WO2020191870A1 - 一种显示面板以及电子装置 - Google Patents

一种显示面板以及电子装置 Download PDF

Info

Publication number
WO2020191870A1
WO2020191870A1 PCT/CN2019/086305 CN2019086305W WO2020191870A1 WO 2020191870 A1 WO2020191870 A1 WO 2020191870A1 CN 2019086305 W CN2019086305 W CN 2019086305W WO 2020191870 A1 WO2020191870 A1 WO 2020191870A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
anode
sub
thin film
film transistor
Prior art date
Application number
PCT/CN2019/086305
Other languages
English (en)
French (fr)
Inventor
向明
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Publication of WO2020191870A1 publication Critical patent/WO2020191870A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors

Definitions

  • This application relates to the field of display technology, and in particular to a display panel and an electronic device.
  • AMOLED(Active-Matrix Organic Light Emitting Diode, active matrix organic light-emitting diode) display device is a current-driven OLED (Organic Light Emitting Diode, organic light-emitting diode) a display device that emits light to form a picture.
  • OLED Organic Light Emitting Diode, organic light-emitting diode
  • AMOLED display devices have gradually become a new generation of display technology due to their high contrast, wide color gamut, low power consumption, and foldability.
  • LCD Liquid Crystal Display, liquid crystal display device
  • a major advantage of AMOLED is self-luminous. Since the backlight in the LCD is not required, the camera under panel (CUP) technology becomes possible.
  • the under-screen camera technology is that the camera area of the display panel (Panel) can not only display images, but also allow external light to pass through the entire display panel to the lens (Lens) of the camera. Therefore, in order to realize the under-screen camera technology, it is necessary to increase the light transmittance of the display panel, thereby improving the ability of the camera to capture external light.
  • FIG. 1A is a schematic diagram of a partial film structure of an embodiment of a sub-pixel of an existing AMOLED device.
  • the film structure of the sub-pixels (R/G/B) of the existing AMOLED device includes: a first indium tin oxide film (ITO) 111, an Ag (silver) layer 112, and a second oxide Indium tin film (ITO) 113, light emitting layer (EML) 114, and cathode 115.
  • ITO indium tin oxide film
  • EML light emitting layer
  • the anode (Anode) of the sub-pixels of the existing AMOLED device generally adopts a three-layer structure of ITO/Ag/ITO, and the Ag layer 112 is used to reflect the light L1 emitted by the light-emitting layer 114 to improve the light extraction efficiency of the device.
  • the presence of the Ag layer reduces the light transmittance of the display panel and affects the implementation of the under-screen camera technology.
  • FIG. 1B is a schematic diagram of a partial film structure of another embodiment of a sub-pixel of an existing AMOLED device.
  • the film structure of the sub-pixels (R/G/B) of the existing AMOLED device includes an indium tin oxide film (ITO) 121, a light emitting layer (EML) 122, and a cathode (Cathode) 123 stacked in sequence.
  • ITO indium tin oxide film
  • EML light emitting layer
  • Cathode cathode
  • the light L1 emitted from the light-emitting layer 122 will pass through the transparent anode, causing light loss.
  • this embodiment can improve the light transmittance of the display panel, it will reduce the reflectivity of the anode, weaken the microcavity effect, greatly reduce the light extraction efficiency of the device, and reduce the color purity of the R/G/B sub-pixels.
  • the purpose of this application is to provide a display panel and an electronic device in view of the problems in the prior art, which can display the display panel without increasing the brightness of the pixels in the optical sensor area, thereby ensuring the transparency of the optical sensor area of the display panel. It does not reduce the lifetime of the pixels.
  • the present application provides a display panel, the display panel includes a display area and a non-display area; wherein, the display area includes a pixel array divided into a plurality of display units, each of the display units includes A first pixel and at least one second pixel, the first pixel includes a first subpixel, the first subpixel includes a first anode, and the second pixel includes a pixel corresponding to the first subpixel A second sub-pixel, the second sub-pixel includes a second anode; in any of the display units, the first anode and the second anode are electrically connected through a switching thin film transistor, and the The light transmittance of the first anode is higher than that of the second anode; the first anode adopts a single-layer transparent conductive film structure, and the second anode adopts a transparent conductive film and a silver layer stacked in sequence And a transparent conductive film structure; the non-display area is provided with at least one scanning signal line, and each
  • the present application provides a display panel, the display panel includes a display area; the display area includes a pixel array divided into a plurality of display units, each of the display units includes a first pixel and at least A second pixel, the first pixel includes a first subpixel, the first subpixel includes a first anode, and the second pixel includes a second subpixel corresponding to the first subpixel,
  • the second sub-pixel includes a second anode; in any of the display units, the first anode and the second anode are electrically connected through a switching thin film transistor, and the first anode is transparent Higher than the light transmittance of the second anode.
  • the present application also provides an electronic device, the electronic device includes a display panel and at least one optical sensor, the optical sensor corresponds to the optical sensor area of the display panel;
  • the display panel includes a display Area, the display area includes a pixel array divided into a plurality of display units, each of the display units includes a first pixel and at least one second pixel, the first pixel includes a first sub-pixel, the second pixel A sub-pixel includes a first anode, the second pixel includes a second sub-pixel corresponding to the first sub-pixel, and the second sub-pixel includes a second anode; in any of the display units,
  • the first anode and the second anode are electrically connected through a switching thin film transistor, and the light transmittance of the first anode is higher than that of the second anode.
  • the light transmittance of the entire display area of the display panel is improved without reducing the light output performance of the display device.
  • two sub-pixels of the same color can share a pixel driving circuit, thereby reducing the wiring density of the array substrate of the display panel, and further improving the overall light transmittance of the display panel.
  • the scanning signal line can also be used to control all sub-pixels of the display unit to display during the day, so as to ensure that the brightness and color purity of the display device are not affected; and at night, the display unit can be Only the first sub-pixel with high anode light transmittance is displayed. Although the brightness and color purity of the display device are reduced, the impact on night use is small, and the impact on the user's sleep can be reduced. And because the light transmittance of the entire display area is improved and the light transmittance is consistent, the camera can be placed anywhere in the display area, which improves the flexibility of the camera placement position and the flexibility of the whole machine design, and can even be placed in the display area Multiple cameras to improve the shooting effect of the camera under the screen.
  • FIG. 1A is a schematic diagram of a partial film structure of an embodiment of a sub-pixel of an existing AMOLED device
  • FIG. 1B is a schematic diagram of a partial film structure of another embodiment of a sub-pixel of an existing AMOLED device
  • Figure 2 is a schematic diagram of the structure of the display panel of the present application.
  • Figure 3 is a schematic diagram of the position where the camera in the display panel of the present application can be placed in the display area;
  • FIG. 4 is a schematic diagram of a layered structure of an embodiment of a display panel of the present application.
  • 5A-5E are schematic diagrams of the manufacturing process of the display panel shown in FIG. 4.
  • the "on” or “under” of the first feature of the second feature may include the first and second features in direct contact, or may include the first and second features Not in direct contact but through other features between them.
  • “above”, “above” and “above” the second feature of the first feature include the first feature being directly above and obliquely above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” the first feature of the second feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • FIG. 2 is a schematic diagram of the structure of the display panel of the present application.
  • the display panel of the present application includes a display area (AA) 21, the display area 21 includes a pixel array divided into a plurality of display units 210, each of the display units 210 includes a first pixel and at least one second pixel;
  • the first pixel includes a first subpixel, and the first subpixel includes a first anode 2101;
  • the second pixel includes a second subpixel corresponding to the first subpixel, and the second subpixel It includes a second anode 2102; in any of the display units 210, the first anode 2101 and the second anode 2102 are electrically connected through a switching thin film transistor (switching TFT) 2103, and the first anode
  • switching TFT switching thin film transistor
  • the anodes of the entire screen of the display panel adopts a transparent anode structure design with high light transmittance, and two corresponding sub-pixels are electrically connected through a switching thin film transistor, the light transmittance of the entire display area of the display panel is improved. And it will not reduce the light-emitting performance of the display device.
  • the first anode 2101 adopts a single-layer transparent conductive film structure
  • the second anode 2102 adopts a structure of a transparent conductive film, a silver layer, and a transparent conductive film stacked in sequence.
  • the transparent conductive film may be an indium tin oxide film (ITO).
  • ITO indium tin oxide film
  • the display panel includes a non-display area 22, the non-display area 22 is provided with at least one scanning signal line 221; each of the switching thin film transistors 2103 is electrically connected to one of the scanning signal lines 221, and the switch The thin film transistor 2103 is used to turn on according to the scanning signal of the scanning signal line 221 to control the first sub-pixel and all the second sub-pixels of the display unit 210 to emit light simultaneously, or according to the scanning signal line 221 The scan signal of is turned off to control all the second sub-pixels of the display unit 210 not to emit light. Two sub-pixels of the same color are connected by a switching thin film transistor, and the gate of the switching thin film transistor is connected to the scanning signal line of the non-display area.
  • the driving thin film transistor of the pixel driving circuit can directly drive the first sub-pixel display with high anode light transmittance; in daytime, all sub-pixels of the display unit can be activated through the scanning signal line.
  • both display so as to ensure that the brightness and color purity of the display device are not affected; and at night, the second sub-pixel with low light transmittance of the anode in the display unit can not be displayed through the scanning signal line, and only the anode
  • the first sub-pixel display with high light transmittance although the brightness and color purity of the display device are reduced, the impact on night use is small, and the impact on the user's sleep can be reduced.
  • the first sub-pixel and the at least one second sub-pixel of the display unit 210 are both blue sub-pixels.
  • Each pixel includes at least three sub-pixels of red, green, and blue.
  • the transparent anode can reduce the short-wavelength emitted by the blue sub-pixel, thereby reducing the damage of blue light to the human eye, and can Reduce the impact of short-wavelength blue light on users' sleep when used at night.
  • the structure of the blue sub-pixel is first modified, and the red or green sub-pixel can also use a similar design structure.
  • the display area may have at least one optical sensor area, the optical sensor area corresponding to the optical sensor, the optical sensor is one or more of the camera, the optical fingerprint sensor, that is, the same optical sensor area can be set at the same time Camera and optical fingerprint sensor.
  • FIG. 3 is a schematic diagram of the position where the camera can be placed in the display area of the display panel of the present application. The dots in the figure indicate the position where the camera can be placed in the display area 31.
  • FIG. 4 is a schematic diagram of the layered structure of an embodiment of the display panel of the present application
  • FIGS. 5A-5E are schematic diagrams of the manufacturing process of the display panel shown in FIG.
  • the blue sub-pixel of the same display unit is taken as an example for description, and the red or green sub-pixel can also use a similar design structure.
  • the display panel includes a display area (AA), the display area includes a pixel array divided into a plurality of display units, and each display unit includes a pixel drive circuit, a first pixel, and at least A second pixel; the first pixel includes a first sub-pixel 40a and a second sub-pixel 40a'.
  • the first sub-pixel 40a includes a first anode 400a, a first cathode (not shown in the figure), and a first light-emitting layer (not shown in the figure) located between the first anode and the first cathode. In the picture).
  • the second sub-pixel 40a' includes a second anode 400a', a second cathode (not shown in the figure), and a second light-emitting layer (not shown) located between the second anode and the second cathode. Shown in the figure).
  • the pixel driving circuit includes a driving thin film transistor (driving TFT) and a switching thin film transistor (switching TFT);
  • the driving thin film transistor includes a gate 412a, a first electrode 413b, and a second electrode 413c;
  • the switch The thin film transistor includes a gate 412a', a first electrode 413b' and a second electrode 413c';
  • the second electrode 413c of the driving thin film transistor is connected to the first anode 400a, and the first electrode of the switching thin film transistor
  • the pole 413b' is connected to the second pole 413c of the driving thin film transistor, and the second pole 413c' of the switching thin film transistor is connected to the second anode 400a'.
  • the anodes of the two sub-pixels are electrically connected through a switching thin film transistor and share a driving thin film transistor.
  • the driving thin film transistor can drive the first light emitting layer to emit light
  • the switching thin film transistor can control the second light emitting layer and the first light emitting layer to emit light simultaneously according to an external control signal, or the switching thin film transistor can control the light emitting layer according to an external control signal.
  • the second light-emitting layer does not emit light.
  • the gate 412a' of the switching thin film transistor is further connected to a scanning signal line in the non-display area to be turned on according to the scanning signal of the scanning signal line to control the second light-emitting layer and the first light-emitting layer to emit light simultaneously , Or turn off according to the scan signal of the scan signal line to control the second light-emitting layer not to emit light.
  • the first light-emitting layer and the second light-emitting layer may use OLED light-emitting materials, and the light-emitting colors of the OLED light-emitting materials may be the same, for example, both are blue, or both are red, or both are green.
  • the first electrode 413b and the second electrode 413c of the driving thin film transistor are respectively the source/drain of the driving thin film transistor, for example, the first electrode source, the second electrode drain, or the first electrode drain.
  • the first electrode 413b' and the second electrode 413c' of the switching thin film transistor are respectively the source/drain of the switching thin film transistor, for example, the first electrode source, the second electrode drain, or the first electrode drain , The second pole source.
  • the first anode 400a adopts a single-layer transparent conductive film structure
  • the second anode 400a' adopts a three-layer structure of ITO/Ag/ITO stacked in sequence. That is, the light transmittance of the first anode 400a is higher than the light transmittance of the second anode 400a'. Since part of the anodes of the entire screen of the display panel adopts a transparent anode structure design with high light transmittance, and two corresponding sub-pixels are electrically connected through a switching thin film transistor, the light transmittance of the entire display area of the display panel is improved. And it will not reduce the light-emitting performance of the display device.
  • the anodes of the two sub-pixels are electrically connected through a switching thin film transistor and share a driving thin film transistor, which not only improves the light transmittance of the anode wiring layer, but also reduces the wiring density of the array substrate, and further improves the display panel Overall light transmittance.
  • Step 1 Deposit a buffer layer (Buffer) 402 on the base substrate 401, and deposit an active layer (Act) 411 on the buffer layer 402.
  • the active layer is etched and patterned to form a polysilicon (Poly-Si) layer (channel region), and the polysilicon layer is doped with heavy ions to form source/drain contact regions.
  • the channel region 411a and the source/drain contact regions 411b/411c of the driving thin film transistor, and the channel region 411a' and the source/drain contact regions 411b'/411c' of the switching thin film transistor are formed respectively, as shown in FIG. 5A Shown.
  • the base substrate 401 may be a glass substrate or a flexible substrate made of a flexible base material (PI).
  • Step 2 Deposit the first gate insulating layer (GI1) 403, and deposit the first metal layer on the first gate insulating layer 403; by etching and patterning the first metal layer, the gates of the driving thin film transistors are formed respectively
  • the pole 412a and the gate 412a' of the switching thin film transistor are shown in FIG. 5B.
  • the first metal layer may be the first gate metal layer (GE1), and the gate 412a of the driving thin film transistor may simultaneously serve as the bottom plate of the capacitor of the pixel driving circuit.
  • Step 3 Deposit a second gate insulating layer (GI2) 404, deposit a second metal layer on the second gate insulating layer 404, and perform etching and patterning to form the upper plate 412b of the capacitor of the pixel driving circuit , As shown in Figure 5C.
  • the second metal layer may be a second gate metal layer (GE2).
  • Step 4 Deposit an inter-line dielectric layer (ILD) 405, etch the positions corresponding to all the source/drain contact regions on the inter-line dielectric layer 405 to form ILD vias 405a; deposit a third on the inter-line dielectric layer 405 The metal layer is etched and patterned on the third metal layer to form the first electrode 413b and the second electrode 413c of the driving thin film transistor, and the first electrode 413b' and the second electrode 413c' of the switching thin film transistor respectively; The first electrode 413b' of the transistor is connected to the second electrode 413c of the driving thin film transistor; the first electrode 413b and the second electrode 413c of the driving thin film transistor are respectively in contact with the source/drain of the driving thin film transistor through the corresponding ILD via 405a The regions 411b and 411c are in contact, and the first electrode 413b' and the second electrode 413c' of the switching thin film transistor are in contact with the source/drain contact regions 411b', 411c' of the switching
  • the third metal layer may be a source/drain wiring layer (S/D).
  • the first electrode can be a source electrode, and the second electrode is a drain electrode; or the first electrode can be a drain electrode, and the second electrode is a source electrode, which is not limited in this application.
  • Step 5 Coating, exposing, developing, curing and patterning to form a flat layer 409, and etch on the flat layer 409 at a position corresponding to the second electrode 413c of the driving thin film transistor to form a first via 400b corresponding to the switching thin film transistor
  • the position of the second electrode 413c' is etched to form a second via 400b'
  • the flat layer 409 is deposited, etched and patterned to form a first anode (Anode) 400a with a structure of ITO and a structure of ITO/Ag/
  • the second anode 400a' of ITO, the first anode 400a is connected to the second electrode 413c of the driving thin film transistor through the first via 400b, and the second anode 400a' is connected to the second electrode of the switching thin film transistor through the second via 400b' 413c' is overlapped, as shown in Figure 5E.
  • the flat layer 409 may be an organic flat layer (PLN).
  • Depositing, etching and patterning on the flat layer 409 to form the first anode (Anode) 400a with the structure of ITO and the second anode 400a' with the structure of ITO/Ag/ITO can be produced as follows: first adopt PVD (Physical Vapor Deposition (Physical Vapor Deposition) sequentially deposit the bottom ITO (bottom ITO) and Ag layer on the flat layer 409, and then etch to form part of the film structure of the second sub-pixel; then use PVD to deposit the top ITO (top ITO) again, and then etch A second sub-pixel and a first sub-pixel are formed.
  • PVD Physical Vapor Deposition
  • the structure of the second sub-pixel can be ITO/Ag/ITO, and the structure of the first sub-pixel is ITO (it is the top layer ITO). If only the blue sub-pixel is modified, in the formed display unit, the structure of the second blue sub-pixel, all the red sub-pixels, and all the green sub-pixels is ITO/Ag/ITO, and the structure of the first sub-pixel is ITO.
  • first anode 400a with an ITO structure depositing, etching, and patterning on the flat layer 409 to form a first anode (Anode) 400a with an ITO structure and a second anode 400a' with an ITO/Ag/ITO structure.
  • the production process can also be: on the flat layer 409
  • the bottom layer ITO/Ag/top layer ITO is sequentially deposited on the top layer, and part of the sub-pixel film layer is ITO/Ag/ITO formed by two yellow light and two times of etching, and some sub-pixels are of ITO structure.
  • the first yellow light process will cover all anodes in the display unit with photoresist to form an anode pattern; the second yellow light process will not cover the top of the anode, which needs to be etched into an ITO monolayer film, without photoresist. The other areas are covered with photoresist; the top ITO and Ag layers of the anode area that need to be etched into the ITO single-layer film are etched, leaving the bottom ITO single-layer film to form the anode of the first sub-pixel.
  • the structure of the second sub-pixel is ITO/Ag/ITO
  • the structure of the first sub-pixel is ITO (the bottom layer ITO).
  • Step 6 Coating, exposing, developing, curing and patterning to form a pixel definition layer (PDL) 410, thereby exposing a portion of the first anode 400a and a portion of the second anode 400a', as shown in FIG. 4 .
  • PDL pixel definition layer
  • the present application also provides an electronic device including the above-mentioned display panel and at least one optical sensor of the present application.
  • the optical sensor is one or more of a camera and an optical fingerprint sensor. Since some of the anodes of the entire screen of the display panel adopt the structure design of transparent anodes with high light transmittance, the light transmittance of the entire display area of the display panel is improved without reducing the light output performance of the display device. At the same time, two sub-pixels of the same color can share a pixel driving circuit, thereby reducing the wiring density of the array substrate of the display panel, and further improving the overall light transmittance of the display panel.
  • the electronic device may include a display module, a mobile terminal (such as a smart phone), a fixed terminal (such as a computer), and the like.
  • the display panel of the electronic device not only improves the light transmittance, but does not reduce the light-emitting performance of the display device, and at the same time improves the flexibility of the whole machine design.
  • the subject of this application can be manufactured and used in industry and has industrial applicability.

Abstract

一种显示面板以及电子装置,显示面板整屏的部分阳极采用透光性高的透明阳极的结构设计,且两个相同颜色的子像素通过开关薄膜晶体管(2103)电连接,共用一个像素驱动电路,可以提高整个显示区(21)的透光性,且不会降低显示器件的出光性能,同时,提高了整机设计的灵活性。

Description

一种显示面板以及电子装置 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板以及电子装置。
背景技术
AMOLED(Active-Matrix Organic Light Emitting Diode,有源矩阵有机发光二极管)显示装置是采用电流驱动OLED(Organic Light Emitting Diode,有机发光二极管)发光形成画面的显示器件。AMOLED显示装置因其高对比度、广色域、低功耗、可折叠等特性,逐渐成为新一代显示技术。相较于LCD ( Liquid Crystal Display,液晶显示装置),AMOLED的一大优势为自发光,由于不需要LCD中的背光,使屏下摄像头(Camera under Panel,简称CUP)技术成为可能。屏下摄像头技术是显示面板(Panel)的摄像头(Camera)区域既可以显示画面,又可以使外界的光透过整个显示面板传递到摄像头的镜头(Lens)中。因此,为了实现屏下摄像头技术,需要增大显示面板的透光性,从而提高摄像头对外界光的捕获能力。
技术问题
请参考图1A,现有AMOLED器件子像素一实施例的部分膜层结构示意图。在本实施例中,现有AMOLED器件子像素(R/G/B)的膜层结构包括依次层叠设置的:第一氧化铟锡膜(ITO)111、Ag(银)层112、第二氧化铟锡膜(ITO)113、发光层(EML)114以及阴极115。也即,现有AMOLED器件子像素的阳极(Anode)一般选用ITO/Ag/ITO三层结构形式,其中的Ag层112用于反射发光层114发出的光线L1,提高器件的出光效率。但,Ag层的存在降低了显示面板的透光性,影响屏下摄像头技术的实施。
请参考图1B,现有AMOLED器件子像素另一实施例的部分膜层结构示意图。在本实施例中,现有AMOLED器件子像素(R/G/B)的膜层结构包括依次层叠设置的:氧化铟锡膜(ITO)121、发光层(EML)122以及阴极(Cathode)123。也即,本实施例AMOLED器件子像素的阳极选用“无Ag”的ITO作为透明阳极。而,选用“无Ag”的ITO作为透明阳极,发光层122发出的光线L1会透过透明阳极,造成光损失。这种实施方式虽然可以提高显示面板的透光性,但是会导致阳极的反射率降低,微腔效应减弱,器件的出光效率极大降低,同时R/G/B子像素的色纯度降低。
因此,如何使用无Ag的ITO作为阳极,既能提高显示面板的透光性,又不降低显示器件的出光性能,就成了摄像头技术发展亟待解决的问题。
技术解决方案
本申请的目的在于,针对现有技术存在的问题,提供一种显示面板以及电子装置,可以在显示面板显示中,不需要提高光学传感器区域像素的亮度,从而可以保证显示面板光学传感器区域的透光性且不降低其中像素的寿命。
为实现上述目的,本申请提供了一种显示面板,所述显示面板包括显示区与非显示区;其中,所述显示区包括划分有多个显示单元的像素阵列,每一所述显示单元包括一第一像素和至少一第二像素,所述第一像素包括一第一子像素,所述第一子像素包括一第一阳极,所述第二像素包括与所述第一子像素对应的一第二子像素,所述第二子像素包括一第二阳极;在任一所述显示单元中,所述第一阳极与所述第二阳极之间通过一开关薄膜晶体管电连接,且所述第一阳极的透光性高于所述第二阳极的透光性;所述第一阳极采用单层透明导电膜结构,所述第二阳极采用依次层叠设置的一透明导电膜、一银层及一透明导电膜结构;所述非显示区设有至少一条扫描信号线,每一所述开关薄膜晶体管与一所述扫描信号线电连接,用于根据所述扫描信号线的扫描信号开启,以控制所述显示单元的所述第一子像素以及所有所述第二子像素同时发光,或根据所述扫描信号线的扫描信号关闭,以控制所述显示单元的所有所述第二子像素不发光。
为实现上述目的,本申请提供了一种显示面板,所述显示面板包括显示区;所述显示区包括划分有多个显示单元的像素阵列,每一所述显示单元包括一第一像素和至少一第二像素,所述第一像素包括一第一子像素,所述第一子像素包括一第一阳极,所述第二像素包括与所述第一子像素对应的一第二子像素,所述第二子像素包括一第二阳极;在任一所述显示单元中,所述第一阳极与所述第二阳极之间通过一开关薄膜晶体管电连接,且所述第一阳极的透光性高于所述第二阳极的透光性。
为实现上述目的,本申请还提供了一种电子装置,所述电子装置包括显示面板及至少一光学传感器,所述光学传感器与所述显示面板的光学传感器区域相对应;所述显示面板包括显示区,所述显示区包括划分有多个显示单元的像素阵列,每一所述显示单元包括一第一像素和至少一第二像素,所述第一像素包括一第一子像素,所述第一子像素包括一第一阳极,所述第二像素包括与所述第一子像素对应的一第二子像素,所述第二子像素包括一第二阳极;在任一所述显示单元中,所述第一阳极与所述第二阳极之间通过一开关薄膜晶体管电连接,且所述第一阳极的透光性高于所述第二阳极的透光性。
有益效果
本申请显示面板由于显示面板整屏的阳极中的部分阳极采用透光性高的透明阳极的结构设计,因此,显示面板整个显示区的透光性提高,且不会降低显示器件的出光性能。同时,两个相同颜色的子像素可以共用一个像素驱动电路,从而降低显示面板的阵列基板的走线密度,更进一步提高显示面板的整体透光性。在显示面板显示中,还可以通过扫描信号线控制在白天时,使显示单元所有子像素均显示,从而保证显示器件的亮度以及色纯度不受影响;而在夜晚时,则可以使显示单元中仅阳极透光性高的第一子像素显示,虽然显示器件的亮度和色纯度有所降低,但是针对夜晚使用影响较小,且可以降低对使用者睡眠的影响。且由于整个显示区的透光性提高且透光性一致,摄像头可以放置在显示区的任意位置,提高了摄像头放置位置的灵活性,提高了整机设计的灵活性,甚至可以在显示区放置多个摄像头,提高屏下摄像头的拍摄效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A,现有AMOLED器件子像素一实施例的部分膜层结构示意图;
图1B,现有AMOLED器件子像素另一实施例的部分膜层结构示意图;
图2,本申请显示面板的架构示意图;
图3,本申请显示面板中摄像头在显示区可放置位置示意图;
图4,本申请显示面板一实施例的层状结构示意图;
图5A-5E为图4所示显示面板制备流程示意图。
本申请的实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参考图2,本申请显示面板的架构示意图。本申请显示面板包括显示区(AA)21,所述显示区21包括划分有多个显示单元210的像素阵列,每一所述显示单元210包括一第一像素和至少一第二像素;所述第一像素包括一第一子像素,所述第一子像素包括一第一阳极2101;所述第二像素包括与所述第一子像素对应的一第二子像素,所述第二子像素包括一第二阳极2102;在任一所述显示单元210中,所述第一阳极2101与所述第二阳极2102之间通过一开关薄膜晶体管(开关TFT)2103电连接,且所述第一阳极2101的透光性高于所述第二阳极2102的透光性。由于显示面板整屏的阳极中的部分阳极采用透光性高的透明阳极的结构设计,且两相应的子像素通过一开关薄膜晶体管电连接,因此,显示面板整个显示区的透光性提高,且不会降低显示器件的出光性能。
优选的,所述第一阳极2101采用单层透明导电膜结构,所述第二阳极2102采用依次层叠设置的一透明导电膜、一银层及一透明导电膜结构。所述透明导电膜可以为氧化铟锡膜(ITO)。将两个相同颜色的子像素用一开关薄膜晶体管连接,其中一个子像素的阳极选用ITO/Ag/ITO的3层结构,而另一子像素的阳极选用单层ITO结构,从而提高了阳极走线层的透光性。
优选的,所述显示面板包括非显示区22,所述非显示区22设有至少一条扫描信号线221;每一所述开关薄膜晶体管2103与一所述扫描信号线221电连接,所述开关薄膜晶体管2103用于根据所述扫描信号线221的扫描信号开启,以控制所述显示单元210的所述第一子像素以及所有所述第二子像素同时发光,或根据所述扫描信号线221的扫描信号关闭,以控制所述显示单元210的所有所述第二子像素不发光。将两个相同颜色的子像素用一开关薄膜晶体管连接,且开关薄膜晶体管的栅极与非显示区的扫描信号线连接,因此,两个相同颜色的子像素可以共用一个像素驱动电路,从而降低显示面板的阵列基板的走线密度,更进一步提高显示面板的整体透光性。在显示面板显示中,所述像素驱动电路的驱动薄膜晶体管可直接驱动阳极透光性高的第一子像素显示;在白天时,可以通过所述扫描信号线使所述显示单元的所有子像素均显示,从而保证显示器件的亮度以及色纯度不受影响;而在夜晚时,则可以通过所述扫描信号线使所述显示单元中阳极透光性低的第二子像素不显示,仅阳极透光性高的第一子像素显示,虽然显示器件的亮度和色纯度有所降低,但是针对夜晚使用影响较小,且可以降低对使用者睡眠的影响。
优选的,所述显示单元210的所述第一子像素与所述至少一第二子像素均为蓝色子像素。每一像素均至少包括红、绿、蓝3个子像素,通过对蓝色子像素的结构进行改造,透明阳极可以减少蓝色子像素发出的短波波长,从而减少蓝光对人眼的损伤,且可降低夜晚使用时,短波长蓝光对使用者睡眠的影响。考虑到蓝色子像素的发光面积最大,优先对蓝色子像素的结构进行改造,红色或者绿色子像素也可以使用类似的设计结构。
由于显示面板整屏的阳极中的部分阳极采用透光性高的透明阳极的结构设计,因此,显示面板整个显示区的透光性提高。由于整个显示区的透光性提高且透光性一致,摄像头可以放置在显示区的任意位置,提高了摄像头放置位置的灵活性,提高了整机设计的灵活性,甚至可以在显示区放置多个摄像头,提高屏下摄像头的拍摄效果。也即,显示区可以具有至少一光学传感器区域,所述光学传感器区域对应于光学传感器,所述光学传感器为摄像头、光学指纹传感器中的一个或多个,也即,同一光学传感器区域可以同时设置摄像头以及光学指纹传感器。请参考图3,本申请显示面板中摄像头在显示区可放置位置示意图,图中圆点示意摄像头在显示区31中的可放置位置。
请参考图4以及图5A-5E,其中,图4为本申请显示面板一实施例的层状结构示意图,图5A-5E为图4所示显示面板制备流程示意图。本实施例以同一显示单元的蓝色子像素为例进行说明,红色或者绿色子像素也可以使用类似的设计结构。
如图4所示,所述显示面板包括显示区(AA),所述显示区包括划分有多个显示单元的像素阵列,每一所述显示单元包括一像素驱动电路、一第一像素和至少一第二像素;所述第一像素包括一第一子像素40a和一第二子像素40a’。所述第一子像素40a包括一第一阳极400a、一第一阴极(未示于图中)及位于所述第一阳极和所述第一阴极之间的一第一发光层(未示于图中)。所述第二子像素40a’包括一第二阳极400a’、一第二阴极(未示于图中)以及位于所述第二阳极和所述第二阴极之间的一第二发光层(未示于图中)。所述像素驱动电路包括一驱动薄膜晶体管(驱动TFT)和一开关薄膜晶体管(开关TFT);所述驱动薄膜晶体管包括一栅极412a、一第一极413b和一第二极413c;所述开关薄膜晶体管包括一栅极412a’、一第一极413b’和一第二极413c’;所述驱动薄膜晶体管的第二极413c连接于所述第一阳极400a,所述开关薄膜晶体管的第一极413b’连接于所述驱动薄膜晶体管的第二极413c,所述开关薄膜晶体管的第二极413c’连接于所述第二阳极400a’。
也即,两个子像素的阳极之间通过一个开关薄膜晶体管电连接,并且共用一个驱动薄膜晶体管。从而驱动薄膜晶体管可以驱动第一发光层发光,而开关薄膜晶体管可以根据外部控制信号控制所述第二发光层与所述第一发光层同时发光,或开关薄膜晶体管可以根据外部控制信号控制所述第二发光层不发光。
所述开关薄膜晶体管的栅极412a’进一步与非显示区的一扫描信号线连接,以根据所述扫描信号线的扫描信号开启,控制所述第二发光层与所述第一发光层同时发光,或根据所述扫描信号线的扫描信号关闭,以控制所述第二发光层不发光。其中,所述第一发光层与所述第二发光层可以采用OLED发光材料,OLED发光材料的发光颜色可以一致,例如都为蓝色,或都为红色,或都为绿色。
具体的,所述驱动薄膜晶体管的第一极413b和第二极413c分别为所述驱动薄膜晶体管的源/漏极,例如,第一极为源极、第二极为漏极,或第一极为漏极、第二极为源极。所述开关薄膜晶体管的第一极413b’和第二极413c’分别为所述开关薄膜晶体管的源/漏极,例如,第一极为源极、第二极为漏极,或第一极为漏极、第二极为源极。
在本实施例中,所述第一阳极400a采用单层透明导电膜结构,所述第二阳极400a’采用依次层叠设置的ITO/Ag/ITO的3层结构。即,所述第一阳极400a的透光性高于所述第二阳极400a’的透光性。由于显示面板整屏的阳极中的部分阳极采用透光性高的透明阳极的结构设计,且两相应的子像素通过一个开关薄膜晶体管电连接,因此,显示面板整个显示区的透光性提高,且不会降低显示器件的出光性能。同时,两个子像素的阳极之间通过一个开关薄膜晶体管电连接,并且共用一个驱动薄膜晶体管,不仅提高阳极走线层的透光性,而且降低阵列基板的走线密度,更进一步提高显示面板的整体透光性。
以下结合附图对本申请显示面板制备流程进行说明:
第1步:在衬底基板401上沉积缓冲层(Buffer)402,在缓冲层402上沉积有源层(Act)411。通过对有源层刻蚀并图案化形成多晶硅(Poly-Si)层(沟道区),对多晶硅层进行重离子掺杂,从而形成源/漏极接触区。具体的,分别形成驱动薄膜晶体管的沟道区411a和源/漏极接触区411b/411c,以及开关薄膜晶体管的沟道区411a’和源/漏极接触区411b’/411c’,如图5A所示。衬底基板401可以为玻璃(glass)基板或由柔性基底材料(PI)制成的柔性基板。
第2步:沉积第一栅极绝缘层(GI1)403,在第一栅极绝缘层403上沉积第一金属层;通过对第一金属层刻蚀并图案化,分别形成驱动薄膜晶体管的栅极412a以及开关薄膜晶体管的栅极412a’,如图5B所示。第一金属层可以为第一栅极金属层(GE1),驱动薄膜晶体管的栅极412a可以同时作为像素驱动电路的电容的下极板。
第3步:沉积第二栅极绝缘层(GI2)404,在第二栅极绝缘层404上沉积第二金属层,并进行刻蚀及图案化,形成像素驱动电路的电容的上极板412b,如图5C所示。第二金属层可以为第二栅极金属层(GE2)。
第4步:沉积线间介电层(ILD)405,在线间介电层405上对应所有源/漏极接触区的位置刻蚀形成ILD过孔405a;在线间介电层405上沉积第三金属层,通过对第三金属层刻蚀并图案化,分别形成驱动薄膜晶体管的第一极413b、第二极413c,以及开关薄膜晶体管的第一极413b’、第二极413c’;开关薄膜晶体管的第一极413b’并与驱动薄膜晶体管的第二极413c相连;驱动薄膜晶体管的第一极413b、第二极413c分别通过相应的ILD过孔405a与驱动薄膜晶体管的源/漏极接触区411b、411c接触,开关薄膜晶体管的第一极413b’、第二极413c’分别通过相应的ILD过孔405a与开关薄膜晶体管的源/漏极接触区411b’、411c’接触,如图5D所示。也即第三金属层可以为源/漏极走线层(S/D)。其中,第一极可以为源极,此时第二极为漏极;或第一极可以为漏极,此时第二极为源极,本申请对此不做限定。
第5步:涂布、曝光、显影、固化并图案化,形成平坦层409,在平坦层409上对应驱动薄膜晶体管的第二极413c的位置刻蚀形成第一过孔400b,对应开关薄膜晶体管的第二极413c’的位置刻蚀形成第二过孔400b’;在平坦层409上沉积、刻蚀并图案化,形成结构为ITO的第一阳极(Anode)400a以及结构为ITO/Ag/ITO的第二阳极400a’,第一阳极400a通过第一过孔400b与驱动薄膜晶体管的第二极413c搭接,第二阳极400a’通过第二过孔400b’与开关薄膜晶体管的第二极413c’搭接,如图5E所示。也即,对于同一显示单元中相同颜色的两个子像素,其中一阳极采用透光性高的透明阳极的结构设计,两阳极之间通过开关薄膜晶体管电连接并且共用一个驱动薄膜晶体管。这种设计结构,不仅提高阳极走线层的透光性,而且降低阵列基板的走线密度,更进一步提高显示面板的整体透光性。其中,平坦层409可以为有机平坦层(PLN)。
在平坦层409上沉积、刻蚀并图案化,形成结构为ITO的第一阳极(Anode)400a以及结构为ITO/Ag/ITO的第二阳极400a’的制作流程可以为:先采用PVD(Physical Vapor Deposition,物理气相沉积)在平坦层409上依次沉积底层ITO(bottom ITO)和Ag层,再蚀刻形成第二子像素的部分膜层结构;随后再次采用PVD沉积顶层ITO(top ITO),再蚀刻形成第二子像素以及第一子像素。按照上述流程,可以实现第二子像素的结构为ITO/Ag/ITO,而第一子像素的结构为ITO(为顶层ITO)。若仅针对蓝色子像素进行改动,则在形成的显示单元中,第二蓝子像素、所有红色子像素、所有绿色子像素的结构为ITO/Ag/ITO,而第一子像素的结构为ITO。
在平坦层409上沉积、刻蚀并图案化,形成结构为ITO的第一阳极(Anode)400a以及结构为ITO/Ag/ITO的第二阳极400a’的制作流程还可以为:在平坦层409上依次沉积底层ITO/Ag/顶层ITO,通过2次黄光,2次蚀刻形成部分子像素膜层为ITO/Ag/ITO,部分子像素为ITO结构。具体的,第一次黄光制程将显示单元中的所有阳极全部进行光阻覆盖,形成阳极图案;第二次黄光制程将除了需要蚀刻成ITO单层膜的阳极上方不用光阻覆盖外,其它区域均用光阻覆盖;对需要蚀刻成ITO单层膜的阳极区域的顶层ITO和Ag层进行刻蚀,留下底层ITO单层膜形成第一子像素的阳极。按照上述流程,也可以实现第二子像素的结构为ITO/Ag/ITO,而第一子像素的结构为ITO(为底层ITO)。
第6步:涂布、曝光、显影、固化并图案化,形成像素定义层(PDL)410,从而暴露部分所述第一阳极400a以及暴露部分所述第二阳极400a’,如图4所示。
基于同一发明构思,本申请还提供了一种电子装置,所述电子装置包括本申请上述的显示面板和至少一光学传感器。所述光学传感器为摄像头、光学指纹传感器中的一个或多个。由于显示面板整屏的阳极中的部分阳极采用透光性高的透明阳极的结构设计,因此,显示面板整个显示区的透光性提高,且不会降低显示器件的出光性能。同时,两个相同颜色的子像素可以共用一个像素驱动电路,从而降低显示面板的阵列基板的走线密度,更进一步提高显示面板的整体透光性。且由于整个显示区的透光性提高且透光性一致,摄像头可以放置在显示区的任意位置,提高了摄像头放置位置的灵活性,提高了整机设计的灵活性,甚至可以在显示区放置多个摄像头,提高屏下摄像头的拍摄效果。所述电子装置可以包括显示模组,移动终端(如智能手机),固定终端(如电脑)等。所述电子装置的显示面板既提高了透光性,且不会降低显示器件的出光性能,同时提高了整机设计的灵活性。
工业实用性
本申请的主题可以在工业中制造和使用,具备工业实用性。

Claims (20)

  1. 一种显示面板,所述显示面板包括显示区与非显示区;其中,所述显示区包括划分有多个显示单元的像素阵列,每一所述显示单元包括一第一像素和至少一第二像素,所述第一像素包括一第一子像素,所述第一子像素包括一第一阳极,所述第二像素包括与所述第一子像素对应的一第二子像素,所述第二子像素包括一第二阳极;在任一所述显示单元中,所述第一阳极与所述第二阳极之间通过一开关薄膜晶体管电连接,且所述第一阳极的透光性高于所述第二阳极的透光性;所述第一阳极采用单层透明导电膜结构,所述第二阳极采用依次层叠设置的一透明导电膜、一银层及一透明导电膜结构;所述非显示区设有至少一条扫描信号线,每一所述开关薄膜晶体管与一所述扫描信号线电连接,用于根据所述扫描信号线的扫描信号开启,以控制所述显示单元的所述第一子像素以及所有所述第二子像素同时发光,或根据所述扫描信号线的扫描信号关闭,以控制所述显示单元的所有所述第二子像素不发光。
  2. 如权利要求1所述的显示面板,其中,所述透明导电膜为氧化铟锡膜。
  3. 如权利要求1所述的显示面板,其中,所述显示单元的所述第一子像素与所述至少一第二子像素均为蓝色子像素。
  4. 如权利要求1所述的显示面板,其中,所述第一子像素还包括一第一阴极以及位于所述第一阳极和所述第一阴极之间的一第一发光层;所述第二子像素还包括一第二阴极以及位于所述第二阳极和所述第二阴极之间的一第二发光层;所述显示单元包括一像素驱动电路,所述像素驱动电路包括一驱动薄膜晶体管以及所述开关薄膜晶体管,所述驱动薄膜晶体管包括一栅极、一第一极和一第二极,所述开关薄膜晶体管包括一栅极、一第一极和一第二极,所述驱动薄膜晶体管的第二极连接于所述第一阳极,所述开关薄膜晶体管的第一极连接于所述驱动薄膜晶体管的第二极,所述开关薄膜晶体管的第二极连接于所述第二阳极;所述驱动薄膜晶体管用于驱动所述第一发光层发光;所述开关薄膜晶体管用于根据外部控制信号控制所述第二发光层与所述第一发光层同时发光,或根据外部控制信号控制所述第二发光层不发光。
  5. 如权利要求4所述的显示面板,其中,所述第一发光层与所述第二发光层的发光颜色一致。
  6. 如权利要求1所述的显示面板,其中,所述显示区具有至少一光学传感器区域,所述光学传感器区域对应于光学传感器。
  7. 一种显示面板,所述显示面板包括显示区;其中,所述显示区包括划分有多个显示单元的像素阵列,每一所述显示单元包括一第一像素和至少一第二像素,所述第一像素包括一第一子像素,所述第一子像素包括一第一阳极,所述第二像素包括与所述第一子像素对应的一第二子像素,所述第二子像素包括一第二阳极;在任一所述显示单元中,所述第一阳极与所述第二阳极之间通过一开关薄膜晶体管电连接,且所述第一阳极的透光性高于所述第二阳极的透光性。
  8. 如权利要求7所述的显示面板,其中,所述第一阳极采用单层透明导电膜结构,所述第二阳极采用依次层叠设置的一透明导电膜、一银层及一透明导电膜结构。
  9. 如权利要求8所述的显示面板,其中,所述透明导电膜为氧化铟锡膜。
  10. 如权利要求7所述的显示面板,其中,所述显示单元的所述第一子像素与所述至少一第二子像素均为蓝色子像素。
  11. 如权利要求7所述的显示面板,其中,所述显示面板包括非显示区,所述非显示区设有至少一条扫描信号线;每一所述开关薄膜晶体管与一所述扫描信号线电连接,用于根据所述扫描信号线的扫描信号开启,以控制所述显示单元的所述第一子像素以及所有所述第二子像素同时发光,或根据所述扫描信号线的扫描信号关闭,以控制所述显示单元的所有所述第二子像素不发光。
  12. 如权利要求7所述的显示面板,其中,所述第一子像素还包括一第一阴极以及位于所述第一阳极和所述第一阴极之间的一第一发光层;所述第二子像素还包括一第二阴极以及位于所述第二阳极和所述第二阴极之间的一第二发光层;所述显示单元包括一像素驱动电路,所述像素驱动电路包括一驱动薄膜晶体管以及所述开关薄膜晶体管,所述驱动薄膜晶体管包括一栅极、一第一极和一第二极,所述开关薄膜晶体管包括一栅极、一第一极和一第二极,所述驱动薄膜晶体管的第二极连接于所述第一阳极,所述开关薄膜晶体管的第一极连接于所述驱动薄膜晶体管的第二极,所述开关薄膜晶体管的第二极连接于所述第二阳极;所述驱动薄膜晶体管用于驱动所述第一发光层发光;所述开关薄膜晶体管用于根据外部控制信号控制所述第二发光层与所述第一发光层同时发光,或根据外部控制信号控制所述第二发光层不发光。
  13. 如权利要求12所述的显示面板,其中,所述第一发光层与所述第二发光层的发光颜色一致。
  14. 如权利要求7所述的显示面板,其中,所述显示区具有至少一光学传感器区域,所述光学传感器区域对应于光学传感器。
  15. 一种电子装置,其中,所述电子装置包括显示面板及至少一光学传感器,所述光学传感器与所述显示面板的光学传感器区域相对应;所述显示面板包括显示区,所述显示区包括划分有多个显示单元的像素阵列,每一所述显示单元包括一第一像素和至少一第二像素,所述第一像素包括一第一子像素,所述第一子像素包括一第一阳极,所述第二像素包括与所述第一子像素对应的一第二子像素,所述第二子像素包括一第二阳极;在任一所述显示单元中,所述第一阳极与所述第二阳极之间通过一开关薄膜晶体管电连接,且所述第一阳极的透光性高于所述第二阳极的透光性。
  16. 如权利要求15所述的电子装置,其中,所述第一阳极采用单层透明导电膜结构,所述第二阳极采用依次层叠设置的一透明导电膜、一银层及一透明导电膜结构。
  17. 如权利要求15所述的电子装置,其中,所述显示单元的所述第一子像素与所述至少一第二子像素均为蓝色子像素。
  18. 如权利要求15所述的电子装置,其中,所述显示面板包括非显示区,所述非显示区设有至少一条扫描信号线;每一所述开关薄膜晶体管与一所述扫描信号线电连接,用于根据所述扫描信号线的扫描信号开启,以控制所述显示单元的所述第一子像素以及所有所述第二子像素同时发光,或根据所述扫描信号线的扫描信号关闭,以控制所述显示单元的所有所述第二子像素不发光。
  19. 如权利要求15所述的电子装置,其中,所述第一子像素还包括一第一阴极以及位于所述第一阳极和所述第一阴极之间的一第一发光层;所述第二子像素还包括一第二阴极以及位于所述第二阳极和所述第二阴极之间的一第二发光层;所述显示单元包括一像素驱动电路,所述像素驱动电路包括一驱动薄膜晶体管以及所述开关薄膜晶体管,所述驱动薄膜晶体管包括一栅极、一第一极和一第二极,所述开关薄膜晶体管包括一栅极、一第一极和一第二极,所述驱动薄膜晶体管的第二极连接于所述第一阳极,所述开关薄膜晶体管的第一极连接于所述驱动薄膜晶体管的第二极,所述开关薄膜晶体管的第二极连接于所述第二阳极;所述驱动薄膜晶体管用于驱动所述第一发光层发光;所述开关薄膜晶体管用于根据外部控制信号控制所述第二发光层与所述第一发光层同时发光,或根据外部控制信号控制所述第二发光层不发光。
  20. 如权利要求15所述的电子装置,其中,所述光学传感器为摄像头、光学指纹传感器中的一个或多个。
PCT/CN2019/086305 2019-03-28 2019-05-10 一种显示面板以及电子装置 WO2020191870A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910243359.4 2019-03-28
CN201910243359.4A CN110047879B (zh) 2019-03-28 2019-03-28 一种显示面板以及电子装置

Publications (1)

Publication Number Publication Date
WO2020191870A1 true WO2020191870A1 (zh) 2020-10-01

Family

ID=67275459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086305 WO2020191870A1 (zh) 2019-03-28 2019-05-10 一种显示面板以及电子装置

Country Status (2)

Country Link
CN (1) CN110047879B (zh)
WO (1) WO2020191870A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115210794B (zh) * 2020-03-02 2023-10-17 夏普株式会社 显示装置及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100053044A1 (en) * 2008-09-01 2010-03-04 Lee Hae-Yeon Organic light emitting diode display and method for manufacturing the same
CN104795434A (zh) * 2015-05-12 2015-07-22 京东方科技集团股份有限公司 Oled像素单元、透明显示装置及制作方法、显示设备
CN105070737A (zh) * 2015-04-30 2015-11-18 友达光电股份有限公司 显示面板的像素单元及其制作方法
CN108717244A (zh) * 2018-05-18 2018-10-30 京东方科技集团股份有限公司 显示装置及其控制方法、存储介质
CN109192076A (zh) * 2018-11-02 2019-01-11 京东方科技集团股份有限公司 一种显示面板和显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100565674B1 (ko) * 2004-05-21 2006-03-30 엘지전자 주식회사 양방향 유기 el 디스플레이 패널 및 그 제조 방법
KR101275810B1 (ko) * 2012-01-20 2013-06-18 삼성디스플레이 주식회사 유기 발광 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100053044A1 (en) * 2008-09-01 2010-03-04 Lee Hae-Yeon Organic light emitting diode display and method for manufacturing the same
CN105070737A (zh) * 2015-04-30 2015-11-18 友达光电股份有限公司 显示面板的像素单元及其制作方法
CN104795434A (zh) * 2015-05-12 2015-07-22 京东方科技集团股份有限公司 Oled像素单元、透明显示装置及制作方法、显示设备
CN108717244A (zh) * 2018-05-18 2018-10-30 京东方科技集团股份有限公司 显示装置及其控制方法、存储介质
CN109192076A (zh) * 2018-11-02 2019-01-11 京东方科技集团股份有限公司 一种显示面板和显示装置

Also Published As

Publication number Publication date
CN110047879B (zh) 2021-03-16
CN110047879A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
US11189669B2 (en) Display apparatus having a flexible circuit board for driving a shutter film and method of manufacturing thereof
CN109817672B (zh) 有机电致发光显示基板及其制造方法、显示面板、装置
US11228014B2 (en) OLED display panel and manufacturing method thereof
CN100483731C (zh) 包含电致发光装置的影像显示系统及其制造方法
US11580904B2 (en) Transparent display panels and display panels
US20170154943A1 (en) Array substrate, manufacturing method thereof and display device
US11327361B2 (en) Display panel, and display device and drive method thereof
CN111834538B (zh) 显示面板、显示装置和显示面板的制造方法
JP2022539621A (ja) ディスプレイパネル及びその製造方法、表示装置
CN112490272A (zh) 一种显示基板及其制备方法、显示装置
WO2021097982A1 (zh) 阵列基板、显示面板及阵列基板的制作方法
JP6223070B2 (ja) 有機el表示装置及び有機el表示装置の製造方法
CN112038383A (zh) 一种显示面板、制备方法及显示装置
CN110416274B (zh) 一种基板及其制备方法和oled显示面板
CN216719948U (zh) 显示基板、显示装置
KR20110015757A (ko) 유기전계발광 표시장치 및 그 제조방법
US10777618B2 (en) Transparent display panel, fabricating method for the same, and display device
US10930727B2 (en) Organic light-emitting diode display screen and electronic device
WO2020191870A1 (zh) 一种显示面板以及电子装置
CN218158982U (zh) 触控结构、触控显示面板以及显示装置
WO2022083300A1 (zh) 显示基板和显示装置
CN111490066B (zh) 一种显示面板以及电子装置
CN103560211B (zh) 有机电致发光器件的制作方法及制作的有机电致发光器件
CN113013207B (zh) 一种显示基板及其制备方法、显示装置
WO2023137663A1 (zh) 显示基板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921671

Country of ref document: EP

Kind code of ref document: A1