WO2019182042A1 - ショベル、情報処理装置、情報処理方法、プログラム - Google Patents

ショベル、情報処理装置、情報処理方法、プログラム Download PDF

Info

Publication number
WO2019182042A1
WO2019182042A1 PCT/JP2019/011821 JP2019011821W WO2019182042A1 WO 2019182042 A1 WO2019182042 A1 WO 2019182042A1 JP 2019011821 W JP2019011821 W JP 2019011821W WO 2019182042 A1 WO2019182042 A1 WO 2019182042A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
excavator
unstable state
log
state
Prior art date
Application number
PCT/JP2019/011821
Other languages
English (en)
French (fr)
Inventor
哲司 小野
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2020507888A priority Critical patent/JPWO2019182042A1/ja
Priority to CN201980020305.XA priority patent/CN111919001A/zh
Priority to KR1020207027660A priority patent/KR102659153B1/ko
Priority to EP19770663.3A priority patent/EP3770341A4/en
Publication of WO2019182042A1 publication Critical patent/WO2019182042A1/ja
Priority to US17/018,135 priority patent/US11913193B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2095Control of electric, electro-mechanical or mechanical equipment not otherwise provided for, e.g. ventilators, electro-driven fans
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2033Limiting the movement of frames or implements, e.g. to avoid collision between implements and the cabin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2054Fleet management
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • E02F9/268Diagnosing or detecting failure of vehicles with failure correction follow-up actions
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0816Indicating performance data, e.g. occurrence of a malfunction
    • B60K2360/16
    • B60K35/22
    • B60K35/28
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump

Definitions

  • the present invention relates to an excavator and the like.
  • Stabilization control technology that stabilizes the shovel by controlling the hydraulic actuator that drives the attachment, regardless of the operator's operation, is known to suppress unstable conditions such as slipping and lifting of the traveling body that can occur in the shovel. (See Patent Document 1, etc.).
  • a lower traveling body An upper swing body that is rotatably mounted on the lower traveling body; An attachment mounted on the upper swing body; Log information including at least one of information on the excavator and information on the surrounding environment of the excavator when the stability related to the operation of the excavator is lower than a predetermined standard or when there is a sign of lowering in the storage unit.
  • An information management unit that records or transmits to an external device, An excavator is provided.
  • Log information including at least one of information on the state of the excavator and information on the surrounding environment of the excavator when the stability related to the operation of the excavator falls below a predetermined standard or when there is a sign of being below
  • An information acquisition unit acquired from A storage unit in which the log information acquired by the information acquisition unit is recorded.
  • An information processing apparatus is provided.
  • An information processing method executed by an information processing apparatus capable of communicating with an excavator, When the stability related to the operation of the excavator is lower than a predetermined standard or when there is an indication that the stability is lower, at least one of the information related to the state of the excavator and the information related to the surrounding environment of the excavator is acquired from the excavator.
  • An information acquisition step Including an information recording step of recording the information acquired in the information acquisition step in a storage unit, An information processing method is provided.
  • the information processing device that can communicate with the excavator
  • the stability related to the operation of the excavator is lower than a predetermined standard or when there is an indication that the stability is lower
  • at least one of the information related to the state of the excavator and the information related to the surrounding environment of the excavator is acquired from the excavator.
  • a program is provided.
  • an excavator or the like that can store information for an operator or the like to determine a situation where an unstable state of the excavator may occur.
  • FIG. 1 is a schematic diagram illustrating an example of a configuration of an excavator state log management system SYS according to the present embodiment.
  • the excavator status log management system SYS includes the excavator 100, the management device 200, and the support device 300, and acquires and records log information regarding various statuses of the excavator 100. Then, the excavator state log management system SYS uses the support device 300 to analyze information (hereinafter, “log related information”) based on the accumulated log information (hereinafter, “log history information”). )) And provide it to the user.
  • log related information information based on the accumulated log information (hereinafter, “log history information”).
  • the excavator state log management system SYS has information about the excavator 100 when the excavator 100 is in an unstable state or when there is an indication that an unstable state occurs (hereinafter, “indication of an unstable state”) (hereinafter, “indication of an unstable state”) (hereinafter, “unstable state log information”) including “excavator related information”) and information about the surrounding environment of the excavator 100 (hereinafter, “ambient environment information”) is acquired and recorded. Then, the excavator state log management system SYS uses log-related information for analyzing the unstable state of the excavator 100 based on the history of accumulated unstable state log information (hereinafter referred to as “unstable state log history information”). Hereinafter, “unstable state log related information”) is generated and provided to the user through the support device 300.
  • the unstable state of the excavator 100 includes an unstable state resulting from the posture state of the excavator 100, that is, a static unstable state of the excavator 100 (hereinafter, “static unstable state” for convenience). Good.
  • the unstable state of the excavator 100 includes an unstable state resulting from the operation of the excavator 100, that is, a dynamic unstable state of the excavator 100 (hereinafter, “dynamic unstable state” for convenience). It's okay.
  • the unstable state of the excavator 100 may include an unstable state due to the terrain where the excavator 100 is located (hereinafter, “topographically unstable state” for convenience).
  • the excavator 100 included in the excavator status log management system SYS may be one or plural. That is, the excavator state log management system SYS can accumulate log information for a plurality of excavators 100.
  • the support device 300 included in the excavator state log management system SYS may be one or a plurality of support devices. That is, a plurality of users can be provided with log related information through the support device 300 possessed by each user.
  • the excavator 100 includes a lower traveling body 1, an upper swinging body 3 that is mounted on the lower traveling body 1 so as to be turnable (turnable) via the turning mechanism 2, a boom 4 as an attachment, an arm 5, and a bucket 6.
  • the cabin 10 is provided.
  • the lower traveling body 1 includes, for example, a pair of left and right crawlers, and each crawler is hydraulically driven by traveling hydraulic motors 1A and 1B (see FIG. 2), thereby causing the excavator 100 to travel.
  • the upper swing body 3 rotates with respect to the lower traveling body 1 by being driven by a swing hydraulic motor 2A (see FIG. 2).
  • the boom 4 is pivotally attached to the center of the front part of the upper swing body 3 so that the boom 4 can be raised and lowered.
  • An arm 5 is pivotally attached to the tip of the boom 4 and a bucket 6 is vertically attached to the tip of the arm 5. It is pivotally attached so that it can rotate.
  • the bucket 6 (an example of an end attachment) is attached to the tip of the arm 5 in a manner that can be replaced as appropriate according to the work content of the excavator 100. Therefore, the bucket 6 may be replaced with a different type of bucket, such as a large bucket, a slope bucket, or a bucket for example. Moreover, the bucket 6 may be replaced
  • the boom 4, the arm 5 and the bucket 6 are hydraulically driven by a boom cylinder 7, an arm cylinder 8 and a bucket cylinder 9 as hydraulic actuators, respectively.
  • the cabin 10 is a cockpit where an operator boardes, and is mounted on the left side of the front part of the upper swing body 3, for example.
  • the excavator 100 can communicate with the management apparatus 200 through a predetermined communication network NW including a mobile communication network, an Internet network, and the like having a base station as a terminal, for example. Thereby, the excavator 100 can transmit (upload) various types of information to the management apparatus 200. Details will be described later.
  • the management device 200 (an example of an information processing device) is disposed at a location geographically separated from a user or the like who owns the excavator 100 and the support device 300.
  • the management device 200 is, for example, a server device that is installed in a management center or the like provided outside the work site where the excavator 100 works, and is configured around one or a plurality of server computers.
  • the server device may be a company server operated by a business operator who operates the shovel state log management system SYS or a related business operator related to the business operator, or may be a so-called cloud server.
  • the management device 200 may be a stationary or portable computer terminal disposed in a management office or the like in the work site of the excavator 100.
  • the management apparatus 200 can communicate with each of the excavator 100 and the support apparatus 300 through the communication network NW. Thereby, the management apparatus 200 can receive and store (accumulate) various information uploaded from the excavator 100. Further, the management device 200 can transmit various types of information including log related information to the support device 300 in response to a request from the support device 300.
  • the support device 300 is provided by a user (for example, a supervisor at the work site, an administrator, an operator of the excavator 100, an administrator of the excavator 100, a service man of the excavator 100, a developer of the excavator 100, etc.) who receives provision of log related information. It is a user terminal to be used.
  • the support device 300 is, for example, a general-purpose portable terminal such as a laptop computer terminal, a tablet terminal, or a smartphone possessed by the user.
  • the support device may be a stationary general-purpose terminal such as a desktop computer. Further, the support device 300 may be a dedicated terminal (mobile terminal or stationary terminal) for receiving provision of log management information.
  • the support device 300 can communicate with the management device 200 through the communication network NW. Thereby, the support apparatus 300 can receive the log related information transmitted from the management apparatus 200, and can provide the log related information to the user through a display device 340 described later mounted on the support apparatus 300. Details will be described later.
  • FIG. 2 is a configuration diagram showing an example of the configuration of the excavator state log management system SYS according to the present embodiment.
  • the mechanical power system is indicated by a double line
  • the high-pressure hydraulic line is indicated by a thick solid line
  • the pilot line is indicated by a broken line
  • the electric drive / control system is indicated by a thin solid line.
  • the hydraulic drive system of the excavator 100 includes an engine 11, a main pump 14, and a control valve 17. Further, as described above, the hydraulic drive system according to the present embodiment includes the traveling hydraulic motors 1A and 1B that respectively hydraulically drive the lower traveling body 1, the upper swing body 3, the boom 4, the arm 5, and the bucket 6, and the swing.
  • the hydraulic motor 2A, the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9 are included.
  • some or all of the traveling hydraulic motors 1A and 1B, the swing hydraulic motor 2A, the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9 may be referred to as “hydraulic actuators” for convenience.
  • the engine 11 is a driving force source of the excavator 100, and is mounted on the rear part of the upper swing body 3, for example.
  • the engine 11 is, for example, a diesel engine that uses light oil as fuel.
  • a main pump 14 and a pilot pump 15 are connected to the output shaft of the engine 11.
  • the main pump 14 is mounted, for example, at the rear part of the upper swing body 3 and supplies hydraulic oil to the control valve 17 through the high-pressure hydraulic line 16.
  • the main pump 14 is driven by the engine 11 as described above.
  • the main pump 14 is, for example, a variable displacement hydraulic pump. Under the control of the controller 30, the angle (tilt angle) of the swash plate is controlled by the regulator 14a, so that the stroke length of the piston is adjusted and discharged.
  • the flow rate (discharge pressure) can be adjusted (controlled).
  • the control valve 17 is, for example, a hydraulic control device that is mounted at the center of the upper swing body 3 and controls the hydraulic drive system in accordance with the operation of the operation device 26 by the operator. Specifically, the control valve 17 controls the supply and discharge of the hydraulic oil to and from each hydraulic actuator in accordance with an operation input to the operation device 26.
  • the traveling hydraulic motors 1A (for right) and 1B (for left), the swing hydraulic motor 2A, the boom cylinder 7, the arm cylinder 8, the bucket cylinder 9 and the like are connected to the control valve 17 via a high pressure hydraulic line.
  • the control valve 17 is provided between the main pump 14 and each hydraulic actuator, and is a plurality of hydraulic control valves that control the flow rate and flow direction of hydraulic oil supplied from the main pump 14 to each hydraulic actuator, A valve unit including a direction switching valve.
  • the operation system of the excavator 100 includes a pilot pump 15, an operation device 26, and a pressure sensor 15a.
  • the pilot pump 15 is mounted, for example, at the rear part of the upper swing body 3 and supplies pilot pressure to the operating device 26 via the pilot line 25.
  • the pilot pump 15 is, for example, a fixed displacement hydraulic pump, and is driven by the engine 11 as described above.
  • the operating device 26 is an operating means that is provided in the vicinity of the cockpit of the cabin 10 and that allows an operator to operate each operating element (the lower traveling body 1, the upper swing body 3, the boom 4, the arm 5, the bucket 6, and the like). is there. In other words, the operating device 26 operates the respective hydraulic actuators (travel hydraulic motors 1A, 1B, swing hydraulic motor 2A, boom cylinder 7, arm cylinder 8, and bucket cylinder 9, etc.) that drive each operating element. It is the operation means to perform.
  • the operation device 26 includes, for example, a lever and a pedal.
  • the operating device 26 is a hydraulic pilot type, and is connected to the control valve 17 via a hydraulic line 25a.
  • the control valve 17 has an operation state of the lower traveling body 1, the upper swing body 3, the boom 4, the arm 5, and the bucket 6 in the operation device 26 (for example, operation contents such as an operation amount and an operation direction).
  • a pilot signal (pilot pressure) corresponding to is input. Therefore, the control valve 17 can drive each hydraulic actuator in accordance with the operating state of the operating device 26.
  • the operating device 26 may be an electric type.
  • the controller device 26 outputs an electrical signal (hereinafter, “operation signal”) corresponding to the operation state (operation content), and the operation signal is taken into the controller 30.
  • the controller 30 outputs a control command corresponding to the operation signal to the proportional valve that can apply the pilot pressure to the control valve 17 using the hydraulic oil supplied from the pilot pump 15.
  • the pilot pressure according to the operation content of the operating device 26 acts on the control valve 17 from the proportional valve. Therefore, the controller 30 can realize the operation of the hydraulic actuator according to the operation content of the operation device 26.
  • the pressure sensor 15a detects the pilot pressure on the secondary side of the operating device 26, that is, the pilot pressure corresponding to the operating state of each operating element in the operating device 26.
  • the pressure sensor 15 a is connected to the controller 30, and a pressure signal (pressure detection value) corresponding to the operation state of the lower traveling body 1, the upper swing body 3, the boom 4, the arm 5, the bucket 6 and the like in the operating device 26 is the controller. 30.
  • the controller 30 can grasp
  • the control system of the shovel 100 includes a controller 30, an imaging device 40, a state detection device 42, a surrounding environment information acquisition device 44, a display device 50, a communication device 60, an electromagnetic relief valve 70, 72.
  • the controller 30 performs drive control of the excavator 100.
  • the function of the controller 30 may be realized by arbitrary hardware, software, or a combination thereof.
  • the controller 30 is mainly composed of a microcomputer including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a nonvolatile auxiliary storage device, an input / output interface, and the like. Is done.
  • the controller 30 realizes various functions by causing the CPU to execute one or more programs stored in the ROM or the auxiliary storage device. The same applies to the control device 210 of the management device 200 and the control device 310 of the support device 300 described later.
  • the controller 30 monitors the intrusion of a predetermined monitoring target into a range relatively close to the excavator 100 (hereinafter referred to as “monitoring area”) based on a captured image around the excavator 100 captured by the imaging device 40.
  • the monitoring target is not only a person such as a worker or a supervisor at the work site, but also a moving object such as a work vehicle (moving body), a stationary material, a topographical obstacle such as a rock, etc. It can include any object, such as a stationary object.
  • the controller 30 stores the unstable state log information including the excavator related information and the surrounding environment information when the stability of the shovel 100 is lower than a predetermined standard, that is, when the above unstable state occurs.
  • the data is recorded in a memory (a storage unit 307 described later).
  • the stability of the excavator 100 may include static stability (hereinafter, “static stability”) corresponding to the static unstable state of the excavator 100 described above.
  • the stability of the excavator 100 may include dynamic stability corresponding to the above-described dynamic unstable state of the excavator 100 (hereinafter, “dynamic stability”).
  • the stability of the excavator 100 may include topographical stability corresponding to the topographically unstable state of the excavator 100 (hereinafter, “topographical stability”).
  • the controller 30 also includes an unstable state log that includes excavator-related information, surrounding environment information, and the like when an indication that the stability of the excavator 100 falls below a predetermined standard, that is, an indication that the excavator 100 is unstable. Information may be stored in an internal memory.
  • first unstable posture states Posture states
  • the static unstable state of the excavator 100 includes, for example, a posture state where the tip of the attachment, that is, the bucket 6 is at a relatively high position (hereinafter, “second unstable posture state”). It is. For example, when the excavator 100 starts to fall forward for some reason such as the operation of the excavator 100 or an external force, the bucket 6 is placed on the ground if the bucket 6 is at a relatively high position. This is because it is difficult to prevent the excavator 100 from overturning due to contact. Further, in the static unstable state of the excavator 100, for example, the relative angle (turning angle) between the traveling direction of the lower traveling body 1 and the direction of the upper swinging body 3, that is, the direction of the attachment is relatively.
  • a large posture state (hereinafter, “third unstable posture state”) is included.
  • the lower traveling body 1 has a smaller ground contact length in the width direction than the traveling direction, and the orientation of the attachment is relatively closer to the width direction of the lower traveling body 1, the weight of the attachment, the operation of the attachment, etc. This is because the excavator 100 easily falls over.
  • Examples of the dynamic unstable state of the excavator 100 include a state in which the excavator 100 (lower traveling body 1) slides forward or backward due to a reaction force applied to the attachment from the ground during excavation work or leveling work.
  • a state in which the possibility is high (hereinafter referred to as “front slip unstable state” or “back slip unstable state”) is included.
  • the forward slip unstable state and the backward slip unstable state may be collectively referred to as “slip unstable state”.
  • the dynamic unstable state of the excavator 100 for example, a state where the possibility that the front part or the rear part of the excavator 100 (the lower traveling body 1) is lifted due to excavation reaction force or the like is increased (hereinafter, for convenience).
  • an unstable state where the front part is lifted up or “an unstable state where the rear part is lifted up”).
  • the front part of the lower traveling body 1 is lifted by further lowering the boom 4 and closing the arm 5 while the bucket 6 is in contact with the ground.
  • a jack-up condition may be included.
  • the front lifting unstable state and the rear lifting unstable state may be collectively referred to as “lifting unstable state”.
  • the dynamic unstable state of the excavator 100 for example, due to a change in the inertia moment of the attachment during the aerial operation of the attachment of the excavator 100 (operation in a state where the bucket 6 is not in contact with the ground) or the like,
  • the state in which the possibility of vibrations in the body 1, the turning mechanism 2, and the upper turning body 3) is increased (hereinafter, “vibration unstable state” for convenience) is included.
  • the excavator 100 is in a state of dynamic instability, not only when the excavator 100 slips, rises, or vibrates, but also when the excavator 100 slips, rises, or vibrates.
  • the topographically unstable state of the excavator 100 is, for example, a state in which the lower traveling body 1 slides forward or backward due to topographical influences during traveling or during work by the upper swing body 3 and the attachment or the possibility thereof is high.
  • the state (hereinafter, “topographic slip unstable state”) may be included.
  • the lower traveling body 1 is partially driven by the topographical influence during the traveling or the upper revolving body 3 and the work by the attachment. It may include a state where it floats and a state where the possibility is high (hereinafter, “topographical lift and unstable state”).
  • the topographically unstable state of the excavator 100 may be such that the vehicle body tilts or fluctuates due to topographical influences while the lower traveling body 1 is traveling or the excavator 100 is working with the upper swing body 3 and the attachment. And a state with a high possibility (hereinafter, “topographically inclined unstable state”).
  • the topographically unstable state of the excavator 100 includes, for example, a state in which the vehicle body vibrates due to topographical influences while the lower traveling body 1 is traveling or the excavator 100 is working with the upper revolving body 3 and the attachment.
  • a state having a high possibility hereinafter, “topographic vibration unstable state” may be included.
  • Topographical effects can include ground geology, ground moisture, ground slope, ground irregularities, ground collapse, and the like.
  • the controller 30 includes, for example, a peripheral monitoring control unit 301, an unstable state determination unit 302, a stable unit as functional units realized by executing one or more programs stored in a ROM or an auxiliary storage device on the CPU.
  • the controller 30 includes a storage unit 307 as a storage area defined in an internal memory such as an auxiliary storage device.
  • controller 30 may be realized by other controllers. That is, the function of the controller 30 may be realized by a plurality of controllers in a distributed manner.
  • a storage area corresponding to the storage unit 307 may be defined in an external storage device that is provided outside the controller 30 and is connected to be communicable with the controller 30.
  • the imaging device 40 is attached to the upper part of the upper swing body 3, images the periphery of the excavator 100, and outputs a captured image.
  • the output captured image may include an object including a monitoring target that exists around the excavator 100. That is, the imaging device 40 outputs a captured image as detection information regarding an object existing around the excavator 100.
  • the imaging device 40 includes cameras 40B, 40L, and 40R.
  • the camera 40B, the camera 40L, and the camera 40R are respectively attached to the upper rear end, the upper left end, and the upper right end of the upper swing body 3, and images the rear, left side, and right side of the upper swing body 3.
  • each of the camera 40B, the camera 40L, and the camera 40R is a monocular wide-angle camera having a very wide angle of view.
  • each of the camera 40B, the camera 40L, and the camera 40R is mounted on the upper part of the upper swing body 3 so that the optical axis is obliquely downward, and is far from the ground near the excavator 100.
  • the vertical imaging range including up to is taken.
  • the camera 40B, the camera 40L, and the camera 40R each output a captured image every predetermined period (for example, 1/30 second) during the operation of the excavator 100, and the output captured image is captured by the controller 30. It is.
  • the state detection device 42 acquires detection information regarding various states of the excavator 100. Further, the state detection device 42 may acquire detection information for specifying an operator who is operating the excavator 100 and detection information regarding various states of the operator. Detection information regarding various states of the excavator 100 acquired by the state detection device 42 is taken into the controller 30.
  • the state detection device 42 acquires detection information regarding the posture state of the attachment of the excavator 100.
  • the state detection device 42 includes a relative elevation angle of the boom 4 with respect to the upper swing body 3 (hereinafter referred to as “boom angle”) and a relative elevation angle of the arm 5 with respect to the boom 4 (hereinafter referred to as “arm angle”). ))
  • boost angle relative elevation angle of the boom 4 with respect to the upper swing body 3
  • arm angle relative elevation angle of the arm 5 with respect to the boom 4
  • detection information related to the relative elevation angle of the bucket 6 with respect to the arm 5 hereinafter, “bucket angle”
  • the state detection device 42 includes, for example, a rotary encoder provided at a joint portion of the attachment, an acceleration sensor attached to the attachment, an angular velocity sensor, a six-axis sensor, or an IMU (Inertial Measurement Unit). .
  • the state detection device 42 acquires detection information relating to the operation state of the excavator 100 attachment. Specifically, the state detection device 42 may output detection information related to acceleration or angular acceleration of at least one of the boom 4, the arm 5, and the bucket 6. In this case, the state detection device 42 includes, for example, an acceleration sensor attached to the attachment, an angular velocity sensor, a six-axis sensor, or an IMU.
  • the state detection device 42 outputs detection information related to the drive state of the excavator 100 attachment. Specifically, the state detection device 42 detects information related to the driving force (thrust) of the hydraulic actuators (the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9) that drive the boom 4, the arm 5, and the bucket 6. May be output.
  • the state detection device 42 is, for example, at least one cylinder pressure of the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9 (specifically, the oil pressure in the rod side oil chamber and the bottom side oil chamber). Including a cylinder pressure sensor.
  • the state detection device 42 acquires detection information related to the operation state of the vehicle body (the lower traveling body 1, the turning mechanism 2, the upper turning body 3, etc.). Specifically, the state detection device 42 may output detection information regarding the speed, acceleration, angular velocity, and the like of the lower traveling body 1 and the upper swing body 3.
  • the state detection device 42 includes, for example, a turning angle sensor attached to the swivel joint of the upper swing body 3, an acceleration sensor mounted on the lower traveling body 1 and the upper swing body 3, an angular velocity sensor, a six-axis sensor, an IMU, and the like. including.
  • the state detection device 42 outputs detection information related to the load state for the attachment (bucket 6). Specifically, the state detection device 42 may output detection information regarding a load acting on the bucket 6.
  • the state detection device 42 includes, for example, a load sensor attached to the bucket 6.
  • the state detection device 42 acquires information related to the tilt state of the vehicle body (upper swing body 3). Specifically, the state detection device 42 may output detection information regarding the biaxial tilt angles of the upper swing body 3 in the front-rear direction and the left-right direction.
  • the state detection device 42 includes, for example, an inclination sensor, an acceleration sensor, a six-axis sensor, an IMU, and the like mounted on the upper swing body 3.
  • the state detection device 42 outputs detection information related to the direction of the lower traveling body 1 (crawler) relative to the upper swing body 3 (hereinafter, “crawler direction”). Specifically, the state detection device 42 may output detection information related to the turning angle of the upper turning body 3.
  • the state detection device 42 includes, for example, a turning angle sensor attached to a swivel joint of the upper swing body 3, an acceleration sensor, an angular velocity sensor, a six-axis sensor, an IMU, and the like attached to an arbitrary position of the upper swing body 3.
  • the state detection device 42 outputs detection information related to a reaction force added (input) to the vehicle body (upper swing body 3) from the attachment. Specifically, the state detection device 42 may output detection information regarding the reaction force input to the vehicle body through the boom cylinder 7.
  • the state detection device 42 is, for example, a cylinder pressure sensor that detects the oil pressure of the bottom side oil chamber and the rod side oil chamber of the boom cylinder 7 or a load sensor that detects a load acting on a connection portion of the upper swing body 3 with the boom 4. Etc.
  • the state detection device 42 outputs detection information relating to the working state of the excavator 100. Specifically, the state detection device 42 outputs detection information regarding the type of work that the excavator 100 is performing.
  • the types of work may include excavation work, loading work for loading earth and sand on a truck, leveling work, rolling work, work related to aerial operation (aerial work), and the like.
  • the state detection device 42 includes a cylinder pressure sensor that detects the pressure in the cylinders (the rod side oil chamber and the bottom side oil chamber) of the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9.
  • the controller 30 is based on the transition of the cylinder pressure of the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9, the operation state of the boom 4, the arm 5, and the bucket 6 by the operation device 26, and the like. Can determine (estimate) the type of work being performed.
  • the state detection device 42 may include a sensor capable of detecting an attachment operation, for example, a camera, a millimeter wave radar, a LIDAR, or the like.
  • the controller 30 can determine (estimate) the type of work being performed by the excavator 100 by grasping the operation state of the attachment based on the output information of these sensors.
  • the state detection device 42 outputs detection information related to the operation state (rotation state) of the engine 11.
  • the state detection device 42 includes, for example, an engine rotation speed sensor that detects the rotation speed (rotation speed) of the engine 11.
  • the state detection device 42 acquires detection information for specifying the operator in operation.
  • the state detection device 42 may acquire image information including an operating operator.
  • the state detection device 42 includes a camera or the like that is provided in the cabin 10 and that can image the upper body including the face of the operator.
  • the state detection device 42 may acquire physical characteristic information (fingerprint information, iris information, etc.) of the operator who is operating.
  • the state detection device 42 includes a fingerprint sensor provided on a lever or the like included in the operation device 26, an iris sensor provided on a position facing the face of the operator in the cabin 10, and the like.
  • the operating operator may be specified by the controller 30 in accordance with a predetermined operation by the operator.
  • the controller 30 An operator in operation may be identified.
  • the state detection device 42 acquires detection information related to the state of the operating operator.
  • the state detection device 42 may acquire biological information (for example, an electrocardiogram or an electroencephalogram) of the operator.
  • the state detection device 42 is built in the helmet worn by the operator and can be wirelessly communicated with the controller 30 or the wearable device worn by the operator on the arm and the like, and can communicate wirelessly with the controller 30. Including an electrocardiograph.
  • the surrounding environment information acquisition device 44 acquires the surrounding environment information of the excavator 100.
  • the surrounding environment information of the excavator 100 acquired by the surrounding environment information acquisition device 44 is taken into the controller 30.
  • the surrounding environment information acquisition device 44 includes RTC (Real Time Clock) and the like, and acquires date and time information including date, day of the week, and time.
  • RTC Real Time Clock
  • the date and time information may be acquired by a time measuring means (for example, RTC) in the controller 30.
  • a time measuring means for example, RTC
  • the surrounding environment information acquisition device 44 acquires weather information of a place where the excavator 100 is working.
  • the surrounding environment information acquisition device 44 may connect to the communication network NW through the communication device 60 and acquire the weather information from a server or website related to predetermined weather information.
  • the surrounding environment information acquisition device 44 includes an illuminance sensor, a raindrop detection sensor, and the like, and may acquire weather information based on the illuminance output by the illuminance sensor and the raindrop detection sensor, the presence or absence of rain, and the like.
  • the surrounding environment information acquisition device 44 acquires the geographical position information of the excavator 100.
  • the surrounding environment information acquisition device 44 includes, for example, a GNSS (Global Navigation Satellite System) device, and is based on signals from three or more satellites above the excavator 100, and the like. 100 pieces of position information may be acquired.
  • GNSS Global Navigation Satellite System
  • the surrounding environment information acquisition device 44 acquires detailed information about the surrounding situation of the excavator 100 (hereinafter, “surrounding situation detailed information”). Specifically, the surrounding environment information acquisition device 44 may acquire a captured image (image information) indicating a situation around the excavator 100 from a camera mounted on the excavator 100 including the imaging device 40 and the like. Further, the surrounding environment information acquisition device 44 may acquire information on the three-dimensional topography around the excavator 100 (hereinafter, “topography information”). In this case, the surrounding environment information acquisition device 44 includes, for example, a distance sensor such as a camera, millimeter wave radar, or LIDAR, and acquires the terrain information around the excavator 100 based on the output image of the distance sensor.
  • a distance sensor such as a camera, millimeter wave radar, or LIDAR
  • the peripheral environment information acquisition device 44 is connected to the communication network NW through the communication device 60, for example, and acquires the terrain information of the work site from the management server related to the computerized construction of the work site of the excavator 100. Also, the surrounding environment information acquisition device 44 may acquire information related to surrounding monitoring control (hereinafter, “surrounding monitoring control information”). In this case, the surrounding environment information acquisition device 44 acquires the operating state of the surrounding monitoring control (including the presence or absence of the surrounding monitoring control function and the ON / OFF state) and the detection information of the monitoring target.
  • the display device 50 is provided in the vicinity of the cockpit in the cabin 10, specifically, at a position that can be easily seen by an operator seated in the cockpit, and displays various image information notified to the operator under the control of the controller 30. To do.
  • the display device 50 is, for example, a liquid crystal display or an organic EL (Electroluminescence) display, and may be a touch panel type that also serves as an operation unit.
  • the display device 50 is, for example, a viewpoint that combines a captured image (through image) of the imaging device 40 or an image generated by the controller 30 based on the captured image of the imaging device 40 (for example, the captured images of the cameras 40B, 40L, and 40R). Display a converted image).
  • the communication device 60 is an arbitrary device that communicates with the outside of the management apparatus 200 or the like through the communication network NW.
  • the communication device 60 is a mobile communication module corresponding to a predetermined mobile communication standard such as LTE (Long Term Evolution), 4G (4th Generation), and 5G (5th Generation).
  • the electromagnetic relief valves 70 and 72 are provided in a high pressure hydraulic line between the rod side oil chamber and bottom side oil chamber of the boom cylinder 7 and the control valve 17, respectively, and the rod side oil chamber and bottom side oil of the boom cylinder 7. Drain the chamber hydraulic oil into the tank (relief). As a result, the controller 30 inputs control current to the electromagnetic relief valves 70 and 72 to discharge the hydraulic oil in the rod side oil chamber or the bottom side oil chamber of the boom cylinder 7 to the tank, thereby suppressing an excessive increase in hydraulic pressure. can do.
  • the perimeter monitoring control unit 301 performs perimeter monitoring control for monitoring intrusion of a monitoring target into a monitoring area near the excavator 100 around the excavator 100 based on the captured image of the imaging device 40.
  • the periphery monitoring control unit 301 arbitrarily applies a machine learning-based discriminator including various known image processing methods, artificial intelligence (AI), and the like in the captured image of the imaging device 40. Recognize the monitoring target.
  • the periphery monitoring control unit 301 applies a variety of known methods, so that a position where a recognized monitoring target (person) is included in a captured image by the monocular imaging device 40 (hereinafter, “real position”). For example, the foot position) can be determined (estimated). Thereby, the periphery monitoring control part 301 can detect the monitoring target in a monitoring area.
  • the periphery monitoring control unit 301 when the periphery monitoring control unit 301 detects the monitoring target, it outputs an alarm toward the inside or outside of the cabin 10 using an auditory method or a visual method. Moreover, the periphery monitoring control part 301 may restrict
  • the unstable state determination unit 302 determines whether or not the stability of the excavator 100 has fallen below a predetermined reference based on detection information of the state detection device 42, detection information of the pressure sensor 15a, and the like. That is, the unstable state determination unit 302 determines whether or not the above-described unstable state (that is, one of the static unstable state, the dynamic unstable state, and the topographically unstable state) has occurred in the excavator 100. judge.
  • the unstable state determination unit 302 grasps the posture state of the excavator 100 based on the detection information of the state detection device 42, for example. Then, the unstable state determination unit 302 determines whether the excavator 100 is in the static unstable state depending on whether the grasped posture state corresponds to any of the first unstable posture state to the third unstable posture state. It may be determined whether or not there is. In addition, the unstable state determination unit 302 acquires, for example, an index value representing the static stability of the current excavator 100 (hereinafter, “static stability index value”).
  • static stability index value an index value representing the static stability of the current excavator 100
  • the unstable state determination unit 302 when the excavator 100 exceeds a predetermined threshold in a direction in which the excavator 100 becomes statically unstable, that is, in a direction in which the excavator 100 enters the first to third unstable posture states. 100 may determine that a statically unstable condition has occurred.
  • the static stability index value is a physical quantity related to the state of the excavator 100 having a relatively high correlation with the dynamic unstable state of the excavator 100 (for example, the horizontal direction of the bucket with respect to the vehicle body in the first unstable state). Relative distance, etc.).
  • the static stability index value is based on at least one of information on the position of the center of gravity of the excavator 100, information on the position of the bucket 6 with respect to the vehicle body, information on the operation state of the attachment in the operation device 26, crawler orientation information, and the like. The total stability may be calculated.
  • the unstable state determination unit 302 may determine the dynamic unstable state of the excavator 100 as described later.
  • the unstable state determination unit 302 slips the lower traveling body 1 on the excavator 100, lifts the lower traveling body 1, and tilts the vehicle body in a situation that does not correspond to the static unstable state or the dynamic unstable state ( It may be determined that the terrain is unstable when a vehicle body vibration or the like occurs.
  • the unstable state determination unit 302 determines whether or not there is an indication that the stability of the excavator 100 falls below a predetermined standard based on detection information of the state detection device 42, detection information of the pressure sensor 15a, and the like. That is, the unstable state determination unit 302 determines whether or not the above-described unstable state sign has occurred in the excavator 100.
  • the unstable state determination unit 302 grasps the posture state of the excavator 100 and the operation content of the operation device 26 based on, for example, detection information of the state detection device 42 and the pressure sensor 15a. Then, the unstable state determination unit 302 is in a state where the posture of the excavator 100 is relatively close to any one of the first to third unstable posture states, and the operation device 26 approaches the unstable posture state. When the above operation is performed, it may be determined that there is a sign of a static unstable state. In addition, the unstable state determination unit 302, for example, in the case where the static stability index value changes from the stable side in a direction approaching the predetermined threshold and is in a state relatively close to the predetermined threshold. It may be determined that there is an indication of an unstable state.
  • the unstable state determination unit 302 may determine whether or not there is an indication of the dynamic unstable state of the excavator 100 as described later.
  • the unstable state determination unit 302 grasps the surrounding terrain state based on the output information of the imaging device 40 and the surrounding environment information acquisition device 44, for example. Then, the unstable state determination unit 302 grasps that the surrounding terrain state has changed from the past terrain state, and the like, so that the lower traveling body 1 slips and the lower traveling body 1 lifts due to the terrain effect. Further, it may be determined whether or not there is an indication that the vehicle body is tilted or the vehicle body is vibrated, that is, an indication that a topographically unstable state is generated.
  • the stabilization control unit 303 operates the attachment so as to suppress the operation corresponding to the unstable state of the excavator 100 (hereinafter, “unstable operation”), that is, the sliding operation, lifting operation, vibration operation, and the like of the excavator 100. Stabilization control is performed to control (correct). For example, the stabilization control unit 303 operates the stabilization control when the stability of the excavator 100 is relatively lowered, intervenes in the operation of the operator with respect to the operation device 26, and the boom cylinder 7 corresponding to the operation of the attachment, The arm cylinder 8 and the like are controlled. Details will be described later.
  • the information acquisition unit 304 acquires excavator-related information and surrounding environment information of a predetermined type recorded in the storage unit 307 as unstable state log information by the log recording unit 305.
  • the information acquisition unit 304 is based on various types of information input from the imaging device 40, the state detection device 42, the surrounding environment information acquisition device 44, and the like (hereinafter, information related to the state of the excavator 100 among the relevant excavator related information , “Excavator status information”), operator related information (operator specific information and operator status information) and surrounding environment information.
  • the unstable state determination unit 302 determines that the unstable state of the shovel 100 has occurred or there is an indication that the information acquisition unit 304 has an indication that the unstable state determination unit 302 has occurred, for example, information regarding the determination result, for example, unstable Information on the type of state (slip unstable state, lifted unstable state, vibration unstable state, etc.) is acquired.
  • the information acquisition unit 304 of the excavator related information is stored in an internal memory such as the storage unit 307 of the controller 30 and the excavator as information specific to the excavator 100 (hereinafter, “excavator specific information”). 100 identification information is acquired.
  • the information acquisition unit 304 sequentially acquires dynamic information (information that can change sequentially) from the excavator-related information and the surrounding environment information, and stores the dynamic information in the internal memory for a certain period.
  • the information acquisition unit 304 acquires dynamic information input from the imaging device 40, the state detection device 42, the surrounding environment information acquisition device 44, and the like in a ring buffer defined in the internal memory. Ring.
  • the log recording unit 305 which will be described later, reads from the ring buffer not only the information at the time when the excavator 100 is in an unstable state or the occurrence of a sign of occurrence but also the information that goes back to some extent before that time. The data can be read out and recorded in the storage unit 307.
  • the log recording unit 305 (an example of an information management unit) is acquired by the information acquisition unit 304 when the unstable state determination unit 302 determines that the unstable state of the excavator 100 has occurred or there is a sign of the occurrence.
  • the excavator related information and the surrounding environment information are recorded in the storage unit 307 as unstable state log information 3070.
  • the unstable state log information when the unstable state of the excavator 100 occurs can be accumulated in the management apparatus 200 as described later. Therefore, the user of the support apparatus 300 can perform various analyzes regarding the unstable state of the excavator 100.
  • the unstable state log information when the excavator 100 is in an unstable state is stored in the management apparatus 200 as described later. Can be accumulated. Therefore, the user of the support apparatus 300 can also use unstable state log information in a situation where the excavator 100 has not reached an unstable state, for example, thanks to the stabilization control. Therefore, the user of the support apparatus 300 can perform various analyzes regarding the unstable state of the excavator 100 from various angles.
  • the log recording unit 305 indicates a point in time when the unstable state determination unit 302 determines that the unstable state of the excavator 100 has occurred (hereinafter referred to as “when the unstable state occurs”) or an indication that an unstable state occurs.
  • the excavator related information and the surrounding environment information at the time point when it is determined that there was (hereinafter, “when unstable signs occur”) are recorded in the storage unit 307.
  • “when an unstable state occurs” and “when an unstable sign occurs” are collectively referred to as “when an unstable state / symptom occurs”.
  • the log recording unit 305 has a point in time (hereinafter, “before an unstable state occurs” or “before an unstable sign occurs”) that is a predetermined time later than the time when the excavator 100 is in an unstable state / symptom occurrence.
  • the excavator related information and the surrounding environment information at the time when a predetermined time has passed after the unstable state / symptom occurrence (hereinafter “after unstable state occurrence” or “after unstable sign occurrence”) are recorded in the storage unit 307. Also good.
  • “before the occurrence of unstable state” and “before the occurrence of unstable sign” are collectively referred to as “before the occurrence of unstable state / signature”, and “after the occurrence of unstable state” and “after the occurrence of unstable sign”.
  • the log recording unit 305 changes the type of information to be recorded when recording the excavator-related information and the surrounding environment information before the unstable state / symptom occurrence of the excavator 100 and after the unstable state / signature occurrence in the storage unit 307. May be limited to specific information. As a result, the storage area occupied by the unstable state log information is reduced, and more unstable state log information can be recorded (accumulated) in the storage unit 307, the storage unit 2100 of the management apparatus 200 described later, and the like.
  • FIG. 3 is a diagram illustrating an example of the type of information recorded as unstable state log information by the log recording unit 305 when the unstable state of the excavator 100 has occurred or when there is a sign of the occurrence.
  • the type of surrounding environment information recorded in the storage unit 307 by the log recording unit 305 may include date / time information, weather information, position information, and surrounding situation detailed information.
  • Date information includes, for example, date, day of the week, time, and the like.
  • the user of the support apparatus 300 analyzes, for example, the correlation between the classification of the date, day of the week, time zone, and the like, and the unstable state that has occurred in the excavator 100 or has occurred. be able to.
  • Weather information includes information on weather categories such as sunny, cloudy, rainy, and snowy. Thereby, the user etc. of the assistance apparatus 300 can perform the analysis regarding the correlation etc. between the classification regarding the weather, and the unstable state which has occurred in the excavator 100 or has occurred.
  • the position information includes, for example, information on coordinates corresponding to the position of the excavator 100 in a predetermined coordinate system such as a global coordinate system such as longitude, latitude, and altitude, or a local coordinate system defined in a work site.
  • the position information may be geocode information such as GeoHash.
  • the administrator of the management device 200 or the user of the support device 300 can determine, for example, where the excavator 100 is unstable (particularly, topographically unstable) or the sign thereof in the work site. I can grasp it.
  • the management device 200 can generate, for example, map information (hereinafter, “unstable state map information”) relating to an unstable state of the excavator 100 or a position where an indication of the unstable state has occurred in the work site.
  • the management device 200 can call attention to the user through the support device 300.
  • the administrator of the management apparatus 200 and the user of the support apparatus 300 can make a construction plan and the like considering further safety aspects with reference to the unstable state map information.
  • the administrator of the management device 200 for example, excavator so as to limit the operation (speed) of the excavator 100 in a place where an unstable state (especially a topographically unstable state) is likely to occur. 100 control modes can be changed. Therefore, the occurrence of the unstable state of the excavator 100 can be effectively suppressed.
  • the user or the like of the support device 300 performs an analysis on the correlation between the geographical position information classification (for example, the work site) and the unstable state that has occurred in the excavator 100 or has an indication of occurrence. Can do.
  • the peripheral situation detailed information includes, for example, the above-described image information, terrain information, and peripheral monitoring control information.
  • the controller 30 can grasp
  • the terrain information for example, three-dimensional terrain data
  • the user or the like of the support device 300 can perform an analysis on the correlation between the detailed terrain situation around the excavator 100 and the unstable state that has occurred or has occurred. .
  • the controller 30 can grasp
  • the type of excavator related information recorded in the storage unit 307 by the log recording unit 305 includes excavator specific information (excavator identification information), operator information, and excavator state information.
  • the excavator identification information is identification information for specifying the excavator 100, and is, for example, a pre-defined machine number, an excavator ID (Identifier), or the like.
  • the information acquisition unit 304 acquires the excavator identification information in a mode of reading out a machine number or the like registered (saved) in advance in the storage unit 307 or the like, for example. Thereby, the user etc. of the assistance apparatus 300 can perform the analysis etc. regarding the unstable state which has occurred in the shovel 100 for each of the plurality of shovels 100 or has occurred.
  • the operator information includes operator identification information as operator-specific information during maneuvering, and biological information about the operator (hereinafter referred to as “operator biometric information”) as information regarding various states of the operator during maneuvering (hereinafter referred to as “operator state information”). including.
  • the operator identification information is identification information for specifying the operator who is operating the shovel 100, and is an operator ID or the like specified in advance.
  • the user of the support apparatus 300 can perform an analysis on the correlation between the operator and the unstable state that has occurred in the excavator 100 or has occurred.
  • the operator biometric information includes, for example, an electroencephalogram, an electrocardiogram and the like of the operator who is operating the excavator 100.
  • the controller 30 can grasp
  • FIG. Therefore, the user or the like of the support device 300 can correlate the health state or psychological state of the operator who is operating the excavator 100 with the unstable state that has occurred or has occurred. Analysis can be performed.
  • the excavator state information of the type recorded in the storage unit 307 by the log recording unit 305 includes operation mode information, engine speed information, work type information, unstable state type information, stability information, vehicle body inclination state information, crawler direction Information, attachment posture information, operation state information, attachment drive state information, stabilization control information, and the like.
  • the operation mode information is information on an operation mode selected from among a plurality of operation modes corresponding to the set rotation speed of the engine 11 operated at a constant rotation speed.
  • the operation mode is, for example, an SP (Super Power) mode in which the engine 11 has a relatively high rotational speed and priority is given to work speed, and is optimal for heavy work with a relatively high engine 11 and a relatively high workload.
  • An H (Heavy) mode, an A (Auto) mode corresponding to a wide range of work with a relatively low set rotational speed of the engine 11 are included.
  • the engine speed information is, for example, information related to a set value (set speed) of the engine 11 controlled to operate at a constant speed or an actual measured value (measured speed).
  • Work type information is information related to the work type performed by the excavator 100.
  • the information acquisition unit 304 is based on, for example, detection information regarding the cylinder pressure of the boom cylinder 7 and the arm cylinder 8 input from the state detection device 42, detection information of the pressure sensor 15a corresponding to the operation state of the operation device 26, and the like. Get work type information. Thereby, the user of the support apparatus 300 can perform an analysis on the correlation between the work type of the excavator 100 and the unstable state that has occurred in the excavator 100 or has occurred.
  • the unstable state type information is information related to the type of unstable state of the excavator 100 that has occurred or has a sign of occurring.
  • the unstable state type information may be information indicating whether the excavator 100 is in a static unstable state, a dynamic unstable state, or a topographically unstable state, for example.
  • the information related to the type of unstable state may be information representing a further type in the static unstable state, the dynamic unstable state, or the topographically unstable state. That is, for example, in the case of the static unstable state, the information regarding the type of the unstable state is different from the first unstable posture state, the second unstable posture state, or the third unstable posture state. It may be information to represent.
  • the information on the type of unstable state includes, in the case of a dynamic unstable state, a forward slip unstable state, a backward slip unstable state, a front lift unstable state, a rear lift unstable state, or a vibration unstable state It may be information indicating the distinction.
  • the information on the type of unstable state may be information indicating whether the landform is unstable, topographic slip unstable state, topographic tilt unstable state, or topographic vibration unstable state. .
  • the user of the support apparatus 300 analyzes the unstable state that has occurred or has occurred in the shovel 100 for each type of unstable state that has occurred or has occurred in the shovel 100. It can be performed.
  • Stability information is information indicating the stability of the excavator 100.
  • the stability information is a static stability index value of the excavator 100 or an index value (dynamic stability index value) representing dynamic stability of the excavator 100 described later.
  • the vehicle body tilt state information is information related to the tilt state of the vehicle body (upper swing body 3) that affects the unstable state of the excavator 100.
  • the vehicle body tilt state information is, for example, information on the tilt angle in the front-rear direction of the upper swing body 3 (that is, the extension direction of the attachment when the upper swing body 3 is viewed in plan view).
  • the user of the support apparatus 300 can analyze the correlation between the occurrence or sign of the unstable state and the vehicle body tilt state.
  • the crawler orientation information is information related to the crawler orientation.
  • the crawler direction information is, for example, a relative angle between the direction (front-rear direction) of the upper swing body 3 and the traveling direction of the lower traveling body 1. Thereby, the user of the support apparatus 300 can perform analysis on the correlation between the occurrence or sign of the unstable state and the crawler direction.
  • Attachment posture information is information regarding the posture state of the attachment.
  • the attachment posture information includes, for example, information regarding the posture angle of the attachment, that is, the boom angle, the arm angle, and the bucket angle. Further, the attachment posture information includes, for example, information on at least one acceleration or angular acceleration among the boom 4, the arm 5, and the bucket 6.
  • position information contains the information regarding the position of the bucket 6 which is an end attachment, for example. Thereby, the user of the support apparatus 300 can perform an analysis on the correlation between the occurrence or sign of the unstable state and the posture of the attachment.
  • the attachment drive information is information related to the drive state of the attachment, that is, information related to the operation of the actuator that drives the attachment.
  • the attachment drive information includes, for example, at least one cylinder pressure (the hydraulic pressure in the rod side oil chamber and the bottom side oil chamber) of the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9.
  • the operation state information is information regarding operation states of various operation elements (the lower traveling body 1, the upper swing body 3, the boom 4, the arm 5, and the bucket 6) with respect to the operation device 26.
  • the operation state information includes information related to operation amounts and operation directions (for example, whether the boom 4 is raised or lowered, whether the arm 5 or the bucket 6 is opened or closed), and the like. Thereby, the user of the support apparatus 300 can perform an analysis on the correlation between the occurrence or sign of the unstable state and the operation state of the attachment.
  • Stabilization control information is information regarding the control state of the stabilization control that suppresses the unstable operation of the excavator 100.
  • the stabilization control information includes information on ON / OFF of the stabilization control function, presence / absence of the stabilization control operation, and control contents at the time of the stabilization control operation (for example, the boom cylinder 7 and the arm cylinder 8 which are the control targets).
  • a control amount such as a control current for control).
  • the type of information recorded as the unstable state log information may include information on the control state related to the control function other than the stabilization control.
  • the log transmission unit 306 (an example of the information management unit) transmits (uploads) the unstable state log information 3070 recorded in the storage unit 307 to the management apparatus 200 through the communication device 60.
  • the log transmission unit 306 deletes the unstable state log information 3070 from the storage unit 307.
  • the log transmission unit 306 may be configured to hold only a predetermined period after transmission of the unstable state log information 3070 to the management apparatus 200 and then delete it.
  • the log transmission unit 306 transmits the unstable state log information 3070 recorded in the storage unit 307 to the management device 200 after the previous transmission at a predetermined timing.
  • the predetermined timing includes, for example, when the excavator 100 is started, when the excavator 100 is stopped, and the like.
  • the log transmission unit 306 transmits the unstable state log information 3070 to the management apparatus 200 when the occupation rate of the storage area prepared in advance for the unstable state log information 3070 exceeds a predetermined reference. .
  • the log transmission unit 306 deletes the unstable state log information 3070 uploaded to the management apparatus 200, and prepares for the occurrence or indication of the unstable state of the excavator 100 after the next time.
  • a storage area can be secured.
  • the management device 200 includes a control device 210 and a communication device 220.
  • the control device 210 controls various operations in the management device 200.
  • the control device 210 includes, for example, a log acquisition unit 2101 and a log related information generation unit 2102 as functional units realized by executing one or more programs stored in a ROM or a nonvolatile auxiliary storage device on the CPU. And a log related information distribution unit 2103.
  • the control device 210 includes a storage unit 2100 as a storage area defined in a nonvolatile internal memory such as an auxiliary storage device.
  • a storage area corresponding to the storage unit 2100 may be provided in an external storage device that is communicably connected to the control device 210.
  • the communication device 220 is an arbitrary device that communicates with the outside such as the excavator 100 and the support device 300 through the communication network NW.
  • the log acquisition unit 2101 acquires the unstable state log information received from the shovel 100 by the communication device 220 from the reception buffer or the like, and records it in the storage unit 2100. At this time, the log acquisition unit 2101 stores the unstable state log information in the storage unit 2100 from the unstable state log information of each time when the unstable state has occurred in the excavator 100 or may have occurred.
  • a log information DB (Data Base) 2100A (an example of a database) in which unstable state log information is arranged is constructed so that the unstable state log information can be extracted at times that meet the conditions regarding the contents. Thereby, the control apparatus 210 (log related information generation part 2102 mentioned later) can extract suitable unstable state log information easily and quickly according to the request
  • FIG. 4 shows an example of an unstable state log information history (hereinafter referred to as “unstable state log history information”) recorded (accumulated) in the management apparatus 200 (storage unit 2100). It is a figure shown in a format.
  • FIGS. 4A and 4B are diagrams illustrating a portion corresponding to information at the time of occurrence of unstable state / symptom in unstable state log history information
  • FIG. 4C is a diagram illustrating unstable state log history information. This is the part corresponding to the information before the unstable state / symptom occurrence and after the unstable state / signature occurrence.
  • the information in the same column in FIGS. 4A to 4C corresponds to the occurrence or sign of the same unstable state, but is shown in three divided states for convenience.
  • the surrounding environment information and excavator related information (excavator specific information, operator information, excavator state information) of the type illustrated in FIG. It is recorded in the storage unit 2100 as unstable state log information.
  • the vehicle body tilt state information and the operation state information which are dynamic information of the surrounding environment information and excavator related information of the type illustrated in FIG. It is recorded in the storage unit 2100 as unstable state log information before the occurrence and after the occurrence of the unstable state / symptom.
  • the unstable state log information may include only information corresponding to either one of the unstable state / symptom occurrence before and after the unstable state / signature occurrence.
  • the log recording unit 305 of the excavator 100 stores unstable state log information including only information corresponding to any one of the unstable state / symptom before and after the unstable state / symptom occurrence. It may be recorded in the part 307.
  • the log acquisition unit 2101 causes the storage unit 2100 to accumulate the unstable state log information uploaded from the excavator 100 historically.
  • the management apparatus 200 can provide the unstable state log related information generated based on the unstable state log history information to the user or the like of the support apparatus 300 as described later.
  • the log related information generation unit 2102 requests the acquisition of unstable state log related information received from the support apparatus 300 through the communication device 220 (hereinafter, “log related information acquisition request”). ) Or automatically generates log related information.
  • the log related information generation unit 2102 extracts, as unstable state log related information, unstable state history information that matches the conditions relating to the contents of unstable state log information from unstable state log history information.
  • Information hereinafter referred to as “unstable state log history extraction information”. Details of the unstable state log history extraction information will be described later (see FIG. 11).
  • the log related information generation unit 2102 uses the unstable state log history information as the unstable state log related information, and statistical information about the unstable state of the excavator 100 (hereinafter, “unstable state log statistical information”). Is generated. Details of the unstable state log statistical information will be described later (see FIGS. 12 to 17).
  • the log related information generation unit 2102 uses map information related to the position of the excavator 100 when an unstable state or an unstable state sign occurs, that is, unstable state map information, as unstable state log related information. Generate. Thereby, the administrator of the management apparatus 200 and the user of the support apparatus 300 can grasp from the unstable state map information where the unstable state of the shovel 100 is likely to occur.
  • the log related information generation unit 2102 may generate unstable state map information for each of the dynamic unstable state, the static unstable state, and the topographically unstable state. Thereby, the administrator of the management apparatus 200 and the user of the support apparatus 300 can grasp the tendency of the place where the static unstable state and the dynamic unstable state of the excavator 100 are likely to occur.
  • the administrator of the management apparatus 200 and the user of the support apparatus 300 can grasp the place where the topographic unstable state is likely to occur, the topography, and the like from the map information regarding the topographically unstable state.
  • the log related information generation unit 2102 may generate unstable state map information for each predetermined area (for example, for each work site). Thereby, the administrator of the management apparatus 200 and the user of the support apparatus 300 can use unstable state map information specialized for the work site related to the management apparatus 200 and the like. Therefore, the administrator of the management apparatus 200 and the user of the support apparatus 300 can create a construction plan and the like that considers more safety for each work site, for example. Details of the map information will be described later (see FIG. 18).
  • the function of the log related information generation unit 2102 may be included in the log information DB 2100A. That is, the log information DB 2100A may be a database arranged in a manner that not only can extract unstable state log information based on a predetermined condition but also generate unstable state log statistical information based on a predetermined condition. .
  • the management device 200 restricts the operation (speed) of the excavator 100 in an unstable state (especially, a topographically unstable state) at a work site or a place where signs thereof are relatively likely to occur.
  • the control mode may be changed. Specifically, the management device 200 may distribute a corresponding control program to the excavator 100. As a result, the excavator 100 can suppress the occurrence of an unstable state by changing the control mode (for example, target value, control limit value, etc.) of the excavator 100 according to the position in the work site of the own machine. it can.
  • the log related information distribution unit 2103 distributes (transmits) the unstable state log related information generated by the log related information generation unit 2102 to the support apparatus 300 that is the transmission source of the log related information acquisition request via the communication device 220.
  • the distributed unstable state log related information is displayed on the display device 340 of the support device 300 (see FIGS. 11 to 17). That is, the management apparatus 200 (control apparatus 210) distributes the unstable state log related information to the support apparatus 300, thereby causing the display device 340 of the support apparatus 300 to display the unstable state log related information.
  • the support device 300 includes a control device 310, a communication device 320, an operation device 330, and a display device 340.
  • the control device 310 controls various operations of the support device 300.
  • the control device 310 includes, for example, a log related information acquisition unit 3101 and a log related information display processing unit as functional units realized by executing one or more programs stored in a CPU, a nonvolatile auxiliary storage device, or the like. 3102 is included.
  • Functions such as the log-related information acquisition unit 3101 and the log-related information display processing unit 3102 function according to a predetermined application program (hereinafter referred to as “unstable state log”) installed in the control device 310 in response to a predetermined operation on the operation device 330 by the user. It may be an aspect which becomes effective when the “browsing application”) is activated.
  • a predetermined application program hereinafter referred to as “unstable state log”
  • the communication device 320 is an arbitrary device that communicates with the outside of the support device 300 such as the management device 200 through the communication network NW.
  • the communication device 320 is, for example, a mobile communication module that supports mobile communication standards such as LTE, 4G, and 5G.
  • the operation device 330 receives various operations on the support device 300 from the user.
  • the operation device 330 includes a hardware operation unit such as a button, a keyboard, a mouse, a touch pad, and a touch panel mounted on the display device 340, for example.
  • the operation device 330 may be a combination of a hardware operation unit such as a touch panel mounted on the display device 340 and a software operation unit such as a button icon on the operation screen displayed on the display device 340.
  • Display device 340 displays various information images.
  • the display device 340 is, for example, a liquid crystal display or an organic EL display.
  • the log related information acquisition unit 3101 transmits a log related information acquisition request for requesting acquisition of unstable state log related information to the management apparatus 200 through the communication device 320 in response to an operation on the operation apparatus 330.
  • the log related information acquisition request includes information (specification information) related to the specification of the unstable state log related information requested to be acquired.
  • the specification information is, for example, information on conditions for extracting unstable state log extraction information from the log information DB 2100A when requesting acquisition of unstable state log extraction information.
  • the specification information includes various conditions for generating (calculating) specific statistical information when requesting acquisition of unstable state log statistical information, for example.
  • the log related information acquisition unit 3101 for example, according to the operation content input by the operator through an operation screen for acquiring unstable state log related information (hereinafter, “unstable state log related information acquisition operation screen”). Confirm the specification information. Details of the unstable state log related information acquisition operation screen will be described later (FIGS. 19 and 20).
  • the log related information display processing unit 3102 causes the display device 340 to display the unstable state log related information received from the management device 200 through the communication device 320.
  • FIG. 5 is a diagram illustrating a forward sliding operation that is an example of an unstable operation of the excavator 100. Specifically, FIG. 5 is a diagram illustrating a working state of the excavator 100 in which a forward sliding motion occurs.
  • the excavator 100 performs excavation work on the ground 30 a, and mainly by the closing operation of the arm 5 and the bucket 6, the excavator 100 body (the lower traveling body 1, A force F2 is applied to the turning mechanism 2 and the upper turning body 3) in an obliquely downward direction.
  • the reaction force of the force F2 acting on the bucket 6, that is, the horizontal component F2aH of the excavation reaction force F2a is applied to the vehicle body (the lower traveling body 1, the turning mechanism 2, and the upper turning body 3) of the excavator 100.
  • the corresponding reaction force F3 acts via the attachment.
  • the reaction force F3 exceeds the maximum static frictional force F0 between the excavator 100 and the ground surface 30a, the vehicle body slides forward.
  • the operation state for example, sudden operation
  • the operation state for example, relatively high speed or There is a possibility that the excavator 100 slides in the downward direction depending on the high acceleration.
  • the excavator 100 when the excavation reaction force in the excavation operation is relatively large, the excavator 100 has a high possibility that the lower traveling body 1 of the excavator 100 slides forward with respect to the ground. Can be in a state. Further, when the excavator 100 is traveling on a slope in a downward direction, for example, depending on an operation state or an operating state of the lower traveling body 1, the excavator 100 is likely to slip in the downward direction and is in an unstable state of forward sliding. Can be.
  • the unstable state determination unit 302 determines whether the operation state of the lower traveling body 1 or the operation state of the lower traveling body 1 is an operation state (for example, sudden operation) or an operation state (for example, relative operation) that may cause slippage on an inclined ground. Or a high traveling speed, high acceleration, etc.). And the unstable state determination part 302 may determine with the topographically unstable state, when not corresponding.
  • FIG. 6 is a diagram illustrating the backward sliding operation of the excavator 100.
  • FIG. 6A and FIG. 6B are diagrams illustrating the work status of the excavator 100 in which the backward sliding motion occurs.
  • the excavator 100 performs the leveling work on the ground surface 40a, and the force F2 acts on the ground surface 40a so that the bucket 6 pushes the earth and sand 40b forward mainly by the opening operation of the arm 5. ing.
  • a reaction force of the force F2 acts on the bucket 6, and a force F3 corresponding to the reaction force acts to drag the vehicle body rearward from the attachment. Therefore, when the reaction force F3 exceeds the maximum static frictional force F0 between the excavator 100 and the ground surface 40a, the vehicle body slides backward.
  • the excavator 100 presses the bucket 6 against the slope 40c of the sloped bank portion mainly by the opening operation of the arm 5 to perform leveling (rolling) work of the slope 40c. Is going.
  • the reaction force of the force F2 pressing the slope 40c acts on the bucket 6, and the force F3 corresponding to the reaction force acts to drag the vehicle body backward from the attachment. Therefore, as in the case of FIG. 6A, when the reaction force F3 exceeds the maximum static frictional force F0 between the shovel 100 and the ground surface 40a, the vehicle body slides backward.
  • the excavator 100 causes the lower traveling body 1 of the excavator 100 to move against the ground. There is a high possibility of slipping backward, which can lead to an unstable state of backward slipping.
  • FIG. 7 is a diagram for explaining the front lifting operation. Specifically, FIG. 7A to FIG. 7F are diagrams showing the work status of the excavator 100 in which the front lifting operation occurs.
  • FIG. 7A is a diagram schematically showing a state of a rolling operation of the shovel 100 by a lowering operation of the boom 4 (hereinafter, “boom lowering operation”).
  • FIG. 7B is a diagram schematically showing the state of the first half process of excavation work of the excavator 100 by the closing operation of the arm 5 (hereinafter referred to as “arm closing operation”).
  • FIG. 7C and 7D are diagrams schematically showing the state of leveling work of the excavator 100 by the arm closing operation and the arm 5 opening operation (hereinafter referred to as “arm opening operation”), respectively.
  • FIG. 7E is a diagram schematically showing an operation state of the excavator 100 in which the boom 4 rapidly accelerates in the downward direction from the state where the entire attachment is stopped.
  • FIG. 7F is a diagram schematically showing an operation state of the excavator 100 in which the boom 4 suddenly stops during the boom raising operation.
  • the excavator 100 when the reaction force from the ground acting on the bucket 6 becomes relatively large, the excavator 100 has a large backward tilting moment acting on the vehicle body via the attachment, and the front portion of the lower traveling body 1 can be lifted. It is likely that the front part will rise and become unstable. In addition, the excavator 100 is lifted forward with a high possibility that the front part of the lower traveling body 1 will be lifted by a backward tilting moment due to a reaction acting on the vehicle body from the attachment in response to a sudden stop or rapid acceleration of the attachment (boom 4). Can be unstable.
  • 7A to 7F corresponds to a dynamic unstable state of the excavator 100 due to the operation of the attachment by the operator, but the front lift of the shovel 100 is unstable due to an external factor. There can also be a condition.
  • the excavator 100 when the excavator 100 is working on a narrow work road portion partially formed on an inclined land, if the ground near the rear portion of the vehicle body of the excavator 100 is in a fragile state, the portion collapses and the lower traveling body There is a possibility that the front part of 1 will float up and fall backward. In other words, the excavator 100 can be in a topographically unstable state (topographically lifted and unstable state) due to the topographical condition of the work site where the excavator 100 is working.
  • FIG. 8 is a diagram for explaining the rear lifting operation. Specifically, FIGS. 8A to 8H are diagrams showing the work status of the excavator 100 in which the rear lifting operation may occur.
  • FIG. 8A is a diagram schematically showing the state of the soil removal work of the excavator 100 by the opening operation of the bucket 6 (hereinafter referred to as “bucket opening operation”).
  • FIG. 8B is a figure which shows typically the condition of the earth removal work of the shovel 100 by boom lowering operation
  • FIG 8C shows the state of the second half of the excavation work of the excavator 100 by the arm closing operation and the bucket 6 closing operation (hereinafter referred to as “bucket closing operation”), specifically, the excavator 100 holding sand or the like in the bucket 6. It is a figure which shows typically the operation condition of.
  • FIG. 8D is a diagram schematically showing the state of the second half of the excavation work by the boom raising operation, specifically, the operation state of the excavator 100 that lifts the earth and sand held in the bucket 6.
  • FIG. 8E is a diagram schematically showing the operation state of the excavator 100 that is suddenly stopped immediately above the ground after a rapid boom lowering operation at the start of excavation work.
  • FIG. 8F shows the state of the second half of the excavation work of the excavator 100 by the boom raising operation, specifically, the operation of lifting the earth and sand held in the bucket 6 in a state where the bucket 6 is largely separated from the vehicle body in the horizontal direction. It is a figure which shows a condition typically.
  • FIG. 8G is a diagram schematically showing an operation state of the excavator 100 in which earth and sand are loaded on the bucket 6 and the lower traveling body 1 travels on the slope in the downward direction.
  • the topographically unstable state (topographical slip unstable state) It corresponds to.
  • the unstable state determination unit 302 determines that the operation state of the lower traveling body 1 or the operation state (speed, acceleration, etc.) of the lower traveling body 1 is an operation state (for example, an abrupt operation) that may cause a forward fall on an inclined ground. ) Or operating state (for example, relatively high traveling speed, high acceleration, etc.). And the unstable state determination part 302 may determine with the topographically unstable state, when not corresponding.
  • connection mode between the arm 5 and the end attachment (bucket 6) is realized by quick coupling
  • a change in the moment of inertia occurs in the attachment, and as described above, a forward tilting moment in the pitching direction that causes the vehicle body to fall forward is applied to the excavator 100 to lift the rear part. May occur. That is, due to the connection mode of the end attachment, the excavator 100 is liable to float up and become unstable.
  • the excavator 100 is in an unstable state in which the rear portion of the lower traveling body 1 is likely to be lifted when the forward tilting moment acting on the vehicle body from the attachment becomes relatively large due to the movement of the attachment. Can be.
  • the excavator 100 has a lower possibility that the moment when the lower traveling body 1 travels in the downward direction relatively reduces the moment of pressing the vehicle body against the ground and the rear portion of the lower traveling body 1 is likely to be lifted. Can be in a stable state.
  • the rear floating unstable state is an unstable state of the excavator 100 due to the attachment operation by the operator or the operation of the lower traveling body 1, but there is also an unstable state due to an external factor. sell.
  • FIG. 8H is a diagram illustrating a situation where a rock or the like collides with the attachment (arm 5) of the excavator 100 from above due to a landslide or the like.
  • the excavator 100 when the excavator 100 is performing deep digging work in such a manner that the cliff portion is cut from the flat ground part on the hill side, if the deep digging work is advanced to a position close to the ground contact surface of the lower running object 1, the lower traveling object The ground below 1 may collapse. Then, due to the collapsed ground, the vehicle body (lower traveling body 1) may tilt forward, and the rear portion of the lower traveling body 1 may be lifted (ie, it may fall forward). In other words, the excavator 100 can be lifted topographically and become unstable due to the terrain condition of the work site where the excavator 100 is working.
  • FIGS. 9A and 9B are diagrams illustrating an example of the vibration operation of the excavator 100.
  • FIG. 9 (FIGS. 9A and 9B) is a diagram illustrating a situation in which a vibration operation occurs during the aerial operation of the excavator 100.
  • FIG. FIG. 10 is a diagram showing time waveforms of the angle (pitch angle) and the angular velocity (pitch angular velocity) in the pitching direction accompanying the aerial operation of the excavator 100 in the situation shown in FIGS. 9A and 9B.
  • a discharge operation for discharging the load DP in the bucket 6 to the outside will be described as an example of the aerial operation.
  • the excavator 100 is such that the arm 5 and the bucket 6 are closed and the boom 4 is relatively raised, and the bucket 6 accommodates a load DP such as earth and sand. ing.
  • the operation status of the excavator 100 in which a forward tilting moment acts on the vehicle body from the attachment that is, the operation status that may cause the rear lifting operation shown in FIGS. 8A to 8G and the like.
  • the excavator 100 can be vibrated.
  • the excavator 100 when a relatively large forward tilting moment is generated in the vehicle body, such as when the excavator 100 is discharged, the excavator 100 is in a vibration unstable state in which a vibration operation may occur. Can be.
  • the stabilization control unit 303 can control (correct) the attachment operation to suppress the unstable operation and prevent the excavator 100 from falling into an unstable state.
  • the stabilization control unit 303 reduces the pressure of one of the bottom side oil chamber and the rod side oil chamber of the boom cylinder 7 and controls the operation of the attachment to thereby stabilize the shovel 100. Operation and the occurrence of unstable conditions can be suppressed.
  • the stabilization control unit 303 reduces the pressure in the bottom side oil chamber of the boom cylinder 7.
  • the stabilization control unit 303 controls the operation of the attachment in a manner that reduces the pressure of one oil chamber of the boom cylinder 7 defined in advance.
  • the unstable operation of the shovel 100 and the occurrence of an unstable state can be suppressed.
  • the stabilization control unit 303 is based on the information about the cylinder pressure of the boom cylinder 7 acquired from the state detection device 42, and the excess of the bottom side oil chamber and the rod side oil chamber of the boom cylinder 7 is exceeded.
  • One pressure is relieved by the electromagnetic relief valves 70 and 72.
  • the stabilization control unit 303 determines the magnitude of the control current based on the detected values of the cylinder pressure in the bottom side oil chamber and the rod side oil chamber. Then, the stabilization control unit 303 outputs the control current determined to either one of the electromagnetic relief valves 70 and 72, so that one of the excess of the bottom side oil chamber and the rod side oil chamber of the boom cylinder 7 is output.
  • the pressure is relieved by the electromagnetic relief valves 70 and 72.
  • the stabilization control part 303 can suppress the unstable operation and unstable state of the shovel 100, and can realize the stabilization control of the shovel 100.
  • the stabilization control unit 303 performs an unstable operation corresponding to the topographically unstable state of the excavator 100 (sliding of the lower traveling body 1, lifting of the lower traveling body 1, tilting or wobbling of the vehicle body, vibration of the vehicle body). Etc.) can be suppressed.
  • the unstable state determination unit 302 determines that a dynamic unstable state has occurred in the excavator 100 when an unstable operation has occurred in the excavator 100, and when the unstable operation has not occurred in the shovel 100. It is determined that the excavator 100 is not in an unstable state.
  • the unstable state determination unit 302 may determine whether or not the excavator 100 has slid forward or backward based on detection information regarding the operation state of the vehicle body input from the state detection device 42. Further, the unstable state determination unit 302 may determine whether or not the front part or the rear part of the excavator 100 is lifted based on the detection information regarding the lean state of the vehicle body input from the state detection device 42.
  • the unstable state determination unit 302 has an index value indicating the stability related to the operation of the excavator 100 (hereinafter, “dynamic stability index value”) exceeding a predetermined threshold in a direction in which the excavator 100 becomes unstable. If the excavator 100 is in an unstable state, it is determined that an unstable state has occurred.
  • the dynamic stability index value is a physical quantity related to the state of the excavator 100 that has a relatively high correlation with the dynamic unstable state of the excavator 100 (for example, in the case of the unstable state of lifting the front part, the rod of the boom cylinder 7 Cylinder pressure in the side oil chamber).
  • the dynamic stability index value includes information on the position of the center of gravity of the excavator 100, vehicle body tilt state information, information on the position of the bucket 6 with respect to the vehicle body, information on the operation state of the attachment in the operation device 26, crawler orientation information, and attachment to vehicle body
  • the total stability may be calculated based on at least one of information on the reaction force applied to the (upper swing body 3) (for example, detection information on the cylinder pressure of the boom cylinder 7).
  • the unstable state determination unit 302 determines that a sign of a dynamic unstable state of the excavator 100 has occurred when the stabilization control by the stabilization control unit 303 is activated. This is because the stabilization control is considered to be activated when the excavator 100 approaches a dynamic unstable state, that is, when the stability related to the operation of the excavator 100 decreases. In addition, the unstable state determination unit 302 assumes that the dynamic stability index value of the excavator 100 decreases (that is, the dynamic stability index value approaches the predetermined threshold value from the stable side) and then stabilizes. When the stabilization control by the stabilization control unit 303 is activated, it may be determined that an indication of the unstable state of the excavator 100 has occurred.
  • the unstable state determination unit 302 may monitor the transition state of the dynamic stability index value of the excavator 100 as described above. In addition, the unstable state determination unit 302 changes the dynamic stability index value of the excavator 100 from the stable side in a direction approaching the predetermined threshold and is in a state relatively close to the predetermined threshold. It may be determined that there is an indication of an unstable state.
  • the unstable state determination unit 302 takes into consideration the specific work situation of the excavator 100 in which unstable movement may occur (for example, the operational situation shown in FIGS. 5 to 9). It is determined whether or not a sign of occurrence has occurred. Specifically, the unstable state determination unit 302 includes a specific situation (the situation of the excavator 100 itself or a situation around the excavator 100) and the current situation (the excavator 100 itself). Or the surrounding situation of the excavator 100), it may be determined whether or not the excavator 100 has an indication of an unstable state. In particular, the unstable state of the excavator 100 due to external factors other than the operation of the attachment by the operator is difficult to detect the signs from the state of the excavator 100. On the other hand, the unstable state determination unit 302 can determine the presence or absence of a sign of an unstable state by using information on a specific terrain situation or an end attachment connection mode.
  • the unstable state log related information shown in FIGS. 11 to 18 may be displayed on the display device 240 of the management device 200 as a matter of course.
  • the administrator of the management apparatus 200 can refer to the unstable state log related information. Therefore, the same operations and effects as those displayed on the support device 300 are obtained.
  • FIG. 11 is a diagram illustrating a first example of unstable state log related information displayed on the display device 340 of the support device 300. Specifically, FIG. 11 is a diagram illustrating an example of unstable state log history extraction information.
  • the unstable state log information of the times when the operator identification information matches “operator A” from the unstable state log history information stored in the log information DB 2100A of the management apparatus 200. Is extracted on the display device 340 of the support device 300.
  • the user of the support apparatus 300 can selectively check the unstable state log information regarding the excavator 100 operated by the specific “operator A”.
  • the user of the support apparatus 300 can analyze the tendency in the unstable state log information regarding the excavator 100 operated by the specific “operator A”.
  • the user of the support apparatus 300 performs a condition setting for limiting the operator specific information to “operator A” through the operation apparatus 330 on the log related information acquisition operation screen displayed on the display apparatus 340, for example.
  • a log related information acquisition request including specification information corresponding to the condition setting is transmitted from the support apparatus 300 (log related information acquisition unit 3101) to the management apparatus 200, and the management apparatus 200 (log related information generation unit 2102). Generates unstable state log extraction information (list) in this example. Then, the list of this example is distributed from the management device 200 (log related information distribution unit 2103) to the support device 300, and the support device 300 (log related information display processing unit 3102) displays the distributed list on the display device 340. To display.
  • the unstable state log history extraction information may be generated based on condition settings regarding other types of information (for example, date and time information) other than operator-specific information. Further, the unstable state log history extraction information may be generated based on conditions relating to each of a plurality of types of information (for example, date and time information is “Monday” and weather information is “clear”).
  • the unstable state log history extraction information includes only some types of information among all types of information recorded as unstable state log information.
  • the surrounding environment information is limited to only date / time information, weather information, and position information
  • the excavator related information includes work type information, unstable state type information, operation state information, and stabilization control information. It is limited to the operation information.
  • the user of the support device 300 can display only the type of information desired to be confirmed on the display device 340 in accordance with a predetermined operation on the operation device 330, and the convenience for the user is improved.
  • the support apparatus 300 (log related information display processing unit 3102) displays a list in which some types of information in the unstable state log history extraction information including all types of information is omitted on the display device 340. It may be displayed.
  • the support device 300 (log related information acquisition unit 3101) selects only some types of information from all types of information in response to a user operation on the log related information acquisition operation screen. May be transmitted to the management apparatus 200.
  • FIG. 12 is a diagram illustrating a second example of the unstable state log related information displayed on the display device 340 of the support device 300. Specifically, FIG. 12 is a diagram illustrating a first example of unstable state log statistical information.
  • conditions related to date and time information (“ ⁇ month ⁇ day to ⁇ month x day”) and the unstable state log history information stored in the log information DB 2100A of the management apparatus 200 and It is unstable state log statistical information on the premise of unstable state log information extracted by the extraction condition composed of the conditions ("XX site") regarding the position information.
  • the extraction condition may include a condition relating to information of a type other than the date information and the position information. The same applies to the unstable state log statistical information shown in FIGS.
  • the excavator 100 is disabled for each time zone divided into “morning” (before 12:00), “noon” (between 12:00 and 15:00), and “evening” (after 15:00).
  • Unstable state log statistical information indicating the frequency (number of times) of occurrence or indication of a stable state is displayed on the display device 340 of the support device 300.
  • the user of the support apparatus 300 can confirm or analyze a tendency such as a correlation between the time zone and the occurrence or indication of the unstable state of the excavator 100.
  • the unstable state log statistical information including the breakdown of the unstable state of the excavator 100 or the frequency (number of times) of the unstable state for each time zone is classified into the display device 340 of the support device 300. Is displayed. Thereby, the user of the support apparatus 300 may confirm or analyze a trend such as a correlation between the time zone and the occurrence or indication of the unstable state of the excavator 100 for each type of unstable state. it can.
  • the user of the support apparatus 300 performs condition setting regarding date and time information and position information through the operation apparatus 330 on the log related information acquisition operation screen displayed on the display apparatus 340, and is in an unstable state.
  • Select the type of log statistical information Accordingly, a log related information acquisition request including specification information corresponding to the condition setting is transmitted from the support apparatus 300 (log related information acquisition unit 3101) to the management apparatus 200, and the management apparatus 200 (log related information generation unit 2102). Generates unstable state log statistical information conforming to the specification information. Then, unstable state log statistical information is distributed from the management device 200 (log related information distribution unit 2103) to the support device 300, and the support device 300 (log related information display processing unit 3102) receives the distributed unstable state log statistics. Information is displayed on the display device 340. The same applies to the cases of the unstable state log statistical information shown in FIGS.
  • the excavator 100 is not appropriate for each condition category (eg, weather information such as “sunny”, “cloudy”, “rain”, “snow”, etc.) related to information other than the date and time information in the surrounding environment information.
  • Unstable state log statistical information indicating the frequency (number of times) of occurrence or indication of a stable state may be displayed on the display device 340 of the support device 300.
  • FIG. 13 is a diagram illustrating a third example of the unstable state log related information displayed on the display device 340 of the support device 300. Specifically, FIG. 13 is a diagram illustrating a second example of unstable state log statistical information.
  • unstable state log statistical information indicating the occurrence or frequency (number of times) of unstable state of the excavator 100 for each work type that the excavator 100 has performed is displayed on the support device 300. It is displayed on the device 340. Thereby, the user of the support apparatus 300 can confirm or analyze a tendency such as a correlation between the work type of the excavator 100 and the occurrence or sign of the unstable state of the excavator 100.
  • the unstable state log including the breakdown of each type of unstable state of occurrence or the frequency (number of times) of the unstable state of the shovel 100 for each work type of the shovel 100 Statistical information is displayed on the display device 340 of the support device 300. Thereby, the user of the support apparatus 300 confirms or analyzes a trend such as a correlation between the work type of the excavator 100 and the occurrence or indication of the unstable state of the excavator 100 for each type of unstable state. can do.
  • the excavator for each condition category (for example, a category related to operator identification information such as “operator A”, “operator B”, etc. Of information other than the work type information of the excavator 100 in the excavator related information.
  • the unstable state log statistical information indicating the frequency (number of times) of occurrence or signs of 100 unstable states may be displayed on the display device 340 of the support device 300.
  • FIG. 14 is a diagram illustrating a fourth example of the unstable state log related information displayed on the display device 340 of the support device 300. Specifically, FIG. 14 is a diagram illustrating a third example of unstable state log statistical information.
  • unstable state log statistical information indicating the ratio of the number of times that the stabilization control is activated in the total number of occurrences or signs of the excavator 100 is displayed on the display device 340 of the support device 300.
  • the user of the support apparatus 300 can confirm at what rate the stabilization control is activated with respect to the occurrence or indication of the unstable state of the excavator 100. Therefore, for example, the user of the support device 300 (specifically, the developer of the excavator 100) analyzes whether or not the stabilization control is operating properly.
  • the stabilization control can be improved.
  • the unstable state or indication of the shovel 100 corresponding to each type is provided.
  • Unstable state log statistical information indicating the ratio of the number of times that the stabilization control is activated in the total number of times is displayed on the display device 340 of the support device 300.
  • the user of the support apparatus 300 can confirm at what rate the stabilization control is activated with respect to the occurrence or indication of the unstable state of the excavator 100 for each type of the stabilization control. .
  • FIG. 15 is a diagram illustrating a fifth example of the unstable state log related information displayed on the display device 340 of the support device 300. Specifically, FIG. 15 is a diagram illustrating a fourth example of unstable state log statistical information.
  • the stability index value (average value) of the shovel 100 is compared when the stabilization control is activated and when it is not activated.
  • the unstable state log statistical information to be displayed is displayed on the display device 340 of the support device 300. Specifically, the unstable state log statistical information indicates, for each operator, the stability index value (average value) of the excavator 100 when the stabilization control is operated and when it is not operated, and the degree of deviation thereof.
  • the user of the support device 300 compares the stability index value of the excavator 100 when the stabilization control is activated and when it is not activated, so that the operation of a specific operator can be performed with respect to the operation standard of the stabilization control. It is possible to grasp how far the degree of stability deviates. Therefore, the user of the support device 300 can evaluate whether the operator's operation is likely to cause an unstable state in the shovel 100, and can examine the direction of the operator's operation improvement. In addition, the user of the support device 300 can relatively compare the divergence degree of the stability index value of the excavator 100 when the stabilization control is operated and when the stabilization control is not operated. In consideration of the above, it is possible to examine the direction of operation improvement of each operator.
  • the unstable state log statistical information is stabilized for each type of unstable state of the excavator 100 ("front slip”, “back slip”, “front float”, and “rear lift”).
  • the stability index value (average value) of the excavator 100 at the time of operation and non-operation of the control is compared.
  • the user of the support device 300 deviates in a direction in which the stability decreases with respect to the operation reference of the stabilization control. Can be grasped. Therefore, the user of the support device 300 evaluates, for each type of unstable state of the excavator 100, whether the operator's operation is likely to cause an unstable state in the shovel 100, etc. Can be considered.
  • FIG. 16 is a diagram illustrating a sixth example of the unstable state log related information displayed on the display device 340 of the support device 300. Specifically, FIG. 16 is a diagram illustrating a fifth example of unstable state log statistical information.
  • a control amount for example, an electromagnetic wave
  • Unstable state log statistical information indicating the average value of control currents to the relief valves 70 and 72 (hereinafter referred to as “average control amount”) is displayed on the display device 340 of the support device 300.
  • average control amount As the average control amount becomes larger, the degree of correction of the attachment operation by the stabilization control becomes higher. Therefore, the user of the support apparatus 300 grasps the average control amount, as in the case of FIG.
  • the user of the support device 300 can relatively compare the average control amount during the operation of the stabilization control among a plurality of operators, and consider the relative comparison results to improve the operation of each operator. It is possible to examine the directionality of
  • the unstable state log statistical information is stabilized for each type of unstable state of the excavator 100 ("front slip”, “back slip”, “front float”, and “rear lift”).
  • the average control amount at the time of operation of control is shown.
  • the user of the support apparatus 300 evaluates whether the operation of the operator is likely to cause the unstable state in the shovel 100 for each type of unstable state of the shovel 100, as in the case of FIG. It is possible to examine the direction of improving the operation of the operator.
  • the type of unstable state of the shovel 100 may be a type of dynamic unstable state or a type of topographic unstable state.
  • the type of unstable state of the excavator 100 is a type of shape including both a dynamic unstable state and a topographically unstable state ("front slip", “back slip”, “front float”). “And” after-floating ").
  • the type of unstable state of the excavator 100 may include the above-described vibration of the vehicle body and tilting of the vehicle body (including wobbling).
  • the vibration of the vehicle body may be a vibration of the vehicle body corresponding to the dynamic unstable state, a vibration corresponding to the topographically unstable state, or a form including both of them. Good.
  • FIG. 17 is a diagram illustrating a seventh example of the unstable state log related information displayed on the display device 340 of the support device 300. Specifically, FIG. 17 is a diagram illustrating a sixth example of unstable state log statistical information.
  • unstable state log statistical information that indicates the occurrence or frequency (frequency) of unstable state of the excavator 100 for each day of the week (Monday to Friday) is displayed on the support device 300. Displayed on device 340.
  • the unstable state log statistical information is a bar graph of the number of occurrences or signs (frequency) of unstable state of the excavator 100 for each day of the week including a breakdown for each type of unstable state.
  • the unstable state log statistical information may be represented not in a table format but in a graph format. This makes it easier for the user of the support apparatus 300 to visually grasp the unstable state log statistical information.
  • FIG. 18 is a diagram illustrating an eighth example of the unstable state log related information displayed on the display device 340 of the support device 300. Specifically, FIG. 18 is a diagram illustrating an example of unstable state map information (unstable state map information image Gx).
  • a topographically unstable state or a position where an indication thereof is generated is shown on an image (hereinafter referred to as “work site image”) regarding a situation when a specific work site is viewed from directly above.
  • An unstable state map information image Gx on which a marker ( ⁇ in the figure) is superimposed is displayed.
  • the work site image may be computer graphics that imitates the situation at the work site.
  • the work site image may be a composite image generated from a captured image of the work site captured by the imaging device 40 mounted on the excavator 100 or an imaging device installed in the work site. Good.
  • the material storage place image G23 represents a place (material storage place) where materials such as earthen pipes are temporarily placed in the work site.
  • the material image G24 represents the material temporarily placed in the material storage place.
  • the entry prohibition area image G25 represents an area where the excavator 100 is prohibited from entering (entrance prohibition area).
  • the entry prohibition area is, for example, an area surrounded by a road cone. In the entry prohibition area, various operations are usually performed by an operator or the like. In this example, the entry prohibition area image G25 is represented by dot hatching.
  • the road cone image G26 represents a road cone.
  • the road cone image G26 defines an entry prohibition area.
  • the dump truck image G27 represents a dump truck that enters and stops at the work site.
  • the display position of the dump truck image G27 may correspond to, for example, the stop position of the dump truck at a certain point in time, or may correspond to the stop position of the dump truck defined as the standard position.
  • the unstable terrain region images G21 and G22 are regions where the topographically unstable state of the excavator 100 is relatively likely to occur at the work site, that is, the number of times that the topographically unstable state or the sign of the shovel 100 has occurred. This represents a large area. Thereby, the user of the support apparatus 300 can grasp the place where the topographically unstable state easily occurs in the work site.
  • the unstable landform area image G21 is located adjacent to the dump truck image G27. Thereby, the user of the support apparatus 300 can grasp that the excavator 100 is likely to be in a terrain unstable state when the earth and sand are loaded on the dump truck.
  • the unstable landform area image G22 is located adjacent to the material storage area image G23. Thereby, when the user of the support apparatus 300 lifts the material and carries it to the material storage place, or lifts the material from the material storage place and carries it to the work place, the excavator 100 is likely to be unstable in topography. I can understand that.
  • the user of the support apparatus 300 can grasp the place where the topographically unstable state is likely to occur at the work site by checking the unstable state map information image Gx. Therefore, for example, when the user of the support device 300 operates the excavator 100 at a position corresponding to the unstable terrain region images G21 and G22 at a work site, the operation of the excavator 100 is more careful than usual. Can pay attention to.
  • the user of the support device 300 for example, the shovel 100 with respect to the operation of the operation device 26 according to the position of the work site so that the operation of the shovel 100 becomes gentle at the position corresponding to the unstable terrain region image G21. It is possible to perform control settings that vary the operation speed and the like.
  • FIG. 19 is a diagram showing an example of a log related information acquisition operation screen (log related information acquisition operation screen 1800) displayed on the display device 340 of the support apparatus 300.
  • the log related information acquisition operation screen 1800 includes a selection unit 1801 for selecting a list (see FIG. 11) of unstable state log history extraction information of a predetermined type (specification), and a selection unit A button icon 1802 for transmitting a log related information acquisition request including specification information corresponding to the type selected in 1801 is included.
  • the selection unit 1801 displays a list of types of unstable state log history extraction information extracted under different extraction conditions for each pre-registered excavator (“excavator A”, “excavator B”,). Yes.
  • the user selects a desired type of unstable state log history extraction information from the list displayed on the selection unit 1801 through the operation device 330, and operates the button icon 1802. Accordingly, the user can cause the support apparatus 300 to transmit a log related information acquisition request for requesting acquisition of desired unstable state log history extraction information to the management apparatus 200.
  • the selection unit 1801 may be replaced with a list display for selecting a predetermined type of unstable state log statistical information. Thereby, the user transmits a log related information acquisition request for requesting acquisition of unstable log log information of a desired type from the support apparatus 300 to the management apparatus 200 by performing the same operation through the operation apparatus 330. Can be made.
  • FIG. 20 is a diagram illustrating another example of the log related information acquisition operation screen (log related information acquisition operation screen 1900) displayed on the display device 340 of the support apparatus 300.
  • the log related information acquisition operation screen 1900 includes a condition setting unit 1901 for setting an extraction condition for extracting unstable state log history extraction information, and an extraction condition set by the condition setting unit 1901.
  • a button icon 1902 for transmitting a log related information acquisition request including the corresponding specification information is included.
  • the condition setting unit 1901 displays a list of types of information constituting the unstable state log information.
  • the user selects information on the type of condition setting on the condition setting unit 1901 through the operation device 330, and inputs specific setting contents.
  • the user can set conditions for a plurality of types of information on the condition setting unit 1901.
  • the user can cause the support apparatus 300 to transmit a log related information acquisition request for requesting unstable state log history extraction information corresponding to a desired extraction condition to the management apparatus 200.
  • condition setting unit 1901 may be replaced with a list display for setting conditions related to the specification of unstable state log statistical information.
  • the user performs a similar operation through the operation device 330, so that the support device 300 makes a log related information acquisition request for requesting unstable state log statistical information corresponding to the desired condition setting to the management device 200. Can be sent.
  • the function of the log related information generation unit 2102 may be transferred from the management device 200 to the support device 300 (an example of an information processing device).
  • the latest log information DB 2100A is appropriately distributed from the management apparatus 200 to the support apparatus 300.
  • both the excavator related information and the surrounding environment information are recorded (accumulated) as the unstable state log information, but only one of them is recorded (accumulated). There may be.
  • the excavator 100 (controller 30) records the unstable state log information and transmits the unstable state log information to the management apparatus 200. It may be. Specifically, the controller 30 acquires information (unstable state) acquired by the information acquisition unit 304 every time an unstable state of the excavator 100 occurs or every time there is a sign that the unstable state of the excavator 100 occurs. Information corresponding to the log information) may be uploaded to the management apparatus 200, and the unstable state log information may not be recorded (not left). Further, the controller 30 records the unstable state log information and outputs the unstable state log information every time the unstable state of the excavator 100 occurs or every time there is an indication that the unstable state of the excavator 100 occurs.
  • An aspect may be employed in which the data is not transmitted to the outside but is stored in an internal memory or an external storage device that is communicably connected.
  • the data corresponding to the unstable state log information may be appropriately read out to an external recording medium by a service person of the excavator 100, for example. Then, a service person or the like may visit a facility where the management apparatus 200 is installed, and data transfer may be performed from the recording medium to the management apparatus 200.
  • the unstable state log information is recorded with the occurrence of the unstable state of the excavator 100 or the indication of the unstable state as a trigger.
  • the triggering event may be arbitrary.
  • the controller 30 analyzes the psychological state of the operator based on detection information (biological information) on the various states of the operator by the state detection device 42, and determines that the operator has encountered a dangerous situation or the like and is disappointed. In this case, log information may be recorded.
  • the excavator 100 has a configuration in which various operating elements such as the lower traveling body 1, the upper swing body 3, the boom 4, the arm 5, and the bucket 6 are all driven by a hydraulic actuator.
  • a configuration in which part or all thereof is driven by an electric actuator may be employed.
  • the engine 11 may drive a generator and supply electric power to the electric actuator.
  • the excavator 100 may be mounted with another power source (for example, a power storage device such as a battery or a fuel cell) instead of or in addition to the engine 11. That is, the configuration disclosed in the above-described embodiment may be applied to a hybrid excavator, an electric excavator, or the like.
  • the management apparatus 200 acquires and records log information of various states of other work machines instead of or in addition to the log information of various states of the excavator 100. Then, the management apparatus 200 generates information (log related information) for analyzing various states of other work machines based on the accumulated log information (log history information) through the support apparatus 300 and provides the information to the user You can do it.
  • a working machine having a traveling body such as a dismantling machine, a wheel loader, a bulldozer, a crawler crane, and a working unit mounted on the traveling body, or a working machine (construction machine) used at a construction site may be applied.
  • a traveling body such as a dismantling machine, a wheel loader, a bulldozer, a crawler crane, and a working unit mounted on the traveling body, or a working machine (construction machine) used at a construction site may be applied.

Abstract

オペレータ等がショベルの不安定状態が生じうる状況を判断するための情報を蓄積することが可能なショベル等を提供する。そのため、本発明の一実施形態に係るショベル100は、下部走行体1と、下部走行体1に旋回自在に搭載される上部旋回体3と、上部旋回体3に搭載されるアタッチメントと、当該ショベル100の安定度が所定基準を下回った場合の当該ショベル100の状態に関する情報、及び、当該ショベル100の周辺環境に関する情報のうちの少なくとも一方の情報を、記憶部307に記録するログ記録部305、又は、管理装置200に送信するログ送信部306を備える。

Description

ショベル、情報処理装置、情報処理方法、プログラム
 本発明は、ショベル等に関する。
 ショベルに生じうる、走行体の滑りや浮き上がり等の不安定状態を抑制するため、オペレータによる操作に依らず、アタッチメントを駆動する油圧アクチュエータを制御し、ショベルの安定化を図る安定化制御技術が知られている(特許文献1等参照)。
特開2014-122510号公報
 しかしながら、ショベルの不安定状態の発生を可能な限り抑制するためには、オペレータ自身がショベルに不安定状態が生じうる状況を見極めながら、不安定状態に陥らないようなオペレーションに努めることが望ましい。
 そこで、上記課題に鑑み、オペレータ等がショベルの不安定状態が生じうる状況を判断するための情報を蓄積することが可能なショベル等を提供することを目的とする。
 上記目的を達成するため、本発明の一実施形態では、
 下部走行体と、
 前記下部走行体に旋回自在に搭載される上部旋回体と、
 前記上部旋回体に搭載されるアタッチメントと、
 ショベルの動作に関する安定度が所定基準を下回った場合、又は、下回る兆候があった場合の当該ショベルに関する情報、及び、当該ショベルの周辺環境に関する情報のうちの少なくとも一方を含むログ情報を記憶部に記録する、又は、外部装置に送信する情報管理部と、を備える、
 ショベルが提供される。
 また、本発明の他の実施形態では、
 ショベルの動作に関する安定度が所定基準を下回った場合、又は、下回る兆候があった場合ごとの前記ショベルの状態に関する情報及び前記ショベルの周辺環境に関する情報のうちの少なくとも一方を含むログ情報を前記ショベルから取得する情報取得部と、
 前記情報取得部により取得される前記ログ情報が記録される記憶部と、を備える、
 情報処理装置が提供される。
 また、本発明の更に他の実施形態では、
 ショベルと通信可能な情報処理装置が実行する情報処理方法であって、
 前記ショベルの動作に関する安定度が所定基準よりも下回った場合、又は、下回る兆候があった場合の前記ショベルの状態に関する情報及び前記ショベルの周辺環境に関する情報のうちの少なくとも一方を前記ショベルから取得する情報取得ステップと、
 前記情報取得ステップで取得された情報を記憶部に記録する情報記録ステップと、を含む、
 情報処理方法が提供される。
 また、本発明の更に他の実施形態では、
 ショベルと通信可能な情報処理装置に、
 前記ショベルの動作に関する安定度が所定基準よりも下回った場合、又は、下回る兆候があった場合の前記ショベルの状態に関する情報及び前記ショベルの周辺環境に関する情報のうちの少なくとも一方を前記ショベルから取得する情報取得ステップと、
 前記情報取得ステップで取得された情報を記憶部に記録する情報記録ステップと、を実行させる、
 プログラムが提供される。
 上述の実施形態によれば、オペレータ等がショベルの不安定状態が生じうる状況を判断するための情報を蓄積することが可能なショベル等を提供することができる。
本実施形態に係るショベル状態ログ管理システムの構成の一例を示す概要図である。 本実施形態に係るショベル状態ログ管理システムの構成の一例を示す構成図である。 ショベルの不安定状態が発生した場合に不安定状態ログ情報として記録される情報の種類の一例を示す図である。 管理装置に記録(蓄積)される不安定状態ログ情報の履歴(不安定状態ログ履歴情報)の一例を示す図である。 管理装置に記録(蓄積)される不安定状態ログ情報の履歴(不安定状態ログ履歴情報)の一例を示す図である。 管理装置に記録(蓄積)される不安定状態ログ情報の履歴(不安定状態ログ履歴情報)の一例を示す図である。 ショベルの前方滑り動作を説明する図である。 ショベルの後方滑り動作を説明する図である。 ショベルの後方滑り動作を説明する図である。 ショベルの前部浮き上がり動作を説明する図である。 ショベルの前部浮き上がり動作を説明する図である。 ショベルの前部浮き上がり動作を説明する図である。 ショベルの前部浮き上がり動作を説明する図である。 ショベルの前部浮き上がり動作を説明する図である。 ショベルの前部浮き上がり動作を説明する図である。 ショベルの後部浮き上がり動作を説明する図である。 ショベルの後部浮き上がり動作を説明する図である。 ショベルの後部浮き上がり動作を説明する図である。 ショベルの後部浮き上がり動作を説明する図である。 ショベルの後部浮き上がり動作を説明する図である。 ショベルの後部浮き上がり動作を説明する図である。 ショベルの後部浮き上がり動作を説明する図である。 ショベルの後部浮き上がり動作を説明する図である。 ショベルの振動動作を説明する図である。 ショベルの振動動作を説明する図である。 ショベルの振動動作を説明する図である。 支援装置の表示装置に表示される不安定状態ログ関連情報の第1例(不安定状態ログ履歴抽出情報の一例)を示す図である。 支援装置の表示装置に表示される不安定状態ログ関連情報の第2例(不安定状態ログ統計情報の第1例)を示す図である。 支援装置の表示装置に表示される不安定状態ログ関連情報の第3例(不安定状態ログ統計情報の第2例)を示す図である。 支援装置の表示装置に表示される不安定状態ログ関連情報の第4例(不安定状態ログ統計情報の第3例)を示す図である。 支援装置の表示装置に表示される不安定状態ログ関連情報の第5例(不安定状態ログ統計情報の第4例)を示す図である。 支援装置の表示装置に表示される不安定状態ログ関連情報の第6例(不安定状態ログ統計情報の第5例)を示す図である。 支援装置の表示装置に表示される不安定状態ログ関連情報の第7例(不安定状態ログ統計情報の更に第6例)を示す図である。 支援装置の表示装置に表示される不安定状態ログ関連情報の第8例(不安定状態マップ情報の一例)を示す図である。 支援装置の表示装置に表示される不安定状態ログ関連情報取得操作画面の一例を示す図である。 支援装置の表示装置に表示される不安定状態ログ関連情報取得操作画面の他の例を示す図である。
 以下、図面を参照して発明を実施するための形態について説明する。
 [ショベル状態ログ管理システムの概要]
 まず、図1を参照して、ショベル状態ログ管理システムSYSの概要について説明する。
 図1は、本実施形態に係るショベル状態ログ管理システムSYSの構成の一例を示す概要図である。
 ショベル状態ログ管理システムSYSは、ショベル100と、管理装置200と、支援装置300を含み、ショベル100の各種状態に関するログ情報を取得し記録する。そして、ショベル状態ログ管理システムSYSは、支援装置300を通じて、蓄積されたログ情報(以下、「ログ履歴情報」)に基づき、ショベル100の各種状態を分析するための情報(以下、「ログ関連情報」)を生成し、ユーザに提供する。例えば、ショベル状態ログ管理システムSYSは、ショベル100の不安定状態が生じた場合或いは不安定状態が生じる兆候(以下、「不安定状態の兆候」)があった場合のショベル100に関する情報(以下、「ショベル関連情報」)やショベル100の周辺環境に関する情報(以下、「周辺環境情報」)を含むログ情報(以下、「不安定状態ログ情報」)を取得し記録する。そして、ショベル状態ログ管理システムSYSは、蓄積された不安定状態ログ情報の履歴(以下、「不安定状態ログ履歴情報」)に基づき、ショベル100の不安定状態を分析するためのログ関連情報(以下、「不安定状態ログ関連情報」)を生成し、支援装置300を通じてユーザに提供する。
 ショベル100の不安定状態には、ショベル100の姿勢状態に起因する不安定状態、つまり、ショベル100の静的な不安定状態(以下、便宜的に「静的不安定状態」)が含まれてよい。また、ショベル100の不安定状態には、ショベル100の動作に起因する不安定状態、つまり、ショベル100の動的な不安定状態(以下、便宜的に「動的不安定状態」)が含まれてよい。また、ショベル100の不安定状態には、ショベル100が位置している地形に起因する不安定状態(以下、便宜的に「地形的不安定状態」)が含まれてよい。
 ショベル状態ログ管理システムSYSに含まれるショベル100は、一台であってもよいし、複数台であってもよい。つまり、ショベル状態ログ管理システムSYSは、複数のショベル100を対象として、ログ情報を蓄積することができる。以下、ショベル状態ログ管理システムSYSには、複数台のショベル100が含まれる場合を中心に説明する。また、ショベル状態ログ管理システムSYSに含まれる支援装置300についても、一台であってもよいし、複数台であってもよい。つまり、複数のユーザは、それぞれが所持する支援装置300を通じて、ログ関連情報の提供を受けることができる。
  <ショベルの概要>
 ショベル100は、下部走行体1と、旋回機構2を介して旋回可能(旋回自在)に下部走行体1に搭載される上部旋回体3と、アタッチメントとしてのブーム4、アーム5、及びバケット6と、キャビン10等を備える。
 下部走行体1は、例えば、左右一対のクローラを含み、それぞれのクローラが走行油圧モータ1A,1B(図2参照)で油圧駆動されることにより、ショベル100を走行させる。
 上部旋回体3は、旋回油圧モータ2A(図2参照)で駆動されることにより、下部走行体1に対して旋回する。
 ブーム4は、上部旋回体3の前部中央に俯仰可能に枢着され、ブーム4の先端には、アーム5が上下回動可能に枢着され、アーム5の先端には、バケット6が上下回動可能に枢着される。
 バケット6(エンドアタッチメントの一例)は、ショベル100の作業内容に応じて、適宜交換可能な態様で、アーム5の先端に取り付けられている。そのため、バケット6は、例えば、大型バケット、法面用バケット、浚渫用バケット等の異なる種類のバケットに交換されてもよい。また、バケット6は、例えば、攪拌機、ブレーカ等の異なる種類のエンドアタッチメントに交換されてもよい。
 ブーム4、アーム5、及び、バケット6は、それぞれ、油圧アクチュエータとしてのブームシリンダ7、アームシリンダ8、及び、バケットシリンダ9により油圧駆動される。
 キャビン10は、オペレータが搭乗する操縦室であり、例えば、上部旋回体3の前部左側に搭載される。
 ショベル100は、例えば、基地局を末端とする移動体通信網やインターネット網等を含む所定の通信ネットワークNWを通じて、管理装置200と相互に通信を行うことができる。これにより、ショベル100は、各種情報を管理装置200に送信(アップロード)することができる。詳細は、後述する。
  <管理装置の概要>
 管理装置200(情報処理装置の一例)は、ショベル100及び支援装置300を所持するユーザ等と地理的に離れた位置に配置される。管理装置200は、例えば、ショベル100が作業する作業現場外に設けられる管理センタ等に設置され、一又は複数のサーバコンピュータ等を中心に構成されるサーバ装置である。この場合、サーバ装置は、ショベル状態ログ管理システムSYSを運用する事業者或いは当該事業者に関連する関連事業者が運営する自社サーバであってもよいし、いわゆるクラウドサーバであってもよい。また、管理装置200は、ショベル100の作業現場内の管理事務所等に配置される定置型或いは携帯型のコンピュータ端末であってもよい。
 管理装置200は、上述の如く、通信ネットワークNWを通じて、ショベル100及び支援装置300のそれぞれと相互に通信を行うことができる。これにより、管理装置200は、ショベル100からアップロードされる各種情報を受信し、記憶(蓄積)しておくことができる。また、管理装置200は、支援装置300からの要求に応じて、支援装置300にログ関連情報を含む各種情報を送信することができる。
  <支援装置の概要>
 支援装置300は、ログ関連情報の提供を受けるユーザ(例えば、作業現場の監督者、管理者、ショベル100のオペレータ、ショベル100の管理者、ショベル100のサービスマン、ショベル100の開発者等)が利用するユーザ端末である。支援装置300は、例えば、ユーザが所持するラップトップ型のコンピュータ端末、タブレット端末、スマートフォン等の汎用の携帯端末である。また、支援装置は、デスクトップ型のコンピュータ等の定置型の汎用端末であってもよい。また、支援装置300は、ログ管理情報の提供を受けるための専用の端末(携帯端末或いは定置端末)であってもよい。
 支援装置300は、通信ネットワークNWを通じて、管理装置200と相互に通信を行うことができる。これにより、支援装置300は、管理装置200から送信されるログ関連情報を受信し、自己に搭載される後述の表示装置340を通じて、ログ関連情報をユーザに提供することができる。詳細は、後述する。
 [ショベル状態ログ管理システムの構成]
 次に、図1に加えて、図2を参照して、本実施形態に係るショベル状態ログ管理システムSYSの具体的な構成について説明する。
 図2は、本実施形態に係るショベル状態ログ管理システムSYSの構成の一例を示す構成図である。
 尚、図中、機械的動力系は二重線、高圧油圧ラインは太い実線、パイロットラインは破線、電気駆動・制御系は細い実線でそれぞれ示される。
  <ショベルの構成>
 本実施形態に係るショベル100の油圧駆動系は、エンジン11と、メインポンプ14と、コントロールバルブ17を含む。また、本実施形態に係る油圧駆動系は、上述の如く、下部走行体1、上部旋回体3、ブーム4、アーム5、及び、バケット6のそれぞれを油圧駆動する走行油圧モータ1A,1B、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、及び、バケットシリンダ9を含む。以下、走行油圧モータ1A,1B、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、及び、バケットシリンダ9の一部又は全部を便宜的に「油圧アクチュエータ」と称する場合がある。
 エンジン11は、ショベル100の駆動力源であり、例えば、上部旋回体3の後部に搭載される。エンジン11は、例えば、軽油を燃料とするディーゼルエンジンである。エンジン11の出力軸には、メインポンプ14及びパイロットポンプ15が接続される。
 メインポンプ14は、例えば、上部旋回体3の後部に搭載され、高圧油圧ライン16を通じてコントロールバルブ17に作動油を供給する。メインポンプ14は、上述の如く、エンジン11により駆動される。メインポンプ14は、例えば、可変容量式油圧ポンプであり、コントローラ30による制御の下、レギュレータ14aにより斜板の角度(傾転角)が制御されることにより、ピストンのストローク長を調整し、吐出流量(吐出圧)を調整(制御)することができる。
 コントロールバルブ17は、例えば、上部旋回体3の中央部に搭載され、オペレータによる操作装置26の操作に応じて、油圧駆動系の制御を行う油圧制御装置である。具体的には、コントロールバルブ17は、操作装置26に対する操作入力に応じて、それぞれの油圧アクチュエータに対する作動油の給排を制御する。走行油圧モータ1A(右用),1B(左用)、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、バケットシリンダ9等は、高圧油圧ラインを介してコントロールバルブ17に接続される。コントロールバルブ17は、メインポンプ14とそれぞれの油圧アクチュエータとの間に設けられ、メインポンプ14からそれぞれの油圧アクチュエータに供給される作動油の流量と流れる方向を制御する複数の油圧制御弁、即ち、方向切換弁を含むバルブユニットである。
 本実施形態に係るショベル100の操作系は、パイロットポンプ15と、操作装置26と、圧力センサ15aを含む。
 パイロットポンプ15は、例えば、上部旋回体3の後部に搭載され、パイロットライン25を介して操作装置26にパイロット圧を供給する。パイロットポンプ15は、例えば、固定容量式油圧ポンプであり、上述の如く、エンジン11により駆動される。
 操作装置26は、キャビン10の操縦席付近に設けられ、オペレータが各動作要素(下部走行体1、上部旋回体3、ブーム4、アーム5、及び、バケット6等)の操作を行う操作手段である。換言すれば、操作装置26は、各動作要素を駆動するそれぞれの油圧アクチュエータ(走行油圧モータ1A,1B、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、及び、バケットシリンダ9等)の操作を行う操作手段である。操作装置26は、例えば、レバーやペダル等を含む。操作装置26は、油圧パイロット式であり、油圧ライン25aを介して、コントロールバルブ17に接続される。これにより、コントロールバルブ17には、操作装置26における下部走行体1、上部旋回体3、ブーム4、アーム5、及び、バケット6等の操作状態(例えば、操作量や操作方向等の操作内容)に応じたパイロット信号(パイロット圧)が入力される。そのため、コントロールバルブ17は、操作装置26の操作状態に応じて、それぞれの油圧アクチュエータを駆動することができる。
 尚、操作装置26は、電気式であってもよい。この場合、操作装置26は、操作状態(操作内容)に応じた電気信号(以下、「操作信号」)を出力、操作信号は、コントローラ30に取り込まれる。そして、コントローラ30は、パイロットポンプ15から供給される作動油を用いてコントロールバルブ17にパイロット圧を作用させることが可能な比例弁に、操作信号に対応する制御指令を出力する。これにより、コントロールバルブ17には、比例弁から操作装置26の操作内容に応じたパイロット圧が作用する。そのため、コントローラ30は、操作装置26の操作内容に応じた油圧アクチュエータの動作を実現することができる。
 圧力センサ15aは、操作装置26の二次側のパイロット圧、即ち、操作装置26における各動作要素の操作状態に対応するパイロット圧を検出する。圧力センサ15aは、コントローラ30に接続され、操作装置26における下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6等の操作状態に応じた圧力信号(圧力検出値)がコントローラ30に取り込まれる。これにより、コントローラ30は、ショベル100の下部走行体1、上部旋回体3、及び、アタッチメント(ブーム4、アーム5、及び、バケット6)の操作状態を把握することができる。
 本実施形態に係るショベル100の制御系は、コントローラ30と、撮像装置40と、状態検出装置42と、周辺環境情報取得装置44と、表示装置50と、通信機器60と、電磁リリーフ弁70,72を含む。
 コントローラ30は、ショベル100の駆動制御を行う。コントローラ30は、その機能が、任意のハードウェア、ソフトウェア、或いは、これらの組み合わせにより実現されてよい。コントローラ30は、例えば、CPU(Central Processing Unit)と、RAM(Random Access Memory)と、ROM(Read Only Memory)と、不揮発性の補助記憶装置と、入出力インターフェース等を含むマイクロコンピュータを中心に構成される。コントローラ30は、例えば、ROMや補助記憶装置に格納される一以上のプログラムをCPU上で実行させることにより、各種機能を実現させる。以下、後述する管理装置200の制御装置210及び支援装置300の制御装置310についても同様である。
 例えば、コントローラ30は、撮像装置40により撮像されるショベル100の周辺の撮像画像に基づき、ショベル100に比較的近い範囲(以下、「監視エリア」)への所定の監視対象の侵入を監視する。当該監視対象は、例えば、作業者や作業現場の監督者等の人だけでなく、作業車両等の移動する物体(移動体)や、定置された資材、岩等の地形的な障害物等の静止している物体等の任意の物体を含みうる。
 また、例えば、コントローラ30は、当該ショベル100の安定度が所定基準を下回る状態、つまり、上述の不安定状態が生じた場合のショベル関連情報や周辺環境情報等を含む不安定状態ログ情報を内部メモリ(後述する記憶部307)に記録する。ショベル100の安定度には、上述のショベル100の静的不安定状態に対応する静的な安定度(以下、「静的安定度」)が含まれてよい。また、ショベル100の安定度には、上述のショベル100の動的不安定状態に対応する動的な安定度(以下、「動的安定度」)が含まれてよい。また、ショベル100の安定度には、上述のショベル100の地形的不安定状態に対応する地形的な安定度(以下、「地形的安定度」)が含まれてよい。
 また、コントローラ30は、当該ショベル100の安定度が所定基準を下回る兆候、つまり、ショベル100の不安定状態が発生する兆候が生じた場合のショベル関連情報や周辺環境情報等を含む不安定状態ログ情報を内部メモリに記憶してもよい。
 ショベル100の静的不安定状態には、例えば、アタッチメントの先端、つまり、バケット6の位置がショベル100の車体(下部走行体1、旋回機構2、及び上部旋回体3等)から相対的に離れた位置にある姿勢状態(以下、「第1の不安定姿勢状態」)が含まれる。バケット6の位置が車体が相対的に大きく離れると、アタッチメントから車体に作用するショベル100を前方に転倒させる方向のモーメント(以下、「転倒モーメント」)が相対的に大きくなり、ショベル100が相対的に転倒し易くなるからである。また、ショベル100の静的不安定状態には、例えば、アタッチメントの先端、つまり、バケット6の位置が相対的に高い位置にある姿勢状態(以下、「第2の不安定姿勢状態」)が含まれる。例えば、ショベル100の動作や外力等の作用等の何等かの理由で、ショベル100が前方に転倒し始めた場合に、バケット6の位置が相対的に高い位置にあると、バケット6を地面に当接させて、ショベル100の転倒を抑制することが難しくなるからである。また、ショベル100の静的不安定状態には、例えば、下部走行体1の進行方向と、上部旋回体3の向き、つまり、アタッチメントの向きとの間の相対角度(旋回角度)が相対的に大きい姿勢状態(以下、「第3の不安定姿勢状態」)が含まれる。例えば、下部走行体1は、進行方向よりも幅方向の接地長さが相対的に小さく、アタッチメントの向きが下部走行体1の幅方向に相対的に近くなると、アタッチメントの重量やアタッチメントの動作等に起因して、ショベル100が転倒し易くなるからである。
 ショベル100の動的不安定状態には、例えば、掘削作業時や均し作業時の地面からアタッチメントに付加される反力等によって、ショベル100(下部走行体1)が前方或いは後方に滑る状態やその可能性が高くなった状態(以下、「前方滑り不安定状態」或いは「後方滑り不安定状態」)が含まれる。以下、前方滑り不安定状態及び後方滑り不安定状態を包括的に「滑り不安定状態」と称する場合がある。また、ショベル100の動的不安定状態には、例えば、掘削反力等によって、ショベル100(下部走行体1)の前部或いは後部が浮きあがってしまう可能性が高くなった状態(以下、便宜的に「前部浮き上がり不安定状態」或いは「後部浮き上がり不安定状態」)が含まれる。このとき、前部浮き上がり不安定状態には、バケット6が地面に当接する状態で、更に、ブーム4の下げ動作やアーム5の閉じ動作が行われることにより、下部走行体1の前部が浮き上がるジャッキアップ状態が含まれてよい。以下、前部浮き上がり不安定状態及び後部浮き上がり不安定状態を包括的に「浮き上がり不安定状態」と称する場合がある。また、ショベル100の動的不安定状態には、例えば、ショベル100のアタッチメントの空中動作(バケット6が接地していない状態での動作)中のアタッチメントの慣性モーメントの変化等によって、車体(下部走行体1、旋回機構2、及び、上部旋回体3)に振動が生じる可能性が高くなった状態(以下、便宜的に「振動不安定状態」)が含まれる。また、ショベル100の動的不安定状態には、ショベル100の滑り、浮き上がり、或いは、振動が実際に生じた場合だけでなく、ショベル100の滑り、浮き上がり、或いは、振動が生じるうる状態になったものの、後述する安定化制御により、ショベル100の滑り、浮き上がり、或いは、振動等の発生が回避された場合が含まれてもよい。ショベル100の動的不安定状態の詳細については、後述する(図3~図8参照)。
 ショベル100の地形的不安定状態には、例えば、下部走行体1が、その走行中や上部旋回体3及びアタッチメントによる作業中に、地形的な影響で前方或いは後方滑る状態やその可能性が高い状態(以下、「地形的滑り不安定状態」)が含まれてよい。また、ショベル100の地形的不安定状態には、例えば、下部走行体1が、その走行中や上部旋回体3及びアタッチメントによる作業中に、地形的な影響で、下部走行体1の一部が浮き上がる状態やその可能性が高い状態(以下、「地形的浮き上がり不安定状態」)が含まれてよい。また、ショベル100の地形的不安定状態には、例えば、下部走行体1の走行中や上部旋回体3及びアタッチメントによるショベル100の作業中に、地形的な影響で車体が傾倒したり、ふらついたりする状態やその可能性が高い状態(以下、「地形的傾倒不安定状態」)が含まれてよい。また、ショベル100の地形的不安定状態には、例えば、下部走行体1が、その走行中や上部旋回体3及びアタッチメントによるショベル100の作業中に、地形的な影響で車体が振動する状態やその可能性が高い状態(以下、「地形的振動不安定状態」)が含まれてよい。地形的な影響には、地面の地質、地面の水分、地面の傾斜、地面の凹凸、地面の崩れ等が含まれうる。
 コントローラ30は、例えば、ROMや補助記憶装置に格納される一以上のプログラムをCPU上で実行することにより実現される機能部として、周辺監視制御部301と、不安定状態判定部302と、安定化制御部303と、情報取得部304と、ログ記録部305と、ログ送信部306を含む。また、コントローラ30は、補助記憶装置等の内部メモリに規定される記憶領域としての記憶部307を含む。
 尚、コントローラ30の機能の一部は、他のコントローラにより実現されてもよい。つまり、コントローラ30の機能は、複数のコントローラにより、分散して実現されてもよい。また、記憶部307に対応する記憶領域は、コントローラ30の外部に設けられ、コントローラ30と通信可能に接続される外部記憶装置に規定されてもよい。
 撮像装置40は、上部旋回体3の上部に取り付けられ、ショベル100の周辺を撮像し、撮像画像を出力する。出力される撮像画像には、ショベル100の周辺に存在する監視対象を含む物体が含まれうる。つまり、撮像装置40は、ショベル100の周辺に存在する物体に関する検出情報としての撮像画像を出力する。撮像装置40は、カメラ40B,40L,40Rを含む。
 カメラ40B、カメラ40L、及び、カメラ40Rは、それぞれ、上部旋回体3の後端上部、左端上部、及び、右端上部に取り付けられ、上部旋回体3の後方、左側方、及び、右側方を撮像する。例えば、カメラ40B、カメラ40L、及び、カメラ40Rは、それぞれ、非常に広い画角を有する単眼の広角カメラである。具体的には、カメラ40B、カメラ40L、及び、カメラ40Rは、それぞれ、上部旋回体3の上部において、光軸が斜め下方に向くように取り付けられ、ショベル100の近傍の地面からショベル100の遠方までを含む上下方向の撮像範囲を撮像する。カメラ40B、カメラ40L、及び、カメラ40Rは、それぞれ、ショベル100の運転中、所定周期(例えば、1/30秒)ごとに、撮像画像を出力し、出力された撮像画像は、コントローラ30に取り込まれる。
 状態検出装置42は、ショベル100の各種状態に関する検出情報を取得する。また、状態検出装置42は、ショベル100を操縦中のオペレータを特定するための検出情報や当該オペレータの各種状態に関する検出情報を取得してもよい。状態検出装置42により取得されたショベル100の各種状態に関する検出情報は、コントローラ30に取り込まれる。
 例えば、状態検出装置42は、ショベル100のアタッチメントの姿勢状態に関する検出情報を取得する。具体的には、状態検出装置42は、上部旋回体3に対するブーム4の相対的な俯仰角度(以下、「ブーム角度」)、ブーム4に対するアーム5の相対的な俯仰角度(以下、「アーム角度」)、及び、アーム5に対するバケット6の相対的な俯仰角度(以下、「バケット角度」)に関する検出情報を出力してよい。この場合、状態検出装置42は、例えば、アタッチメントの関節部に設けられるロータリエンコーダ、アタッチメントに取り付けられる加速度センサ、角速度センサ、6軸センサ、或いは、IMU(Inertial Measurement Unit:慣性計測装置)等を含む。
 また、例えば、状態検出装置42は、ショベル100のアタッチメントの動作状態に関する検出情報を取得する。具体的には、状態検出装置42は、ブーム4、アーム5、及び、バケット6のうちの少なくとも一つの加速度や角加速度に関する検出情報を出力してよい。この場合、状態検出装置42は、例えば、アタッチメントに取り付けられる加速度センサ、角速度センサ、6軸センサ、或いは、IMU等を含む。
 また、例えば、状態検出装置42は、ショベル100のアタッチメントの駆動状態に関する検出情報を出力する。具体的には、状態検出装置42は、ブーム4、アーム5、及び、バケット6を駆動する油圧アクチュエータ(ブームシリンダ7、アームシリンダ8、及び、バケットシリンダ9)の駆動力(推力)に関する検出情報を出力してよい。この場合、状態検出装置42は、例えば、ブームシリンダ7、アームシリンダ8、及び、バケットシリンダ9のうちの少なくとも一つのシリンダ圧(具体的には、ロッド側油室及びボトム側油室の油圧)を検出するシリンダ圧センサを含む。
 また、例えば、状態検出装置42は、車体(下部走行体1、旋回機構2、及び上部旋回体3等)の動作状態に関する検出情報を取得する。具体的には、状態検出装置42は、下部走行体1や上部旋回体3の速度、加速度、角速度等に関する検出情報を出力してよい。この場合、状態検出装置42は、例えば、上部旋回体3のスイベルジョイントに取り付けられる旋回角度センサ、下部走行体1や上部旋回体3に搭載される加速度センサ、角速度センサ、6軸センサ、IMU等を含む。
 また、例えば、状態検出装置42は、アタッチメント(バケット6)に対する負荷状態に関する検出情報を出力する。具体的には、状態検出装置42は、バケット6に作用する荷重に関する検出情報を出力してよい。状態検出装置42は、例えば、バケット6に取り付けられる荷重センサ等を含む。
 また、例えば、状態検出装置42は、車体(上部旋回体3)の傾斜状態に関する情報を取得する。具体的には、状態検出装置42は、上部旋回体3の前後方向及び左右方向の二軸の傾斜角に関する検出情報を出力してよい。状態検出装置42は、例えば、上部旋回体3に搭載される、傾斜センサ、加速度センサ、6軸センサ、IMU等を含む。
 また、例えば、状態検出装置42は、上部旋回体3に対する相対的な下部走行体1(クローラ)の向き(以下、「クローラ向き」)に関する検出情報を出力する。具体的には、状態検出装置42は、上部旋回体3の旋回角度に関する検出情報を出力してよい。状態検出装置42は、例えば、上部旋回体3のスイベルジョイントに取り付けられる旋回角度センサや、上部旋回体3の任意の位置に取り付けられる、加速度センサ、角速度センサ、6軸センサ、IMU等を含む。
 また、例えば、状態検出装置42は、アタッチメントから車体(上部旋回体3)に付加(入力)される反力に関する検出情報を出力する。具体的には、状態検出装置42は、ブームシリンダ7を通じて、車体に入力される反力に関する検出情報を出力してよい。状態検出装置42は、例えば、ブームシリンダ7のボトム側油室及びロッド側油室の油圧を検出するシリンダ圧センサや上部旋回体3のブーム4との接続部分に作用する荷重を検出する荷重センサ等を含む。
 また、例えば、状態検出装置42は、ショベル100の作業状態に関する検出情報を出力する。具体的には、状態検出装置42は、ショベル100が行っている作業の種別に関する検出情報を出力する。作業の種別には、掘削作業、トラックに土砂等を積み込む積み込み作業、均し作業、転圧作業、空中動作に関する作業(空中作業)等が含まれうる。状態検出装置42は、ブームシリンダ7、アームシリンダ8、及び、バケットシリンダ9のシリンダ内(ロッド側油室及びボトム側油室)の圧力を検出するシリンダ圧センサ等を含む。これにより、コントローラ30は、ブームシリンダ7、アームシリンダ8、及び、バケットシリンダ9のシリンダ圧の推移と、操作装置26によるブーム4、アーム5、及び、バケット6の操作状態等に基づき、ショベル100が実行中の作業の種別を判断(推定)できる。また、状態検出装置42は、アタッチメントの動作を検出可能なセンサ、例えば、カメラ、ミリ波レーダ、LIDAR等を含んでもよい。これにより、コントローラ30は、これらのセンサの出力情報に基づき、アタッチメントの動作状態を把握することで、ショベル100が実行中の作業の種別を判断(推定)できる。
 また、例えば、状態検出装置42は、エンジン11の動作状態(回転状態)に関する検出情報を出力する。状態検出装置42は、例えば、エンジン11の回転数(回転速度)を検出するエンジン回転数センサ等を含む。
 また、例えば、状態検出装置42は、操縦中のオペレータを特定するための検出情報を取得する。具体的には、状態検出装置42は、操縦中のオペレータを含む画像情報を取得してよい。この場合、状態検出装置42は、キャビン10内に設けられ、オペレータの顔を含む上半身を撮像可能なカメラ等を含む。また、状態検出装置42は、操縦中のオペレータの身体的な特徴情報(指紋情報、虹彩情報等)を取得してもよい。この場合、状態検出装置42は、操作装置26に含まれるレバー等に設けられる指紋センサや、キャビン10内のオペレータの顔の部分に面する位置に設けられる虹彩センサ等を含む。
 尚、操縦中のオペレータは、当該オペレータによる所定操作に応じて、コントローラ30により特定されてもよい。この場合、オペレータによる所定操作を通じて、ショベル100の起動時に表示装置50に表示されるオペレータ選択画面上で、予め登録されたオペレータリストの中から特定のオペレータが選択されることにより、コントローラ30は、操縦中のオペレータを特定してよい。
 また、例えば、状態検出装置42は、操縦中のオペレータの状態に関する検出情報を取得する。具体的には、状態検出装置42は、オペレータの生体情報(例えば、心電図や脳波図等)を取得してよい。この場合、状態検出装置42は、オペレータが装着するヘルメットに内蔵され、コントローラ30と無線通信が可能な脳波計や、オペレータが腕等に装着するウェアラブル機器に内蔵され、コントローラ30と無線通信が可能な心電計等を含む。
 周辺環境情報取得装置44は、ショベル100の周辺環境情報を取得する。周辺環境情報取得装置44により取得されるショベル100の周辺環境情報は、コントローラ30に取り込まれる。
 例えば、周辺環境情報取得装置44は、RTC(Real Time Clock)等を含み、日付、曜日、時刻を含む日時情報を取得する。
 尚、日時情報は、コントローラ30内の計時手段(例えば、RTC)により取得されてもよい。
 また、例えば、周辺環境情報取得装置44は、ショベル100が作業している場所の天候情報を取得する。具体的には、周辺環境情報取得装置44は、通信機器60を通じて、通信ネットワークNWに接続し、所定の天候情報に関するサーバやウェブサイトから天候情報を取得してよい。また、周辺環境情報取得装置44は、照度センサや雨滴感知センサ等を含み、照度センサや雨滴感知センサにより出力される照度や雨の有無等に基づき、天候情報を取得してもよい。
 また、例えば、周辺環境情報取得装置44は、ショベル100の地理的な位置情報を取得する。具体的には、周辺環境情報取得装置44は、例えば、GNSS(Global Navigation Satellite System:全地球衛星測位システム)装置を含み、ショベル100の上空の3以上の衛星からの信号等に基づき、当該ショベル100の位置情報を取得してよい。
 また、例えば、周辺環境情報取得装置44は、ショベル100の周辺状況に関する詳細情報(以下、「周辺状況詳細情報」)を取得する。具体的には、周辺環境情報取得装置44は、撮像装置40等を含むショベル100に搭載されるカメラから、ショベル100の周辺の状況を示す撮像画像(画像情報)を取得してよい。また、周辺環境情報取得装置44は、ショベル100の周辺の三次元的な地形に関する情報(以下、「地形情報」)を取得してもよい。この場合、周辺環境情報取得装置44は、例えば、カメラ、ミリ波レーダ、LIDAR等の距離センサを含み、距離センサの出力画像に基づき、ショベル100の周辺の地形情報を取得する。また、この場合、周辺環境情報取得装置44は、例えば、通信機器60を通じて、通信ネットワークNWに接続し、ショベル100の作業現場の情報化施工に関する管理サーバから作業現場の地形情報を取得する。また、周辺環境情報取得装置44は、後述する周辺監視制御に関する情報(以下、「周辺監視制御情報」)を取得してもよい。この場合、周辺環境情報取得装置44は、周辺監視制御の作動状態(周辺監視制御機能の搭載の有無やON/OFF状態を含む)や監視対象の検知情報を取得する。
 尚、周辺環境情報取得装置44の機能の一部又は全部は、コントローラ30に移管されてもよい。
 表示装置50は、キャビン10内の操縦席の周辺、具体的には、操縦席に着座するオペレータから視認し易い位置に設けられ、コントローラ30による制御の下、オペレータに通知する各種画像情報を表示する。表示装置50は、例えば、液晶ディスプレイや有機EL(Electroluminescence)ディスプレイであり、操作部を兼ねるタッチパネル式であってもよい。表示装置50は、例えば、撮像装置40の撮像画像(スルー画像)や、コントローラ30により撮像装置40の撮像画像に基づき生成される画像(例えば、カメラ40B,40L,40Rの撮像画像を合成した視点変換画像)等を表示する。
 通信機器60は、通信ネットワークNWを通じて、管理装置200等の外部との通信を行う任意のデバイスである。通信機器60は、例えば、LTE(Long Term Evolution)、4G(4th Generation)、5G(5th Generation)等の所定の移動体通信規格に対応する移動体通信モジュールである。
 電磁リリーフ弁70,72は、それぞれ、ブームシリンダ7のロッド側油室及びボトム側油室とコントロールバルブ17との間の高圧油圧ラインに設けられ、ブームシリンダ7のロッド側油室及びボトム側油室の作動油をタンクに排出(リリーフ)する。これにより、コントローラ30は、電磁リリーフ弁70,72に制御電流を入力することにより、ブームシリンダ7のロッド側油室或いはボトム側油室の作動油をタンクに排出させ、過剰な油圧上昇を抑制することができる。
 周辺監視制御部301は、撮像装置40の撮像画像に基づき、ショベル100の周辺のショベル100に近接する監視エリア内への監視対象の侵入を監視する周辺監視制御を行う。
 例えば、周辺監視制御部301は、既知の各種画像処理手法や人工知能(AI:Artificial Intelligence)等を含む機械学習ベースの識別器等を任意に適用することにより、撮像装置40の撮像画像内の監視対象を認識する。また、周辺監視制御部301は、既知の各種手法を適用することにより、単眼の撮像装置40による撮像画像に含まれる、認識された監視対象(人)が存在する位置(以下、「実在位置」と称する。例えば、足元位置)を判定(推定)することができる。これにより、周辺監視制御部301は、監視エリア内の監視対象を検知することができる。
 また、例えば、周辺監視制御部301は、監視対象を検知すると、聴覚的な方法や視覚的な方法等を用いて、キャビン10の内部或いは外部に向けて、警報を出力する。また、周辺監視制御部301は、監視対象を検知すると、ショベル100の各種動作要素(下部走行体1、上部旋回体3、アタッチメント等)の動作を制限してもよい。この場合、周辺監視制御部301は、パイロットポンプ15と操作装置26との間のパイロットライン25に設けられるゲートロック弁を制御し、パイロットラインを非連通状態にすることにより、ショベル100の動作制限(動作停止)を行なってよい。
 不安定状態判定部302は、状態検出装置42の検出情報や圧力センサ15aの検出情報等に基づき、ショベル100の安定度が所定基準を下回ったか否かを判定する。つまり、不安定状態判定部302は、ショベル100に上述の不安定状態(即ち、静的不安定状態、動的不安定状態、及び地形的不安定状態の何れか)が発生したか否かを判定する。
 不安定状態判定部302は、例えば、状態検出装置42の検出情報に基づき、ショベル100の姿勢状態を把握する。そして、不安定状態判定部302は、把握した姿勢状態が第1の不安定姿勢状態~第3の不安定姿勢状態の何れかに該当するか否かにより、ショベル100が静的不安定状態であるか否かを判定してよい。また、不安定状態判定部302は、例えば、現在のショベル100の静的な安定度を表す指標値(以下、「静的安定度指標値」)を取得する。そして、不安定状態判定部302は、ショベル100が静的に不安定になる方向、つまり、ショベル100が第1~第3の不安定姿勢状態になる方向に所定閾値を超えた場合に、ショベル100に静的不安定状態が発生したと判定してよい。
 このとき、静的安定度指標値は、ショベル100の動的不安定状態との相関関係が相対的に高いショベル100の状態に関する物理量(例えば、第1の不安定状態におけるバケットの車体に対する水平方向の相対距離等)であってよい。また、静的安定度指標値は、ショベル100の重心位置に関する情報、車体に対するバケット6の位置に関する情報、操作装置26におけるアタッチメントの操作状態に関する情報、クローラ向き情報等のうちの少なくとも一つに基づき、総合的な安定度として算出されてもよい。
 また、不安定状態判定部302は、後述の如く、ショベル100の動的不安定状態を判定してよい。
 また、不安定状態判定部302は、例えば、静的不安定状態及び動的不安定状態に該当しない状況で、ショベル100に下部走行体1の滑り、下部走行体1の浮き上がり、車体の傾倒(ふらつきを含む)、車体の振動等が発生した場合に、地形的不安定状態であると判定してよい。
 また、不安定状態判定部302は、状態検出装置42の検出情報や圧力センサ15aの検出情報等に基づき、ショベル100の安定度が所定基準を下回る兆候があったか否かを判定する。つまり、不安定状態判定部302は、ショベル100に上述の不安定状態の兆候が発生したか否かを判定する。
 不安定状態判定部302は、例えば、状態検出装置42及び圧力センサ15aの検出情報に基づき、ショベル100の姿勢状態及び操作装置26の操作内容を把握する。そして、不安定状態判定部302は、ショベル100の姿勢が第1~第3の不安定姿勢状態の何れかに相対的に近い状態で、且つ、操作装置26でその不安定姿勢状態に近づく方向の操作が行われている場合、静的不安定状態の兆候があると判定してよい。また、不安定状態判定部302は、例えば、静的安定度指標値が安定側から所定閾値に近づく方向に推移し、且つ、所定閾値に相対的に近い状態になっている場合に、静的不安定状態の兆候があると判定してもよい。
 また、不安定状態判定部302は、後述の如く、ショベル100の動的不安定状態の兆候があるか否かを判定してよい。
 また、不安定状態判定部302は、例えば、撮像装置40や周辺環境情報取得装置44の出力情報に基づき、周辺の地形状態を把握する。そして、不安定状態判定部302は、周囲の地形状態が過去の地形状態と変化している等のを把握することにより、地形的な影響で下部走行体1の滑り、下部走行体1の浮き上がり、車体の傾倒、車体の振動等が発生する兆候、つまり、地形的不安定状態の発生の兆候があるか否かを判定してよい。
 不安定状態判定部302によるショベル100の動的不安定状態の発生、及び、動的不安定状態の兆候の判定方法の詳細については、後述する。
 安定化制御部303は、ショベル100の不安定状態に対応する動作(以下、「不安定動作」)、つまり、ショベル100の滑り動作、浮き上がり動作、振動動作等を抑制するように、アタッチメントの動作を制御(補正)する安定化制御を行う。例えば、安定化制御部303は、ショベル100の安定度が相対的に低下した場合に安定化制御を作動し、操作装置26に対するオペレータの操作に介入し、アタッチメントの動作に対応するブームシリンダ7、アームシリンダ8等の制御を行う。詳細は、後述する。
 情報取得部304は、ログ記録部305により不安定状態ログ情報として記憶部307に記録される、予め規定された種類のショベル関連情報や周辺環境情報を取得する。
 例えば、情報取得部304は、撮像装置40、状態検出装置42、周辺環境情報取得装置44等から入力される各種情報に基づき、対象となるショベル関連情報のうちのショベル100の状態に関する情報(以下、「ショベル状態情報」)、オペレータ関連情報(オペレータ固有情報やオペレータ状態情報)や周辺環境情報を取得する。
 また、例えば、情報取得部304は、不安定状態判定部302によりショベル100の不安定状態が発生した、或いは、発生する兆候があったと判定された場合に、判定結果に関する情報、例えば、不安定状態の種別(滑り不安定状態、浮き上がり不安定状態、或いは、振動不安定状態等)に関する情報等を取得する。
 また、例えば、情報取得部304は、ショベル関連情報のうち、コントローラ30の記憶部307等の内部メモリに保存される、ショベル100に固有の情報(以下、「ショベル固有情報」)としての当該ショベル100の識別情報を取得する。
 特に、情報取得部304は、ショベル関連情報や周辺環境情報のうちの動的な情報(逐次変化し得る情報)を逐次取得し、ある程度の期間、内部メモリに保持させる。具体的には、情報取得部304は、内部メモリに規定されるリングバッファに、撮像装置40、状態検出装置42、周辺環境情報取得装置44等から入力された動的な情報を取得し、バッファリングする。これにより、後述するログ記録部305は、ショベル100の不安定状態が発生した、或いは、発生する兆候が生じた時点の情報だけでなく、当該時点よりも前にある程度遡った情報をリングバッファから読み出し、記憶部307に記録することができる。
 ログ記録部305(情報管理部の一例)は、不安定状態判定部302によりショベル100の不安定状態が発生した、或いは、発生する兆候があったと判定された場合に、情報取得部304により取得されるショベル関連情報や周辺環境情報を不安定状態ログ情報3070として記憶部307に記録する。これにより、ショベル100の不安定状態が発生したときの不安定状態ログ情報が、後述の如く、管理装置200に蓄積されうる。そのため、支援装置300のユーザ等は、ショベル100の不安定状態に関する各種分析を行うことができる。また、ショベル100の不安定状態が発生したときの不安定状態ログ情報だけでなく、ショベル100に不安定状態の兆候が生じたときの不安定状態ログ情報が、後述の如く、管理装置200に蓄積されうる。そのため、支援装置300のユーザ等は、例えば、安定化制御のおかげで、ショベル100が不安定状態に至らなかったような状況の不安定状態ログ情報も利用することができるようになる。よって、支援装置300のユーザ等は、より多角的に、ショベル100の不安定状態に関する各種分析を行うことができる。このとき、ログ記録部305は、不安定状態判定部302によりショベル100の不安定状態が発生したと判定された時点(以下、「不安定状態発生時」)或いは不安定状態が発生する兆候があったと判定された時点(以下、「不安定兆候発生時」)のショベル関連情報や周辺環境情報を記憶部307に記録する。以下、「不安定状態発生時」及び「不安定兆候発生時」を包括的に「不安定状態・兆候発生時」と称する。加えて、ログ記録部305は、ショベル100の不安定状態・兆候発生時よりも所定時間だけ遡った時点(以下、「不安定状態発生前」或いは「不安定兆候発生前」)やショベル100の不安定状態・兆候発生時よりも所定時間だけ経過した時点(以下、「不安定状態発生後」或いは「不安定兆候発生後」)のショベル関連情報や周辺環境情報を記憶部307に記録してもよい。以下、「不安定状態発生前」及び「不安定兆候発生前」を、包括的に、「不安定状態・兆候発生前」と称し、「不安定状態発生後」及び「不安定兆候発生後」を、包括的に、「不安定状態・兆候発生後」と称する。これにより、ショベル100の不安定状態が発生した場合や不安定状態が発生する兆候があった場合のショベル関連情報や周辺環境情報のうちの動的な情報の時系列的な変化が把握されうるため、支援装置300のユーザは、ショベル100に発生した或いは発生する兆候があった不安定状態に関して、より多角的な分析が可能になる。また、ログ記録部305は、ショベル100の不安定状態・兆候発生前や不安定状態・兆候発生後のショベル関連情報や周辺環境情報を記憶部307に記録する場合、記録する情報の種類を動的な情報に限定してよい。これにより、不安定状態ログ情報が占有する記憶領域が削減され、より多く不安定状態ログ情報が記憶部307や後述する管理装置200の記憶部2100等に記録(蓄積)されうる。
 例えば、図3は、ショベル100の不安定状態が発生した或いは発生する兆候があった場合にログ記録部305により不安定状態ログ情報として記録される種類の情報の一例を示す図である。
 図3に示すように、ログ記録部305により記憶部307に記録される種類の周辺環境情報には、日時情報、天候情報、位置情報、周辺状況詳細情報が含まれうる。
 日時情報は、例えば、日付、曜日、時刻等を含む。これにより、支援装置300のユーザ等は、例えば、日付、曜日、時間帯等の区分と、ショベル100に発生した、或いは、発生する兆候があった不安定状態との相関関係等に関する分析を行うことができる。
 天候情報は、晴れ、曇り、雨、雪等の天気区分に関する情報を含む。これにより、支援装置300のユーザ等は、例えば、天候に関する区分と、ショベル100に発生した、或いは、発生する兆候があった不安定状態との相関関係等に関する分析を行うことができる。
 位置情報は、例えば、経度、緯度、高度等のグローバル座標系や作業現場等で規定されるローカル座標系等の所定の座標系でのショベル100の位置に対応する座標に関する情報を含む。また、位置情報は、GeoHash等のジオコード情報であってもよい。これにより、管理装置200の管理者等や支援装置300のユーザは、例えば、作業現場内のどの場所でショベル100の不安定状態(特に、地形的不安定状態)やその兆候が発生したかを把握することができる。また、管理装置200は、例えば、作業現場内におけるショベル100の不安定状態や不安定状態の兆候が発生した位置に関するマップ情報(以下、「不安定状態マップ情報」)を生成することができる。そのため、管理装置200は、支援装置300を通じて、ユーザに注意喚起を図ることができる。また、管理装置200の管理者等や支援装置300のユーザは、不安定状態マップ情報を参照し、より安全面を考慮した施工計画等を練ることができる。また、管理装置200の管理者等は、例えば、作業現場内の不安定状態(特に、地形的不安定状態)が発生し易い場所において、ショベル100の動作(速度)を制限するように、ショベル100の制御態様を変更することができる。そのため、ショベル100の不安定状態の発生を実効的に抑制することができる。支援装置300のユーザ等は、地理的な位置情報の区分(例えば、作業現場)と、ショベル100に発生した、或いは、発生する兆候があった不安定状態との相関関係等に関する分析を行うことができる。
 周辺状況詳細情報には、例えば、上述した画像情報、地形情報、周辺監視制御情報が含まれる。これにより、コントローラ30は、画像情報に基づき、ショベル100に不安定状態が発生した、或いは、発生する兆候があったときのショベル100の周辺の詳細な状況を把握することができる。そのため、支援装置300のユーザ等は、ショベル100の周辺の詳細な状況と、ショベル100に発生した、或いは、発生する兆候があった不安定状態との相関関係等の分析を行うことができる。また、コントローラ30は、地形情報(例えば、地形の三次元データ等)に基づき、ショベル100の周辺の作業現場の地形状況を詳細に把握することができる。そのため、支援装置300のユーザ等は、ショベル100の周辺の詳細な地形状況と、ショベル100に発生した、或いは、発生する兆候があった不安定状態との相関関係等に関する分析を行うことができる。また、コントローラ30は、周辺監視制御情報に基づき、ショベル100に近接する監視エリア内に存在しうる監視対象(例えば、作業者等の人)の有無に関する状況を詳細に把握することができる。そのため、支援装置300のユーザ等は、ショベル100に近接する監視エリア内の監視対象の有無に関する詳細な状況と、ショベル100に発生した、或いは、発生する兆候があった不安定状態との相関関係等に関する分析を行うことができる。
 また、ログ記録部305により記憶部307に記録される種類のショベル関連情報には、ショベル固有情報(ショベル識別情報)と、オペレータ情報と、ショベル状態情報が含まれる。
 ショベル識別情報は、当該ショベル100を特定するための識別情報であり、例えば、予め規定される機械番号、ショベルID(Identifier)等である。情報取得部304は、例えば、記憶部307等に予め登録(保存)される機械番号等を読み出す態様で、ショベル識別情報を取得する。これにより、支援装置300のユーザ等は、複数のショベル100ごとに、ショベル100に発生した、或いは、発生する兆候があった不安定状態に関する分析等を行うことができる。
 オペレータ情報は、操縦中のオペレータ固有情報としてのオペレータ識別情報と、操縦中のオペレータの各種状態に関する情報(以下、「オペレータ状態情報」)としてのオペレータに関する生体情報(以下、「オペレータ生体情報」)を含む。
 オペレータ識別情報は、当該ショベル100を操縦しているオペレータを特定するための識別情報であり、予め規定されるオペレータID等である。これにより、支援装置300のユーザ等は、オペレータと、ショベル100に発生した、或いは、発生する兆候があった不安定状態との相関関係に関する分析等を行うことができる。
 オペレータ生体情報は、例えば、当該ショベル100を操縦しているオペレータの脳波図、心電図等を含む。これにより、コントローラ30は、ショベル100を操縦中のオペレータの健康状態や心理状態等を把握することができる。そのため、支援装置300のユーザ等は、ショベル100を操縦していたオペレータの健康状態や心理状態と、ショベル100に発生した、或いは、発生する兆候があった不安定状態との間の相関関係等に関する分析を行うことができる。
 ログ記録部305により記憶部307に記録される種類のショベル状態情報には、運転モード情報、エンジン回転数情報、作業種別情報、不安定状態種別情報、安定度情報、車体傾斜状態情報、クローラ向き情報、アタッチメント姿勢情報、操作状態情報、アタッチメント駆動状態情報、安定化制御情報等が含まれうる。
 運転モード情報は、一定回転数で運転されるエンジン11の設定回転数の高低に対応する複数の運転モードのうちの選択されている運転モードに関する情報である。運転モードには、例えば、エンジン11の設定回転数が比較的高く作業スピードを優先するSP(Super Power)モード、エンジン11の設定回転数が中程度で比較的作業負荷の高い重作業に最適なH(Heavy)モード、エンジン11の設定回転数が比較的低く幅広い作業に対応するA(Auto)モード等が含まれる。
 エンジン回転数情報は、例えば、一定回転数で動作するように制御されるエンジン11の回転数の設定値(設定回転数)、或いは、実際の測定値(測定回転数)に関する情報である。
 作業種別情報は、当該ショベル100が行っている作業種別に関する情報である。情報取得部304は、例えば、状態検出装置42から入力されるブームシリンダ7、アームシリンダ8のシリンダ圧に関する検出情報や、操作装置26の操作状態に対応する圧力センサ15aの検出情報等に基づき、作業種別情報を取得する。これにより、支援装置300のユーザ等は、ショベル100の作業種別と、ショベル100に発生した、或いは、発生する兆候があった不安定状態との間の相関関係等に関する分析を行うことができる。
 不安定状態種別情報は、発生した或いは発生する兆候があったショベル100の不安定状態の種別に関する情報である。不安定状態種別情報は、例えば、ショベル100の静的不安定状態、動的不安定状態、或いは、地形的不安定状態の別を表す情報であってよい。また、不安定状態の種別に関する情報は、静的不安定状態、動的不安定状態、或いは、地形的不安定状態の中での更なる種別を表す情報であってもよい。つまり、例えば、不安定状態の種別に関する情報は、静的不安定状態の場合、第1の不安定姿勢状態、第2の不安定姿勢状態、或いは、第3の不安定姿勢状態等の別を表す情報であってよい。また、不安定状態の種別に関する情報は、動的不安定状態の場合、前方滑り不安定状態、後方滑り不安定状態、前部浮き上がり不安定状態、後部浮き上がり不安定状態、或いは、振動不安定状態の別を示す情報であってよい。また、不安定状態の種別に関する情報は、地形的不安定状態の場合、地形的滑り不安定状態、地形的傾倒不安定状態、或いは、地形的振動不安定状態の別を表す情報であってよい。これにより、支援装置300のユーザ等は、ショベル100に発生した或いは発生する兆候があった不安定状態の種別ごとに、ショベル100に発生した、或いは、発生する兆候があった不安定状態に関する分析を行うことができる。
 安定度情報は、ショベル100の安定度を表す情報である。例えば、安定度情報は、ショベル100の静的安定度指標値や、後述するショベル100の動的な安定度を表す指標値(動的安定度指標値)である。
 車体傾斜状態情報は、ショベル100の不安定状態に影響する車体(上部旋回体3)の傾斜状態に関する情報である。車体傾斜状態情報は、例えば、上部旋回体3の前後方向(つまり、上部旋回体3を平面視で見たときのアタッチメントの延出方向)における傾斜角に関する情報である。これにより、支援装置300のユーザ等は、不安定状態の発生或いは兆候と、車体傾斜状態との相関関係等に関する分析を行うことができる。
 クローラ向き情報は、クローラ向きに関する情報である。クローラ向き情報は、例えば、上部旋回体3の向き(前後方向)と、下部走行体1の進行方向との間の相対的な角度である。これにより、支援装置300のユーザ等は、不安定状態の発生或いは兆候と、クローラ向きとの相関関係に関する分析等を行うことができる。
 アタッチメント姿勢情報は、アタッチメントの姿勢状態に関する情報である。アタッチメント姿勢情報は、例えば、アタッチメントの姿勢角、つまり、ブーム角、アーム角、及び、バケット角に関する情報を含む。また、アタッチメント姿勢情報は、例えば、ブーム4、アーム5、及び、バケット6のうちの少なくとも一つの加速度や角加速度に関する情報を含む。また、アタッチメント姿勢情報は、例えば、エンドアタッチメントであるバケット6の位置に関する情報を含む。これにより、支援装置300のユーザ等は、不安定状態の発生或いは兆候と、アタッチメントの姿勢との相関関係等に関する分析を行うことができる。
 アタッチメント駆動情報は、アタッチメントの駆動状態に関する情報、つまり、アタッチメントを駆動するアクチュエータの動作に関する情報である。アタッチメント駆動情報は、例えば、ブームシリンダ7、アームシリンダ8、及び、バケットシリンダ9のうちの少なくとも一つのシリンダ圧(ロッド側油室及びボトム側油室の油圧)を含む。これにより、不安定状態の発生或いは兆候と、アタッチメントの駆動状態との相関関係等に関する分析を行うことができる。
 操作状態情報は、操作装置26に対する各種動作要素(下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6)の操作状態に関する情報である。操作状態情報は、各種動作要素に対応する操作量や操作方向(例えば、ブーム4の上げ方向或いは下げ方向の別、アーム5、バケット6の開き方向或いは閉じ方向の別等)に関する情報を含む。これにより、支援装置300のユーザ等は、不安定状態の発生或いは兆候と、アタッチメントの操作状態との相関関係等に関する分析を行うことができる。
 安定化制御情報は、ショベル100の不安定動作を抑制する安定化制御の制御状態に関する情報である。安定化制御情報には、安定化制御機能のON/OFFに関する情報、安定化制御の作動の有無、安定化制御の作動時の制御内容(例えば、制御対象であるブームシリンダ7、アームシリンダ8を制御するための制御電流等の制御量)が含まれる。これにより、支援装置300のユーザ等は、安定化制御の作動時の制御状態に基づき、制御の介入度合い、つまり、オペレータによる操作がどの程度制御で補正されたか等を分析することができる。また、支援装置300のユーザ等は、安定化制御が不安定状態の兆候に対して正常に作動しているか否か等を分析することもできる。
 尚、不安定状態ログ情報として記録される種類の情報には、安定化制御以外の制御機能に関する制御状態に関する情報が含まれてもよい。
 図1、図2に戻り、ログ送信部306(情報管理部の一例)は、通信機器60を通じて、記憶部307に記録された不安定状態ログ情報3070を管理装置200に送信(アップロード)する。ログ送信部306は、不安定状態ログ情報3070を管理装置200に送信すると、不安定状態ログ情報3070を記憶部307から削除する。また、ログ送信部306は、不安定状態ログ情報3070の管理装置200への送信後、所定期間だけ保持し、その後、削除する態様であってもよい。
 例えば、ログ送信部306は、所定のタイミングで、前回の送信以降で、記憶部307に記録された不安定状態ログ情報3070を管理装置200に送信する。当該所定のタイミングには、例えば、ショベル100の起動時、ショベル100の停止時等が含まれる。
 また、例えば、ログ送信部306は、不安定状態ログ情報3070のために予め用意された記憶領域の占有率が所定基準を超えた場合に、不安定状態ログ情報3070を管理装置200に送信する。これにより、ログ送信部306は、管理装置200にアップロードされた不安定状態ログ情報3070を削除し、次回以降のショベル100の不安定状態の発生或いは兆候に備えて、不安定状態ログ情報3070のための記憶領域を確保しておくことができる。
  <管理装置の構成>
 管理装置200は、制御装置210と、通信機器220を含む。
 制御装置210は、管理装置200における各種動作を制御する。制御装置210は、例えば、ROMや不揮発性の補助記憶装置に格納される一以上のプログラムをCPU上で実行することにより実現される機能部として、ログ取得部2101と、ログ関連情報生成部2102と、ログ関連情報配信部2103とを含む。また、制御装置210は、例えば、補助記憶装置等の不揮発性の内部メモリに規定される記憶領域としての記憶部2100を含む。
 尚、記憶部2100に相当する記憶領域は、制御装置210と通信可能に接続される外部記憶装置に設けられてもよい。
 通信機器220は、通信ネットワークNWを通じて、ショベル100及び支援装置300等の外部と通信を行う任意のデバイスである。
 ログ取得部2101(情報取得部の一例)は、通信機器220によりショベル100から受信される不安定状態ログ情報を受信バッファ等から取得し、記憶部2100に記録する。このとき、ログ取得部2101は、記憶部2100に、ショベル100に不安定状態が発生した、或いは、発生する可能性があった各回の不安定状態ログ情報の中から、不安定状態ログ情報の内容に関する条件に適合する回の不安定状態ログ情報を抽出可能なように、不安定状態ログ情報が整理されたログ情報DB(Data Base)2100A(データベースの一例)を構築する。これにより、制御装置210(後述するログ関連情報生成部2102)は、ユーザからの要求に応じて、適切な不安定状態ログ情報を容易且つ素早く抽出し、ログ関連情報を生成することができる。
 例えば、図4(図4A~4C)は、管理装置200(記憶部2100)に記録(蓄積)された不安定状態ログ情報の履歴(以下、「不安定状態ログ履歴情報」)の一例を表形式で示す図である。具体的には、図4A,4Bは、不安定状態ログ履歴情報のうちの不安定状態・兆候発生時の情報に相当する部分を示す図であり、図4Cは、不安定状態ログ履歴情報のうちの不安定状態・兆候発生前及び不安定状態・兆候発生後の情報に相当する部分である。図4A~4Cの同じ列の情報は、同じ回の不安定状態の発生或いは兆候に対応するが、便宜上、3つに分割された状態で示されている。
 図4A、図4Bに示すように、本例では、図3に例示した種類の周辺環境情報及びショベル関連情報(ショベル固有情報、オペレータ情報、ショベル状態情報)が、不安定状態・兆候発生時の不安定状態ログ情報として記憶部2100に記録される。
 また、図4Cに示すように、本例では、図3に例示した種類の周辺環境情報及びショベル関連情報のうちの動的情報である車体傾斜状態情報と操作状態情報が、不安定状態・兆候発生前及び不安定状態・兆候発生後の不安定状態ログ情報として記憶部2100に記録される。
 尚、不安定状態ログ情報には、不安定状態・兆候発生前及び不安定状態・兆候発生後のうちの双方ではなく、何れか一方に対応する情報だけが含まれていてもよい。つまり、ショベル100のログ記録部305は、不安定状態・兆候発生前及び不安定状態・兆候発生後のうちの双方ではなく、何れか一方に対応する情報だけを含む不安定状態ログ情報を記憶部307に記録してもよい。
 このように、ログ取得部2101は、ショベル100からアップロードされる各回の不安定状態ログ情報を履歴的に記憶部2100に蓄積させる。これにより、管理装置200は、支援装置300のユーザ等に対して、後述の如く、不安定状態ログ履歴情報に基づき生成される、不安定状態ログ関連情報を提供することができる。
 図1、図2に戻り、ログ関連情報生成部2102は、通信機器220を通じ、支援装置300から受信される不安定状態ログ関連情報の取得を要求する信号(以下、「ログ関連情報取得要求」)に応じて、或いは、自動的に、ログ関連情報を生成する。
 例えば、ログ関連情報生成部2102は、不安定状態ログ関連情報として、不安定状態ログ履歴情報の中から、不安定状態ログ情報の内容に関する条件に適合する不安定状態履歴情報を抽出した表形式の情報(以下、「不安定状態ログ履歴抽出情報」)を生成する。不安定状態ログ履歴抽出情報の詳細については後述する(図11参照)。
 また、例えば、ログ関連情報生成部2102は、不安定状態ログ関連情報として、不安定状態ログ履歴情報に基づき、ショベル100の不安定状態に関する統計情報(以下、「不安定状態ログ統計情報」)を生成する。不安定状態ログ統計情報の詳細については後述する(図12~図17参照)。
 また、例えば、ログ関連情報生成部2102は、不安定状態ログ関連情報として、不安定状態或いは不安定状態の兆候が発生したときのショベル100の位置に関するマップ情報、つまり、不安定状態マップ情報を生成する。これにより、管理装置200の管理者や支援装置300のユーザは、不安定状態マップ情報から、どのような場所でショベル100の不安定状態が発生し易いか等を把握することができる。また、ログ関連情報生成部2102は、動的不安定状態、静的不安定状態、及び地形的不安定状態ごとに、不安定状態マップ情報を生成してよい。これにより、管理装置200の管理者等や支援装置300のユーザは、ショベル100の静的不安定状態及び動的不安定状態のそれぞれが発生し易い場所の傾向等を把握することができる。また、管理装置200の管理者等や支援装置300のユーザは、地形的不安定状態に関するマップ情報から、地形的な不安定状態が発生し易い場所やその地形等を把握することができる。また、ログ関連情報生成部2102は、所定の領域ごと(例えば、作業現場ごと)に、不安定状態マップ情報を生成してもよい。これにより、管理装置200の管理者等や支援装置300のユーザは、自身に関連する作業現場等に特化した不安定状態マップ情報を利用することができる。そのため、管理装置200の管理者等や支援装置300のユーザは、例えば、作業現場ごとに、より安全性を考慮した施工計画等を作成することができる。マップ情報の詳細については後述する(図18参照)。
 尚、ログ関連情報生成部2102の機能は、ログ情報DB2100Aに含まれてもよい。つまり、ログ情報DB2100Aは、所定の条件に基づく不安定状態ログ情報を抽出可能なだけでなく、所定の条件に基づく不安定状態ログ統計情報を生成可能な態様で整理されたデータベースであってよい。また、管理装置200は、作業現場の不安定状態(特に、地形的不安定状態)やその兆候が相対的に発生し易い場所において、ショベル100の動作(速度)を制限するように、ショベル100の制御態様を変更してもよい。具体的には、管理装置200は、対応する制御プログラムをショベル100に配信してよい。これにより、ショベル100は、自機の作業現場内の位置に応じて、ショベル100の制御態様(例えば、目標値や制御リミット値等)を異ならせて、不安定状態の発生を抑制することができる。
 ログ関連情報配信部2103は、ログ関連情報生成部2102により生成される不安定状態ログ関連情報を、通信機器220を通じて、ログ関連情報取得要求の送信元の支援装置300に配信(送信)する。これにより、支援装置300の表示装置340には、後述の如く、配信された不安定状態ログ関連情報が表示される(図11~図17参照)。つまり、管理装置200(制御装置210)は、不安定状態ログ関連情報を支援装置300に配信することにより、支援装置300の表示装置340に不安定状態ログ関連情報を表示させる。
  <支援装置の構成>
 支援装置300は、制御装置310と、通信機器320と、操作装置330と、表示装置340を含む。
 制御装置310は、支援装置300の各種動作を制御する。制御装置310は、例えば、CPUや不揮発性の補助記憶装置等に格納される一以上のプログラムを実行することにより実現される機能部として、ログ関連情報取得部3101と、ログ関連情報表示処理部3102を含む。ログ関連情報取得部3101及びログ関連情報表示処理部3102等の機能は、ユーザの操作装置330に対する所定操作に応じて、制御装置310にインストールされる所定のアプリケーションプログラム(以下、「不安定状態ログ閲覧アプリ」)が起動されることにより有効になる態様であってよい。
 通信機器320は、通信ネットワークNWを通じて、管理装置200等の支援装置300の外部と通信を行う任意のデバイスである。通信機器320は、例えば、LTE、4G、5G等の移動体通信規格に対応する移動体通信モジュールである。
 操作装置330は、ユーザからの支援装置300における各種操作を受け付ける。操作装置330は、例えば、ボタン、キーボード、マウス、タッチパッド、表示装置340に実装されるタッチパネル等のハードウェアによる操作部を含む。また、操作装置330は、表示装置340に実装されるタッチパネル等のハードウェアによる操作部と、表示装置
340に表示される操作画面上のボタンアイコン等のソフトウェアによる操作部との組み合わせでもよい。
 表示装置340は、各種情報画像を表示する。表示装置340は、例えば、液晶ディスプレイや有機ELディスプレイである。
 ログ関連情報取得部3101は、操作装置330に対する操作に応じて、不安定状態ログ関連情報の取得を要求するログ関連情報取得要求を、通信機器320を通じて、管理装置200に送信する。ログ関連情報取得要求には、取得を要求する不安定状態ログ関連情報の仕様に関する情報(仕様情報)が含まれる。仕様情報は、例えば、不安定状態ログ抽出情報の取得を要求する場合、ログ情報DB2100Aから不安定状態ログ抽出情報を抽出するための条件に関する情報である。また、仕様情報は、例えば、不安定状態ログ統計情報の取得を要求する場合、具体的な統計情報を生成(算出)するための各種条件を含む。ログ関連情報取得部3101は、例えば、不安定状態ログ関連情報を取得するための操作画面(以下、「不安定状態ログ関連情報取得操作画面」)を通じて、オペレータにより入力される操作内容に応じて、仕様情報を確定する。不安定状態ログ関連情報取得操作画面の詳細は、後述する(図19、図20)。
 ログ関連情報表示処理部3102は、通信機器320を通じて、管理装置200から受信される不安定状態ログ関連情報を表示装置340に表示させる。
 [ショベルの不安定動作及び動的不安定状態]
 次に、図5~図10を参照して、ショベル100の不安定動作及び動的不安定状態について説明する。
  <前方滑り動作及び前方滑り不安定状態>
 まず、図5は、ショベル100の不安定動作の一例である前方滑り動作を説明する図である。具体的には、図5は、前方滑り動作が発生するショベル100の作業状況を示す図である。
 図5に示すように、ショベル100は、地面30aの掘削作業を行っており、主に、アーム5及びバケット6の閉じ動作によって、バケット6から地面30aにショベル100の車体(下部走行体1、旋回機構2、上部旋回体3)寄りの斜め下方向への力F2が作用する。このとき、ショベル100の車体(下部走行体1、旋回機構2、上部旋回体3)には、バケット6に作用する力F2の反力、即ち、掘削反力F2aのうちの水平方向成分F2aHに対応する反力F3がアタッチメントを介して作用する。そして、反力F3がショベル100と地面30aとの間の最大静止摩擦力F0を上回ると、車体は前方に滑ってしまう。
 また、図5に示す状況以外にも、例えば、ショベル100が下り方向に走行している場合、下部走行体1の操作状態(例えば、急操作)や動作状態(例えば、相対的に高い速度や高い加速度)等によっては、ショベル100が下り方向に滑ってしまう可能性がある。
 このように、ショベル100は、例えば、掘削作業を行っている場合の掘削反力が相対的に大きくなると、ショベル100の下部走行体1が地面に対し前方に滑る可能性が高い前方滑り不安定状態になりうる。また、ショベル100は、例えば、斜面を下り方向に走行している場合に、下部走行体1の操作状態や動作状態等によっては、ショベル100が下り方向に滑る可能性が高い前方滑り不安定状態になりうる。
 尚、傾斜地の斜面の状況(例えば、地面の地質、水分量、凹凸等)が主要因で下部走行体1が前方に滑る場合、地形的不安定状態(地形的滑り不安定状態)に該当する。例えば、不安定状態判定部302は、下部走行体1の操作状態や下部走行体1の動作状態が、傾斜地で滑りが発生し得る操作状態(例えば、急操作)や動作状態(例えば、相対的に高い走行速度や高い加速度等)に該当する否かを判定する。そして、不安定状態判定部302は、該当しない場合に、地形的不安定状態と判定してよい。
  <後方滑り動作及び後方滑り不安定状態>
 続いて、図6(図6A、図6B)は、ショベル100の後方滑り動作を説明する図である。具体的には、図6A、図6Bは、後方滑り動作が発生するショベル100の作業状況を示す図である。
 図6Aに示すように、ショベル100は、地面40aの均し作業を行っており、主としてアーム5の開き動作によって、バケット6が土砂40bを前方に押し出すように、地面40aに力F2が作用している。このとき、バケット6には、力F2の反力が作用し、当該反力に対応する力F3が、アタッチメントから車体を後方に引き摺るように作用する。そのため、反力F3がショベル100と地面40aとの間の最大静止摩擦力F0を上回ると、車体は後方に滑ってしまう。
 また、図6Bに示すように、ショベル100は、例えば、主としてアーム5の開き動作によって、バケット6を傾斜した土手部分の法面40cに対して押し付け、法面40cの整地(転圧)作業を行っている。このとき、バケット6には、法面40cを押し付ける力F2の反力が作用し、当該反力に対応する力F3が、アタッチメントから車体を後方に引き摺るように作用する。そのため、図6Aの場合と同様に、反力F3がショベル100と地面40aとの間の最大静止摩擦力F0を上回ると、車体は後方に滑ってしまう。
 このように、ショベル100は、例えば、均し作業や転圧作業を行っている場合のバケット6に作用する後向きの反力が相対的に大きくなると、ショベル100の下部走行体1が地面に対し後方に滑る可能性が高い後方滑り不安定状態になりうる。
  <前部浮き上がり動作及び前部浮き上がり不安定状態>
 図7(図7A~図7F)は、前部浮き上がり動作を説明する図である。具体的には、図7A~図7Fは、前部浮き上がり動作が発生するショベル100の作業状況を示す図である。
 図7Aは、ブーム4の下げ動作(以下、「ブーム下げ動作」)によるショベル100の転圧作業の状況を模式的に示す図である。図7Bは、アーム5の閉じ動作(以下、「アーム閉じ動作」)によるショベル100の掘削作業の前半工程の状況を模式的に示す図である。
 図7Aに示すように、ブーム下げ動作が行われ、バケット6の背面が地面に押しつけられると、バケット6には、地面からの反力が作用し、当該反力は、アタッチメントを介して車体に作用する。また、図7Bに示すように、アーム下げ動作が行われ、バケット6の先端(爪先)が地面を掘り込む状態になると、バケット6には、地面からの掘削反力が作用し、当該反力は、アタッチメントを介して車体に作用する。具体的には、バケット6に作用する反力のうちの垂直方向成分は、車体に対して、ショベル100を後方に傾斜させる、つまり、下部走行体1の前部を浮き上がらせるピッチング方向のモーメント(以下、「後傾モーメント」)として作用する。その結果、当該後傾モーメントが、重力に基づく車体を地面に押さえつけようとするピッチング方向のモーメントを上回ると、車体(下部走行体1)の前部が浮き上がってしまう可能性がある。
 また、図7C、図7Dは、それぞれ、アーム閉じ動作及びアーム5の開き動作(以下、「アーム開き動作」)によるショベル100の均し作業の状況を模式的に示す図である。
 図7C、図7Dに示すように、アーム閉じ動作及びアーム開き動作が行われ、バケット6の先端及び背面部分が地表面付近を均していく場合であっても、地面の凹凸態様や地面の硬さ等によっては、バケット6に比較的大きな反力が作用する場合がありうる。すると、図7A、図7Bの転圧作業や掘削作業の場合と同様、バケット6に作用する反力の垂直方向成分は、車体に対して、後傾モーメントとして作用し、その結果、車体(下部走行体1)の前部が浮き上がってしまう可能性がある。
 また、図7Eは、アタッチメント全体が停止した状態からブーム4が下げ方向に急加速するショベル100の動作状況を模式的に示す図である。
 図7Eに示すように、ブーム下げ動作が開始され、アタッチメントが停止状態から急加速すると、アタッチメント(ブーム4)の回動方向(下げ方向)とは逆方向(上げ方向)のピッチング方向のモーメント、つまり、後傾モーメントがアタッチメントから車体(上部旋回体3)に作用する。その結果、当該後傾モーメントが、重力に基づく車体を地面に押さえつけようとするピッチング方向のモーメントを上回ると、車体(下部走行体1)の前部が浮き上がってしまう可能性がある。
 また、図7Fは、ブーム上げ動作中にブーム4が急停止するショベル100の動作状況を模式的に示す図である。
 図7Fに示すように、ブーム上げ動作が行われ、その最中に、ブーム4が急停止すると、急停止前のアタッチメント(ブーム4)の回動方向(上げ方向)のピッチング方向のモーメント、つまり、後傾モーメントがアタッチメントから車体(上部旋回体3)に作用する。その結果、当該後傾モーメントが、重力に基づく車体を地面に押さえつけようとするピッチング方向のモーメントを上回ると、車体(下部走行体1)の前部が浮き上がってしまう可能性がある。
 このように、ショベル100は、バケット6に作用する地面からの反力が相対的に大きくなると、アタッチメントを介して車体に作用する後傾モーメントが大きくなり、下部走行体1の前部が浮き上がる可能性の高い前部浮き上がり不安定状態になりうる。また、ショベル100は、アタッチメント(ブーム4)の急停止や急加速に応じて、アタッチメントから車体に作用する反作用による後傾モーメントにより、下部走行体1の前部が浮き上がる可能性が高い前部浮き上がり不安定状態になりうる。
 尚、図7A~図7Fに対応する前部浮き上がり不安定状態は、オペレータによるアタッチメントの操作に起因するショベル100の動的不安定状態であるが、外的要因によるショベル100の前部浮き上がり不安定状態もありうる。
 例えば、傾斜地に一部造成された狭い作業道路部分でショベル100が作業を行っている場合に、ショベル100の車体の後部付近の地面が脆い状態であると、当該部分が崩れて、下部走行体1の前部が浮き上がり、後方に転倒してしまう可能性がある。つまり、ショベル100が作業中の作業現場の地形状況等に起因して、ショベル100が地形的不安定状態(地形的浮き上がり不安定状態)になりうる。
  <後部浮き上がり動作及び後部浮き上がり不安定状態>
 図8(図8A~図8H)は、後部浮き上がり動作を説明する図である。具体的には、図8A~図8Hは、後部浮き上がり動作が生じうるショベル100の作業状況を示す図である。
 図8Aは、バケット6の開き動作(以下、「バケット開き動作」と称する)によるショベル100の排土作業の状況を模式的に示す図である。また、図8Bは、ブーム下げ動作及びアーム開き動作によるショベル100の排土作業の状況を模式的に示す図である。
 図8A、図8Bに示すように、バケット開き動作、或いは、ブーム下げ動作及びアーム開き動作が行われると、バケット6の土砂等が外部に排出されるため、ショベル100のアタッチメントの慣性モーメントに変化が生じる。その結果、当該慣性モーメントの変化は、車体に対して、前方に転倒させるようなピッチング方向のモーメント(以下、「前傾モーメント」)を作用させる。すると、当該前傾モーメントが、重力に基づく車体を地面に押さえつけようとするピッチング方向のモーメントを上回ると、車体(下部走行体1)の後部が浮き上がってしまう可能性がある。特に、粘土質の土がバケット6に積載されている場合、土砂がなかなか外部に排出されない。そのため、オペレータ等は、アタッチメントを意図的に振動させる等の操作を行う場合がある。そして、その最中、急に、粘土質の土砂がバケット6から剥がれて、外部に排土されると、当該操作状態による影響もあり、ショベル100の後部浮き上がり動作が助長される。
 また、図8Cは、アーム閉じ動作及びバケット6の閉じ動作(以下、「バケット閉じ動作」)によるショベル100の掘削作業の後半工程の状況、具体的には、バケット6に土砂等を抱え込むショベル100の動作状況を模式的に示す図である。
 図8Cに示すように、アーム閉じ動作及びバケット閉じ動作により、土砂等をバケット6に抱え込もうとすると、地面や土砂からの反力がバケット6に作用する。その結果、当該反力が、アタッチメントを通じ、車体に対して、前方に転倒させるようなピッチング方向の前傾モーメントを作用させ、図8A等の場合と同様、車体(下部走行体1)の後部が浮き上がってしまう可能性がある。
 また、図8Dは、ブーム上げ動作による掘削作業の後半工程の状況、具体的には、バケット6に抱えた土砂等を持ち上げるショベル100の動作状況を模式的に示す図である。
 図8Dに示すように、バケット6を接地させた状態からブーム4が持ち上げられると、バケット6に積載された土砂等の負荷が追加的に作用し、ショベル100のアタッチメントの慣性モーメントに変化が生じる。その結果、当該慣性モーメントの変化が、車体に対して、前方に転倒させるようなピッチング方向の前傾モーメントを作用させ、図8A等の場合と同様、車体(下部走行体1)の後部が浮き上がってしまう可能性がある。
 また、図8Eは、掘削作業の開始に際して、急激なブーム下げ動作の後、地面の直上で急停止されたショベル100の動作状況を模式的に示す図である。
 図8Eに示すように、急激なブーム下げ動作の後、ブーム4が急停止すると、急停止前のアタッチメント(ブーム4)の回動方向(下げ方向)のピッチング方向のモーメント、つまり、前傾モーメントがアタッチメントから車体に対して作用する。その結果、アタッチメントから車体に作用する前傾モーメントに起因して、図8A等の場合と同様、車体(下部走行体1)の後部が浮き上がってしまう可能性がある。
 また、図8Fは、ブーム上げ動作によるショベル100の掘削作業の後半工程の状況、具体的には、バケット6が車体から水平方向に大きく離れた状態で、バケット6に抱えた土砂等を持ち上げる動作状況を模式的に示す図である。
 図8Fに示すように、土砂等を積載したバケット6が水平方向に車体から離れた状態では、アタッチメントの慣性モーメントが非常に大きくなる。そのため、この状況で、ブーム4が持ち上げられると、アタッチメントから車体(上部旋回体3)に作用する、ブーム4の回動方向(上げ方向)とは反対方向(下げ方向)の反作用のモーメント、つまり、前傾モーメントが非常に大きくなる。その結果、アタッチメントから車体に作用する前傾モーメントに起因して、図8A等の場合と同様、車体(下部走行体1)の後部が浮き上がってしまう可能性がある。
 また、図8Gは、バケット6に土砂等を積載し、下部走行体1が斜面を下り方向に走行しているショベル100の動作状況を模式的に示す図である。
 図8Gに示すように、下部走行体1が下り方向に走行すると、重力に基づく車体(下部走行体1)を地面に押さえつけようとするモーメントが相対的に減少する。更に、土砂等を積載したバケット6の影響により、アタッチメントから車体に作用する前傾モーメントが相対的に大きくなる。その結果、アタッチメントから車体に作用する前傾モーメントが、重力に基づく車体(下部走行体1)を地面に押さえつけようとするモーメントを上回ると、車体(下部走行体1)の後部が浮き上がってしまう可能性がある。
 尚、傾斜地の斜面の状況(例えば、地面の地質、水分量、凹凸等)が主要因で車体の後部が浮き上がる(前方に転倒する)場合、地形的不安定状態(地形的滑り不安定状態)に該当する。例えば、不安定状態判定部302は、下部走行体1の操作状態や下部走行体1の動作状態(速度や加速度等)が、傾斜地で前方への転倒が発生し得る操作状態(例えば、急操作)や動作状態(例えば、相対的に高い走行速度や高い加速度等)に該当するか否かを判定する。そして、不安定状態判定部302は、該当しない場合に、地形的不安定状態と判定してよい。
 また、例えば、アーム5と、エンドアタッチメント(バケット6)との接続態様が、クイックカップリングより実現されている場合、ブーム4及びアーム5の動作と、エンドアタッチメントの動作との間に位相差が生じる可能性がある。すると、位相遅れの態様によっては、アタッチメントに慣性モーメントの変化が生じ、上述と同様に、車体に対して、前方に転倒させるようなピッチング方向の前傾モーメントを作用させ、ショベル100に後部浮き上がり動作が発生する可能性がある。つまり、エンドアタッチメントの接続態様に起因して、ショベル100が後部浮き上がり不安定状態になりやすくなる。
 このように、ショベル100は、アタッチメントの動作に起因して、アタッチメントから車体に作用する前傾モーメントが相対的に大きくなると、下部走行体1の後部が浮き上がる可能性が高い後部浮き上がり不安定状態になりうる。また、ショベル100は、下部走行体1が下り方向に走行することにより、車体を地面に押さえつけようとするモーメントが相対的に減少し、下部走行体1の後部が浮き上がる可能性が高い後部浮き上がり不安定状態になりうる。
 尚、図8A~図8Gに対応する後部浮き上がり不安定状態は、オペレータによるアタッチメント操作や下部走行体1の操作に起因するショベル100の不安定状態であるが、外的要因による不安定状態もありうる。
 例えば、図8Hは、崖崩れ等により、ショベル100のアタッチメント(アーム5)に岩等が上から衝突した場合の状況を示す図である。
 図8Hに示すように、アタッチメントに上から岩等が衝突すると、岩等の衝突による外力がアタッチメントから車体に前傾モーメントとして作用する。その結果、アタッチメントから車体に作用する前傾モーメントに起因して、図8A等の場合と同様、車体(下部走行体1)の後部が浮き上がってしまう可能性がある。つまり、崖崩れ等に起因してアタッチメントに作用する外力に起因して、ショベル100が地形的浮き上がり不安定状態になりうる。
 また、例えば、ショベル100が高台側の平地部分から崖部分を切り崩す態様で深堀作業を行っている場合に、下部走行体1の接地面に近い位置まで深堀作業を進めてしまうと、下部走行体1の下の地面が崩れる可能性がある。すると、崩れた地面に起因して、車体(下部走行体1)が前傾し、下部走行体1の後部が浮き上がってしまう(即ち、前方に転倒してしまう)可能性がある。つまり、ショベル100が作業中の作業現場の地形状況等に起因して、ショベル100が地形的浮き上がり不安定状態になりうる。
  <振動動作及び振動不安定状態>
 図9、図10は、ショベル100の振動動作の一例を説明する図である。具体的には、図9(図9A、図9B)は、ショベル100の空中動作時に振動動作が発生する状況を説明する図である。また、図10は、図9A、図9Bに示す状況におけるショベル100の空中動作に伴うピッチング方向の角度(ピッチ角度)及び角速度(ピッチ角速度)の時間波形を示す図である。本例では、空中動作の一例として、バケット6内の積載物DPを外部に排出する排出動作を説明する。
 図9Aに示すように、ショベル100は、アーム5及びバケット6が閉じられ、且つ、ブーム4が相対的に上がった状態になっており、バケット6には、土砂などの積載物DPが収容されている。
 図9Bに示すように、図9Aに示す状態からショベル100の排出動作が行われると、アーム5及びバケット6が大きく開かれ、且つ、ブーム4が下げられ、積載物DPがバケット6の外部に排出される。このとき、アタッチメントの慣性モーメントの変化が、ショベル100の車体を図中矢印Aに示すピッチング方向に振動させるように作用する。
 このとき、図10に示すように、空中動作、具体的には、排出動作に起因して、アタッチメントから車体に対して、ショベル100を前方に転倒させようとするモーメント(前傾モーメント)が発生(作用)し(図中の丸囲み部分参照)、ピッチング方向の振動が発生することがわかる。
 また、図9A、図9Bに示す空中動作以外にも、アタッチメントから車体に前傾モーメントが作用するショベル100の動作状況、つまり、図8A~図8G等に示す後部浮き上がり動作を生じうる動作状況でも、ショベル100に振動動作が生じうる。
 このように、ショベル100の排出動作等が行われる場合のように、車体に相対的に大きな前傾モーメントが発生する場合、ショベル100は、振動動作が発生する可能性のある振動不安定状態になりうる。
 [ショベルの安定化制御]
 次に、安定化制御部303によるショベル100の安定化制御について説明する。
 上述の如く、ショベル100の不安定動作及び不安定状態は、主に、オペレータの操作に基づくアタッチメントの動作に起因して発生する。よって、安定化制御部303は、アタッチメントの動作を制御(補正)することにより、不安定動作を抑制し、ショベル100が不安定状態に陥らないようにすることができる。
 例えば、バケット6に作用する地面からの反力の少なくとも一部は、ブームシリンダ7から車体(上部旋回体3)に作用する。よって、安定化制御部303は、ブームシリンダ7のボトム側油室及びロッド側油室のうちの過剰な一方の圧力を低減させる態様で、アタッチメントの動作を制御することにより、ショベル100の不安定動作及び不安定状態の発生を抑制できる。
 特に、前部浮き上がり動作が発生する状態、つまり、ショベル100が前部浮き上がり不安定状態の場合、ブームシリンダ7のロッド側油室の圧力が過剰な状態になるため、安定化制御部303は、ブームシリンダ7のロッド側油室の圧力を低減させる。また、後部浮き上がり動作が発生する状態、つまり、ショベル100が後部浮き上がり不安定状態の場合、或いは、振動動作が発生する状態、つまり、ショベル100が振動不安定状態の場合、ブームシリンダ7のボトム側油室の圧力が過剰な状態になるため、安定化制御部303は、ブームシリンダ7のボトム側油室の圧力を低減させる。よって、安定化制御部303は、不安定動作及び不安定状態の種別によっては、予め規定されるブームシリンダ7の一方の油室の圧力を低減させる態様で、アタッチメントの動作を制御することにより、ショベル100の不安定動作及び不安定状態の発生を抑制できる。
 具体的には、安定化制御部303は、状態検出装置42から取得される、ブームシリンダ7のシリンダ圧に関する情報に基づき、ブームシリンダ7のボトム側油室及びロッド側油室のうちの過剰な一方の圧力を電磁リリーフ弁70,72でリリーフさせる。より具体的には、安定化制御部303は、ボトム側油室及びロッド側油室のシリンダ圧の検出値に基づき、制御電流の大きさを決定する。そして、安定化制御部303は、電磁リリーフ弁70,72の何れか一方に決定した制御電流を出力することにより、ブームシリンダ7のボトム側油室及びロッド側油室のうちの過剰な一方の圧力を電磁リリーフ弁70,72でリリーフさせる。これにより、安定化制御部303は、ショベル100の不安定動作及び不安定状態を抑制し、ショベル100の安定化制御を実現できる。
 また、安定化制御部303は、同様に、ショベル100の地形的不安定状態に対応する不安定動作(下部走行体1の滑り、下部走行体1の浮き上がり、車体の傾倒やふらつき、車体の振動等)を抑制することができる。
 [動的不安定状態の発生等の判定方法]
 次に、不安定状態判定部302による動的不安定状態の発生の有無及び不安定状態の兆候の有無の判定方法について説明する。
  <動的不安定状態の発生の有無の判定方法>
 まず、不安定状態判定部302によるショベル100の動的不安定状態が発生したか否かの判定方法について説明する。
 例えば、不安定状態判定部302は、ショベル100に不安定動作が発生した場合に、ショベル100に動的不安定状態が発生したと判定し、ショベル100に不安定動作が発生していない場合に、ショベル100に不安定状態が発生していないと判定する。
 このとき、不安定状態判定部302は、状態検出装置42から入力される、車体の動作状態に関する検出情報等に基づき、ショベル100が前方或いは後方に滑ったか否か判定してよい。また、不安定状態判定部302は、状態検出装置42から入力される、車体の傾斜状態に関する検出情報に基づき、ショベル100の前部或いは後部が浮き上がったか否かを判定してよい。
 また、例えば、不安定状態判定部302は、ショベル100の動作に関する安定度を表す指標値(以下、「動的安定度指標値」)が、ショベル100が不安定になる方向に所定閾値を超えた場合に、ショベル100に不安定状態が発生したと判定する。
 このとき、動的安定度指標値は、ショベル100の動的不安定状態との相関関係が相対的に高いショベル100の状態に関する物理量(例えば、前部浮き上がり不安定状態の場合、ブームシリンダ7ロッド側油室のシリンダ圧)であってよい。また、動的安定度指標値は、ショベル100の重心位置に関する情報、車体傾斜状態情報、車体に対するバケット6の位置に関する情報、操作装置26におけるアタッチメントの操作状態に関する情報、クローラ向き情報、アタッチメントから車体(上部旋回体3)に付加される反力に関する情報(例えば、ブームシリンダ7のシリンダ圧に関する検出情報)のうちの少なくとも一つに基づき、総合的な安定度として算出されてもよい。
  <動的不安定状態の兆候の有無の判定方法>
 続いて、不安定状態判定部302によるショベル100の不安定状態の兆候が発生したか否かの判定方法について説明する。
 例えば、不安定状態判定部302は、安定化制御部303による安定化制御が作動した場合、ショベル100の動的不安定状態の兆候が発生したと判定する。安定化制御は、ショベル100が動的不安定状態に近づいた場合、つまり、ショベル100の動作に関する安定度が低下した場合に作動すると考えられるからである。また、不安定状態判定部302は、前提として、ショベル100の動的な安定度が低下する方向(つまり、動的安定度指標値が安定側から所定閾値に近づく方向)に推移した後に、安定化制御部303による安定化制御が作動した場合、ショベル100の不安定状態の兆候が発生したと判定してもよい。この場合、不安定状態判定部302は、上述の如く、ショベル100の動的安定度指標値の推移状況をモニタリングしてよい。また、不安定状態判定部302は、ショベル100の動的安定指標値が安定側から所定閾値に近づく方向に推移し、且つ、所定閾値に相対的に近い状態になっている場合に、動的不安定状態の兆候があると判定してもよい。
 また、例えば、不安定状態判定部302は、不安定動作が生じうるショベル100の具体的な作業状況(例えば、図5~図9に示す動作状況)を考慮して、ショベル100に不安定状態の兆候が発生したか否かを判定する。具体的には、不安定状態判定部302は、上述した不安定状態が生じうる具体的な状況(ショベル100自身の状況、或いは、ショベル100の周辺の状況)と、現在の状況(ショベル100自身の状況、或いは、ショベル100の周辺の状況)とを比較することにより、ショベル100に不安定状態の兆候が発生したか否かを判定してよい。特に、オペレータによるアタッチメントの操作以外の外的要因に起因するショベル100の不安定状態は、ショベル100の状態からその兆候を捉えるのが困難である。これに対して、不安定状態判定部302は、具体的な地形状況やエンドアタッチメントの接続態様に関する情報等を利用することにより、不安定状態の兆候の有無を判定することができる。
 [不安定状態ログ関連情報の具体例]
 次に、図11~図18を参照して、管理装置200(ログ関連情報生成部2102)により生成され、支援装置300の表示装置340に表示される不安定状態ログ関連情報の具体例について説明する。
 尚、図11~図18に示す不安定状態ログ関連情報は、当然の如く、管理装置200の表示装置240に表示されてもよい。これにより、管理装置200の管理者等は、不安定状態ログ関連情報を参照することができる。そのため、支援装置300に表示される場合と同様の作用・効果を奏する。
  <不安定状態ログ履歴抽出情報の具体例>
 まず、図11は、支援装置300の表示装置340に表示される不安定状態ログ関連情報の第1例を示す図である。具体的には、図11は、不安定状態ログ履歴抽出情報の一例を示す図である。
 図11に示すように、本例では、管理装置200のログ情報DB2100Aに保存される不安定状態ログ履歴情報の中から、オペレータ識別情報が"オペレータA"に適合する回の不安定状態ログ情報を抽出した不安定状態ログ履歴抽出情報(一覧表)が支援装置300の表示装置340に表示されている。これにより、支援装置300のユーザは、特定の"オペレータA"が操縦するショベル100に関する不安定状態ログ情報を選択的に確認することができる。また、支援装置300のユーザは特定の"オペレータA"が操縦するショベル100に関する不安定状態ログ情報における傾向等を分析することができる。
 本例の場合、支援装置300のユーザは、例えば、表示装置340に表示されるログ関連情報取得操作画面上で、操作装置330を通じて、オペレータ固有情報を"オペレータA"に限定する条件設定を行う。これにより、支援装置300(ログ関連情報取得部3101)から管理装置200に、当該条件設定に対応する仕様情報を含むログ関連情報取得要求が送信され、管理装置200(ログ関連情報生成部2102)は、本例の不安定状態ログ抽出情報(一覧表)を生成する。そして、管理装置200(ログ関連情報配信部2103)から支援装置300に本例の一覧表が配信され、支援装置300(ログ関連情報表示処理部3102)は、配信された一覧表を表示装置340に表示させる。
 同様に、不安定状態ログ履歴抽出情報は、オペレータ固有情報以外の他の種類の情報(例えば、日時情報)に関する条件設定に基づき、生成されてもよい。また、不安定状態ログ履歴抽出情報は、複数の種類の情報のそれぞれに関する条件(例えば、日時情報が"月曜日"で、天候情報が"晴れ"等)に基づき、生成されてもよい。
 また、本例では、不安定状態ログ履歴抽出情報は、不安定状態ログ情報として記録される全ての種類の情報のうち、一部の種類の情報だけを含む。具体的には、周辺環境情報が、日時情報、天候情報、及び、位置情報だけに限定され、ショベル関連情報が、作業種別情報、不安定状態種別情報、操作状態情報、及び、安定化制御情報の作動情報だけに限定されている。これにより、支援装置300のユーザは、操作装置330に対する所定操作に応じて、表示装置340に確認したい種類の情報だけを表示させることができ、ユーザの利便性が向上する。この場合、支援装置300(ログ関連情報表示処理部3102)は、全ての種類の情報を含む不安定状態ログ履歴抽出情報のうちの一部の種類の情報を省略した一覧表を表示装置340に表示させてもよい。また、支援装置300(ログ関連情報取得部3101)は、ログ関連情報取得操作画面上におけるユーザの操作に応じて、全ての種類の情報の中から一部の種類の情報だけを選択する仕様情報を含むログ関連情報取得要求を管理装置200に送信してもよい。
  <不安定状態ログ統計情報の具体例>
 続いて、図12は、支援装置300の表示装置340に表示される不安定状態ログ関連情報の第2例を示す図である。具体的には、図12は、不安定状態ログ統計情報の第1例を示す図である。
 図12に示すように、本例では、管理装置200のログ情報DB2100Aに保存される不安定状態ログ履歴情報の中から、日時情報に関する条件("○月△日~□月×日")及び位置情報に関する条件("××現場")で構成される抽出条件により抽出された不安定状態ログ情報を前提とした不安定状態ログ統計情報である。また、抽出条件は、当然の如く、日時情報や位置情報以外の種類の情報に関する条件を含んでもよい。以下、図13~図17に示す不安定状態ログ統計情報についても同様である。
 具体的には、本例では、"朝"(12時以前)、"昼"(12時から15時の間)、及び"夕"(15時以降)で区分される時間帯ごとのショベル100の不安定状態の発生或いは兆候の頻度(回数)を表す不安定状態ログ統計情報が支援装置300の表示装置340に表示されている。これにより、支援装置300のユーザは、時間帯と、ショベル100の不安定状態の発生或いは兆候との相関関係等の傾向を確認したり、分析したりすることができる。
 また、本例では、時間帯ごとのショベル100の不安定状態の発生或いは兆候の頻度(回数)の不安定状態の種別ごとの内訳を含む不安定状態ログ統計情報が支援装置300の表示装置340に表示されている。これにより、支援装置300のユーザは、不安定状態の種別ごとに、時間帯と、ショベル100の不安定状態の発生或いは兆候との相関関係等の傾向を確認したり、分析したりすることができる。
 本例の場合、支援装置300のユーザは、例えば、表示装置340に表示されるログ関連情報取得操作画面上で、操作装置330を通じて、日時情報及び位置情報に関する条件設定を行うと共に、不安定状態ログ統計情報の種別を選択する。これにより、支援装置300(ログ関連情報取得部3101)から管理装置200に、当該条件設定に対応する仕様情報を含むログ関連情報取得要求が送信され、管理装置200(ログ関連情報生成部2102)は、仕様情報に適合する不安定状態ログ統計情報を生成する。そして、管理装置200(ログ関連情報配信部2103)から支援装置300に不安定状態ログ統計情報が配信され、支援装置300(ログ関連情報表示処理部3102)は、配信された不安定状態ログ統計情報を表示装置340に表示する。以下、図13~図17の不安定状態ログ統計情報の場合についても同様である。
 同様に、周辺環境情報のうちの日時情報以外の種類の情報に関する条件区分(例えば、"晴"、"曇り"、"雨"、"雪"等の天候情報に関する区分)ごとのショベル100の不安定状態の発生或いは兆候の頻度(回数)を表す不安定状態ログ統計情報が支援装置300の表示装置340に表示されてもよい。
 続いて、図13は、支援装置300の表示装置340に表示される不安定状態ログ関連情報の第3例を示す図である。具体的には、図13は、不安定状態ログ統計情報の第2例を示す図である。
 図13に示すように、本例では、ショベル100が行っていた作業種別ごとのショベル100の不安定状態の発生或いは兆候の頻度(回数)を表す不安定状態ログ統計情報が支援装置300の表示装置340に表示されている。これにより、支援装置300のユーザは、ショベル100の作業種別と、ショベル100の不安定状態の発生或いは兆候との相関関係等の傾向を確認したり、分析したりすることができる。
 また、本例では、図12の例示と同様、ショベル100の作業種別ごとのショベル100の不安定状態の発生或いは兆候の頻度(回数)の不安定状態の種別ごとの内訳を含む不安定状態ログ統計情報が支援装置300の表示装置340に表示されている。これにより、支援装置300のユーザは、不安定状態の種別ごとに、ショベル100の作業種別と、ショベル100の不安定状態の発生或いは兆候との相関関係等の傾向を確認したり、分析したりすることができる。
 同様に、ショベル関連情報のうちのショベル100の作業種別情報以外の種類の情報に関する条件区分(例えば、"オペレータA"、"オペレータB"、・・・等のオペレータ識別情報に関する区分)ごとのショベル100の不安定状態の発生或いは兆候の頻度(回数)を表す不安定状態ログ統計情報が支援装置300の表示装置340に表示されてもよい。
 続いて、図14は、支援装置300の表示装置340に表示される不安定状態ログ関連情報の第4例を示す図である。具体的には、図14は、不安定状態ログ統計情報の第3例を示す図である。
 図14に示すように、ショベル100の不安定状態の発生或いは兆候の総回数のうちの安定化制御が作動した回数の割合を表す不安定状態ログ統計情報が支援装置300の表示装置340に表示されている。これにより、支援装置300のユーザは、ショベル100の不安定状態の発生或いは兆候に対して、どの程度の割合で安定化制御が作動したのかを確認することができる。そのため、例えば、支援装置300のユーザ(具体的には、ショベル100の開発者等)は、安定化制御が適切に作動しているかどうかを分析し、不十分である場合、制御パラメータの調整等の安定化制御の改善を図ることができる。
 また、本例では、安定化制御の種別("滑り抑制制御"、"浮き上がり抑制制御"、及び、"振動抑制制御")ごとに、それぞれの種別に対応するショベル100の不安定状態或いは兆候の総回数のうちの安定化制御が作動した回数の割合を表す不安定状態ログ統計情報が支援装置300の表示装置340に表示されている。これにより、支援装置300のユーザは、安定化制御の種別ごとに、ショベル100の不安定状態の発生或いは兆候に対して、どの程度の割合で安定化制御が作動したのかを確認することができる。
 続いて、図15は、支援装置300の表示装置340に表示される不安定状態ログ関連情報の第5例を示す図である。具体的には、図15は、不安定状態ログ統計情報の第4例を示す図である。
 図15に示すように、本例では、オペレータ("オペレータA"、"オペレータB")ごとに、安定化制御の作動時及び非作動時におけるショベル100の安定度指標値(平均値)を比較する不安定状態ログ統計情報が支援装置300の表示装置340に表示されている。具体的には、不安定状態ログ統計情報には、オペレータごとに、安定化制御の作動時及び非作動時におけるショベル100の安定度指標値(平均値)と、その乖離度が示される。これにより、支援装置300のユーザは、安定化制御の作動時及び非作動時のショベル100の安定度指標値を比較することで、特定のオペレータの操作が、安定化制御の作動基準に対してどの程度安定度が低下する方向に乖離しているかを把握することができる。そのため、支援装置300のユーザは、オペレータの操作がショベル100に不安定状態を招きやすい態様であるか等を評価し、オペレータの操作改善等の方向性を検討することができる。また、支援装置300のユーザは、安定化制御の作動時及び非作動時におけるショベル100の安定度指標値の乖離度を複数のオペレータ間で相対的に比較することができ、相対的な比較結果を考慮して、それぞれのオペレータの操作改善等の方向性を検討することができる。
 また、本例では、不安定状態ログ統計情報は、ショベル100の不安定状態の種別("前滑り"、"後滑り"、"前浮き"、及び、"後浮き")ごとに、安定化制御の作動時及び非作動時におけるショベル100の安定度指標値(平均値)を比較している。これにより、支援装置300のユーザは、ショベル100の不安定状態の種別ごとに、特定のオペレータの操作が、安定化制御の作動基準に対してどの程度安定度が低下する方向に乖離しているかを把握することができる。そのため、支援装置300のユーザは、ショベル100の不安定状態の種別ごとに、オペレータの操作がショベル100に不安定状態を招きやすい態様であるか等を評価し、オペレータの操作改善等の方向性を検討することができる。
 続いて、図16は、支援装置300の表示装置340に表示される不安定状態ログ関連情報の第6例を示す図である。具体的には、図16は、不安定状態ログ統計情報の第5例を示す図である。
 図16に示すように、本例では、オペレータ("オペレータA"、"オペレータB"、"オペレータC")ごとの安定化制御の作動時におけるアタッチメントの動作補正度合いを示す制御量(例えば、電磁リリーフ弁70,72への制御電流)の平均値(以下、「平均制御量」)を表す不安定状態ログ統計情報が支援装置300の表示装置340に表示されている。平均制御量は、大きくなるほど、安定化制御によるアタッチメントの動作の補正度合いが高くなることから、支援装置300のユーザは、平均制御量を把握することで、図15の場合と同様、オペレータの操作がショベル100に不安定状態を招きやすい態様であるか等を評価し、オペレータの操作改善等の方向性を検討することができる。また、支援装置300のユーザは、安定化制御の作動時における平均制御量を複数のオペレータ間で相対的に比較することができ、相対的な比較結果を考慮して、それぞれのオペレータの操作改善等の方向性を検討することができる。
 また、本例では、不安定状態ログ統計情報は、ショベル100の不安定状態の種別("前滑り"、"後滑り"、"前浮き"、及び、"後浮き")ごとに、安定化制御の作動時における平均制御量を示している。これにより、支援装置300のユーザは、図15の場合と同様、ショベル100の不安定状態の種別ごとに、オペレータの操作がショベル100に不安定状態を招きやすい態様であるか等を評価し、オペレータの操作改善等の方向性を検討することができる。このとき、ショベル100の不安定状態の種別は、動的不安定状態の種別であってもよいし、地形的不安定状態の種別であってもよい。また、ショベル100の不安定状態の種別は、動的不安定状態及び地形的不安定状態の別を問わず、その両方を含む形の種別("前滑り"、"後滑り"、"前浮き"、及び、"後浮き")であってもよい。また、ショベル100の不安定状態の種別には、上述の車体の振動や車体の傾倒(ふらつきを含む)が含まれてもよい。また、車体の振動は、動的不安定状態に対応する車体の振動であってもよいし、地形的不安定状態に対応する振動であってもよいし、その両方を含む形であってもよい。
 続いて、図17は、支援装置300の表示装置340に表示される不安定状態ログ関連情報の第7例を示す図である。具体的には、図17は、不安定状態ログ統計情報の第6例を示す図である。
 図17に示すように、本例では、曜日(月曜日~金曜日)ごとのショベル100の不安定状態の発生或いは兆候の回数(頻度)を棒グラフで表す不安定状態ログ統計情報が支援装置300の表示装置340に表示される。具体的には、不安定状態ログ統計情報は、不安定状態の種別ごとの内訳を含む曜日ごとのショベル100の不安定状態の発生或いは兆候の回数(頻度)の棒グラフである。
 本例のように、不安定状態ログ統計情報は、表形式ではなく、グラフ形式で表されてもよい。これにより、支援装置300のユーザは、不安定状態ログ統計情報を視覚的により把握し易くなる。
  <不安定状態マップ情報の具体例>
 続いて、図18は、支援装置300の表示装置340に表示される不安定状態ログ関連情報の第8例を示す図である。具体的には、図18は、不安定状態マップ情報の一例(不安定状態マップ情報画像Gx)を示す図である。
 図18に示すように、本例では、特定の作業現場を真上から見た状況に関する画像(以下、「作業現場画像」)上に、地形的不安定状態或いはその兆候が発生した位置を示すマーカ(図中の△)が重畳された不安定状態マップ情報画像Gxが表示されている。
 尚、作業現場画像は、その一部又は全部が作業現場の状況を模したコンピュータグラフィクスであってよい。また、作業現場画像は、その一部又は全部がショベル100に搭載された撮像装置40や作業現場に設置される撮像装置により撮像された作業現場の撮像画像から生成される合成画像であってもよい。
 資材置き場画像G23は、作業現場において、土管等の資材が仮置きされる場所(資材置き場)を表している。
 資材画像G24は、資材置き場に仮置きされている資材を表している。
 進入禁止領域画像G25は、ショベル100の進入が禁止される領域(進入禁止領域)を表している。進入禁止領域は、例えば、ロードコーンで囲まれた領域である。進入禁止領域では、通常、作業者等による様々な作業が行われている。本例では、進入禁止領域画像G25は、ドットハッチングで表されている。
 ロードコーン画像G26は、ロードコーンを表している。本例では、ロードコーン画像G26は、進入禁止領域を区画している。
 ダンプトラック画像G27は、作業現場の進入し停車されるダンプトラックを表している。ダンプトラック画像G27の表示位置は、例えば、ある時点のダンプトラックの停車位置に対応していてもよいし、標準位置として規定されるダンプトラックの停車位置に対応していてもよい。
 不安定地形領域画像G21,G22は、作業現場において、ショベル100の地形的不安定状態が相対的に発生し易い領域、つまり、ショベル100の地形的不安定状態或いはその兆候が発生した回数が相対的に多い領域を表している。これにより、支援装置300のユーザは、作業現場において、地形的不安定状態が発生し易い場所を把握することができる。
 不安定地形領域画像G21は、ダンプトラック画像G27に隣接する位置にある。これにより、支援装置300のユーザは、ダンプトラックへの土砂等の積み込み時にショベル100が地形的不安定状態になり易いことを把握することができる。
 不安定地形領域画像G22は、資材置き場画像G23に隣接する位置にある。これにより、支援装置300のユーザは、資材を吊り上げて、資材置き場に運んだり、資材置き場の資材を吊り上げて、作業場所に運んだりする際に、ショベル100が地形的に不安定状態になり易いことを把握することができる。
 このように、支援装置300のユーザは、不安定状態マップ情報画像Gxを確認することにより、作業現場で地形的不安定状態が発生し易い場所を把握することができる。そのため、支援装置300のユーザは、例えば、作業現場において、不安定地形領域画像G21,G22に対応する位置でショベル100を操作する場合、通常よりもショベル100の動作が緩やかになるように、細心の注意を図ることができる。また、支援装置300のユーザは、例えば、不安定地形領域画像G21に対応する位置でショベル100の動作が緩やかになるように、作業現場の位置に応じて、操作装置26の操作に対するショベル100の動作速度等を異ならせる制御設定を行うことができる。
 [ログ関連情報取得操作画面の具体例]
 次に、図19及び図20を参照して、支援装置300の表示装置340に表示されるログ関連情報取得操作画面の具体例について説明する。
 まず、図19は、支援装置300の表示装置340に表示されるログ関連情報取得操作画面の一例(ログ関連情報取得操作画面1800)を示す図である。
 図19に示すように、ログ関連情報取得操作画面1800は、予め規定された種別(仕様)の不安定状態ログ履歴抽出情報の一覧表(図11参照)を選択する選択部1801と、選択部1801で選択された種別に対応する仕様情報を含むログ関連情報取得要求を送信させるためのボタンアイコン1802を含む。
 選択部1801には、予め登録されたショベル("ショベルA"、"ショベルB"、・・・)ごとに、異なる抽出条件で抽出される不安定状態ログ履歴抽出情報の種別がリスト表示されている。
 ユーザは、操作装置330を通じて、選択部1801に表示されるリストから所望の種別の不安定状態ログ履歴抽出情報を選択し、ボタンアイコン1802を操作する。これにより、ユーザは、支援装置300から管理装置200に、所望の不安定状態ログ履歴抽出情報の取得を要求するログ関連情報取得要求を送信させることができる。
 また、選択部1801は、予め規定された種別の不安定状態ログ統計情報を選択するリスト表示に置換されてもよい。これにより、ユーザは、操作装置330を通じて、同様の操作を行うことにより、支援装置300から管理装置200に、所望の種別の不安定状態ログ統計情報の取得を要求するログ関連情報取得要求を送信させることができる。
 続いて、図20は、支援装置300の表示装置340に表示されるログ関連情報取得操作画面の他の例(ログ関連情報取得操作画面1900)を示す図である。
 図20に示すように、ログ関連情報取得操作画面1900は、不安定状態ログ履歴抽出情報を抽出するための抽出条件を設定する条件設定部1901と、条件設定部1901で設定された抽出条件に対応する仕様情報を含むログ関連情報取得要求を送信させるためのボタンアイコン1902を含む。
 条件設定部1901には、不安定状態ログ情報を構成する種類の情報がリスト表示される。ユーザは、操作装置330を通じて、条件設定部1901上で、条件設定を行う種類の情報を選択し、具体的な設定内容を入力する。このとき、ユーザは、条件設定部1901上で、複数の種類の情報に対して、条件設定が可能である。これにより、ユーザは、支援装置300から管理装置200に、所望の抽出条件に対応する不安定状態ログ履歴抽出情報を要求するログ関連情報取得要求を送信させることができる。
 また、条件設定部1901は、不安定状態ログ統計情報の仕様に関する条件設定を行うリスト表示に置換されてもよい。これにより、ユーザは、操作装置330を通じて、同様の操作を行うことにより、支援装置300から管理装置200に、所望の条件設定に対応する不安定状態ログ統計情報を要求するログ関連情報取得要求を送信させることができる。
 [変形・変更]
 以上、本発明を実施するための形態について詳述したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 例えば、上述した実施形態において、ログ関連情報生成部2102の機能は、管理装置200から支援装置300(情報処理装置の一例)に移管されてもよい。この場合、最新のログ情報DB2100Aは、管理装置200から支援装置300に適宜配信される。
 また、上述した実施形態及び変形例では、不安定状態ログ情報として、ショベル関連情報と周辺環境情報との双方が記録(蓄積)されるが、何れか一方だけが記録(蓄積)される態様であってもよい。
 また、上述した実施形態及び変形例では、ショベル100(コントローラ30)は、不安定状態ログ情報を記録すると共に、不安定状態ログ情報を管理装置200に送信するが、何れか一方だけを行う態様であってよい。具体的には、コントローラ30は、ショベル100の不安定状態が発生するごと、或いは、ショベル100の不安定状態が発生する兆候があるごとに、情報取得部304により取得された情報(不安定状態ログ情報に相当する情報)を管理装置200にアップロードし、不安定状態ログ情報を記録しなくても(残さなくても)よい。また、コントローラ30は、ショベル100の不安定状態が発生するごと、或いは、ショベル100の不安定状態が発生する兆候があるごとに、不安定状態ログ情報を記録すると共に、不安定状態ログ情報を外部に送信せず、内部メモリや通信可能に接続される外部記憶装置に蓄積させる態様であってもよい。この場合、当該不安定状態ログ情報に対応するデータは、例えば、ショベル100のサービスマン等が適宜外部の記録媒体に読み出してよい。そして、サービスマン等が管理装置200が設置される施設等に出向いて、当該記録媒体から管理装置200にデータ転送が行われてよい。
 また、上述した実施形態及び変形例では、ショベル100の不安定状態の発生、或いは、不安定状態の兆候をトリガとして、不安定状態ログ情報が記録されるが、不安定状態ログ情報の記録のトリガとなるイベントは、任意であってよい。具体的には、コントローラ30は、状態検出装置42によるオペレータの各種状態に関する検出情報(生体情報)に基づき、オペレータの心理状態を分析し、オペレータが危険な状況等に遭遇しヒヤッとしたと判断した場合に、ログ情報を記録していもよい。
 また、上述した実施形態及び変形例では、ショベル100は、下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6等の各種動作要素を全て油圧アクチュエータで駆動する構成であったが、その一部又は全部が電動アクチュエータで駆動される構成であってもよい。この場合、エンジン11は、発電機を駆動し、電動アクチュエータに電力を供給してよい。また、ショベル100は、エンジン11に代えて、或いは、加えて、他の動力源(例えば、バッテリ等の蓄電装置や燃料電池等)を搭載してもよい。つまり、上述した実施形態で開示される構成等は、ハイブリッドショベルや電動ショベル等に適用されてもよい。
 また、上述した実施形態及び変形例では、ショベル100に代えて、或いは、加えて、他の作業機械が適用されてよい。つまり、管理装置200は、ショベル100の各種状態のログ情報に代えて、或いは、加えて、他の作業機械の各種状態のログ情報を取得し、記録する。そして、管理装置200は、支援装置300を通じて、蓄積されたログ情報(ログ履歴情報)に基づき、他の作業機械の各種状態を分析するための情報(ログ関連情報)を生成し、ユーザに提供してよい。例えば、解体機、ホイールローダ、ブルドーザ、クローラクレーン等の走行体及び走行体に搭載される作業部を有する作業機械や、施工現場で使用される作業機械(建設機械)が適用されてよい。
 尚、本願は、2018年3月20日に出願した日本国特許出願2018-053222号に基づく優先権を主張するものであり、これらの日本国特許出願の全内容を本願に参照により援用する。
 1 下部走行体
 3 上部旋回体
 4 ブーム
 5 アーム
 6 バケット
 7 ブームシリンダ
 8 アームシリンダ
 9 バケットシリンダ
 15a 圧力センサ
 26 操作装置
 30 コントローラ
 40 撮像装置
 40B,40L,40R カメラ
 42 状態検出装置
 44 周辺環境情報取得装置
 60 通信機器
 70,72 電磁リリーフ弁
 100 ショベル
 200 管理装置
 210 制御装置
 220 通信機器
 300 支援装置
 301 周辺監視制御部
 302 不安定状態判定部
 303 安定化制御部
 304 情報取得部
 305 ログ記録部(情報管理部)
 306 ログ送信部(情報管理部)
 307 記憶部
 310 制御装置
 320 通信機器
 330 操作装置
 340 表示装置
 2100 記憶部
 2100A ログ情報DB(データベース)
 2101 ログ取得部(情報取得部)
 2102 ログ関連情報生成部
 2103 ログ関連情報配信部
 3070 不安定状態ログ情報
 3101 ログ関連情報取得部
 3102 ログ関連情報表示処理部
 SYS ショベル状態ログ管理システム

Claims (18)

  1.  下部走行体と、
     前記下部走行体に旋回自在に搭載される上部旋回体と、
     前記上部旋回体に搭載されるアタッチメントと、
     ショベルの動作に関する安定度が所定基準を下回った場合、又は、下回る兆候があった場合の当該ショベルに関する情報、及び、当該ショベルの周辺環境に関する情報のうちの少なくとも一方を含むログ情報を記憶部に記録する、又は、外部装置に送信する情報管理部と、を備える、
     ショベル。
  2.  前記情報管理部は、前記安定度を表す指標値が所定閾値を前記安定度が低下する方向に超えた場合の前記ログ情報を、前記記憶部に記録する、又は、前記外部装置に送信する、
     請求項1に記載のショベル。
  3.  前記安定度が前記所定基準を下回った場合には、前記下部走行体が操作されず且つ前記上部旋回体及び前記アタッチメントの少なくとも一方が操作されている状況で、前記下部走行体が滑った場合、又は、地面から浮き上がった場合が含まれる、
     請求項1に記載のショベル。
  4.  前記下部走行体が滑る、又は、地面から浮き上がる可能性がある場合に、前記下部走行体が滑らないように、又は、地面から浮き上がらないように、前記アタッチメントの動作を制御する安定化制御を行う安定化制御部を更に備え、
     前記安定度が前記所定基準を下回る兆候があった場合には、前記安定化制御部による前記安定化制御が作動した場合が含まれる、
     請求項1に記載のショベル。
  5.  前記安定度が前記所定基準を下回った場合には、前記下部走行体が走行している状況で、前記下部走行体が振動する場合、前記下部走行体が滑る場合、又は、前記下部走行体の一部が浮き上がる場合が含まれる、
     請求項1に記載のショベル。
  6.  前記安定度は、当該ショベルの重心位置に関する情報、当該ショベルの傾斜状態に関する情報、前記アタッチメントのバケットの位置に関する情報、前記アタッチメントの操作状態に関する情報、前記上部旋回体に対する前記下部走行体の相対的な向きに関する情報、前記アタッチメントから前記上部旋回体に付加される反力に関する情報のうちの少なくとも一つに基づき、判断される、
     請求項1に記載のショベル。
  7.  前記ログ情報に含まれる当該ショベルに関する情報は、当該ショベルの識別情報、操縦中のオペレータの識別情報、選択中の運転モードに関する情報、当該ショベルのエンジン回転数に関する情報、実施中の作業種別に関する情報、当該ショベルの制御状態に関する情報のうちの少なくとも一つを含む、
     請求項1に記載のショベル。
  8.  前記ログ情報に含まれる当該ショベルの周辺環境に関する情報には、日時に関する情報、天候に関する情報、所定の座標系での当該ショベルの位置を表す座標を含む、当該ショベルの地理的な位置に関する情報、及び、当該ショベルに搭載される撮像装置により撮像される当該ショベルの周囲の撮像画像のうちの少なくとも一つを含む、
     請求項1に記載のショベル。
  9.  前記ログ情報に含まれる当該ショベルの状態に関する情報は、前記安定度が前記所定基準を下回ることにより発生する当該ショベルの不安定状態の種別に関する情報、前記下部走行体又は前記上部旋回体の傾斜状態に関する情報、前記アタッチメントのバケットに付加されている荷重に関する情報、前記アタッチメントのリンク間の角度に関する情報、並びに、前記下部走行体、前記上部旋回体、及び、前記アタッチメントの操作状態に関する情報のうちの少なくとも一つを含む、
     請求項1に記載のショベル。
  10.  ショベルの動作に関する安定度が所定基準を下回った場合、又は、下回る兆候があった場合ごとの前記ショベルの状態に関する情報及び前記ショベルの周辺環境に関する情報のうちの少なくとも一方を含むログ情報を前記ショベルから取得する情報取得部と、
     前記情報取得部により取得される前記ログ情報が記録される記憶部と、を備える、
     情報処理装置。
  11.  前記記憶部には、前記情報取得部により取得される、前記安定度が前記所定基準を下回った場合、又は、下回る兆候があった場合ごとの複数の前記ログ情報の中から、前記ログ情報の内容に関する条件に適合する前記ログ情報を抽出可能なように、前記ログ情報が整理されたデータベースが構築される、
     請求項10に記載の情報処理装置。
  12.  前記記憶部に記録された前記ログ情報に基づき、前記ログ情報に関連する情報を生成し、ユーザ端末の表示装置に所定の形式で表示させる表示制御部を更に備える、
     請求項10に記載の情報処理装置。
  13.  前記表示制御部は、前記表示装置に、前記記憶部に記録された前記ログ情報のうち、前記ログ情報に含まれる複数の種類の情報の中の一以上の種類の情報に関する条件に適合する前記ログ情報の一覧表を表示させる、
     請求項12に記載の情報処理装置。
  14.  前記表示制御部は、前記記憶部に記録された前記ログ情報に基づき、前記安定度が前記所定基準を下回る前記ショベルの不安定状態に関する統計情報を生成し、前記表示装置に表示させる、
     請求項12に記載の情報処理装置。
  15.  前記表示制御部は、前記記憶部に記録された前記ログ情報に基づき、前記ショベルの下部走行体が滑る、又は、地面から浮き上がる可能性がある条件下で、前記下部走行体が滑らないように、又は、地面から浮き上がらないように、前記ショベルのアタッチメントの動作を制御する安定化制御が作動した場合と、前記安定化制御が作動しなかった場合とを比較する前記統計情報を生成し、前記表示装置に表示させる、
     請求項14に記載の情報処理装置。
  16.  前記表示制御部は、前記記憶部に記録された前記ログ情報に基づき、前記安定度が前記所定基準を下回った、又は、下回る兆候があったときの前記ショベルの位置に関する情報を含むマップ情報を生成し、前記表示装置に表示させる、
     請求項12に記載の情報処理装置。
  17.  ショベルと通信可能な情報処理装置が実行する情報処理方法であって、
     前記ショベルの動作に関する安定度が所定基準よりも下回った場合、又は、下回る兆候があった場合の前記ショベルの状態に関する情報及び前記ショベルの周辺環境に関する情報のうちの少なくとも一方を前記ショベルから取得する情報取得ステップと、
     前記情報取得ステップで取得された情報を記憶部に記録する情報記録ステップと、を含む、
     情報処理方法。
  18.  ショベルと通信可能な情報処理装置に、
     前記ショベルの動作に関する安定度が所定基準よりも下回った場合、又は、下回る兆候があった場合の前記ショベルの状態に関する情報及び前記ショベルの周辺環境に関する情報のうちの少なくとも一方を前記ショベルから取得する情報取得ステップと、
     前記情報取得ステップで取得された情報を記憶部に記録する情報記録ステップと、を実行させる、
     プログラム。

     
PCT/JP2019/011821 2018-03-20 2019-03-20 ショベル、情報処理装置、情報処理方法、プログラム WO2019182042A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020507888A JPWO2019182042A1 (ja) 2018-03-20 2019-03-20 ショベル、情報処理装置、情報処理方法、プログラム
CN201980020305.XA CN111919001A (zh) 2018-03-20 2019-03-20 挖土机、信息处理装置、信息处理方法、程序
KR1020207027660A KR102659153B1 (ko) 2018-03-20 2019-03-20 쇼벨, 정보처리장치
EP19770663.3A EP3770341A4 (en) 2018-03-20 2019-03-20 EXCAVATOR, INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD AND PROGRAM
US17/018,135 US11913193B2 (en) 2018-03-20 2020-09-11 Shovel, information processing device, information processing method, and non-transitory storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018053222 2018-03-20
JP2018-053222 2018-03-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/018,135 Continuation US11913193B2 (en) 2018-03-20 2020-09-11 Shovel, information processing device, information processing method, and non-transitory storage medium

Publications (1)

Publication Number Publication Date
WO2019182042A1 true WO2019182042A1 (ja) 2019-09-26

Family

ID=67987294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011821 WO2019182042A1 (ja) 2018-03-20 2019-03-20 ショベル、情報処理装置、情報処理方法、プログラム

Country Status (6)

Country Link
US (1) US11913193B2 (ja)
EP (1) EP3770341A4 (ja)
JP (1) JPWO2019182042A1 (ja)
KR (1) KR102659153B1 (ja)
CN (1) CN111919001A (ja)
WO (1) WO2019182042A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021246190A1 (ja) * 2020-06-04 2021-12-09 コベルコ建機株式会社 実機状態監視システムおよび実機状態監視方法
EP4131128A4 (en) * 2020-03-26 2023-08-30 Sumitomo Heavy Industries, LTD. CONSTRUCTION MACHINERY INFORMATION COMMUNICATION SYSTEM, CONSTRUCTION MACHINERY DISPLAY DEVICE AND MACHINE LEARNING DEVICE
WO2024070448A1 (ja) * 2022-09-30 2024-04-04 日立建機株式会社 映像記録システム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3521517B1 (en) * 2016-09-30 2021-04-07 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. Excavator
JP7285051B2 (ja) * 2018-06-29 2023-06-01 株式会社小松製作所 表示制御装置、および表示制御方法
JP7293933B2 (ja) * 2019-07-17 2023-06-20 コベルコ建機株式会社 作業機械および作業機械支援サーバ
JP2023072113A (ja) * 2021-11-12 2023-05-24 ヤンマーホールディングス株式会社 作業機械の制御方法、作業機械用制御プログラム、作業機械用制御システム及び作業機械

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148946A1 (ja) * 2010-05-24 2011-12-01 日立建機株式会社 作業機械の安全装置
JP2014122510A (ja) 2012-12-21 2014-07-03 Sumitomo (Shi) Construction Machinery Co Ltd ショベル及びショベル制御方法
JP2016173032A (ja) * 2016-07-07 2016-09-29 住友建機株式会社 ショベル
JP2016172963A (ja) * 2015-03-16 2016-09-29 住友重機械工業株式会社 ショベル
JP2017166232A (ja) * 2016-03-16 2017-09-21 住友重機械工業株式会社 ショベル
JP2018003282A (ja) * 2016-06-27 2018-01-11 住友建機株式会社 ショベルの表示装置
JP2018053222A (ja) 2016-09-30 2018-04-05 株式会社神戸製鋼所 無灰炭の製造装置及び無灰炭の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319785A (ja) * 1991-09-06 1993-12-03 Yotaro Hatamura 建設機械の姿勢制御システム
EP1452651A1 (en) * 2001-06-20 2004-09-01 Hitachi Construction Machinery Co., Ltd. Remote control system and remote setting system of construction machinery
JP2008009935A (ja) * 2006-06-30 2008-01-17 Kagawa Univ データ処理装置,データ処理方法,作業機械の遠隔診断システム及び作業機械の遠隔診断方法
JP4997138B2 (ja) * 2008-02-20 2012-08-08 日立建機株式会社 荷重負荷機械
US8280631B2 (en) * 2008-10-02 2012-10-02 Certusview Technologies, Llc Methods and apparatus for generating an electronic record of a marking operation based on marking device actuations
CN105971050A (zh) * 2015-03-13 2016-09-28 住友重机械工业株式会社 挖掘机
JP6462435B2 (ja) * 2015-03-13 2019-01-30 住友重機械工業株式会社 ショベル
JP6096980B2 (ja) * 2015-12-18 2017-03-15 株式会社小松製作所 施工情報表示装置および施工情報の表示方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148946A1 (ja) * 2010-05-24 2011-12-01 日立建機株式会社 作業機械の安全装置
JP2014122510A (ja) 2012-12-21 2014-07-03 Sumitomo (Shi) Construction Machinery Co Ltd ショベル及びショベル制御方法
JP2016172963A (ja) * 2015-03-16 2016-09-29 住友重機械工業株式会社 ショベル
JP2017166232A (ja) * 2016-03-16 2017-09-21 住友重機械工業株式会社 ショベル
JP2018003282A (ja) * 2016-06-27 2018-01-11 住友建機株式会社 ショベルの表示装置
JP2016173032A (ja) * 2016-07-07 2016-09-29 住友建機株式会社 ショベル
JP2018053222A (ja) 2016-09-30 2018-04-05 株式会社神戸製鋼所 無灰炭の製造装置及び無灰炭の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3770341A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4131128A4 (en) * 2020-03-26 2023-08-30 Sumitomo Heavy Industries, LTD. CONSTRUCTION MACHINERY INFORMATION COMMUNICATION SYSTEM, CONSTRUCTION MACHINERY DISPLAY DEVICE AND MACHINE LEARNING DEVICE
WO2021246190A1 (ja) * 2020-06-04 2021-12-09 コベルコ建機株式会社 実機状態監視システムおよび実機状態監視方法
JP2021188469A (ja) * 2020-06-04 2021-12-13 コベルコ建機株式会社 実機状態監視システムおよび実機状態監視方法
CN115698438A (zh) * 2020-06-04 2023-02-03 神钢建机株式会社 实机状态监视系统以及实机状态监视方法
EP4141176A4 (en) * 2020-06-04 2023-10-25 Kobelco Construction Machinery Co., Ltd. SYSTEM AND METHOD FOR MONITORING THE ACTUAL STATE OF A MACHINE
JP7441733B2 (ja) 2020-06-04 2024-03-01 コベルコ建機株式会社 実機状態監視システムおよび実機状態監視方法
WO2024070448A1 (ja) * 2022-09-30 2024-04-04 日立建機株式会社 映像記録システム

Also Published As

Publication number Publication date
US11913193B2 (en) 2024-02-27
EP3770341A1 (en) 2021-01-27
KR20200128698A (ko) 2020-11-16
JPWO2019182042A1 (ja) 2021-03-11
CN111919001A (zh) 2020-11-10
KR102659153B1 (ko) 2024-04-18
US20210002862A1 (en) 2021-01-07
EP3770341A4 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
WO2019182042A1 (ja) ショベル、情報処理装置、情報処理方法、プログラム
US20210246626A1 (en) Shovel, information processing apparatus, and recording medium storing information processing program
WO2018084161A1 (ja) 作業機械用安全管理システム、管理装置、安全管理方法
US20220154431A1 (en) Shovel and information processing apparatus
CN113631779A (zh) 挖土机及施工系统
US20220282451A1 (en) Autonomous operation by earth-moving vehicle based on triggering conditions
US20220254054A1 (en) Construction machine work information generation system and work information generation method
JP7404347B2 (ja) 情報処理システム、情報処理方法、プログラム、作業機械
CN115279974A (zh) 挖土机用施工支援系统
US11881061B2 (en) Work machine and system including work machine
US20200407951A1 (en) Work machine and system including work machine
CN114667379B (zh) 报告生成装置以及报告生成方法
US20210310216A1 (en) Display system of work machine and method of controlling the same
CN114729523B (zh) 工作区域提示装置以及工作区域提示方法
JP7349947B2 (ja) 情報処理装置、作業機械、情報処理方法、情報処理プログラム
JP7390991B2 (ja) 作業機械および施工支援システム
US11753802B2 (en) Work machine and system including work machine
EP3770345A1 (en) Work-machine display system and control method therefor
WO2023229764A1 (en) Systems and methods for determining poor implement penetration
CN115698438A (zh) 实机状态监视系统以及实机状态监视方法
CN115698433A (zh) 压实管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507888

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207027660

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019770663

Country of ref document: EP

Effective date: 20201020