WO2018164234A1 - タンパク質繊維の製造方法、及びタンパク質繊維の防縮方法 - Google Patents

タンパク質繊維の製造方法、及びタンパク質繊維の防縮方法 Download PDF

Info

Publication number
WO2018164234A1
WO2018164234A1 PCT/JP2018/009069 JP2018009069W WO2018164234A1 WO 2018164234 A1 WO2018164234 A1 WO 2018164234A1 JP 2018009069 W JP2018009069 W JP 2018009069W WO 2018164234 A1 WO2018164234 A1 WO 2018164234A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
protein
seq
acid sequence
fiber
Prior art date
Application number
PCT/JP2018/009069
Other languages
English (en)
French (fr)
Inventor
政隆 梶
隆平 遠藤
聡 宮口
宏介 富樫
大智 山上
瑞季 五十嵐
尚仁 西門
Original Assignee
カジナイロン株式会社
Spiber株式会社
小島プレス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カジナイロン株式会社, Spiber株式会社, 小島プレス工業株式会社 filed Critical カジナイロン株式会社
Priority to JP2019503851A priority Critical patent/JPWO2018164234A1/ja
Priority to DE112018001273.5T priority patent/DE112018001273T5/de
Priority to US16/491,655 priority patent/US20210388557A1/en
Publication of WO2018164234A1 publication Critical patent/WO2018164234A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • D06B3/02Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of fibres, slivers or rovings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof
    • D01F4/02Monocomponent artificial filaments or the like of proteins; Manufacture thereof from fibroin
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/01Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with hydrogen, water or heavy water; with hydrides of metals or complexes thereof; with boranes, diboranes, silanes, disilanes, phosphines, diphosphines, stibines, distibines, arsines, or diarsines or complexes thereof
    • D06M11/05Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with hydrogen, water or heavy water; with hydrides of metals or complexes thereof; with boranes, diboranes, silanes, disilanes, phosphines, diphosphines, stibines, distibines, arsines, or diarsines or complexes thereof with water, e.g. steam; with heavy water
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/10Animal fibres
    • D06M2101/12Keratin fibres or silk

Definitions

  • the present invention relates to a method for producing protein fibers and a method for preventing shrinkage of protein fibers.
  • Some protein fibers have a property of shrinking when contacted with moisture (for example, immersion in water or hot water or exposure to a high humidity environment). This characteristic causes various problems in the manufacturing process and commercialization.
  • Patent Document 1 a silk fabric using strong twisted yarn that has been scoured is immersed in water, other solvent, or a mixed system thereof in a strained state and heated for a predetermined time.
  • a shrink-proofing method for silk fabric characterized by the above is disclosed.
  • Patent Document 2 discloses a silk fiber processing method for imparting washability and antifouling properties to a silk fiber woven and woven, wherein the silk fiber has a water-soluble cyanuric chloride derivative or a water-soluble vinyl sulfone.
  • Deterioration prevention treatment using a derivative as a cross-linking agent shrinkage prevention treatment using any of the steaming method, vacuum steaming method, or sanforize method, and water-repellent processing treatment using a fluorine-based water-repellent finishing agent And a silk fiber processing method.
  • Patent Document 3 an animal fiber product in a state of being formed into a required shape is subjected to a steam treatment in which high-pressure saturated steam at 120 to 200 ° C. is contacted, and the shape at the time of the steam treatment is fixed to the fiber product.
  • a method for immobilizing the shape of animal fiber products is disclosed.
  • Patent Documents 1 to 3 relate to a fiber product shrinkage technology, and it is difficult to apply the method directly to the shrinkage of protein fibers as a material.
  • the method described in Patent Document 3 is dangerous because of handling high-temperature water.
  • the present invention relates to the following inventions, for example.
  • a method for producing a protein fiber comprising a step of heat-treating the protein raw material fiber by bringing the protein raw material fiber containing protein into contact with water vapor in a storage room adjusted to a temperature within a range of less than 120 ° C.
  • the method for producing a protein fiber according to [3], wherein the structural protein is spider silk fibroin.
  • [5] The method for producing a protein fiber according to any one of [1] to [4], wherein a plurality of the protein raw material fibers are bundled and twisted.
  • [6] The method for producing a protein fiber according to any one of [1] to [5], wherein the heat treatment is performed in a state where the protein raw material fiber is not relaxed.
  • [7] The method for producing a protein fiber according to any one of [1] to [6], wherein the heat treatment is performed under reduced pressure.
  • a method for producing a protein fiber dough comprising a step of producing a dough using the protein fiber obtained by the method for producing a protein fiber according to any one of [1] to [7].
  • a method for shrinking a protein fiber comprising a step of heat-treating the protein raw material fiber containing protein and water vapor by bringing the protein raw material fiber containing protein into contact with water vapor in a storage room adjusted to a temperature within a range of less than 120 ° C.
  • the present invention it is possible to provide a protein fiber production method capable of obtaining a protein fiber having a reduced amount of shrinkage due to contact with moisture. Since the production method of the present invention includes steam setting at less than 120 ° C., the desired protein fiber can be obtained more safely than the method described in Patent Document 3.
  • the protein raw material fiber is heated by bringing the protein raw material fiber containing the protein into contact with water vapor in a storage chamber adjusted to a temperature within a range of less than 120 ° C. (Hereinafter, also referred to as a “heat treatment step”, a “steam heat treatment step”, or a “steam setting step”).
  • a heat treatment step also referred to as a “heat treatment step”
  • a steam heat treatment step By passing through the steam heat treatment step, the protein fiber obtained has a reduced amount of shrinkage (length change in the fiber direction) when it comes into contact with moisture.
  • the interior of the accommodation chamber is 120 ° C. by introducing water vapor into the accommodation chamber. It can be carried out by adjusting the temperature to less than the temperature and heat-treating the protein raw material fiber.
  • the protein fiber produced according to the production method of the present invention contains as a main component a protein that gives a fiber that contracts by contact with moisture.
  • the said protein is not specifically limited, The thing manufactured by microorganisms etc. by the gene recombination technique may be used, the thing manufactured by the synthesis
  • the protein may be, for example, a structural protein and an artificial structural protein derived from the structural protein.
  • the structural protein means a protein that forms or maintains a structure and a form in a living body. Examples of the structural protein include fibroin, keratin, collagen, elastin, and resilin.
  • the structural protein may be fibroin.
  • the fibroin may be, for example, one or more selected from the group consisting of silk fibroin, spider silk fibroin, and hornet silk fibroin.
  • the structural protein may be silk fibroin, spider silk fibroin or a combination thereof.
  • the ratio of silk fibroin may be, for example, 40 parts by mass or less, 30 parts by mass or less, or 10 parts by mass or less with respect to 100 parts by mass of spider silk fibroin.
  • the silk thread is a fiber (a silk thread) obtained from a silkworm made by a silkworm, Bombyx mori larva.
  • one silk thread is composed of two silk fibroins and glue quality (sericin) covering them from the outside.
  • Silk fibroin is composed of many fibrils.
  • Silk fibroin is covered with four layers of sericin. Practically, silk filaments obtained by dissolving and removing outer sericin by scouring are used for clothing.
  • a general silk thread has a specific gravity of 1.33, an average fineness of 3.3 decitex, and a fiber length of about 1300 to 1500 m.
  • Silk fibroin can be obtained from natural or domestic silkworms, or used or discarded silk fabrics.
  • the silk fibroin may be sericin-removed silk fibroin, sericin-unremoved silk fibroin, or a combination thereof.
  • Sericin-removed silk fibroin is purified by removing sericin covering silk fibroin and other fats.
  • the silk fibroin thus purified is preferably used as a lyophilized powder.
  • the sericin unremoved silk fibroin is an unpurified silk fibroin from which sericin and the like have not been removed.
  • the spider silk fibroin may contain a spider silk polypeptide selected from the group consisting of a natural spider silk protein and a polypeptide derived from the natural spider silk protein (artificial spider silk protein).
  • spider silk proteins examples include large sphincter bookmark protein, weft protein, and small bottle-like gland protein. Since the large spout bookmarker has a repeating region composed of a crystalline region and an amorphous region (also referred to as an amorphous region), it has both high stress and stretchability.
  • the weft of spider silk has a feature that it does not have a crystalline region but has a repeating region consisting of an amorphous region. The weft thread is less stressed than the large spout bookmarker thread, but has high stretchability.
  • Large splint bookmark protein is produced with spider large bottle-like wire and has excellent toughness.
  • Examples of the large sphincter bookmark thread protein include large bottle-shaped gland spiders MaSp1 and MaSp2 derived from Nephila clavipes, and ADF3 and ADF4 derived from two spider spiders (Araneus diadematus).
  • ADF3 is one of the two main dragline proteins of the elder spider.
  • Polypeptides derived from natural spider silk proteins may be polypeptides derived from these bookmark silk proteins.
  • a polypeptide derived from ADF3 is relatively easy to synthesize and has excellent properties in terms of strength and toughness.
  • weft protein is produced in the flagellate gland of spiders.
  • flagellum silk protein derived from the American spider (Nephila clavipes) can be mentioned.
  • the polypeptide derived from a natural spider silk protein may be a recombinant spider silk protein.
  • recombinant spider silk proteins include mutants, analogs or derivatives of natural spider silk proteins.
  • a suitable example of such a polypeptide is a recombinant spider silk protein (also referred to as “polypeptide derived from a large sputum bookmarker protein”).
  • Examples of the protein derived from the large sphincter bookmark thread and the silkworm silk derived from fibroin-like protein include, for example, Formula 1: [(A) n motif-REP] m or Formula 2: [(A) n motif-REP. ] M-
  • a protein containing a domain sequence represented by n motif is mentioned.
  • (A) n motif represents an amino acid sequence mainly composed of alanine residues, and the number of amino acid residues is 2 to 27.
  • the number of amino acid residues of the n motif may be an integer of 2 to 20, 4 to 27, 4 to 20, 8 to 20, 10 to 20, 4 to 16, 8 to 16, or 10 to 16 .
  • the ratio of the number of alanine residues to the total number of amino acid residues in the (A) n motif may be 40% or more, such as 60% or more, 70% or more, 80% or more, 83% or more, 85% or more, It may be 86% or more, 90% or more, 95% or more, or 100% (meaning that it is composed only of alanine residues).
  • a plurality of (A) n motifs present in the domain sequence may be composed of at least seven anine residues alone.
  • REP indicates an amino acid sequence composed of 2 to 200 amino acid residues.
  • REP may be an amino acid sequence composed of 10 to 200 amino acid residues.
  • m represents an integer of 2 to 300, and may be an integer of 10 to 300.
  • a plurality of (A) n motifs may have the same amino acid sequence or different amino acid sequences.
  • Plural REPs may have the same amino acid sequence or different amino acid sequences.
  • the modified fibroin derived from the large sphincter bookmark silk protein produced in the spider large bottle gland comprises a unit of an amino acid sequence represented by the formula 1: [(A) n motif-REP] m and has a C-terminal. It may be a polypeptide whose sequence is an amino acid sequence shown in any of SEQ ID NOs: 14 to 16 or an amino acid sequence having 90% or more homology with the amino acid sequence shown in any of SEQ ID NOs: 14 to 16.
  • the amino acid sequence shown in SEQ ID NO: 14 is the same as the amino acid sequence consisting of 50 amino acids at the C-terminal of the amino acid sequence of ADF3 (GI: 1263287, NCBI), and the amino acid sequence shown in SEQ ID NO: 15 is the sequence
  • the amino acid sequence shown in SEQ ID NO: 14 is identical to the amino acid sequence obtained by removing 20 residues from the C-terminus, and the amino acid sequence shown in SEQ ID NO: 16 is 29 residues removed from the C-terminus of the amino acid sequence shown in SEQ ID NO: 14. It is identical to the amino acid sequence.
  • modified fibroin derived from a large sphincter bookmark silk protein produced in the spider large bottle-like gland
  • amino acid sequence represented by SEQ ID NO: 17, or (1-ii) sequence Mention may be made of modified fibroin comprising an amino acid sequence having a sequence identity of 90% or more with the amino acid sequence indicated by number 17. The sequence identity is preferably 95% or more.
  • the amino acid sequence represented by SEQ ID NO: 17 is an amino acid sequence of ADF3 in which an amino acid sequence (SEQ ID NO: 18) consisting of a start codon, His10 tag and an HRV3C protease (Human rhinovirus 3C protease) recognition site is added to the N-terminus.
  • the 13th repeat region was increased to approximately double, and the translation was mutated to terminate at the 1154th amino acid residue.
  • the C-terminal amino acid sequence of the amino acid sequence shown in SEQ ID NO: 17 is identical to the amino acid sequence shown in SEQ ID NO: 16.
  • the modified fibroin (1-i) may be composed of the amino acid sequence represented by SEQ ID NO: 17.
  • the modified fibroin with a reduced content of glycine residues has an amino acid sequence with a reduced content of glycine residues in the domain sequence compared to naturally occurring fibroin. It can be said that the modified fibroin has an amino acid sequence corresponding to at least one or more glycine residues in REP substituted with another amino acid residue as compared with naturally occurring fibroin.
  • Modified fibroin with a reduced content of glycine residues has a domain sequence of GGX and GPGXX in REP (where G is a glycine residue, P is a proline residue, X Is an amino acid residue other than glycine.)
  • G is a glycine residue
  • P is a proline residue
  • X is an amino acid residue other than glycine.
  • this corresponds to substitution of one glycine residue in at least one or more of the motif sequences with another amino acid residue. It may have an amino acid sequence.
  • the ratio of the motif sequence in which the above glycine residue is replaced with another amino acid residue may be 10% or more with respect to the total motif sequence.
  • the modified fibroin with a reduced content of glycine residues includes a domain sequence represented by Formula 1: [(A) n motif-REP] m , and is located on the most C-terminal side from the domain sequence (A )
  • An amino acid sequence consisting of XGX (where G represents a glycine residue and X represents an amino acid residue other than glycine) contained in all REPs in the sequence excluding the sequence from the n motif to the C-terminal of the domain sequence.
  • Z is the total number of amino acid residues in the sequence, and (A) the total number of amino acid residues in the sequence excluding the sequence from the n motif located at the most C-terminal side to the C-terminus of the domain sequence is w
  • the z / w may have an amino acid sequence of 30% or more, 40% or more, 50% or more, or 50.9% or more.
  • the number of alanine residues relative to the total number of amino acid residues in the n motif may be 83% or more, preferably 86% or more, more preferably 90% or more, and 95% or more. More preferably, it is 100% (meaning that it is composed only of alanine residues).
  • one glycine residue in the GGX motif is replaced with another amino acid residue. It is preferable that the content ratio of the amino acid sequence consisting of XGX is increased.
  • the content ratio of the amino acid sequence consisting of GGX in the domain sequence is preferably 30% or less, more preferably 20% or less, and more preferably 10% or less. More preferably, it is 6% or less, still more preferably 4% or less, still more preferably 2% or less.
  • the content ratio of the amino acid sequence consisting of GGX in the domain sequence can be calculated by the same method as the method for calculating the content ratio (z / w) of the amino acid sequence consisting of XGX below.
  • a fibroin modified fibroin or naturally-occurring fibroin containing a domain sequence represented by Formula 1: [(A) n motif-REP] m , (A) n located closest to the C-terminal side from the domain sequence
  • An amino acid sequence consisting of XGX is extracted from all REPs included in the sequence excluding the sequence from the motif to the C-terminal of the domain sequence.
  • z / w (%) can be calculated by dividing z by w.
  • z / w is preferably 50.9% or more, more preferably 56.1% or more, and 58.7% or more. Is more preferably 70% or more, still more preferably 80% or more. Although there is no restriction
  • a modified fibroin with a reduced content of glycine residues encodes another amino acid residue by substituting at least a part of the base sequence encoding the glycine residue from the cloned gene sequence of naturally occurring fibroin. It can obtain by modifying so that. At this time, one glycine residue in GGX motif and GPGXX motif may be selected as a glycine residue to be modified, or substitution may be performed so that z / w is 50.9% or more.
  • an amino acid sequence satisfying the above-described aspect can be designed from the amino acid sequence of naturally derived fibroin, and a nucleic acid encoding the designed amino acid sequence can be obtained by chemical synthesis.
  • one or more amino acid residues are further substituted or deleted.
  • the amino acid sequence corresponding to the insertion and / or addition may be modified.
  • the other amino acid residue is not particularly limited as long as it is an amino acid residue other than glycine residue, but valine (V) residue, leucine (L) residue, isoleucine (I) residue, methionine ( M) hydrophobic amino acid residues such as proline (P) residue, phenylalanine (F) residue and tryptophan (W) residue, glutamine (Q) residue, asparagine (N) residue, serine (S ) Residues, lysine (K) residues and glutamic acid (E) residues are preferred, and valine (V) residues, leucine (L) residues, isoleucine (I) residues and glutamine ( Q) residue is more preferable, and glutamine (Q) residue is more preferable.
  • modified fibroin with a reduced content of glycine residues (2-i) the amino acid sequence represented by SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12, or (2- ii)
  • SEQ ID NO: 3 amino acid sequence represented by SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12, or
  • 2- ii A modified fibroin containing an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12 can be mentioned.
  • the modified fibroin (2-i) will be described.
  • the amino acid sequence represented by SEQ ID NO: 3 is obtained by substituting GQX for all GGX in the REP of the amino acid sequence represented by SEQ ID NO: 1 corresponding to naturally occurring fibroin.
  • the amino acid sequence represented by SEQ ID NO: 4 is the amino acid sequence represented by SEQ ID NO: 3, in which every two (A) n motifs are deleted from the N-terminal side to the C-terminal side, and further before the C-terminal sequence.
  • One [(A) n motif-REP] is inserted into the.
  • the amino acid sequence shown in SEQ ID NO: 10 has two alanine residues inserted in the C-terminal side of each (A) n motif of the amino acid sequence shown in SEQ ID NO: 4, and a part of glutamine (Q) residues. Substituted with a serine (S) residue and a part of the amino acid at the N-terminal side is deleted so as to be almost the same as the molecular weight of SEQ ID NO: 4.
  • the amino acid sequence represented by SEQ ID NO: 12 is a region of 20 domain sequences present in the amino acid sequence represented by SEQ ID NO: 9 (however, several amino acid residues on the C-terminal side of the region are substituted). Is a sequence in which a His tag is added to the C-terminal of the sequence repeated four times.
  • the value of z / w in the amino acid sequence represented by SEQ ID NO: 1 is 46.8%.
  • the z / w values in the amino acid sequence shown in SEQ ID NO: 3, the amino acid sequence shown in SEQ ID NO: 4, the amino acid sequence shown in SEQ ID NO: 10, and the amino acid sequence shown in SEQ ID NO: 12 are 58.7%, 70.1%, 66.1% and 70.0%.
  • the value of x / y at the ratio of the amino acid sequence shown by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 10 and SEQ ID NO: 12 (described later) 1: 1.8 to 11.3 is: 15.0%, 15.0%, 93.4%, 92.7% and 89.3%, respectively.
  • the modified fibroin (2-i) may be composed of the amino acid sequence represented by SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12.
  • the modified fibroin (2-ii) includes an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12.
  • the modified fibroin of (2-ii) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m .
  • the sequence identity is preferably 95% or more.
  • the modified fibroin of (2-ii) has a sequence identity of 90% or more with the amino acid sequence represented by SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12, and contained in REP
  • G is a glycine residue
  • X is an amino acid residue other than glycine.
  • Z is the total number of amino acid residues
  • w is the total number of REP amino acids in the domain sequence. Sometimes, it is preferable that z / w is 50.9% or more.
  • modified fibroin may contain a tag sequence at one or both of the N-terminal and C-terminal. This makes it possible to isolate, immobilize, detect and visualize the modified fibroin.
  • tag sequences include affinity tags that use specific affinity (binding property, affinity) with other molecules.
  • affinity tag include a histidine tag (His tag).
  • His tag is a short peptide with about 4 to 10 histidine residues, and has the property of binding specifically to metal ions such as nickel. Therefore, the isolation of modified fibroin by metal chelating chromatography (chelating metal chromatography) Can be used.
  • Specific examples of the tag sequence include the amino acid sequence represented by SEQ ID NO: 5 (amino acid sequence containing a His tag).
  • GST glutathione-S-transferase
  • MBP maltose-binding protein
  • an “epitope tag” using an antigen-antibody reaction can also be used.
  • a peptide (epitope) exhibiting antigenicity as a tag sequence, an antibody against the epitope can be bound.
  • HA peptide sequence of hemagglutinin of influenza virus
  • myc tag peptide sequence of hemagglutinin of influenza virus
  • FLAG tag peptide sequence of hemagglutinin of influenza virus
  • a tag sequence that can be separated with a specific protease can also be used.
  • the modified fibroin from which the tag sequence has been separated can also be recovered.
  • modified fibroin containing the tag sequence examples include (2-iii) the amino acid sequence represented by SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13, or (2-iv) SEQ ID NO: 8 And a modified fibroin containing an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13.
  • amino acid sequences represented by SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 11 and SEQ ID NO: 13 are SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 10, respectively.
  • amino acid sequence represented by SEQ ID NO: 5 (including His tag sequence and hinge sequence) is added to the N-terminus of the amino acid sequence represented by SEQ ID NO: 12.
  • the modified fibroin may be composed of the amino acid sequence represented by SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13.
  • the modified fibroin (2-iv) includes an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13.
  • the modified fibroin of (2-iv) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m .
  • the sequence identity is preferably 95% or more.
  • the modified fibroin (2-iv) has an amino acid sequence represented by SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13 with a sequence identity of 90% or more, and is contained in XREP ( Where G is a glycine residue, and X is an amino acid residue other than glycine.) Z is the total number of amino acid residues, and w is the total number of REP amino acids in the domain sequence. Sometimes, it is preferable that z / w is 50.9% or more.
  • the aforementioned modified fibroin may contain a secretion signal for releasing the protein produced in the recombinant protein production system to the outside of the host.
  • the sequence of the secretion signal can be appropriately set according to the type of host.
  • (A) modified fibroin content of n motifs has been reduced, the domain sequence is compared to the naturally occurring fibroin, having an amino acid sequence reduced the content of (A) n motif. It can be said that the domain sequence of the modified fibroin has an amino acid sequence corresponding to the deletion of at least one or more (A) n motifs as compared to naturally occurring fibroin.
  • the modified fibroin in which the content of n motif is reduced may have an amino acid sequence corresponding to 10% to 40% deletion of (A) n motif from naturally occurring fibroin.
  • the modified fibroin with a reduced content of n motif has 1 to 3 (A) n motifs in which the domain sequence is at least from the N-terminal side to the C-terminal side compared to naturally occurring fibroin. Each may have an amino acid sequence corresponding to the deletion of one (A) n motif.
  • the domain sequence of the modified fibroin is at least two consecutive from the N-terminal side to the C-terminal side compared to the naturally derived fibroin (A) n motif And an amino acid sequence corresponding to the deletion of one (A) n motif repeated in this order.
  • (A) modified fibroin content of n motifs has been reduced, the domain sequence, amino acids corresponding to at least the N-terminal side 2 every other towards the C-terminal side (A) n motifs lacking It may have a sequence.
  • a modified fibroin with a reduced content of n- motif contains a domain sequence represented by Formula 1: [(A) n- motif-REP] m , and is adjacent to the C-terminal side from the N-terminal side.
  • the number of alanine residues relative to the total number of amino acid residues in the n motif may be 83% or more, preferably 86% or more, more preferably 90% or more, and 95% or more. More preferably, it is 100% (meaning that it is composed only of alanine residues).
  • FIG. 1 shows a domain sequence obtained by removing the N-terminal sequence and the C-terminal sequence from the modified fibroin.
  • the domain sequence is from the N-terminal side (left side): (A) n motif-first REP (50 amino acid residues)-(A) n motif-second REP (100 amino acid residues)-(A) n Motif-third REP (10 amino acid residues)-(A) n motif-fourth REP (20 amino acid residues)-(A) n motif-fifth REP (30 amino acid residues)-(A) It has a sequence called n motif.
  • FIG. 1 includes pattern 1 (comparison between the first REP and the second REP, and comparison between the third REP and the fourth REP), pattern 2 (comparison between the first REP and the second REP, and 4th REP and 5th REP), pattern 3 (2nd REP and 3rd REP comparison, 4th REP and 5th REP comparison), pattern 4 (first REP and Comparison of the second REP).
  • pattern 1 compare between the first REP and the second REP, and comparison between the third REP and the fourth REP
  • pattern 2 comparison between the first REP and the second REP, and 4th REP and 5th REP
  • pattern 3 (2nd REP and 3rd REP comparison, 4th REP and 5th REP comparison
  • pattern 4 first REP and Comparison of the second REP
  • the number of amino acid residues of each REP in the two adjacent [(A) n motif-REP] units selected is compared.
  • each pattern the number of all amino acid residues of two adjacent [(A) n motif-REP] units indicated by solid lines is added (not only REP but also (A) the number of amino acid residues of the n motif. is there.). Then, the total value added is compared, and the total value (maximum value of the total value) of the pattern having the maximum total value is set as x. In the example shown in FIG. 1, the total value of pattern 1 is the maximum.
  • x / y (%) can be calculated by dividing x by the total number of amino acid residues y of the domain sequence.
  • x / y is preferably 50% or more, more preferably 60% or more, still more preferably 65% or more, It is still more preferably 70% or more, still more preferably 75% or more, and particularly preferably 80% or more.
  • x / y is preferably 50% or more, more preferably 60% or more, still more preferably 65% or more, It is still more preferably 70% or more, still more preferably 75% or more, and particularly preferably 80% or more.
  • x / y is preferably 89.6% or more, and when the jagged ratio is 1: 1.8 to 3.4, x / y / Y is preferably 77.1% or more, and when the jagged ratio is 1: 1.9 to 8.4, x / y is preferably 75.9% or more, and the jagged ratio is 1 In the case of 1.9 to 4.1, x / y is preferably 64.2% or more.
  • x / y is 46.4% or more, preferably 50% or more, more preferably 55% or more, still more preferably 60% or more, and 70% or more. Even more preferable, 80% or more is particularly preferable.
  • x / y is 46.4% or more, preferably 50% or more, more preferably 55% or more, still more preferably 60% or more, and 70% or more. Even more preferable, 80% or more is particularly preferable.
  • x / y is 46.4% or more, preferably 50% or more, more preferably 55% or more, still more preferably 60% or more, and 70% or more. Even more preferable, 80% or more is particularly preferable.
  • (A) modified fibroin content of n motif is reduced, for example, encoding a cloned naturally occurring fibroin gene sequences, as x / y is more than 64.2% of the (A) n motif It can be obtained by deleting one or more of the sequences.
  • an amino acid sequence corresponding to the deletion of one or more (A) n motifs is designed so that x / y is 64.2% or more from the amino acid sequence of naturally occurring fibroin. It can also be obtained by chemically synthesizing a nucleic acid encoding the amino acid sequence.
  • one or more amino acid residues are further substituted, deleted, inserted and / or added.
  • the amino acid sequence corresponding to this may be modified.
  • the modified fibroin (3-i) will be described.
  • the amino acid sequence represented by SEQ ID NO: 2 has the amino acid sequence represented by SEQ ID NO: 1 corresponding to naturally occurring fibroin deleted from the N-terminal side to the C-terminal side every two (A) n motifs Furthermore, one [(A) n motif-REP] is inserted in front of the C-terminal sequence.
  • the amino acid sequence shown in SEQ ID NO: 4 is obtained by substituting all GGX in REP of the amino acid sequence shown in SEQ ID NO: 2 with GQX.
  • the amino acid sequence shown in SEQ ID NO: 10 has two alanine residues inserted in the C-terminal side of each (A) n motif of the amino acid sequence shown in SEQ ID NO: 4, and a part of glutamine (Q) residues. Substituted with a serine (S) residue and a part of the amino acid at the N-terminal side is deleted so as to be almost the same as the molecular weight of SEQ ID NO: 4.
  • the amino acid sequence represented by SEQ ID NO: 12 is a region of 20 domain sequences present in the amino acid sequence represented by SEQ ID NO: 9 (however, several amino acid residues on the C-terminal side of the region are substituted). Is a sequence in which a His tag is added to the C-terminal of the sequence repeated four times.
  • the value of x / y of the amino acid sequence represented by SEQ ID NO: 1 (corresponding to naturally-occurring fibroin) at a jagged ratio of 1: 1.8 to 11.3 is 15.0%.
  • the value of x / y in the amino acid sequence represented by SEQ ID NO: 2 and the amino acid sequence represented by SEQ ID NO: 4 is 93.4%.
  • the value of x / y in the amino acid sequence represented by SEQ ID NO: 10 is 92.7%.
  • the value of x / y in the amino acid sequence represented by SEQ ID NO: 12 is 89.3%.
  • the z / w values in the amino acid sequences represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 10 and SEQ ID NO: 12 are 46.8%, 56.2%, 70.1% and 66. respectively. 1% and 70.0%.
  • the modified fibroin (3-i) may be composed of the amino acid sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12.
  • the modified fibroin (3-ii) includes an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12.
  • the modified fibroin of (3-ii) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m .
  • the sequence identity is preferably 95% or more.
  • the modified fibroin of (3-ii) has 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12, and from the N-terminal side to the C-terminal side
  • the number of amino acid residues of REP of two adjacent [(A) n motif-REP] units is sequentially compared, and the number of amino acid residues of REP having a small number of amino acid residues is 1, the other
  • x / y is 64.2% or more, where x is the maximum total value of the total number of bases and y is the total number of amino acid residues in the domain sequence.
  • the above-described modified fibroin may contain the above-described tag sequence at one or both of the N-terminal and C-terminal.
  • modified fibroin containing the tag sequence examples include (3-iii) an amino acid sequence represented by SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13, or (2-iv) SEQ ID NO: 7 And a modified fibroin containing an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13.
  • amino acid sequences represented by SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 11 and SEQ ID NO: 13 are SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 10, respectively.
  • amino acid sequence represented by SEQ ID NO: 5 (including His tag) is added to the N-terminus of the amino acid sequence represented by SEQ ID NO: 12.
  • the modified fibroin may be composed of the amino acid sequence represented by SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13.
  • the modified fibroin (3-iv) includes an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13.
  • the modified fibroin of (3-iv) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m .
  • the sequence identity is preferably 95% or more.
  • the modified fibroin (3-iv) has 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13, and from the N-terminal side to the C-terminal side.
  • the other X is the maximum total value of the total number of amino acid residues of two adjacent [(A) n motif-REP] units with a ratio of the number of amino acid residues of REP of 1.8 to 11.3.
  • x / y is preferably 64.2% or more.
  • the aforementioned modified fibroin may contain a secretion signal for releasing the protein produced in the recombinant protein production system to the outside of the host.
  • the sequence of the secretion signal can be appropriately set according to the type of host.
  • the domain sequence of the modified fibroin is different from that of naturally occurring fibroin in addition to at least one or more glycine residues in REP. It can be said to have an amino acid sequence corresponding to substitution with an amino acid residue.
  • it is a modified fibroin having the characteristics of the modified fibroin in which the content of the glycine residue is reduced and (A) the modified fibroin in which the content of the n motif is reduced.
  • Specific embodiments and the like are as described in the modified fibroin in which the content of glycine residues is reduced and (A) the modified fibroin in which the content of n motif is reduced.
  • modified fibroin with reduced glycine residue content and (A) n- motif content (4-i) the amino acid represented by SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12
  • a modified fibroin comprising an amino acid sequence having 90% or more sequence identity with the sequence (4-ii) SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12 can be mentioned.
  • Specific embodiments of the modified fibroin comprising the amino acid sequence represented by SEQ ID NO: 4, SEQ ID NO: 10 or SEQ ID NO: 12 are as described above.
  • the modified fibroin according to another embodiment has a domain sequence in which one or more amino acid residues in REP are replaced with amino acid residues having a large hydrophobicity index as compared to naturally occurring fibroin, and It may have an amino acid sequence including a region having a large hydrophobic index locally, corresponding to the insertion of one or more amino acid residues having a large hydrophobic index in REP.
  • the region where the hydrophobic index is locally large is preferably composed of 2 to 4 amino acid residues.
  • the amino acid residue having a large hydrophobicity index is an amino acid selected from isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M) and alanine (A). More preferably, it is a residue.
  • the modified fibroin according to the present embodiment has one or more amino acid residues in REP substituted with amino acid residues having a large hydrophobicity index and / or 1 in REP compared to naturally occurring fibroin.
  • one or more amino acid residues are substituted, deleted, inserted and / or compared with naturally occurring fibroin.
  • the modified fibroin according to the present embodiment for example, hydrophobicizes one or more hydrophilic amino acid residues (for example, amino acid residues having a negative hydrophobicity index) in REP from the gene sequence of naturally-derived fibroin that has been cloned. It can be obtained by substituting amino acid residues (for example, amino acid residues having a positive hydrophobicity index) and / or inserting one or more hydrophobic amino acid residues in REP.
  • hydrophilic amino acid residues for example, amino acid residues having a negative hydrophobicity index
  • one or more hydrophilic amino acid residues in REP are substituted with hydrophobic amino acid residues from the amino acid sequence of naturally occurring fibroin, and / or one or more hydrophobic amino acid residues in REP It can also be obtained by designing an amino acid sequence corresponding to insertion of, and chemically synthesizing a nucleic acid encoding the designed amino acid sequence.
  • one or more hydrophilic amino acid residues in REP have been replaced with hydrophobic amino acid residues from the amino acid sequence of naturally occurring fibroin and / or one or more hydrophobic amino acids in REP
  • the amino acid sequence corresponding to the substitution, deletion, insertion and / or addition of one or more amino acid residues may be further modified.
  • the modified fibroin according to another embodiment includes a domain sequence represented by Formula 1: [(A) n motif-REP] m , and (A) located at the most C-terminal side of the domain sequence from the n motif.
  • P, and (A) where the total number of amino acid residues contained in the sequence excluding the sequence from the n motif to the C terminus of the domain sequence from the domain sequence is q / Q may have an amino acid sequence of 6.2% or more.
  • hydrophobicity index of amino acid residues As for the hydrophobicity index of amino acid residues, a known index (Hydropathy index: Kyte J, & Doolittle R (1982) “A simple method for displaying the hydropathic character of bio.p. 7”. 105-132). Specifically, the hydrophobicity index (hydropathic index, hereinafter also referred to as “HI”) of each amino acid is as shown in Table 1 below.
  • a sequence obtained by removing the sequence from the domain sequence represented by Formula 1: [(A) n motif-REP] m to the most C-terminal side from the domain (A) n motif to the C terminus of the domain sequence. (Hereinafter referred to as “array A”).
  • array A the average value of the hydrophobicity index of four consecutive amino acid residues is calculated.
  • the average value of the hydrophobicity index is obtained by dividing the total HI of each amino acid residue contained in the four consecutive amino acid residues by 4 (number of amino acid residues).
  • the average value of the hydrophobicity index is obtained for all four consecutive amino acid residues (each amino acid residue is used for calculating the average value 1 to 4 times). Next, a region where the average value of the hydrophobicity index of four consecutive amino acid residues is 2.6 or more is specified. Even if a certain amino acid residue corresponds to a plurality of “four consecutive amino acid residues whose average value of hydrophobicity index is 2.6 or more”, it should be included as one amino acid residue in the region. become.
  • the total number of amino acid residues contained in the region is p.
  • the total number of amino acid residues contained in sequence A is q.
  • the average value of the hydrophobicity index of four consecutive amino acid residues is 2
  • p / q is preferably 6.2% or more, more preferably 7% or more, further preferably 10% or more, and 20% or more. Even more preferably, it is still more preferably 30% or more.
  • the upper limit of p / q is not particularly limited, but may be 45% or less, for example.
  • the modified fibroin according to this embodiment includes, for example, one or a plurality of hydrophilic amino acid residues (for example, hydrophobicity) in the REP so that the amino acid sequence of the naturally-derived fibroin thus cloned satisfies the above p / q condition.
  • hydrophilic amino acid residues for example, hydrophobicity
  • Substituting a hydrophobic amino acid residue (for example, an amino acid residue having a positive hydrophobicity index) and / or one or more hydrophobic amino acid residues during REP Can be obtained by locally modifying the amino acid sequence to include a region having a large hydrophobicity index.
  • an amino acid sequence satisfying the above p / q conditions can be designed from the amino acid sequence of naturally derived fibroin, and a nucleic acid encoding the designed amino acid sequence can be obtained by chemical synthesis.
  • one or more amino acid residues in REP were replaced with amino acid residues having a higher hydrophobicity index and / or one or more amino acid residues in REP.
  • modifications corresponding to substitution, deletion, insertion and / or addition of one or more amino acid residues may be performed. .
  • the amino acid residue having a large hydrophobicity index is not particularly limited, but isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M) and alanine (A ) are preferred, and valine (V), leucine (L) and isoleucine (I) are more preferred.
  • modified fibroin (5-i) the amino acid sequence represented by SEQ ID NO: 19, SEQ ID NO: 21 or SEQ ID NO: 22, or (5-ii) SEQ ID NO: 19, SEQ ID NO: 21 or SEQ ID NO: 22 And a modified fibroin comprising an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by
  • the modified fibroin (5-i) will be described.
  • the amino acid sequence shown in SEQ ID NO: 4 is an amino acid sequence in which alanine residues in the (A) n motif of (A) naturally derived fibroin are deleted so that the number of consecutive alanine residues is five.
  • the amino acid sequence shown in SEQ ID NO: 19 is inserted into the amino acid sequence shown in SEQ ID NO: 4 by inserting two amino acid sequences (VLI) each consisting of 3 amino acid residues every other REP, and shown in SEQ ID NO: 4. A part of amino acids on the C-terminal side are deleted so that the molecular weight of the amino acid sequence is almost the same.
  • the amino acid sequence represented by SEQ ID NO: 20 is obtained by inserting two alanine residues at the C-terminal side of each (A) n motif with respect to the amino acid sequence represented by SEQ ID NO: 19, and further adding some glutamine (Q) residues. A group is substituted with a serine (S) residue, and a part of amino acids on the C-terminal side is deleted so as to be approximately the same as the molecular weight of the amino acid sequence represented by SEQ ID NO: 4.
  • the amino acid sequence represented by SEQ ID NO: 21 is obtained by inserting one amino acid sequence (VLI) consisting of 3 amino acid residues every other REP to the amino acid sequence represented by SEQ ID NO: 20.
  • the amino acid sequence represented by SEQ ID NO: 22 is obtained by inserting two amino acid sequences (VLI) each consisting of 3 amino acid residues into the amino acid sequence represented by SEQ ID NO: 20 every other REP.
  • the modified fibroin (5-i) may be composed of the amino acid sequence represented by SEQ ID NO: 19, SEQ ID NO: 21 or SEQ ID NO: 22.
  • the modified fibroin (5-ii) comprises an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 19, SEQ ID NO: 21 or SEQ ID NO: 22.
  • the modified fibroin of (5-ii) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m .
  • the sequence identity is preferably 95% or more.
  • the modified fibroin of (5-ii) has a sequence identity of 90% or more with the amino acid sequence represented by SEQ ID NO: 19, SEQ ID NO: 21 or SEQ ID NO: 22, and is located at the most C-terminal side (A) n
  • the amino acids included in the region where the average value of the hydrophobicity index of 4 consecutive amino acid residues is 2.6 or more P is the total number of residues
  • P / q is preferably 6.2% or more.
  • the above-mentioned modified fibroin may contain a tag sequence at one or both of the N-terminal and C-terminal.
  • modified fibroin comprising a tag sequence
  • amino acid sequences represented by SEQ ID NO: 23, SEQ ID NO: 24, and SEQ ID NO: 25 are the amino acid sequences represented by SEQ ID NO: 5 at the N-terminus of the amino acid sequences represented by SEQ ID NO: 19, SEQ ID NO: 21 and SEQ ID NO: 22, respectively Including a sequence and a hinge sequence).
  • the modified fibroin may be composed of the amino acid sequence represented by SEQ ID NO: 23, SEQ ID NO: 24, or SEQ ID NO: 25.
  • the modified fibroin (5-iv) includes an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 23, SEQ ID NO: 24, or SEQ ID NO: 25.
  • the modified fibroin of (5-iv) is also a protein comprising a domain sequence represented by Formula 1: [(A) n motif-REP] m .
  • the sequence identity is preferably 95% or more.
  • the modified fibroin of (5-iv) has a sequence identity of 90% or more with the amino acid sequence represented by SEQ ID NO: 23, SEQ ID NO: 24 or SEQ ID NO: 25 and is located at the most C-terminal side (A) n
  • the amino acids included in the region where the average value of the hydrophobicity index of 4 consecutive amino acid residues is 2.6 or more P is the total number of residues
  • P / q is preferably 6.2% or more.
  • the aforementioned modified fibroin may contain a secretion signal for releasing the protein produced in the recombinant protein production system to the outside of the host.
  • the sequence of the secretion signal can be appropriately set according to the type of host.
  • Examples of the protein derived from the weft protein include a protein containing a domain sequence represented by Formula 3: [REP2] o (where REP2 is composed of Gly-Pro-Gly-Gly-X in Formula 3) X represents an amino acid sequence, X represents one amino acid selected from the group consisting of alanine (Ala), serine (Ser), tyrosine (Tyr), and valine (Val), and o represents an integer of 8 to 300. Can be mentioned. Specific examples include a protein containing the amino acid sequence represented by SEQ ID NO: 26.
  • the amino acid sequence shown by SEQ ID NO: 26 is from the N-terminal corresponding to the repeat part and the motif of the partial sequence of flagellar silk protein of American spider spider (NCBI accession number: AAF36090, GI: 7106224) obtained from the NCBI database.
  • An amino acid sequence from the 1220th residue to the 1659th residue (referred to as PR1 sequence) and a partial sequence of American flagella silk protein obtained from the NCBI database (NCBI accession number: AAC38847, GI: 2833649)
  • a C-terminal amino acid sequence from the 816th residue to the 907th residue from the C-terminal is linked, and the amino acid sequence shown in SEQ ID NO: 5 (tag sequence and hinge sequence) is added to the N-terminus of the combined sequence. is there.
  • a protein derived from collagen for example, a protein containing a domain sequence represented by Formula 4: [REP3] p (where, in Formula 4, p represents an integer of 5 to 300.
  • REP3 is Gly ⁇ XY X and Y represent any amino acid residue other than Gly, and a plurality of REP3 may be the same amino acid sequence or different amino acid sequences.
  • Specific examples include a protein containing the amino acid sequence represented by SEQ ID NO: 27.
  • the amino acid sequence shown in SEQ ID NO: 27 corresponds to the repeat portion and motif of the partial sequence of human collagen type 4 (NCBI GenBank accession number: CAA56335.1, GI: 3702452) obtained from the NCBI database.
  • An amino acid sequence represented by SEQ ID NO: 5 (tag sequence and hinge sequence) is added to the N-terminal of the amino acid sequence from the 301st residue to the 540th residue.
  • REP4 As a protein derived from resilin, for example, a protein containing a domain sequence represented by Formula 5: [REP4] q (wherein q represents an integer of 4 to 300.
  • REP4 represents Ser 1 J 1 J 1 An amino acid sequence composed of Tyr, Gly, and U-Pro, wherein J represents an arbitrary amino acid residue, and is particularly preferably an amino acid residue selected from the group consisting of Asp, Ser, and Thr. In particular, it is preferably an amino acid residue selected from the group consisting of Pro, Ala, Thr and Ser.
  • Plural REP4s may have the same or different amino acid sequences. ). Specific examples include a protein containing the amino acid sequence represented by SEQ ID NO: 28.
  • the amino acid sequence represented by SEQ ID NO: 28 is the amino acid sequence of resilin (NCBI GenBank accession number NP 611157, Gl: 24654243), wherein Thr at 87th residue is replaced with Ser, and Asn at 95th residue.
  • the amino acid sequence represented by SEQ ID NO: 5 (tag sequence and hinge sequence) is added to the N-terminal of the amino acid sequence from the 19th residue to the 321st residue of the sequence in which is replaced with Asp.
  • elastin-derived proteins include proteins having amino acid sequences such as NCBI GenBank accession numbers AAC98395 (human), I47076 (sheep), and NP786966 (bovine).
  • a protein containing the amino acid sequence represented by SEQ ID NO: 29 can be exemplified.
  • the amino acid sequence represented by SEQ ID NO: 29 is the amino acid sequence represented by SEQ ID NO: 5 at the N-terminus of the amino acid sequence of residues 121 to 390 of the amino acid sequence of NCBI GenBank accession number AAC98395 (tag sequence). And a hinge arrangement).
  • structural proteins and proteins derived from the structural proteins can be used singly or in combination of two or more.
  • a protein contained as a main component in protein fiber and protein raw material fiber is transformed with, for example, an expression vector having a nucleic acid sequence encoding the protein and one or more regulatory sequences operably linked to the nucleic acid sequence.
  • the nucleic acid can be produced by expressing the nucleic acid using the prepared host.
  • the method for producing a nucleic acid encoding a protein contained as a main component in protein fiber and protein raw material fiber is not particularly limited.
  • the nucleic acid can be produced by a method of amplification and cloning by polymerase chain reaction (PCR) using a gene encoding a natural structural protein, or a method of chemical synthesis.
  • the method for chemically synthesizing nucleic acids is not particularly limited.
  • AKTA oligopilot plus 10/100 GE Healthcare Japan Co., Ltd.
  • a gene can be chemically synthesized by a method of linking oligonucleotides automatically synthesized in step 1 by PCR or the like.
  • nucleic acid encoding a protein consisting of an amino acid sequence in which an amino acid sequence consisting of a start codon and a His10 tag is added to the N terminus of the above amino acid sequence is synthesized. Also good.
  • Regulatory sequences are sequences that control the expression of recombinant proteins in the host (for example, promoters, enhancers, ribosome binding sequences, transcription termination sequences, etc.), and can be appropriately selected depending on the type of host.
  • an inducible promoter that functions in a host cell and can induce expression of a target protein may be used.
  • An inducible promoter is a promoter that can control transcription by the presence of an inducer (expression inducer), absence of a repressor molecule, or physical factors such as an increase or decrease in temperature, osmotic pressure or pH value.
  • the type of expression vector can be appropriately selected according to the type of host, such as a plasmid vector, virus vector, cosmid vector, fosmid vector, artificial chromosome vector, and the like.
  • An expression vector that can replicate autonomously in a host cell or can be integrated into a host chromosome and contains a promoter at a position where a nucleic acid encoding a target protein can be transcribed is preferably used. .
  • any of prokaryotes and eukaryotes such as yeast, filamentous fungi, insect cells, animal cells and plant cells can be preferably used.
  • prokaryotic hosts include bacteria belonging to the genus Escherichia, Brevibacillus, Serratia, Bacillus, Microbacterium, Brevibacterium, Corynebacterium, Pseudomonas and the like.
  • microorganisms belonging to the genus Escherichia include Escherichia coli.
  • microorganisms belonging to the genus Brevibacillus include Brevibacillus agri and the like.
  • microorganisms belonging to the genus Serratia include Serratia liqufaciens and the like.
  • microorganisms belonging to the genus Bacillus include Bacillus subtilis.
  • microorganisms belonging to the genus Microbacterium include microbacterium / ammonia film.
  • microorganisms belonging to the genus Brevibacterium include Brevibacterium divaricatam.
  • microorganisms belonging to the genus Corynebacterium include Corynebacterium ammoniagenes.
  • microorganisms belonging to the genus Pseudomonas include Pseudomonas putida.
  • vectors for introducing a nucleic acid encoding a target protein include, for example, pBTrp2 (manufactured by Boehringer Mannheim), pGEX (manufactured by Pharmacia), pUC18, pBluescript II, pSupex, pET22b, pCold, pUB110, pNCO2 (Japanese Patent Laid-Open No. 2002-238696) and the like can be mentioned.
  • Examples of eukaryotic hosts include yeast and filamentous fungi (molds, etc.).
  • yeast include yeasts belonging to the genus Saccharomyces, Pichia, Schizosaccharomyces and the like.
  • Examples of the filamentous fungi include filamentous fungi belonging to the genus Aspergillus, the genus Penicillium, the genus Trichoderma and the like.
  • examples of a vector into which a nucleic acid encoding a target protein is introduced include YEP13 (ATCC37115) and YEp24 (ATCC37051).
  • a method for introducing the expression vector into the host cell any method can be used as long as it is a method for introducing DNA into the host cell.
  • a method using calcium ions [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)]
  • electroporation method electroporation method
  • spheroplast method protoplast method
  • lithium acetate method competent method, and the like.
  • a method for expressing a nucleic acid by a host transformed with an expression vector in addition to direct expression, secretory production, fusion protein expression, etc. can be performed according to the method described in Molecular Cloning 2nd edition, etc. .
  • the protein can be produced, for example, by culturing a host transformed with an expression vector in a culture medium, producing and accumulating the protein in the culture medium, and collecting the protein from the culture medium.
  • the method for culturing a host in a culture medium can be performed according to a method usually used for culturing a host.
  • the culture medium contains a carbon source, nitrogen source, inorganic salts, etc. that can be assimilated by the host, and can efficiently culture the host. If so, either a natural medium or a synthetic medium may be used.
  • Any carbon source may be used as long as it can be assimilated by the above-mentioned transformed microorganism.
  • Examples thereof include glucose, fructose, sucrose, and carbohydrates such as molasses, starch and starch hydrolyzate, acetic acid and propionic acid, etc.
  • Organic acids and alcohols such as ethanol and propanol can be used.
  • the nitrogen source examples include ammonium salts of inorganic acids or organic acids such as ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, and ammonium phosphate, other nitrogen-containing compounds, and peptone, meat extract, yeast extract, corn steep liquor, Casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented cells and digested products thereof can be used.
  • inorganic salts for example, monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate and calcium carbonate can be used.
  • Cultivation of prokaryotes such as E. coli or eukaryotes such as yeast can be performed under aerobic conditions such as shaking culture or deep aeration and agitation culture.
  • the culture temperature is, for example, 15 to 40 ° C.
  • the culture time is usually 16 hours to 7 days.
  • the pH of the culture medium during the culture is preferably maintained at 3.0 to 9.0.
  • the pH of the culture medium can be adjusted using an inorganic acid, an organic acid, an alkaline solution, urea, calcium carbonate, ammonia, or the like.
  • antibiotics such as ampicillin and tetracycline may be added to the culture medium as necessary.
  • an inducer may be added to the medium as necessary.
  • isopropyl- ⁇ -D-thiogalactopyranoside is used when cultivating a microorganism transformed with an expression vector using the lac promoter
  • indole acrylic is used when culturing a microorganism transformed with an expression vector using the trp promoter.
  • An acid or the like may be added to the medium.
  • Isolation and purification of the expressed protein can be performed by a commonly used method.
  • the host cell is recovered by centrifugation after culturing, suspended in an aqueous buffer, and then subjected to an ultrasonic crusher, a French press, a Manton Gaurin.
  • the host cells are disrupted with a homogenizer, dynomill, or the like to obtain a cell-free extract.
  • a method usually used for protein isolation and purification that is, a solvent extraction method, a salting-out method using ammonium sulfate, a desalting method, an organic solvent, etc.
  • Precipitation method anion exchange chromatography method using resin such as diethylaminoethyl (DEAE) -Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Kasei), positive using resin such as S-Sepharose FF (manufactured by Pharmacia)
  • Electrophoresis methods such as ion exchange chromatography, hydrophobic chromatography using resins such as butyl sepharose and phenyl sepharose, gel filtration using molecular sieve, affinity chromatography, chromatofocusing, isoelectric focusing Using methods such as these alone or in combination, purification It is possible to obtain the goods.
  • the host cell when the protein is expressed by forming an insoluble substance in the cell, the host cell is similarly collected and then crushed and centrifuged to collect the protein insoluble substance as a precipitate fraction.
  • the recovered protein insoluble matter can be solubilized with a protein denaturant.
  • a purified protein preparation can be obtained by the same isolation and purification method as described above.
  • the protein when the protein is secreted extracellularly, the protein can be recovered from the culture supernatant. That is, a culture supernatant is obtained by treating the culture with a technique such as centrifugation, and a purified preparation can be obtained from the culture supernatant by using the same isolation and purification method as described above.
  • the protein raw fiber is obtained by spinning the above-described protein and contains the above-described protein as a main component.
  • the protein raw fiber can be produced by a known spinning method. That is, for example, when producing a protein raw fiber containing spider silk fibroin as a main component, spider silk fibroin produced according to the above-described method is first converted into dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF). ), Hexafluoroisopronol (HFIP), or a formic acid or the like together with an inorganic salt as a dissolution accelerator and dissolved to prepare a dope solution. Next, using this dope solution, spinning can be performed by a known spinning method such as wet spinning, dry spinning, or dry wet spinning to obtain a target protein raw material fiber.
  • DMSO dimethyl sulfoxide
  • DMF N, N-dimethylformamide
  • HFIP Hexafluoroisopronol
  • FIG. 3 is a schematic view showing an example of a spinning apparatus for producing protein raw material fibers.
  • the spinning device 10 shown in FIG. 3 is an example of a spinning device for dry and wet spinning, and has an extrusion device 1, a coagulation bath 20, a washing bath 21, and a drying device 4 in order from the upstream side. .
  • the extrusion apparatus 1 has a storage tank 7 in which a dope solution (spinning solution) 6 is stored.
  • the coagulation liquid 11 (for example, methanol) is stored in the coagulation bath 20.
  • the dope solution 6 is pushed out by a gear pump 8 attached to the lower end of the storage tank 7 from a nozzle 9 provided with an air gap 19 between the dope solution 6 and the coagulating solution 11.
  • the extruded dope liquid 6 is supplied into the coagulation liquid 11 through the air gap 19.
  • the solvent is removed from the dope solution 6 in the coagulation solution 11 to coagulate the protein.
  • the coagulated protein is guided to the washing tub 21, washed with the washing liquid 12 in the washing tub 21, and then sent to the drying device 4 by the first nip roller 13 and the second nip roller 14 installed in the washing tub 21. It is done. At this time, for example, if the rotational speed of the second nip roller 14 is set to be faster than the rotational speed of the first nip roller 13, the protein raw material fiber 36 drawn at a magnification according to the rotational speed ratio is obtained.
  • the protein raw fiber drawn in the cleaning liquid 12 leaves the cleaning bath 21, is dried when passing through the drying device 4, and is then wound up by a winder. In this way, the protein raw material fiber is obtained as a wound product 5 that is finally wound around the winder by the spinning device 10.
  • Reference numerals 18a to 18g are thread guides.
  • the coagulation liquid 11 may be any solution that can be desolvated, and examples thereof include lower alcohols having 1 to 5 carbon atoms such as methanol, ethanol, and 2-propanol, and acetone.
  • the coagulation liquid 11 may appropriately contain water.
  • the temperature of the coagulation liquid 11 is preferably 0 to 30 ° C.
  • the distance through which the coagulated protein passes through the coagulation liquid 11 (substantially, the distance from the yarn guide 18a to the yarn guide 18b) has only to be a length that allows efficient desolvation, for example, 200 to 500 mm. It is.
  • the residence time in the coagulating liquid 11 may be, for example, 0.01 to 3 minutes, and preferably 0.05 to 0.15 minutes. Further, stretching (pre-stretching) may be performed in the coagulating liquid 11.
  • stretching performed in the solution which added the organic solvent etc. to warm water may be sufficient as extending
  • the wet heat stretching temperature may be, for example, 50 to 90 ° C., and preferably 75 to 85 ° C.
  • an undrawn yarn (or predrawn yarn) can be drawn, for example, 1 to 10 times, and preferably 2 to 8 times.
  • the final draw ratio of the lower limit of the undrawn yarn (or predrawn yarn) is preferably more than 1 time, 2 times or more, 3 times or more, 4 times or more, 5 times or more, 6 times. Above, 7 times or more, 8 times or more, 9 times or more, and upper limit is preferably 40 times or less, 30 times or less, 20 times or less, 15 times or less, 14 times or less, 13 times or less 12 times or less, 11 times or less, and 10 times or less.
  • the steam heat treatment step heat-treats the protein raw material fiber by bringing the protein raw material fiber containing the protein into contact with water vapor in a storage room adjusted to a temperature within a range of less than 120 ° C. (so-called “steam set”). ”) Process.
  • the protein raw material fiber shrinks by a predetermined amount during the steam heat treatment (primary shrinkage), and shrinks (secondary shrinkage) during drying after the steam heat treatment.
  • Primary shrinkage during the steam heat treatment
  • secondary shrinkage during drying after the steam heat treatment.
  • Protein raw fiber that has undergone such a steam heat treatment step, and further, protein raw fiber that has undergone drying after steam heat treatment has a sufficiently reduced amount of shrinkage when contacted with water such as water, hot water and steam. It becomes.
  • protein raw material fibers are accommodated in a predetermined accommodation chamber, while water vapor is introduced into the accommodation chamber, and the temperature in the accommodation chamber is adjusted within a range of less than 120 ° C.
  • the protein raw material fiber is heated by bringing water vapor into contact with the protein raw material fiber.
  • the protein raw material fiber used for the steam heat treatment step may be a bundle of a plurality of spun proteins (for example, 5, 10, 20).
  • the temperature in the accommodation chamber is preferably 110 ° C. or less, and more preferably 100 ° C. or less.
  • the lower limit value of the temperature in the storage chamber is not particularly limited, but the viewpoint that the effect of the present invention can be obtained more remarkably. Therefore, it is preferably 50 ° C. or higher, 60 ° C. or higher, 70 ° C. or higher, 80 ° C. or higher, or 90 ° C. or higher.
  • the temperature of the water vapor that is brought into contact with the protein raw material fiber during the steam heat treatment is not particularly limited, the lower limit is 60 ° C. or higher and 70 from the viewpoint that the effects of the present invention can be obtained more remarkably. It is set to any one of ⁇ 80 ° C., ⁇ 80 ° C., ⁇ 90 ° C., and ⁇ 100 ° C. From the same viewpoint and from the viewpoint of safely performing the steam heat treatment, the upper limit of the steam temperature is preferably 120 ° C. or less, and more preferably 110 ° C. or less.
  • the time for performing the steam heat treatment on the protein raw material fiber is not particularly limited, and may be, for example, 1 minute or more.
  • the said time may be 10 minutes or more, may be 20 minutes or more, and may be 30 minutes or more.
  • the upper limit of the time from the viewpoint of shortening the time of the production process and from the viewpoint of eliminating the possibility of hydrolysis of the protein raw material fiber, for example, it may be 120 minutes or less, It may be 90 minutes or less and may be 60 minutes or less.
  • the steam heat treatment can be performed using, for example, a general steam set apparatus.
  • a general steam set apparatus Specific examples of the steam setting apparatus include product name: FMSA type steam setter (manufactured by Fukushin Kogyo Co., Ltd.), product name: EPS-400 (manufactured by Sakurai Dyeing Machine Co., Ltd.), and the like.
  • the steam heat treatment may be performed under normal pressure or under reduced pressure (for example, a vacuum steam set).
  • the protein raw material fiber subjected to the steam heat treatment may be previously twisted. This eliminates the need for a steam set twisting process separately from steam heat treatment for shrinkage reduction, simplifies the production process of the target protein fiber, and allows the protein fiber to be produced by overlapping steam sets. It is also possible to suppress damage advantageously.
  • the protein raw material fiber When the protein raw material fiber is brought into contact with water vapor in a relaxed state during the steam heat treatment, the protein raw material fiber may be shrunk like a wave.
  • the protein raw material fiber may be subjected to heat treatment in a state in which the protein raw material fiber is not relaxed, such as bringing the protein raw material fiber into contact with water vapor while being tensioned (pulled) in the fiber axis direction.
  • the method of not relaxing the protein raw material fiber include a method of applying a load by suspending a weight on the protein raw material fiber, a method of fixing both ends of the protein raw material fiber, and a winding such as a paper tube or a bobbin. For example, a method of wrapping around a body or the like.
  • the protein raw material fiber can be regarded as a protein fiber shrinkage prevention method including a step of heat-treating the protein raw material fiber.
  • the present invention also includes a method for producing a protein fiber dough, including a step of producing a dough using the protein fiber produced by the protein fiber producing method according to the present invention.
  • a method for producing a dough from protein fibers is not particularly limited, and a known method can be used.
  • the amount of shrinkage due to contact with moisture is reduced by using protein fibers that have been subjected to the steam heat treatment step (steam setting step) as described above.
  • a protein fiber fabric is easily manufactured.
  • the protein fiber used for the production of the protein fiber fabric may be a short fiber or a long fiber. Such protein fibers may also be used alone or in combination with other fibers. That is, when producing a protein fiber dough, a single yarn consisting only of protein fibers subjected to a steam heat treatment step (steam setting step), a steam heat treatment step (steam setting step) is applied as a material yarn. A composite yarn obtained by combining a protein fiber and another fiber may be used alone or in combination.
  • the other fibers refer to protein fibers that have not been subjected to the steam heat treatment step (steam setting step), fibers that do not contain proteins, and the like.
  • the composite yarn includes, for example, a blended yarn, a blended yarn, a covering yarn, and the like.
  • the type of protein fiber dough produced according to the method for producing a protein fiber dough according to this embodiment is not particularly limited.
  • the protein fiber fabric may be, for example, a woven fabric or a knitted fabric, or a non-woven fabric.
  • the woven fabric may be, for example, a plain weave, a twill weave, a satin weave, or the like, and the type of yarn used may be one type or a plurality of types.
  • the knitted fabric may be, for example, a warp knitted fabric such as tricot or russell, or a weft knitted fabric such as a flat knitted fabric or a circular knitted fabric, and the type of yarn used may be one type or a plurality of types.
  • the amino acid sequence represented by SEQ ID NO: 13 has an amino acid sequence obtained by performing substitution, insertion and deletion of amino acid residues for the purpose of improving productivity with respect to the amino acid sequence of fibroin derived from Nephila clavipes.
  • An amino acid sequence represented by SEQ ID NO: 5 (tag sequence and hinge sequence) is added to the N-terminus.
  • nucleic acid encoding PRT799 was synthesized.
  • the nucleic acid was added with an NdeI site at the 5 'end and an EcoRI site downstream of the stop codon.
  • the nucleic acid was cloned into a cloning vector (pUC118). Thereafter, the nucleic acid was cleaved by restriction enzyme treatment with NdeI and EcoRI, and then recombined with the protein expression vector pET-22b (+) to obtain an expression vector.
  • Escherichia coli BLR (DE3) was transformed with a pET22b (+) expression vector containing a nucleic acid encoding PRT799.
  • the transformed Escherichia coli was cultured in 2 mL of LB medium containing ampicillin for 15 hours.
  • the culture solution was added to 100 mL of a seed culture medium (Table 2) containing ampicillin so that the OD 600 was 0.005.
  • the culture temperature was kept at 30 ° C., and flask culture was performed until the OD 600 reached 5 (about 15 hours) to obtain a seed culture solution.
  • the seed culture solution was added to a jar fermenter to which 500 ml of production medium (Table 3 below) was added so that the OD 600 was 0.05.
  • the culture solution temperature was maintained at 37 ° C., and the culture was performed at a constant pH of 6.9. Further, the dissolved oxygen concentration in the culture solution was maintained at 20% of the dissolved oxygen saturation concentration.
  • a feed solution (glucose 455 g / 1 L, Yeast Extract 120 g / 1 L) was added at a rate of 1 mL / min.
  • the culture solution temperature was maintained at 37 ° C., and the culture was performed at a constant pH of 6.9.
  • the dissolved oxygen concentration in the culture solution was maintained at 20% of the dissolved oxygen saturation concentration, and cultured for 20 hours.
  • 1M isopropyl- ⁇ -thiogalactopyranoside (IPTG) was added to the culture solution to a final concentration of 1 mM to induce expression of PRT799.
  • the culture solution was centrifuged, and the cells were collected. SDS-PAGE was performed using cells prepared from the culture solution before and after the addition of IPTG, and the expression of PRT799 was confirmed by the appearance of a band of a size corresponding to PRT799 depending on the addition of IPTG.
  • the washed precipitate was suspended in 8M guanidine buffer (8M guanidine hydrochloride, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl, pH 7.0) to a concentration of 100 mg / mL, and 60 ° C. And stirred for 30 minutes with a stirrer to dissolve. After dissolution, dialysis was performed with water using a dialysis tube (cellulose tube 36/32 manufactured by Sanko Junyaku Co., Ltd.). White aggregated protein (PRT799) obtained after dialysis was collected by centrifugation, water was removed by a freeze dryer, and a lyophilized powder was collected.
  • 8M guanidine buffer 8M guanidine hydrochloride, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl, pH 7.0
  • Example 2 the protein fiber (Example 2) by which water vapor
  • the length of the protein fiber of Example 1 and Example 2 was measured, the length of the protein fiber of Example 1 was 19.6 cm, and the length of the protein fiber of Example 2 was 17.3 cm. .
  • the reason why the protein fiber of Example 1 is longer than the protein fiber of Example 2 is considered to be that the contraction of the protein fiber of Example 1 during the steam heat treatment is suppressed by the weight load.
  • each of the protein fibers of Example 1 and Example 2 obtained as described above is immersed in water at 19 ° C. for 180 seconds and then naturally dried at a temperature of 20 ° C. and a relative humidity of 65% RH. Treatment (water shrinkage treatment) was performed. Then, the length of the protein fiber of Example 1 and 2 which passed through the water contraction process was measured, respectively.
  • a protein (raw material) fiber obtained as described above was cut into 25 cm, and no steam heat treatment was performed as Comparative Example 1, and Comparative Example 1 was used.
  • the same water shrinkage treatment as described above was performed on the protein fiber. Thereafter, the length of the protein fiber of Comparative Example 1 subjected to this water shrinkage treatment was measured.
  • the shrinkage rate of the protein fiber of Example 1 manufactured through the steam heat treatment step (steam setting step) according to the present invention is 18.8%, and the shrinkage rate of the protein fiber of Example 2 is 0%. Met. Further, no crimp was observed in the protein fiber of Example 1.
  • the shrinkage ratio of the protein fiber of Comparative Example 1 that was not subjected to the steam heat treatment was 44%. From this, it is possible to produce a protein fiber in which the amount of shrinkage due to contact with moisture is reduced by the production method according to the present invention, although there is a difference in the amount of shrinkage depending on whether or not a load is applied during the steam heat treatment. Is clearly recognized.
  • Example 2 Production of protein fiber (2)-reduced pressure steam set
  • the protein raw material fiber obtained as described above was cut into 25 cm, and a fiber bundle in which 10 pieces were bundled was produced.
  • steam heating treatment was performed on the fiber bundle as follows. That is, using a steam set device (product name: FMSA type steam setter, manufactured by Fukushin Kogyo Co., Ltd.), steam heating treatment (decompressed steam set under the conditions of a steam set device temperature of 95 ° C. for 30 minutes while reducing the pressure. ).
  • the fiber bundle after the steam heat treatment was air-dried and then allowed to stand overnight under conditions of a temperature of 20 ° C. and a relative humidity of 40% RH. Thereby, the protein fiber (Example 3) by which water vapor
  • the length of the protein fiber of Example 3 was 23.7 cm.
  • the following operation was performed so that the temperature in the steam set apparatus was maintained at about 95 ° C. That is, while continuously sucking the gas in the steam set device with the suction device, when the vacuum gauge exceeds 9333 Pa (70 mmHg), water vapor is introduced into the device, the temperature inside the device is increased, and the temperature inside the device is increased. When the temperature reaches 95 ° C., the introduction of water vapor into the apparatus is once stopped. Then, when the temperature in the apparatus drops from that state by 3 ° C., water vapor is introduced into the apparatus again. When the temperature in the apparatus reaches 95 ° C., the introduction of water vapor into the apparatus is stopped. By repeating this operation, the temperature inside the apparatus was maintained at about 95 ° C.
  • water contraction treatment using water vapor was performed on the protein fiber of Example 3 obtained as described above. That is, here, as the water shrinkage treatment, a method was adopted in which the protein fiber of Example 3 was air-dried after steam setting was performed at 90 ° C. for 30 minutes under normal pressure using the steam setting device described above. . Then, after measuring the length of the protein fiber of Example 3 which passed through the water shrinkage treatment, the shrinkage rate was calculated according to the above formula 6.
  • the shrinkage ratio of the protein fiber of Example 3 produced through the steam heat treatment step according to the present invention was 5.3%. From this, it is clearly recognized that a protein fiber having a reduced amount of shrinkage due to contact with moisture can be produced by the production method according to the present invention including a step of performing steam heat treatment with reduced pressure.

Landscapes

  • Textile Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

本発明は、120℃未満の範囲内の温度に調整された収容室内で、タンパク質を含むタンパク質原料繊維と水蒸気とを接触させることにより、該タンパク質原料繊維を加熱処理する工程を備える、タンパク質繊維の製造方法に関する。

Description

タンパク質繊維の製造方法、及びタンパク質繊維の防縮方法
 本発明は、タンパク質繊維の製造方法、及びタンパク質繊維の防縮方法に関する。
 タンパク質繊維は、水分との接触(例えば、水又は湯への浸漬又は高湿度環境への暴露等)により収縮する特性を有するものがある。この特性は、製造工程及び製品化において様々な問題を発生させる。
 このような状況下、例えば、特許文献1には、精練を完了した強撚糸使用の絹織物を、緊張した状態で水、その他の溶媒、又はその混合系に浸漬して所定時間加温することを特徴とする絹織物の防縮加工法が開示されている。特許文献2には、製織して生地状にしたシルク繊維にウォッシャブル性と防汚性とを付与するシルク繊維の加工方法であって、前記シルク繊維に、水溶性塩化シアヌル誘導体若しくは水溶性ビニルスルホン誘導体を架橋剤として用いる劣化防止処理と、蒸絨法、真空蒸絨法、若しくはサンフォライズ法のいずれかを用いる防縮処理と、フッ素系撥水加工剤を用いる撥水加工処理とを施すことを特徴とするシルク繊維の加工方法が開示されている。特許文献3には、所要形状に成形された状態にある動物繊維製品に、120~200℃の高圧飽和水蒸気を接触させる水蒸気処理を施して、当該繊維製品に前記水蒸気処理時の形状を固定することを特徴とする動物繊維製品の形状固定化方法が開示されている。
特公平2-6869号公報 特開2012-246580号公報 特開平6-294068号公報
 しかしながら、特許文献1~3に開示される方法は、繊維製品の防縮技術に関するものであり、素材であるタンパク質繊維の防縮にそのまま適用することは困難である。特に、特許文献3に記載の方法は、高温の水を取り扱うため作業に危険が伴うものである。
 本発明は、水分との接触による収縮量が低減されたタンパク質繊維を得ることができるタンパク質繊維の製造方法を提供することを目的とする。本発明はまた、水分との接触による収縮量を低減させることができるタンパク質繊維の防縮方法を提供することも目的とする。
 本発明は、例えば、以下の各発明に関する。
[1]
 120℃未満の範囲内の温度に調整された収容室内で、タンパク質を含むタンパク質原料繊維と水蒸気とを接触させることにより、該タンパク質原料繊維を加熱処理する工程を備える、タンパク質繊維の製造方法。
[2]
 上記加熱処理が、1分以上行われる、[1]に記載のタンパク質繊維の製造方法。
[3]
 上記タンパク質が、構造タンパク質である、[1]又は[2]に記載のタンパク質繊維の製造方法。
[4]
 上記構造タンパク質が、クモ糸フィブロインである、[3]に記載のタンパク質繊維の製造方法。
[5]
 上記タンパク質原料繊維が、複数本束ねられ、かつ撚られたものである、[1]~[4]のいずれかに記載のタンパク質繊維の製造方法。
[6]
 上記加熱処理が、上記タンパク質原料繊維を弛緩させない状態で行われる、[1]~[5]のいずれかに記載のタンパク質繊維の製造方法。
[7]
 上記加熱処理が、減圧下で行われる、[1]~[6]のいずれかに記載のタンパク質繊維の製造方法。
[8]
 [1]~[7]のいずれかに記載のタンパク質繊維の製造方法により得られたタンパク質繊維を用いて生地を製造する工程を含む、タンパク質繊維製生地の製造方法。
[9]
 120℃未満の範囲内の温度に調整された収容室内で、タンパク質を含むタンパク質原料繊維と水蒸気とを接触させることにより、該タンパク質原料繊維を加熱処理する工程を備える、タンパク質繊維の防縮方法。
 本発明によれば、水分との接触による収縮量が低減されたタンパク質繊維を得ることができるタンパク質繊維の製造方法の提供が可能になる。本発明の製造方法は、120℃未満でスチームセットすることを含むものであるため、特許文献3に記載の方法と比べて、より安全に所望のタンパク質繊維を得ることができる。
 本発明によればまた、水分との接触による収縮量を低減させることができるタンパク質繊維の防縮方法の提供が可能になる。
改変フィブロインのドメイン配列の一例を示す模式図である。 改変フィブロインのドメイン配列の一例を示す模式図である。 タンパク質原料繊維を製造するための紡糸装置の一例を概略的に示す説明図である。
 以下、場合により図面を参照しつつ、本発明の好適な実施形態について詳細に説明するが、本発明は以下の実施形態に限定されるものではない。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は適宜省略する。
〔タンパク質繊維の製造方法〕
 本実施形態に係るタンパク質繊維の製造方法は、120℃未満の範囲内の温度に調整された収容室内で、タンパク質を含むタンパク質原料繊維と水蒸気とを接触させることにより、該タンパク質原料繊維を加熱処理する工程(以下、「加熱処理工程」、「水蒸気加熱処理工程」又は「スチームセット工程」ともいう。)を備える。当該水蒸気加熱処理工程を経ることにより、得られたタンパク質繊維は、水分と接触したときの収縮量(繊維方向の長さ変化量)が低減されたものとなる。水蒸気加熱処理工程は、例えば、タンパク質を含むタンパク質原料繊維を収容室(例えば、スチームセット装置の収容室)内に収容した後、該収容室内に水蒸気を導入することにより、該収容室内を120℃未満の温度に調整して、該タンパク質原料繊維を加熱処理することにより実施することができる。
(タンパク質)
 本発明の製造方法に従って製造されるタンパク質繊維、又は原料であるタンパク質原料繊維は、水分との接触により収縮する繊維を与えるタンパク質を主成分として含む。当該タンパク質は、特に限定されるものではなく、遺伝子組換え技術により微生物等で製造したものであってもよく、合成により製造されたものであってもよく、また天然由来のタンパク質を精製したものであってもよい。
 上記タンパク質は、例えば、構造タンパク質及び当該構造タンパク質に由来する人造構造タンパク質であってもよい。構造タンパク質とは、生体内で構造及び形態等を形成又は保持するタンパク質を意味する。構造タンパク質としては、例えば、フィブロイン、ケラチン、コラ-ゲン、エラスチン及びレシリン等を挙げることができる。
 構造タンパク質は、フィブロインであってもよい。フィブロインは、例えば、絹フィブロイン、クモ糸フィブロイン、及びホーネットシルクフィブロインからなる群より選択される1種以上であってよい。特に、構造タンパク質は、絹フィブロイン、クモ糸フィブロイン又はこれらの組み合わせであってもよい。絹フィブロインとクモ糸フィブロインとを併用する場合、絹フィブロインの割合は、例えば、クモ糸フィブロイン100質量部に対して、40質量部以下、30質量部以下、又は10質量部以下であってよい。
 絹糸は、カイコガ(Bombyx mori)の幼虫である蚕の作る繭から得られる繊維(繭糸)である。一般に、1本の繭糸は、2本の絹フィブロインと、これらを外側から覆うニカワ質(セリシン)とから構成される。絹フィブロインは、多数のフィブリルで構成される。絹フィブロインは、4層のセリシンで覆われる。実用的には、精練により外側のセリシンを溶解して取り除いて得られる絹フィラメントが、衣料用途に使用されている。一般的な絹糸は、1.33の比重、平均3.3decitexの繊度、及び1300~1500m程度の繊維長を有する。絹フィブロインは、天然若しくは家蚕の繭、又は中古若しくは廃棄のシルク生地を原料として得られる。
 絹フィブロインとしては、セリシン除去絹フィブロイン、セリシン未除去絹フィブロイン、又はこれらの組み合わせであってもよい。セリシン除去絹フィブロインは、絹フィブロインを覆うセリシン、及びその他の脂肪分などを除去して精製したものである。このようにして精製した絹フィブロインは、好ましくは、凍結乾燥粉末として用いられる。セリシン未除去絹フィブロインは、セリシンなどが除去されていない未精製の絹フィブロインである。
 クモ糸フィブロインは、天然クモ糸タンパク質、及び天然クモ糸タンパク質に由来するポリペプチド(人造クモ糸タンパク質)からなる群より選ばれるクモ糸ポリペプチドを含有していてもよい。
 天然クモ糸タンパク質としては、例えば、大吐糸管しおり糸タンパク質、横糸タンパク質、及び小瓶状腺タンパク質が挙げられる。大吐糸管しおり糸は、結晶領域と非晶領域(無定形領域とも言う。)からなる繰り返し領域を持つため、高い応力と伸縮性を併せ持つ。クモ糸の横糸は、結晶領域を持たず、非晶領域からなる繰り返し領域を持つという特徴を有する。横糸は、大吐糸管しおり糸に比べると応力は劣るが、高い伸縮性を持つ。
 大吐糸管しおり糸タンパク質は、クモの大瓶状線で産生され、強靭性に優れるという特徴を有する。大吐糸管しおり糸タンパク質としては、例えば、アメリカジョロウグモ(Nephila clavipes)に由来する大瓶状腺スピドロインMaSp1及びMaSp2、並びに二ワオニグモ(Araneus diadematus)に由来するADF3及びADF4が挙げられる。ADF3は、ニワオニグモの2つの主要なしおり糸タンパク質の一つである。天然クモ糸タンパク質に由来するポリペプチドは、これらのしおり糸タンパク質に由来するポリペプチドであってもよい。ADF3に由来するポリペプチドは、比較的合成し易く、また、強伸度及びタフネスの点で優れた特性を有する。
 横糸タンパク質は、クモの鞭毛状腺(flagelliform gland)で産生される。横糸タンパク質としては、例えばアメリカジョロウグモ(Nephila clavipes)に由来する鞭毛状絹タンパク質(flagelliform silk protein)が挙げられる。
 天然クモ糸タンパク質に由来するポリペプチドは、組換えクモ糸タンパク質であってよい。組換えクモ糸タンパク質としては、天然型クモ糸タンパク質の変異体、類似体又は誘導体等が挙げられる。このようなポリペプチドの好適な一例は、大吐糸管しおり糸タンパク質の組換えクモ糸タンパク質(「大吐糸管しおり糸タンパク質に由来するポリペプチド」ともいう。)である。
 フィブロイン様タンパク質である大吐糸管しおり糸由来のタンパク質及びカイコシルク由来のタンパク質としては、例えば、式1:[(A)モチーフ-REP]又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むタンパク質が挙げられる。ここで、(A)モチーフは、アラニン残基を主とするアミノ酸配列を示し、アミノ酸残基数は2~27である。(A)モチーフのアミノ酸残基数は、2~20、4~27、4~20、8~20、10~20、4~16、8~16、又は10~16の整数であってよい。また、(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数の割合は40%以上であればよく、60%以上、70%以上、80%以上、83%以上、85%以上、86%以上、90%以上、95%以上、又は100%(アラニン残基のみで構成されることを意味する。)であってもよい。ドメイン配列中に複数存在する(A)モチーフは、少なくとも7つがアニン残基のみで構成されてもよい。REPは2~200アミノ酸残基から構成されるアミノ酸配列を示す。REPは、10~200アミノ酸残基から構成されるアミノ酸配列であってもよい。mは2~300の整数を示し、10~300の整数であってもよい。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。
 クモの大瓶状腺で産生される大吐糸管しおり糸タンパク質に由来する改変フィブロインは、式1:[(A)モチーフ-REP]で表されるアミノ酸配列の単位を含み、かつC末端配列が配列番号14~16のいずれかに示されるアミノ酸配列又は配列番号14~16のいずれかに示されるアミノ酸配列と90%以上の相同性を有するアミノ酸配列であるポリペプチドであってもよい。
 配列番号14に示されるアミノ酸配列は、ADF3(GI:1263287、NCBI)のアミノ酸配列のC末端の50残基のアミノ酸からなるアミノ酸配列と同一であり、配列番号15に示されるアミノ酸配列は、配列番号14に示されるアミノ酸配列のC末端から20残基取り除いたアミノ酸配列と同一であり、配列番号16に示されるアミノ酸配列は、配列番号14に示されるアミノ酸配列のC末端から29残基取り除いたアミノ酸配列と同一である。
 クモの大瓶状腺で産生される大吐糸管しおり糸タンパク質に由来する改変フィブロインのより具体的な例として、(1-i)配列番号17で示されるアミノ酸配列、又は(1-ii)配列番号17で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。配列同一性は、95%以上であることが好ましい。
 配列番号17で示されるアミノ酸配列は、N末端に開始コドン、His10タグ及びHRV3Cプロテアーゼ(Human rhinovirus 3Cプロテアーゼ)認識サイトからなるアミノ酸配列(配列番号18)を付加したADF3のアミノ酸配列において、第1~13番目の反復領域をおよそ2倍になるように増やすとともに、翻訳が第1154番目アミノ酸残基で終止するように変異させたものである。配列番号17で示されるアミノ酸配列のC末端のアミノ酸配列は、配列番号16で示されるアミノ酸配列と同一である。
 (1-i)の改変フィブロインは、配列番号17で示されるアミノ酸配列からなるものであってもよい。
 グリシン残基の含有量が低減された改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、グリシン残基の含有量が低減されたアミノ酸配列を有する。当該改変フィブロインは、天然由来のフィブロインと比較して、少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものということができる。
 グリシン残基の含有量が低減された改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中のGGX及びGPGXX(但し、Gはグリシン残基、Pはプロリン残基、Xはグリシン以外のアミノ酸残基を示す。)から選ばれる少なくとも一つのモチーフ配列において、少なくとも1又は複数の当該モチーフ配列中の1つのグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものであってもよい。
 グリシン残基の含有量が低減された改変フィブロインは、上述のグリシン残基が別のアミノ酸残基に置換されたモチーフ配列の割合が、全モチーフ配列に対して、10%以上であってもよい。
 グリシン残基の含有量が低減された改変フィブロインは、式1:[(A)モチーフ-REP]で表されるドメイン配列を含み、上記ドメイン配列から、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を除いた配列中の全REPに含まれるXGX(但し、Gはグリシン残基、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列から、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を除いた配列中の総アミノ酸残基数をwとしたときに、z/wが30%以上、40%以上、50%以上又は50.9%以上であるアミノ酸配列を有するものであってもよい。(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数は83%以上であってよいが、86%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましく、100%であること(アラニン残基のみで構成されることを意味する)が更により好ましい。
 グリシン残基の含有量が低減された改変フィブロインは、GGXモチーフの1つのグリシン残基を別のアミノ酸残基に置換することにより。XGXからなるアミノ酸配列の含有割合を高めたものであることが好ましい。グリシン残基の含有量が低減された改変フィブロインは、ドメイン配列中のGGXからなるアミノ酸配列の含有割合が30%以下であることが好ましく、20%以下であることがより好ましく、10%以下であることが更に好ましく、6%以下であることが更により好ましく、4%以下であることが更によりまた好ましく、2%以下であることが特に好ましい。ドメイン配列中のGGXからなるアミノ酸配列の含有割合は、下記XGXからなるアミノ酸配列の含有割合(z/w)の算出方法と同様の方法で算出することができる。
 z/wの算出方法を更に詳細に説明する。まず、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、ドメイン配列から、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列を除いた配列に含まれる全てのREPから、XGXからなるアミノ酸配列を抽出する。XGXを構成するアミノ酸残基の総数がzである。例えば、XGXからなるアミノ酸配列が50個抽出された場合(重複はなし)、zは50×3=150である。また、例えば、XGXGXからなるアミノ酸配列の場合のように2つのXGXに含まれるX(中央のX)が存在する場合は、重複分を控除して計算する(XGXGXの場合は5アミノ酸残基である)。wは、ドメイン配列から、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列を除いた配列に含まれる総アミノ酸残基数である。例えば、図1に示したドメイン配列の場合、wは4+50+4+100+4+10+4+20+4+30=230である(最もC末端側に位置する(A)モチーフは除いている。)。次に、zをwで除すことによって、z/w(%)を算出することができる。
 グリシン残基の含有量が低減された改変フィブロインにおいて、z/wは、50.9%以上であることが好ましく、56.1%以上であることがより好ましく、58.7%以上であることが更に好ましく、70%以上であることが更により好ましく、80%以上であることが更によりまた好ましい。z/wの上限に特に制限はないが、例えば、95%以下であってもよい。
 グリシン残基の含有量が低減された改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列から、グリシン残基をコードする塩基配列の少なくとも一部を置換して別のアミノ酸残基をコードするように改変することにより得ることができる。このとき、改変するグリシン残基として、GGXモチーフ及びGPGXXモチーフにおける1つのグリシン残基を選択してもよいし、またz/wが50.9%以上になるように置換してもよい。また、例えば、天然由来のフィブロインのアミノ酸配列から上記態様を満たすアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列からREP中のグリシン残基を別のアミノ酸残基に置換したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
 上記の別のアミノ酸残基としては、グリシン残基以外のアミノ酸残基であれば特に制限はないが、バリン(V)残基、ロイシン(L)残基、イソロイシン(I)残基、メチオニン(M)残基、プロリン(P)残基、フェニルアラニン(F)残基及びトリプトファン(W)残基等の疎水性アミノ酸残基、グルタミン(Q)残基、アスパラギン(N)残基、セリン(S)残基、リシン(K)残基及びグルタミン酸(E)残基等の親水性アミノ酸残基が好ましく、バリン(V)残基、ロイシン(L)残基、イソロイシン(I)残基及びグルタミン(Q)残基がより好ましく、グルタミン(Q)残基が更に好ましい。
 グリシン残基の含有量が低減された改変フィブロインのより具体的な例として、(2-i)配列番号3、配列番号4、配列番号10若しくは配列番号12で示されるアミノ酸配列、又は(2-ii)配列番号3、配列番号4、配列番号10若しくは配列番号12で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
 (2-i)の改変フィブロインについて説明する。配列番号3で示されるアミノ酸配列は、天然由来のフィブロインに相当する配列番号1で示されるアミノ酸配列のREP中の全てのGGXをGQXに置換したものである。配列番号4で示されるアミノ酸配列は、配列番号3で示されるアミノ酸配列から、N末端側からC末端側に向かって2つおきに(A)モチーフを欠失させ、更にC末端配列の手前に[(A)モチーフ-REP]を1つ挿入したものである。配列番号10で示されるアミノ酸配列は、配列番号4で示されるアミノ酸配列の各(A)モチーフのC末端側に2つのアラニン残基を挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、配列番号4の分子量とほぼ同じとなるようにN末端側の一部のアミノ酸を欠失させたものである。配列番号12で示されるアミノ酸配列は、配列番号9で示されるアミノ酸配列中に存在する20個のドメイン配列の領域(但し、当該領域のC末端側の数アミノ酸残基が置換されている。)を4回繰り返した配列のC末端にHisタグが付加されたものである。
 配列番号1で示されるアミノ酸配列(天然由来のフィブロインに相当)におけるz/wの値は、46.8%である。配列番号3で示されるアミノ酸配列、配列番号4で示されるアミノ酸配列、配列番号10で示されるアミノ酸配列、及び配列番号12で示されるアミノ酸配列におけるz/wの値は、それぞれ58.7%、70.1%、66.1%及び70.0%である。また、配列番号1、配列番号3、配列番号4、配列番号10及び配列番号12で示されるアミノ酸配列のギザ比率(後述する)1:1.8~11.3におけるx/yの値は、それぞれ15.0%、15.0%、93.4%、92.7%及び89.3%である。
 (2-i)の改変フィブロインは、配列番号3、配列番号4、配列番号10又は配列番号12で示されるアミノ酸配列からなるものであってもよい。
 (2-ii)の改変フィブロインは、配列番号3、配列番号4、配列番号10又は配列番号12で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(2-ii)の改変フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
 (2-ii)の改変フィブロインは、配列番号3、配列番号4、配列番号10又は配列番号12で示されるアミノ酸配列と90%以上の配列同一性を有し、かつREP中に含まれるXGX(但し、Gはグリシン残基、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列中のREPの総アミノ酸残基数をwとしたときに、z/wが50.9%以上であることが好ましい。
 上述の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。これにより、改変フィブロインの単離、固定化、検出及び可視化等が可能となる。
 タグ配列として、例えば、他の分子との特異的親和性(結合性、アフィニティ)を利用したアフィニティタグを挙げることができる。アフィニティタグの具体例として、ヒスチジンタグ(Hisタグ)を挙げることができる。Hisタグは、ヒスチジン残基が4から10個程度並んだ短いペプチドで、ニッケル等の金属イオンと特異的に結合する性質があるため、金属キレートクロマトグラフィー(chelating metal chromatography)による改変フィブロインの単離に利用することができる。タグ配列の具体例として、例えば、配列番号5で示されるアミノ酸配列(Hisタグを含むアミノ酸配列)が挙げられる。
 また、グルタチオンに特異的に結合するグルタチオン-S-トランスフェラーゼ(GST)、マルトースに特異的に結合するマルトース結合タンパク質(MBP)等のタグ配列を利用することもできる。
 さらに、抗原抗体反応を利用した「エピトープタグ」を利用することもできる。抗原性を示すペプチド(エピトープ)をタグ配列として付加することにより、当該エピトープに対する抗体を結合させることができる。エピトープタグとして、HA(インフルエンザウイルスのヘマグルチニンのペプチド配列)タグ、mycタグ、FLAGタグ等を挙げることができる。エピトープタグを利用することにより、高い特異性で容易に改変フィブロインを精製することができる。
 さらにタグ配列を特定のプロテアーゼで切り離せるようにしたものも使用することができる。当該タグ配列を介して吸着したタンパク質をプロテアーゼ処理することにより、タグ配列を切り離した改変フィブロインを回収することもできる。
 タグ配列を含む改変フィブロインのより具体的な例として、(2-iii)配列番号8、配列番号9、配列番号11若しく配列番号13で示されるアミノ酸配列、又は(2-iv)配列番号8、配列番号9、配列番号11若しく配列番号13で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
 配列番号6、配列番号7、配列番号8、配列番号9、配列番号11及び配列番号13で示されるアミノ酸配列は、それぞれ配列番号1、配列番号2、配列番号3、配列番号4、配列番号10及び配列番号12で示されるアミノ酸配列のN末端に配列番号5で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
 (2-iii)の改変フィブロインは、配列番号8、配列番号9、配列番号11又は配列番号13で示されるアミノ酸配列からなるものであってもよい。
 (2-iv)の改変フィブロインは、配列番号8、配列番号9、配列番号11又は配列番号13で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(2-iv)の改変フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
 (2-iv)の改変フィブロインは、配列番号8、配列番号9、配列番号11又は配列番号13で示されるアミノ酸配列と90%以上の配列同一性を有し、かつREP中に含まれるXGX(但し、Gはグリシン残基、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列中のREPの総アミノ酸残基数をwとしたときに、z/wが50.9%以上であることが好ましい。
 上述の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
 (A)モチーフの含有量が低減された改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、(A)モチーフの含有量が低減されたアミノ酸配列を有する。当該改変フィブロインのドメイン配列は、天然由来のフィブロインと比較して、少なくとも1又は複数の(A)モチーフが欠失したことに相当するアミノ酸配列を有するものということができる。
 (A)モチーフの含有量が低減された改変フィブロインは、天然由来のフィブロインから(A)モチーフを10~40%欠失させたことに相当するアミノ酸配列を有するものであってもよい。
 (A)モチーフの含有量が低減された改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、少なくともN末端側からC末端側に向かって1~3つの(A)モチーフ毎に1つの(A)モチーフが欠失したことに相当するアミノ酸配列を有するものであってもよい。
 (A)モチーフの含有量が低減された改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、少なくともN末端側からC末端側に向かって2つ連続した(A)モチーフの欠失、及び1つの(A)モチーフの欠失がこの順に繰り返されたことに相当するアミノ酸配列を有するものであってもよい。
 (A)モチーフの含有量が低減された改変フィブロインは、そのドメイン配列が、少なくともN末端側からC末端側に向かって2つおきに(A)モチーフが欠失したことに相当するアミノ酸配列を有するものであってもよい。
 (A)モチーフの含有量が低減された改変フィブロインは、式1:[(A)モチーフ-REP]で表されるドメイン配列を含み、N末端側からC末端側に向かって、隣合う2つの[(A)モチーフ-REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8~11.3となる隣合う2つの[(A)モチーフ-REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが20%以上、30%以上、40%以上又は50%以上であるアミノ酸配列を有するものであってもよい。(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数は83%以上であってよいが、86%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましく、100%であること(アラニン残基のみで構成されることを意味する)が更により好ましい。
 x/yの算出方法を図1を参照しながら更に詳細に説明する。図1には、改変フィブロインからN末端配列及びC末端配列を除いたドメイン配列を示す。当該ドメイン配列は、N末端側(左側)から(A)モチーフ-第1のREP(50アミノ酸残基)-(A)モチーフ-第2のREP(100アミノ酸残基)-(A)モチーフ-第3のREP(10アミノ酸残基)-(A)モチーフ-第4のREP(20アミノ酸残基)-(A)モチーフ-第5のREP(30アミノ酸残基)-(A)モチーフという配列を有する。
 隣合う2つの[(A)モチーフ-REP]ユニットは、重複がないように、N末端側からC末端側に向かって、順次選択する。このとき、選択されない[(A)モチーフ-REP]ユニットが存在してもよい。図1には、パターン1(第1のREPと第2のREPの比較、及び第3のREPと第4のREPの比較)、パターン2(第1のREPと第2のREPの比較、及び第4のREPと第5のREPの比較)、パターン3(第2のREPと第3のREPの比較、及び第4のREPと第5のREPの比較)、パターン4(第1のREPと第2のREPの比較)を示した。なお、これ以外にも選択方法は存在する。
 次に各パターンについて、選択した隣合う2つの[(A)モチーフ-REP]ユニット中の各REPのアミノ酸残基数を比較する。比較は、よりアミノ酸残基数の少ない方を1としたときの、他方のアミノ酸残基数の比を求めることによって行う。例えば、第1のREP(50アミノ酸残基)と第2のREP(100アミノ酸残基)の比較の場合、よりアミノ酸残基数の少ない第1のREPを1としたとき、第2のREPのアミノ酸残基数の比は、100/50=2である。同様に、第4のREP(20アミノ酸残基)と第5のREP(30アミノ酸残基)の比較の場合、よりアミノ酸残基数の少ない第4のREPを1としたとき、第5のREPのアミノ酸残基数の比は、30/20=1.5である。
 図1中、よりアミノ酸残基数の少ない方を1としたときに、他方のアミノ酸残基数の比が1.8~11.3となる[(A)モチーフ-REP]ユニットの組を実線で示した。以下このような比をギザ比率と呼ぶ。よりアミノ酸残基数の少ない方を1としたときに、他方のアミノ酸残基数の比が1.8未満又は11.3超となる[(A)モチーフ-REP]ユニットの組は破線で示した。
 各パターンにおいて、実線で示した隣合う2つの[(A)モチーフ-REP]ユニットの全てのアミノ酸残基数を足し合わせる(REPのみではなく、(A)モチーフのアミノ酸残基数もである。)。そして、足し合わせた合計値を比較して、当該合計値が最大となるパターンの合計値(合計値の最大値)をxとする。図1に示した例では、パターン1の合計値が最大である。
 次に、xをドメイン配列の総アミノ酸残基数yで除すことによって、x/y(%)を算出することができる。
 (A)モチーフの含有量が低減された改変フィブロインにおいて、x/yは、50%以上であることが好ましく、60%以上であることがより好ましく、65%以上であることが更に好ましく、70%以上であることが更により好ましく、75%以上であることが更によりまた好ましく、80%以上であることが特に好ましい。x/yの上限に特に制限はなく、例えば、100%以下であってよい。ギザ比率が1:1.9~11.3の場合には、x/yは89.6%以上であることが好ましく、ギザ比率が1:1.8~3.4の場合には、x/yは77.1%以上であることが好ましく、ギザ比率が1:1.9~8.4の場合には、x/yは75.9%以上であることが好ましく、ギザ比率が1:1.9~4.1の場合には、x/yは64.2%以上であることが好ましい。
 (A)モチーフの含有量が低減された改変フィブロインが、ドメイン配列中に複数存在する(A)モチーフの少なくとも7つがアラニン残基のみで構成される改変フィブロインである場合、x/yは、46.4%以上であることが好ましく、50%以上であることがより好ましく、55%以上であることが更に好ましく、60%以上であることが更により好ましく、70%以上であることが更によりまた好ましく、80%以上であることが特に好ましい。x/yの上限に特に制限はなく、100%以下であればよい。
 (A)モチーフの含有量が低減された改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列から、x/yが64.2%以上になるように(A)モチーフをコードする配列の1又は複数を欠失させることにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列から、x/yが64.2%以上になるように1又は複数の(A)モチーフが欠失したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列から(A)モチーフが欠失したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
 (A)モチーフの含有量が低減された改変フィブロインのより具体的な例として、(3-i)配列番号2、配列番号4、配列番号10若しくは配列番号12で示されるアミノ酸配列、又は(3-ii)配列番号2、配列番号4、配列番号10若しくは配列番号12で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
 (3-i)の改変フィブロインについて説明する。配列番号2で示されるアミノ酸配列は、天然由来のフィブロインに相当する配列番号1で示されるアミノ酸配列から、N末端側からC末端側に向かって2つおきに(A)モチーフを欠失させ、更にC末端配列の手前に[(A)モチーフ-REP]を1つ挿入したものである。配列番号4で示されるアミノ酸配列は、配列番号2で示されるアミノ酸配列のREP中の全てのGGXをGQXに置換したものである。配列番号10で示されるアミノ酸配列は、配列番号4で示されるアミノ酸配列の各(A)モチーフのC末端側に2つのアラニン残基を挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、配列番号4の分子量とほぼ同じとなるようにN末端側の一部のアミノ酸を欠失させたものである。配列番号12で示されるアミノ酸配列は、配列番号9で示されるアミノ酸配列中に存在する20個のドメイン配列の領域(但し、当該領域のC末端側の数アミノ酸残基が置換されている。)を4回繰り返した配列のC末端にHisタグが付加されたものである。
 配列番号1で示されるアミノ酸配列(天然由来のフィブロインに相当)のギザ比率1:1.8~11.3におけるx/yの値は15.0%である。配列番号2で示されるアミノ酸配列、及び配列番号4で示されるアミノ酸配列におけるx/yの値は、いずれも93.4%である。配列番号10で示されるアミノ酸配列におけるx/yの値は、92.7%である。配列番号12で示されるアミノ酸配列におけるx/yの値は、89.3%である。配列番号1、配列番号2、配列番号4、配列番号10及び配列番号12で示されるアミノ酸配列におけるz/wの値は、それぞれ46.8%、56.2%、70.1%、66.1%及び70.0%である。
 (3-i)の改変フィブロインは、配列番号2、配列番号4、配列番号10又は配列番号12で示されるアミノ酸配列からなるものであってもよい。
 (3-ii)の改変フィブロインは、配列番号2、配列番号4、配列番号10又は配列番号12で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(3-ii)の改変フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
 (3-ii)の改変フィブロインは、配列番号2、配列番号4、配列番号10又は配列番号12で示されるアミノ酸配列と90%以上の配列同一性を有し、かつN末端側からC末端側に向かって、隣合う2つの[(A)モチーフ-REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8~11.3(ギザ比率が1:1.8~11.3)となる隣合う2つの[(A)モチーフ-REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが64.2%以上であることが好ましい。
 上述の改変フィブロインは、N末端及びC末端のいずれか一方又は両方に上述したタグ配列を含んでいてもよい。
 タグ配列を含む改変フィブロインのより具体的な例として、(3-iii)配列番号7、配列番号9、配列番号11若しく配列番号13で示されるアミノ酸配列、又は(2-iv)配列番号7、配列番号9、配列番号11若しく配列番号13で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
 配列番号6、配列番号7、配列番号8、配列番号9、配列番号11及び配列番号13で示されるアミノ酸配列は、それぞれ配列番号1、配列番号2、配列番号3、配列番号4、配列番号10及び配列番号12で示されるアミノ酸配列のN末端に配列番号5で示されるアミノ酸配列(Hisタグを含む)を付加したものである。
 (3-iii)の改変フィブロインは、配列番号7、配列番号9、配列番号11又は配列番号13で示されるアミノ酸配列からなるものであってもよい。
 (3-iv)の改変フィブロインは、配列番号7、配列番号9、配列番号11又は配列番号13で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(3-iv)の改変フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
 (3-iv)の改変フィブロインは、配列番号7、配列番号9、配列番号11又は配列番号13で示されるアミノ酸配列と90%以上の配列同一性を有し、かつN末端側からC末端側に向かって、隣合う2つの[(A)モチーフ-REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8~11.3となる隣合う2つの[(A)モチーフ-REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが64.2%以上であることが好ましい。
 上述の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
 グリシン残基の含有量、及び(A)モチーフの含有量が低減された改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、(A)モチーフの含有量が低減されたことに加え、グリシン残基の含有量が低減されたアミノ酸配列を有するものである。当該改変フィブロインのドメイン配列は、天然由来のフィブロインと比較して、少なくとも1又は複数の(A)モチーフが欠失したことに加え、更に少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものということができる。すなわち、上述したグリシン残基の含有量が低減された改変フィブロインと、(A)モチーフの含有量が低減された改変フィブロインの特徴を併せ持つ改変フィブロインである。具体的な態様等は、グリシン残基の含有量が低減された改変フィブロイン、及び、(A)モチーフの含有量が低減された改変フィブロインで説明したとおりである。
 グリシン残基の含有量、及び(A)モチーフの含有量が低減された改変フィブロインのより具体的な例として、(4-i)配列番号4、配列番号10若しくは配列番号12で示されるアミノ酸配列、(4-ii)配列番号4、配列番号10若しくは配列番号12で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。配列番号4、配列番号10若しくは配列番号12で示されるアミノ酸配列を含む改変フィブロインの具体的な態様は上述のとおりである。
 他の実施形態に係る改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する、局所的に疎水性指標の大きい領域を含むアミノ酸配列を有するものであってよい。
 局所的に疎水性指標の大きい領域は、連続する2~4アミノ酸残基で構成されていることが好ましい。
 上述の疎水性指標の大きいアミノ酸残基は、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)から選ばれるアミノ酸残基であることがより好ましい。
 本実施形態に係る改変フィブロインは、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する改変に加え、更に、天然由来のフィブロインと比較して、1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変があってもよい。
 本実施形態に係る改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列からREP中の1又は複数の親水性アミノ酸残基(例えば、疎水性指標がマイナスであるアミノ酸残基)を疎水性アミノ酸残基(例えば、疎水性指標がプラスであるアミノ酸残基)に置換すること、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数の親水性アミノ酸残基を疎水性アミノ酸残基に置換したこと、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数の親水性アミノ酸残基を疎水性アミノ酸残基に置換したこと、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
 さらに他の実施形態に係る改変フィブロインは、式1:[(A)モチーフ-REP]で表されるドメイン配列を含み、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を上記ドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を上記ドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であるアミノ酸配列を有してもよい。
 アミノ酸残基の疎水性指標については、公知の指標(Hydropathy index:Kyte J,&Doolittle R(1982)“A simple method for displaying the hydropathic character of a protein”,J.Mol.Biol.,157,pp.105-132)を使用する。具体的には、各アミノ酸の疎水性指標(ハイドロパシー・インデックス、以下「HI」とも記す。)は、下記表1に示すとおりである。
Figure JPOXMLDOC01-appb-T000001
 p/qの算出方法を更に詳細に説明する。算出には、式1:[(A)モチーフ-REP]で表されるドメイン配列から、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列を除いた配列(以下、「配列A」とする)を用いる。まず、配列Aに含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値を算出する。疎水性指標の平均値は、連続する4アミノ酸残基に含まれる各アミノ酸残基のHIの総和を4(アミノ酸残基数)で除して求める。疎水性指標の平均値は、全ての連続する4アミノ酸残基について求める(各アミノ酸残基は、1~4回平均値の算出に用いられる。)。次いで、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域を特定する。あるアミノ酸残基が、複数の「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」に該当する場合であっても、領域中には1アミノ酸残基として含まれることになる。そして、当該領域に含まれるアミノ酸残基の総数がpである。また、配列Aに含まれるアミノ酸残基の総数がqである。
 例えば、「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が20カ所抽出された場合(重複はなし)、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域には、連続する4アミノ酸残基(重複はなし)が20含まれることになり、pは20×4=80である。また、例えば、2つの「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が1アミノ酸残基だけ重複して存在する場合、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域には、7アミノ酸残基含まれることになる(p=2×4-1=7。「-1」は重複分の控除である。)。例えば、図2に示したドメイン配列の場合、「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が重複せずに7つ存在するため、pは7×4=28となる。また、例えば、図2に示したドメイン配列の場合、qは4+50+4+40+4+10+4+20+4+30=170である(C末端側の最後に存在する(A)モチーフは含めない)。次に、pをqで除すことによって、p/q(%)を算出することができる。図2の場合28/170=16.47%となる。
 本実施形態に係る改変フィブロインにおいて、p/qは、6.2%以上であることが好ましく、7%以上であることがより好ましく、10%以上であることが更に好ましく、20%以上であることが更により好ましく、30%以上であることが更によりまた好ましい。p/qの上限は、特に制限されないが、例えば、45%以下であってもよい。
 本実施形態に係る改変フィブロインは、例えば、クローニングした天然由来のフィブロインのアミノ酸配列を、上記のp/qの条件を満たすように、REP中の1又は複数の親水性アミノ酸残基(例えば、疎水性指標がマイナスであるアミノ酸残基)を疎水性アミノ酸残基(例えば、疎水性指標がプラスであるアミノ酸残基)に置換すること、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入することにより、局所的に疎水性指標の大きい領域を含むアミノ酸配列に改変することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列から上記のp/qの条件を満たすアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当する改変を行ってもよい。
 疎水性指標の大きいアミノ酸残基としては、特に制限はないが、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)が好ましく、バリン(V)、ロイシン(L)及びイソロイシン(I)がより好ましい。
 改変フィブロインの別の具体的な例として、(5-i)配列番号19、配列番号21若しくは配列番号22で示されるアミノ酸配列、又は(5-ii)配列番号19、配列番号21若しくは配列番号22で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
 (5-i)の改変フィブロインについて説明する。配列番号4で示されるアミノ酸配列は、天然由来のフィブロインの(A)モチーフ中のアラニン残基が連続するアミノ酸配列をアラニン残基が連続する数を5つになるよう欠失したものである。配列番号19で示されるアミノ酸配列は、配列番号4で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を2カ所挿入し、かつ配列番号4で示されるアミノ酸配列の分子量とほぼ同じとなるようにC末端側の一部のアミノ酸を欠失させたものである。配列番号20で示されるアミノ酸配列は、配列番号19で示されるアミノ酸配列に対し、各(A)モチーフのC末端側に2つのアラニン残基を挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、かつ配列番号4で示されるアミノ酸配列の分子量とほぼ同じとなるようにC末端側の一部のアミノ酸を欠失させたものである。配列番号21で示されるアミノ酸配列は、配列番号20で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を1カ所挿入したものである。配列番号22で示されるアミノ酸配列は、配列番号20で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を2カ所挿入したものである。
 (5-i)の改変フィブロインは、配列番号19、配列番号21又は配列番号22で示されるアミノ酸配列からなるものであってもよい。
 (5-ii)の改変フィブロインは、配列番号19、配列番号21又は配列番号22で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(5-ii)の改変フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
 (5-ii)の改変フィブロインは、配列番号19、配列番号21又は配列番号22で示されるアミノ酸配列と90%以上の配列同一性を有し、かつ最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であることが好ましい。
 上述の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。
 タグ配列を含む改変フィブロインのより具体的な例として、(5-iii)配列番号23、配列番号24若しくは配列番号25で示されるアミノ酸配列、又は(5-iv)配列番号23、配列番号24若しくは配列番号25で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
 配列番号23、配列番号24及び配列番号25で示されるアミノ酸配列は、それぞれ配列番号19、配列番号21及び配列番号22で示されるアミノ酸配列のN末端に配列番号5で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
 (5-iii)の改変フィブロインは、配列番号23、配列番号24若しくは配列番号25で示されるアミノ酸配列からなるものであってもよい。
 (5-iv)の改変フィブロインは、配列番号23、配列番号24若しくは配列番号25で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(5-iv)の改変フィブロインもまた、式1:[(A)モチーフ-REP]表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
 (5-iv)の改変フィブロインは、配列番号23、配列番号24若しくは配列番号25で示されるアミノ酸配列と90%以上の配列同一性を有し、かつ最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であることが好ましい。
 上述の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
 横糸タンパク質に由来するタンパク質としては、例えば、式3:[REP2]で表されるドメイン配列を含むタンパク質(ここで、式3中、REP2はGly-Pro-Gly-Gly-Xから構成されるアミノ酸配列を示し、Xはアラニン(Ala)、セリン(Ser)、チロシン(Tyr)及びバリン(Val)からなる群から選ばれる一つのアミノ酸を示す。oは8~300の整数を示す。)を挙げることができる。具体的には配列番号26で示されるアミノ酸配列を含むタンパク質を挙げることができる。配列番号26で示されるアミノ酸配列は、NCBIデータベースから入手したアメリカジョロウグモの鞭毛状絹タンパク質の部分的な配列(NCBIアクセッション番号:AAF36090、GI:7106224)のリピート部分及びモチーフに該当するN末端から1220残基目から1659残基目までのアミノ酸配列(PR1配列と記す。)と、NCBIデータベースから入手したアメリカジョロウグモの鞭毛状絹タンパク質の部分配列(NCBIアクセッション番号:AAC38847、GI:2833649)のC末端から816残基目から907残基目までのC末端アミノ酸配列を結合し、結合した配列のN末端に配列番号5で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。
 コラーゲン由来のタンパク質として、例えば、式4:[REP3]で表されるドメイン配列を含むタンパク質(ここで、式4中、pは5~300の整数を示す。REP3は、Gly一X一Yから構成されるアミノ酸配列を示し、X及びYはGly以外の任意のアミノ酸残基を示す。複数存在するREP3は、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。)を挙げることができる。具体的には、配列番号27で示されるアミノ酸配列を含むタンパク質を挙げることができる。配列番号27で示されるアミノ酸配列は、NCBIデータベースから入手したヒトのコラーゲンタイプ4の部分的な配列(NCBIのGenBankのアクセッション番号:CAA56335.1、GI:3702452)のリピート部分及びモチーフに該当する301残基目から540残基目までのアミノ酸配列のN末端に配列番号5で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。
 レシリン由来のタンパク質として、例えば、式5:[REP4]で表されるドメイン配列を含むタンパク質(ここで、式5中、qは4~300の整数を示す。REP4はSer一J一J一Tyr一Gly一U-Proから構成されるアミノ酸配列を示す。Jは任意のアミノ酸残基を示し、特にAsp、Ser及びThrからなる群から選ばれるアミノ酸残基であることが好ましい。Uは任意のアミノ酸残基を示し、特にPro、Ala、Thr及びSerからなる群から選ばれるアミノ酸残基であることが好ましい。複数存在するREP4は、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。)を挙げることができる。具体的には、配列番号28で示されるアミノ酸配列を含むタンパク質を挙げることができる。配列番号28で示されるアミノ酸配列は、レシリン(NCBIのGenBankのアクセッション番号NP 611157、Gl:24654243)のアミノ酸配列において、87残基目のThrをSerに置換し、かつ95残基目のAsnをAspに置換した配列の19残基目から321残基目までのアミノ酸配列のN末端に配列番号5で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。
 エラスチン由来のタンパク質として、例えば、NCBIのGenBankのアクセッション番号AAC98395(ヒト)、I47076(ヒツジ)、NP786966(ウシ)等のアミノ酸配列を有するタンパク質を挙げることができる。具体的には、配列番号29で示されるアミノ酸配列を含むタンパク質を挙げることができる。配列番号29で示されるアミノ酸配列は、NCBIのGenBankのアクセッション番号AAC98395のアミノ酸配列の121残基目から390残基目までのアミノ酸配列のN末端に配列番号5で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。
 上述した構造タンパク質及び当該構造タンパク質に由来するタンパク質は、1種を単独で、又は2種以上を組み合わせて用いることができる。
 タンパク質繊維及びタンパク質原料繊維に主成分として含まれるタンパク質は、例えば、当該タンパク質をコードする核酸配列と、当該核酸配列に作動可能に連結された1又は複数の調節配列とを有する発現ベクターで形質転換された宿主により、当該核酸を発現させることにより生産することができる。
 タンパク質繊維及びタンパク質原料繊維に主成分として含まれるタンパク質をコードする核酸の製造方法は、特に制限されない。例えば、天然の構造タンパク質をコードする遺伝子を利用して、ポリメラーゼ連鎖反応(PCR)などで増幅しクローニングする方法、又は、化学的に合成する方法によって、当該核酸を製造することができる。核酸の化学的な合成方法も特に制限されず、例えば、NCBIのウェブデータベースなどより入手した構造タンパク質のアミノ酸配列情報をもとに、AKTA oligopilot plus 10/100(GEヘルスケア・ジャパン株式会社)などで自動合成したオリゴヌクレオチドをPCRなどで連結する方法によって遺伝子を化学的に合成することができる。この際に、タンパク質の精製及び/又は確認を容易にするため、上記のアミノ酸配列のN末端に開始コドン及びHis10タグからなるアミノ酸配列を付加したアミノ酸配列からなるタンパク質をコードする核酸を合成してもよい。
 調節配列は、宿主における組換えタンパク質の発現を制御する配列(例えば、プロモーター、エンハンサー、リボソーム結合配列、転写終結配列等)であり、宿主の種類に応じて適宜選択することができる。プロモーターとして、宿主細胞中で機能し、目的とするタンパク質を発現誘導可能な誘導性プロモーターを用いてもよい。誘導性プロモーターは、誘導物質(発現誘導剤)の存在、リプレッサー分子の非存在、又は温度、浸透圧若しくはpH値の上昇若しくは低下等の物理的要因により、転写を制御できるプロモーターである。
 発現ベクターの種類は、プラスミドベクター、ウイルスベクター、コスミドベクター、フォスミドベクター、人工染色体ベクター等、宿主の種類に応じて適宜選択することができる。発現ベクターとしては、宿主細胞において自立複製が可能、又は宿主の染色体中への組込みが可能で、目的とするタンパク質をコードする核酸を転写できる位置にプロモーターを含有しているものが好適に用いられる。
 宿主として、原核生物、並びに酵母、糸状真菌、昆虫細胞、動物細胞及び植物細胞等の真核生物のいずれも好適に用いることができる。
 原核生物の宿主の好ましい例として、エシェリヒア属、ブレビバチルス属、セラチア属、バチルス属、ミクロバクテリウム属、ブレビバクテリウム属、コリネバクテリウム属及びシュードモナス属等に属する細菌を挙げることができる。エシェリヒア属に属する微生物として、例えば、エシェリヒア・コリ等を挙げることができる。ブレビバチルス属に属する微生物として、例えば、ブレビバチルス・アグリ等を挙げることができる。セラチア属に属する微生物として、例えば、セラチア・リクエファシエンス等を挙げることができる。バチルス属に属する微生物として、例えば、バチルス・サチラス等を挙げることができる。ミクロバクテリウム属に属する微生物として、例えば、ミクロバクテリウム・アンモニアフィラム等を挙げることができる。ブレビバクテリウム属に属する微生物として、例えば、ブレビバクテリウム・ディバリカタム等を挙げることができる。コリネバクテリウム属に属する微生物として、例えば、コリネバクテリウム・アンモニアゲネス等を挙げることができる。シュードモナス(Pseudomonas)属に属する微生物として、例えば、シュードモナス・プチダ等を挙げることができる。
 原核生物を宿主とする場合、目的タンパク質をコードする核酸を導入するベクターとしては、例えば、pBTrp2(ベーリンガーマンハイム社製)、pGEX(Pharmacia社製)、pUC18、pBluescriptII、pSupex、pET22b、pCold、pUB110、pNCO2(特開2002-238569号公報)等を挙げることができる。
 真核生物の宿主としては、例えば、酵母及び糸状真菌(カビ等)を挙げることができる。酵母としては、例えば、サッカロマイセス属、ピキア属、シゾサッカロマイセス属等に属する酵母を挙げることができる。糸状真菌としては、例えば、アスペルギルス属、ペニシリウム属、トリコデルマ(Trichoderma)属等に属する糸状真菌を挙げることができる。
 真核生物を宿主とする場合、目的タンパク質をコードする核酸を導入するベクターとしては、例えば、YEP13(ATCC37115)、YEp24(ATCC37051)等を挙げることができる。上記宿主細胞への発現ベクターの導入方法としては、上記宿主細胞へDNAを導入する方法であればいずれも用いることができる。例えば、カルシウムイオンを用いる方法〔Proc. Natl. Acad. Sci. USA,69,2110(1972)〕、エレクトロポレーション法、スフェロプラスト法、プロトプラスト法、酢酸リチウム法、コンピテント法等を挙げることができる。
 発現ベクターで形質転換された宿主による核酸の発現方法としては、直接発現のほか、モレキュラー・クローニング第2版に記載されている方法等に準じて、分泌生産、融合タンパク質発現等を行うことができる。
 タンパク質は、例えば、発現ベクターで形質転換された宿主を培養培地中で培養し、培養培地中に当該タンパク質を生成蓄積させ、該培養培地から採取することにより製造することができる。宿主を培養培地中で培養する方法は、宿主の培養に通常用いられる方法に従って行うことができる。
 宿主が、大腸菌等の原核生物又は酵母等の真核生物である場合、培養培地として、宿主が資化し得る炭素源、窒素源及び無機塩類等を含有し、宿主の培養を効率的に行える培地であれば天然培地、合成培地のいずれを用いてもよい。
 炭素源としては、上記形質転換微生物が資化し得るものであればよく、例えば、グルコース、フラクトース、スクロース、及びこれらを含有する糖蜜、デンプン及びデンプン加水分解物等の炭水化物、酢酸及びプロピオン酸等の有機酸、並びにエタノール及びプロパノール等のアルコール類を用いることができる。窒素源としては、例えば、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム及びリン酸アンモニウム等の無機酸又は有機酸のアンモニウム塩、その他の含窒素化合物、並びにペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼイン加水分解物、大豆粕及び大豆粕加水分解物、各種発酵菌体及びその消化物を用いることができる。無機塩類としては、例えば、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅及び炭酸カルシウムを用いることができる。
 大腸菌等の原核生物又は酵母等の真核生物の培養は、例えば、振盪培養又は深部通気攪拌培養等の好気的条件下で行うことができる。培養温度は、例えば、15~40℃である。培養時間は、通常16時間~7日間である。培養中の培養培地のpHは3.0~9.0に保持することが好ましい。培養培地のpHの調整は、無機酸、有機酸、アルカリ溶液、尿素、炭酸カルシウム及びアンモニア等を用いて行うことができる。
 また、培養中、必要に応じて、アンピシリン及びテトラサイクリン等の抗生物質を培養培地に添加してもよい。プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはイソプロピル-β-D-チオガラクトピラノシド等を、trpプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸等を培地に添加してもよい。
 発現させたタンパク質の単離、精製は通常用いられている方法で行うことができる。例えば、当該タンパク質が、細胞内に溶解状態で発現した場合には、培養終了後、宿主細胞を遠心分離により回収し、水系緩衝液に懸濁した後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー及びダイノミル等により宿主細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られる上清から、タンパク質の単離精製に通常用いられている方法、すなわち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)-セファロース、DIAION HPA-75(三菱化成社製)等のレジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(Pharmacia社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の方法を単独又は組み合わせて使用し、精製標品を得ることができる。
 また、タンパク質が細胞内に不溶体を形成して発現した場合は、同様に宿主細胞を回収後、破砕し、遠心分離を行うことにより、沈殿画分としてタンパク質の不溶体を回収する。回収したタンパク質の不溶体はタンパク質変性剤で可溶化することができる。該操作の後、上記と同様の単離精製法によりタンパク質の精製標品を得ることができる。当該タンパク質が細胞外に分泌された場合には、培養上清から当該タンパク質を回収することができる。すなわち、培養物を遠心分離等の手法により処理することにより培養上清を取得し、その培養上清から、上記と同様の単離精製法を用いることにより、精製標品を得ることができる。
(タンパク質原料繊維)
 タンパク質原料繊維は、上述したタンパク質を紡糸したものであり、上述したタンパク質を主成分として含む。タンパク質原料繊維は、公知の紡糸方法によって製造することができる。すなわち、例えば、クモ糸フィブロインを主成分として含むタンパク質原料繊維を製造する際には、まず、上述した方法に準じて製造したクモ糸フィブロインをジメチルスルホキシド(DMSO)、N,N-ジメチルホルムアミド(DMF)、ヘキサフルオロイソプロノール(HFIP)、又はギ酸等の溶媒に、溶解促進剤としての無機塩と共に添加し、溶解してドープ液を作製する。次いで、このドープ液を用いて、湿式紡糸、乾式紡糸又は乾湿式紡糸等の公知の紡糸方法により紡糸して、目的とするタンパク質原料繊維を得ることができる。
 図3は、タンパク質原料繊維を製造するための紡糸装置の一例を示す概略図である。図3に示す紡糸装置10は、乾湿式紡糸用の紡糸装置の一例であり、押出し装置1と、凝固浴槽20と、洗浄浴槽21と、乾燥装置4とを、上流側から順に有している。
 押出し装置1は貯槽7を有しており、ここにドープ液(紡糸原液)6が貯留される。凝固浴槽20に凝固液11(例えば、メタノール)が貯留される。ドープ液6は、貯槽7の下端部に取り付けられたギヤポンプ8により、凝固液11との間にエアギャップ19を開けて設けられたノズル9から押し出される。押し出されたドープ液6は、エアギャップ19を経て凝固液11内に供給される。凝固液11内でドープ液6から溶媒が除去されてタンパク質が凝固する。凝固したタンパク質は、洗浄浴槽21に導かれ、洗浄浴槽21内の洗浄液12により洗浄された後、洗浄浴槽21内に設置された第一ニップローラ13と第二ニップローラ14により、乾燥装置4へと送られる。このとき、例えば、第二ニップローラ14の回転速度を第一ニップローラ13の回転速度よりも速く設定すると、回転速度比に応じた倍率で延伸されたタンパク質原料繊維36が得られる。洗浄液12中で延伸されたタンパク質原料繊維は、洗浄浴槽21内を離脱してから、乾燥装置4内を通過する際に乾燥され、その後、ワインダーにて巻き取られる。このようにして、タンパク質原料繊維が、紡糸装置10により、最終的にワインダーに巻き取られた巻回物5として得られる。なお、18a~18gは糸ガイドである。
 凝固液11としては、脱溶媒できる溶液であればよく、例えば、メタノール、エタノール及び2-プロパノール等の炭素数1~5の低級アルコール、並びにアセトン等を挙げることができる。凝固液11は、適宜水を含んでいてもよい。凝固液11の温度は、0~30℃であることが好ましい。凝固したタンパク質が凝固液11中を通過する距離(実質的には、糸ガイド18aから糸ガイド18bまでの距離)は、脱溶媒が効率的に行える長さがあればよく、例えば、200~500mmである。凝固液11中での滞留時間は、例えば、0.01~3分であってよく、0.05~0.15分であることが好ましい。また、凝固液11中で延伸(前延伸)をしてもよい。
 なお、タンパク質原料繊維を得る際に洗浄浴槽21内で実施される延伸は、温水中、温水に有機溶剤等を加えた溶液中等で行う、いわゆる湿熱延伸であってもよい。この湿熱延伸の温度としては、例えば、50~90℃であってよく、75~85℃が好ましい。湿熱延伸では、未延伸糸(又は前延伸糸)を、例えば、1倍~10倍延伸することができ、2~8倍延伸することが好ましい。
 最終的な延伸倍率は、その下限値が、未延伸糸(又は前延伸糸)に対して、好ましくは、1倍超、2倍以上、3倍以上、4倍以上、5倍以上、6倍以上、7倍以上、8倍以上、9倍以上のうちのいずれかであり、上限値が、好ましくは40倍以下、30倍以下、20倍以下、15倍以下、14倍以下、13倍以下、12倍以下、11倍以下、10倍以下である。
(水蒸気加熱処理工程)
 水蒸気加熱処理工程は、120℃未満の範囲内の温度に調整された収容室内で、タンパク質を含むタンパク質原料繊維と水蒸気とを接触させることにより、該タンパク質原料繊維を加熱処理する(いわゆる「スチームセット」)工程である。タンパク質原料繊維は、当該水蒸気加熱処理中に所定量だけ収縮(1次収縮)し、水蒸気加熱処理後の乾燥時にも収縮(2次収縮)する。このような水蒸気加熱処理工程を経たタンパク質原料繊維、更には水蒸気加熱処理後の乾燥を経たタンパク質原料繊維は、水、湯及び水蒸気等の水分と接触したときの収縮量が充分に低減されたものとなる。
 水蒸気加熱処理工程は、具体的には例えば、所定の収容室内にタンパク質原料繊維を収容する一方、かかる収容室内に水蒸気を導入して、収容室内の温度を120℃未満の範囲内に調整しつつ、タンパク質原料繊維に水蒸気を接触させて、タンパク質原料繊維を加熱処理する。水蒸気加熱処理工程に供するタンパク質原料繊維は、紡糸されたタンパク質が複数本(例えば、5本、10本、20本)束ねられたものであってもよい。
 水蒸気加熱処理の際、収容室内の温度が120℃以上となると、処理作業の危険性が増し、作業性も低下する。それをより有利に回避する観点から、収容室内の温度は110℃以下であることが好ましく、100℃以下であることがより好ましい。なお、水蒸気が収容室内のタンパク質原料繊維に接触されるのであれば、収容室内の温度の下限値は特に限定されるものではないものの、本発明による効果をより一層顕著に得ることができるという観点から、好ましくは50℃以上、60℃以上、70℃以上、80℃以上又は90℃以上のいずれかとされる。一方、水蒸気加熱処理に際してタンパク質原料繊維に接触させる水蒸気の温度も特に限定されるものでないものの、本発明による効果をより一層顕著に得ることができるという観点から、下限値が、60℃以上、70℃以上、80℃以上、90℃以上又は100℃以上のいずれかとされる。同様の観点から、また、水蒸気加熱処理を安全に実施する観点から、水蒸気の温度の上限値は120℃以下であることが好ましく、110℃以下であることがより好ましい。
 タンパク質原料繊維に水蒸気加熱処理を施す時間は、特に制限されず、例えば、1分以上であってよい。当該時間は、10分以上であってよく、20分以上であってよく、30分以上であってもよい。また、当該時間の上限に特に制限はないが、製造工程の時間を短縮するという観点、及びタンパク質原料繊維の加水分解のおそれを排除する等の観点から、例えば、120分以下であってよく、90分以下であってよく、60分以下であってもよい。
 水蒸気加熱処理(スチームセット)は、例えば、一般的なスチームセット装置を使用して実施することができる。スチームセット装置の具体例としては、製品名:FMSA型スチームセッター(福伸工業株式会社製)、製品名:EPS-400(辻井染機工業株式会社製)等を挙げることができる。
 水蒸気加熱処理は、常圧下で行ってもよく、減圧下(例えば、真空スチームセット)で行ってもよい。
 また、水蒸気加熱処理に供されるタンパク質原料繊維は、予め撚りがかけられたものであってもよい。これにより、防縮のための水蒸気加熱処理とは別にスチームセットによる撚糸工程を行う必要がなくなって、目的とするタンパク質繊維の製造工程が簡略化され、また、スチームセットの重複実施によるタンパク質繊維へのダメージを有利に抑制することも可能となる。
 水蒸気加熱処理の際、タンパク質原料繊維を弛緩させた状態で水蒸気に接触させると、タンパク質原料繊維が、波打つように縮れてしまうことがある。このような縮れの発生を防止するために、例えば、タンパク質原料繊維を繊維軸方向に緊張させ(引っ張り)ながら水蒸気に接触させるなど、タンパク質原料繊維を弛緩させない状態で加熱処理を実施してもよい。タンパク質原料繊維を弛緩させない方法としては、例えば、タンパク質原料繊維におもりを吊す等して荷重を負荷する方法、タンパク質原料繊維の両末端を固定化する方法、及び紙管又はボビン等の被巻回体等に巻きつける方法等が挙げられる。
〔タンパク質繊維の防縮方法〕
 以上説明した本発明のタンパク質繊維の製造方法は、タンパク質を含むタンパク質原料繊維を収容室内に収容した後、該収容室内に水蒸気を導入することにより、該収容室内を120℃未満の温度に調整して、該タンパク質原料繊維を加熱処理する工程を備える、タンパク質繊維の防縮方法と捉えることもできる。
〔タンパク質繊維製生地の製造方法〕
 本発明はまた、本発明に係るタンパク質繊維の製造方法により製造されたタンパク質繊維を用いて生地を作製する工程を含む、タンパク質繊維製生地の製造方法を包含する。タンパク質繊維から生地を作製する方法としては、特に制限されることなく、公知の方法を利用することができる。
 本実施形態に係るタンパク質繊維製生地の製造方法によれば、前述したような水蒸気加熱処理工程(スチームセット工程)が施されたタンパク質繊維を用いることで、水分との接触による収縮量が低減されたタンパク質繊維製生地が容易に製造されるようになる。
 タンパク質繊維製生地の製造に用いられるタンパク質繊維は、短繊維であっても、長繊維であってもよい。また、かかるタンパク質繊維は、単独で、又は他の繊維と組み合わされて使用されてもよい。すなわち、タンパク質繊維製生地を製造する際には、材料糸として、水蒸気加熱処理工程(スチームセット工程)が施されたタンパク質繊維のみからなる単独糸、水蒸気加熱処理工程(スチームセット工程)が施されたタンパク質繊維と他の繊維とを組み合わせてなる複合糸が、それぞれ単独で、又はそれらが組み合わされて用いられてもよい。なお、他の繊維とは、水蒸気加熱処理工程(スチームセット工程)が施されていないタンパク質繊維、タンパク質を含まない繊維等をいう。また、複合糸には、例えば、混紡糸、混繊糸、カバーリング糸等が含まれる。
 本実施形態に係るタンパク質繊維製生地の製造方法に従って製造されるタンパク質繊維製生地の種類も、特に限定されない。タンパク質繊維製生地が、例えば、織物又は編物であってもよく、不織布であってもよい。また、織物も、例えば、織組織が、平織、綾織、朱子織等であってもよく、使用される糸の種類も、1種類のものでも複数種類ものであってもよい。編物も、例えば、トリコット、ラッセル等の経編物でもよく、横編、丸編等の緯編物でもよく、使用される糸の種類も、1種類のものでも複数種類ものであってもよい。
 以下、実施例に基づいて本発明をより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
〔タンパク質原料繊維の製造〕
<(1)クモ糸タンパク質(クモ糸フィブロイン:PRT799)の製造>
(クモ糸タンパク質をコードする遺伝子の合成、及び発現ベクターの構築)
 ネフィラ・クラビペス(Nephila clavipes)由来のフィブロイン(GenBankアクセッション番号:P46804.1、GI:1174415)の塩基配列及びアミノ酸配列に基づき、配列番号13で示されるアミノ酸配列を有する改変フィブロイン(以下、「PRT799」ともいう。)を設計した。
 配列番号13で示されるアミノ酸配列は、ネフィラ・クラビペス由来のフィブロインのアミノ酸配列に対して、生産性の向上を目的としてアミノ酸残基の置換、挿入及び欠失を施したアミノ酸配列を有し、さらにN末端に配列番号5で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されている。
 次に、PRT799をコードする核酸を合成した。当該核酸には、5’末端にNdeIサイト及び終止コドン下流にEcoRIサイトを付加した。当該核酸をクローニングベクター(pUC118)にクローニングした。その後、同核酸をNdeI及びEcoRIで制限酵素処理して切り出した後、タンパク質発現ベクターpET-22b(+)に組換えて発現ベクターを得た。
 PRT799をコードする核酸を含むpET22b(+)発現ベクターで、大腸菌BLR(DE3)を形質転換した。当該形質転換大腸菌を、アンピシリンを含む2mLのLB培地で15時間培養した。当該培養液を、アンピシリンを含む100mLのシード培養用培地(表2)にOD600が0.005となるように添加した。培養液温度を30℃に保ち、OD600が5になるまでフラスコ培養を行い(約15時間)、シード培養液を得た。
Figure JPOXMLDOC01-appb-T000002
 当該シード培養液を500mlの生産培地(下記表3)を添加したジャーファーメンターにOD600が0.05となるように添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにした。
Figure JPOXMLDOC01-appb-T000003
 生産培地中のグルコースが完全に消費された直後に、フィード液(グルコース455g/1L、Yeast Extract 120g/1L)を1mL/分の速度で添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにし、20時間培養を行った。その後、1Mのイソプロピル-β-チオガラクトピラノシド(IPTG)を培養液に対して終濃度1mMになるよう添加し、PRT799を発現誘導させた。IPTG添加後20時間経過した時点で、培養液を遠心分離し、菌体を回収した。IPTG添加前とIPTG添加後の培養液から調製した菌体を用いてSDS-PAGEを行い、IPTG添加に依存したPRT799に相当するサイズのバンドの出現により、PRT799の発現を確認した。
(PRT799の精製)
 IPTGを添加してから2時間後に回収した菌体を20mM Tris-HCl buffer(pH7.4)で洗浄した。洗浄後の菌体を約1mMのPMSFを含む20mM Tris-HCl緩衝液(pH7.4)に懸濁させ、高圧ホモジナイザー(GEA Niro Soavi社)で細胞を破砕した。破砕した細胞を遠心分離し、沈殿物を得た。得られた沈殿物を、高純度になるまで20mM Tris-HCl緩衝液(pH7.4)で洗浄した。洗浄後の沈殿物を100mg/mLの濃度になるように8M グアニジン緩衝液(8M グアニジン塩酸塩、10mM リン酸二水素ナトリウム、20mM NaCl、1mM Tris-HCl、pH7.0)で懸濁し、60℃で30分間、スターラーで撹拌し、溶解させた。溶解後、透析チューブ(三光純薬株式会社製のセルロースチューブ36/32)を用いて水で透析を行った。透析後に得られた白色の凝集タンパク質(PRT799)を遠心分離により回収し、凍結乾燥機で水分を除き、凍結乾燥粉末を回収した。
<(2)タンパク質原料繊維の製造>
(ドープ液の調製)
 ジメチルスルホキシド(DMSO)に、上述のクモ糸フィブロイン(PRT799)を濃度24質量%となるよう添加した後、溶解促進剤としてLiClを濃度4.0質量%添加し、その後、シェーカーを使用して3時間溶解させた。その後、ゴミと泡を取り除き、ドープ液とした。ドープ液の溶液粘度は90℃において5000cP(センチポアズ)であった。
(紡糸)
 上記のようにして得られたドープ液と図3に示される紡糸装置10を用いて公知の乾湿式紡糸を行って、タンパク質原料繊維を得た。なお、ここでは、乾湿式紡糸を下記の条件で行った。
 押出しノズル直径:0.1mm
 凝固液(メタノール)の温度:2℃
 延伸倍率:4.52倍
 乾燥温度:80℃
〔試験例1:タンパク質繊維の製造(1)-常圧スチームセット〕
 上記のようにして得られたタンパク質原料繊維を25cmに切断し、これを10本束ねた繊維束を2つ作製した。次いで、それら2つの繊維束のうちの1つに120gの錘を吊るし、その状態で、かかる繊維束をスチームセット装置(製品名:辻井染機工業 型番EPS-400,辻井染機工業株式会社製)内にセットして、常圧下、スチームセット装置内温度85℃、30分間の条件で、水蒸気加熱処理(スチームセット)を行った。次いで、水蒸気加熱処理後の繊維束を風乾した。これにより、弛緩しない状態において水蒸気加熱処理が施されてなるタンパク質繊維(実施例1)を得た。また、別の1つの繊維束に対して、錘を吊るさない状態で、上記と同様に水蒸気加熱処理を行った。次いで、水蒸気加熱処理後の繊維束を風乾した。これにより、弛緩が許容される状態で水蒸気加熱処理が施されてなるタンパク質繊維(実施例2)を得た。実施例1と実施例2のタンパク質繊維の長さを測定したところ、実施例1のタンパク質繊維の長さは19.6cmであり、実施例2のタンパク質繊維の長さは17.3cmであった。実施例1のタンパク質繊維が、実施例2のタンパク質繊維よりも長くなっているのは、水蒸気加熱処理中における実施例1のタンパク質繊維の収縮が錘の荷重によって抑制されことによると考えられる。
 次に、上記のようにして得た実施例1と実施例2のタンパク質繊維のそれぞれに対して、19℃の水に180秒間浸漬させた後に温度20℃、相対湿度65%RHで自然乾燥させる処理(水収縮処理)を実施した。その後、水収縮処理を経た実施例1及び2のタンパク質繊維の長さをそれぞれ測定した。
 また、比較のために、上記のようにして得られたタンパク質(原料)繊維を25cmに切断しただけで、水蒸気加熱処理を何ら実施していないものを比較例1として用い、この比較例1のタンパク質繊維に対して、上記と同様な水収縮処理を行った。その後、この水収縮処理が行われた比較例1のタンパク質繊維の長さを測定した。
 そして、水収縮処理が行われた実施例1、2と比較例1のそれぞれのタンパク質繊維の収縮率を下記式6に従って算出した。
 収縮率=(水収縮処理前の長さ-水収縮処理後の長さ)/水収縮処理前の長さ×100 ・・・式6
 その結果、本発明に係る水蒸気加熱処理工程(スチームセット工程)を経て製造された実施例1のタンパク質繊維の収縮率は18.8%であり、実施例2のタンパク質繊維の収縮率は0%であった。また、実施例1のタンパク質繊維には縮れが認められなかった。これに対して、水蒸気加熱処理を施していない比較例1のタンパク質繊維の収縮率は44%であった。このことから、水蒸気加熱処理中に荷重が付加されるか否かで収縮量に違いが生ずるものの、本発明に係る製造方法によって、水分との接触による収縮量が低減されたタンパク質繊維を製造できることが明確に認識される。
〔試験例2:タンパク質繊維の製造(2)-減圧スチームセット〕
 実施例1及び2とは別に、上記のようにして得られたタンパク質原料繊維を25cmに切断し、これを10本束ねた繊維束を作製した。次いで、この繊維束に対し水蒸気加熱処理を下記のようにして行った。すなわち、スチームセット装置(製品名:FMSA型スチームセッター,福伸工業株式会社製)を使用し、減圧しつつ、スチームセット装置内温度95℃、30分間の条件で、水蒸気加熱処理(減圧スチームセット)を実施した。次いで、水蒸気加熱処理後の繊維束を風乾させた後、温度20℃、相対湿度40%RHの条件下で一晩静置した。これにより、減圧下で水蒸気加熱処理が施されてなるタンパク質繊維(実施例3)を得た。実施例3のタンパク質繊維の長さは、23.7cmであった。
 なお、ここでの水蒸気加熱処理の実施に際しては、スチームセット装置内温度が95℃程度に維持されるように、下記の操作を行った。すなわち、スチームセット装置内の気体を吸引装置で連続的に吸引しながら、バキュームゲージが9333Pa(70mmHg)を超えたときに水蒸気を装置内に導入し、装置内の温度を上昇させ、装置内温度が95℃に達した時点で、一旦、装置内への水蒸気の導入を停止する。そして、その状態から装置内の温度が3℃低下したときに再び水蒸気を装置内に導入し、装置内温度が95℃に達したら、装置内への水蒸気の導入を停止する。この操作を繰り返し行うことで、装置内温度を95℃程度に維持するようにした。
 次に、上記のようにして得た実施例3のタンパク質繊維に対して、水蒸気を用いた水収縮処理を行った。すなわち、ここでは、水収縮処理として、実施例3のタンパク質繊維に対して、前記したスチームセット装置により常圧下、90℃、30分間の条件でスチームセットを実施した後、風乾する方法を採用した。その後、水収縮処理を経た実施例3のタンパク質繊維の長さを測定した後、収縮率を前記式6に従って算出した。
 その結果、本発明に係る水蒸気加熱処理工程を経て製造された実施例3のタンパク質繊維の収縮率は、5.3%であった。このことから、減圧化で水蒸気加熱処理を行う工程を含む本発明に係る製造方法によって、水分との接触による収縮量が低減されたタンパク質繊維を製造できることが明確に認識される。
 1…押出し装置、4…乾燥装置、6…ドープ液、10…紡糸装置、20…凝固浴槽、21…洗浄浴槽。

Claims (9)

  1.  120℃未満の範囲内の温度に調整された収容室内で、タンパク質を含むタンパク質原料繊維と水蒸気とを接触させることにより、該タンパク質原料繊維を加熱処理する工程を備える、タンパク質繊維の製造方法。
  2.  前記加熱処理が、1分以上行われる、請求項1に記載のタンパク質繊維の製造方法。
  3.  前記タンパク質が、構造タンパク質である、請求項1又は2に記載のタンパク質繊維の製造方法。
  4.  前記構造タンパク質が、クモ糸フィブロインである、請求項3に記載のタンパク質繊維の製造方法。
  5.  前記タンパク質原料繊維が、複数本束ねられ、かつ撚られたものである、請求項1~4のいずれか一項に記載のタンパク質繊維の製造方法。
  6.  前記加熱処理が、前記タンパク質原料繊維を弛緩させない状態で行われる、請求項1~5のいずれか一項に記載のタンパク質繊維の製造方法。
  7.  前記加熱処理が、減圧下で行われる、請求項1~6のいずれか一項に記載のタンパク質繊維の製造方法。
  8.  請求項1~7のいずれか一項に記載のタンパク質繊維の製造方法により得られたタンパク質繊維を用いて生地を製造する工程を含む、タンパク質繊維製生地の製造方法。
  9.  120℃未満の範囲内の温度に調整された収容室内で、タンパク質を含むタンパク質原料繊維と水蒸気とを接触させることにより、該タンパク質原料繊維を加熱処理する工程を備える、タンパク質繊維の防縮方法。
PCT/JP2018/009069 2017-03-10 2018-03-08 タンパク質繊維の製造方法、及びタンパク質繊維の防縮方法 WO2018164234A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019503851A JPWO2018164234A1 (ja) 2017-03-10 2018-03-08 タンパク質繊維の製造方法、及びタンパク質繊維の防縮方法
DE112018001273.5T DE112018001273T5 (de) 2017-03-10 2018-03-08 Verfahren zur Herstellung von Proteinfaser, und Verfahren zum Schrumpfen von Proteinfaser
US16/491,655 US20210388557A1 (en) 2017-03-10 2018-03-08 Method for Producing Protein Fiber, and Method for Shrinking Protein Fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017046527 2017-03-10
JP2017-046527 2017-03-10

Publications (1)

Publication Number Publication Date
WO2018164234A1 true WO2018164234A1 (ja) 2018-09-13

Family

ID=63448708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009069 WO2018164234A1 (ja) 2017-03-10 2018-03-08 タンパク質繊維の製造方法、及びタンパク質繊維の防縮方法

Country Status (4)

Country Link
US (1) US20210388557A1 (ja)
JP (1) JPWO2018164234A1 (ja)
DE (1) DE112018001273T5 (ja)
WO (1) WO2018164234A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151436A1 (ja) * 2018-01-31 2019-08-08 Spiber株式会社 タンパク質捲縮ステープルの製造方法
WO2019151437A1 (ja) * 2018-01-31 2019-08-08 Spiber株式会社 タンパク質紡績糸の製造方法
EP3476859A4 (en) * 2016-06-23 2019-12-11 Spiber Inc. MODIFIED FIBROIN
WO2020067553A1 (ja) * 2018-09-28 2020-04-02 株式会社島精機製作所 タンパク質紡績糸の製造方法
WO2020067545A1 (ja) * 2018-09-28 2020-04-02 Spiber株式会社 複合糸、及びその製造方法、並びに布地
WO2020067549A1 (ja) * 2018-09-28 2020-04-02 Spiber株式会社 植毛品及び植毛用パイル
WO2020067573A1 (ja) * 2018-09-28 2020-04-02 Spiber株式会社 異形断面タンパク質繊維の製造方法及び形状コントロール方法
WO2020067574A1 (ja) * 2018-09-28 2020-04-02 Spiber株式会社 タンパク質繊維の製造方法
WO2020067546A1 (ja) * 2018-09-28 2020-04-02 Spiber株式会社 複合糸、及びその製造方法、並びに布地
WO2020067547A1 (ja) * 2018-09-28 2020-04-02 Spiber株式会社 改変フィブロイン繊維
WO2020067514A1 (ja) * 2018-09-28 2020-04-02 Spiber株式会社 改変クモ糸フィブロイン繊維及びその製造方法
JP2020122249A (ja) * 2019-01-31 2020-08-13 国立大学法人信州大学 フィブロイン繊維の製造方法及びフィブロイン溶液
WO2020162627A1 (ja) * 2019-02-07 2020-08-13 Spiber株式会社 人造構造タンパク質繊維の製造方法
JPWO2019065735A1 (ja) * 2017-09-29 2020-10-22 Spiber株式会社 繊維又は布帛の製造方法
US11001679B2 (en) 2016-02-15 2021-05-11 Modern Meadow, Inc. Biofabricated material containing collagen fibrils
US11214844B2 (en) 2017-11-13 2022-01-04 Modern Meadow, Inc. Biofabricated leather articles having zonal properties
US11352497B2 (en) 2019-01-17 2022-06-07 Modern Meadow, Inc. Layered collagen materials and methods of making the same
EP4036291A4 (en) * 2019-09-27 2023-08-09 Spiber Inc. PROTEIN FIBER PRODUCTION METHODS, PROTEIN FIBER PRODUCTION METHODS, AND PROTEIN FIBER SHRINKING METHODS

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114657761A (zh) * 2022-04-28 2022-06-24 广州大学 一种高性能蛋白质纤维人工肌肉致动器的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496272A (ja) * 1972-05-24 1974-01-19
JPS55142759A (en) * 1979-02-23 1980-11-07 Us Agriculture Method and apparatus for treating fiber by ozone steam mixture
JPS6262990A (ja) * 1985-09-11 1987-03-19 大東紡織株式会社 形状記憶毛糸の製造方法
JPH01183534A (ja) * 1988-01-18 1989-07-21 Shigesaburo Mizushima 天然繊維記憶形状糸の製造法
JP2010047866A (ja) * 2008-08-21 2010-03-04 Yamanashi Prefecture 動物繊維における銀染色方法、2−メルカプトエタンスルホン酸塩水溶液を用いた銀染色の制御方法、及びこれらの方法を適用した動物繊維
WO2012165476A1 (ja) * 2011-06-01 2012-12-06 スパイバー株式会社 人造ポリペプチド繊維及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496272A (ja) * 1972-05-24 1974-01-19
JPS55142759A (en) * 1979-02-23 1980-11-07 Us Agriculture Method and apparatus for treating fiber by ozone steam mixture
JPS6262990A (ja) * 1985-09-11 1987-03-19 大東紡織株式会社 形状記憶毛糸の製造方法
JPH01183534A (ja) * 1988-01-18 1989-07-21 Shigesaburo Mizushima 天然繊維記憶形状糸の製造法
JP2010047866A (ja) * 2008-08-21 2010-03-04 Yamanashi Prefecture 動物繊維における銀染色方法、2−メルカプトエタンスルホン酸塩水溶液を用いた銀染色の制御方法、及びこれらの方法を適用した動物繊維
WO2012165476A1 (ja) * 2011-06-01 2012-12-06 スパイバー株式会社 人造ポリペプチド繊維及びその製造方法

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11542374B2 (en) 2016-02-15 2023-01-03 Modern Meadow, Inc. Composite biofabricated material
US11001679B2 (en) 2016-02-15 2021-05-11 Modern Meadow, Inc. Biofabricated material containing collagen fibrils
EP3476859A4 (en) * 2016-06-23 2019-12-11 Spiber Inc. MODIFIED FIBROIN
JPWO2019065735A1 (ja) * 2017-09-29 2020-10-22 Spiber株式会社 繊維又は布帛の製造方法
US11214844B2 (en) 2017-11-13 2022-01-04 Modern Meadow, Inc. Biofabricated leather articles having zonal properties
WO2019151437A1 (ja) * 2018-01-31 2019-08-08 Spiber株式会社 タンパク質紡績糸の製造方法
JP7367977B2 (ja) 2018-01-31 2023-10-24 Spiber株式会社 タンパク質捲縮ステープルの製造方法
JP7223984B2 (ja) 2018-01-31 2023-02-17 Spiber株式会社 タンパク質紡績糸の製造方法
JP2021080575A (ja) * 2018-01-31 2021-05-27 Spiber株式会社 タンパク質紡績糸の製造方法
WO2019151436A1 (ja) * 2018-01-31 2019-08-08 Spiber株式会社 タンパク質捲縮ステープルの製造方法
JPWO2019151436A1 (ja) * 2018-01-31 2021-01-14 Spiber株式会社 タンパク質捲縮ステープルの製造方法
WO2020067546A1 (ja) * 2018-09-28 2020-04-02 Spiber株式会社 複合糸、及びその製造方法、並びに布地
JP2022024192A (ja) * 2018-09-28 2022-02-09 Spiber株式会社 複合糸、及びその製造方法、並びに布地
JP7466872B2 (ja) 2018-09-28 2024-04-15 株式会社島精機製作所 タンパク質紡績糸の製造方法
WO2020067514A1 (ja) * 2018-09-28 2020-04-02 Spiber株式会社 改変クモ糸フィブロイン繊維及びその製造方法
CN112714813A (zh) * 2018-09-28 2021-04-27 丝芭博株式会社 改性丝心蛋白纤维
WO2020067547A1 (ja) * 2018-09-28 2020-04-02 Spiber株式会社 改変フィブロイン繊維
WO2020067574A1 (ja) * 2018-09-28 2020-04-02 Spiber株式会社 タンパク質繊維の製造方法
JPWO2020067553A1 (ja) * 2018-09-28 2021-09-02 株式会社島精機製作所 タンパク質紡績糸の製造方法
JP7454853B2 (ja) 2018-09-28 2024-03-25 Spiber株式会社 タンパク質繊維の製造方法
WO2020067573A1 (ja) * 2018-09-28 2020-04-02 Spiber株式会社 異形断面タンパク質繊維の製造方法及び形状コントロール方法
JP2022024195A (ja) * 2018-09-28 2022-02-09 Spiber株式会社 植毛品及び植毛用パイル
WO2020067553A1 (ja) * 2018-09-28 2020-04-02 株式会社島精機製作所 タンパク質紡績糸の製造方法
JP2022024198A (ja) * 2018-09-28 2022-02-09 Spiber株式会社 異形断面タンパク質繊維の製造方法及び形状コントロール方法
JP2022024194A (ja) * 2018-09-28 2022-02-09 Spiber株式会社 複合糸、及びその製造方法、並びに布地
WO2020067545A1 (ja) * 2018-09-28 2020-04-02 Spiber株式会社 複合糸、及びその製造方法、並びに布地
WO2020067549A1 (ja) * 2018-09-28 2020-04-02 Spiber株式会社 植毛品及び植毛用パイル
EP3859076A4 (en) * 2018-09-28 2023-01-18 Spiber Inc. MODIFIED FIBROIN FIBERS
US11352497B2 (en) 2019-01-17 2022-06-07 Modern Meadow, Inc. Layered collagen materials and methods of making the same
JP7458619B2 (ja) 2019-01-31 2024-04-01 Spiber株式会社 フィブロイン繊維の製造方法及びフィブロイン溶液
JP2020122249A (ja) * 2019-01-31 2020-08-13 国立大学法人信州大学 フィブロイン繊維の製造方法及びフィブロイン溶液
WO2020162627A1 (ja) * 2019-02-07 2020-08-13 Spiber株式会社 人造構造タンパク質繊維の製造方法
CN113474496A (zh) * 2019-02-07 2021-10-01 丝芭博株式会社 人造结构蛋白质纤维的制备方法
JP7503842B2 (ja) 2019-02-07 2024-06-21 Spiber株式会社 人造構造タンパク質繊維の製造方法
EP4036291A4 (en) * 2019-09-27 2023-08-09 Spiber Inc. PROTEIN FIBER PRODUCTION METHODS, PROTEIN FIBER PRODUCTION METHODS, AND PROTEIN FIBER SHRINKING METHODS

Also Published As

Publication number Publication date
DE112018001273T5 (de) 2019-11-21
JPWO2018164234A1 (ja) 2020-04-16
US20210388557A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
WO2018164234A1 (ja) タンパク質繊維の製造方法、及びタンパク質繊維の防縮方法
JP6337252B1 (ja) 高収縮人造フィブロイン繊維及びその製造方法、並びに人造フィブロイン繊維の収縮方法
WO2018164020A1 (ja) タンパク質繊維の製造方法及び製造装置
WO2018164190A1 (ja) 人造フィブロイン繊維
JP7330468B2 (ja) 混紡糸並びにその編織体及びその編織体の製造方法
JP7320790B2 (ja) 人工毛髪用繊維、及びその製造方法、並びに人工毛髪
JP7340262B2 (ja) 高収縮人造フィブロイン紡績糸及びその製造方法、並びに人造フィブロイン紡績糸及びその収縮方法
WO2019194224A1 (ja) 改変フィブロイン成形体の塑性変形体の寸法回復方法
JP7237314B2 (ja) タンパク質繊維の製造方法、タンパク質繊維の製造装置、およびタンパク質繊維の加工方法
WO2019151437A1 (ja) タンパク質紡績糸の製造方法
JPWO2020158897A1 (ja) 人工毛髪用繊維、人工毛髪、人工毛髪用繊維を製造する方法、及び人工毛髪を製造する方法
JP7466872B2 (ja) タンパク質紡績糸の製造方法
WO2020158900A1 (ja) 人工毛髪用繊維を製造する方法、人工毛髪を製造する方法、人工毛髪用繊維、及び人工毛髪
WO2019194261A1 (ja) 人造フィブロイン繊維
JP7367977B2 (ja) タンパク質捲縮ステープルの製造方法
WO2019194263A1 (ja) 高収縮人造フィブロイン撚糸及びその製造方法、並びに人造フィブロイン撚糸及びその収縮方法
JP2021120402A (ja) タンパク質組成物
WO2019151432A1 (ja) 油剤付着タンパク質捲縮繊維の製造方法
WO2019194230A1 (ja) 高密度不織布、及び高密度不織布の製造方法
JPWO2020067547A1 (ja) 改変フィブロイン繊維
WO2019066006A1 (ja) 撚糸の製造方法、仮撚り糸の製造方法、及び糸の撚り加工方法
JP7401062B2 (ja) 生地の製造方法
WO2019151433A1 (ja) タンパク質フィラメントの開繊トウ及びその製造方法
WO2019194260A1 (ja) 高収縮人造フィブロイン繊維及びその製造方法、並びに人造フィブロイン繊維の収縮方法
WO2019151430A1 (ja) タンパク質繊維糸及び編織体、並びに、タンパク質繊維糸の製造方法及び編織体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764313

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019503851

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18764313

Country of ref document: EP

Kind code of ref document: A1