WO2019182040A1 - タンパク質繊維のクリンプ方法、タンパク質繊維の製造方法、タンパク質繊維、紡績糸、及びテキスタイル製品 - Google Patents

タンパク質繊維のクリンプ方法、タンパク質繊維の製造方法、タンパク質繊維、紡績糸、及びテキスタイル製品 Download PDF

Info

Publication number
WO2019182040A1
WO2019182040A1 PCT/JP2019/011807 JP2019011807W WO2019182040A1 WO 2019182040 A1 WO2019182040 A1 WO 2019182040A1 JP 2019011807 W JP2019011807 W JP 2019011807W WO 2019182040 A1 WO2019182040 A1 WO 2019182040A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
amino acid
seq
sequence
fiber
Prior art date
Application number
PCT/JP2019/011807
Other languages
English (en)
French (fr)
Inventor
昌三 鳥越
下田 誠治
明彦 尾関
Original Assignee
株式会社島精機製作所
Spiber株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島精機製作所, Spiber株式会社 filed Critical 株式会社島精機製作所
Priority to US16/982,612 priority Critical patent/US20210017672A1/en
Priority to EP19770452.1A priority patent/EP3770317A4/en
Priority to CN201980021072.5A priority patent/CN112292487A/zh
Priority to JP2020507887A priority patent/JP7453138B2/ja
Publication of WO2019182040A1 publication Critical patent/WO2019182040A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43513Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from arachnidae
    • C07K14/43518Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from arachnidae from spiders
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/15Proteins or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof
    • D01F4/02Monocomponent artificial filaments or the like of proteins; Manufacture thereof from fibroin
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/10Animal fibres
    • D06M2101/12Keratin fibres or silk
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/46General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing natural macromolecular substances or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/002Locally enhancing dye affinity of a textile material by chemical means

Definitions

  • This invention relates to protein fiber crimping.
  • Patent Document 1 JP2014-129639 discloses an artificial protein fiber similar to silk thread.
  • Patent Document 2 (WO2017-038814) discloses that fibers such as wool and cashmere are immersed in an aqueous solution of hydrolyzed keratin derived from feathers and the like. *
  • artificial protein fiber does not have a scale on its surface.
  • Artificial protein fibers are basically flat, have no bends, and are not crimped. Furthermore, unlike polyamide fibers, it cannot be crimped by applying stress under heating. The same applies to regenerated protein fibers such as casein protein fibers and semi-synthetic protein fibers such as sinone.
  • Textile products using uncrimped fibers have a problem with the texture, and in particular, the touch that makes them feel swollen is insufficient.
  • Textile products made of fibers without crimps and scales cannot be shrunk.
  • shrinking is a process in which a textile product immersed in water collides against a container wall or the like of a container to apply force to the textile product and entangle the fibers with each other. Textile products shrink due to shrinkage.
  • This invention Providing a novel method for crimping protein fibers or spun yarns thereof, and a method for producing crimped protein fibers; Providing a method for crimping a textile product comprising the protein fiber or spun yarn; and It is an issue to provide.
  • a protein fiber having a crimping property that crimps in response to a stimulus is immersed in a protein solution having a composition different from that of the protein fiber, and the protein having a different composition is penetrated into the protein fiber.
  • a protein solution having a composition different from that of the protein fiber is immersed in a protein solution having a composition different from that of the protein fiber, and the protein having a different composition is penetrated into the protein fiber.
  • a protein fiber having a crimping property that crimps in response to a stimulus is immersed in a protein solution having a composition different from that of the protein fiber, and the composition is contained inside the protein fiber. Crimp by infiltrating different proteins.
  • a protein fiber having a crimping property that is crimped in response to a stimulus is used as a base fiber (protein base fiber), and proteins having different compositions permeate and crimp inside the base fiber.
  • the present invention also resides in a spun yarn in which a plurality of the above-described protein fiber staples are twisted together.
  • the present invention also resides in a textile product using the above protein fiber or the above spun yarn.
  • the protein fiber (protein matrix fiber) is made of an artificial protein.
  • the artificial protein is an artificial silk protein.
  • staples cut from protein fiber filaments are immersed in the protein solution.
  • a spun yarn obtained by twisting a plurality of staples is dipped in the protein solution.
  • the textile product made of the spun yarn is immersed in the protein solution to shrink the textile product.
  • the textile product is immersed in the protein solution under a condition in which no impact is applied to the textile product.
  • the protein solution is an aqueous solution of hydrolyzed keratin.
  • the number average molecular weight of hydrolyzed keratin is 500 or more and 5000 or less.
  • the keratin concentration of the aqueous solution of hydrolyzed keratin before immersion of the textile product is 0.1 mass% to 2 mass%, and the immersion time is 5 minutes to 120 minutes.
  • the temperature of the aqueous solution of hydrolyzed keratin is 30 ° C or higher and 60 ° C or lower.
  • protein fibers are crimped by infiltrating proteins having different compositions into the protein matrix fibers.
  • the spun yarn is swollen and the texture is improved.
  • the term “crimping in response to a stimulus” means that there is a property of crimping due to a stimulus such as contact with moisture.
  • Stimulation is not limited to water, but may be contact with other solvents or crosslinking agents, heating, radiation irradiation, or the like.
  • an aqueous solvent may be used instead of water.
  • the staple When a crimp is formed by a method such as indentation or heat setting, the staple may be stretched in the spinning process and the crimp may weaken, but the crimp is restored by infiltrating proteins with different compositions into the protein base fiber. Can be made.
  • the protein fiber may be an artificial protein obtained by modifying a part of the amino acid sequence of a naturally derived protein (for example, 10% or less of the amino acid sequence).
  • the artificial protein is particularly preferably an artificial silk protein.
  • the protein fiber may be a fiber containing a semi-synthetic protein such as promix, sinon, or a regenerated protein such as casein protein, peanut protein, corn protein, and soy protein.
  • the protein fiber may consist of only one type of protein or may consist of a plurality of types of proteins.
  • the protein fiber may be a blend of artificial protein fiber and wool or silk.
  • protein fibers those other than animal hair such as wool lack the surface scale and are not crimped originally.
  • a protein fiber staple is immersed in a protein solution having a different composition and the protein having a different composition is infiltrated into the protein fiber, the crimp becomes remarkable and the feeling of swelling of the spun yarn increases.
  • Textile products are fabrics such as knitted fabrics, woven fabrics and non-woven fabrics, or apparel products such as clothing, handkerchiefs, towels, footwear, curtains and table cloths, and industrial products such as car seats.
  • the textile product is immersed in the protein solution under conditions that do not apply impact to the textile product, for example, conditions that do not apply impact due to collision of the protein solution with the container wall of the container.
  • it can be contracted not by external force applied to the textile product but by contact between the protein solution and the textile product. Therefore, even delicate textile products can be shrunk without causing damage.
  • the protein solution is an aqueous solution of hydrolyzed keratin.
  • hydrolyzed keratin When hydrolyzed keratin is used, the texture of the treated textile product is superior to hydrolyzed silk or the like. Particularly preferred is hydrolyzed keratin derived from feathers. It is also important to use low molecular weight hydrolyzed keratin, and the number average molecular weight is preferably 500 or more and 5000 or less, particularly 500 or more and 3000 or less. Because of the low molecular weight, keratin penetrates into the staples.
  • the keratin concentration of the aqueous solution of hydrolyzed keratin before immersion of the textile product is preferably 0.1 mass% to 2 mass%, and the immersion time is preferably 5 minutes to 120 minutes. In this range, the inventor has confirmed that the texture of the spun yarn can be improved by crimping the staple, and that the textile product can be crimped.
  • the temperature of the aqueous solution of hydrolyzed keratin is preferably 30 ° C or higher and 60 ° C or lower. If it is less than 30 ° C, the onset of crimp is slow, and if it exceeds 60 ° C, the textile product soaked becomes hard and the texture is lowered.
  • the spun yarn of the present invention a plurality of staples cut from protein fibers having a crimp property that crimps in response to a stimulus are twisted together, proteins having a composition different from that of the protein fibers penetrate into the staples, and the staples are Crimping.
  • the texture of the spun yarn is improved by the expression of the crimp.
  • the protein fiber is not particularly limited as long as it has a crimping property that crimps in response to stimulation, and may be, for example, a structural protein fiber or an artificial protein fiber.
  • a protein having a composition different from that of protein fiber is hydrolyzed keratin.
  • the present invention also resides in a textile product comprising the above-described spun yarn. If the protein is infiltrated at the stage of the spun yarn, crimping occurs, and the spun yarn is crimped at that time. In addition, if the protein is infiltrated after making it into a textile product, crimping occurs and shrinkage occurs.
  • the protein fiber is made of an artificial protein, and the protein fiber dyeability is improved by a protein having a different composition such as hydrolyzed keratin.
  • the protein fiber of the present invention is made of an artificial protein, and the dyeability of the protein fiber is improved by a protein having a different composition such as hydrolyzed keratin.
  • the protein having a different composition is hydrolyzed keratin, and the protein fiber is immersed in an aqueous solution of hydrolyzed keratin for 40 minutes or more and 80 minutes or less.
  • a fiber made of an artificial protein is immersed in hydrolyzed keratin, a peak of keratin absorption occurs when the immersion time is around 60 minutes. Therefore, a large amount of keratin can penetrate into the artificial protein fiber in an immersion time of around 40 minutes to 80 minutes.
  • the protein constituting the protein fiber may be a structural protein, and the structural protein may be fibroin.
  • Fibroin may be natural fibroin or modified fibroin (artificial fibroin).
  • the modified fibroin may be silk fibroin, and this modified silk fibroin may be one in which a hydrophobic amino acid residue is artificially introduced, or a hydrophilic amino acid residue is artificial. It may be introduced in the above.
  • the modified fibroin is a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m- (A) n motif.
  • an amino acid sequence (N-terminal sequence and C-terminal sequence) may be further added to either one or both of the N-terminal side and the C-terminal side of the domain sequence.
  • the N-terminal sequence and the C-terminal sequence are not limited to these, but are typically regions having no amino acid motif repeat characteristic of fibroin and consisting of about 100 amino acids.
  • modified fibroin means an artificially produced fibroin (artificial fibroin).
  • the modified fibroin may be a fibroin whose domain sequence is different from the amino acid sequence of naturally occurring fibroin or may be the same as the amino acid sequence of naturally occurring fibroin.
  • Natural fibroin as used herein is also represented by Formula 1: [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m- (A) n motif.
  • a protein comprising a domain sequence to be processed.
  • the amino acid sequence of naturally-occurring fibroin may be used as it is, and it depends on the amino acid sequence of naturally-occurring fibroin.
  • the amino acid sequence may be modified (for example, the amino acid sequence may be modified by modifying the gene sequence of a naturally-derived fibroin that has been cloned), or it may be artificially designed without relying on the naturally-occurring fibroin. And those synthesized (for example, those having a desired amino acid sequence by chemically synthesizing a nucleic acid encoding the designed amino acid sequence).
  • domain sequence means a crystalline region (typically corresponding to the (A) n motif of the amino acid sequence) and an amorphous region (typically the amino acid sequence of the silk fibroin).
  • a crystalline region typically corresponding to the (A) n motif of the amino acid sequence
  • an amorphous region typically the amino acid sequence of the silk fibroin.
  • Formula 1 [(A) n motif-REP] m
  • Formula 2 [(A) n motif-REP] m- (A) n motif.
  • (A) n motif represents an amino acid sequence mainly composed of alanine residues, and n is 2 to 27. n may be an integer from 2 to 20, 4 to 27, 4 to 20, 8 to 20, 10 to 20, 4 to 16, 8 to 16, or 10 to 16.
  • the ratio of the number of alanine residues to the total number of amino acid residues in the (A) n motif may be 40% or more, such as 60% or more, 70% or more, 80% or more, 83% or more, 85% or more, It may be 86% or more, 90% or more, 95% or more, or 100% (meaning that it is composed only of alanine residues).
  • a plurality of (A) n motifs present in the domain sequence may be composed of at least seven alanine residues alone.
  • REP indicates an amino acid sequence composed of 2 to 200 amino acid residues.
  • REP may be an amino acid sequence composed of 10 to 200 amino acid residues.
  • m represents an integer of 2 to 300, and may be an integer of 10 to 300.
  • a plurality of (A) n motifs may have the same amino acid sequence or different amino acid sequences.
  • Plural REPs may have the same amino acid sequence or different amino acid sequences.
  • the modified fibroin is, for example, a modification of the amino acid sequence corresponding to, for example, substitution, deletion, insertion and / or addition of one or more amino acid residues to the cloned natural fibroin gene sequence. Can be obtained at Substitution, deletion, insertion and / or addition of amino acid residues can be carried out by methods well known to those skilled in the art such as partial-directed mutagenesis. Specifically, Nucleic Acid Res. 10, 6487 (1982), Methods in Enzymology, 100, 448 (1983), and the like.
  • Naturally-derived fibroin is a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m- (A) n motif.
  • Specific examples include fibroin produced by insects or spiders.
  • fibroin produced by insects include, for example, Bombyx mori, Kwako (Bombyx mandaraina), Tengea (Antheraea yamanai), ⁇ ⁇ (Antereaperanii), ⁇ ⁇ (Eriothyraminey) ), Silkworms produced by silkworms, such as Samia cythia, chestnut worms (Caligula japonica), Chuser moth (Antherea mylitta), Antheraea assama, and vespax (Vespaxia spp.) Hornet silk protein.
  • fibroin produced by insects include silkworm fibroin L chain (GenBank accession number M76430 (base sequence) and AAA27840.1 (amino acid sequence)).
  • Fibroin produced by spiders includes, for example, spiders belonging to the genus spider (Araneus spp.) Such as the spider spider, the spider spider, the red spider spider, and the bean spider, the genus spiders of the genus Araneus, the spider spider spider, the spider spider genus e Spiders, spiders such as spiders, spiders belonging to the genus Spider, spiders belonging to the genus Pronos, spiders belonging to the genus Trinofunda, such as Torinofundamas (genus Cyrtarachne) Spiders belonging to the genus (Gasteracantha), spiders belonging to the genus Spider (Ordgarius genus), such as the spiders, the spiders, and the spiders belonging to the genus Ordgarius Spiders belonging to the genus Argiope, such as the genus Argiope, spiders belonging to the genus Arachnura, such as the white-tailed spider, spiders belonging to the
  • Spiders belonging to the genus Azumigumi (Menosira), spiders belonging to the genus Dyschiriognatha (genus Dyschiriognatha) such as the common spider spider, the black spider spider, the genus Spider genus belonging to the genus Spider belonging to the genus (L) and the genus Spider belonging to the genus (L) Produced by spiders belonging to the family Tetragnathidae such as spiders belonging to the genus Prostenops
  • Examples include spider silk protein.
  • the spider silk protein include dragline proteins such as MaSp (MaSp1 and MaSp2) and ADF (ADF3 and ADF4), MiSp (MiSp1 and MiSp2), and the like.
  • spider silk proteins produced by spiders include, for example, fibroin-3 (adf-3) [derived from Araneus diadematus] (GenBank accession numbers AAC47010 (amino acid sequence), U47855 (base sequence)), fibroin-4 (adf-4) [derived from Araneus diadematus] (GenBank accession number AAC47011 (amino acid sequence), U47856 (base sequence)), dragline silk protein spiroin 1 [derived from Nephila clavipes] (GenBank accession number 4) ), U37520 (base sequence)), major ampulate spidro n 1 [derived from Latroductus hesperus] (GenBank accession number ABR68856 (amino acid sequence), EF595246 (base sequence)), dragline silk protein spidolin 2 [derived from Nephila clavata (GenBank accession number AAL32 base sequence 44 AAL32 base sequence amino acid 44, amino acid sequence 44 AAL47)
  • Naturally derived fibroin include fibroin whose sequence information is registered in NCBI GenBank.
  • sequence information is registered in NCBI GenBank.
  • spidin, sample, fibroin, “silk and polypeptide”, or “silk and protein” is described as a keyword in DEFINITION from sequences including INV as DIVISION among the sequence information registered in NCBI GenBank. It can be confirmed by extracting a character string of a specific product from the sequence, CDS, and a sequence in which the specific character string is described from SOURCE to TISSUE TYPE.
  • the modified fibroin may be modified silk fibroin (modified silk protein amino acid sequence produced by silkworm), modified spider silk fibroin (modified spider silk protein amino acid sequence produced by spiders) Thing). Among them, modified spider silk fibroin is preferably used.
  • modified fibroin examples include a modified fibroin derived from a large sphincter bookmark silk protein produced in a spider large bottle gland, a modified fibroin with a reduced content of glycine residues, (A) an n motif Modified fibroin with reduced content, content of glycine residue, and (A) modified fibroin with reduced content of n motif.
  • Examples of the modified fibroin derived from the large sphincter bookmark silk protein produced in the spider large bottle gland include a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m .
  • n is preferably an integer of 3 to 20, more preferably an integer of 4 to 20, and more preferably 8 to 20.
  • An integer is further preferred, an integer of 10 to 20 is still more preferred, an integer of 4 to 16 is still more preferred, an integer of 8 to 16 is particularly preferred, and an integer of 10 to 16 is most preferred.
  • the number of amino acid residues constituting REP is preferably 10 to 200 residues. More preferably, it is ⁇ 150 residues, more preferably 20-100 residues, and even more preferably 20-75 residues.
  • a modified fibroin derived from the large sphincter bookmark silk protein produced in the spider large bottle gland is a glycine residue contained in the amino acid sequence represented by Formula 1: [(A) n motif-REP] m ,
  • the total number of residues of serine residues and alanine residues is preferably 40% or more, more preferably 60% or more, still more preferably 70% or more based on the total number of amino acid residues. .
  • the modified fibroin derived from the large sphincter bookmark silk protein produced in the spider large bottle gland comprises a unit of an amino acid sequence represented by the formula 1: [(A) n motif-REP] m and has a C-terminal. It may be a polypeptide whose sequence is an amino acid sequence shown in any of SEQ ID NOs: 14 to 16 or an amino acid sequence having 90% or more homology with the amino acid sequence shown in any of SEQ ID NOs: 14 to 16.
  • the amino acid sequence shown in SEQ ID NO: 14 is the same as the amino acid sequence consisting of 50 amino acids at the C-terminal of the amino acid sequence of ADF3 (GI: 1263287, NCBI), and the amino acid sequence shown in SEQ ID NO: 15 is the sequence
  • the amino acid sequence shown in SEQ ID NO: 14 is identical to the amino acid sequence obtained by removing 20 residues from the C-terminus, and the amino acid sequence shown in SEQ ID NO: 16 is 29 residues removed from the C-terminus of the amino acid sequence shown in SEQ ID NO: 14. It is identical to the amino acid sequence.
  • modified fibroin derived from a large sphincter bookmark silk protein produced in the spider large bottle-like gland
  • amino acid sequence represented by SEQ ID NO: 17, or (1-ii) sequence Mention may be made of modified fibroin comprising an amino acid sequence having a sequence identity of 90% or more with the amino acid sequence indicated by number 17. The sequence identity is preferably 95% or more.
  • the amino acid sequence represented by SEQ ID NO: 17 is an amino acid sequence of ADF3 in which an amino acid sequence (SEQ ID NO: 18) consisting of a start codon, His10 tag and an HRV3C protease (Human rhinovirus 3C protease) recognition site is added to the N-terminus.
  • the 13th repeat region was increased to approximately double, and the translation was mutated to terminate at the 1154th amino acid residue.
  • the C-terminal amino acid sequence of the amino acid sequence shown in SEQ ID NO: 17 is identical to the amino acid sequence shown in SEQ ID NO: 16.
  • the modified fibroin (1-i) may be composed of the amino acid sequence represented by SEQ ID NO: 17.
  • the modified fibroin with a reduced content of glycine residues has an amino acid sequence with a reduced content of glycine residues in the domain sequence compared to naturally occurring fibroin. It can be said that the modified fibroin has an amino acid sequence corresponding to at least one or more glycine residues in REP substituted with another amino acid residue as compared with naturally occurring fibroin.
  • Modified fibroin with a reduced content of glycine residues has a domain sequence of GGX and GPGXX in REP (where G is a glycine residue, P is a proline residue, X Is an amino acid residue other than glycine.)
  • G is a glycine residue
  • P is a proline residue
  • X is an amino acid residue other than glycine.
  • this corresponds to substitution of one glycine residue in at least one or more of the motif sequences with another amino acid residue. It may have an amino acid sequence.
  • the ratio of the motif sequence in which the above glycine residue is replaced with another amino acid residue may be 10% or more with respect to the total motif sequence.
  • the modified fibroin with a reduced content of glycine residues includes a domain sequence represented by Formula 1: [(A) n motif-REP] m , and is located on the most C-terminal side from the domain sequence (A )
  • the number of alanine residues relative to the total number of amino acid residues in the n motif may be 83% or more, preferably 86% or more, more preferably 90% or more, and 95% or more. More preferably, it is 100% (meaning that it is composed only of alanine residues).
  • the modified fibroin in which the content of glycine residues is reduced is that the content ratio of the amino acid sequence consisting of XGX is increased by substituting one glycine residue of the GGX motif with another amino acid residue. preferable.
  • the content ratio of the amino acid sequence consisting of GGX in the domain sequence is preferably 30% or less, more preferably 20% or less, and more preferably 10% or less. More preferably, it is 6% or less, still more preferably 4% or less, still more preferably 2% or less.
  • the content ratio of the amino acid sequence consisting of GGX in the domain sequence can be calculated by the same method as the method for calculating the content ratio (z / w) of the amino acid sequence consisting of XGX below.
  • a fibroin modified fibroin or naturally-occurring fibroin containing a domain sequence represented by Formula 1: [(A) n motif-REP] m , (A) n located closest to the C-terminal side from the domain sequence
  • An amino acid sequence consisting of XGX is extracted from all REPs included in the sequence excluding the sequence from the motif to the C-terminal of the domain sequence.
  • z / w (%) can be calculated by dividing z by w.
  • z / w is preferably 50.9% or more, more preferably 56.1% or more, and 58.7% or more. Is more preferably 70% or more, still more preferably 80% or more. Although there is no restriction
  • a modified fibroin with a reduced content of glycine residues encodes another amino acid residue by substituting at least a part of the base sequence encoding the glycine residue from the cloned gene sequence of naturally occurring fibroin. It can obtain by modifying so that. At this time, one glycine residue in GGX motif and GPGXX motif may be selected as a glycine residue to be modified, or substitution may be performed so that z / w is 50.9% or more.
  • an amino acid sequence satisfying the above-described aspect can be designed from the amino acid sequence of naturally derived fibroin, and a nucleic acid encoding the designed amino acid sequence can be obtained by chemical synthesis.
  • one or more amino acid residues are further substituted or deleted.
  • the amino acid sequence corresponding to the insertion and / or addition may be modified.
  • the other amino acid residue is not particularly limited as long as it is an amino acid residue other than glycine residue, but valine (V) residue, leucine (L) residue, isoleucine (I) residue, methionine ( M) hydrophobic amino acid residues such as proline (P) residue, phenylalanine (F) residue and tryptophan (W) residue, glutamine (Q) residue, asparagine (N) residue, serine (S ) Residues, lysine (K) residues and glutamic acid (E) residues are preferred, and valine (V) residues, leucine (L) residues, isoleucine (I) residues and glutamine ( Q) residue is more preferable, and glutamine (Q) residue is more preferable.
  • modified fibroin with a reduced content of glycine residues (2-i) the amino acid sequence represented by SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12, or (2- ii)
  • SEQ ID NO: 3 amino acid sequence represented by SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12, or
  • 2- ii A modified fibroin containing an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12 can be mentioned.
  • the modified fibroin (2-i) will be described.
  • the amino acid sequence represented by SEQ ID NO: 3 is obtained by substituting GQX for all GGX in the REP of the amino acid sequence represented by SEQ ID NO: 1 corresponding to naturally occurring fibroin.
  • the amino acid sequence represented by SEQ ID NO: 4 is the amino acid sequence represented by SEQ ID NO: 3, in which every two (A) n motifs are deleted from the N-terminal side to the C-terminal side, and further before the C-terminal sequence.
  • One [(A) n motif-REP] is inserted into the.
  • the amino acid sequence shown in SEQ ID NO: 10 has two alanine residues inserted in the C-terminal side of each (A) n motif of the amino acid sequence shown in SEQ ID NO: 4, and a part of glutamine (Q) residues. Substituted with a serine (S) residue and a part of the amino acid at the N-terminal side is deleted so as to be almost the same as the molecular weight of SEQ ID NO: 4.
  • the amino acid sequence represented by SEQ ID NO: 12 is a region of 20 domain sequences present in the amino acid sequence represented by SEQ ID NO: 9 (however, several amino acid residues on the C-terminal side of the region are substituted). Is a sequence in which a His tag is added to the C-terminal of the sequence repeated four times.
  • the value of z / w in the amino acid sequence represented by SEQ ID NO: 1 is 46.8%.
  • the z / w values in the amino acid sequence shown in SEQ ID NO: 3, the amino acid sequence shown in SEQ ID NO: 4, the amino acid sequence shown in SEQ ID NO: 10, and the amino acid sequence shown in SEQ ID NO: 12 are 58.7%, 70.1%, 66.1% and 70.0%.
  • the x / y values of the amino acid sequences shown in SEQ ID NOs: 1, 3, 4, 10 and 12 at a jagged ratio (described later) of 1: 1.8 to 11.3 are 15.0% and 15. 0%, 93.4%, 92.7% and 89.3%.
  • the modified fibroin (2-i) may be composed of the amino acid sequence represented by SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12.
  • the modified fibroin (2-ii) includes an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12.
  • the modified fibroin of (2-ii) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m .
  • the sequence identity is preferably 95% or more.
  • the modified fibroin of (2-ii) has a sequence identity of 90% or more with the amino acid sequence represented by SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12, and is contained in REP (XGX ( Where X is an amino acid residue other than glycine.) Z / w where z is the total number of amino acid residues of the amino acid sequence consisting of z and w is the total number of amino acid residues of REP in the domain sequence. Is preferably 50.9% or more.
  • modified fibroin may contain a tag sequence at one or both of the N-terminal and C-terminal. This makes it possible to isolate, immobilize, detect and visualize the modified fibroin.
  • tag sequences include affinity tags that use specific affinity (binding property, affinity) with other molecules.
  • affinity tag include a histidine tag (His tag).
  • His tag is a short peptide with about 4 to 10 histidine residues, and has the property of binding specifically to metal ions such as nickel. Therefore, the isolation of modified fibroin by metal chelating chromatography (chelating metal chromatography) Can be used.
  • Specific examples of the tag sequence include the amino acid sequence represented by SEQ ID NO: 5 (amino acid sequence including a His tag sequence and a hinge sequence).
  • GST glutathione-S-transferase
  • MBP maltose-binding protein
  • an “epitope tag” using an antigen-antibody reaction can also be used.
  • a peptide (epitope) exhibiting antigenicity as a tag sequence, an antibody against the epitope can be bound.
  • HA peptide sequence of hemagglutinin of influenza virus
  • myc tag peptide sequence of hemagglutinin of influenza virus
  • FLAG tag peptide sequence of hemagglutinin of influenza virus
  • a tag sequence that can be separated with a specific protease can also be used.
  • the modified fibroin from which the tag sequence has been separated can also be recovered.
  • modified fibroin containing the tag sequence examples include (2-iii) the amino acid sequence represented by SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13, or (2-iv) SEQ ID NO: 8 And a modified fibroin containing an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13.
  • amino acid sequences represented by SEQ ID NOs: 6, 7, 8, 9, 11, and 13 are the amino acids represented by SEQ ID NO: 5 at the N-terminus of the amino acid sequences represented by SEQ ID NOs: 1, 2, 3, 4, 10, and 12, respectively.
  • a sequence (including a His tag sequence and a hinge sequence) is added.
  • the modified fibroin may be composed of the amino acid sequence represented by SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13.
  • the modified fibroin (2-iv) includes an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13.
  • the modified fibroin of (2-iv) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m .
  • the sequence identity is preferably 95% or more.
  • the modified fibroin (2-iv) has an amino acid sequence represented by SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13 with a sequence identity of 90% or more, and is contained in XREP ( Where X is an amino acid residue other than glycine.) Z / w where z is the total number of amino acid residues of the amino acid sequence consisting of z and w is the total number of amino acid residues of REP in the domain sequence. Is preferably 50.9% or more.
  • the aforementioned modified fibroin may contain a secretion signal for releasing the protein produced in the recombinant protein production system to the outside of the host.
  • the sequence of the secretion signal can be appropriately set according to the type of host.
  • (A) modified fibroin content of n motifs has been reduced, the domain sequence is compared to the naturally occurring fibroin, having an amino acid sequence reduced the content of (A) n motif. It can be said that the domain sequence of the modified fibroin has an amino acid sequence corresponding to the deletion of at least one or more (A) n motifs as compared to naturally occurring fibroin.
  • the modified fibroin in which the content of n motif is reduced may have an amino acid sequence corresponding to 10% to 40% deletion of (A) n motif from naturally occurring fibroin.
  • the modified fibroin with a reduced content of n motif has 1 to 3 (A) n motifs in which the domain sequence is at least from the N-terminal side to the C-terminal side compared to naturally occurring fibroin. Each may have an amino acid sequence corresponding to the deletion of one (A) n motif.
  • the domain sequence of the modified fibroin is at least two consecutive from the N-terminal side to the C-terminal side compared to the naturally derived fibroin (A) n motif And an amino acid sequence corresponding to the deletion of one (A) n motif repeated in this order.
  • (A) modified fibroin content of n motifs has been reduced, the domain sequence, amino acids corresponding to at least the N-terminal side 2 every other towards the C-terminal side (A) n motifs lacking It may have a sequence.
  • a modified fibroin with a reduced content of n- motif contains a domain sequence represented by Formula 1: [(A) n- motif-REP] m , and is adjacent to the C-terminal side from the N-terminal side.
  • the number of alanine residues relative to the total number of amino acid residues in the n motif may be 83% or more, preferably 86% or more, more preferably 90% or more, and 95% or more. More preferably, it is 100% (meaning that it is composed only of alanine residues).
  • FIG. 1 shows a domain sequence obtained by removing the N-terminal sequence and the C-terminal sequence from the modified fibroin.
  • the domain sequence is from the N-terminal side (left side): (A) n motif-first REP (50 amino acid residues)-(A) n motif-second REP (100 amino acid residues)-(A) n Motif-third REP (10 amino acid residues)-(A) n motif-fourth REP (20 amino acid residues)-(A) n motif-fifth REP (30 amino acid residues)-(A) It has a sequence called n motif.
  • FIG. 1 includes pattern 1 (comparison between the first REP and the second REP, and comparison between the third REP and the fourth REP), pattern 2 (comparison between the first REP and the second REP, and 4th REP and 5th REP), pattern 3 (2nd REP and 3rd REP comparison, 4th REP and 5th REP comparison), pattern 4 (first REP and Comparison of the second REP).
  • pattern 1 compare between the first REP and the second REP, and comparison between the third REP and the fourth REP
  • pattern 2 comparison between the first REP and the second REP, and 4th REP and 5th REP
  • pattern 3 (2nd REP and 3rd REP comparison, 4th REP and 5th REP comparison
  • pattern 4 first REP and Comparison of the second REP
  • the number of amino acid residues of each REP in the two adjacent [(A) n motif-REP] units selected is compared.
  • each pattern the number of all amino acid residues of two adjacent [(A) n motif-REP] units indicated by solid lines is added (not only REP but also (A) the number of amino acid residues of the n motif. is there.). Then, the total value added is compared, and the total value (maximum value of the total value) of the pattern having the maximum total value is set as x. In the example shown in FIG. 1, the total value of pattern 1 is the maximum.
  • x / y (%) can be calculated by dividing x by the total number of amino acid residues y of the domain sequence.
  • x / y is preferably 50% or more, more preferably 60% or more, still more preferably 65% or more, It is still more preferably 70% or more, still more preferably 75% or more, and particularly preferably 80% or more.
  • x / y is preferably 50% or more, more preferably 60% or more, still more preferably 65% or more, It is still more preferably 70% or more, still more preferably 75% or more, and particularly preferably 80% or more.
  • x / y is preferably 89.6% or more, and when the jagged ratio is 1: 1.8 to 3.4, x / y / Y is preferably 77.1% or more, and when the jagged ratio is 1: 1.9 to 8.4, x / y is preferably 75.9% or more, and the jagged ratio is 1 In the case of 1.9 to 4.1, x / y is preferably 64.2% or more.
  • x / y is 46.4% or more, preferably 50% or more, more preferably 55% or more, still more preferably 60% or more, and 70% or more. Even more preferable, 80% or more is particularly preferable.
  • x / y is 46.4% or more, preferably 50% or more, more preferably 55% or more, still more preferably 60% or more, and 70% or more. Even more preferable, 80% or more is particularly preferable.
  • x / y is 46.4% or more, preferably 50% or more, more preferably 55% or more, still more preferably 60% or more, and 70% or more. Even more preferable, 80% or more is particularly preferable.
  • (A) modified fibroin content of n motif is reduced, for example, encoding a cloned naturally occurring fibroin gene sequences, as x / y is more than 64.2% of the (A) n motif It can be obtained by deleting one or more of the sequences.
  • an amino acid sequence corresponding to the deletion of one or more (A) n motifs is designed so that x / y is 64.2% or more from the amino acid sequence of naturally occurring fibroin. It can also be obtained by chemically synthesizing a nucleic acid encoding the amino acid sequence.
  • one or more amino acid residues are further substituted, deleted, inserted and / or added.
  • the amino acid sequence corresponding to this may be modified.
  • the modified fibroin (3-i) will be described.
  • the amino acid sequence represented by SEQ ID NO: 2 has the amino acid sequence represented by SEQ ID NO: 1 corresponding to naturally occurring fibroin deleted from the N-terminal side to the C-terminal side every two (A) n motifs Furthermore, one [(A) n motif-REP] is inserted in front of the C-terminal sequence.
  • the amino acid sequence shown in SEQ ID NO: 4 is obtained by substituting all GGX in REP of the amino acid sequence shown in SEQ ID NO: 2 with GQX.
  • the amino acid sequence shown in SEQ ID NO: 10 has two alanine residues inserted in the C-terminal side of each (A) n motif of the amino acid sequence shown in SEQ ID NO: 4, and a part of glutamine (Q) residues. Substituted with a serine (S) residue and a part of the amino acid at the N-terminal side is deleted so as to be almost the same as the molecular weight of SEQ ID NO: 4.
  • the amino acid sequence represented by SEQ ID NO: 12 is a region of 20 domain sequences present in the amino acid sequence represented by SEQ ID NO: 9 (however, several amino acid residues on the C-terminal side of the region are substituted). Is a sequence in which a His tag is added to the C-terminal of the sequence repeated four times.
  • the value of x / y of the amino acid sequence represented by SEQ ID NO: 1 (corresponding to naturally-occurring fibroin) at a jagged ratio of 1: 1.8 to 11.3 is 15.0%.
  • the value of x / y in the amino acid sequence represented by SEQ ID NO: 2 and the amino acid sequence represented by SEQ ID NO: 4 is 93.4%.
  • the value of x / y in the amino acid sequence represented by SEQ ID NO: 10 is 92.7%.
  • the value of x / y in the amino acid sequence represented by SEQ ID NO: 12 is 89.3%.
  • the z / w values in the amino acid sequences shown in SEQ ID NOs: 1, 2, 4, 10 and 12 are 46.8%, 56.2%, 70.1%, 66.1% and 70.0%, respectively. is there.
  • the modified fibroin (3-i) may be composed of the amino acid sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12.
  • the modified fibroin (3-ii) includes an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12.
  • the modified fibroin of (3-ii) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m .
  • the sequence identity is preferably 95% or more.
  • the modified fibroin of (3-ii) has 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12, and from the N-terminal side to the C-terminal side
  • the number of amino acid residues of REP of two adjacent [(A) n motif-REP] units is sequentially compared, and the number of amino acid residues of REP having a small number of amino acid residues is 1, the other
  • x / y is 64.2% or more, where x is the maximum total value of the total number of bases and y is the total number of amino acid residues in the domain sequence.
  • the above-described modified fibroin may contain the above-described tag sequence at one or both of the N-terminal and C-terminal.
  • modified fibroin containing the tag sequence examples include (3-iii) an amino acid sequence represented by SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13, or (2-iv) SEQ ID NO: 7 And a modified fibroin containing an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13.
  • amino acid sequences represented by SEQ ID NOs: 6, 7, 8, 9, 11, and 13 are the amino acids represented by SEQ ID NO: 5 at the N-terminus of the amino acid sequences represented by SEQ ID NOs: 1, 2, 3, 4, 10, and 12, respectively.
  • a sequence (including a His tag sequence and a hinge sequence) is added.
  • the modified fibroin may be composed of the amino acid sequence represented by SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13.
  • the modified fibroin (3-iv) includes an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13.
  • the modified fibroin of (3-iv) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m .
  • the sequence identity is preferably 95% or more.
  • the modified fibroin (3-iv) has 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13, and from the N-terminal side to the C-terminal side.
  • the other X is the maximum total value of the total number of amino acid residues of two adjacent [(A) n motif-REP] units with a ratio of the number of amino acid residues of REP of 1.8 to 11.3.
  • x / y is preferably 64.2% or more.
  • the aforementioned modified fibroin may contain a secretion signal for releasing the protein produced in the recombinant protein production system to the outside of the host.
  • the sequence of the secretion signal can be appropriately set according to the type of host.
  • the domain sequence of the modified fibroin is different from that of naturally occurring fibroin in addition to at least one or more glycine residues in REP. It can be said to have an amino acid sequence corresponding to substitution with an amino acid residue.
  • it is a modified fibroin having the characteristics of the modified fibroin in which the content of the glycine residue is reduced and (A) the modified fibroin in which the content of the n motif is reduced.
  • Specific embodiments and the like are as described in the modified fibroin in which the content of glycine residues is reduced and (A) the modified fibroin in which the content of n motif is reduced.
  • modified fibroin with reduced glycine residue content and (A) n- motif content (4-i) the amino acid represented by SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12
  • a modified fibroin comprising an amino acid sequence having 90% or more sequence identity with the sequence (4-ii) SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12 can be mentioned.
  • Specific embodiments of the modified fibroin comprising the amino acid sequence represented by SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12 are as described above.
  • the modified fibroin according to another embodiment has a domain sequence in which one or more amino acid residues in REP are replaced with amino acid residues having a large hydrophobicity index as compared to naturally occurring fibroin, and It may have an amino acid sequence including a region having a large hydrophobic index locally, corresponding to the insertion of one or more amino acid residues having a large hydrophobic index in REP.
  • the region where the hydrophobic index is locally large is preferably composed of 2 to 4 amino acid residues.
  • the amino acid residue having a large hydrophobicity index is an amino acid selected from isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M) and alanine (A). More preferably, it is a residue.
  • the modified fibroin according to the present embodiment has one or more amino acid residues in REP substituted with amino acid residues having a large hydrophobicity index and / or 1 in REP compared to naturally occurring fibroin.
  • one or more amino acid residues are substituted, deleted, inserted and / or compared with naturally occurring fibroin.
  • the modified fibroin according to the present embodiment for example, hydrophobicizes one or more hydrophilic amino acid residues (for example, amino acid residues having a negative hydrophobicity index) in REP from the gene sequence of naturally-derived fibroin that has been cloned. It can be obtained by substituting amino acid residues (for example, amino acid residues having a positive hydrophobicity index) and / or inserting one or more hydrophobic amino acid residues in REP.
  • hydrophilic amino acid residues for example, amino acid residues having a negative hydrophobicity index
  • one or more hydrophilic amino acid residues in REP are substituted with hydrophobic amino acid residues from the amino acid sequence of naturally occurring fibroin, and / or one or more hydrophobic amino acid residues in REP It can also be obtained by designing an amino acid sequence corresponding to insertion of, and chemically synthesizing a nucleic acid encoding the designed amino acid sequence.
  • one or more hydrophilic amino acid residues in REP have been replaced with hydrophobic amino acid residues from the amino acid sequence of naturally occurring fibroin and / or one or more hydrophobic amino acids in REP
  • the amino acid sequence corresponding to the substitution, deletion, insertion and / or addition of one or more amino acid residues may be further modified.
  • the modified fibroin according to another embodiment includes a domain sequence represented by Formula 1: [(A) n motif-REP] m , and (A) located at the most C-terminal side of the domain sequence from the n motif.
  • P, and (A) where the total number of amino acid residues contained in the sequence excluding the sequence from the n motif to the C terminus of the domain sequence from the domain sequence is q / Q may have an amino acid sequence of 6.2% or more.
  • hydrophobicity index of amino acid residues As for the hydrophobicity index of amino acid residues, a known index (Hydropathy index: Kyte J, & Doolittle R (1982) “A simple method for displaying the hydropathic character of bio.p. 7”. 105-132). Specifically, the hydrophobicity index (hydropathic index, hereinafter also referred to as “HI”) of each amino acid is as shown in Table 1 below.
  • a sequence obtained by removing the sequence from the domain sequence represented by Formula 1: [(A) n motif-REP] m to the most C-terminal side from the domain (A) n motif to the C terminus of the domain sequence. (Hereinafter referred to as “array A”).
  • array A the average value of the hydrophobicity index of four consecutive amino acid residues is calculated.
  • the average value of the hydrophobicity index is obtained by dividing the total HI of each amino acid residue contained in the four consecutive amino acid residues by 4 (number of amino acid residues).
  • the average value of the hydrophobicity index is obtained for all four consecutive amino acid residues (each amino acid residue is used for calculating the average value 1 to 4 times). Next, a region where the average value of the hydrophobicity index of four consecutive amino acid residues is 2.6 or more is specified. Even if a certain amino acid residue corresponds to a plurality of “four consecutive amino acid residues whose average value of hydrophobicity index is 2.6 or more”, it should be included as one amino acid residue in the region. become.
  • the total number of amino acid residues contained in the region is p.
  • the total number of amino acid residues contained in sequence A is q.
  • the average value of the hydrophobicity index of four consecutive amino acid residues is 2
  • p / q is preferably 6.2% or more, more preferably 7% or more, further preferably 10% or more, and 20% or more. Even more preferably, it is still more preferably 30% or more.
  • the upper limit of p / q is not particularly limited, but may be 45% or less, for example.
  • the modified fibroin according to this embodiment includes, for example, one or a plurality of hydrophilic amino acid residues (for example, hydrophobicity) in the REP so that the amino acid sequence of the naturally-derived fibroin thus cloned satisfies the above p / q condition.
  • hydrophilic amino acid residues for example, hydrophobicity
  • Substituting a hydrophobic amino acid residue (for example, an amino acid residue having a positive hydrophobicity index) and / or one or more hydrophobic amino acid residues during REP Can be obtained by locally modifying the amino acid sequence to include a region having a large hydrophobicity index.
  • an amino acid sequence satisfying the above p / q conditions can be designed from the amino acid sequence of naturally derived fibroin, and a nucleic acid encoding the designed amino acid sequence can be obtained by chemical synthesis.
  • one or more amino acid residues in REP were replaced with amino acid residues having a higher hydrophobicity index and / or one or more amino acid residues in REP.
  • modifications corresponding to substitution, deletion, insertion and / or addition of one or more amino acid residues may be performed. .
  • the amino acid residue having a large hydrophobicity index is not particularly limited, but isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M) and alanine (A ) are preferred, and valine (V), leucine (L) and isoleucine (I) are more preferred.
  • modified fibroin (5-i) the amino acid sequence represented by SEQ ID NO: 20, SEQ ID NO: 22 or SEQ ID NO: 23, or (5-ii) SEQ ID NO: 20, SEQ ID NO: 22 or SEQ ID NO: 23 And a modified fibroin comprising an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by
  • the modified fibroin (5-i) will be described.
  • the amino acid sequence shown in SEQ ID NO: 19 is an amino acid sequence in which the alanine residues in the (A) n motif of (A) naturally derived fibroin are deleted so that the number of consecutive alanine residues is five.
  • the amino acid sequence represented by SEQ ID NO: 20 is inserted into the amino acid sequence represented by SEQ ID NO: 19 by two amino acid sequences (VLI) each consisting of 3 amino acid residues every other REP, and represented by SEQ ID NO: 19. A part of amino acids on the C-terminal side are deleted so that the molecular weight of the amino acid sequence is almost the same.
  • the amino acid sequence represented by SEQ ID NO: 21 is obtained by inserting two alanine residues at the C-terminal side of each (A) n motif with respect to the amino acid sequence represented by SEQ ID NO: 19, and further adding some glutamine (Q) residues. A group is substituted with a serine (S) residue, and a part of amino acids on the C-terminal side is deleted so as to be approximately the same as the molecular weight of the amino acid sequence represented by SEQ ID NO: 19.
  • the amino acid sequence represented by SEQ ID NO: 22 is obtained by inserting one amino acid sequence (VLI) consisting of 3 amino acid residues at every other REP to the amino acid sequence represented by SEQ ID NO: 21.
  • the amino acid sequence shown in SEQ ID NO: 23 is obtained by inserting two amino acid sequences (VLI) each consisting of 3 amino acid residues into the amino acid sequence shown in SEQ ID NO: 21 every other REP.
  • the modified fibroin (5-i) may be composed of the amino acid sequence represented by SEQ ID NO: 20, SEQ ID NO: 22 or SEQ ID NO: 23.
  • the modified fibroin (5-ii) includes an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 20, SEQ ID NO: 22 or SEQ ID NO: 23.
  • the modified fibroin of (5-ii) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m .
  • the sequence identity is preferably 95% or more.
  • the modified fibroin of (5-ii) has a sequence identity of 90% or more with the amino acid sequence represented by SEQ ID NO: 20, SEQ ID NO: 22 or SEQ ID NO: 23, and is located at the most C-terminal side (A) n
  • the amino acids included in the region where the average value of the hydrophobicity index of 4 consecutive amino acid residues is 2.6 or more P is the total number of residues
  • P / q is preferably 6.2% or more.
  • the above-mentioned modified fibroin may contain a tag sequence at one or both of the N-terminal and C-terminal.
  • modified fibroin comprising a tag sequence
  • 5-iii the amino acid sequence represented by SEQ ID NO: 24, SEQ ID NO: 25 or SEQ ID NO: 26, or (5-iv) SEQ ID NO: 24, SEQ ID NO: 25 or Mention may be made of modified fibroin comprising an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 26.
  • amino acid sequences represented by SEQ ID NOs: 24, 25 and 26 are the amino acid sequences represented by SEQ ID NO: 5 (including His tag sequence and hinge sequence) at the N-terminus of the amino acid sequences represented by SEQ ID NOs: 20, 22 and 23, respectively. It is added.
  • the modified fibroin may consist of the amino acid sequence represented by SEQ ID NO: 24, SEQ ID NO: 25 or SEQ ID NO: 26.
  • the modified fibroin (5-iv) includes an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 24, SEQ ID NO: 25 or SEQ ID NO: 26.
  • the modified fibroin of (5-iv) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m .
  • the sequence identity is preferably 95% or more.
  • the modified fibroin (5-iv) has 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 24, SEQ ID NO: 25 or SEQ ID NO: 26, and is located at the most C-terminal side (A) n
  • the amino acids included in the region where the average value of the hydrophobicity index of 4 consecutive amino acid residues is 2.6 or more P is the total number of residues
  • P / q is preferably 6.2% or more.
  • the aforementioned modified fibroin may contain a secretion signal for releasing the protein produced in the recombinant protein production system to the outside of the host.
  • the sequence of the secretion signal can be appropriately set according to the type of host.
  • the modified fibroin according to still another embodiment has an amino acid sequence in which the content of glutamine residues is reduced as compared with naturally occurring fibroin.
  • the modified fibroin according to this embodiment preferably includes at least one motif selected from a GGX motif and a GPGXX motif in the amino acid sequence of REP.
  • the content ratio of the GPGXX motif is usually 1% or more, may be 5% or more, and is preferably 10% or more.
  • the upper limit of GPGXX motif content rate 50% or less may be sufficient and 30% or less may be sufficient.
  • GPGXX motif content is a value calculated by the following method.
  • Formula 1 [(A) n motif-REP] m
  • Formula 2 [(A) n motif-REP] m- (A) fibroin (modified fibroin or naturally derived) containing a domain sequence represented by the n motif In fibroin), the number of GPGXX motifs contained in the region in all REPs contained in the sequence excluding the sequence from the domain sequence (A) n motif located at the most C-terminal side to the C-terminus of the domain sequence.
  • the number obtained by multiplying the total number by three is s, and is located at the most C-terminal side.
  • the sequence from the n motif to the C-terminal of the domain sequence is (A) The content ratio of the GPGXX motif is calculated as s / t, where t is the total number of amino acid residues of all REPs excluding the n motif. It is.
  • “A sequence located at the most C-terminal side (A) excluding the sequence from the n motif to the C-terminal of the domain sequence from the domain sequence” (A)
  • the sequence from the n motif to the C terminus of the domain sequence ”(sequence corresponding to REP) may include a sequence that is not highly correlated with the sequence characteristic of fibroin, and m is small In this case (that is, when the domain sequence is short), the calculation result of the content ratio of the GPGXX motif is affected, so this influence is excluded.
  • the “GPGXX motif” is located at the C-terminus of REP, even if “XX” is, for example, “AA”, it is treated as “GPGXX motif”.
  • FIG. 3 is a schematic diagram showing the domain sequence of the modified fibroin.
  • the modified fibroin according to this embodiment preferably has a glutamine residue content of 9% or less, more preferably 7% or less, still more preferably 4% or less, and preferably 0%. Particularly preferred.
  • the “glutamine residue content” is a value calculated by the following method.
  • Formula 1 [(A) n motif-REP] m
  • Formula 2 [(A) n motif-REP] m-
  • the total number of glutamine residues contained in the region is u
  • the sequence from the (A) n motif located at the most C-terminal side to the C-terminus of the domain sequence is excluded from the domain sequence
  • (A) n The glutamine residue content is calculated as u / t, where t is the total number of amino acid residues in all REPs excluding the motif.
  • the reason why "A sequence located at the most C-terminal side (A) excluding the sequence from the n motif to the C-terminus of the domain sequence from the domain sequence" is the reason described above. It is the same.
  • the domain sequence has one or more glutamine residues in REP deleted or substituted with other amino acid residues as compared to naturally occurring fibroin. It may have a corresponding amino acid sequence.
  • the “other amino acid residue” may be an amino acid residue other than a glutamine residue, but is preferably an amino acid residue having a larger hydrophobicity index than the glutamine residue. Table 1 shows the hydrophobicity index of amino acid residues.
  • amino acid residues having a larger hydrophobicity index than glutamine residues include isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M ) Amino acid residues selected from alanine (A), glycine (G), threonine (T), serine (S), tryptophan (W), tyrosine (Y), proline (P) and histidine (H). it can.
  • an amino acid residue selected from isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M) and alanine (A) is more preferable. More preferred is an amino acid residue selected from among isoleucine (I), valine (V), leucine (L) and phenylalanine (F).
  • the hydrophobicity of REP is preferably ⁇ 0.8 or more, more preferably ⁇ 0.7 or more, still more preferably 0 or more, and It is still more preferable that it is 3 or more, and it is especially preferable that it is 0.4 or more.
  • the “hydrophobicity of REP” is a value calculated by the following method.
  • Formula 1 [(A) n motif-REP] m
  • Formula 2 [(A) n motif-REP] m-
  • A) the sequence from the n- motif to the C-terminus of the domain sequence located on the most C-terminal side (sequence corresponding to “region A” in FIG. 1) is included.
  • the sum of the hydrophobicity index of each amino acid residue in the region is represented by v, and the sequence from the (A) n motif located at the most C-terminal side to the C-terminus of the domain sequence is excluded from the domain sequence, and ( A) The hydrophobicity of REP is calculated as v / t, where t is the total number of amino acid residues of all REPs excluding the n motif.
  • t is the total number of amino acid residues of all REPs excluding the n motif.
  • the modified fibroin according to the present embodiment has a domain sequence in which one or more glutamine residues in REP are deleted compared to naturally-occurring fibroin and / or one or more glutamine in REP.
  • modifications corresponding to substitution of residues with other amino acid residues there are further alterations in amino acid sequence corresponding to substitution, deletion, insertion and / or addition of one or more amino acid residues. Also good.
  • the modified fibroin according to the present embodiment includes, for example, deletion of one or more glutamine residues in REP from the cloned gene sequence of natural fibroin and / or one or more glutamine residues in REP. Can be obtained by substituting with other amino acid residues.
  • one or more glutamine residues in REP are deleted from the amino acid sequence of naturally occurring fibroin, and / or one or more glutamine residues in REP are replaced with other amino acid residues.
  • it can also be obtained by designing a corresponding amino acid sequence and chemically synthesizing a nucleic acid encoding the designed amino acid sequence.
  • modified fibroin As more specific examples of the modified fibroin according to the present invention, (6-i) the amino acid represented by SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 38 or SEQ ID NO: 39 90% or more of the modified fibroin containing the sequence, or (6-ii) the amino acid sequence represented by SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 38 or SEQ ID NO: 39 Mention may be made of modified fibroin comprising amino acid sequences having sequence identity.
  • the (6-i) modified fibroin will be described.
  • Amino acid sequence shown in SEQ ID NO: 4 is a fibroin naturally occurring Nephila clavipes (GenBank accession number: P46804.1, GI: 1174415) based on the nucleotide sequence and amino acid sequence of, (A) n
  • the amino acid sequence in which the alanine residue in the motif is continued is modified with an amino acid to improve productivity, such as the number of consecutive alanine residues is five.
  • Met-PRT410 since Met-PRT410 has not altered the glutamine residue (Q), the glutamine residue content is comparable to the glutamine residue content of naturally occurring fibroin.
  • the amino acid sequence represented by SEQ ID NO: 27 (M_PRT888) is obtained by replacing all QQs in Met-PRT410 (SEQ ID NO: 4) with VL.
  • the amino acid sequence represented by SEQ ID NO: 28 (M_PRT965) is obtained by substituting all QQs in Met-PRT410 (SEQ ID NO: 4) with TS and substituting the remaining Q with A.
  • the amino acid sequence (M_PRT889) represented by SEQ ID NO: 29 is obtained by replacing all QQs in Met-PRT410 (SEQ ID NO: 4) with VL and replacing the remaining Q with I.
  • the amino acid sequence (M_PRT916) represented by SEQ ID NO: 30 is obtained by substituting all QQs in Met-PRT410 (SEQ ID NO: 4) with VI and replacing the remaining Q with L.
  • the amino acid sequence represented by SEQ ID NO: 31 is obtained by replacing all QQs in Met-PRT410 (SEQ ID NO: 4) with VF and replacing the remaining Q with I.
  • the amino acid sequence (M_PRT525) represented by SEQ ID NO: 37 is obtained by inserting two alanine residues into a region (A 5 ) where alanine residues are continuous with respect to Met-PRT410 (SEQ ID NO: 4).
  • the two C-terminal domain sequences were deleted and 13 glutamine residues (Q) were replaced with serine residues (S) or proline residues (P) so that they were almost the same as those in FIG.
  • the amino acid sequence represented by SEQ ID NO: 38 (M_PRT699) is obtained by substituting VL for all QQs in M_PRT525 (SEQ ID NO: 37).
  • the amino acid sequence represented by SEQ ID NO: 39 is obtained by replacing all QQs in M_PRT525 (SEQ ID NO: 37) with VL and replacing the remaining Q with I.
  • amino acid sequences represented by SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 38, and SEQ ID NO: 39 all have a glutamine residue content of 9% or less (Table 2). ).
  • the modified fibroin (6-i) may be composed of the amino acid sequence represented by SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 16 or SEQ ID NO: 17. .
  • the modified fibroin of (6-ii) has a sequence identity of 90% or more with the amino acid sequence represented by SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 38 or SEQ ID NO: 39.
  • the amino acid sequence having The modified fibroin of (6-ii) is also represented by the formula 1: [(A) n motif-REP] m or the formula 2: [(A) n motif-REP] m- (A) n motif.
  • the sequence identity is preferably 95% or more.
  • the modified fibroin (6-ii) preferably has a glutamine residue content of 9% or less.
  • the modified fibroin (6-ii) preferably has a GPGXX motif content of 10% or more.
  • modified fibroin may contain a tag sequence at one or both of the N-terminal and C-terminal. This makes it possible to isolate, immobilize, detect and visualize the modified fibroin.
  • modified fibroin containing a tag sequence (6-iii) amino acids represented by SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 19 or SEQ ID NO: 20 90% or more of the modified fibroin containing the sequence, or (6-iv) the amino acid sequence represented by SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 19 or SEQ ID NO: 20 Mention may be made of modified fibroin comprising amino acid sequences having sequence identity.
  • amino acid sequences shown by SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 40 and SEQ ID NO: 41 are SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, respectively.
  • the amino acid sequence represented by SEQ ID NO: 5 (including His tag sequence and hinge sequence) is added to the N-terminus of the amino acid sequence represented by SEQ ID NO: 31, SEQ ID NO: 38 and SEQ ID NO: 39.
  • the modified fibroin of (6-iii) may be composed of the amino acid sequence represented by SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 40 or SEQ ID NO: 41. .
  • the modified fibroin (6-iv) has a sequence identity of 90% or more with the amino acid sequence represented by SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 40 or SEQ ID NO: 41.
  • the amino acid sequence having The modified fibroin of (6-iv) is also a domain represented by Formula 1: [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m- (A) n motif.
  • the sequence identity is preferably 95% or more.
  • the modified fibroin (6-iv) preferably has a glutamine residue content of 9% or less.
  • the modified fibroin (6-iv) preferably has a GPGXX motif content of 10% or more.
  • the aforementioned modified fibroin may contain a secretion signal for releasing the protein produced in the recombinant protein production system to the outside of the host.
  • the sequence of the secretion signal can be appropriately set according to the type of host.
  • modified fibroin protein
  • the modified fibroin (protein) is transformed with, for example, an expression vector having a nucleic acid sequence encoding the protein and one or more regulatory sequences operably linked to the nucleic acid sequence. It can be produced by expressing the nucleic acid using a host.
  • the method for producing the nucleic acid encoding the modified fibroin is not particularly limited.
  • the nucleic acid is produced by a method such as amplification by polymerase chain reaction (PCR), cloning, modification by genetic engineering techniques, or chemical synthesis. can do.
  • the method for chemically synthesizing nucleic acids is not particularly limited.
  • AKTA oligopilot plus 10/100 (GE Healthcare Japan Co., Ltd.) is used based on the amino acid sequence information of proteins obtained from the NCBI web database.
  • a gene can be chemically synthesized by a method of linking oligonucleotides that are synthesized automatically by PCR or the like.
  • a nucleic acid encoding the modified fibroin consisting of an amino acid sequence in which an amino acid sequence consisting of a start codon and a His10 tag is added to the N terminus of the above amino acid sequence is synthesized. May be.
  • Regulatory sequences are sequences that control the expression of modified fibroin in the host (for example, promoters, enhancers, ribosome binding sequences, transcription termination sequences, etc.), and can be appropriately selected depending on the type of host.
  • an inducible promoter that functions in the host cell and can induce expression of the modified fibroin may be used.
  • An inducible promoter is a promoter that can control transcription by the presence of an inducer (expression inducer), absence of a repressor molecule, or physical factors such as an increase or decrease in temperature, osmotic pressure or pH value.
  • the type of expression vector can be appropriately selected according to the type of host, such as a plasmid vector, virus vector, cosmid vector, fosmid vector, artificial chromosome vector, and the like.
  • a vector that can replicate autonomously in a host cell or can be integrated into a host chromosome and contains a promoter at a position where a nucleic acid encoding a modified fibroin can be transcribed is preferably used.
  • any of prokaryotes and eukaryotes such as yeast, filamentous fungi, insect cells, animal cells and plant cells can be preferably used.
  • prokaryotic hosts include bacteria belonging to the genus Escherichia, Brevibacillus, Serratia, Bacillus, Microbacterium, Brevibacterium, Corynebacterium, Pseudomonas and the like.
  • microorganisms belonging to the genus Escherichia include Escherichia coli.
  • microorganisms belonging to the genus Brevibacillus include Brevibacillus agri and the like.
  • microorganisms belonging to the genus Serratia include Serratia liqufaciens and the like.
  • microorganisms belonging to the genus Bacillus include Bacillus subtilis.
  • microorganisms belonging to the genus Microbacterium include microbacterium / ammonia film.
  • microorganisms belonging to the genus Brevibacterium include Brevibacterium divaricatam.
  • microorganisms belonging to the genus Corynebacterium include Corynebacterium ammoniagenes.
  • microorganisms belonging to the genus Pseudomonas include Pseudomonas putida.
  • vectors for introducing a nucleic acid encoding a modified fibroin include, for example, pBTrp2 (manufactured by Boehringer Mannheim), pGEX (manufactured by Pharmacia), pUC18, pBluescriptII, pSupex, pET22b, pCold, pUB110, pNCO2 (Japanese Patent Laid-Open No. 2002-238696) and the like can be mentioned.
  • Examples of eukaryotic hosts include yeast and filamentous fungi (molds, etc.).
  • yeast include yeasts belonging to the genus Saccharomyces, Pichia, Schizosaccharomyces and the like.
  • Examples of the filamentous fungi include filamentous fungi belonging to the genus Aspergillus, the genus Penicillium, the genus Trichoderma and the like.
  • examples of a vector into which a nucleic acid encoding a modified fibroin is introduced include YEp13 (ATCC37115) and YEp24 (ATCC37051).
  • a method for introducing the expression vector into the host cell any method can be used as long as it is a method for introducing DNA into the host cell.
  • a method using calcium ions [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)]
  • electroporation method electroporation method
  • spheroplast method protoplast method
  • lithium acetate method competent method, and the like.
  • a method for expressing a nucleic acid by a host transformed with an expression vector in addition to direct expression, secretory production, fusion protein expression, etc. can be performed according to the method described in Molecular Cloning 2nd edition, etc. .
  • the modified fibroin can be produced, for example, by culturing a host transformed with an expression vector in a culture medium, producing and accumulating the protein in the culture medium, and collecting the protein from the culture medium.
  • the method for culturing a host in a culture medium can be performed according to a method usually used for culturing a host.
  • the culture medium contains a carbon source, nitrogen source, inorganic salts, etc. that can be assimilated by the host, and can efficiently culture the host. If so, either a natural medium or a synthetic medium may be used.
  • Any carbon source may be used as long as it can be assimilated by the above-mentioned transformed microorganism.
  • Examples thereof include glucose, fructose, sucrose, and carbohydrates such as molasses, starch and starch hydrolyzate, acetic acid and propionic acid, etc.
  • Organic acids and alcohols such as ethanol and propanol can be used.
  • the nitrogen source examples include ammonium salts of inorganic acids or organic acids such as ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, and ammonium phosphate, other nitrogen-containing compounds, and peptone, meat extract, yeast extract, corn steep liquor, Casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented cells and digested products thereof can be used.
  • inorganic salts for example, monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate and calcium carbonate can be used.
  • Cultivation of prokaryotes such as E. coli or eukaryotes such as yeast can be performed under aerobic conditions such as shaking culture or deep aeration and agitation culture.
  • the culture temperature is, for example, 15 to 40 ° C.
  • the culture time is usually 16 hours to 7 days.
  • the pH of the culture medium during the culture is preferably maintained at 3.0 to 9.0.
  • the pH of the culture medium can be adjusted using an inorganic acid, an organic acid, an alkaline solution, urea, calcium carbonate, ammonia, or the like.
  • antibiotics such as ampicillin and tetracycline may be added to the culture medium as necessary.
  • an inducer may be added to the medium as necessary.
  • isopropyl- ⁇ -D-thiogalactopyranoside is used when cultivating a microorganism transformed with an expression vector using the lac promoter
  • indole acrylic is used when culturing a microorganism transformed with an expression vector using the trp promoter.
  • An acid or the like may be added to the medium.
  • Isolation and purification of the expressed modified fibroin can be performed by a commonly used method.
  • the host cell is recovered by centrifugation after culturing, suspended in an aqueous buffer, and then subjected to an ultrasonic crusher, a French press, a Manton Gaurin.
  • the host cells are disrupted with a homogenizer, dynomill, or the like to obtain a cell-free extract.
  • a method usually used for protein isolation and purification that is, a solvent extraction method, a salting-out method using ammonium sulfate, a desalting method, an organic solvent, etc.
  • Precipitation method anion exchange chromatography method using resin such as diethylaminoethyl (DEAE) -Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Kasei), positive using resin such as S-Sepharose FF (manufactured by Pharmacia)
  • Electrophoresis methods such as ion exchange chromatography, hydrophobic chromatography using resins such as butyl sepharose and phenyl sepharose, gel filtration using molecular sieve, affinity chromatography, chromatofocusing, isoelectric focusing Using methods such as these alone or in combination, purification It is possible to obtain the goods.
  • the modified fibroin when expressed by forming an insoluble substance in the cell, the host cell is similarly collected, crushed, and centrifuged to collect the modified fibroin insoluble substance as a precipitate fraction.
  • the recovered insoluble form of modified fibroin can be solubilized with a protein denaturant.
  • a purified preparation of modified fibroin can be obtained by the same isolation and purification method as described above.
  • the protein when secreted extracellularly, the protein can be recovered from the culture supernatant. That is, a culture supernatant is obtained by treating the culture with a technique such as centrifugation, and a purified preparation can be obtained from the culture supernatant by using the same isolation and purification method as described above.
  • a plasmid expression strain of modified silk fibroin fiber was prepared as follows. Based on the base sequence and amino acid sequence of fibroin derived from Nephila clavipes (GenBank accession numbers: P46804.1, GI: 1174415), a modified silk fibroin having the amino acid sequence represented by SEQ ID NO: 36 (hereinafter referred to as Also called “PRT918”.
  • the amino acid sequence represented by SEQ ID NO: 36 is The amino acid sequence of fibroin derived from Nephila clavipes has an amino acid sequence in which substitution, insertion and deletion of amino acid residues are performed for the purpose of improving productivity, -The amino acid sequence shown in SEQ ID NO: 5 (tag sequence and hinge sequence) is added to the end, -Furthermore, QQ in the amino acid sequence is all substituted with VF, and the remaining Q is substituted with I.
  • nucleic acid encoding PRT918 was synthesized.
  • the nucleic acid was added with an NdeI site at the 5 ′ end and an EcoRI site downstream of the stop codon.
  • the nucleic acid was cloned into a cloning vector (pUC118; see JP2002-238569). Thereafter, the nucleic acid was digested with NdeI and EcoRI and cut out, and then recombined into a protein expression vector pET-22b (+) (see JP2002-238569) to obtain an expression vector.
  • Escherichia coli BLR (DE3) was transformed with a pET22b (+) expression vector containing a nucleic acid encoding a protein having the amino acid sequence represented by SEQ ID NO: 36.
  • the transformed Escherichia coli was cultured in 2 mL of LB medium containing ampicillin for 15 hours.
  • the culture solution was added to 100 mL of a seed culture medium (Table 4) containing ampicillin so that the OD 600 (optical density at 600 nm) was 0.005.
  • the culture temperature was maintained at 30 ° C., and flask culture was performed until the OD 600 reached 5 (about 15 hours) to obtain a seed culture solution.
  • the seed culture was added to a jar fermenter to which 500 mL of production medium (Table 5) was added so that the OD 600 was 0.05.
  • the culture solution temperature was kept at 37 ° C., and the culture was controlled at a constant pH of 6.9.
  • the dissolved oxygen concentration in the culture solution was maintained at 20% of the dissolved oxygen saturation concentration.
  • a feed solution (glucose 455 g / L, Yeast Extract 120 g / L) was added at a rate of 1 mL / min.
  • the culture solution temperature was maintained at 37 ° C., and the culture was controlled at a constant pH of 6.9. Further, the dissolved oxygen concentration in the culture solution was maintained at 20% of the dissolved oxygen saturation concentration, and cultured for 20 hours. Thereafter, 1M isopropyl- ⁇ -thiogalactopyranoside (IPTG) was added to the culture solution to a final concentration of 1 mM to induce expression of the modified fibroin.
  • IPTG isopropyl- ⁇ -thiogalactopyranoside
  • the cells recovered 2 hours after the addition of IPTG were washed with 20 mM Tris-HCl buffer (pH 7.4).
  • the washed cells were suspended in 20 mM Tris-HCl buffer (pH 7.4) containing about 1 mM PMSF (phenylmethylsulfonyl fluoride), and the cells were disrupted with a high-pressure homogenizer (GEA Niro Soavi).
  • the disrupted cells were centrifuged to obtain a precipitate.
  • the resulting precipitate was washed with 20 mM Tris-HCl buffer (pH 7.4) until high purity.
  • the washed precipitate is suspended in 8M guanidine buffer (8M guanidine hydrochloride, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl, pH 7.0) to a concentration of 100 mg / mL, and 30 ° C. at 30 ° C. Stir with a stirrer for minutes to dissolve.
  • dialysis was performed with water using a dialysis tube (cellulose tube 36/32 manufactured by Sanko Junyaku Co., Ltd.).
  • the white aggregated protein obtained after dialysis was recovered by centrifugation, the water was removed by a freeze dryer, and the freeze-dried powder was recovered to obtain an artificial silk fibroin “PRT918”.
  • modified silk protein fiber After adding the above-mentioned modified fibroin (PRT918) to DMSO so that it might become a 24 mass% density
  • DMSO dimethyl sulfoxide
  • a plurality of artificial silk filaments made of artificial silk protein and wound on a bobbin were bundled and cut into an average length of 40 mm with a desktop fiber cutter to form a staple bundle.
  • the staple was immersed in water at 40 ° C. for 1 minute, crimped, and then dried at 40 ° C. for 18 hours to obtain a crimped staple.
  • the obtained staple was spun by a known spinning device (four-spindle card spinning machine and mule spinning machine) to obtain a spun yarn made of artificial silk protein fiber.
  • the yarn count of spun yarn was 30 Nm, and the number of twists was Z340.
  • the contact condition with water is arbitrary, and it may be immersed in an aqueous solvent such as water-methanol or water-ethanol, or may be stored in a high humidity atmosphere to absorb water.
  • the crimpability of the artificial protein fiber is not always sufficient, and the staple may be stretched by spinning and the crimp may not be noticeable.
  • textile products using such spun yarn have not been sufficiently textured such as swelling. Furthermore, the above textile products are difficult to shrink.
  • Protein permeation may be applied to protein fiber filaments or staples or spun yarns or to textile products.
  • the knitted fabric was knitted by a 14 gauge circular knitting machine using a spun yarn obtained by twisting a plurality of staples of the artificial silk protein fiber.
  • Example 1-6 The knitted fabric was dipped in the above hydrolyzed keratin aqueous solution to crimp the staples and shrink the textile product.
  • Example 1-6 it was immersed in an aqueous solution (pH about 7) of feather-derived hydrolyzed keratin (number average molecular weight 1500), and the bath ratio (mass ratio of knitted fabric and hydrolyzed keratin aqueous solution) was 1:20.
  • the hydrolyzed keratin aqueous solution and the knitted fabric were stirred in a paddle dyeing machine. At this time, the knitted fabric moved gently in the aqueous solution, and there was no violent collision between the knitted fabric and the container wall.
  • the purpose of stirring is that the knitted fabric comes into uniform contact with the aqueous solution of hydrolyzed keratin, and the aqueous solution of hydrolyzed keratin penetrates to the inside of the spun yarn constituting the knitted fabric, and does not apply an impact to the knitted fabric. .
  • the concentration of the aqueous solution of hydrolyzed keratin was varied in the range of 0.01 mass% to 0.5 mass%, centering on 0.5 mass% to 0.1 mass%.
  • the immersion time was varied from 10 minutes to 480 minutes, centering on 60 minutes.
  • the temperature of the aqueous solution of hydrolyzed keratin was changed in the range of 10 ° C to 95 ° C, centering on 40 ° C.
  • Example 7 A 0.2 mass% aqueous solution of commercially available hydrolyzed silk (number average molecular weight 1000) obtained by hydrolyzing silk-derived fibroin was prepared. Using a paddle dyeing machine, the knitted fabric was immersed in a bath ratio of 1:20, a liquid temperature of 40 ° C., and an immersion time of 60 minutes, and treated in the same manner as in Examples 1 to 6. This is Example 7.
  • Comparative Example 1 the same treatment as that of normal crimping performed on wool knitted fabric was performed. That is, instead of using an aqueous solution of hydrolyzed keratin, simple water was used, the paddle dyeing machine was changed to a washer dyeing machine, and the knitted fabric collided with the wall of the dyeing machine. The bath ratio was 1:20, the treatment temperature was 40 ° C., and the treatment time was 20 minutes.
  • a paddle dyeing machine was used in the same manner as in the example, but the effect of agitation itself by the paddle dyeing machine was examined using simple water instead of an aqueous solution of hydrolyzed keratin. In addition to this, untreated knitted fabrics were evaluated while being knitted.
  • Example 1 staples were strongly crimped, spun yarns were swollen, and the texture of the knitted fabric was improved. In addition, the stitches are clogged in the course direction (lateral direction in each figure) and in the wale direction (vertical direction in each figure), and the gap between the stitches becomes small, and the knitted fabric has been successfully contracted. .
  • Comparative Example 2 a paddle dyeing machine was used in the same manner as in the example, and the keratin concentration was set to 0, and ligature was attempted. The crimp was slightly revived and the number of eyes decreased slightly along the wale direction, but it did not shrink.
  • crimping may be performed by dipping in an aqueous solution of hydrolyzed keratin at the stage of spinning yarn.
  • the concentration of the aqueous solution of hydrolyzed keratin was changed in the range from 0.01 mass% to 0.5 mass%, but in all cases, the crimp was restored and the contraction was successful. However, if it is less than 0.1 mass%, a long treatment time is required, so the keratin concentration is preferably 0.1 mass% or more. Moreover, in order to set it as a mild process, 2 mass% or less is preferable.
  • the immersion time was 10 minutes to 480 minutes, but the treatment time was too long at 480 minutes. Further, when the keratin concentration is further increased from Example 2 (keratin concentration 0.5 mass%), a shorter time may be used. For these reasons, the immersion time is preferably from 5 minutes to 120 minutes.
  • the temperature of the aqueous solution of hydrolyzed keratin was 95 ° C. (Example 6), the knitted fabric after the treatment became hard and the texture decreased. Further, at 10 ° C., the processing time was 4 times longer than at 40 ° C. For these reasons, the temperature of the aqueous solution is preferably 30 ° C. or higher and 60 ° C. or lower. In the example, the treatment was possible with a small bath ratio of 1:20. Therefore, there is little waste water and the environmental load is small.
  • the aqueous solution of keratin may contain other components such as a chelating agent, metal salt, ceramide, lipid, citric acid, surfactant, pH adjusting agent, preservative, ethanol, and methanol in addition to water and keratin.
  • a washer dyeing machine or the like may be used instead of the paddle dyeing machine, and the type of the immersion device is arbitrary. However, it is preferable to immerse the spun yarn or the textile product with gentle agitation because crimps can be generated without colliding with the wall of the vessel.
  • Example 7 by using hydrolyzed silk (number average molecular weight 1000), the crimp was restored and contraction was successful. From this, it is understood that not only hydrolyzed keratin but also an aqueous solution of collagen, artificial protein or the like may be used. In Example 7, crimping of the staples after the treatment was insufficient, and compared to Example 1, the knitted fabric after crimping was insufficient in the elasticity (feeling of swelling) and the waist (the tendency to maintain the form). It was.
  • Keratin includes low molecular weight hydrolyzed keratin (number average molecular weight of 500 to 5000) and high molecular weight solubilized keratin (number average molecular weight of about 10,000, for example). It has been found that an aqueous solution of hydrolyzed keratin can crimp the staple and crimp the knitted fabric, and the number average molecular weight is particularly preferably 500 or more and 3000 or less. However, these effects were insufficient with solubilized keratin. Thus, we examined how keratin acts on artificial silk protein staples when immersed in an aqueous solution of hydrolyzed keratin.
  • the protein fiber is not limited to an artificial silk protein fiber, but may be an artificial silk in which amino acid residues are similarly introduced.
  • semi-synthetic protein fibers such as promix and sinon, or regenerated protein fibers such as casein protein fiber, peanut protein fiber, corn protein fiber, and soy protein fiber may be used.
  • the dyed one was used as an example relating to dyeing and crimping, and the dyed product without treatment with hydrolyzed keratin was used as a comparative example.
  • an aqueous solution of hydrolyzed keratin (number average molecular weight 1500) (concentration 0.1 mass%, pH about 7, liquid temperature 40 ° C., 20 L of keratin aqueous solution per 1 kg of knitted fabric) in a paddle dyeing machine for 60 minutes, A knitted fabric made of artificial protein fibers was immersed.
  • a preferred range of pH is 6 to 8, particularly 6.5 to 7.5, and a preferred temperature range is 30 ° C.
  • the concentration is preferably 0.01 mass% or more and 0.5 mass% or less, and particularly preferably 0.02 mass% or more and 0.5 mass% or less.
  • the immersion time is preferably 40 minutes or more and 80 minutes or less, and the keratin absorption amount of the fiber becomes the maximum after the immersion time of about 60 minutes.
  • the paddle dyeing machine circulates the water stream of the keratin aqueous solution while contacting the knitted fabric, and the contact method between the keratin aqueous solution and the knitted fabric is arbitrary.
  • the knitted fabric was treated with the keratin aqueous solution, but the form of the artificial protein fiber when treated with the keratin aqueous solution, such as the fiber itself, spun yarn, woven fabric, non-woven fabric, and textile product, is arbitrary.
  • a column for liquid chromatography (Econopack column manufactured by BIO-RAD) was packed with 1 g of artificial protein fiber.
  • a keratin aqueous solution (40 ° C, 0.1 mass%) with a number average molecular weight of 1500 is circulated through the column for 120 minutes, the keratin concentration is measured by gel filtration chromatography before and after passing through the fiber, and the total amount absorbed into the fiber is measured. did.
  • the fiber was exchanged and measured three times.
  • the average value of the total absorption amount is shown in Table 7 as a relative value with the absorption amount at 60 minutes being 1. In all three cases, there was a peak of absorption at an immersion time of 60 minutes.
  • the knitted fabric After immersing in keratin aqueous solution, the knitted fabric was dehydrated and naturally dried. As in the case of the fiber made of artificial silk protein, the knitted fabric contracted and the fiber crimped by hydrolyzed keratin treatment.
  • the examples related to staining and crimping are the same as the examples related to crimping except for the points specifically pointed out, and the description of the examples related to crimping is also applied to the examples related to dyeing and crimping as it is except for the points specifically pointed out.
  • a weakly acidic aqueous solution for example, acetic acid aqueous solution
  • a pH of 5.5 preferably a pH of 5 or more and 6 or less
  • the keratin binds stably to the knitted fabric and improves durability to washing Confirmed to do.
  • the inventor presumed that this phenomenon was caused by the formation of a kind of polymerization or association by combining several keratins penetrating the fibers into each other. Direct dyes and wool reactive dyes used for dyeing are weakly acidic, and keratin is more firmly fixed to the fiber by dyeing.
  • the knitted fabric was dyed with four kinds of wool reactive dyes.
  • the yellow dye is LANAZOL Yellow 4G, (LANAZOL is a registered trademark of Huntsman) 3% (owf) anhydrous sodium sulfate (Na 2 SO 4 ) 10% (owf) acetic acid 1% (owf)
  • red dye is LANAZOL Red 6G, 3% (owf) anhydrous sodium sulfate 10% (owf) acetic acid 1% (owf)
  • black dye is LANAZOLDeep Black CE-R, 7% (owf) anhydrous sodium sulfate 5% (owf) acetic acid 4% (owf)
  • blue dye is LANAZOL Blue 3G, 3% (owf) anhydrous sodium sulfate 10% (owf) acetic acid 1% (owf).
  • Light fastness indicates fastness to light
  • wash fastness indicates fastness to washing.
  • Washing fastness contamination represents the degree of color transfer to the surrounding white fabric by washing.
  • Sweat contamination (acid) represents the degree of color transfer due to acidic simulated sweat to the surrounding white fabric
  • sweat contamination (alkaline acid) represents the degree of color transfer due to alkaline simulated sweat.
  • the fastness to friction represents the degree of color transfer when the dyed knitted fabric is rubbed with a white cloth during drying.
  • Dry cleaning contamination represents the extent of dye elution into a perfluoroethylene solvent for dry cleaning. The higher the dyeing fastness, the better, and practically it should be at least 2.5 or higher.
  • the hydrolyzed keratin treatment improved the test items with insufficient fastness, and the yellow and red color fastness was less than grade 3.
  • sweat contamination to acids and alkalis with a fastness of 1.5 is improved to 2.5.
  • the increase in dyeing fastness means that the binding strength between the dye and the fiber is improved by the feather hydrolyzed keratin derived from waterfowl absorbed into the artificial protein fiber.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Insects & Arthropods (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

刺激に応答してクリンプするクリンプ性を有するタンパク質繊維を、タンパク質繊維とは組成が異なるタンパク質の溶液に浸漬し、タンパク質繊維の内部に組成が異なるタンパク質を浸透させることによりクリンプさせる。タンパク質繊維の内部に異質のタンパク質が浸透しクリンプする。

Description

タンパク質繊維のクリンプ方法、タンパク質繊維の製造方法、タンパク質繊維、紡績糸、及びテキスタイル製品
 この発明は、タンパク質繊維のクリンプに関する。
 特許文献1(JP2014-129639)は、蜘蛛糸に類似の人工タンパク質繊維を開示している。 特許文献2(WO2017-038814)は、羊毛、カシミヤ等の繊維を、羽毛等に由来する加水分解ケラチンの水溶液に浸漬することを開示している。  
JP2014-129639 WO2017-038814
 ところで人工タンパク質繊維は、羊毛等の獣毛と異なり、表面にスケールを備えていない。また人工タンパク質繊維は基本的に表面が平坦で屈曲がなく、クリンプしていない。さらにポリアミド繊維とは異なり、加熱下に応力を加えることによりクリンプさせることもできない。このことはカゼインタンパク質繊維等の再生タンパク質繊維、シノン等の半合成タンパク質繊維でも同様である。
 クリンプしていない繊維を用いたテキスタイル製品は風合に問題があり、特に膨らみを感じさせる手触りが不足している。またクリンプがなくスケールもない繊維から成るテキスタイル製品は縮絨できない。なお縮絨は一般に、水に浸漬したテキスタイル製品を容器の器壁等に衝突させることにより、テキスタイル製品に力を加え、繊維を互いに絡み合わせる処理である。そして縮絨によりテキスタイル製品は収縮する。
 この発明は、
・ タンパク質繊維あるいはその紡績糸をクリンプさせる新規な方法、及びクリンプしたタンパク質繊維の製造方法を提供すること、
・ 前記のタンパク質繊維あるいは紡績糸から成るテキスタイル製品を縮絨する方法を提供すること、及び
・ クリンプしたタンパク質繊維とクリンプした紡績糸、及び前記のタンパク質繊維あるいは紡績糸を用い縮絨されたテキスタイル製品を提供することを、課題とする。
 この発明のクリンプ方法では、刺激に応答してクリンプするクリンプ性を有するタンパク質繊維を、前記タンパク質繊維とは組成が異なるタンパク質の溶液に浸漬し、前記タンパク質繊維の内部に前記組成が異なるタンパク質を浸透させることにより、前記タンパク質繊維をクリンプさせる。
 またこの発明のタンパク質繊維の製造方法では、刺激に応答してクリンプするクリンプ性を有するタンパク質繊維を、前記タンパク質繊維とは組成が異なるタンパク質の溶液に浸漬し、前記タンパク質繊維の内部に前記組成が異なるタンパク質を浸透させることによりクリンプさせる。
 またこの発明のタンパク質繊維は、刺激に応答してクリンプするクリンプ性を有するタンパク質繊維を母体繊維(タンパク質母体繊維)とし、母体繊維の内部に組成が異なるタンパク質が浸透しかつクリンプしている。
 またこの発明は、上記のタンパク質繊維のステープルが複数本撚り合わされている紡績糸にある。
 またこの発明は、上記のタンパク質繊維あるいは上記の紡績糸を用いて成るテキスタイル製品にある。
 好ましくは、タンパク質繊維(タンパク質母体繊維)は人工タンパク質から成る。
 より好ましくは、人工タンパク質が人工蜘蛛糸タンパク質から成る。
 好ましくは、タンパク質繊維のフィラメントをカットしたステープルを、タンパク質溶液に浸漬する。
 より好ましくは、前記ステープルを複数本撚り合わせた紡績糸を、前記タンパク質の溶液に浸漬する。
 好ましくは、前記紡績糸から成るテキスタイル製品を、前記タンパク質の溶液に浸漬することにより、テキスタイル製品を縮絨する。
 好ましくは、前記テキスタイル製品に衝撃が加わらない条件で、前記テキスタイル製品を前記タンパク質の溶液に浸漬する。
 好ましくは、タンパク質の溶液が加水分解ケラチンの水溶液である。
 好ましくは、加水分解ケラチンの数平均分子量が500以上5000以下ある。
 好ましくは、加水分解ケラチンの水溶液の、テキスタイル製品の浸漬前での、ケラチン濃度が0.1mass%以上2mass%以下、浸漬時間が5分以上120分以下である。
 加水分解ケラチンの水溶液の温度が30℃以上60℃以下である。
 図4,図7に示すように、タンパク質母体繊維の内部に組成が異なるタンパク質を浸透させることにより、タンパク質繊維はクリンプする。タンパク質繊維を紡績糸にすると、紡績糸に膨らみが生じて風合が向上する。なお刺激に応答してクリンプするとは、水分との接触等の刺激により、クリンプする性質があることをいう。刺激は水に限らず、他の溶媒や架橋剤との接触、加熱、放射線照射等でも良い。例えば水ではなく水性溶媒でも良い。押し込み法、熱セット等の方法でクリンプを形成した場合、ステープルが紡績工程で伸ばされ、クリンプが弱まることがあるが、タンパク質母体繊維の内部に組成が異なるタンパク質を浸透させることにより、クリンプを復活させることができる。
 好ましくは、タンパク質繊維は天然由来のタンパク質のアミノ酸配列の一部(例えば、当該アミノ酸配列の10%以下)を改変した人工タンパク質であってもよい。人工タンパク質は特に人工蜘蛛糸タンパク質が好ましい。タンパク質繊維はこれらの他に、プロミックス、シノン等の半合成タンパク質、あるいはカゼインタンパク、落花生タンパク質、トウモロコシタンパク質、大豆タンパク質等の、再生タンパク質等を含む繊維でも良い。また、タンパク質繊維は、1種のタンパク質のみからなっていてもよく、或いは複数種類のタンパク質からなっていてもよい。タンパク質繊維は、人工タンパク質の繊維とウールあるいはシルク等の混紡等でも良い。
 タンパク質繊維のうち、羊毛等の獣毛以外のものは、表面のスケールを欠き、本来はクリンプしていない。しかしながら、タンパク質繊維のステープルを、組成が異なるタンパク質の溶液に浸漬し、タンパク質繊維の内部に組成が異なるタンパク質を浸透させると、クリンプが著しくなり、紡績糸の膨らみ感が増す。
 この紡績糸を用いたテキスタイル製品を、前記タンパク質の溶液に浸漬すると、ステープルがクリンプすると共に、紡績糸と紡績糸との隙間が縮み、縮絨が行われる(図4,図7)。なおテキスタイル製品は、編地、織布、不織布等の布自体、あるいは衣類、ハンカチ、タオル、履物、カーテン、テーブルクロス等のアパレル製品、及びカーシートなどの産業用製品である。
 ステープルがクリンプすることにより、紡績糸間の摩擦が増して、紡績糸間の隙間が詰まり、縮絨できる。なお発明者は、人工蜘蛛糸タンパク質繊維を用いた編地は、通常の縮絨法では十分な縮絨効果が得られないことを確認した(図5,図8)。
 好ましくは、前記テキスタイル製品に衝撃が加わらない条件で、例えば前記タンパク質溶液の容器の器壁との衝突による衝撃が加わらない条件で、前記テキスタイル製品を前記タンパク質の溶液に浸漬する。またタンパク質溶液を撹拌あるいは流通させ、タンパク質が浸透しやすくすることが好ましい。この発明では、テキスタイル製品に加える外力ではなく、タンパク質溶液とテキスタイル製品の接触により縮絨できる。従って繊細なテキスタイル製品でも、損傷を生じずに縮絨できる。
 好ましくは、タンパク質の溶液は加水分解ケラチンの水溶液である。加水分解ケラチンを用いると、加水分解シルク等よりも、処理後のテキスタイル製品の風合が優れている。特に羽毛由来の加水分解ケラチンが好ましい。また低分子量の加水分解ケラチンを用いることが重要で、数平均分子量は好ましくは500以上5000以下、特に500以上3000以下である。分子量が小さいので、ケラチンがステープル内に浸透する。
 加水分解ケラチンの水溶液の、前記テキスタイル製品の浸漬前での、ケラチン濃度は0.1mass%以上2mass%以下が好ましくは、浸漬時間は5分以上120分以下が好ましい。発明者はこの範囲で、ステープルをクリンプさせることにより紡績糸の風合を改善し、またテキスタイル製品を縮絨できることを確認した。また加水分解ケラチンの水溶液の温度は、30℃以上60℃以下が好ましい。30℃未満ではクリンプの発現が遅く、60℃を越えると浸漬したテキスタイル製品が硬くなって風合が低下する。
 またこの発明の紡績糸は、刺激に応答してクリンプするクリンプ性を有するタンパク質繊維をカットしたステープルが複数本撚り合わされ、タンパク質繊維とは組成が異なるタンパク質がステープルの内部に浸透し、かつステープルがクリンプしている。この紡績糸は、クリンプの発現により風合が向上している。
 タンパク質繊維は、刺激に応答してクリンプするクリンプ性を有するものであれば特に限定されるものではなく、例えば、構造タンパク質繊維や人工タンパク質繊維であってもよい。また好ましくは、タンパク質繊維とは組成が異なるタンパク質が、加水分解ケラチンである。
 またこの発明は、上記の紡績糸から成るテキスタイル製品にある。タンパク質を紡績糸の段階で浸透させておくと、クリンプが生じ、紡績糸はその時点で縮絨される。またテキスタイル製品とした後に、タンパク質を浸透させると、クリンプが発生し縮絨が生じる。
 好ましくは、この発明のクリンプ方法及びタンパク質繊維の製造方法では、タンパク質繊維は人工タンパク質から成り、加水分解ケラチン等の組成が異なるタンパク質によりタンパク質繊維の染色性を改善する。
 好ましくは、この発明のタンパク質繊維では、タンパク質繊維は人工タンパク質から成り、加水分解ケラチン等の組成が異なるタンパク質により前記タンパク質繊維の染色性が改善されている。
 人工タンパク質繊維の内部に、組成が異なるタンパク質、例えば加水分解ケラチンを浸透させると、繊維がクリンプするだけでなく、組成が異なるタンパク質により染色性が改善する。
 染色性の改善は、汗による染料の移動(汗汚染)を抑制すること、耐光あるいは洗濯への堅牢度が向上すること、周囲との摩擦に対する堅牢度(摩擦堅牢度)が増加すること、及びドライクリーニング時の周囲の繊維製品の汚染(ドライクリーニング汚染)を抑制すること、等に現れる。
 より好ましくは、組成が異なるタンパク質は加水分解ケラチンであり、加水分解ケラチンの水溶液へ前記タンパク質繊維を40分以上80分以下浸漬する。人工タンパク質から成る繊維を加水分解ケラチンに浸漬すると、浸漬時間が60分付近にケラチン吸収量のピークが生じる。従って60分付近の40分~80分の浸漬時間で、人工タンパク質繊維の内部へ多量のケラチンを浸透させることができる。
改変フィブロインのドメイン配列の一例を示す模式図 改変フィブロインのドメイン配列の一例を示す模式図 改変フィブロインのドメイン配列の一例を示す模式図 実施例1で縮絨した編地の写真 比較例1で縮絨した編地の写真 縮絨していない編地の写真 実施例1で縮絨した編地の拡大写真 比較例1で縮絨した編地の拡大写真 縮絨していない編地の拡大写真
 以下に、発明を実施するための最適実施例を示す。
<タンパク質>
 タンパク質繊維を構成するタンパク質は構造タンパク質であってもよく、構造タンパク質はフィブロインであってもよい。フィブロインは天然フィブロインであってもよく、改変フィブロイン(人工フィブロイン)あってもよい。また、改変フィブロインは蜘蛛糸フィブロインであってもよく、この改変蜘蛛糸フィブロインは、疎水性アミノ酸残基が人工的に導入されているものであってもよく、若しくは親水性アミノ酸残基が人工的に導入されているものであってもよい。
<改変フィブロイン>
 改変フィブロインは、式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むタンパク質である。改変フィブロインは、ドメイン配列のN末端側及びC末端側のいずれか一方又は両方に更にアミノ酸配列(N末端配列及びC末端配列)が付加されていてもよい。N末端配列及びC末端配列は、これに限定されるものではないが、典型的には、フィブロインに特徴的なアミノ酸モチーフの反復を有さない領域であり、100残基程度のアミノ酸からなる。
 本明細書において「改変フィブロイン」とは、人為的に製造されたフィブロイン(人工フィブロイン)を意味する。改変フィブロインは、そのドメイン配列が、天然由来のフィブロインのアミノ酸配列とは異なるフィブロインであってもよく、天然由来のフィブロインのアミノ酸配列と同一であるフィブロインであってもよい。本明細書でいう「天然由来のフィブロイン」もまた、式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むタンパク質である。
 「改変フィブロイン」は、本実施形態で特定されるアミノ酸配列を有するものであれば、天然由来のフィブロインのアミノ酸配列をそのまま利用したものであってもよく、天然由来のフィブロインのアミノ酸配列に依拠してそのアミノ酸配列を改変したもの(例えば、クローニングした天然由来のフィブロインの遺伝子配列を改変することによりアミノ酸配列を改変したもの)であってもよく、また天然由来のフィブロインに依らず人工的に設計及び合成したもの(例えば、設計したアミノ酸配列をコードする核酸を化学合成することにより所望のアミノ酸配列を有するもの)であってもよい。
 本明細書において「ドメイン配列」とは、蜘蛛糸フィブロイン特有の結晶領域(典型的には、アミノ酸配列の(A)モチーフに相当する。)と非晶領域(典型的には、アミノ酸配列のREPに相当する。)を生じるアミノ酸配列であり、式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるアミノ酸配列を意味する。ここで、(A)モチーフは、アラニン残基を主とするアミノ酸配列を示し、nは2~27である。nは、2~20、4~27、4~20、8~20、10~20、4~16、8~16、又は10~16の整数であってよい。また、(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数の割合は40%以上であればよく、60%以上、70%以上、80%以上、83%以上、85%以上、86%以上、90%以上、95%以上、又は100%(アラニン残基のみで構成されることを意味する。)であってもよい。ドメイン配列中に複数存在する(A)モチーフは、少なくとも7つがアラニン残基のみで構成されてもよい。REPは2~200アミノ酸残基から構成されるアミノ酸配列を示す。REPは、10~200アミノ酸残基から構成されるアミノ酸配列であってもよい。mは2~300の整数を示し、10~300の整数であってもよい。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。
 改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列に対し、例えば、1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行うことで得ることができる。アミノ酸残基の置換、欠失、挿入及び/又は付加は、部分特異的突然変異誘発法等の当業者に周知の方法により行うことができる。具体的には、Nucleic Acid Res.10,6487(1982)、Methods in Enzymology,100,448(1983)等の文献に記載されている方法に準じて行うことができる。
 天然由来のフィブロインは、式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むタンパク質であり、具体的には、例えば、昆虫又はクモ類が産生するフィブロインが挙げられる。
 昆虫が産生するフィブロインとしては、例えば、ボンビックス・モリ(Bombyx mori)、クワコ(Bombyx mandarina)、天蚕(Antheraea yamamai)、柞蚕(Anteraea pernyi)、楓蚕(Eriogyna pyretorum)、蓖蚕(Pilosamia Cynthia ricini)、樗蚕(Samia cynthia)、栗虫(Caligura japonica)、チュッサー蚕(Antheraea mylitta)、ムガ蚕(Antheraea assama)等のカイコが産生する絹タンパク質、及びスズメバチ(Vespa simillima xanthoptera)の幼虫が吐出するホーネットシルクタンパク質が挙げられる。
 昆虫が産生するフィブロインのより具体的な例としては、例えば、カイコ・フィブロインL鎖(GenBankアクセッション番号M76430(塩基配列)、及びAAA27840.1(アミノ酸配列))が挙げられる。
 クモ類が産生するフィブロインとしては、例えば、オニグモ、ニワオニグモ、アカオニグモ、アオオニグモ及びマメオニグモ等のオニグモ属(Araneus属)に属するクモ、ヤマシロオニグモ、イエオニグモ、ドヨウオニグモ及びサツマノミダマシ等のヒメオニグモ属(Neoscona属)に属するクモ、コオニグモモドキ等のコオニグモモドキ属(Pronus属)に属するクモ、トリノフンダマシ及びオオトリノフンダマシ等のトリノフンダマシ属(Cyrtarachne属)に属するクモ、トゲグモ及びチブサトゲグモ等のトゲグモ属(Gasteracantha属)に属するクモ、マメイタイセキグモ及びムツトゲイセキグモ等のイセキグモ属(Ordgarius属)に属するクモ、コガネグモ、コガタコガネグモ及びナガコガネグモ等のコガネグモ属(Argiope属)に属するクモ、キジロオヒキグモ等のオヒキグモ属(Arachnura属)に属するクモ、ハツリグモ等のハツリグモ属(Acusilas属)に属するクモ、スズミグモ、キヌアミグモ及びハラビロスズミグモ等のスズミグモ属(Cytophora属)に属するクモ、ゲホウグモ等のゲホウグモ属(Poltys属)に属するクモ、ゴミグモ、ヨツデゴミグモ、マルゴミグモ及びカラスゴミグモ等のゴミグモ属(Cyclosa属)に属するクモ、及びヤマトカナエグモ等のカナエグモ属(Chorizopes属)に属するクモが産生するスパイダーシルクタンパク質、並びにアシナガグモ、ヤサガタアシナガグモ、ハラビロアシダカグモ及びウロコアシナガグモ等のアシナガグモ属(Tetragnatha属)に属するクモ、オオシロカネグモ、チュウガタシロカネグモ及びコシロカネグモ等のシロカネグモ属(Leucauge属)に属するクモ、ジョロウグモ及びオオジョロウグモ等のジョロウグモ属(Nephila属)に属するクモ、キンヨウグモ等のアズミグモ属(Menosira属)に属するクモ、ヒメアシナガグモ等のヒメアシナガグモ属(Dyschiriognatha属)に属するクモ、クロゴケグモ、セアカゴケグモ、ハイイロゴケグモ及びジュウサンボシゴケグモ等のゴケグモ属(Latrodectus属)に属するクモ、及びユープロステノプス属(Euprosthenops属)に属するクモ等のアシナガグモ科(Tetragnathidae科)に属するクモが産生するスパイダーシルクタンパク質が挙げられる。スパイダーシルクタンパク質としては、例えば、MaSp(MaSp1及びMaSp2)、ADF(ADF3及びADF4)等の牽引糸タンパク質、MiSp(MiSp1及びMiSp2)等が挙げられる。
 クモ類が産生するスパイダーシルクタンパク質のより具体的な例としては、例えば、fibroin-3(adf-3)[Araneus diadematus由来](GenBankアクセッション番号AAC47010(アミノ酸配列)、U47855(塩基配列))、fibroin-4(adf-4)[Araneus diadematus由来](GenBankアクセッション番号AAC47011(アミノ酸配列)、U47856(塩基配列))、dragline silk protein spidroin 1[Nephila clavipes由来](GenBankアクセッション番号AAC04504(アミノ酸配列)、U37520(塩基配列))、major ampullate spidroin 1[Latrodectus hesperus由来](GenBankアクセッション番号ABR68856(アミノ酸配列)、EF595246(塩基配列))、dragline silk protein spidroin 2[Nephila clavata由来](GenBankアクセッション番号AAL32472(アミノ酸配列)、AF441245(塩基配列))、major ampullate spidroin 1[Euprosthenops australis由来](GenBankアクセッション番号CAJ00428(アミノ酸配列)、AJ973155(塩基配列))、及びmajor ampullate spidroin 2[Euprosthenops australis](GenBankアクセッション番号CAM32249.1(アミノ酸配列)、AM490169(塩基配列))、minor ampullate silk protein 1[Nephila clavipes](GenBankアクセッション番号AAC14589.1(アミノ酸配列))、minor ampullate silk protein 2[Nephila clavipes](GenBankアクセッション番号AAC14591.1(アミノ酸配列))、minor ampullate spidroin-like protein[Nephilengys cruentata](GenBankアクセッション番号ABR37278.1(アミノ酸配列)等が挙げられる。
 天然由来のフィブロインのより具体的な例としては、更に、NCBI GenBankに配列情報が登録されているフィブロインを挙げることができる。例えば、NCBI GenBankに登録されている配列情報のうちDIVISIONとしてINVを含む配列の中から、DEFINITIONにspidroin、ampullate、fibroin、「silk及びpolypeptide」、又は「silk及びprotein」がキーワードとして記載されている配列、CDSから特定のproductの文字列、SOURCEからTISSUE TYPEに特定の文字列の記載された配列を抽出することにより確認することができる。
 改変フィブロインは、改変絹(シルク)フィブロイン(カイコが産生する絹タンパク質のアミノ酸配列を改変したもの)であってもよく、改変クモ糸フィブロイン(クモ類が産生するスパイダーシルクタンパク質のアミノ酸配列を改変したもの)であってもよい。それらのうちでも改変クモ糸フィブロインが、好適に用いられる。
 改変フィブロインの具体的な例として、クモの大瓶状腺で産生される大吐糸管しおり糸タンパク質に由来する改変フィブロイン、グリシン残基の含有量が低減された改変フィブロイン、(A)モチーフの含有量が低減された改変フィブロイン、グリシン残基の含有量、及び(A)モチーフの含有量が低減された改変フィブロインが挙げられる。
 クモの大瓶状腺で産生される大吐糸管しおり糸タンパク質に由来する改変フィブロインとしては、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質が挙げられる。クモの大瓶状腺で産生される大吐糸管しおり糸タンパク質に由来する改変フィブロインは、式1中、nは3~20の整数が好ましく、4~20の整数がより好ましく、8~20の整数が更に好ましく、10~20の整数が更により好ましく、4~16の整数が更によりまた好ましく、8~16の整数が特に好ましく、10~16の整数が最も好ましい。クモの大瓶状腺で産生される大吐糸管しおり糸タンパク質に由来する改変フィブロインは、式1中、REPを構成するアミノ酸残基の数は、10~200残基であることが好ましく、10~150残基であることがより好ましく、20~100残基であることが更に好ましく、20~75残基であることが更により好ましい。クモの大瓶状腺で産生される大吐糸管しおり糸タンパク質に由来する改変フィブロインは、式1:[(A)モチーフ-REP]で表されるアミノ酸配列中に含まれるグリシン残基、セリン残基及びアラニン残基の合計残基数がアミノ酸残基数全体に対して、40%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることが更に好ましい。
 クモの大瓶状腺で産生される大吐糸管しおり糸タンパク質に由来する改変フィブロインは、式1:[(A)モチーフ-REP]で表されるアミノ酸配列の単位を含み、かつC末端配列が配列番号14~16のいずれかに示されるアミノ酸配列又は配列番号14~16のいずれかに示されるアミノ酸配列と90%以上の相同性を有するアミノ酸配列であるポリペプチドであってもよい。
 配列番号14に示されるアミノ酸配列は、ADF3(GI:1263287、NCBI)のアミノ酸配列のC末端の50残基のアミノ酸からなるアミノ酸配列と同一であり、配列番号15に示されるアミノ酸配列は、配列番号14に示されるアミノ酸配列のC末端から20残基取り除いたアミノ酸配列と同一であり、配列番号16に示されるアミノ酸配列は、配列番号14に示されるアミノ酸配列のC末端から29残基取り除いたアミノ酸配列と同一である。
 クモの大瓶状腺で産生される大吐糸管しおり糸タンパク質に由来する改変フィブロインのより具体的な例として、(1-i)配列番号17で示されるアミノ酸配列、又は(1-ii)配列番号17で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。配列同一性は、95%以上であることが好ましい。
 配列番号17で示されるアミノ酸配列は、N末端に開始コドン、His10タグ及びHRV3Cプロテアーゼ(Human rhinovirus 3Cプロテアーゼ)認識サイトからなるアミノ酸配列(配列番号18)を付加したADF3のアミノ酸配列において、第1~13番目の反復領域をおよそ2倍になるように増やすとともに、翻訳が第1154番目アミノ酸残基で終止するように変異させたものである。配列番号17で示されるアミノ酸配列のC末端のアミノ酸配列は、配列番号16で示されるアミノ酸配列と同一である。
 (1-i)の改変フィブロインは、配列番号17で示されるアミノ酸配列からなるものであってもよい。
 グリシン残基の含有量が低減された改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、グリシン残基の含有量が低減されたアミノ酸配列を有する。当該改変フィブロインは、天然由来のフィブロインと比較して、少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものということができる。
 グリシン残基の含有量が低減された改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中のGGX及びGPGXX(但し、Gはグリシン残基、Pはプロリン残基、Xはグリシン以外のアミノ酸残基を示す。)から選ばれる少なくとも一つのモチーフ配列において、少なくとも1又は複数の当該モチーフ配列中の1つのグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものであってもよい。
 グリシン残基の含有量が低減された改変フィブロインは、上述のグリシン残基が別のアミノ酸残基に置換されたモチーフ配列の割合が、全モチーフ配列に対して、10%以上であってもよい。
 グリシン残基の含有量が低減された改変フィブロインは、式1:[(A)モチーフ-REP]で表されるドメイン配列を含み、上記ドメイン配列から、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を除いた配列中の全REPに含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列から、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を除いた配列中の総アミノ酸残基数をwとしたときに、z/wが30%以上、40%以上、50%以上又は50.9%以上であるアミノ酸配列を有するものであってもよい。(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数は83%以上であってよいが、86%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましく、100%であること(アラニン残基のみで構成されることを意味する)が更により好ましい。
 グリシン残基の含有量が低減された改変フィブロインは、GGXモチーフの1つのグリシン残基を別のアミノ酸残基に置換することにより、XGXからなるアミノ酸配列の含有割合を高めたものであることが好ましい。グリシン残基の含有量が低減された改変フィブロインは、ドメイン配列中のGGXからなるアミノ酸配列の含有割合が30%以下であることが好ましく、20%以下であることがより好ましく、10%以下であることが更に好ましく、6%以下であることが更により好ましく、4%以下であることが更によりまた好ましく、2%以下であることが特に好ましい。ドメイン配列中のGGXからなるアミノ酸配列の含有割合は、下記XGXからなるアミノ酸配列の含有割合(z/w)の算出方法と同様の方法で算出することができる。
 z/wの算出方法を更に詳細に説明する。まず、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、ドメイン配列から、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列を除いた配列に含まれる全てのREPから、XGXからなるアミノ酸配列を抽出する。XGXを構成するアミノ酸残基の総数がzである。例えば、XGXからなるアミノ酸配列が50個抽出された場合(重複はなし)、zは50×3=150である。また、例えば、XGXGXからなるアミノ酸配列の場合のように2つのXGXに含まれるX(中央のX)が存在する場合は、重複分を控除して計算する(XGXGXの場合は5アミノ酸残基である)。wは、ドメイン配列から、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列を除いた配列に含まれる総アミノ酸残基数である。例えば、図1に示したドメイン配列の場合、wは4+50+4+100+4+10+4+20+4+30=230である(最もC末端側に位置する(A)モチーフは除いている。)。次に、zをwで除すことによって、z/w(%)を算出することができる。
 グリシン残基の含有量が低減された改変フィブロインにおいて、z/wは、50.9%以上であることが好ましく、56.1%以上であることがより好ましく、58.7%以上であることが更に好ましく、70%以上であることが更により好ましく、80%以上であることが更によりまた好ましい。z/wの上限に特に制限はないが、例えば、95%以下であってもよい。
 グリシン残基の含有量が低減された改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列から、グリシン残基をコードする塩基配列の少なくとも一部を置換して別のアミノ酸残基をコードするように改変することにより得ることができる。このとき、改変するグリシン残基として、GGXモチーフ及びGPGXXモチーフにおける1つのグリシン残基を選択してもよいし、またz/wが50.9%以上になるように置換してもよい。また、例えば、天然由来のフィブロインのアミノ酸配列から上記態様を満たすアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列からREP中のグリシン残基を別のアミノ酸残基に置換したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
 上記の別のアミノ酸残基としては、グリシン残基以外のアミノ酸残基であれば特に制限はないが、バリン(V)残基、ロイシン(L)残基、イソロイシン(I)残基、メチオニン(M)残基、プロリン(P)残基、フェニルアラニン(F)残基及びトリプトファン(W)残基等の疎水性アミノ酸残基、グルタミン(Q)残基、アスパラギン(N)残基、セリン(S)残基、リシン(K)残基及びグルタミン酸(E)残基等の親水性アミノ酸残基が好ましく、バリン(V)残基、ロイシン(L)残基、イソロイシン(I)残基及びグルタミン(Q)残基がより好ましく、グルタミン(Q)残基が更に好ましい。
 グリシン残基の含有量が低減された改変フィブロインのより具体的な例として、(2-i)配列番号3、配列番号4、配列番号10若しくは配列番号12で示されるアミノ酸配列、又は(2-ii)配列番号3、配列番号4、配列番号10若しくは配列番号12で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
 (2-i)の改変フィブロインについて説明する。配列番号3で示されるアミノ酸配列は、天然由来のフィブロインに相当する配列番号1で示されるアミノ酸配列のREP中の全てのGGXをGQXに置換したものである。配列番号4で示されるアミノ酸配列は、配列番号3で示されるアミノ酸配列から、N末端側からC末端側に向かって2つおきに(A)モチーフを欠失させ、更にC末端配列の手前に[(A)モチーフ-REP]を1つ挿入したものである。配列番号10で示されるアミノ酸配列は、配列番号4で示されるアミノ酸配列の各(A)モチーフのC末端側に2つのアラニン残基を挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、配列番号4の分子量とほぼ同じとなるようにN末端側の一部のアミノ酸を欠失させたものである。配列番号12で示されるアミノ酸配列は、配列番号9で示されるアミノ酸配列中に存在する20個のドメイン配列の領域(但し、当該領域のC末端側の数アミノ酸残基が置換されている。)を4回繰り返した配列のC末端にHisタグが付加されたものである。
 配列番号1で示されるアミノ酸配列(天然由来のフィブロインに相当)におけるz/wの値は、46.8%である。配列番号3で示されるアミノ酸配列、配列番号4で示されるアミノ酸配列、配列番号10で示されるアミノ酸配列、及び配列番号12で示されるアミノ酸配列におけるz/wの値は、それぞれ58.7%、70.1%、66.1%及び70.0%である。また、配列番号1、3、4、10及び12で示されるアミノ酸配列のギザ比率(後述する)1:1.8~11.3におけるx/yの値は、それぞれ15.0%、15.0%、93.4%、92.7%及び89.3%である。
 (2-i)の改変フィブロインは、配列番号3、配列番号4、配列番号10又は配列番号12で示されるアミノ酸配列からなるものであってもよい。
 (2-ii)の改変フィブロインは、配列番号3、配列番号4、配列番号10又は配列番号12で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(2-ii)の改変フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
 (2-ii)の改変フィブロインは、配列番号3、配列番号4、配列番号10又は配列番号12で示されるアミノ酸配列と90%以上の配列同一性を有し、かつREP中に含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列中のREPの総アミノ酸残基数をwとしたときに、z/wが50.9%以上であることが好ましい。
 上述の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。これにより、改変フィブロインの単離、固定化、検出及び可視化等が可能となる。
 タグ配列として、例えば、他の分子との特異的親和性(結合性、アフィニティ)を利用したアフィニティタグを挙げることができる。アフィニティタグの具体例として、ヒスチジンタグ(Hisタグ)を挙げることができる。Hisタグは、ヒスチジン残基が4から10個程度並んだ短いペプチドで、ニッケル等の金属イオンと特異的に結合する性質があるため、金属キレートクロマトグラフィー(chelating metal chromatography)による改変フィブロインの単離に利用することができる。タグ配列の具体例として、例えば、配列番号5で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含むアミノ酸配列)が挙げられる。
 また、グルタチオンに特異的に結合するグルタチオン-S-トランスフェラーゼ(GST)、マルトースに特異的に結合するマルトース結合タンパク質(MBP)等のタグ配列を利用することもできる。
 さらに、抗原抗体反応を利用した「エピトープタグ」を利用することもできる。抗原性を示すペプチド(エピトープ)をタグ配列として付加することにより、当該エピトープに対する抗体を結合させることができる。エピトープタグとして、HA(インフルエンザウイルスのヘマグルチニンのペプチド配列)タグ、mycタグ、FLAGタグ等を挙げることができる。エピトープタグを利用することにより、高い特異性で容易に改変フィブロインを精製することができる。
 さらにタグ配列を特定のプロテアーゼで切り離せるようにしたものも使用することができる。当該タグ配列を介して吸着したタンパク質をプロテアーゼ処理することにより、タグ配列を切り離した改変フィブロインを回収することもできる。
 タグ配列を含む改変フィブロインのより具体的な例として、(2-iii)配列番号8、配列番号9、配列番号11若しく配列番号13で示されるアミノ酸配列、又は(2-iv)配列番号8、配列番号9、配列番号11若しく配列番号13で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
 配列番号6、7、8、9、11及び13で示されるアミノ酸配列は、それぞれ配列番号1、2、3、4、10及び12で示されるアミノ酸配列のN末端に配列番号5で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
 (2-iii)の改変フィブロインは、配列番号8、配列番号9、配列番号11又は配列番号13で示されるアミノ酸配列からなるものであってもよい。
 (2-iv)の改変フィブロインは、配列番号8、配列番号9、配列番号11又は配列番号13で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(2-iv)の改変フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
 (2-iv)の改変フィブロインは、配列番号8、配列番号9、配列番号11又は配列番号13で示されるアミノ酸配列と90%以上の配列同一性を有し、かつREP中に含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列中のREPの総アミノ酸残基数をwとしたときに、z/wが50.9%以上であることが好ましい。
 上述の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
 (A)モチーフの含有量が低減された改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、(A)モチーフの含有量が低減されたアミノ酸配列を有する。当該改変フィブロインのドメイン配列は、天然由来のフィブロインと比較して、少なくとも1又は複数の(A)モチーフが欠失したことに相当するアミノ酸配列を有するものということができる。
 (A)モチーフの含有量が低減された改変フィブロインは、天然由来のフィブロインから(A)モチーフを10~40%欠失させたことに相当するアミノ酸配列を有するものであってもよい。
 (A)モチーフの含有量が低減された改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、少なくともN末端側からC末端側に向かって1~3つの(A)モチーフ毎に1つの(A)モチーフが欠失したことに相当するアミノ酸配列を有するものであってもよい。
 (A)モチーフの含有量が低減された改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、少なくともN末端側からC末端側に向かって2つ連続した(A)モチーフの欠失、及び1つの(A)モチーフの欠失がこの順に繰り返されたことに相当するアミノ酸配列を有するものであってもよい。
 (A)モチーフの含有量が低減された改変フィブロインは、そのドメイン配列が、少なくともN末端側からC末端側に向かって2つおきに(A)モチーフが欠失したことに相当するアミノ酸配列を有するものであってもよい。
 (A)モチーフの含有量が低減された改変フィブロインは、式1:[(A)モチーフ-REP]で表されるドメイン配列を含み、N末端側からC末端側に向かって、隣合う2つの[(A)モチーフ-REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8~11.3となる隣合う2つの[(A)モチーフ-REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが20%以上、30%以上、40%以上又は50%以上であるアミノ酸配列を有するものであってもよい。(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数は83%以上であってよいが、86%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましく、100%であること(アラニン残基のみで構成されることを意味する)が更により好ましい。
 x/yの算出方法を図1を参照しながら更に詳細に説明する。図1には、改変フィブロインからN末端配列及びC末端配列を除いたドメイン配列を示す。当該ドメイン配列は、N末端側(左側)から(A)モチーフ-第1のREP(50アミノ酸残基)-(A)モチーフ-第2のREP(100アミノ酸残基)-(A)モチーフ-第3のREP(10アミノ酸残基)-(A)モチーフ-第4のREP(20アミノ酸残基)-(A)モチーフ-第5のREP(30アミノ酸残基)-(A)モチーフという配列を有する。
 隣合う2つの[(A)モチーフ-REP]ユニットは、重複がないように、N末端側からC末端側に向かって、順次選択する。このとき、選択されない[(A)モチーフ-REP]ユニットが存在してもよい。図1には、パターン1(第1のREPと第2のREPの比較、及び第3のREPと第4のREPの比較)、パターン2(第1のREPと第2のREPの比較、及び第4のREPと第5のREPの比較)、パターン3(第2のREPと第3のREPの比較、及び第4のREPと第5のREPの比較)、パターン4(第1のREPと第2のREPの比較)を示した。なお、これ以外にも選択方法は存在する。
 次に各パターンについて、選択した隣合う2つの[(A)モチーフ-REP]ユニット中の各REPのアミノ酸残基数を比較する。比較は、よりアミノ酸残基数の少ない方を1としたときの、他方のアミノ酸残基数の比を求めることによって行う。例えば、第1のREP(50アミノ酸残基)と第2のREP(100アミノ酸残基)の比較の場合、よりアミノ酸残基数の少ない第1のREPを1としたとき、第2のREPのアミノ酸残基数の比は、100/50=2である。同様に、第4のREP(20アミノ酸残基)と第5のREP(30アミノ酸残基)の比較の場合、よりアミノ酸残基数の少ない第4のREPを1としたとき、第5のREPのアミノ酸残基数の比は、30/20=1.5である。
 図1中、よりアミノ酸残基数の少ない方を1としたときに、他方のアミノ酸残基数の比が1.8~11.3となる[(A)モチーフ-REP]ユニットの組を実線で示した。以下このような比をギザ比率と呼ぶ。よりアミノ酸残基数の少ない方を1としたときに、他方のアミノ酸残基数の比が1.8未満又は11.3超となる[(A)モチーフ-REP]ユニットの組は破線で示した。
 各パターンにおいて、実線で示した隣合う2つの[(A)モチーフ-REP]ユニットの全てのアミノ酸残基数を足し合わせる(REPのみではなく、(A)モチーフのアミノ酸残基数もである。)。そして、足し合わせた合計値を比較して、当該合計値が最大となるパターンの合計値(合計値の最大値)をxとする。図1に示した例では、パターン1の合計値が最大である。
 次に、xをドメイン配列の総アミノ酸残基数yで除すことによって、x/y(%)を算出することができる。
 (A)モチーフの含有量が低減された改変フィブロインにおいて、x/yは、50%以上であることが好ましく、60%以上であることがより好ましく、65%以上であることが更に好ましく、70%以上であることが更により好ましく、75%以上であることが更によりまた好ましく、80%以上であることが特に好ましい。x/yの上限に特に制限はなく、例えば、100%以下であってよい。ギザ比率が1:1.9~11.3の場合には、x/yは89.6%以上であることが好ましく、ギザ比率が1:1.8~3.4の場合には、x/yは77.1%以上であることが好ましく、ギザ比率が1:1.9~8.4の場合には、x/yは75.9%以上であることが好ましく、ギザ比率が1:1.9~4.1の場合には、x/yは64.2%以上であることが好ましい。
 (A)モチーフの含有量が低減された改変フィブロインが、ドメイン配列中に複数存在する(A)モチーフの少なくとも7つがアラニン残基のみで構成される改変フィブロインである場合、x/yは、46.4%以上であることが好ましく、50%以上であることがより好ましく、55%以上であることが更に好ましく、60%以上であることが更により好ましく、70%以上であることが更によりまた好ましく、80%以上であることが特に好ましい。x/yの上限に特に制限はなく、100%以下であればよい。
 (A)モチーフの含有量が低減された改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列から、x/yが64.2%以上になるように(A)モチーフをコードする配列の1又は複数を欠失させることにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列から、x/yが64.2%以上になるように1又は複数の(A)モチーフが欠失したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列から(A)モチーフが欠失したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
 (A)モチーフの含有量が低減された改変フィブロインのより具体的な例として、(3-i)配列番号2、配列番号4、配列番号10若しくは配列番号12で示されるアミノ酸配列、又は(3-ii)配列番号2、配列番号4、配列番号10若しくは配列番号12で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
 (3-i)の改変フィブロインについて説明する。配列番号2で示されるアミノ酸配列は、天然由来のフィブロインに相当する配列番号1で示されるアミノ酸配列から、N末端側からC末端側に向かって2つおきに(A)モチーフを欠失させ、更にC末端配列の手前に[(A)モチーフ-REP]を1つ挿入したものである。配列番号4で示されるアミノ酸配列は、配列番号2で示されるアミノ酸配列のREP中の全てのGGXをGQXに置換したものである。配列番号10で示されるアミノ酸配列は、配列番号4で示されるアミノ酸配列の各(A)モチーフのC末端側に2つのアラニン残基を挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、配列番号4の分子量とほぼ同じとなるようにN末端側の一部のアミノ酸を欠失させたものである。配列番号12で示されるアミノ酸配列は、配列番号9で示されるアミノ酸配列中に存在する20個のドメイン配列の領域(但し、当該領域のC末端側の数アミノ酸残基が置換されている。)を4回繰り返した配列のC末端にHisタグが付加されたものである。
 配列番号1で示されるアミノ酸配列(天然由来のフィブロインに相当)のギザ比率1:1.8~11.3におけるx/yの値は15.0%である。配列番号2で示されるアミノ酸配列、及び配列番号4で示されるアミノ酸配列におけるx/yの値は、いずれも93.4%である。配列番号10で示されるアミノ酸配列におけるx/yの値は、92.7%である。配列番号12で示されるアミノ酸配列におけるx/yの値は、89.3%である。配列番号1、2、4、10及び12で示されるアミノ酸配列におけるz/wの値は、それぞれ46.8%、56.2%、70.1%、66.1%及び70.0%である。
 (3-i)の改変フィブロインは、配列番号2、配列番号4、配列番号10又は配列番号12で示されるアミノ酸配列からなるものであってもよい。
 (3-ii)の改変フィブロインは、配列番号2、配列番号4、配列番号10又は配列番号12で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(3-ii)の改変フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
 (3-ii)の改変フィブロインは、配列番号2、配列番号4、配列番号10又は配列番号12で示されるアミノ酸配列と90%以上の配列同一性を有し、かつN末端側からC末端側に向かって、隣合う2つの[(A)モチーフ-REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8~11.3(ギザ比率が1:1.8~11.3)となる隣合う2つの[(A)モチーフ-REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが64.2%以上であることが好ましい。
 上述の改変フィブロインは、N末端及びC末端のいずれか一方又は両方に上述したタグ配列を含んでいてもよい。
 タグ配列を含む改変フィブロインのより具体的な例として、(3-iii)配列番号7、配列番号9、配列番号11若しく配列番号13で示されるアミノ酸配列、又は(2-iv)配列番号7、配列番号9、配列番号11若しく配列番号13で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
 配列番号6、7、8、9、11及び13で示されるアミノ酸配列は、それぞれ配列番号1、2、3、4、10及び12で示されるアミノ酸配列のN末端に配列番号5で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
 (3-iii)の改変フィブロインは、配列番号7、配列番号9、配列番号11又は配列番号13で示されるアミノ酸配列からなるものであってもよい。
 (3-iv)の改変フィブロインは、配列番号7、配列番号9、配列番号11又は配列番号13で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(3-iv)の改変フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
 (3-iv)の改変フィブロインは、配列番号7、配列番号9、配列番号11又は配列番号13で示されるアミノ酸配列と90%以上の配列同一性を有し、かつN末端側からC末端側に向かって、隣合う2つの[(A)モチーフ-REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8~11.3となる隣合う2つの[(A)モチーフ-REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが64.2%以上であることが好ましい。
 上述の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
 グリシン残基の含有量、及び(A)モチーフの含有量が低減された改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、(A)モチーフの含有量が低減されたことに加え、グリシン残基の含有量が低減されたアミノ酸配列を有するものである。当該改変フィブロインのドメイン配列は、天然由来のフィブロインと比較して、少なくとも1又は複数の(A)モチーフが欠失したことに加え、更に少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものということができる。すなわち、上述したグリシン残基の含有量が低減された改変フィブロインと、(A)モチーフの含有量が低減された改変フィブロインの特徴を併せ持つ改変フィブロインである。具体的な態様等は、グリシン残基の含有量が低減された改変フィブロイン、及び、(A)モチーフの含有量が低減された改変フィブロインで説明したとおりである。
 グリシン残基の含有量、及び(A)モチーフの含有量が低減された改変フィブロインのより具体的な例として、(4-i)配列番号4、配列番号10若しくは配列番号12で示されるアミノ酸配列、(4-ii)配列番号4、配列番号10若しくは配列番号12で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。配列番号4、配列番号10若しくは配列番号12で示されるアミノ酸配列を含む改変フィブロインの具体的な態様は上述のとおりである。
 他の実施形態に係る改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する、局所的に疎水性指標の大きい領域を含むアミノ酸配列を有するものであってよい。
 局所的に疎水性指標の大きい領域は、連続する2~4アミノ酸残基で構成されていることが好ましい。
 上述の疎水性指標の大きいアミノ酸残基は、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)から選ばれるアミノ酸残基であることがより好ましい。
 本実施形態に係る改変フィブロインは、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する改変に加え、更に、天然由来のフィブロインと比較して、1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変があってもよい。
 本実施形態に係る改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列からREP中の1又は複数の親水性アミノ酸残基(例えば、疎水性指標がマイナスであるアミノ酸残基)を疎水性アミノ酸残基(例えば、疎水性指標がプラスであるアミノ酸残基)に置換すること、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数の親水性アミノ酸残基を疎水性アミノ酸残基に置換したこと、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数の親水性アミノ酸残基を疎水性アミノ酸残基に置換したこと、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
 さらに他の実施形態に係る改変フィブロインは、式1:[(A)モチーフ-REP]で表されるドメイン配列を含み、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を上記ドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を上記ドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であるアミノ酸配列を有してもよい。
 アミノ酸残基の疎水性指標については、公知の指標(Hydropathy index:Kyte J,&Doolittle R(1982)“A simple method for displaying the hydropathic character of a protein”,J.Mol.Biol.,157,pp.105-132)を使用する。具体的には、各アミノ酸の疎水性指標(ハイドロパシー・インデックス、以下「HI」とも記す。)は、下記表1に示すとおりである。
Figure JPOXMLDOC01-appb-T000001
 
 p/qの算出方法を更に詳細に説明する。算出には、式1:[(A)モチーフ-REP]で表されるドメイン配列から、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列を除いた配列(以下、「配列A」とする)を用いる。まず、配列Aに含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値を算出する。疎水性指標の平均値は、連続する4アミノ酸残基に含まれる各アミノ酸残基のHIの総和を4(アミノ酸残基数)で除して求める。疎水性指標の平均値は、全ての連続する4アミノ酸残基について求める(各アミノ酸残基は、1~4回平均値の算出に用いられる。)。次いで、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域を特定する。あるアミノ酸残基が、複数の「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」に該当する場合であっても、領域中には1アミノ酸残基として含まれることになる。そして、当該領域に含まれるアミノ酸残基の総数がpである。また、配列Aに含まれるアミノ酸残基の総数がqである。
 例えば、「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が20カ所抽出された場合(重複はなし)、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域には、連続する4アミノ酸残基(重複はなし)が20含まれることになり、pは20×4=80である。また、例えば、2つの「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が1アミノ酸残基だけ重複して存在する場合、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域には、7アミノ酸残基含まれることになる(p=2×4-1=7。「-1」は重複分の控除である。)。例えば、図2に示したドメイン配列の場合、「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が重複せずに7つ存在するため、pは7×4=28となる。また、例えば、図2に示したドメイン配列の場合、qは4+50+4+40+4+10+4+20+4+30=170である(C末端側の最後に存在する(A)モチーフは含めない)。次に、pをqで除すことによって、p/q(%)を算出することができる。図2の場合28/170=16.47%となる。
 本実施形態に係る改変フィブロインにおいて、p/qは、6.2%以上であることが好ましく、7%以上であることがより好ましく、10%以上であることが更に好ましく、20%以上であることが更により好ましく、30%以上であることが更によりまた好ましい。p/qの上限は、特に制限されないが、例えば、45%以下であってもよい。
 本実施形態に係る改変フィブロインは、例えば、クローニングした天然由来のフィブロインのアミノ酸配列を、上記のp/qの条件を満たすように、REP中の1又は複数の親水性アミノ酸残基(例えば、疎水性指標がマイナスであるアミノ酸残基)を疎水性アミノ酸残基(例えば、疎水性指標がプラスであるアミノ酸残基)に置換すること、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入することにより、局所的に疎水性指標の大きい領域を含むアミノ酸配列に改変することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列から上記のp/qの条件を満たすアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当する改変を行ってもよい。
 疎水性指標の大きいアミノ酸残基としては、特に制限はないが、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)が好ましく、バリン(V)、ロイシン(L)及びイソロイシン(I)がより好ましい。
 改変フィブロインの別の具体的な例として、(5-i)配列番号20、配列番号22若しくは配列番号23で示されるアミノ酸配列、又は(5-ii)配列番号20、配列番号22若しくは配列番号23で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
 (5-i)の改変フィブロインについて説明する。配列番号19で示されるアミノ酸配列は、天然由来のフィブロインの(A)モチーフ中のアラニン残基が連続するアミノ酸配列をアラニン残基が連続する数を5つになるよう欠失したものである。配列番号20で示されるアミノ酸配列は、配列番号19で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を2カ所挿入し、かつ配列番号19で示されるアミノ酸配列の分子量とほぼ同じとなるようにC末端側の一部のアミノ酸を欠失させたものである。配列番号21で示されるアミノ酸配列は、配列番号19で示されるアミノ酸配列に対し、各(A)モチーフのC末端側に2つのアラニン残基を挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、かつ配列番号19で示されるアミノ酸配列の分子量とほぼ同じとなるようにC末端側の一部のアミノ酸を欠失させたものである。配列番号22で示されるアミノ酸配列は、配列番号21で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を1カ所挿入したものである。配列番号23で示されるアミノ酸配列は、配列番号21で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を2カ所挿入したものである。
 (5-i)の改変フィブロインは、配列番号20、配列番号22又は配列番号23で示されるアミノ酸配列からなるものであってもよい。
 (5-ii)の改変フィブロインは、配列番号20、配列番号22又は配列番号23で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(5-ii)の改変フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
 (5-ii)の改変フィブロインは、配列番号20、配列番号22又は配列番号23で示されるアミノ酸配列と90%以上の配列同一性を有し、かつ最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であることが好ましい。
 上述の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。
 タグ配列を含む改変フィブロインのより具体的な例として、(5-iii)配列番号24、配列番号25若しくは配列番号26で示されるアミノ酸配列、又は(5-iv)配列番号24、配列番号25若しくは配列番号26で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
 配列番号24、25及び26で示されるアミノ酸配列は、それぞれ配列番号20、22及び23で示されるアミノ酸配列のN末端に配列番号5で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
 (5-iii)の改変フィブロインは、配列番号24、配列番号25若しくは配列番号26で示されるアミノ酸配列からなるものであってもよい。
 (5-iv)の改変フィブロインは、配列番号24、配列番号25若しくは配列番号26で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(5-iv)の改変フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
 (5-iv)の改変フィブロインは、配列番号24、配列番号25若しくは配列番号26で示されるアミノ酸配列と90%以上の配列同一性を有し、かつ最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であることが好ましい。
 上述の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
 さらに他の実施形態に係る改変フィブロインは、天然由来のフィブロインと比較して、グルタミン残基の含有量が低減されたアミノ酸配列を有する。
 本実施形態に係る改変フィブロインは、REPのアミノ酸配列中に、GGXモチーフ及びGPGXXモチーフから選ばれる少なくとも一つのモチーフが含まれていることが好ましい。
 本実施形態に係る改変フィブロインが、REP中にGPGXXモチーフを含む場合、GPGXXモチーフ含有率は、通常1%以上であり、5%以上であってもよく、10%以上であるのが好ましい。GPGXXモチーフ含有率の上限に特に制限はなく、50%以下であってよく、30%以下であってもよい。
 本明細書において、「GPGXXモチーフ含有率」は、以下の方法により算出される値である。
 式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、その領域に含まれるGPGXXモチーフの個数の総数を3倍した数(即ち、GPGXXモチーフ中のG及びPの総数に相当)をsとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)モチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、GPGXXモチーフ含有率はs/tとして算出される。
 GPGXXモチーフ含有率の算出において、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としているのは、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列」(REPに相当する配列)には、フィブロインに特徴的な配列と相関性の低い配列が含まれることがあり、mが小さい場合(つまり、ドメイン配列が短い場合)、GPGXXモチーフ含有率の算出結果に影響するので、この影響を排除するためである。なお、REPのC末端に「GPGXXモチーフ」が位置する場合、「XX」が例えば「AA」の場合であっても、「GPGXXモチーフ」として扱う。
 図3は、改変フィブロインのドメイン配列を示す模式図である。図3を参照しながらGPGXXモチーフ含有率の算出方法を具体的に説明する。まず、図3に示した改変フィブロインのドメイン配列(「[(A)モチーフ-REP]-(A)モチーフ」タイプである。)では、全てのREPが「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」(図3中、「領域A」で示した配列。)に含まれているため、sを算出するためのGPGXXモチーフの個数は7であり、sは7×3=21となる。同様に、全てのREPが「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」(図1中、「領域A」で示した配列。)に含まれているため、当該配列から更に(A)モチーフを除いた全REPのアミノ酸残基の総数tは50+40+10+20+30=150である。次に、sをtで除すことによって、s/t(%)を算出することができ、図3の改変フィブロインの場合21/150=14.0%となる。
 本実施形態に係る改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましく、7%以下であることがより好ましく、4%以下であることが更に好ましく、0%であることが特に好ましい。
 本明細書において、「グルタミン残基含有率」は、以下の方法により算出される値である。
 式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列(図3の「領域A」に相当する配列。)に含まれる全てのREPにおいて、その領域に含まれるグルタミン残基の総数をuとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)モチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、グルタミン残基含有率はu/tとして算出される。グルタミン残基含有率の算出において、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としている理由は、上述した理由と同様である。
 本実施形態に係る改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のグルタミン残基を欠失したこと、又は他のアミノ酸残基に置換したことに相当するアミノ酸配列を有するものであってよい。
 「他のアミノ酸残基」は、グルタミン残基以外のアミノ酸残基であればよいが、グルタミン残基よりも疎水性指標の大きいアミノ酸残基であることが好ましい。アミノ酸残基の疎水性指標は表1に示すとおりである。
 表1に示すとおり、グルタミン残基よりも疎水性指標の大きいアミノ酸残基としては、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)アラニン(A)、グリシン(G)、スレオニン(T)、セリン(S)、トリプトファン(W)、チロシン(Y)、プロリン(P)及びヒスチジン(H)から選ばれるアミノ酸残基を挙げることができる。これらの中でも、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)から選ばれるアミノ酸残基であることがより好ましく、イソロイシン(I)、バリン(V)、ロイシン(L)及びフェニルアラニン(F)から選ばれるアミノ酸残基であることが更に好ましい。
 本実施形態に係る改変フィブロインは、REPの疎水性度が、-0.8以上であることが好ましく、-0.7以上であることがより好ましく、0以上であることが更に好ましく、0.3以上であることが更により好ましく、0.4以上であることが特に好ましい。REPの疎水性度の上限に特に制限はなく、1.0以下であってよく、0.7以下であってもよい。
 本明細書において、「REPの疎水性度」は、以下の方法により算出される値である。
 式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列(図1の「領域A」に相当する配列。)に含まれる全てのREPにおいて、その領域の各アミノ酸残基の疎水性指標の総和をvとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)モチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、REPの疎水性度はv/tとして算出される。REPの疎水性度の算出において、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としている理由は、上述した理由と同様である。
 本実施形態に係る改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のグルタミン残基を欠失したこと、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変があってもよい。
 本実施形態に係る改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列からREP中の1又は複数のグルタミン残基を欠失させること、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数のグルタミン残基を欠失したこと、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。
 本発明に係る改変フィブロインのより具体的な例として、(6-i)配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号38若しくは配列番号39で示されるアミノ酸配列を含む、改変フィブロイン、又は(6-ii)配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号38若しくは配列番号39で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
 (6-i)の改変フィブロインについて説明する。
 配列番号4で示されるアミノ酸配列(Met-PRT410)は、天然由来のフィブロインであるNephila clavipes(GenBankアクセッション番号:P46804.1、GI:1174415)の塩基配列及びアミノ酸配列に基づき、(A)モチーフ中のアラニン残基が連続するアミノ酸配列をアラニン残基が連続する数を5つにする等の生産性を向上させるためのアミノ酸の改変を行ったものである。一方、Met-PRT410は、グルタミン残基(Q)の改変は行っていないため、グルタミン残基含有率は、天然由来のフィブロインのグルタミン残基含有率と同程度である。
 配列番号27で示されるアミノ酸配列(M_PRT888)は、Met-PRT410(配列番号4)中のQQを全てVLに置換したものである。
 配列番号28で示されるアミノ酸配列(M_PRT965)は、Met-PRT410(配列番号4)中のQQを全てTSに置換し、かつ残りのQをAに置換したものである。
 配列番号29で示されるアミノ酸配列(M_PRT889)は、Met-PRT410(配列番号4)中のQQを全てVLに置換し、かつ残りのQをIに置換したものである。
 配列番号30で示されるアミノ酸配列(M_PRT916)は、Met-PRT410(配列番号4)中のQQを全てVIに置換し、かつ残りのQをLに置換したものである。
 配列番号31で示されるアミノ酸配列(M_PRT918)は、Met-PRT410(配列番号4)中のQQを全てVFに置換し、かつ残りのQをIに置換したものである。
 配列番号37で示されるアミノ酸配列(M_PRT525)は、Met-PRT410(配列番号4)に対し、アラニン残基が連続する領域(A)に2つのアラニン残基を挿入し、Met-PRT410の分子量とほぼ同じになるよう、C末端側のドメイン配列2つを欠失させ、かつグルタミン残基(Q)13箇所をセリン残基(S)又はプロリン残基(P)に置換したものである。
 配列番号38で示されるアミノ酸配列(M_PRT699)は、M_PRT525(配列番号37)中のQQを全てVLに置換したものである。
 配列番号39で示されるアミノ酸配列(M_PRT698)は、M_PRT525(配列番号37)中のQQを全てVLに置換し、かつ残りのQをIに置換したものである。
 配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号38及び配列番号39で示されるアミノ酸配列は、いずれもグルタミン残基含有率は9%以下である(表2)。
Figure JPOXMLDOC01-appb-T000002
 (6-i)の改変フィブロインは、配列番号2、配列番号3、配列番号4、配列番号5、配列番号6、配列番号16又は配列番号17で示されるアミノ酸配列からなるものであってもよい。
 (6-ii)の改変フィブロインは、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号38又は配列番号39で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(6-ii)の改変フィブロインもまた、式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
 (6-ii)の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましい。また、(6-ii)の改変フィブロインは、GPGXXモチーフ含有率が10%以上であることが好ましい。
 上述の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。これにより、改変フィブロインの単離、固定化、検出及び可視化等が可能となる。
 タグ配列を含む改変フィブロインのより具体的な例として、(6-iii)配列番号9、配列番号10、配列番号11、配列番号12、配列番号13、配列番号19若しくは配列番号20で示されるアミノ酸配列を含む、改変フィブロイン、又は(6-iv)配列番号9、配列番号10、配列番号11、配列番号12、配列番号13、配列番号19若しくは配列番号20で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
 配列番号32、配列番号33、配列番号34、配列番号35、配列番号36、配列番号40及び配列番号41で示されるアミノ酸配列は、それぞれ配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号38及び配列番号39で示されるアミノ酸配列のN末端に配列番号5で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。N末端にタグ配列を付加しただけであるため、グルタミン残基含有率に変化はなく、配列番号32、配列番号33、配列番号34、配列番号35、配列番号36、配列番号40及び配列番号41で示されるアミノ酸配列は、いずれもグルタミン残基含有率が9%以下である(表3)。
Figure JPOXMLDOC01-appb-T000003
 (6-iii)の改変フィブロインは、配列番号32、配列番号33、配列番号34、配列番号35、配列番号36、配列番号40又は配列番号41で示されるアミノ酸配列からなるものであってもよい。
 (6-iv)の改変フィブロインは、配列番号32、配列番号33、配列番号34、配列番号35、配列番号36、配列番号40又は配列番号41で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(6-iv)の改変フィブロインもまた、式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
 (6-iv)の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましい。また、(6-iv)の改変フィブロインは、GPGXXモチーフ含有率が10%以上であることが好ましい。
 上述の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
<改変フィブロインの製造方法>
 上記いずれの実施形態に係る改変フィブロイン(タンパク質)も、例えば、当該タンパク質をコードする核酸配列と、当該核酸配列に作動可能に連結された1又は複数の調節配列とを有する発現ベクターで形質転換された宿主により、当該核酸を発現させることにより生産することができる。
 改変フィブロインをコードする核酸の製造方法は、特に制限されない。例えば、天然のフィブロインをコードする遺伝子を利用して、ポリメラーゼ連鎖反応(PCR)などで増幅しクローニングし、遺伝子工学的手法により改変する方法、又は、化学的に合成する方法によって、当該核酸を製造することができる。核酸の化学的な合成方法も特に制限されず、例えば、NCBIのウェブデータベースなどより入手したタンパク質のアミノ酸配列情報をもとに、AKTA oligopilot plus 10/100(GEヘルスケア・ジャパン株式会社)などで自動合成したオリゴヌクレオチドをPCRなどで連結する方法によって遺伝子を化学的に合成することができる。この際に、改変フィブロインの精製及び/又は確認を容易にするため、上記のアミノ酸配列のN末端に開始コドン及びHis10タグからなるアミノ酸配列を付加したアミノ酸配列からなる改変フィブロインをコードする核酸を合成してもよい。
 調節配列は、宿主における改変フィブロインの発現を制御する配列(例えば、プロモーター、エンハンサー、リボソーム結合配列、転写終結配列等)であり、宿主の種類に応じて適宜選択することができる。プロモーターとして、宿主細胞中で機能し、改変フィブロインを発現誘導可能な誘導性プロモーターを用いてもよい。誘導性プロモーターは、誘導物質(発現誘導剤)の存在、リプレッサー分子の非存在、又は温度、浸透圧若しくはpH値の上昇若しくは低下等の物理的要因により、転写を制御できるプロモーターである。
 発現ベクターの種類は、プラスミドベクター、ウイルスベクター、コスミドベクター、フォスミドベクター、人工染色体ベクター等、宿主の種類に応じて適宜選択することができる。発現ベクターとしては、宿主細胞において自立複製が可能、又は宿主の染色体中への組込みが可能で、改変フィブロインをコードする核酸を転写できる位置にプロモーターを含有しているものが好適に用いられる。
 宿主として、原核生物、並びに酵母、糸状真菌、昆虫細胞、動物細胞及び植物細胞等の真核生物のいずれも好適に用いることができる。
 原核生物の宿主の好ましい例として、エシェリヒア属、ブレビバチルス属、セラチア属、バチルス属、ミクロバクテリウム属、ブレビバクテリウム属、コリネバクテリウム属及びシュードモナス属等に属する細菌を挙げることができる。エシェリヒア属に属する微生物として、例えば、エシェリヒア・コリ等を挙げることができる。ブレビバチルス属に属する微生物として、例えば、ブレビバチルス・アグリ等を挙げることができる。セラチア属に属する微生物として、例えば、セラチア・リクエファシエンス等を挙げることができる。バチルス属に属する微生物として、例えば、バチルス・サチラス等を挙げることができる。ミクロバクテリウム属に属する微生物として、例えば、ミクロバクテリウム・アンモニアフィラム等を挙げることができる。ブレビバクテリウム属に属する微生物として、例えば、ブレビバクテリウム・ディバリカタム等を挙げることができる。コリネバクテリウム属に属する微生物として、例えば、コリネバクテリウム・アンモニアゲネス等を挙げることができる。シュードモナス(Pseudomonas)属に属する微生物として、例えば、シュードモナス・プチダ等を挙げることができる。
 原核生物を宿主とする場合、改変フィブロインをコードする核酸を導入するベクターとしては、例えば、pBTrp2(ベーリンガーマンハイム社製)、pGEX(Pharmacia社製)、pUC18、pBluescriptII、pSupex、pET22b、pCold、pUB110、pNCO2(特開2002-238569号公報)等を挙げることができる。
 真核生物の宿主としては、例えば、酵母及び糸状真菌(カビ等)を挙げることができる。酵母としては、例えば、サッカロマイセス属、ピキア属、シゾサッカロマイセス属等に属する酵母を挙げることができる。糸状真菌としては、例えば、アスペルギルス属、ペニシリウム属、トリコデルマ(Trichoderma)属等に属する糸状真菌を挙げることができる。
 真核生物を宿主とする場合、改変フィブロインをコードする核酸を導入するベクターとしては、例えば、YEp13(ATCC37115)、YEp24(ATCC37051)等を挙げることができる。上記宿主細胞への発現ベクターの導入方法としては、上記宿主細胞へDNAを導入する方法であればいずれも用いることができる。例えば、カルシウムイオンを用いる方法〔Proc. Natl. Acad. Sci. USA,69,2110(1972)〕、エレクトロポレーション法、スフェロプラスト法、プロトプラスト法、酢酸リチウム法、コンピテント法等を挙げることができる。
 発現ベクターで形質転換された宿主による核酸の発現方法としては、直接発現のほか、モレキュラー・クローニング第2版に記載されている方法等に準じて、分泌生産、融合タンパク質発現等を行うことができる。
 改変フィブロインは、例えば、発現ベクターで形質転換された宿主を培養培地中で培養し、培養培地中に当該タンパク質を生成蓄積させ、該培養培地から採取することにより製造することができる。宿主を培養培地中で培養する方法は、宿主の培養に通常用いられる方法に従って行うことができる。
 宿主が、大腸菌等の原核生物又は酵母等の真核生物である場合、培養培地として、宿主が資化し得る炭素源、窒素源及び無機塩類等を含有し、宿主の培養を効率的に行える培地であれば天然培地、合成培地のいずれを用いてもよい。
 炭素源としては、上記形質転換微生物が資化し得るものであればよく、例えば、グルコース、フラクトース、スクロース、及びこれらを含有する糖蜜、デンプン及びデンプン加水分解物等の炭水化物、酢酸及びプロピオン酸等の有機酸、並びにエタノール及びプロパノール等のアルコール類を用いることができる。窒素源としては、例えば、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム及びリン酸アンモニウム等の無機酸又は有機酸のアンモニウム塩、その他の含窒素化合物、並びにペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼイン加水分解物、大豆粕及び大豆粕加水分解物、各種発酵菌体及びその消化物を用いることができる。無機塩類としては、例えば、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅及び炭酸カルシウムを用いることができる。
 大腸菌等の原核生物又は酵母等の真核生物の培養は、例えば、振盪培養又は深部通気攪拌培養等の好気的条件下で行うことができる。培養温度は、例えば、15~40℃である。培養時間は、通常16時間~7日間である。培養中の培養培地のpHは3.0~9.0に保持することが好ましい。培養培地のpHの調整は、無機酸、有機酸、アルカリ溶液、尿素、炭酸カルシウム及びアンモニア等を用いて行うことができる。
 また、培養中、必要に応じて、アンピシリン及びテトラサイクリン等の抗生物質を培養培地に添加してもよい。プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはイソプロピル-β-D-チオガラクトピラノシド等を、trpプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸等を培地に添加してもよい。
 発現させた改変フィブロインの単離、精製は通常用いられている方法で行うことができる。例えば、当該タンパク質が、細胞内に溶解状態で発現した場合には、培養終了後、宿主細胞を遠心分離により回収し、水系緩衝液に懸濁した後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー及びダイノミル等により宿主細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られる上清から、タンパク質の単離精製に通常用いられている方法、すなわち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)-セファロース、DIAION HPA-75(三菱化成社製)等のレジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(Pharmacia社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の方法を単独又は組み合わせて使用し、精製標品を得ることができる。
 また、改変フィブロインが細胞内に不溶体を形成して発現した場合は、同様に宿主細胞を回収後、破砕し、遠心分離を行うことにより、沈殿画分として改変フィブロインの不溶体を回収する。回収した改変フィブロインの不溶体はタンパク質変性剤で可溶化することができる。該操作の後、上記と同様の単離精製法により改変フィブロインの精製標品を得ることができる。当該タンパク質が細胞外に分泌された場合には、培養上清から当該タンパク質を回収することができる。すなわち、培養物を遠心分離等の手法により処理することにより培養上清を取得し、その培養上清から、上記と同様の単離精製法を用いることにより、精製標品を得ることができる。
 以下、実施例に基づいて本発明をより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
<改蜘蛛糸フィブロインの製造>
<改変蜘蛛糸フィブロイン繊維のプラスミド発現株>
 以下のようにして、プラスミド発現株を作製した。ネフィラ・クラビペス(Nephila clavipes)由来のフィブロイン(GenBankアクセッション番号:P46804.1、GI:1174415)の塩基配列及びアミノ酸配列に基づき、配列番号36で示されるアミノ酸配列を有する改変蜘蛛糸フィブロイン(以下、「PRT918」ともいう。)を設計した。なお、配列番号36で示されるアミノ酸配列は、
・ ネフィラ・クラビペス由来のフィブロインのアミノ酸配列に対して、生産性の向上を目的としてアミノ酸残基の置換、挿入及び欠失を施したアミノ酸配列を有すると共に、
・ 末端に、配列番号5で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加され、
・ さらにアミノ酸配列中のQQを全てVFに置換し、かつ残りのQをIに置換したものである。
<核酸合成>
 次に、PRT918をコードする核酸を合成した。当該核酸には、5'末端にNdeIサイト及び終止コドン下流にEcoRIサイトを付加した。当該核酸をクローニングベクター(pUC118;JP2002-238569参照)にクローニングした。その後、同核酸をNdeI及びEcoRIで制限酵素処理して切り出した後、タンパク質発現ベクターpET-22b(+)(JP2002-238569参照)に組換えて発現ベクターを得た。
<改変蜘蛛糸フィブロインの発現>
 配列番号36で示されるアミノ酸配列を有するタンパク質をコードする核酸を含むpET22b(+)発現ベクターにより、大腸菌BLR(DE3)を形質転換した。当該形質転換大腸菌を、アンピシリンを含む2mLのLB培地で15時間培養した。当該培養液を、アンピシリンを含む100mLのシード培養用培地(表4)にOD600(600nmでの光学濃度)が0.005となるように添加した。培養液温度を30℃に保ち、OD600が5になるまでフラスコ培養を行い(約15時間)、シード培養液を得た。
Figure JPOXMLDOC01-appb-T000004
 当該シード培養液を500mLの生産培地(表5)を添加したジャーファーメンターにOD600が0.05となるように添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持した。
Figure JPOXMLDOC01-appb-T000005
 生産培地中のグルコースが完全に消費された直後に、フィード液(グルコース455g/L、Yeast Extract 120g/L)を1mL/分の速度で添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにし、20時間培養を行った。その後、1Mのイソプロピル-β-チオガラクトピラノシド(IPTG)を培養液に対して終濃度1mMになるよう添加し、改変フィブロインを発現誘導させた。IPTG添加後20時間経過した時点で、培養液を遠心分離し、菌体を回収した。IPTG添加前とIPTG添加後の培養液から調製した菌体を用いてSDS-PAGEを行い、IPTG添加に依存した目的とする改変フィブロインサイズのバンドの出現により、目的とする改変フィブロインの発現を確認した。
<フィブロインの精製>
 IPTGを添加してから2時間後に回収した菌体を20mM Tris-HCl buffer(pH7.4)で洗浄した。洗浄後の菌体を約1mMのPMSF(フッ化フェニルメチルスルホニル)を含む20mM Tris-HCl緩衝液(pH7.4)に懸濁させ、高圧ホモジナイザー(GEA Niro Soavi社製)で細胞を破砕した。破砕した細胞を遠心分離し、沈殿物を得た。得られた沈殿物を、高純度になるまで20mMTris-HCl緩衝液(pH7.4)で洗浄した。洗浄後の沈殿物を100mg/mLの濃度になるように8M グアニジン緩衝液(8Mグアニジン塩酸塩、10mMリン酸二水素ナトリウム、20mMNaCl、1mMTris-HCl、pH7.0)で懸濁し、60℃で30分間、スターラーで撹拌し、溶解させた。溶解後、透析チューブ(三光純薬株式会社製のセルロースチューブ36/32)を用いて水で透析を行った。透析後に得られた白色の凝集タンパク質を遠心分離により回収し、凍結乾燥機で水分を除き、凍結乾燥粉末を回収することにより、人工蜘蛛糸フィブロイン「PRT918」を得た。
<改変蜘蛛糸タンパク質繊維の製造>
 DMSOに、上述の改変フィブロイン(PRT918)を24mass%濃度となるよう添加した後、溶解促進剤としてLiClを4.0mass%となるように添加した。その後、シェーカーを使用して、改変フィブロインを3時間かけて溶解させ、DMSO(ジメチルスルホキシド)溶液を得た。得られたDMSO溶液中のゴミと泡を取り除き、ドープ液とした。ドープ液の溶液粘度は90℃において5000cP(センチポアズ)であった。
 上記のようにして得られたドープ液と紡糸装置を用い、公知の乾湿式紡糸により、人工蜘蛛糸フィブロイン繊維をボビンに巻きとった。なお、ここでは、乾湿式紡糸を下記の条件で行った。
 凝固液(メタノール)の温度:5~10℃
 延伸倍率:         4.52倍
 乾燥温度:         80℃
<紡績糸の製造>
 人工蜘蛛糸タンパク質から成り、ボビンに巻きとられた人工蜘蛛糸フィラメントを複数本束ね、卓上型繊維裁断機で平均40mm長に裁断し、ステープルの束とした。ステープルを40℃の水に1分浸漬し、クリンプさせた後、40℃で18時間乾燥させて、クリンプしたステープルを得た。得られたステープルを公知の紡績装置(4山カード紡績機とミュール精紡機)により紡績し、人工蜘蛛糸タンパク質繊維からなる紡績糸を得た。なお紡績糸の番手は30Nm、撚り数はZ340であった。水との接触条件は任意で、水-メタノール、水-エタノール等の水性溶媒に浸漬してもよく、あるいは高湿雰囲気に保管して水を吸収させても良い。
 人工タンパク質繊維(例えば、人工蜘蛛タンパク質繊維)が有するクリンプ性は必ずしも充分ではなく、紡績によりステープルが伸ばされて、クリンプが目立たなくなることがあった。またこのような紡績糸を用いたテキスタイル製品は、膨らみ等の風合が充分ではなかった。さらに上記のテキスタイル製品は縮絨が困難であった。
 そこで人工蜘蛛糸タンパク質繊維のステープルに、低分子量の加水分解ケラチン等の異種のタンパク質を浸透させることにより、クリンプ性を強化することにより風合を改善し、また縮絨できるようにした。タンパク質の浸透は、タンパク質繊維のフィラメントあるいはステープルまたは紡績糸に施しても、テキスタイル製品に施しても良い。
 水鳥由来の羽毛100gに水酸化ナトリウムの1.3mass%水溶液1Kgに加え、120℃で20分間反応させて、20℃まで自然冷却した。その後、塩酸でpH4に調整し、12時間室温に放置した。遠心分離により未分解物を除去し、水酸化ナトリウムによりpHを5.6に調整することにより、羽毛由来のアルカリ加水分解ケラチン溶液を製造した。SDS-PAGEによる分子量解析を行うと、数平均分子量は1500であった。
 上記の人工蜘蛛糸タンパク質繊維のステープルを複数本撚り合わせた紡績糸を用い、 14ゲージの丸編機により編地を編成した。
 編成した編地を上記の加水分解ケラチンの水溶液に浸漬することにより、ステープルをクリンプさせると共に、テキスタイル製品を縮絨した。実施例1-6では羽毛由来の加水分解ケラチン(数平均分子量1500)の水溶液(pH約7)に浸漬し、浴比(編地と加水分解ケラチンの水溶液との質量比)は1:20とし、パドル染色機中で加水分解ケラチンの水溶液と編地を撹拌した。この時、編地は水溶液中を緩やかに動き、編地と容器の器壁との激しい衝突などは生じなかった。即ち、編地には衝撃が加わらなかった。撹拌の目的は、編地が加水分解ケラチンの水溶液と均一に接触し、編地を構成する紡績糸の内部まで加水分解ケラチンの水溶液が浸透することであり、編地に衝撃を加えることではない。
 加水分解ケラチンの水溶液の濃度は、0.5mass%~0.1mass%を中心に、0.01mass%から0.5mass%の範囲で変化させた。浸漬時間は、60分を中心に、10分から480分の範囲で変化させた。また加水分解ケラチンの水溶液の温度は、40℃を中心に、10℃から95℃の範囲で変化させた。加水分解ケラチンの水溶液での処理後に、編地を室温で12時間自然乾燥させた。次いで編地の状態を観察し、コース方向とウェール方の目数を測定し、また編地の手触り等の風合を観察した。
 シルク由来のフィブロインを加水分解した、市販の加水分解シルク(数平均分子量1000)の、0.2mass%水溶液を調製した。パドル染色機を用い、浴比1:20、液温40℃、浸漬時間60分で上記の編地を浸漬し、実施例1~6と同様に処理した。これを実施例7とする。
 比較例1では、羊毛の編地に対して行われている通常の縮絨と同様の処理を行った。即ち、加水分解ケラチンの水溶液ではなく、単なる水を用い、パドル染色機をワッシャー染色機に変更し、編地を染色機の器壁に衝突させる縮絨を行った。浴比は1:20、処理温度は40℃、処理時間は20分とした。また比較例2では、実施例と同様にパドル染色機を用いたが、加水分解ケラチンの水溶液ではなく、単なる水を用い、パドル染色機による撹拌自体の効果を調べた。これ以外に、編成したままで未処理の編地を評価した。結果を表6に示す。また実施例1での処理後の編地の写真を図4,図7に、比較例1での処理後の編地の写真を図5,図8に、未処理の編地(編み下がり)の写真を図6,図9に示す。図7~図9は拡大写真で、ステープルのクリンプ状況が観察できる。 
Figure JPOXMLDOC01-appb-T000006
 実施例1では、ステープルは強くクリンプし、紡績糸は膨らみ、編地の風合が改善していた。また編目はコース方向(各図での横方向)にもウェール方向(各図での縦方向)にも詰まり、編目と編目の間の隙間は僅かになり、編地の縮絨にも成功した。
 これに対して、通常の縮絨条件で処理した比較例1では、クリンプは未処理のもの(図9)よりも僅かに強い程度で、紡績糸の膨らみも僅かであった。そして編目はウェール方向には縮んだが、コース方向には逆に拡大し、コース方向に沿って編目と編目との間に大きな隙間が生じ、縮絨できなかった。
 比較例2では、実施例と同様にパドル染色機を用い、ケラチン濃度を0にして、縮絨を試みた。クリンプは僅かに復活し、ウェール方向に沿って僅かに目数が減少したが、縮絨はできなかった。
 これらのことから明らかなように、実施例でクリンプが復活し、縮絨を実現できたのは、水溶液中のケラチンによるものである。そして実施例では、編地に大きな力を加えないので、繊細なテキスタイル製品でも縮絨できる。なお編地に代えて織物、不織布を縮絨しても良い。また紡績糸の段階で加水分解ケラチンの水溶液に浸漬して、クリンプを付与しても良い。
 加水分解ケラチンの水溶液の濃度を0.01mass%から0.5mass%までの範囲で変化させたが、いずれもクリンプが復活し縮絨に成功した。ただし0.1mass%未満では長い処理時間が必要なため、ケラチン濃度は0.1mass%以上が好ましい。また穏和な処理とするため、2mass%以下が好ましい。浸漬時間は10分~480分のいずれでも良かったが、480分では処理時間が長すぎる。また実施例2(ケラチン濃度0.5mass%)からケラチン濃度をさらに高めると、より短い時間でも良い。これらのことから、浸漬時間は5分以上120分以下が好ましい。加水分解ケラチンの水溶液の温度が95℃(実施例6)では、処理後の編地が硬くなり、風合が低下した。また10℃では、40℃に比べ、4倍の処理時間を要した。これらのことから、水溶液の温度は30℃以上60℃以下が好ましい。実施例では1:20の小さな浴比で処理できた。従って廃水が少なく、環境負荷が小さい。
 なおケラチンの水溶液は、水とケラチン以外に、キレート剤、金属塩、セラミド、脂質、クエン酸、界面活性剤、pH調整剤、防腐剤、エタノール、メタノール等の他の成分を含んでいても良い。またパドル染色機の代わりに、ワッシャー染色機等を用いても良く、浸漬装置の種類は任意である。ただし器壁に衝突させずにクリンプが発生し縮絨ができるので、紡績糸あるいはテキスタイル製品を穏和に撹拌しながら浸漬することが好ましい。
 ケラチンに代えて他のタンパク質を用いても良い。また羽毛由来のケラチンに代えて羊毛由来のケラチン等を用いても良い。例えば実施例7では、加水分解シルク(数平均分子量1000)を用いることにより、クリンプが復活し縮絨に成功した。このことから、加水分解ケラチンに限らず、コラーゲン、人工タンパク質等の水溶液でも良いことが分かる。なお実施例7では、処理後のステープルのクリンプは不十分で、実施例1に比べ、縮絨後の編地のハリ(膨らみ感)や腰(形態を維持しようとする傾向)が不足していた。
 ケラチンには、低分子量の加水分解ケラチン(数平均分子量が500以上5000以下)と、高分子量の可溶化ケラチン(数平均分子量が例えば10,000程度)とがある。加水分解ケラチンの水溶液ではステープルのクリンプと編地の縮絨ができ、特に数平均分子量が500以上3000以下が好ましいことが判明した。しかし可溶化ケラチンでは、これらの効果は不十分であった。そこで加水分解ケラチンの水溶液に浸漬した際に、ケラチンが人工蜘蛛糸タンパク質のステープルにどのように作用するかを検討した。
 タンパク質繊維は、人工蜘蛛糸タンパク質繊維に限らず、人工のシルクに対し同様にアミノ酸残基を導入したものなどでも良い。またこれらの他に、プロミックス、シノン等の半合成タンパク質繊維、あるいはカゼインタンパク繊維、落花生タンパク質繊維、トウモロコシタンパク質繊維、大豆タンパク質繊維等の、再生タンパク質繊維でも良い。
染色堅牢度の向上とクリンプ性の向上
 前記の改変フィブロイン(PRT918)を用い、既に説明した実施例に従って人工タンパク質繊維と紡績糸を製造した。この紡績糸を用い、14ゲージの編機により編地を編成した。この編地を加水分解ケラチン水溶液に浸漬し、クリンプ性の向上と、染色堅牢度の向上について試験した。
 水鳥由来の羽毛100gに水酸化ナトリウムの1.3mass%水溶液1Kgに加え、120℃で20分間反応させて、20℃まで自然冷却した。その後、塩酸でpH4に調整し、12時間室温に放置した。遠心分離により未分解物を除去し、水酸化ナトリウムによりpHを5.6に調整した。次いで、透析により分子量が5000超の成分を分離し、羽毛由来のアルカリ加水分解ケラチン溶液を製造した。SDS-PAGEによる分子量解析を行うと、数平均分子量は1500であった。人工タンパク質繊維の内部まで加水分解ケラチンが浸透しやすくするため、数平均分子量の範囲は750以上4000以下が好ましく、特に750以上2000以下が好ましい。
 加水分解ケラチンの水溶液に浸漬した後、染色を施したものを染色とクリンプ性に関する実施例とし、加水分解ケラチンによる処理無しに染色したものを比較例とした。実施例では、加水分解ケラチン(数平均分子量1500)の水溶液(濃度0.1mass%、pH約7、液温40℃、編地1Kg当たりケラチン水溶液を20L)に、パドル染色機中で、60分間、人工タンパク質繊維から成る編地を浸漬した。pHの好ましい範囲は6以上8以下、特に6.5以上7.5以下で、好ましい温度範囲は30℃以上80℃以下、特に30℃以上60℃以下である。濃度は0.01mass%以上0.5mass%以下が好ましく、特に0.02mass%以上0.5mass%以下が好ましい。1.0mass%では編地が硬くなり衣料品には不適切になった。0.01mass%未満では編地のケラチン吸収量が不足し、クリンプも染色堅牢度も不十分であった。浸漬時間は40分以上80分以下が好ましく、60分程度の浸漬時間で、繊維のケラチン吸収量が最大となった。
 パドル染色機はケラチン水溶液の水流を編地に接触させながら循環させ、ケラチン水溶液と編地との接触方法は任意である。実施例では編地をケラチン水溶液で処理したが、繊維そのもの、紡績糸、織物、不織布、テキスタイル製品等、ケラチン水溶液により処理する際の人工タンパク質繊維の形態は任意である。
 液体クロマトグラフ用カラム(BIO-RAD社製エコノパック カラム)に人工タンパク質繊維1gを充填した。数平均分子量1500のケラチン水溶液(40℃、0.1mass%)をカラムに120分間循環し、繊維を通過する前後の位置でゲルろ過クロマトグラフィーによりケラチン濃度を測定し、繊維への合計吸収量を測定した。繊維を交換して3回測定し、合計吸収量の平均値を、60分目の吸収量を1とする相対値で表7に示す。3回とも浸漬時間60分に吸収量のピークが有った。
Figure JPOXMLDOC01-appb-T000007
 ケラチン水溶液に浸漬後、編地を脱水し、自然乾燥した。人工蜘蛛糸タンパク質から成る繊維の場合と同様、加水分解ケラチン処理により編地は収縮し、繊維はクリンプした。なお染色とクリンプに関する実施例は、特に指摘した点以外はクリンプに関する実施例と同様で、クリンプに関する実施例の記載は、特に指摘した点以外は、染色とクリンプに関する実施例にもそのまま当てはまる。
 ケラチン処理後に編地をpH5.5(好ましい範囲はpHが5以上6以下)の弱酸性水溶液(例えば酢酸水溶液)に浸すと、ケラチンは編地により安定に結合し、洗濯への耐久性が向上することを確認した。発明者は、この現象を繊維内に浸透しているケラチンが数分子程度互いに結合し、一種の重合ないしは会合が生じたためと推定した。染色に用いる直接染料及び羊毛反応染料は弱酸性で、染色によりケラチンはより強固に繊維に固定される。
 編地を4種類の羊毛反応染料により染色した。黄色染料はLANAZOL Yellow 4G,(LANAZOLはHuntsman社の登録商標)3%(owf) 無水芒硝(Na2SO4)10%(owf)酢酸1%(owf)、赤色染料はLANAZOL Red 6G, 3%(owf) 無水芒硝10%(owf)酢酸1%(owf)、黒色染料はLANAZOLDeep Black CE-R,7%(owf) 無水芒硝5%(owf)酢酸4%(owf)、青色染料はLANAZOL Blue 3G, 3%(owf) 無水芒硝10%(owf)酢酸1%(owf)であった。青色染料による染色ではケラチン処理無しでも比較的良好な結果が得られたので、ケラチン処理による染色堅牢度への効果が明瞭な、黄色、赤色、黒色での結果を表8-表10に示す。なお染色条件は以下の通りであった。20℃の水に染色薬品と被染物を入れて10分キープし、その後90℃まで昇温して30分キープした後に水洗を行った。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 試験項目の意味を説明する。耐光堅牢度は光への堅牢度を、洗濯堅牢度は洗濯に対する堅牢度を示す。洗濯堅牢度汚染は、洗濯による周囲の白地の布への色移りの程度を表す。汗汚染(酸)は酸性の模擬的な汗による周囲の白地の布への色移りの程度を表し、汗汚染(アルカリ酸)はアルカリ性の模擬的な汗による色移りの程度を表す。摩擦堅牢度は、乾燥時に、染色した編地を白色の布と擦り合わせた際の色移りの程度を表す。ドライクリーニング汚染は、ドライクリーニング用のパーフルオロエチレン溶媒への染料の溶出の程度を表す。染色堅牢度は級が高いほど良く、実用的には少なくとも2.5級以上であることが必要である。 
 加水分解ケラチン処理により、堅牢度が不足する試験項目が改善され、黄色及び赤色では堅牢度が3級未満の項目を解消できた。黒色では堅牢度が1.5級の酸とアルカリに対する汗汚染を、2.5級まで改善できた。染色堅牢度の向上は、人工タンパク質繊維に吸収された水鳥由来の羽毛加水分解ケラチンにより、染料と繊維の結合強度が改善されたことを意味する。

Claims (31)

  1.  刺激に応答してクリンプするクリンプ性を有するタンパク質繊維を、前記タンパク質繊維とは組成が異なるタンパク質の溶液に浸漬し、前記タンパク質繊維の内部に前記組成が異なるタンパク質を浸透させることにより、前記タンパク質繊維をクリンプさせる、クリンプ方法。
  2.  前記タンパク質繊維が人工タンパク質から成ることを特徴とする、請求項1に記載のクリンプ方法。
  3.  前記人工タンパク質が人工蜘蛛糸タンパク質から成ることを特徴とする、請求項2に記載のクリンプ方法。
  4.  前記タンパク質繊維のフィラメントをカットしたステープルを、前記タンパク質溶液に浸漬することを特徴とする、請求項1~3のいずれかに記載のクリンプ方法。
  5.  前記ステープルを複数本撚り合わせた紡績糸を、前記タンパク質の溶液に浸漬することを特徴とする、請求項4に記載のクリンプ方法。
  6.  前記紡績糸から成るテキスタイル製品を、前記タンパク質の溶液に浸漬することにより、テキスタイル製品を縮絨することを特徴とする、請求項5に記載のクリンプ方法。
  7.  前記テキスタイル製品に衝撃が加わらない条件で、前記テキスタイル製品を前記タンパク質の溶液に浸漬することを特徴とする、請求項6に記載のクリンプ方法。
  8.  前記タンパク質の溶液が加水分解ケラチンの水溶液であることを特徴とする、請求項1~7のいずれかに記載のクリンプ方法。
  9.  前記加水分解ケラチンの数平均分子量が500以上5000以下あることを特徴とする、請求項8に記載のクリンプ方法。
  10.  前記加水分解ケラチンの水溶液の、前記テキスタイル製品の浸漬前での、ケラチン濃度が0.1mass%以上2mass%以下、浸漬時間が5分以上120分以下であることを特徴とする、請求項8または9に記載のクリンプ方法。
  11.  前記加水分解ケラチンの水溶液の温度が30℃以上60℃以下であることを特徴とする、請求項8~10いずれかに記載のクリンプ方法。
  12.  前記組成が異なるタンパク質により前記タンパク質繊維の染色性を改善することを特徴とする、請求項2に記載のクリンプ方法。
  13.  前記組成が異なるタンパク質が加水分解ケラチンであることを特徴とする、請求項12に記載のクリンプ方法。
  14.  加水分解ケラチンの水溶液へ前記タンパク質繊維を40分以上80分以下浸漬することを特徴とする、請求項13に記載のクリンプ方法。
  15.  刺激に応答してクリンプするクリンプ性を有するタンパク質繊維を、前記タンパク質繊維とは組成が異なるタンパク質の溶液に浸漬し、前記タンパク質繊維の内部に前記組成が異なるタンパク質を浸透させることによりクリンプさせる工程を含む、タンパク質繊維の製造方法。
  16.  前記タンパク質繊維が人工タンパク質から成ることを特徴とする、請求項15に記のタンパク質繊維の製造方法。
  17.  前記人工タンパク質が人工蜘蛛糸タンパク質から成ることを特徴とする、請求項16に記載のタンパク質繊維の製造方法。
  18.  前記タンパク質の溶液が加水分解ケラチンの水溶液であることを特徴とする、請求項15~17のいずれかに記載のタンパク質繊維の製造方法。
  19.  前記組成が異なるタンパク質により前記タンパク質繊維の染色性を改善することを特徴とする、請求項16に記載のタンパク質繊維の製造方法。
  20.  前記組成が異なるタンパク質が加水分解ケラチンであることを特徴とする、請求項19に記載のタンパク質繊維の製造方法。
  21.  前記組成が異なるタンパク質が加水分解ケラチンであり、加水分解ケラチンの水溶液へ前記タンパク質繊維を40分以上80分以下浸漬することを特徴とする、請求項20に記載のタンパク質繊維の製造方法。
  22.  刺激に応答してクリンプするクリンプ性を有するタンパク質母体繊維の内部に、前記タンパク質母体繊維とは組成が異なるタンパク質が浸透しかつクリンプしている、タンパク質繊維。
  23.  前記タンパク質繊維がフィラメント又はフィラメントをカットしたステープルであることを特徴とする、請求項22に記載のタンパク質繊維。
  24.  前記タンパク質母体繊維が人工タンパク質から成ることを特徴とする、請求項22または23に記載のタンパク質繊維。
  25.  前記人工タンパク質が、人工蜘蛛糸タンパク質から成ることを特徴とする、請求項22~24のいずれかに記載のタンパク質繊維。
  26.  前記タンパク質が加水分解ケラチンであることを特徴とする、請求項22~25のいずれかに記載のタンパク質繊維。
  27.  前記組成が異なるタンパク質により前記タンパク質繊維の染色性が改善されていることを特徴とする、請求項24に記載のタンパク質繊維。
  28.  前記組成が異なるタンパク質が加水分解ケラチンであることを特徴とする、請求項27に記載のタンパク質繊維。
  29.  請求項22~28の何れかに記載のタンパク質繊維のステープルが複数本撚り合わされている、紡績糸。
  30.  請求項22~28のいずれかに記載のタンパク質繊維を用いて成るテキスタイル製品。
  31.  請求項29の紡績糸から成るテキスタイル製品。
PCT/JP2019/011807 2018-03-22 2019-03-20 タンパク質繊維のクリンプ方法、タンパク質繊維の製造方法、タンパク質繊維、紡績糸、及びテキスタイル製品 WO2019182040A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/982,612 US20210017672A1 (en) 2018-03-22 2019-03-20 Protein fiber crimping method, protein fiber production method, protein fibers, spun yarn, and textile product
EP19770452.1A EP3770317A4 (en) 2018-03-22 2019-03-20 PROTEIN FIBER CREPING METHOD, PROTEIN FIBER PRODUCTION METHOD, PROTEIN FIBERS, SPUN YARN AND TEXTILE PRODUCT
CN201980021072.5A CN112292487A (zh) 2018-03-22 2019-03-20 蛋白纤维的卷曲方法、蛋白纤维的制造方法、蛋白纤维、细纱、及纺织品
JP2020507887A JP7453138B2 (ja) 2018-03-22 2019-03-20 タンパク質繊維のクリンプ方法、タンパク質繊維の製造方法、タンパク質繊維、紡績糸、及びテキスタイル製品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018053915 2018-03-22
JP2018-053915 2018-03-22

Publications (1)

Publication Number Publication Date
WO2019182040A1 true WO2019182040A1 (ja) 2019-09-26

Family

ID=67986195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011807 WO2019182040A1 (ja) 2018-03-22 2019-03-20 タンパク質繊維のクリンプ方法、タンパク質繊維の製造方法、タンパク質繊維、紡績糸、及びテキスタイル製品

Country Status (5)

Country Link
US (1) US20210017672A1 (ja)
EP (1) EP3770317A4 (ja)
JP (1) JP7453138B2 (ja)
CN (1) CN112292487A (ja)
WO (1) WO2019182040A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067553A1 (ja) * 2018-09-28 2020-04-02 株式会社島精機製作所 タンパク質紡績糸の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194245A1 (ja) * 2018-04-03 2019-10-10 Spiber株式会社 高収縮人造フィブロイン紡績糸及びその製造方法、並びに人造フィブロイン紡績糸及びその収縮方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430955A (en) * 1977-08-12 1979-03-07 Shigesaburou Mizushima Crimped silk yarn and production thereof
JPS6262990A (ja) * 1985-09-11 1987-03-19 大東紡織株式会社 形状記憶毛糸の製造方法
JPS63249780A (ja) * 1987-04-03 1988-10-17 水島 繁三郎 形状記憶アクリル・蛋白共重合繊維の製造方法
JP2002238569A (ja) 2001-02-14 2002-08-27 Higeta Shoyu Co Ltd 大腸菌とブレビバチルス属細菌間のプラスミドシャトルベクター
JP2014129639A (ja) 2011-06-01 2014-07-10 Spiber Inc 人造ポリペプチド繊維の製造方法
WO2017038814A1 (ja) 2015-08-31 2017-03-09 株式会社島精機製作所 加工繊維の製造方法及び当該加工繊維、動物繊維の損傷抑制方法、並びに動物繊維の加工方法
WO2017188430A1 (ja) * 2016-04-28 2017-11-02 Spiber株式会社 改変フィブロイン
WO2019066006A1 (ja) * 2017-09-29 2019-04-04 Spiber株式会社 撚糸の製造方法、仮撚り糸の製造方法、及び糸の撚り加工方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB403121A (en) * 1931-06-12 1933-12-11 Naugatuck Chem Co Improvements in the treatment of knitted fabrics
US3849848A (en) * 1971-05-20 1974-11-26 Iws Nominee Co Ltd Method for the treatment of textile fibres
JPS5839934A (ja) * 1981-09-03 1983-03-08 Matsushita Electric Works Ltd 表面欠陥検出装置
JPS6170075A (ja) * 1984-09-12 1986-04-10 水島 繁三郎 形状記憶生糸の製造方法
JPS6170074A (ja) * 1984-09-12 1986-04-10 水島 繁三郎 形状記憶生糸及びその製造方法
JPS62170562A (ja) * 1986-01-14 1987-07-27 グンゼ株式会社 ツ−ウエイ編地の製造法
JPH01246432A (ja) * 1988-03-23 1989-10-02 Shigesaburo Mizushima 天然繊維記憶形状糸の製造法
JPH01280074A (ja) * 1988-05-02 1989-11-10 Daito Boshoku Kk 布地およびこの布地の製造方法
FR2688135B1 (fr) * 1992-03-09 1995-06-09 Oreal Composition cosmetique pour le maintien de la coiffure, contenant un proteine de lait et/ou un hydrolysat de proteine de lait et un hydrolysat de keratine.
JPH083875A (ja) * 1994-06-10 1996-01-09 Kanebo Ltd セット性に優れた繊維製品の製造方法
KR102279714B1 (ko) * 2017-05-15 2021-07-19 가부시키가이샤 시마세이키 세이사쿠쇼 표면가공섬유, 그 제조방법, 실 및 섬유제품

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430955A (en) * 1977-08-12 1979-03-07 Shigesaburou Mizushima Crimped silk yarn and production thereof
JPS6262990A (ja) * 1985-09-11 1987-03-19 大東紡織株式会社 形状記憶毛糸の製造方法
JPS63249780A (ja) * 1987-04-03 1988-10-17 水島 繁三郎 形状記憶アクリル・蛋白共重合繊維の製造方法
JP2002238569A (ja) 2001-02-14 2002-08-27 Higeta Shoyu Co Ltd 大腸菌とブレビバチルス属細菌間のプラスミドシャトルベクター
JP2014129639A (ja) 2011-06-01 2014-07-10 Spiber Inc 人造ポリペプチド繊維の製造方法
WO2017038814A1 (ja) 2015-08-31 2017-03-09 株式会社島精機製作所 加工繊維の製造方法及び当該加工繊維、動物繊維の損傷抑制方法、並びに動物繊維の加工方法
WO2017188430A1 (ja) * 2016-04-28 2017-11-02 Spiber株式会社 改変フィブロイン
WO2019066006A1 (ja) * 2017-09-29 2019-04-04 Spiber株式会社 撚糸の製造方法、仮撚り糸の製造方法、及び糸の撚り加工方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"G enBank", Database accession no. U37520
"GenBank", Database accession no. CAM432249.1
"Molecular Cloning"
HATAE, SHINJI ET AL.: "Construction of Novel Protein Fiber Consisted of Repeated Motifes from Spider Dragline Silk", BIO INDUSTRY, vol. 22, no. 10, 2005, pages 48 - 53, XP009523509 *
KYTE JDOOLITTLE R: "A simple method for displaying the hydropathic character of a protein", J. MOL. BIOL., vol. 157, 1982, pages 105 - 132, XP024014365, DOI: 10.1016/0022-2836(82)90515-0
METHODS IN ENZYMOLOGY, vol. 100, 1983, pages 448
NUCLEIC ACID RES., vol. 10, 1982, pages 6487
PROC. NATL. ACAD. SCI. USA, vol. 69, 1972, pages 2110
See also references of EP3770317A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067553A1 (ja) * 2018-09-28 2020-04-02 株式会社島精機製作所 タンパク質紡績糸の製造方法
JPWO2020067553A1 (ja) * 2018-09-28 2021-09-02 株式会社島精機製作所 タンパク質紡績糸の製造方法
JP7466872B2 (ja) 2018-09-28 2024-04-15 株式会社島精機製作所 タンパク質紡績糸の製造方法

Also Published As

Publication number Publication date
US20210017672A1 (en) 2021-01-21
EP3770317A1 (en) 2021-01-27
EP3770317A4 (en) 2022-01-19
CN112292487A (zh) 2021-01-29
JP7453138B2 (ja) 2024-03-19
JPWO2019182040A1 (ja) 2021-05-27

Similar Documents

Publication Publication Date Title
WO2018164234A1 (ja) タンパク質繊維の製造方法、及びタンパク質繊維の防縮方法
WO2018164020A1 (ja) タンパク質繊維の製造方法及び製造装置
CN112469298B (zh) 人工毛发用纤维及其制造方法、以及人工毛发
WO2019182040A1 (ja) タンパク質繊維のクリンプ方法、タンパク質繊維の製造方法、タンパク質繊維、紡績糸、及びテキスタイル製品
WO2018164189A1 (ja) タンパク質成形体及びこれを製造する方法、並びにタンパク質溶液
WO2019194224A1 (ja) 改変フィブロイン成形体の塑性変形体の寸法回復方法
JP7330468B2 (ja) 混紡糸並びにその編織体及びその編織体の製造方法
WO2019194245A1 (ja) 高収縮人造フィブロイン紡績糸及びその製造方法、並びに人造フィブロイン紡績糸及びその収縮方法
JP7104960B2 (ja) フィブロイン繊維の製造方法
WO2019151437A1 (ja) タンパク質紡績糸の製造方法
JP7237314B2 (ja) タンパク質繊維の製造方法、タンパク質繊維の製造装置、およびタンパク質繊維の加工方法
TW202214922A (zh) 人工毛髮用纖維、人工毛髮、製造人工毛髮用纖維之方法,及製造人工毛髮之方法
JP7466872B2 (ja) タンパク質紡績糸の製造方法
JP7367977B2 (ja) タンパク質捲縮ステープルの製造方法
WO2019151432A1 (ja) 油剤付着タンパク質捲縮繊維の製造方法
JP2021120402A (ja) タンパク質組成物
WO2019151425A1 (ja) 紡糸原液、フィブロイン繊維及びその製造方法
JPWO2019066006A1 (ja) 撚糸の製造方法、仮撚り糸の製造方法、及び糸の撚り加工方法
WO2019194263A1 (ja) 高収縮人造フィブロイン撚糸及びその製造方法、並びに人造フィブロイン撚糸及びその収縮方法
TW202129103A (zh) 人工毛髮用纖維及其製造方法
WO2019151433A1 (ja) タンパク質フィラメントの開繊トウ及びその製造方法
WO2019151430A1 (ja) タンパク質繊維糸及び編織体、並びに、タンパク質繊維糸の製造方法及び編織体の製造方法
JP2021031811A (ja) 染色された生地の製造方法及び生地の染色方法、並びに染色された混紡糸の製造方法及び混紡糸の染色方法
JP2019183301A (ja) 人造フィブロイン繊維の防縮方法、人造フィブロイン繊維及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770452

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507887

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019770452

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019770452

Country of ref document: EP

Effective date: 20201022