optical microcavity of the light-transmitting area 21 and the transition area 22, so as to improve the light-transmitting area 21
  • the display uniformity with the transition area 22, and is beneficial to reduce the cavity length difference of the optical microcavity between the light-transmitting area 21 and the main screen area 23, so as to improve the display uniformity of the light-transmitting area 21 and the main screen area 23; There is an interval between the adjacent light reflecting layers 223 of the light area 21, which is beneficial to reduce the adverse effect of the light reflecting layer 223 on the light transmittance of the light transmitting area 21, and to ensure that the light transmitting area 21 has a high light transmittance.
  • each reflective layer 223 on the driving backplane 200 is within the orthographic projection of each first light-emitting unit 224 on the driving backplane 200.
  • the light-reflecting layer 223 and the first electrode layer 222 are provided in the same layer, and the material of the light-reflecting layer 223 is the same as the material of the first electrode layer 222. In this way, it is beneficial to reduce the process steps and reduce the process difficulty.
  • the light-reflecting layer 223 has a laminated structure of ITO layer/Ag layer/ITO layer. In other embodiments, the light-reflecting layer may also be a laminated structure of IZO layer/Ag layer/IZO layer.
  • FIG. 2 is a schematic top view of the structure of the first electrode layer 222 in the transition region 22 and the reflective layer 223 in the light-transmitting region 21. As shown in FIG.
  • the surface shape of the board 200 is circular. It is understandable that the shape of the surface of the reflective layer 223 away from the driving backplane 200 can also be square or other irregular shapes.
  • the material of the second planarization layer 231 is a transparent material, and specifically may be an inorganic transparent material or an organic transparent material.
  • the material of the second planarization layer 231 is the same as the material of the first planarization layer 221. In other embodiments, the materials of the second planarization layer and the first planarization layer may also be different.
  • the thickness of the second planarization layer 231 may be 1.2 ⁇ m ⁇ 2.5 ⁇ m, and further, the thickness of the second planarization layer 231 may be 1.6 ⁇ m, 2 ⁇ m, or 2.3 ⁇ m.
  • the second planarization layer 231 of the transition region 22 has a second through hole (not labeled) exposing the first electrode layer 222, which is used to electrically connect the second electrode layer 225 and the first electrode layer 222 provide conditions.
  • the light transmittance of the second electrode layer 225 is greater than the light transmittance of the first electrode layer 222, which helps to ensure that the light-transmitting area 21 has a high light transmittance.
  • the second planarization layer 231 located in the transition area 22 is away from the surface of the driving backplane 200, and is also located on the sidewalls of the second through holes and exposed by the second through holes.
  • the second electrode layer 225 is used to provide electrical signals for a plurality of first light-emitting units 224, and the shape of each second electrode layer 225 is related to the position distribution of the plurality of first light-emitting units 224 to ensure that the same second electrode layer 225 and the plurality of The first light-emitting unit 224 is electrically connected, and the adjacent second electrode layers 225 are not electrically connected. It should be noted that, for the convenience of illustration and description, a reflective layer 223 is also shown in FIG. 3.
  • the second electrode layer 225 located in the light-transmitting area 21 includes a plurality of electrode blocks 2251 and electrode bridges 2252 connecting adjacent electrode blocks 2251, and each first light-emitting unit 224 is correspondingly located on each electrode block 2251 away from the driving backplane 200 One side.
  • the material of the second electrode layer 225 may be ITO or IZO.
  • the material of the second electrode layer 225 is ITO, and the thickness of the second electrode layer 225 is 300 angstroms to 450 angstroms, such as 320 angstroms, 360 angstroms, and 400 angstroms.
  • the material of the second electrode layer 225 is a transparent conductive material, and the second electrode layer 225 has a single-layer structure.
  • the number of the plurality of first light-emitting units 224 may be greater than two, and the shape of the second electrode layer 225 located in the light-transmitting area 21 is a wave shape, and each electrode block 2251 is a wave-shaped peak or valley. In this way, it is beneficial to increase the pixel density of the light-transmitting area 21.
  • the number of the first light-emitting units 224 is four, that is, the same second electrode layer 225 is electrically connected to the four first light-emitting units 224. In other embodiments, the same second electrode layer may also be electrically connected to two, three, or any number of first light-emitting units.
  • the second electrode layer 225 includes the electrode block 2251 corresponding to the position of the first light-emitting unit 224 and the electrode bridge 2252 connecting the adjacent electrode block 2251, the shape and position of the second electrode layer 225 are more flexible.
  • the positions of the first light-emitting units 224 electrically connected to the same second electrode layer 225 are reasonably adjusted to the shape of the second electrode layer 225 to improve the flexibility of the arrangement of the first light-emitting units 224 in the light-transmitting area 21.
  • the first light-emitting unit 224 includes: a hole injection layer (HIL, Hole Inject Layer), a hole transport layer (HTL, Hole Transport Layer) on the hole injection layer, and a light-emitting layer (EML, Emitting Layer), Electron Inject Layer (ETL, Electron Inject Layer) located on the light-emitting layer, and Electron Inject Layer (EIL, Electron Inject Layer) located on the electron transport layer.
  • HIL hole injection layer
  • HTL Hole Transport Layer
  • EML Emitting Layer
  • ETL Electron Inject Layer
  • EIL Electron Inject Layer
  • the first light emitting unit 224 may emit red light, blue light, or filter light.
  • the display panel further includes a transition area electrode 227.
  • the transition area electrode 227 is located on the side of the second planarization layer 231 of the transition area 22 away from the driving backplane 200, and penetrates the first planarization layer 221 and the second planarization layer 231. Electrically connected to the second output terminal; the second light emitting unit 228 located in the transition area 22, the second light emitting unit 228 is located on the side of the transition area electrode 227 away from the driving backplane 200, the transition area electrode 227 is used for the second light emitting unit 228 Provide electrical signals. It should be noted that the second driving circuit electrically connected to the transition region electrode 227 is not shown in FIG. 2.
  • the transition region 22 has a third through hole penetrating the second planarization layer 231 and the first planarization layer 221, and the third through hole exposes the second output terminal, and the transition region electrode 227 is also located in the third through hole.
  • at least a part of the transition region electrode 227 passes through the third through hole and contacts the surface of the second output terminal.
  • the transition zone electrode 227 includes a first transition transparent electrode, a transition metal electrode, and a second transition transparent electrode stacked in sequence.
  • the material of the first transition transparent electrode and the second transition transparent electrode is ITO or IZO, and the material of the transition metal electrode is Mg. , Ag or Al.
  • the display panel further includes: a main screen area electrode 229.
  • the main screen area electrode 229 is located on the side of the second planarization layer 231 of the main screen area 23 away from the driving backplane 200, and penetrates the first planarization layer 221 and the second planarization layer 231. Electrically connected to the third output terminal 214; the third light-emitting unit 230 located in the main screen area 23, the third light-emitting unit 230 is located on the side of the main screen area electrode 229 away from the driving backplane 200, the main screen area electrode 229 is used for the third light-emitting unit 230 provides electrical signals.
  • the main screen area 23 has a fourth through hole penetrating through the second planarization layer 231 and the first planarization layer 221, and the fourth through hole exposes the third output terminal 214, and the main screen area electrode 229 is also located on the second planarization layer 221.
  • at least a part of the main panel electrode 229 passes through the fourth through hole to make surface contact with the third output terminal 214.
  • the main screen area electrode 229 includes a first main screen transparent electrode, a main screen metal electrode, and a second main screen transparent electrode stacked in sequence.
  • the material of the first main screen transparent electrode and the second main screen transparent electrode is ITO or IZO, and the material of the main screen metal electrode is Mg. , Ag or Al.
  • the display panel further includes: a pixel defining layer 240, which is located on the side of the second planarization layer 231 away from the driving backplane 200, and is used to define the positions of the first light emitting unit, the second light emitting unit, and the third light emitting unit
  • the cathode 226, the cathode 226 covers the first light-emitting unit, the second light-emitting unit and the third light-emitting unit
  • the supporting column 241 is located on the side of the pixel defining layer 240 away from the driving backplane 200, and the cathode 226 also covers the supporting column 241.
  • the planarization layer includes a first planarization layer 221 and a second planarization layer 231 stacked in sequence.
  • the electrode for electrically connecting the first driving circuit 211 and the first light-emitting unit 224 includes: a first electrode layer 222 located between the first planarization layer 221 and the second planarization layer 231, and the first electrode layer 222 is located in the transition area 22; the second electrode layer 225 located on the surface of the second planarization layer 231, the second electrode layer 225 is located in the transition area 22 and the light-transmitting area 21, and the light transmittance of the second electrode layer 225 is greater than that of the first electrode layer 222 Light rate.
  • the second electrode layer 225 with a large light transmittance is used as the anode of the light-transmitting area 21, so that a single layer of ITO can be used to wire the anode of the light-transmitting area 21, which is beneficial to saving ITO production capacity.
  • the first electrode layer 222 is closer to the driving backplane 200 than the second electrode layer 225, and more specifically, the laminated structure of the ITO layer/Ag layer/ITO layer is similar. Compared with the bottom of the ITO layer, it is beneficial to avoid the ITO manufacturing process from damaging the transition area 22 and the second planarization layer 231 of the main screen area 23, thereby helping to solve the Ag migration problem in the transition area 22 and the main screen area 23 from the source.
  • the first light-emitting unit 224 is the pixel structure.
  • the arrangement of the pixel structure in the light-transmitting area 21 is optimized, so that the pixel structure and the first driving circuit can be formed through the first electrode layer 222 and the second electrode layer 225.
  • 211 is electrically connected to avoid the problem of damage to the surface of the planarization layer caused by the ITO process, so as to solve the problem of abnormal Ag migration in the ITO layer/Ag layer/ITO layer caused by the ITO process at the source.
  • a first transparent electrode layer needs to be formed on the side of the flattened layer in the light-transmitting area facing the driving backplane, and a second transparent electrode layer needs to be formed on the side of the flattening layer in the light-transmitting area away from the driving backplane.
  • the third output end of the main screen area and the second output end of the transition area will be exposed to the process environment of twice sputtering ITO and twice In a graphical process environment, this will cause changes in the physical and chemical properties of the surface materials of the second output terminal and the third output terminal, and the second output terminal and the third output terminal will be damaged, causing abnormal overlap between the second anode and the second output terminal. , The third anode and the third output terminal overlap abnormally.
  • planarization layer of the transition area and the main screen area of this technical solution will also be exposed to the sputtering process environment used to form the second transparent electrode layer, and the ITO material bombards the surface of the planarization layer, causing the surface performance of the planarization layer to change. Poor;
  • the anodes of the main screen area and the transition area are formed on the surface of the planarization layer, the Ag in the anodes of the main screen area and the transition area is easy to migrate from the damaged planarization layer surface, resulting in the formation of the Ag layer loose and uneven , Causing abnormal display panel performance.
  • the second output terminal, the third output terminal, and the surface of the planarization layer are all bombarded by sputtering, which causes the physical and chemical properties of the surface to change. This in turn leads to problems with abnormal lap joints and Ag migration.
  • Another embodiment of the present application further provides a display panel.
  • the display panel is substantially the same as the display panel provided in the previous embodiment.
  • the main difference is that the transition zone electrode and the main screen zone electrode are different from the previous embodiment.
  • the display panel provided by another embodiment of the present application will be described in detail with reference to the accompanying drawings. For the same or corresponding parts as the previous embodiment, reference may be made to the detailed description of the foregoing embodiment, which will not be repeated below.
  • 4 to 6 are schematic diagrams of the structure of a display panel provided by another embodiment of the application.
  • FIG. 4 is a schematic cross-sectional structure diagram of a display panel provided by another embodiment of the application.
  • FIG. 5 is a schematic top view of a first electrode layer, a third electrode layer, and a fifth electrode layer of the display panel in FIG. 4
  • FIG. 6 is a diagram A schematic top view of the second electrode layer, the fourth electrode layer, and the sixth electrode layer of the display panel in Figure 4.
  • the transition area electrode includes: a third electrode layer 301, the third electrode layer 301 is located on the side of the first planarization layer 221 away from the driving backplane 200, and penetrates the first planarization layer 221 to and the first planarization layer 221 The two output terminals are in contact; the fourth electrode layer 302, the fourth electrode layer 302 is located on the side of the second planarization layer 231 away from the driving backplane 200, and penetrates the second planarization layer 231 to contact the third electrode layer 301.
  • the third electrode layer 301 and the first electrode layer 222 are provided in the same layer and the same material
  • the fourth electrode layer 302 and the second electrode layer 225 are provided in the same layer and the same material.
  • the main panel electrode includes: a fifth electrode layer 303.
  • the fifth electrode layer 303 is located on the side of the first planarization layer 221 away from the driving backplane 200, and penetrates the first planarization layer 221 to connect to the first planarization layer 221.
  • the third output terminal 214 is in contact; the sixth electrode layer 304, the sixth electrode layer 304 is located on the side of the second planarization layer 231 away from the driving backplane 200, and penetrates the second planarization layer 231 to be in contact with the fifth electrode layer 303 .
  • the fifth electrode layer 303 and the first electrode layer 222 are provided in the same layer and the same material
  • the sixth electrode layer 304 and the second electrode layer 225 are provided in the same layer and the same material.
  • the first electrode layer 222, the third electrode layer 301, and the fifth electrode layer 303 can be fabricated in the same process step, and the second electrode layer 225, the fourth electrode layer 302, and the sixth electrode layer 304 can be fabricated in the same process step. Fabrication makes the wiring process of the light-transmitting area 21 compatible with the wiring process of the main screen area 23 and the transition area 22, which is beneficial to reduce process steps, save process time, and reduce the manufacturing cost of the display panel.
  • the first electrode layer 222, the third electrode layer 301, the fifth electrode layer 303, and the light-reflecting layer 223 are arranged in the same layer, which is beneficial to ensure the cavity of the optical microcavity in the main screen area 23, the transition area 22 and the light-transmitting area 21 Long consistency, thereby improving the display uniformity of the main screen area 23, the transition area 22 and the light-transmitting area 21, and further improving the display effect of the display panel.
  • the first electrode layer 222, the third electrode layer 301, the fifth electrode layer 303, and the light reflecting layer 223 each serve as a total reflection layer constituting the optical microcavity
  • the cathode 226 serves as a transflective layer constituting the optical microcavity
  • An electrode layer 222, a first light-emitting unit 224 and a cathode constitute the first optical microcavity of the light-transmitting area 21
  • the third electrode layer 301, the second light-emitting unit 228 and the cathode 226 constitute a second optical microcavity of the transition area 22.
  • the five electrodes 303, the third light-emitting unit 230, and the cathode 226 constitute the third optical microcavity of the main screen area 23. Since the total reflection layer of each optical microcavity is located at the same position, and the semi-transmissive and semi-reflective layer of each optical microcavity is located The positions are the same, so the cavity lengths of the first optical microcavity, the second optical microcavity, and the third optical microcavity are the same, so that the display color purity of the light-transmitting area 21, the transition area 22 and the main screen area 23 is the same, which further improves The display effect of the display panel.
  • an embodiment of the present application also provides a display device, including the display panel in any of the foregoing embodiments.
  • the display device may be a product or component with a TV function, such as a mobile phone, a tablet computer, a TV, a display, a digital photo frame, or a navigator.
  • the display device further includes a lighting component, the lighting component corresponds to the position of the light-transmitting area, and the lighting component may be a camera or a fingerprint recognition chip or the like.
  • an embodiment of the present application also provides a method for manufacturing a display panel, which can be used to manufacture the display panel in the above-mentioned embodiment.
  • the display panel includes an adjacent transition area and a light-transmitting area, and the light-transmitting area has a light transmittance greater than The light transmittance of the transition region
  • the manufacturing method includes: providing a driving backplane, the driving backplane includes a first driving circuit in the transition region, the first driving circuit has a first output terminal; forming a first planarization layer, the first planarization The layer is located in the transition area and the drive back plate of the light-transmitting area; a first electrode layer is formed, and the first electrode layer is located on the side of the first planarization layer in the transition area away from the drive back plate, and penetrates the first planarization layer to interact with The first output terminal is electrically connected; a second planarization layer is formed, and the second planarization layer is located on the first planarization layer and the side of the first electrode layer
  • a driving backplane 200 is provided.
  • the driving backplane 200 includes a main screen area 23, a transition area 22, and a light-transmitting area 21.
  • the transition area 22 is located between the main screen area 23 and the light-transmitting area 21.
  • the driving backplane 200 It includes a first driving circuit 211 located in the transition region 22, and the first driving circuit 211 has a first output terminal 212.
  • the driving backplane 200 further includes: a second driving circuit located in the transition area 22, the second driving circuit has a second output terminal;
  • Step S2 referring to FIG. 8, a first planarization layer 221 is formed on the driving backplane 200 of the main screen area 23, the transition area 22 and the light-transmitting area 21; a first pass is formed in the first planarization layer 221 of the transition area 22 The surface of the first output terminal 212 is exposed by the first through hole.
  • a first electrode layer 222 is formed on the surface of the first planarization layer 221 of the transition region 22 away from the driving backplane 200, and the first electrode layer 222 also covers the bottom and sidewalls of the first through hole.
  • a number of discrete light-reflecting layers 223 on the first planarization layer 221 of the light-transmitting region 21 are also formed.
  • the first electrode layer 222 includes a first transparent electrode layer, a metal electrode layer, and a second transparent electrode layer stacked in sequence.
  • the material of the first transparent electrode layer is ITO, and its thickness is 80 angstroms to 120 angstroms, for example, 90 angstroms, 100 angstroms, and 110 angstroms;
  • the material of the second transparent electrode layer is ITO, and its thickness is 80 angstroms to 120 angstroms.
  • the material of the metal electrode layer is Ag or Mg, and its thickness is 900 angstroms to 1100 angstroms, such as 950 angstroms, 1000 angstroms, or 1050 angstroms.
  • the third electrode layer 301 on the first planarization layer 221 of the transition region 22 and the first planarization layer 221 on the main screen region 23 are also formed.
  • the process steps of forming the first electrode layer 222, the light reflecting layer 223, the third electrode layer 301, and the fifth electrode layer 303 include: forming a first electrode film on the surface of the first planarization layer 221, and the first electrode film also covers the first electrode layer. The bottom and sidewalls of the through hole; the first electrode film is patterned by a wet etching process to form the first electrode layer 222, the third electrode layer 301, the fifth electrode layer 303, and the light reflecting layer 223.
  • the etching liquid used in the wet etching process may be an acid solution containing HNO 3 , CH 3 COOH, and H 3 PO 4.
  • Step S4 referring to FIG. 10, a second planarization layer 231 is formed on the first planarization layer 221, the first electrode layer 222, the light reflecting layer 223, the third electrode layer 301, and the fifth electrode layer 303; A second through hole exposing the first electrode layer 222 is formed in the second planarization layer 231; a fifth through hole exposing the third electrode layer 301 is formed in the second planarization layer 231 of the transition area 22; in the main screen area A sixth through hole exposing the fifth electrode layer 303 is formed in the second planarization layer 231 of 23.
  • a second electrode layer 225 is formed on the surface of the second planarization layer 231 of the light-transmitting area 21 and the transition area 22 away from the driving backplane 200, and the second electrode layer 225 is also located at the second through hole Bottom and side walls.
  • the material of the second electrode layer 225 is ITO or IZO.
  • a fourth electrode layer 302 located in the transition region 22 is also formed.
  • the fourth electrode layer 302 covers the bottom and sidewalls of the fifth through hole and is formed on the main screen.
  • the sixth electrode layer 304 and the sixth electrode layer 304 in the region 23 cover the bottom and sidewalls of the sixth through hole, that is, the second electrode layer 225, the fourth electrode layer 302, and the sixth electrode layer 304 are made of the same material.
  • the process steps for forming the second electrode layer 225, the fourth electrode layer 302, and the sixth electrode layer 304 include: forming a second electrode film on the second planarization layer 231, the second electrode film also covers the bottom and sides of the second through hole The bottom and side walls of the fifth through hole, and the bottom and side walls of the sixth through hole; the second electrode film is patterned by a wet etching process to form the second electrode layer 225, the fourth electrode layer 302, and the second electrode layer Six electrode layer 304.
  • a sputtering process is used to form the second electrode film, and the etching liquid used in the wet etching process may be oxalic acid.
  • Step S6 Referring to FIG. 4, a plurality of first light-emitting units 224 located in the light-transmitting area 21 are formed, and the second electrode layer 225 is used to provide electrical signals for the plurality of first light-emitting units 224; a second light-emitting unit located in the transition area 22 is formed 228, and the fourth electrode layer 302 is used to provide electrical signals for the second light-emitting unit 228; the third light-emitting unit 230 located in the main screen area 23 is formed, and the sixth electrode layer 304 is used to provide electrical signals for the third light-emitting unit 230.
  • the method further includes: forming a pixel defining layer 240 on the second planarization layer 231.
  • the subsequent process steps further include: forming a supporting portion 241 on the pixel defining layer 240; forming a cathode 226 on the first light-emitting unit 224, the second light-emitting unit 228, and the third light-emitting unit 230.
  • the manufacturing method of the display panel provided in this embodiment uses only a single layer of transparent electrode layer, that is, the second electrode layer 225, to wire the anode of the light-transmitting area 21, which saves ITO production capacity and prevents the ITO process from affecting the transition area 22 and the main screen area.
  • the adverse effects caused by the first planarization layer 221 of 23 can avoid the Ag migration problem on the transition area 22 and the first planarization layer 221 of the main screen area 23, thereby avoiding the product abnormality problem caused by the Ag migration problem.
  • the damage to the first planarization layer 221 caused by the ITO process can be avoided, thereby avoiding the first electrode on the first planarization layer 221 Ag migration problem in layer 221.
  • this embodiment can avoid the problem of damage to the second output terminal and the third output terminal 213 caused by the ITO process, thereby avoiding the problem of abnormal overlap between the main screen area electrode of the main screen area 23 and the third output terminal 213, and avoiding the transition area
  • the transition area electrode of 22 is abnormally connected to the second output terminal.
  • the manufacturing method provided in this embodiment is beneficial to save process steps, reduce manufacturing costs, and ensure the uniformity of the optical microcavity lengths of the light-transmitting area 21, the transition area 22, and the main screen area 23, thereby improving the display effect of the display panel.
  • the third electrode, the fourth electrode, the fifth electrode, and the sixth electrode may not be formed.
  • the steps of forming the transition area electrode and the main screen area electrode include: After that, a third through hole is formed in the second planarization layer and the first planarization layer in the transition area, and the third through hole exposes the second output terminal of the second driving circuit; the second planarization layer in the main screen area and A fourth through hole is formed in the first planarization layer, and the fourth through hole exposes the third output terminal of the third driving circuit; a transition region electrode is formed on the second planarization layer and on the bottom and sidewalls of the third through hole; A main panel electrode is formed on the second planarization layer and the bottom and sidewalls of the fourth through hole.
  • the planarization layer includes a first planarization layer and a second planarization layer stacked in sequence
  • the electrode for electrically connecting the first driving circuit and the first light-emitting unit includes: The first electrode layer between the flattening layer and the second flattening layer, the first electrode layer is located in the transition area; the second electrode layer on the surface of the second flattening layer, the second electrode layer is located in the transition area and the light-transmitting area. Since the first electrode layer is located in the transition area, there is no need to consider the influence of the first electrode layer on the transmittance of the light-transmitting area.
  • the first electrode layer can be a laminated conductive material, that is, the first planarization layer faces There is no need to provide a transparent conductive material on one side of the driving backplane, so the adverse effects caused by the transparent conductive material (such as ITO) manufacturing process can be avoided, and the performance of the display panel can be improved.
  • Some of the embodiments of the present application can avoid damage to the second output end of the transition area caused by the process of forming the transparent conductive layer by the sputtering bombardment process, thereby avoiding the problem of abnormal electrical connection and improving the display performance of the display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请实施例公开了一种显示面板、显示装置和显示面板的制造方法。显示面板包括过渡区(22)、透光区(21)以及驱动背板(200);驱动背板(200)包括位于过渡区(22)的第一驱动电路(211),第一驱动电路(211)具有第一输出端(212);第一平坦化层(211)位于过渡区(22)以及透光区(21)的驱动背板(200)上;第一电极层(222)位于过渡区(22)的第一平坦化层(221)远离驱动背板(200)的一侧;第二平坦化层(231)位于第一平坦化层(221)以及第一电极层(222)远离驱动背板(200)的一侧;第二电极层(225)位于过渡区(22)以及透光区(21)的第二平坦化层(231)远离驱动背板(200)的一侧,且贯穿第二平坦化层(231)与第一电极层(222)相接触。

Description

显示面板及其制造方法、显示装置
交叉引用
本申请要求于2020年02月26日递交的名称为“显示面板及其制造方法、显示装置”、申请号为202010121624.4的中国专利申请的优先权,其通过引用被全部并入本申请。
技术领域
本申请实施例涉及显示技术领域,特别涉及一种显示面板、显示装置及显示面板的制造方法。
背景技术
手机、平板电脑等终端设备除包括显示屏外,还通常具有摄像头、指纹识别芯片、扬声器、听筒等功能器件。随着终端设备不断智能化和移动化,终端设备的功能不断丰富,其内置的功能器件也越来越多。
为了提高终端设备的显示屏占比,应用于全面屏技术的显示面板应运而生。然而,现有的显示面板的性能仍有待提高。
发明内容
本申请部分实施例的目的在于提供一种显示面板、显示装置和显示面板的制造方法,改善显示面板的显示性能。
为解决上述问题,本申请实施例提供一种显示面板,显示面板包括过渡区以及透光区,且透光区的透光率大于过渡区的透光率;驱动背板,驱动背板包括位于过渡区的第一驱动电路,第一驱动电路具有第一输出端;第一平坦化层位于过渡区以及透光区的驱动背板上;第一电极层位于过渡区的第一平坦化层远离驱动背板的一侧,且贯穿第一平坦化层以与第一输出端电连接;第二平坦 化层位于第一平坦化层以及第一电极层远离驱动背板的一侧;第二电极层位于过渡区以及透光区的第二平坦化层远离驱动背板的一侧,且贯穿第二平坦化层与第一电极层相接触。
本申请实施例还提供了一种显示装置,包括上述的显示面板。
本申请实施例还提供了一种显示面板的制造方法,可用于制作上述的显示面板,显示面板包括相邻接的过渡区和透光区,且透光区的透光率大于过渡区的透光率,包括:提供驱动背板,驱动背板包括位于过渡区的第一驱动电路,第一驱动电路具有第一输出端;形成第一平坦化层,第一平坦化层位于过渡区以及透光区的驱动背板上;形成第一电极层,第一电极层位于过渡区的第一平坦化层远离驱动背板的一侧,且贯穿第一平坦化层以与第一输出端电连接;形成第二平坦化层,第二平坦化层位于第一平坦化层以及第一电极层远离驱动背板的一侧;形成第二电极层,第二电极层位于过渡区以及透光区的第二平坦化层远离驱动背板的一侧,且贯穿第二平坦化层与第一电极层相接触,第二电极层的透光率大于第一电极层的透光率。
附图说明
图1为本申请一实施例提供的显示面板的剖面结构示意图;
图2为图1中显示面板的第一电极层的俯视结构示意图;
图3为图1中显示面板的第二电极层、过渡区电极以及主屏区电极的俯视结构示意图;
图4为本申请另一实施例提供的显示面板的剖面结构示意图;
图5为图4中显示面板的第一电极层、第三电极层以及第五电极层的俯视结构示意图;
图6为图4中显示面板的第二电极层、第四电极层以及第六电极层的俯视结构示意图;
图7至图11是本申请一实施例提供的显示面板的制造方法各步骤对应的结构示意图。
具体实施方式
由背景技术可知,现有的显示面板的性能有待提高。为了提高透光区的透光率,改善透光区的采光部件如摄像头的采光效果,通常在透光区的驱动背板上不设置驱动电路,透光区的发光单元由过渡区的驱动电路提供电信号。然而,在改善透光区的透光率的同时,又面临了主屏区和过渡区的阳极与其驱动电路的输出端搭接异常的问题,且还存在主屏区和过渡区的阳极中Ag迁移的问题,造成主屏区和过渡区显示异常。
为解决上述问题,本申请实施例提供一种结构性能优越的显示面板,平坦化层以及用于电连接透光区的第一发光单元的电极均为全新的结构,能够改善显示面板的性能。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。
图1至图3为本申请一实施例提供的显示面板的结构示意图,图1为显示面板的剖面结构示意图,图2为图1中显示面板的第一电极层的俯视结构示意图,图3为图1中显示面板的第二电极层、过渡区电极以及主屏区电极的俯视结构示意图。需要说明的是,图2中未示意出主屏区。
参考图1至图3,本实施例中,显示面板包括过渡区22以及透光区21,且透光区21的透光率大于过渡区22的透光率,显示面板包括:驱动背板200,驱动背板200包括位于过渡区22的第一驱动电路211,第一驱动电路211具有第一输出端212;第一平坦化层221,第一平坦化层221位于过渡区22以及透光区21的驱动背板200上;第一电极层222,第一电极层222位于过渡区22的第一平坦化层221远离驱动背板200的一侧,且贯穿第一平坦化层221以与第一输出端212电连接;第二平坦化层231,第二平坦化层231位于第一平坦化层221以及第一电极层222远离驱动背板200的一侧;第二电极层225,第二电极层225位于过渡区22以及透光区21的第二平坦化层231远离驱动背板200的 一侧,且贯穿第二平坦化层231与第一电极层222相接触。
以下将结合附图对本实施例提供的显示面板进行详细说明。
显示面板可以为OLED显示面板、LCD显示面板、LED显示面板或者Micro-LED显示面板。以显示面板为OLED显示面板作为示例,OLED显示面板可以为顶发光显示面板也可以为底发光显示面板。
本实施例中,过渡区22和透光区21均具有显示功能,不同的是,透光区21的透光率大于过渡区22的透光率,以使采光部件应用于该显示面板中时,设置在透光区21的采光部件具有良好的采光性能,且该显示面板仍可实现全屏显示。本实施例中,显示面板还包括主屏区23,且过渡区22位于主屏区23以及透光区21之间,透光区21的透光率大于主屏区21的透光率,过渡区22与主屏区23的透光率可以相同。在其他实施例汇总,过渡区的透光率也可以小于主屏区的透光率。
驱动背板200包括基底201以及位于基底201上的驱动器件层210。本实施例中,显示面板可应用于柔性显示装置中,相应的基底201为柔性基底,柔性基底的材料为聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚对苯二甲酸乙二醇酯(PET)、聚对萘二甲酸乙二醇酯(PEN)或者聚酰亚胺(PI)。基底201还可以为超薄玻璃基底,超薄玻璃基底的厚度小于50μm。
本实施例中,驱动背板还可以包括位于基底201以及驱动器件层210之间的依次堆叠设置的第一过渡层202以及第二过渡层203。第一过渡层202的材料可以为氮化硅,第二过渡层203的材料可以为氧化硅。可以理解的是,在其他实施例中,基底也可以为刚性基底,如刚性玻璃。
驱动器件层210为显示面板中的发光单元发光提供驱动信号。驱动器件层210包括多层膜层结构,具体地,包括:有源层204;位于有源层204上的栅极结构,该栅极结构包括栅介质层205以及位于栅介质层205上的栅电极层206;位于栅极结构206一侧的有源层204内的源区(source),位于栅极结构另一侧的有源层204内的漏区(drain);位于栅介质层205上的第一电容导电层218;覆盖栅极结构、第一电容导电层218以及栅电极层206的电容介质层207;位于电容介质层207上且与第一电容导电层218位置正对的第二电容导电层208,以构成存储电容;覆盖电容介质层207以及第二电容导电层208的绝缘介质层209; 贯穿绝缘介质层209、电容介质层207、栅介质层205且与源区电连接的源极以及与漏区电连接的漏极。
本实施例中,驱动器件层210内具有薄膜晶体管(TFT,Thin Film Transistor)以及存储电容,薄膜晶体管可以为低温多晶硅(LTPS,Low Temperature Poly-silicon)薄膜晶体管。可以理解的是,驱动器件层210还可以包括其他膜层结构,上述只是列举了薄膜晶体管的结构作为示例。
驱动器件层210用于构成驱动电路,驱动电路可以包括至少一个薄膜晶体管以及至少一个存储电容,薄膜晶体管可以为开关管和/或驱动管。本实施例中,透光区21的驱动器件层210内没有驱动电路,以便于满足透光区21具有高透光率的需求,也就是说,透光区21没有薄膜晶体管以及存储电容。过渡区22的驱动器件层210内具有第一驱动电路211,且第一驱动电路211具有第一输出端212,本实施例中,第一输出端212为第一驱动电路211中薄膜晶体管的漏极。
本实施例中,驱动背板200还包括位于过渡区22的第二驱动电路(未图示),第二驱动电路具有第二输出端,该第二驱动电路用于为过渡区22的发光单元提供电信号。驱动背板200还可以包括位于主屏区23的第三驱动电路213,且第三驱动电路213具有第三输出端214,第三输出端214可以为第二驱动电路中薄膜晶体管的漏极,用于为主屏区23的发光单元提供电信号。
第一平坦化层221除覆盖透光区21以及过渡区22的驱动背板200外,还覆盖主屏区23的驱动背板200。一方面,第一平坦化层221可提供具有较高平坦度的表面,另一方面,第一平坦化层221还为第一电极层222提供界面基础。
第一平坦化层221的材料为透明材料,具体可以为无机透明材料如氧化硅,也可以为有机透明材料如聚乙烯(PE)、聚丙烯、聚苯乙烯、聚对苯二甲酸乙二醇酯、聚对萘二甲酸乙二醇酯或者聚酰亚胺。本实施例中,第一平坦化层221的材料为聚酰亚胺。
第一平坦化层221的厚度可以为1.2μm~2.5μm,进一步地,第一平坦化层221的厚度可以为1.6μm、2μm、2.3μm。
本实施例中,过渡区22的第一平坦化层221内具有暴露出第一输出端212的第一通孔(未标示),用于为第一电极层222与第一输出端212电连接提供条件。
第一电极层222位于过渡区22的第一平坦化层221远离驱动背板200的表面,且还位于第一通孔的侧壁以及第一通孔露出的第一输出端212表面。换言之,至少部分第一电极层222穿过第一通孔与第一输出端212表面接触。本实施例中,第一电极层222包括依次层叠设置的第一透明电极层、金属电极层以及第二透明电极层。第一透明电极层以及第二透明电极层的材料包括ITO(氧化铟锡)或IZO(氧化锌锡),金属电极层的材料包括Mg、Ag或者Al中的至少一种。作为一个例子,第一电极层222可以为ITO层/Ag层/ITO层的叠层结构。在其他实施例中,第一电极层也可以为单层结构或者叠层结构,例如可以为IZO层/Ag层/IZO层的叠层结构。
显示面板还包括:位于透光区21的若干第一发光单元224,第一发光单元224位于第二电极层225远离所述驱动背板200的一侧,且第二电极层225用于位于若干第一发光单元224提供电信号。
本实施例中,显示面板还包括:若干分立的反光层223,反光层223位于透光区21的第一平坦化层221远离所述驱动背板200的一侧,且每一反光层223与每一第一发光单元224的位置相对应。反光层223的作用包括:反光层223作为显示面板中构成光学微腔的全反光层,使得透光区21能够形成光学微腔,具体地,反光层223、第一发光单元224以及阴极226可构成光学微腔,改善透光区21的发光特性;此外,反光层223的设置,还有利于减小透光区21与过渡区22的光学微腔的腔长差异,以改善透光区21与过渡区22的显示均匀性,且有利于减小透光区21与主屏区23的光学微腔的腔长差异,以改善透光区21与主屏区23的显示均匀性;并且,由于透光区21的相邻反光层223之间具有间隔,有利于减小反光层223对透光区21的透光率带来的不良影响,保证透光区21具有高透光率。
本实施例中,每一反光层223在驱动背板200上的正投影位于每一第一发光单元224位于驱动背板200上的正投影内。
本实施例中,所述反光层223与所述第一电极层222同层设置,且所述反光层223的材料与所述第一电极层222的材料相同。如此,有利于减少工艺步骤,降低工艺难度。也就是说,本实施例中,反光层223为ITO层/Ag层/ITO层的叠层结构。在其他实施例中,反光层也可以为IZO层/Ag层/IZO层的叠层结构。
图2为过渡区22的第一电极层222以及透光区21的反光层223的俯视结构示意图,如图2所示,多个第一电极层222可平行排列,且反光层223远离驱动背板200的表面形状为圆形,可以理解的是,反光层223远离驱动背板200的表面形状也可以为方形或者其他不规则形状
第二平坦化层231的材料为透明材料,具体可以为无机透明材料或者有机透明材料。本实施例中,第二平坦化层231的材料与第一平坦化层221的材料相同。在其他实施例中,第二平坦化层与第一平坦化层的材料也可以不同。
第二平坦化层231的厚度可以为1.2μm~2.5μm,进一步地,第二平坦化层231的厚度可以为1.6μm、2μm、2.3μm。
本实施例中,过渡区22的第二平坦化层231内具有暴露出第一电极层222的第二通孔(未标示),用于为第二电极层225与第一电极层222电连接提供条件。
第二电极层225的透光率大于第一电极层222的透光率,如此,有利于保证透光区21具有高透光率。
第二电极层225除位于透光区21外,还位于过渡区22的第二平坦化层231远离驱动背板200的表面,且还位于第二通孔的侧壁以及第二通孔露出的第一电极层222表面。换言之,至少部分第二电极层225穿过第二通孔与第一电极层222表面接触。
图3为过渡区22的第二电极以及透光区21的第二电极的俯视结构示意图。第二电极层225用于为若干第一发光单元224提供电信号,每一第二电极层225的形状与该若干第一发光单元224的位置分布有关,保证同一第二电极层225与该若干第一发光单元224电连接,且相邻第二电极层225之间未发生电连接即可。需要说明的是,为了便于图示和说明,图3中还示意出了反光层223。
位于透光区21的第二电极层225包括:若干电极块2251以及连接相邻电极块2251的电极桥2252,且每一第一发光单元224对应位于每一电极块2251远离驱动背板200的一侧。
第二电极层225的材料可以为ITO或者IZO。本实施例中,第二电极层225的材料为ITO,且第二电极层225的厚度为300埃~450埃,如320埃、360埃、 400埃。
本实施例中,第二电极层225的材料为透明导电材料,且第二电极层225为单层结构。
进一步地,若干第一发光单元224的数量可以大于2,且位于透光区21的第二电极层225的形状为波浪形,每一电极块2251为波浪形的波峰或者波谷。如此,有利于提高透光区21的像素密度。本实施例中,第一发光单元224的数量为4,即同一第二电极层225与4个第一发光单元224电连接。在其他实施例中,同一第二电极层也可以与2个、3个或者任意多个第一发光单元电连接。
由于第二电极层225包括与第一发光单元224位置相对应的电极块2251以及连接相邻电极块2251的电极桥2252,第二电极层225的形状和位置的设置更为灵活,如可以根据与同一第二电极层225电连接的若干第一发光单元224的位置合理的调整第二电极层225的形状,改善透光区21的第一发光单元224排布的灵活性。
第一发光单元224包括:空穴注入层(HIL,Hole Inject Layer)、位于空穴注入层上的空穴传输层(HTL,Hole Transport Layer)、位于空穴传输层上的发光层(EML,Emitting Layer)、位于发光层上的电子传输层(ETL,Electron Inject Layer)以及位于电子传输层上的电子注入层(EIL,Electron Inject Layer)。
第一发光单元224可发出红光、蓝光或者滤光。
显示面板还包括:过渡区电极227,过渡区电极227位于过渡区22的第二平坦化层231远离驱动背板200的一侧,且贯穿第一平坦化层221以及第二平坦化层231以与第二输出端电连接;位于过渡区22的第二发光单元228,第二发光单元228位于过渡区电极227远离驱动背板200的一侧,过渡区电极227用于为第二发光单元228提供电信号。需要说的是,图2中未示意出与过渡区电极227电连接的第二驱动电路。
本实施例中,过渡区22具有贯穿第二平坦化层231以及第一平坦化层221的第三通孔,且第三通孔暴露出第二输出端,过渡区电极227还位于该第三通孔侧壁以及第三通孔暴露出的第二输出端表面。换言之,至少部分过渡区电极227穿过第三通孔与第二输出端表面接触。过渡区电极227包括依次堆叠设置的第一过渡透明电极、过渡金属电极以及第二过渡透明电极,第一过渡透明电极 以及第二过渡透明电极的材料为ITO或者IZO,过渡金属电极的材料为Mg、Ag或者Al。
显示面板还包括:主屏区电极229,主屏区电极229位于主屏区23的第二平坦化层231远离驱动背板200的一侧,且贯穿第一平坦化层221以及第二平坦化层231以与第三输出端214电连接;位于主屏区23的第三发光单元230,第三发光单元230位于主屏区电极229远离驱动背板200的一侧,主屏区电极229用于为第三发光单元230提供电信号。
本实施例中,主屏区23具有贯穿第二平坦化层231以及第一平坦化层221的第四通孔,且第四通孔暴露出第三输出端214,主屏区电极229还位于该第四通孔侧壁以及第四通孔暴露出的第三输出端214表面。换言之,至少部分主屏区电极229穿过第四通孔与第三输出端214表面接触。主屏区电极229包括依次堆叠设置的第一主屏透明电极、主屏金属电极以及第二主屏透明电极,第一主屏透明电极以及第二主屏透明电极的材料为ITO或者IZO,主屏金属电极的材料为Mg、Ag或者Al。
本实施例中,显示面板还包括:像素限定层240,位于第二平坦化层231远离驱动背板200的一侧,用于限定第一发光单元、第二发光单元以及第三发光单元的位置;阴极226,阴极226覆盖第一发光单元、第二发光单元以及第三发光单元;支撑柱241,位于像素限定层240远离驱动背板200的一侧,且阴极226还覆盖支撑柱241。
本实施例中,平坦化层包括依次堆叠设置的第一平坦化层221以及第二平坦化层231。用于电连接第一驱动电路211与第一发光单元224的电极包括:位于第一平坦化层221与第二平坦化层231之间的第一电极层222,第一电极层222位于过渡区22;位于第二平坦化层231表面的第二电极层225,第二电极层225位于过渡区22以及透光区21,且第二电极层225的透光率大于第一电极层222的透光率。也就是说,在第一平坦化层221朝向驱动背板200的一侧无需设置透明导电材料如ITO,因而能够避免形成ITO的工艺步骤带来的不良影响,如避免形成ITO工艺步骤对过渡区22的第二输出端以及对主屏区23的第三输出端214造成的损伤问题,从而避免搭接异常问题,进而改善显示面板的性能。
具体地,仅采用透光率大的第二电极层225作为透光区21的阳极,使得可 以采用单层ITO对透光区21阳极进行布线,有利于节约ITO产能。
此外,对于透光区21和过渡区22而言,第一电极层222相较于第二电极层225更靠近驱动背板200,更具体地ITO层/Ag层/ITO层的叠层结构相较于ITO层下方,有利于避免ITO制程工艺对过渡区22以及主屏区23的第二平坦化层231造成损伤,从而有利于从源头上解决过渡区22以及主屏区23的Ag迁移问题。
第一发光单元224即为像素结构,本实施例中通过优化透光区21像素结构排布的方式,使得通过第一电极层222以及第二电极层225即可使像素结构与第一驱动电路211电连接,从而避免ITO制程对于平坦化层表面带来的损伤问题,从而源头上解决ITO制程带来的ITO层/Ag层/ITO层中的Ag迁移异常的问题。
而一技术方案中,在透光区的平坦化层朝向驱动背板一侧需形成第一透明电极层,在透光区的平坦化层远离驱动背板一侧需形成第二透明电极层。以第一透明电极层和第二透明电极层的材料为ITO为例,主屏区的第三输出端以及过渡区的第二输出端均会暴露在两次溅射ITO的工艺环境中以及两次图形化工艺环境中,这将导致第二输出端表面和第三输出端表面材料理化特性发生变化,第二输出端和第三输出端受到损伤,造成第二阳极与第二输出端搭接异常,第三阳极与第三输出端搭接异常。此外,此技术方案的过渡区和主屏区的平坦化层也会暴露在用于形成第二透明电极层的溅射工艺环境中,ITO材料轰击平坦化层的表面,导致平坦化层表面性能变差;相应的在平坦化层的表面形成主屏区和过渡区的阳极时,主屏区和过渡区的阳极中的Ag易从受损的平坦化层表面迁移,导致形成的Ag层疏松且凹凸不平,造成显示面板性能异常。也就是说,现有在制作第一透明电极和第二透明电极时,第二输出端、第三输出端以及平坦化层表面均会受到溅镀(sputter)轰击而导致表面理化特性发生变化,进而导致搭接异常以及Ag迁移的问题。
本申请另一实施例还提供一种显示面板,该显示面板与前一实施例提供的显示面板大致相同,主要区别之处在于,过渡区电极以及主屏区电极与前一实施例不同。以下将结合附图对本申请另一实施例提供的显示面板进行详细说明,与前一实施例相同或相应的部分,可参考前述实施例的详细说明,以下将不做赘述。
图4至图6为本申请另一实施例提供的显示面板的结构示意图。
图4为本申请另一实施例提供的显示面板的剖面结构示意图,图5为图4中显示面板的第一电极层、第三电极层以及第五电极层的俯视结构示意图,图6为图4中显示面板的第二电极层、第四电极层以及第六电极层的俯视结构示意图。
参考图4及图5,过渡区电极包括:第三电极层301,第三电极层301位于第一平坦化层221远离驱动背板200的一侧,且贯穿第一平坦化层221以与第二输出端接触;第四电极层302,第四电极层302位于第二平坦化层231远离驱动背板200的一侧,且贯穿第二平坦化层231以与第三电极层301相接触。
本实施例中,第三电极层301与第一电极层222同层设置且材料相同,第四电极层302与第二电极层225同层设置且材料相同。
参考图4及图6,主屏区电极包括:第五电极层303,第五电极层303位于第一平坦化层221远离驱动背板200的一侧,且贯穿第一平坦化层221以与第三输出端214接触;第六电极层304,第六电极层304位于第二平坦化层231远离驱动背板200的一侧,且贯穿第二平坦化层231以与第五电极层303相接触。
本实施例中,第五电极层303与第一电极层222同层设置且材料相同,第六电极层304与第二电极层225同层设置且材料相同。
如此,第一电极层222、第三电极层301以及第五电极层303可以在同一工艺步骤中制作,第二电极层225、第四电极层302以及第六电极层304可以在同一工艺步骤中制作,使得透光区21的布线制程与主屏区23以及过渡区22的布线制程工艺兼容,有利于减少工艺步骤,节约工艺时间,减小显示面板的制造成本。
此外,第一电极层222、第三电极层301、第五电极层303以及反光层223同层设置,如此,有利于保证主屏区23、过渡区22以及透光区21的光学微腔的腔长一致性,从而改善主屏区23、过渡区22以及透光区21的显示均匀性,进一步的改善显示面板的显示效果。
具体地,第一电极层222、第三电极层301、第五电极层303以及反光层223各自作为构成光学微腔的全反射层,阴极226作为构成光学微腔的半透半反射 层;第一电极层222、第一发光单元224以及阴极构成透光区21的第一光学微腔,第三电极层301、第二发光单元228以及阴极226构成过渡区22的第二光学微腔,第五电极303、第三发光单元230以及阴极226构成主屏区23的第三光学微腔,由于各光学微腔的全反射层所处的位置相同,且各光学微腔的半透半反射层所处的位置相同,因而第一光学微腔、第二光学微腔以及第三光学微腔的腔长相同,使得透光区21、过渡区22以及主屏区23的显示色彩纯度一致,进一步的改善显示面板的显示效果。
相应的,本申请实施例还提供一种显示装置,包括上述任一实施例中的显示面板。显示装置可以是手机、平板电脑、电视机、显示器、数码相框或者导航仪等具有电视功能的产品或者部件。
进一步地,显示装置还包括采光部件,采光部件与透光区的位置相对应,采光部件可以为摄像头或者指纹识别芯片等。
相应的,本申请实施例还提供一种显示面板的制造方法,可用于制造上述实施例中显示面板,显示面板包括相邻接的过渡区和透光区,且透光区的透光率大于过渡区的透光率,制造方法包括:提供驱动背板,驱动背板包括位于过渡区的第一驱动电路,第一驱动电路具有第一输出端;形成第一平坦化层,第一平坦化层位于过渡区以及透光区的驱动背板上;形成第一电极层,第一电极层位于过渡区的第一平坦化层远离驱动背板的一侧,且贯穿第一平坦化层以与第一输出端电连接;形成第二平坦化层,第二平坦化层位于第一平坦化层以及第一电极层远离驱动背板的一侧;形成第二电极层,第二电极层位于过渡区以及透光区的第二平坦化层远离驱动背板的一侧,且贯穿第二平坦化层与第一电极层相接触,第二电极层的透光率大于第一电极层的透光率。
以下将结合图4、图7至图11对本申请一实施例提供的显示面板的制造方法进行详细说明。
步骤S1、参考图7,提供驱动背板200,驱动背板200包括主屏区23、过渡区22以及透光区21,过渡区22位于主屏区23与透光区21之间,驱动背板200包括位于过渡区22的第一驱动电路211,第一驱动电路211具有第一输出端212。
驱动背板200还包括:位于过渡区22的第二驱动电路,第二驱动电路具有 第二输出端;位于主屏区23的第三驱动电路213,第三驱动电路213具有第三输出端214。
步骤S2、参考图8,在主屏区23、过渡区22以及透光区21的驱动背板200上形成第一平坦化层221;在过渡区22的第一平坦化层221内形成第一通孔,且第一通孔暴露出第一输出端212表面。
步骤S3、参考图9,在过渡区22的第一平坦化层221远离驱动背板200的表面形成第一电极层222,且第一电极层222还覆盖第一通孔底部和侧壁。
本实施例中,在形成第一电极层222的工艺步骤中,还形成位于透光区21的第一平坦化层221上的若干分立的反光层223。
本实施例中,第一电极层222包括依次堆叠设置的第一透明电极层、金属电极层以及第二透明电极层。其中,第一透明电极层的材料为ITO,其厚度为80埃~120埃,例如为90埃、100埃、110埃;第二透明电极层的材料为ITO,其厚度为80埃~120埃,例如为90埃、100埃、110埃;金属电极层的材料为Ag或Mg,其厚度为900埃~1100埃,例如为950埃、1000埃、1050埃。
本实施例中,在形成第一电极层222的工艺步骤中,还形成位于过渡区22的第一平坦化层221上的第三电极层301以及位于主屏区23的第一平坦化层221上的第五电极层303。
形成第一电极层222、反光层223、第三电极层301以及第五电极层303的工艺步骤包括:在第一平坦化层221表面形成第一电极膜,且第一电极膜还覆盖第一通孔底部和侧壁;采用湿法刻蚀工艺对第一电极膜进行图形化处理,以形成第一电极层222、第三电极层301、第五电极层303以及反光层223。
湿法刻蚀工艺采用的刻蚀液体可以为包含HNO 3、CH 3COOH以及H 3PO 4的酸性溶液。
步骤S4、参考图10,在第一平坦化层221、第一电极层222、反光层223、第三电极层301以及第五电极层303上形成第二平坦化层231;在过渡区22的第二平坦化层231内形成暴露出第一电极层222的第二通孔;在过渡区22的第二平坦化层231内形成暴露出第三电极层301的第五通孔;在主屏区23的第二平坦化层231内形成暴露出第五电极层303的第六通孔。
步骤S5、参考图11,在透光区21以及过渡区22的第二平坦化层231远离驱动背板200的表面形成第二电极层225,且第二电极层225还位于第二通孔的底部和侧壁。
第二电极层225的材料为ITO或者IZO。
本实施例中,在形成第二电极层225的工艺步骤中,还形成位于过渡区22的第四电极层302,第四电极层302覆盖第五通孔的底部和侧壁,且形成位于主屏区23的第六电极层304,第六电极层304覆盖第六通孔的底部和侧壁,即第二电极层225、第四电极层302以及第六电极层304的材料相同。
形成第二电极层225、第四电极层302以及第六电极层304的工艺步骤包括:在第二平坦化层231上形成第二电极膜,第二电极膜还覆盖第二通孔底部和侧壁、第五通孔底部和侧壁以及第六通孔底部和侧壁;采用湿法刻蚀工艺对第二电极膜进行图形化处理,形成第二电极层225、第四电极层302以及第六电极层304。
本实施例中,采用溅射工艺形成第二电极膜,湿法刻蚀工艺采用的刻蚀液体可以为草酸。
步骤S6、参考图4,形成位于透光区21的若干第一发光单元224,且第二电极层225用于为若干第一发光单元224提供电信号;形成位于过渡区22的第二发光单元228,且第四电极层302用于为第二发光单元228提供电信号;形成位于主屏区23的第三发光单元230,且第六电极层304用于为第三发光单元230提供电信号。
在形成第一发光单元224、第二发光单元228以及第三发光单元230之前,还包括:在第二平坦化层231上形成像素限定层240。
后续的工艺步骤还包括:在像素限定层240上形成支撑部241;在第一发光单元224、第二发光单元228以及第三发光单元230上形成阴极226。
本实施例提供的显示面板的制造方法,仅使用单层透明电极层即第二电极层225对透光区21的阳极进行布线,节约了ITO产能,避免了ITO制程对于过渡区22以及主屏区23的第一平坦化层221造成的不良影响,因而能够避免过渡区22以及主屏区23的第一平坦化层221上的Ag迁移问题,从而避免由于 Ag迁移问题带来的产品异常的问题。
此外,由于先制作第一电极层221后制作第二电极层225,因此能够避免由于ITO制程对第一平坦化层221造成的损伤问题,从而避免位于第一平坦化层221上的第一电极层221中的Ag迁移问题。
并且,本实施例中能够避免ITO制程对于第二输出端以及第三输出端213造成的损伤问题,从而避免主屏区23的主屏区电极与第三输出端213搭接异常问题,且避免过渡区22的过渡区电极与第二输出端搭接异常问题。
同时,本实施提供的制造方法,有利于节约工艺步骤,降低制造成本,且保证透光区21、过渡区22以及主屏区23的光学微腔腔长一致性,进而改善显示面板的显示效果。
可以理解的是,在其他实施例中,也可以不形成第三电极、第四电极、第五电极以及第六电极,过渡区电极以及主屏区电极的形成步骤包括:在形成第二平坦化层之后,在过渡区的第二平坦化层以及第一平坦化层内形成第三通孔,第三通孔暴露出第二驱动电路的第二输出端;在主屏区的第二平坦化层以及第一平坦化层内形成第四通孔,第四通孔暴露出第三驱动电路的第三输出端;在第二平坦化层上以及第三通孔底部和侧壁形成过渡区电极;在第二平坦化层上以及第四通孔底部和侧壁形成主屏区电极。
本申请的部分实施例中,平坦化层包括依次堆叠设置的第一平坦化层以及第二平坦化层,且用于电连接第一驱动电路与第一发光单元的电极包括:位于第一平坦化层与第二平坦化层之间的第一电极层,第一电极层位于过渡区;位于第二平坦化层表面的第二电极层,第二电极层位于过渡区以及透光区。由于第一电极层位于过渡区,无需考虑第一电极层对透光区的透光率的影响,因此,第一电极层可以为叠层导电材料,也就是说,在第一平坦化层朝向驱动背板的一侧无需设置透明导电材料,因而能够避免透明导电材料(例如ITO)制程带来的不良影响,改善显示面板的性能。本申请部分实施例能够避免溅镀轰击工艺形成透明导电层制程对过渡区的第二输出端造成的损伤问题,从而避免电连接异常的问题,进而改善显示面板的显示性能。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申 请的精神和范围。任何本领域技术人员,在不脱离本申请的精神和范围内,均可作各自更动与修改,因此本申请的保护范围应当以权利要求限定的范围为准。

Claims (20)

  1. 一种显示面板,所述显示面板包括过渡区以及透光区,且所述透光区的透光率大于所述过渡区的透光率,其中,所述显示面板包括:
    驱动背板,所述驱动背板包括位于所述过渡区的第一驱动电路,所述第一驱动电路具有第一输出端;
    第一平坦化层,所述第一平坦化层位于所述过渡区以及所述透光区的所述驱动背板上;
    第一电极层,所述第一电极层位于所述过渡区的所述第一平坦化层远离所述驱动背板的一侧,且贯穿所述第一平坦化层以与所述第一输出端电连接;
    第二平坦化层,所述第二平坦化层位于所述第一平坦化层以及所述第一电极层远离所述驱动背板的一侧;
    第二电极层,所述第二电极层位于所述过渡区以及所述透光区的所述第二平坦化层远离所述驱动背板的一侧,且贯穿所述第二平坦化层以与所述第一电极层相接触。
  2. 根据权利要求1所述的显示面板,其中,还包括:位于所述透光区的第一发光单元,所述第一发光单元位于所述第二电极层远离所述驱动背板的一侧,且所述第二电极层用于为所述第一发光单元提供电信号。
  3. 根据权利要求1所述的显示面板,其中,所述第二电极层的透光率大于或等于所述第一电极层的透光率。
  4. 根据权利要求2所述的显示面板,其中,位于所述透光区的所述第二电极层包括:若干电极块以及连接相邻所述电极块的电极桥,且每一所述第一发光单元对应位于每一所述电极块远离所述驱动背板的一侧。
  5. 利要求4所述的显示面板,其中,所述透光区的所述第二电极层的形状为波浪形,每一电极块为波浪形的波峰或者波谷。
  6. 根据权利要求1所述的显示面板,其中,所述第二电极层的材料为透明导电材料。
  7. 根据权利要求1所述的显示面板,其中,所述第一电极层包括依次层叠设置的第一透明电极层、金属电极层和第二透明电极层。
  8. 根据权利要求2所述的显示面板,其中,还包括:若干分立的反光层,所述反光层位于所述透光区的所述第一平坦化层远离所述驱动背板的一侧,且每一所述反光层与每一所述第一发光单元的位置相对应。
  9. 根据权利要求8所述的显示面板,其中,每一所述反光层在所述驱动背板上的正投影位于每一所述第一发光单元位于所述驱动背板的正投影内。
  10. 根据权利要求8所述的显示面板,其中,所述反光层与所述第一电极层同层设置,且所述反光层的材料与所述第一电极层的材料相同。
  11. 根据权利要求1所述的显示面板,其中,所述显示面板还包括:
    过渡区电极,所述过渡区电极位于所述过渡区的所述第二平坦化层远离所述驱动背板的一侧,且贯穿所述第一平坦化层以及所述第二平坦化层以与所述第二输出端电连接;和,
    位于所述过渡区的第二发光单元,所述第二发光单元位于所述过渡区电极远离所述驱动背板的一侧,所述过渡区电极用于为所述第二发光单元提供电信号。
  12. 根据权利要求1所述的显示面板,其中,所述显示面板还包括:过渡区电极,所述过渡区电极包括:
    第三电极层,所述第三电极层位于所述第一平坦化层远离所述驱动背板的一侧,且贯穿所述第一平坦化层以与所述第二输出端接触;和,
    第四电极层,所述第四电极层位于所述第二平坦化层远离所述驱动背板的一侧,且贯穿所述第二平坦化层以与所述第三电极层相接触,;以及
    位于所述过渡区的第二发光单元,所述第二发光单元位于所述过渡区电极远离所述驱动背板的一侧,所述过渡区电极用于为所述第二发光单元提供电信号。
  13. 根据权利要求12所述的显示面板,其中,所述第三电极层与所述第一电极层同层设置且材料相同,所述第四电极层与所述第二电极层同层设置且材料相同。
  14. 根据权利要求1所述的显示面板,其中,所述显示面板还包括主屏区,所述过渡区位于所述主屏区与所述透光区之间;所述驱动背板还包括位于所述主屏区的第三驱动电路,所述第三驱动电路具有第三输出端;所述显示面板还包括:
    主屏区电极,所述主屏区电极位于所述主屏区的所述第二平坦化层远离所述驱动背板的一侧,且贯穿所述第一平坦化层以及所述第二平坦化层以与所述第三输出端电连接;和,
    位于所述主屏区的第三发光单元,所述第三发光单元位于所述主屏区电极远离所述驱动背板的一侧,所述主屏区电极用于为所述第三发光单元提供电信号。
  15. 根据权利要求1所述的显示面板,其中,所述显示面板还包括主屏区,所述过渡区位于所述主屏区与所述透光区之间;所述驱动背板还包括位于所述主屏区的第三驱动电路,所述第三驱动电路具有第三输出端;所述显示面板还包括:
    主屏区电极,所述主屏区电极包括:
    第五电极层,所述第五电极层位于所述第一平坦化层远离所述驱动背板的一侧,且贯穿所述第一平坦化层以与所述第三输出端接触;
    第六电极层,所述第六电极层位于所述第二平坦化层远离所述驱动背板的一侧,且贯穿所述第二平坦化层以与所述第五电极层相接触,;以及,
    位于所述主屏区的第三发光单元,所述第三发光单元位于所述主屏区电极远离所述驱动背板的一侧,所述主屏区电极用于为所述第三发光单元提供电信号。
  16. 根据权利要求15所述的显示面板,其中,所述第五电极层与所述第一电极层同层设置且材料相同,所述第六电极层与所述第二电极层同层设置且材料相同。
  17. 一种显示装置,其中,包括如权利要求1-16任一项所述的显示面板。
  18. 一种显示面板的制造方法,其中,所述显示面板包括相邻接的过渡区和透光区,且所述透光区的透光率大于所述过渡区的透光率,其中,包括:
    提供驱动背板,所述驱动背板包括位于所述过渡区的第一驱动电路,所述 第一驱动电路具有第一输出端;
    形成第一平坦化层,所述第一平坦化层位于所述过渡区以及所述透光区的所述驱动背板上;
    形成第一电极层,所述第一电极层位于所述过渡区的所述第一平坦化层远离所述驱动背板的一侧,且贯穿所述第一平坦化层以与所述第一输出端电连接;
    形成第二平坦化层,所述第二平坦化层位于所述第一平坦化层以及所述第一电极层远离所述驱动背板的一侧;
    形成第二电极层,所述第二电极层位于所述过渡区以及所述透光区的所述第二平坦化层远离所述驱动背板的一侧,且贯穿所述第二平坦化层与所述第一电极层相接触。
  19. 根据权利要求18所述的制造方法,在所述形成第二电极层之后还包括:
    分别形成位于所述透光区的若干第一发光单元和位于所述过渡区的若干第二发光单元;其中,所述第二电极层为所述第一发光单元提供电信号,所述第二发光单元由其他电极层提供电信号;
    在所述第一发光单元和所述第二发光单元上形成阴极。
  20. 根据权利要求18所述的制造方法,其中,在所述形成所述第一电极层时,还形成位于所述透光区的第一平坦化层上的若干分立的反光层。
PCT/CN2021/070159 2020-02-26 2021-01-04 显示面板及其制造方法、显示装置 WO2021169608A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/588,729 US20220158060A1 (en) 2020-02-26 2022-01-31 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010121624.4 2020-02-26
CN202010121624.4A CN111834400B (zh) 2020-02-26 2020-02-26 显示面板及其制造方法、显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/588,729 Continuation US20220158060A1 (en) 2020-02-26 2022-01-31 Display panel and display device

Publications (1)

Publication Number Publication Date
WO2021169608A1 true WO2021169608A1 (zh) 2021-09-02

Family

ID=72913602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070159 WO2021169608A1 (zh) 2020-02-26 2021-01-04 显示面板及其制造方法、显示装置

Country Status (3)

Country Link
US (1) US20220158060A1 (zh)
CN (1) CN111834400B (zh)
WO (1) WO2021169608A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111834400B (zh) * 2020-02-26 2021-10-12 昆山国显光电有限公司 显示面板及其制造方法、显示装置
US11997869B2 (en) * 2021-08-11 2024-05-28 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9397282B2 (en) * 2012-12-13 2016-07-19 Cbrite Inc. Active matrix light emitting diode array and projector display comprising it
CN109166904A (zh) * 2018-09-14 2019-01-08 上海天马微电子有限公司 一种显示面板、显示装置及显示面板的制备方法
CN110491915A (zh) * 2019-08-02 2019-11-22 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN110767835A (zh) * 2019-03-29 2020-02-07 昆山国显光电有限公司 透明显示面板、显示屏、显示装置及掩膜板
CN111834400A (zh) * 2020-02-26 2020-10-27 昆山国显光电有限公司 显示面板及其制造方法、显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110491917A (zh) * 2019-08-09 2019-11-22 武汉华星光电半导体显示技术有限公司 显示面板及电子设备
CN110491918A (zh) * 2019-08-09 2019-11-22 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN110504289B (zh) * 2019-08-27 2022-08-16 武汉天马微电子有限公司 一种显示面板和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9397282B2 (en) * 2012-12-13 2016-07-19 Cbrite Inc. Active matrix light emitting diode array and projector display comprising it
CN109166904A (zh) * 2018-09-14 2019-01-08 上海天马微电子有限公司 一种显示面板、显示装置及显示面板的制备方法
CN110767835A (zh) * 2019-03-29 2020-02-07 昆山国显光电有限公司 透明显示面板、显示屏、显示装置及掩膜板
CN110491915A (zh) * 2019-08-02 2019-11-22 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN111834400A (zh) * 2020-02-26 2020-10-27 昆山国显光电有限公司 显示面板及其制造方法、显示装置

Also Published As

Publication number Publication date
US20220158060A1 (en) 2022-05-19
CN111834400B (zh) 2021-10-12
CN111834400A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
US20220158059A1 (en) Display panel and display device
JP3195570U (ja) 薄膜トランジスタ基板
TWI606771B (zh) 顯示面板
WO2022033086A1 (zh) 阵列基板及显示装置
US20220158060A1 (en) Display panel and display device
KR20200035239A (ko) 디스플레이 패널, 그 제조방법 및 디스플레이 모듈
WO2016029612A1 (zh) 薄膜晶体管及其制备方法、显示基板及显示装置
WO2022222436A1 (zh) 显示面板及其制造方法、显示装置
JP2022539621A (ja) ディスプレイパネル及びその製造方法、表示装置
CN1854838A (zh) 半透射半反射式液晶显示面板及其制造方法
US11251253B2 (en) Organic light-emitting diode array substrate and manufacturing method thereof
WO2023202419A1 (zh) 显示面板和显示装置
WO2020103349A1 (zh) Oled显示装置及其制作方法
US20240107838A1 (en) Display panel and display device
WO2022247157A1 (zh) 显示基板及其制作方法、显示装置
US20230422580A1 (en) Display module, manufacturing method thereof, and display device
WO2021027140A1 (zh) 阵列基板及其制作方法
WO2020056887A1 (zh) 有机发光二极管显示屏及电子设备
WO2020191870A1 (zh) 一种显示面板以及电子装置
CN204760383U (zh) 显示面板
WO2023030110A9 (zh) 显示基板、显示装置
CN110649082B (zh) 显示面板
KR20160003105A (ko) 디스플레이 디바이스 및 그 제조 방법
WO2023206138A1 (zh) 显示基板和显示装置
WO2023137663A1 (zh) 显示基板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761280

Country of ref document: EP

Kind code of ref document: A1