WO2019181699A1 - 樹脂、樹脂前駆体及び樹脂前駆体溶液 - Google Patents

樹脂、樹脂前駆体及び樹脂前駆体溶液 Download PDF

Info

Publication number
WO2019181699A1
WO2019181699A1 PCT/JP2019/010379 JP2019010379W WO2019181699A1 WO 2019181699 A1 WO2019181699 A1 WO 2019181699A1 JP 2019010379 W JP2019010379 W JP 2019010379W WO 2019181699 A1 WO2019181699 A1 WO 2019181699A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
represented
group represented
resin
formula
Prior art date
Application number
PCT/JP2019/010379
Other languages
English (en)
French (fr)
Inventor
伸一 小松
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Priority to KR1020207030042A priority Critical patent/KR102458537B1/ko
Priority to CN201980021572.9A priority patent/CN111936555A/zh
Priority to JP2020508276A priority patent/JPWO2019181699A1/ja
Publication of WO2019181699A1 publication Critical patent/WO2019181699A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/20Pyrrones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a resin, a resin precursor, and a resin precursor solution.
  • Patent Document 1 discloses a polyimide having a repeating unit described by a specific general formula. Such a polyimide has high light transmittance and sufficiently high heat resistance, and can be applied to various fields.
  • Patent Document 1 discloses a polyimide having a repeating unit described by a specific general formula.
  • Such a polyimide has high light transmittance and sufficiently high heat resistance, and can be applied to various fields.
  • Patent Document 1 discloses a demand for the appearance of resins that can exhibit higher heat resistance while having light transmittance equivalent to that of the polyimide described in Patent Document 1.
  • polyimidazopyrrolone has been conventionally known as a resin having high heat resistance.
  • Patent Document 2 JP-A-8-290046 (Patent Document 2) and JP-A-5-301959 (Patent Document 3)
  • Polyimidazopyrrolone obtained by reacting a tetracarboxylic dianhydride component with a tetraamine component is disclosed.
  • patent document 2 and patent document 3 various compounds are widely disclosed as a tetracarboxylic dianhydride component.
  • the resins actually produced in the examples of Patent Document 2 and Patent Document 3 are all reactants of an aromatic tetracarboxylic dianhydride component and an aromatic tetraamine component (so-called total fragrance).
  • Polyimidazopyrrolone Such a wholly aromatic polyimidazopyrrolone is not sufficient in terms of light transmittance, and cannot be used for glass replacement.
  • the present invention has been made in view of the above-described problems of the prior art, and has sufficiently high light transmittance, higher heat resistance, and excellent mechanical strength. It is an object to provide a resin that can be used, a resin precursor that is a precursor of the resin, and a resin precursor solution that can be suitably used for the production of the resin.
  • the repeating unit having a specific imidazopyrrolone structure represented by the following general formula (1-1), and the following general formula (1-2) The resin has a sufficiently high light transmittance and a higher heat resistance by containing at least one repeating unit selected from the group consisting of repeating units having a specific imidazopyrrolone structure represented by: It has been found that it is possible to have excellent mechanical strength, and that the present invention has been completed.
  • the resin of the present invention has the following general formula (1-1):
  • X 1 represents a tetravalent organic group having a 6-membered alicyclic structure
  • X 2 represents a tetravalent organic group.
  • X 1 represents a tetravalent organic group having a 6-membered alicyclic structure
  • X 3 represents a trivalent organic group.
  • X 1 represents a tetravalent organic group having a 6-membered alicyclic structure
  • X 4 represents an arylene group having 6 to 50 carbon atoms.
  • the resin precursor of the present invention has the following general formula (8-1):
  • X 1 represents a tetravalent organic group having a 6-membered alicyclic structure
  • X 2 represents a tetravalent organic group.
  • X 1 represents a tetravalent organic group having a 6-membered alicyclic structure
  • X 3 represents a trivalent organic group.
  • X 1 represents a tetravalent organic group having a 6-membered alicyclic structure
  • X 4 represents an arylene group having 6 to 50 carbon atoms.
  • the repeating unit which has an imide precursor structure represented by these is further included.
  • X 1 in the above formula is represented by the following general formulas (3) to (5):
  • m represents an integer of 0 to 2
  • n represents an integer of 1 to 2
  • A represents a single bond
  • X 2 in the above formulas is represented by the following general formulas (6-1) to (7-1):
  • Z 1 represents a single bond, a 9,9-fluorenylidene group, an ether group represented by the formula: —O—, a carbonyl group represented by —C ( ⁇ O) —, — A sulfoxide group represented by S ( ⁇ O) —, a sulfonyl group represented by —S ( ⁇ O) 2 —, a methylene group represented by —CH 2 —, and a —C (CH 3 ) 2 — that isopropylidene group, -C (CF 3) 2 - hexafluoroisopropylidene group represented by the thioether group represented by -S-, an amide group represented by -NHCO-, represented by -COO- Ester type, phenylene group represented by —C 6 H 4 —, phenylene dioxy group represented by —O—C 6 H 4 —O—, —O—C 6 H 4 —C 6 H
  • X 3 in the above formula is represented by the following general formulas (6-2) to (7-2):
  • Z 1 represents a single bond, a 9,9-fluorenylidene group, an ether group represented by the formula: —O—, a carbonyl group represented by —C ( ⁇ O) —, — A sulfoxide group represented by S ( ⁇ O) —, a sulfonyl group represented by —S ( ⁇ O) 2 —, a methylene group represented by —CH 2 —, and a —C (CH 3 ) 2 — that isopropylidene group, -C (CF 3) 2 - hexafluoroisopropylidene group represented by the thioether group represented by -S-, an amide group represented by -NHCO-, represented by -COO- Ester type, phenylene group represented by —C 6 H 4 —, phenylene dioxy group represented by —O—C 6 H 4 —O—, —O—C 6 H 4 —C 6 H
  • the resin precursor solution of the present invention contains the resin precursor of the present invention and a solvent.
  • a resin that has a sufficiently high light transmittance and a higher heat resistance and that has excellent mechanical strength and a resin that is a precursor of the resin It becomes possible to provide a precursor and a resin precursor solution that can be suitably used for the production of the resin.
  • FIG. 2 is a graph of IR spectrum of a resin constituting the film obtained in Example 1.
  • FIG. It is a graph of IR spectrum of the resin constituting the film obtained in Example 13.
  • the resin of the present invention has a repeating unit having an imidazopyrrolone structure represented by the general formula (1-1) (hereinafter, in some cases, a repeating unit having such an imidazopyrrolone structure is simply referred to as “repeating unit (A)” for convenience. And a repeating unit having an imidazopyrrolone structure represented by the general formula (1-2) (hereinafter, in some cases, a repeating unit having such an imidazopyrrolone structure is simply referred to as “repeating unit ( A ′) ”) and at least one repeating unit selected from the group consisting of:
  • X 1 in the general formula (1-1) and the general formula (1-2) is a tetravalent organic group having a 6-membered alicyclic structure.
  • the “6-membered ring” herein is not particularly limited as long as it is a ring in which the number of atoms forming the cyclic structure is six [in addition, a bicyclic structure including a bridged structure, etc. In the case where a ring structure is formed (for example, in the case of a norbornane ring structure or a bicyclooctane ring structure, any one of them may be a ring having 6 atoms).
  • Such a 6-membered alicyclic structure in the tetravalent organic group is not particularly limited, but for example, the following general formulas (i) to (iii):
  • the structure which consists of an aliphatic 6-membered ring as represented by these is mentioned.
  • a 6-membered alicyclic structure from the viewpoint that higher heat resistance can be obtained, and from the viewpoint that resistance to tensile stress becomes higher and higher mechanical strength can be obtained, A structure composed of an aliphatic 6-membered ring (norbornene ring) represented by the general formula (ii) is more preferable.
  • examples of the tetravalent organic group having a 6-membered alicyclic structure which can be selected as X 1 in the general formula (1-1) and the general formula (1-2) include the 6-membered ring
  • the carbon atom forming the 6-membered alicyclic structure includes a hydrogen atom, various atoms such as atoms other than hydrogen atoms, and other substituents (other organic groups). Etc.) may be bonded.
  • the tetravalent organic group having a 6-membered alicyclic structure that can be selected as X 1 in the general formula (1-1) and the general formula (1-2) is the repeating unit (A).
  • the repeating unit (A ′) can be formed more efficiently by using a tetracarboxylic dianhydride having a 6-membered alicyclic structure as a raw material, , By reaction of tetracarboxylic dianhydride having a 6-membered alicyclic structure and tetraamine, and / or reaction of tetracarboxylic dianhydride having a 6-membered alicyclic structure and triamine, Since it can be formed more efficiently, a residue obtained by removing two acid anhydride groups from a tetracarboxylic dianhydride having a 6-membered alicyclic structure (tetravalent organic group: It is represented by the following formula (I) In the compound, a carbonyl group in the acid anhydride group:
  • the tetracarboxylic dianhydride having such a 6-membered alicyclic structure is represented by the following formula (I):
  • X 1 in the formula (I) has the same meaning as X 1 in the general formula (1-1) and the general formula (1-2) in.
  • Can be expressed as Examples of tetracarboxylic dianhydrides having such a 6-membered alicyclic structure include bicycloheptane tetracarboxylic dianhydride (BHDA), dimethanonaphthalene tetracarboxylic dianhydride (DNDA), and bicyclooctane.
  • BHDA bicycloheptane tetracarboxylic dianhydride
  • DNDA dimethanonaphthalene tetracarboxylic dianhydride
  • bicyclooctane bicyclooctane
  • Tetracarboxylic dianhydride (BODA), 3,3 ′, 4,4′-bicyclohexyltetracarboxylic dianhydride (H-BPDA), [1,1′-bi (cyclohexane)]-3,3 ′ , 4,4′-tetracarboxylic dianhydride, [1,1′-bi (cyclohexane)]-2,3,3 ′, 4′-tetracarboxylic dianhydride, [1,1′-bi ( Cyclohexane)]-2,2 ′, 3,3′-tetracarboxylic dianhydride, 4,4′-methylenebis (cyclohexane-1,2-dicarboxylic anhydride), 4,4 ′-(propane-2, 2-Diyl) bis (cyclo Hexane-1,2-dicarboxylic acid anhydride), 4,4′-oxybis (cyclohexane-1,2-dicarboxylic acid anhydride), 4,4
  • R 1 , R 2 and R 3 each independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom, and n represents 0 to 12 Indicates an integer.
  • A has the same meaning as A in Formula (5), and R 4 is independently selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms.
  • R 5 is independently selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms.
  • a compound represented by the formula is also preferable.
  • Such tetracarboxylic dianhydrides having a 6-membered alicyclic structure may be used alone or in combination of two or more.
  • the number of carbon atoms of the alkyl group that can be selected as R 1 , R 2 , or R 3 in general formula (IA) is preferably 1 to 6 from the viewpoint of easier purification. Is more preferably from 5 to 5, still more preferably from 1 to 4, and particularly preferably from 1 to 3. Further, such an alkyl group that can be selected as R 1 , R 2 , or R 3 may be linear or branched. Further, such an alkyl group is more preferably a methyl group or an ethyl group from the viewpoint of ease of purification.
  • R 1 , R 2 , and R 3 in the general formula (IA) are each independently a hydrogen atom, a methyl group, or an ethyl group from the viewpoint that higher heat resistance can be obtained when the resin is produced.
  • N-propyl group or isopropyl group is more preferable, hydrogen atom or methyl group is further preferable, and both are particularly preferably hydrogen atoms.
  • it is especially preferable that several R ⁇ 1 >, R ⁇ 2 >, R ⁇ 3 > in such a formula is the same from viewpoints, such as the ease of refinement
  • the upper limit is more preferably 5 (particularly preferably 3) from the viewpoint of easier purification, and the viewpoint of stability of the raw material compound Therefore, the lower limit is more preferably 1 (particularly preferably 2). 2 is particularly preferred.
  • n in the general formula (IA) is particularly preferably an integer of 2 to 3.
  • R 4 and R 5 in the general formula (IB) are each independently one selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms.
  • the number of carbon atoms of the alkyl group that can be selected as R 4 and R 5 is preferably 1 to 6 and more preferably 1 to 5 from the viewpoint of obtaining higher heat resistance. 1 to 4 is more preferable, and 1 to 3 is particularly preferable. Further, such an alkyl group that can be selected as R 4 and R 5 may be linear or branched.
  • R 4 and R 5 in the general formula (IB) are respectively obtained from the viewpoints that higher heat resistance is obtained, that raw materials are easily obtained, and that purification is easier.
  • a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, and an isopropyl group are more preferable
  • a hydrogen atom and a methyl group are more preferable, and all are particularly preferably a hydrogen atom.
  • R 4 and R 5 in the formula (IB) may be the same or different from each other, but are the same from the viewpoint of ease of purification and the like. It is preferable that A in the general formula (IB) has the same meaning as A in the general formula (5), and may have a single bond; and a carbon atom which may have a substituent and forms an aromatic ring. 1 type selected from the group consisting of 6 to 30 divalent aromatic groups; Such a divalent aromatic group that can be selected as A and preferred ones thereof will be described later.
  • Examples of such a compound represented by the general formula (IA) include norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 '' -Tetracarboxylic dianhydride (CpODA), norbornane-2-spiro- ⁇ -cyclohexanone- ⁇ '-spiro-2 ''-norbornane-5,5 '', 6,6 ''-tetracarboxylic acid dianhydride Anhydride (ChODA) etc. are mentioned.
  • the production method of the compound represented by the general formula (IA) is not particularly limited, and a known method (for example, a method described in International Publication No. 2011/099518) can be appropriately employed.
  • Examples of the compound represented by the general formula (IB) include the following formulas (B-1) to (B-3):
  • the compound represented by these is mentioned.
  • the production method of the compound represented by the general formula (IB) is not particularly limited, and a known method (for example, a method described in International Publication No. 2015/163314, International Publication No. 2017/030019) or the like is appropriately used. Can be adopted.
  • norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ is particularly preferred from the viewpoint of transparency, heat resistance and high dimensional stability.
  • CpODA norbornane-2-spiro- ⁇ -cyclohexanone- ⁇ '-spiro-2' ' -Norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic dianhydride
  • B-1 BNBDA
  • B-2 B-2
  • BzDA compound represented by the above formula (B-3)
  • BzDA compound represented by the above formula (B-3)
  • CpODA, BNBDA, and BzDA are more preferable.
  • the tetravalent organic group that can be selected as X 1 in the formulas (1-1) and (1-2) from the viewpoint of transparency, heat resistance, and high dimensional stability, Those having two or more membered alicyclic structures (more preferably a structure comprising a norbornene ring) are preferred, and among them, from the viewpoints of transparency, heat resistance and high dimensional stability, the above general formulas (3) to (5 The tetravalent organic group represented by) is more preferable.
  • m in the formula (3) is an integer of 0 to 2 (more preferably 1 to 2, more preferably 1). is there.
  • n is an integer of 1 to 2 (more preferably 1).
  • production and purification tend to be difficult.
  • a in the general formula (5) is a single bond; and a divalent aromatic group which may have a substituent and has 6 to 30 carbon atoms to form an aromatic ring; (A in the general formula (IB) is also synonymous).
  • Such a divalent aromatic group that can be selected as A is a divalent aromatic group that may have a substituent, and the number of carbons that form an aromatic ring contained in the aromatic group.
  • the number of carbons forming an aromatic ring herein refers to the number of carbons in the substituent when the aromatic group has a substituent containing carbon (such as a hydrocarbon group). It means only the number of carbons in the aromatic ring in the aromatic group (for example, in the case of 2-ethyl-1,4-phenylene group, the number of carbons forming the aromatic ring is 6). 6-30.
  • the divalent aromatic group that can be selected as A in the above formula may have a substituent and a divalent group having an aromatic ring having 6 to 30 carbon atoms (2 Valent aromatic group).
  • the number of carbons forming such an aromatic ring exceeds the upper limit, when a resin is prepared using a resin having such a repeating unit, it tends to be difficult to sufficiently suppress the coloring of the resin. It is in.
  • the number of carbon atoms forming the aromatic ring of the divalent aromatic group is more preferably 6-18, and further preferably 6-12. preferable.
  • the divalent aromatic group that can be selected as A is not particularly limited as long as it satisfies the above condition of the number of carbons.
  • benzene, naphthalene, terphenyl, anthracene, phenanthrene. A residue in which two hydrogen atoms are eliminated from an aromatic compound such as triphenylene, pyrene, chrysene, biphenyl, terphenyl, quaterphenyl, kinkphenyl, etc.
  • the position of the hydrogen atom is not particularly limited, and examples thereof include a 1,4-phenylene group, a 2,6-naphthylene group, a 2,7-naphthylene group, a 4,4′-biphenylene group, a 9,10-anthracenylene group, and the like.
  • groups in which at least one hydrogen atom in the residue is substituted with a substituent eg, 2,5-dimethyl-1,4-phen Ren group, 2,3,5,6-tetramethyl-1,4-phenylene group
  • the position of the leaving hydrogen atom is not particularly limited.
  • the residue is a phenylene group, any of the ortho, meta, and para positions is used. It may be the position.
  • Such a divalent aromatic group that can be selected as A is a phenylene that may have a substituent from the viewpoint that when the resin is prepared, the transparency of the resin becomes more excellent.
  • a phenylene group, a biphenylene group, and a naphthylene group, each of which may have a substituent are more preferable.
  • a phenylene group and a biphenylene group which may have a substituent are more preferable, and a phenylene group which may have a substituent is most preferable.
  • each of them may have a substituent.
  • a phenylene group, a biphenylene group, a naphthylene group, an anthracenylene group, and a terphenylene group more preferably a phenylene group, a biphenylene group, and a naphthylene group, each of which may have a substituent.
  • a phenylene group and a biphenylene group which may have a substituent are more preferable, and a phenylene group which may have a substituent is most preferable.
  • a phenylene group, a biphenylene group, a naphthylene group, an anthracenylene group which may each have a substituent
  • a phenylene group, a biphenylene group, and a naphthylene group are more preferable, and a phenylene group that may have a substituent is most preferable.
  • the substituent that the divalent aromatic group that can be selected as A may have is not particularly limited, and examples thereof include an alkyl group, an alkoxy group, and a halogen atom.
  • substituents that the divalent aromatic group may have, an alkyl group having 1 to 10 carbon atoms from the viewpoint that the transparency of the resin becomes better when the resin is produced, An alkoxy group having 1 to 10 carbon atoms is more preferable.
  • the number of carbon atoms of the alkyl group and alkoxy group suitable as such a substituent exceeds 10, the heat resistance of the resulting resin tends to decrease.
  • the number of carbon atoms of the alkyl group and alkoxy group suitable as such a substituent is preferably 1 to 6 from the viewpoint of obtaining higher heat resistance when the resin is produced. 5 is more preferable, 1 to 4 is further preferable, and 1 to 3 is particularly preferable.
  • the alkyl group and alkoxy group which can be selected as such a substituent may be linear or branched, respectively.
  • a in the formula (5) has a single bond, a phenylene group which may have a substituent, or a substituent from the viewpoint of obtaining higher heat resistance. More preferably a biphenylene group, an optionally substituted naphthylene group or an optionally substituted terphenylene group, a single bond, an optionally substituted phenylene group, a substituent A biphenylene group which may have a substituent or a naphthylene group which may have a substituent is more preferred, a single bond, a phenylene group which may have a substituent or a biphenylene which may have a substituent A group is particularly preferable, and a phenylene group which may have a single bond or a substituent is most preferable.
  • the general formula (1-1) will be described as an example.
  • the symbols * 1 to * 4 are attached with the symbols * 1 to * 2 among the bonds with the symbols * 1 to * 4.
  • X 2 in the general formula (1-1) represents a tetravalent organic group. Although it does not restrict
  • a tetraamine may be an aromatic tetraamine or an alicyclic tetraamine. Further, the tetraamine used here may be silylated with one H in —NH 2 to be a trimethylsilyl group or a t-butyldimethylsilyl group in order to improve storage stability and stability of the varnish.
  • aromatic tetraamines are not particularly limited, and are known aromatic tetraamines (for example, benzenetetraamine type, diphenyl ether type, diphenyl sulfone type, diphenyl ketone type, biphenyl type, benzamide type, benzoate type, diphenylthioether type, Bis-A type (diphenylisopropylidene type), hexafluoroBis-A type, Bis-M type (diphenylmethane type), Bis-C type (diphenylcyclohexane type), Bis-F type (diphenylfluorene type), terphenyl type (Triphenyl type), phenylene dioxy type, bis (phenylene dioxy) type, fluorene type, spiro type, silicon-based various aromatic tetraamines, etc.) can be used as appropriate.
  • aromatic tetraamines for example, benzenetetraamine type, diphenyl
  • aromatic tetraamines examples include 3,3 ′, 4,4′-tetraaminodiphenyl ether (TAB-E), 3,3 ′, 4,4′-tetraaminodiphenyl sulfone (TAB-S), 3,3 ′, 4,4′-tetraaminodiphenyl ketone (TAB-K), 3,3 ′, 4,4′-tetraaminobiphenyl (TABP), 1,2,4,5-tetraaminobenzene (TAB) ), 3,3 ′, 4,4′-tetraaminodiphenylmethane, 3,3 ′, 4,4′-tetraaminodiphenylcyclohexane, 3,3 ′, 4,4′-tetraaminodiphenylfluorene, 3,3 ′ , 4,4'-tetraaminodiphenylthioether, 2,2-isopropylidenebis (3,4-diaminobenzen
  • Examples of the alicyclic tetraamine include hydrides of the above-mentioned various aromatic tetraamines (for example, 3,3 ′, 4,4′-tetraaminodicyclohexyl ether, 3,3 ′, 4,4′-tetraamino). Dicyclohexylsulfone, 3,3 ′, 4,4′-tetraaminodicyclohexyl ketone, 3,3 ′, 4,4′-tetraaminodicyclohexane, 1,2,4,5-tetraaminocyclohexane, etc.) As mentioned.
  • aromatic tetraamines are preferable from the viewpoint of heat resistance, and TAB-E, TAB-S, TAB-K, TABP, TAB, 2,2-isopropylidenebis (3,4-diamino) are preferred.
  • Benzene) and 2,2-hexafluoroisopropylidenebis (3,4-diaminobenzene) are more preferable, and TAB-E, TAB-S, TAB-K, TABP, and TAB are particularly preferable.
  • the tetravalent organic group that can be selected as X 2 in the formula (1-1) is represented by the above general formulas (6-1) to (7-1) from the viewpoint of mechanical strength.
  • a tetravalent group is preferable.
  • Z 1 represents a single bond, a 9,9-fluorenylidene group, an ether group represented by the formula: —O—, or a carbonyl group represented by —C ( ⁇ O) —.
  • Z 1 an ether group and a single bond represented by —O— are preferable from the viewpoint of achieving both heat resistance and mechanical strength, and from the viewpoint of achieving both transparency and mechanical strength.
  • the formula (6-1) to (7-1) bond labeled with the symbol * 1 to * 4 in is the one of the four coupling hands bound to X 2, respectively .
  • the tetravalent groups represented by the general formulas (6-1) to (7-1) are those appropriately selected from the above-mentioned tetraamines (for example, TAB-E, TAB-S, TAB- (K, TABP, TAB, etc.) can be introduced at the position of X 2 as a residue obtained by removing four amino groups from the tetraamine by using them in the production of the repeating unit.
  • the repeating unit (A) represented by the general formula (1-1) is, for example, a reaction (polymerization) of the tetracarboxylic dianhydride having a 6-membered alicyclic structure and the tetraamine.
  • the resin containing the repeating unit (A) represented by the general formula (1-1) includes the first monomer containing the tetracarboxylic dianhydride having a 6-membered alicyclic structure, and the tetraamine. It is preferable that it is a polymer with the 2nd monomer containing.
  • X 3 represents a trivalent organic group.
  • the trivalent organic group is not particularly limited, but is preferably a residue obtained by removing three amino groups from triamine.
  • a triamine may be an aromatic triamine or an alicyclic triamine.
  • the triamine used here may be converted to trimethylsilyl group or t-butyldimethylsilyl group by silylating one H in —NH 2 in order to improve storage stability and stability of the varnish.
  • aromatic triamines are not particularly limited, and are known aromatic triamines (for example, benzene triamine type, diphenyl ether type, diphenyl sulfone type, diphenyl ketone type, biphenyl type, benzamide type, benzoate type, diphenyl thioether type, Bis).
  • -A type (diphenylisopropylidene type), hexafluorobis-A type, Bis-M type (diphenylmethane type), Bis-C type (diphenylcyclohexane type), Bis-F type (diphenylfluorene type), terphenyl type ( (Triphenyl type), phenylenedioxy type, bis (phenylenedioxy) type, fluorene type, spiro type, various aromatic triamines such as silicon) can be appropriately used.
  • aromatic triamines examples include 3,4,4′-triaminodiphenyl ether (TrAB-E), 3,4,4′-triaminodiphenyl sulfone (TrAB-S), 3,4,4 ′.
  • Examples of the alicyclic triamine include hydrides of the above-mentioned various aromatic triamines (for example, 3,4,4′-triaminodicyclohexyl ether, 3,4,4′-triaminodicyclohexyl sulfone, 3,4 , 4′-triaminodicyclohexyl ketone, 3,4,4′-triaminodicyclohexane, 1,2,4-triaminocyclohexane, etc.).
  • aromatic triamines for example, 3,4,4′-triaminodicyclohexyl ether, 3,4,4′-triaminodicyclohexyl sulfone, 3,4 , 4′-triaminodicyclohexyl ketone, 3,4,4′-triaminodicyclohexane, 1,2,4-triaminocyclohexane, etc.
  • TrAB-E, TrAB-S, TrAB-K, TrABP, and TrAB are preferable from the viewpoint of heat resistance
  • TrAB-E, TrAB-S, TrAB- K is particularly preferred.
  • the trivalent organic group that can be selected as X 3 in the formula (1-2) is represented by the above general formulas (6-2) to (7-2) from the viewpoint of mechanical strength.
  • a trivalent group Z 1 represents a single bond, a 9,9-fluorenylidene group, an ether group represented by the formula: —O—, or a carbonyl group represented by —C ( ⁇ O) —.
  • Z 1 an ether group and a single bond represented by —O— are preferable from the viewpoint of achieving both heat resistance and mechanical strength, and from the viewpoint of achieving both transparency and mechanical strength.
  • the formula (6-2) - (7-2) in the symbol * 1 to * 3 of labeled binding hand is either of the three coupling hands attached to X 3 each .
  • the trivalent groups represented by the general formulas (6-2) to (7-2) are those appropriately selected from the above-mentioned triamines (for example, TrAB-E, TrAB-S, TrAB- (K, TrABP, TrAB, etc.) can be used at the time of production of the repeating unit, and can be introduced at the position of X 3 as a residue obtained by removing three amino groups from the triamine.
  • the repeating unit (A ′) represented by the general formula (1-2) is obtained by, for example, reacting (polymerizing) the tetracarboxylic dianhydride having a 6-membered alicyclic structure with the triamine. By doing so, it can be introduced more efficiently into the resin. Therefore, as the resin containing the repeating unit (A ′) represented by the general formula (1-2), the first monomer containing a tetracarboxylic dianhydride having a 6-membered alicyclic structure, It is preferably a polymerized product with a second monomer containing triamine.
  • the repeating unit having an imide structure represented by the general formula (2) (hereinafter, the repeating unit having such an imide structure may be simply referred to as “repeating unit (B)” for convenience. It is preferable to further include.
  • the resin of the present invention is a resin containing the repeating unit (B) together with at least one repeating unit selected from the group consisting of the repeating units (A) and (A ′)
  • a cyclic structural part containing two nitrogen atoms particularly preferably a structural part having an imidazole structure: included in the structure of at least one repeating unit selected from the group consisting of units (A) and (A ′): , X 2 , and X 3 are each aromatic, it is possible to make the structural portion each an imidazole structure) during the production of the repeating unit (B) (in the case of thermal imidization).
  • the resin containing the repeating unit (B) can have higher properties such as strength and heat resistance, and a film that is particularly tough against tensile stress can be obtained. The present inventors speculate that this is possible.
  • the repeating unit (A) formed during the production of the copolymer in the resin (copolymer) containing the repeating unit (A) and / or (A ′) and the repeating unit (B), the repeating unit (A) formed during the production of the copolymer. And / or the structure of (A ′) can promote the reaction for forming the repeating unit (B), so that even if the total amount (content) of the repeating units (A) and (A ′) is small, It is possible to produce a resin having more advanced characteristics as compared with a resin consisting only of the repeating unit (B).
  • X 1 in the general formula (2) is a tetravalent organic group having a 6-membered alicyclic structure, and is synonymous with X 1 in the general formula (1-1) (preferred examples thereof) Is the same).
  • X 4 in the general formula (2) is an arylene group having 6 to 50 carbon atoms.
  • Such an arylene group preferably has 6 to 40 carbon atoms, more preferably 6 to 30 carbon atoms, and still more preferably 12 to 20 carbon atoms.
  • the number of carbon atoms is less than the lower limit, the heat resistance of the resin tends to decrease when the resin is prepared.
  • the resin exceeds the upper limit the transparency of the resin decreases when the resin is prepared. Tend to.
  • R 11 represents one selected from the group consisting of a hydrogen atom, a fluorine atom, a methyl group, a methoxy group, an ethyl group, a hydroxyl group, and a trifluoromethyl group
  • Q is a 9,9-fluorenylidene group
  • each R a independently represents any one of an alkyl group having 1 to 10 carbon atoms, a phenyl group, and a tolyl group, and y represents an integer of 1 to 100.
  • R 11 in the general formula (c) is more preferably a hydrogen atom, a fluorine atom, a methyl group or an ethyl group, and particularly preferably a hydrogen atom, from the viewpoint of heat resistance. Furthermore, R 11 in the general formula (c) is more preferably a methyl group, a hydroxyl group, or a trifluoromethyl group from the viewpoint of the linear expansion coefficient.
  • each R a is independently an alkyl group having 1 to 10 carbon atoms, a phenyl group, or a tolyl group. Any one of these.
  • Such Ra is preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, a phenyl group, or a tolyl group, more preferably a methyl group or an ethyl group, and even more preferably a methyl group.
  • y represents an integer of 1 to 100, preferably 3 to 50, and more preferably 5 to 25. If y is less than the lower limit, the mechanical strength tends to decrease. On the other hand, if the upper limit is exceeded, when the resin is prepared, the heat resistance and transparency of the resin tend to decrease.
  • Q in the general formula (d) is 9, 9- from the viewpoint that a cured product having a sufficient balance of heat resistance, transparency, and mechanical strength can be obtained.
  • Fluorenylidene group formula: —CONH—, —NHCO—, —O—C 6 H 4 —O—, —O—, —C (CH 3 ) 2 —, —C 6 H 4 —, —O—C 6 H 4 —SO 2 —C 6 H 4 —O—, —O—C 6 H 4 —CO—C 6 H 4 —O—, —CH 2 —, —O—C 6 H 4 —C 6 H 4 —O A group represented by —, —O—C 6 H 4 —C (CH 3 ) 2 —C 6 H 4 —O—, —SO 2 —, —SO—, —OCO—, or —COO—, or preferably 1,1-cyclohexylidene group, 9,9-fluorenylid
  • Q in the general formula (d) is preferably a group represented by the general formula (e) from the viewpoints of adhesiveness and laser peelability, and has a linear expansion coefficient and heat resistance.
  • Such a repeating unit (B) represented by the general formula (2) is obtained by, for example, reacting (polymerizing) a tetracarboxylic dianhydride having a 6-membered alicyclic structure with a diamine. It can be introduced more efficiently into the resin.
  • the tetracarboxylic dianhydride having such a 6-membered alicyclic structure is the same as described above.
  • the diamine that can be used for introducing the repeating unit (B) represented by the general formula (2) into the resin is not particularly limited, and may be an aliphatic diamine or an aromatic diamine. Also good. As such a diamine, an aromatic diamine is preferable from the viewpoints of heat resistance and simplicity of the polymerization method. Moreover, as such an aromatic diamine, the following general formula (iv): H 2 N—X 4 —NH 2 (iv) [In the formula (iv), X 4 represents an arylene group having 6 to 50 carbon atoms. ] The aromatic diamine represented by these is more preferable. In addition, the diamine used here may be converted to trimethylsilyl group or t-butyldimethylsilyl group by silylating one H in —NH 2 in order to improve storage stability and stability of the varnish.
  • aromatic diamine represented by the formula: H 2 N—X 4 —NH 2 is not particularly limited, and known ones can be used as appropriate, and commercially available ones may be used as appropriate.
  • aromatic diamines include 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylmethane, 4,4′-diaminodiphenylethane, 3,3′-diaminodiphenylethane, and 4,4′-.
  • DABAN 4,4′-diaminobenzanilide
  • DDE 4,4′-diaminodiphenyl ether
  • TFMB 2,2′-bis (trifluoromethyl)
  • FDA 9,9′-bis (4-aminophenyl) fluorene
  • PPD p-diaminobenzene
  • PPD 2,2′-dimethyl-4,4′-diaminobiphenyl
  • DDM 4,4′-diphenyldiaminomethane
  • BAAB 4,4′-bis (4-aminobenzamide) -3,3′-dihydroxybiphenyl
  • BABB 3,3′-diaminodiphenyl sulfone (3,3′-DDS) and 4,4′-diaminodiphenyl sulfone
  • BAAB 4,4′-bis (4-aminobenzamide) -3,3′-dihydroxybiphenyl
  • BABB 3,3′-dia
  • DABAN 4,4′-diaminobenzanilide
  • DDE 4,4′-diaminodiphenyl ether
  • TFMB 2,2′-bis (trifluoromethyl) benzidine
  • DABAN 4,4′-diaminobenzanilide
  • PPD p-diaminobenzene
  • BAAB 4,4′-diaminodiphenylsulfone
  • TFMB 2,2′-bis (tri Combination of fluoromethyl) benzidine
  • the repeating unit (B) can be incorporated into the resin by, for example, reacting (polymerizing) the tetracarboxylic dianhydride having the 6-membered alicyclic structure with the diamine. It is possible to introduce more efficiently. Therefore, as the resin of the present invention containing the repeating unit (B), the first monomer containing the tetracarboxylic dianhydride having the 6-membered alicyclic structure (in some cases, the 6-membered alicyclic structure). And other tetracarboxylic dianhydrides and the like, and a second monomer (amine component) containing tetraamine and / or triamine and diamine It is preferable that
  • the total amount (content) of the repeating unit (A) and the repeating unit (A ′) is not particularly limited, and is based on a molar ratio with respect to all the repeating units contained in the resin. Is preferably from 3 to 100 mol%, more preferably from 5 to 50 mol%. If such a molar ratio is less than the lower limit, the resulting resin tends not to be sufficiently imparted with characteristics derived from the repeating units (A) and / or (A ′).
  • a so-called ladder structure can be formed. High heat resistance can be imparted by the resin containing the repeating unit.
  • the resin of the present invention preferably further contains the repeating unit (B) as described above.
  • the resin of the present invention is a copolymer containing at least one repeating unit selected from the group consisting of the repeating units (A) and (A ′) and the repeating unit (B). Preferably there is.
  • the total amount (total amount) of the repeating unit (A), the repeating unit (A ′) and the repeating unit (B) is 20 to 20 It is preferably 100 mol% (more preferably 30 to 100 mol%, more preferably 40 to 100 mol%, still more preferably 50 to 100 mol%, particularly preferably 60 to 100 mol%).
  • the lower limit of the numerical range is more preferably 70 mol%, More preferably, it is 80 mol%, and most preferably 90 mol%.
  • the total amount (total amount) of such repeating units is less than the lower limit, high heat resistance tends not to be imparted.
  • the resin of the present invention is a copolymer containing at least one repeating unit selected from the group consisting of the repeating units (A) and (A ′) and the repeating unit (B).
  • the content of the repeating unit (B) is 1 to 99 mol% with respect to the total amount (total amount) of the repeating unit (A), the repeating unit (A ′) and the repeating unit (B). Is preferable, more preferably 5 to 95 mol%, and particularly preferably 10 to 90 mol%.
  • the content (molar ratio) of the repeating unit (B) to the total amount of the repeating unit (A), the repeating unit (A ′) and the repeating unit (B) is less than the lower limit, transparency and dimensional stability are required. On the other hand, when it exceeds the upper limit, it tends to be difficult to obtain more advanced characteristics in terms of high heat resistance and mechanical characteristics.
  • Such a resin of the present invention is not particularly limited as long as it contains at least one repeating unit selected from the group consisting of the repeating units (A) and (A ′).
  • the repeating unit (A ′) may be included together with the repeating unit (A), and the repeating unit (B) may be combined with the repeating unit (A) and the repeating unit (A ′). It may be included.
  • the resin of this invention may contain other repeating units other than the said repeating unit (A), the said repeating unit (A '), and the said repeating unit (B).
  • repeating units for example, selected from the group consisting of tetracarboxylic dianhydrides other than the tetracarboxylic dianhydrides having a 6-membered alicyclic structure, and diamines, triamines and tetraamines.
  • a repeating unit that can be formed by reaction with at least one selected from the group consisting of: a tetracarboxylic dianhydride having a 6-membered alicyclic structure, a polyfunctional alcohol, a polyfunctional phenol, a polyfunctional thiol, a polyfunctional Repeating units that can be formed by reaction with thiophenol may be used.
  • Such other tetracarboxylic dianhydrides are not particularly limited, and examples thereof include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenylsulfonetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride 4,4′-oxydiphthalic dianhydride, 3,3 ′, 4,4′-dimethyldiphenylsilane tetracarboxylic dianhydride, 3,3 ′, 4,4′-tetraphenylsilane tetracarboxylic dianhydride 1,2,3,4-furantetracarboxylic dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenyl sulfide dianhydride,
  • polyfunctional alcohol examples thereof include aliphatic diol, alicyclic diol, diphenol, bisphenol, aliphatic dithiol, Alicyclic dithiols, dithiophenols, bisthiophenols and the like may be used.
  • At least one type of repeating unit selected from the group consisting of the repeating unit (A) and the repeating unit (A ′) is a tetracarboxylic dianhydride having the 6-membered alicyclic structure described above.
  • a diester dicarboxylic acid that is a derivative (modified product) of a tetracarboxylic dianhydride having a 6-membered alicyclic structure can also be formed by reacting the modified product with at least one amine component selected from the triamine and the tetraamine using at least one of diester dicarboxylic acid dichlorides.
  • At least one repeating unit selected from the group consisting of the repeating unit (A) and the repeating unit (A ′) is a tetracarboxylic dianhydride having the 6-membered alicyclic structure, It can also be formed by reacting an equivalent of at least one amine component selected from the derivative of triamine and the derivative of tetraamine.
  • diester dicarboxylic acid and diester dicarboxylic acid dichloride which are derivatives (modified products) of tetracarboxylic dianhydride having a 6-membered alicyclic structure
  • diester dicarboxylic acid dichloride which are derivatives (modified products) of tetracarboxylic dianhydride having a 6-membered alicyclic structure
  • the diester dicarboxylic acid and a chlorinating reagent are prepared. , Oxalyl chloride, etc.
  • a method in which obtaining a carboxylic acid dichloride may be employed.
  • a silylated tetraamine obtained by reacting at least one compound selected from the group consisting of the aforementioned triamine and tetraamine with a silylating agent and / or Examples include silylated triamine.
  • silylated triamine For example, one obtained by silylating one of the —NH 2 groups in the above-mentioned triamine into a trimethylsilyl group or a t-butyldimethylsilyl group can be used.
  • Examples of such silylated tetraamines include tetrasilyl derivatives such as TAB-E, TAB-S, TAB-K, TABP, TAB, and such silylated triamines.
  • Examples thereof include trisilyl derivatives such as TrAB-E, TrAB-S, TrAB-K, TrABP, and TrAB.
  • Examples of such silylating agents include N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) acetamide, hexamethyldisilazane, trimethylsilyl chloride, and the like.
  • the method for producing such a silylated amine is not particularly limited, and a known method can be appropriately employed. Moreover, you may utilize a commercial item suitably as such a silylated amine.
  • the repeating unit (B) may be formed by utilizing the reaction of the above-mentioned tetracarboxylic dianhydride having a 6-membered alicyclic structure with the above-mentioned diamine, for example, the above 6
  • a diester dicarboxylic acid and a diester dicarboxylic acid dichloride, which are derivatives (modified products) of a tetracarboxylic dianhydride having a membered alicyclic structure are also selected from the modified product and at least the diamine. It can also be formed by reacting with one amine component.
  • the repeating unit (B) can also be formed by reacting the tetracarboxylic dianhydride having a 6-membered alicyclic structure with a derivative of the diamine.
  • Examples of the diamine derivative include a silylated diamine obtained by reacting the above diamine with a silylating agent.
  • a silylated diamine obtained by reacting the above diamine with a silylating agent.
  • an aromatic represented by the formula: H 2 N—X 4 —NH 2 examples include silylated diamines obtained by reacting diamines with silylating agents.
  • Examples of such silylated diamines include disilyl derivatives such as DDE, TFMB, FDA, PPD, and m-tolidine.
  • Examples of such silylating agents include N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) acetamide, hexamethyldisilazane, trimethylsilyl chloride, and the like.
  • a method for producing such a silylated diamine is not particularly limited, and a known method can be appropriately employed. Moreover, you may utilize a commercial item suit
  • the resin of the present invention preferably has a glass transition temperature (Tg) of 300 ° C. or higher, more preferably 300 ° C. to 550 ° C., still more preferably 350 to 500 ° C. If such a glass transition temperature (Tg) is less than the lower limit, it tends to be difficult to achieve a high level of heat resistance, whereas if it exceeds the upper limit, a resin having such characteristics is produced. Tend to be difficult. Such a glass transition temperature (Tg) can be measured by a tensile mode using a thermomechanical analyzer (trade name “TMA8311” manufactured by Rigaku).
  • a resin film having a size of 20 mm in length and 5 mm in width (the thickness of such a film is not particularly limited because it does not affect the measured value, but is preferably 5 to 100 ⁇ m).
  • measurement sample is performed under the conditions of tension mode (49 mN) under a nitrogen atmosphere and a rate of temperature increase of 5 ° C./min.
  • the curve before and after the inflection point of the TMA curve caused by the glass transition Can be obtained by extrapolating.
  • Such a resin preferably has a 5% weight loss temperature of 450 ° C. or more, more preferably 460 to 550 ° C., and still more preferably 470 to 530 ° C. If such a 5% weight loss temperature is less than the lower limit, sufficient heat resistance tends to be difficult to achieve, and if it exceeds the upper limit, it tends to be difficult to produce a resin having such characteristics. It is in.
  • such 5% weight reduction temperature is measured by gradually heating from room temperature (for example, 30 ° C.) while flowing nitrogen gas in a nitrogen gas atmosphere, and reducing the weight of the sample used by 5%. Can be obtained.
  • such a resin preferably has a softening temperature of 300 ° C. or higher, more preferably 350 to 550 ° C., and still more preferably 400 to 500 ° C.
  • a softening temperature is less than the lower limit, sufficient heat resistance tends to be difficult to achieve, and when it exceeds the upper limit, it tends to be difficult to produce a resin having such characteristics.
  • Such a softening temperature can be measured in a penetration mode using a thermomechanical analyzer (trade name “TMA8311” manufactured by Rigaku).
  • the sample size (vertical, horizontal, thickness, etc.) does not affect the measured value, so it can be attached to the jig of the thermomechanical analyzer to be used (trade name “TMA8311” manufactured by Rigaku).
  • the sample size may be appropriately adjusted to a suitable size.
  • Such a resin preferably has an elongation at break of 3% or more, more preferably 5% or more, and particularly preferably 7% or more. If the elongation at break is less than the lower limit, the toughness tends to be low and mechanically brittle. Further, the resin of the present invention preferably has a tensile strength of 50 MPa or more, more preferably 70 MPa or more, and particularly preferably 100 MPa or more. When such tensile strength is less than the lower limit, a film having higher toughness cannot be obtained. In addition, although it does not restrict
  • tensile strength and elongation at break can be obtained by a test based on JIS K7162 (issued in 1994). For example, values obtained as follows can be adopted. That is, first, except that the thickness is 10 ⁇ m, a test piece conforming to the standard of type A22 (scale test piece) described in JIS K7139 (issued in 2009) is prepared, and an electromechanical universal material testing machine (for example, , Using the INSTRON model number “5943”), the measurement sample is placed so that the width between the gripping tools is 57 mm and the width of the gripping portion is 10 mm (the entire width of the end of the test piece).
  • an electromechanical universal material testing machine for example, , Using the INSTRON model number “5943”
  • such a resin preferably has a linear expansion coefficient (CTE) of ⁇ 50 to 100 ppm / K, and more preferably 0 to 50 ppm / K.
  • CTE linear expansion coefficient
  • a linear expansion coefficient exceeds the above upper limit, when combined with a metal or inorganic material having a linear expansion coefficient range of 5 to 20 ppm / K, peeling tends to occur due to thermal history.
  • the linear expansion coefficient is less than the lower limit, when combined with a metal or an inorganic material, the thermal expansion tends to cause peeling.
  • the method described below is adopted as a method for measuring the linear expansion coefficient of such a resin.
  • a film made of the resin and having a size of 20 mm in length and 5 mm in width (the thickness of such a film is not particularly limited because it does not affect the measured value, but it is preferably 5 to 100 ⁇ m. )
  • a thermomechanical analyzer (trade name “TMA8311” manufactured by Rigaku) as a measurement device, under a nitrogen atmosphere, a tension mode (49 mN), under a nitrogen atmosphere, a tension mode (49 mN)
  • Measuring the change in the length of the sample in the longitudinal direction from 50 ° C. to 200 ° C. under the condition of the temperature rising rate of 5 ° C./min. The value obtained by calculating the average value of the change in length is adopted.
  • such a resin preferably has sufficiently high transparency when a film is formed, and has a total light transmittance of 80% or more (more preferably 83% or more, particularly preferably 85% or more). ) Is more preferable. Such total light transmittance can be easily achieved by appropriately selecting the type of organic group of the repeating unit in the resin, the content thereof, and the like.
  • such a resin has a haze (turbidity) of 5 to 0 (more preferably 4 to 0, particularly preferably 3 to 0) from the viewpoint of obtaining a higher degree of colorless transparency. preferable. If the haze value exceeds the upper limit, it tends to be difficult to achieve a higher level of colorless transparency.
  • a resin those having a yellowness (YI) of 10 to 0 (more preferably 8 to 0, particularly preferably 6 to 0) are obtained from the viewpoint of obtaining a higher degree of colorless transparency. preferable. When such yellowness exceeds the upper limit, it tends to be difficult to achieve a higher level of colorless transparency.
  • YI yellowness
  • Such total light transmittance, haze (turbidity) and yellowness (YI) are measured by using a product name “Haze Meter NDH-5000” manufactured by Nippon Denshoku Industries Co., Ltd. or Nippon Denshoku Industries Co., Ltd.
  • the vertical and horizontal sizes of the measurement sample may be any size (5 cm square or more) that can be disposed at the measurement site of the measurement apparatus, and the vertical and horizontal sizes may be changed as appropriate.
  • Such total light transmittance is obtained by measuring in accordance with JIS K7361-1 (issued in 1997), and haze (turbidity) is measured in accordance with JIS K7136 (issued in 2000).
  • the yellowness (YI) is obtained by performing measurement in accordance with ASTM E313-05 (issued in 2005).
  • Etc. for example, imidization promoting catalyst, chemical imidizing agent, antioxidant (phenolic, phosphite, thioether, etc.), ultraviolet absorber, hindered amine light stabilizer, nucleating agent, Resin additives (fillers made of inorganic compounds such as nano silica, talc, glass fibers, alumina fibers, etc.), coupling agents (silane coupling agents, etc.), processability improvers, lubricants, dyes, pigments, flame retardants, It may contain an antifoaming agent, a leveling agent, a rheology control agent (flow aid), a release agent, a primer and the like.
  • cellulose nanofiber for example, cellulose nanofiber, nylon, polycarbonate, polyester, polyamide, polyketone, polyetherketone, polysulfone, polyethersulfone, PMMA, polyethylene, polypropylene, polystyrene, Teflon
  • resins such as (registered trademark), PPO, PPS, COC, COP, polyacetal, and triacetyl cellulose (TAC) may be used.
  • the resin precursor of the present invention includes a repeating unit having an imidazopyrrolone precursor structure represented by the above general formula (8-1) (hereinafter, in some cases, a repeating unit having such an imidazopyrrolone precursor structure is simply referred to as a convenience. "Repeating unit (C)") and a repeating unit having the imidazopyrrolone precursor structure represented by the above general formula (8-2) (hereinafter, in some cases, a repeating unit having such an imidazopyrrolone precursor structure) Is simply referred to as “repeating unit (C ′)” for convenience, and includes at least one type of repeating unit selected from the group consisting of.
  • X 1 in the general formula (8-1) and the general formula (8-2) is a tetravalent organic group having a 6-membered alicyclic structure, and the above general formula (1-1) ) And (1-2) are the same as X 1 (preferred examples thereof are also the same).
  • X 2 in the general formula (8-1) represents a tetravalent organic group, and has the same meaning as X 2 in the general formula (1-1) (suitable examples thereof are also the same).
  • X 3 in the general formula (8-2) represents a trivalent organic group, the same meanings as X 3 in the general formula (1-2) (also similar as those its preferred).
  • the at least one repeating unit selected from the group consisting of the repeating unit represented by the general formula (8-1) and the repeating unit represented by the general formula (8-2) is, for example, It can be formed by a reaction between a tetracarboxylic dianhydride having a ring alicyclic structure and a tetraamine and / or a reaction between a tetracarboxylic dianhydride having a 6-membered alicyclic structure and a triamine. It should be noted that the desired repeating unit represented by the general formula (8-1) and / or the general formula (8-2) can be introduced into the resin by appropriately selecting the monomer component in accordance with the intended design.
  • the repeating unit having an imide precursor structure represented by the general formula (9) (hereinafter, in some cases, the repeating unit having such an imide precursor structure is simply referred to as “ It is preferable to further include a repeating unit (referred to as “D”).
  • X 1 in the general formula (9) is a tetravalent organic group having a 6-membered alicyclic structure, and has the same meaning as X 1 in the general formulas (1-1) and (1-2). (The preferred one is also the same).
  • X 4 in the general formula (9) is an arylene group having 6 to 50 carbon atoms and has the same meaning as X 4 in the general formula (2) (suitable examples thereof are also the same). .
  • Such a repeating unit represented by the general formula (9) includes, for example, a tetracarboxylic dianhydride having a 6-membered alicyclic structure, an aromatic diamine represented by the general formula (iv), and Can be obtained by reacting.
  • the repeating unit represented by desired General formula (9) can be introduce
  • the total amount (content) of the repeating unit (C) and the repeating unit (C ′) is not particularly limited, and is a molar ratio with respect to all the repeating units contained in the resin. Is preferably from 3 to 100 mol%, more preferably from 5 to 50 mol%. When such a molar ratio is less than the lower limit, the resin obtained by using such a resin precursor is not necessarily sufficiently imparted with characteristics derived from the repeating unit (A) and / or the repeating unit (A ′). Tend to become impossible.
  • the resin precursor of the present invention preferably further contains the repeating unit (D).
  • the resin precursor of the present invention contains at least one repeating unit selected from the group consisting of the repeating unit (C) and the repeating unit (C ′), and the repeating unit (D). It is preferable that it is a copolymer.
  • the total amount (total amount) of the repeating unit (C), the repeating unit (C ′) and the repeating unit (D) is 20 to 20 It is preferably 100 mol% (more preferably 30 to 100 mol%, more preferably 40 to 100 mol%, still more preferably 50 to 100 mol%, particularly preferably 60 to 100 mol%).
  • the lower limit of the numerical range is more preferably 70 mol%, and 80 mol. % Is more preferable, and 90 mol% is most preferable.
  • the total amount (total amount) of such repeating units is less than the lower limit, at least one selected from the group consisting of repeating units (A) and repeating units (A ′) is added to the resin obtained using such a resin precursor. There is a tendency that the characteristics derived from the seed repeating unit and the repeating unit (B) cannot be sufficiently provided.
  • the resin precursor of the present invention contains at least one repeating unit selected from the group consisting of the repeating unit (C) and the repeating unit (C ′), and a co-polymer containing the repeating unit (D).
  • the content of the repeating unit (D) is 1 to 99 mol with respect to the total amount (total amount) of the repeating unit (C), the repeating unit (C ′) and the repeating unit (D). %, More preferably 25 to 95 mol%, particularly preferably 50 to 90 mol%.
  • the resin precursor When the content (molar ratio) of the repeating unit (D) relative to the total amount of the repeating unit (C), the repeating unit (C ′) and the repeating unit (D) is less than the lower limit, the resin precursor is used. However, when the above upper limit is exceeded, the resin obtained using such a resin precursor has a repeating unit ( A characteristic derived from A) and / or the repeating unit (A ′) tends not to be sufficiently imparted.
  • such a resin precursor of the present invention is not particularly limited as long as it contains at least one repeating unit selected from the group consisting of the repeating units (C) and (C ′).
  • the repeating unit (C ′) may be included together with the repeating unit (C)
  • the repeating unit (D) may be included together with the repeating unit (C) and / or the repeating unit (C ′). May be.
  • the resin precursor of this invention may contain other repeating units other than the said repeating unit (C), the said repeating unit (C '), and the said repeating unit (D).
  • Such other repeating units are selected from the group consisting of tetracarboxylic dianhydrides other than tetracarboxylic dianhydrides having a 6-membered alicyclic structure, and diamines, triamines and tetraamines.
  • various additives and components for example, a catalyst etc. utilized at the time of resin manufacture
  • Other resins, etc. for example, imidization promoting catalysts, chemical imidizing agents, antioxidants (phenolic, phosphite, thioethers, etc.), UV absorbers, hindered amine light stability Agent, nucleating agent, resin additive (filler made of inorganic compound such as nano silica, talc, glass fiber, alumina fiber, etc.), coupling agent (silane coupling agent, etc.), processability improver, lubricant, dye, pigment , Flame retardants, antifoaming agents, leveling agents, rheology control agents (flow aids), release agents, primers and the like.
  • cellulose nanofiber for example, cellulose nanofiber, nylon, polycarbonate, polyester, polyamide, polyketone, polyetherketone, polysulfone, polyethersulfone, PMMA, polyethylene, polypropylene, polystyrene, Teflon
  • resins such as (registered trademark), PPO, PPS, COC, COP, polyacetal, and triacetyl cellulose (TAC) may be used.
  • the method that can be suitably used for producing the resin of the present invention is not particularly limited.
  • a first monomer containing a tetracarboxylic dianhydride having a 6-membered alicyclic structure and a second monomer containing at least one of the tetraamine and the triamine are reacted in the presence of an organic solvent.
  • a method (I) for producing a resin containing can be suitably used.
  • the process (A) and the process (B) will be described separately for the resin production method (I), which is a method that can be suitably used for producing the resin of the present invention.
  • the step (A) includes a first monomer containing a tetracarboxylic dianhydride having a 6-membered alicyclic structure in the presence of an organic solvent, and at least one of the tetraamine and the triamine.
  • This is a step of obtaining a resin precursor (preferably the resin precursor of the present invention) by reacting with a second monomer.
  • the first monomer used in such a step only needs to contain the tetracarboxylic dianhydride having the 6-membered alicyclic structure, and the intended resin precursor and resin structure of the present invention. And other tetracarboxylic dianhydrides having a 6-membered alicyclic structure, and other tetracarboxylic dianhydrides other than the tetracarboxylic dianhydride having a 6-membered alicyclic structure. Etc. can be used as appropriate.
  • a tetracarboxylic acid having a 6-membered alicyclic structure for example, a tetracarboxylic acid having a 6-membered alicyclic structure is used.
  • a derivative thereof for example, a diester dicarboxylic acid and a diester dicarboxylic dichloride which are modified products of the tetracarboxylic dianhydride
  • An anhydride may be contained.
  • the diester group in the derivative when reacting with diamine using diester dicarboxylic acid and diester dicarboxylic acid dichloride as a derivative of tetracarboxylic dianhydride having a 6-membered alicyclic structure, the diester group in the derivative
  • another repeating unit in which H of the group represented by —COOH in the general formula (9) is substituted with a methyl group, an ethyl group or the like can be introduced.
  • H in the group represented by —COOH in the general formula (9) contains another repeating unit substituted with a methyl group, an ethyl group or the like, the storage properties of the varnish Stability can also be improved.
  • Said 2nd monomer used for such a process should just contain any one of the above-mentioned tetraamine and the above-mentioned triamine, and according to the resin precursor of the above-mentioned object of the present invention and the structure of resin, Other tetraamines, diamines, and other triamines other than the tetraamine and the triamine may be appropriately contained.
  • tetraamine other than the tetraamine and the triamine diamine, and other triamine
  • a silylated diamine obtained by silylated an aromatic diamine represented by the general formula (iv) may be used. It is possible to form a repeating unit in which H of the group represented by —COOH in the general formula (9) is substituted with a silyl group. Thereby, the storage property and stability of a varnish can also be improved.
  • organic solvent used in such a step a known solvent that can be used at the time of polymerization can be used as appropriate, and among them, an organic solvent that can dissolve both the first monomer and the second monomer is preferable.
  • organic solvent examples include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -methyl- ⁇ -butyrolactone, ethylene carbonate, propylene carbonate, triethylene glycol, tetramethylurea (tetramethylurea), 1,3-dimethyl-2-imidazolide
  • Non-protic polar solvents such as non-, hexamethylphosphoric triamide, pyridine; phenol-based solvents such as m-cresol,
  • organic solvents examples include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, from the viewpoints of solubility, film formability, productivity, industrial availability, presence / absence of existing equipment, and price.
  • ⁇ -butyrolactone, propylene carbonate, tetramethylurea and 1,3-dimethyl-2-imidazolidinone are preferable, and N-methyl-2-pyrrolidone, N, N-dimethylacetamide, ⁇ -butyrolactone and tetramethylurea are more preferable.
  • N, N-dimethylacetamide and ⁇ -butyrolactone are particularly preferred.
  • a method capable of performing a polymerization reaction between the first monomer and the second monomer can be appropriately utilized.
  • a method of adding and reacting the first monomer and the second monomer in the organic solvent at a reaction temperature in an inert atmosphere such as nitrogen, helium, and argon is employed. It is preferable to do.
  • an inert atmosphere such as nitrogen, helium, and argon
  • the pressure condition for reacting the first monomer and the second monomer is not particularly limited, and may be appropriately set within a range in which the first monomer and the second monomer can be reacted. However, it is more preferable that the first monomer and the second monomer are reacted under atmospheric pressure because pressure control is unnecessary and the process is simpler.
  • the temperature condition for reacting the first monomer and the second monomer is a structure having an imidazopyrrolone precursor structure represented by the general formula (8-1) by reacting these monomers. Depending on the monomer used, the temperature condition is changed so that a part (repeating unit) and / or a structural part (repeating unit) having an imidazopyrrolone precursor structure represented by the above general formula (8-2) can be formed.
  • the temperature may be set appropriately, and is not particularly limited, but is preferably ⁇ 20 to 100 ° C. (more preferably 5 to 80 ° C.).
  • the reaction time for reacting the first monomer and the second monomer is preferably about 1 to 72 hours (more preferably 3 to 48 hours).
  • reaction temperature and reaction time When such reaction temperature and reaction time are less than the lower limit, the molecular weight of the resin precursor tends not to be sufficiently improved. If the reaction temperature or reaction time exceeds the upper limit, depending on the type of monomer, the depolymerization of the resin precursor proceeds and the molecular weight decreases, or the resin precursor is insolubilized (gelled or precipitated) by crosslinking.
  • the reaction temperature and reaction time are preferably within the above ranges.
  • a catalyst for example, trimethylamine, triethylamine, tributylamine, imidazole, methylimidazole, dimethylimidazole, tetrahexyl, which are basic compounds.
  • the total amount (total amount) of the first monomer and the second monomer is the total amount of the organic solvent, the first monomer, and the second monomer (mixture of the organic solvent, the first monomer, and the second monomer). 1 to 50% by mass, and more preferably 5 to 30% by mass.
  • the reaction rate tends to be low and a resin precursor having a sufficient degree of polymerization tends not to be obtained. If it exceeds, the monomer is not completely dissolved, the reaction rate is locally increased, and as a result, a crosslinking reaction or the like proceeds, and there is a tendency that a uniform resin precursor cannot be obtained.
  • the resin precursor of the present invention can be obtained by such step (A).
  • the reaction is allowed to proceed in an organic solvent to prepare the resin precursor of the present invention in the organic solvent. It becomes what contains the resin precursor of the said invention (solution).
  • the reaction solution thus obtained in the step (B) as it is, the resin of the present invention can be produced more efficiently.
  • step (B) by heating the resin precursor, the repeating unit having the imidazopyrrolone structure represented by the general formula (1-1) and the imidazopyrrolone represented by the general formula (1-2) are used.
  • This is a step of obtaining a resin (resin of the present invention) containing at least one type of repeating unit selected from the group consisting of repeating units having a structure.
  • the repeating unit having an imidazopyrrolone precursor structure represented by the general formula (8-1) and the repeating unit having an imidazopyrrolone precursor structure represented by the general formula (8-2) It is possible to cause intramolecular condensation by such a heating step to cyclize the structure of the repeating unit. Therefore, by heating the resin precursor, the repeating unit having the imidazopyrrolone structure represented by the general formula (1-1) and / or the imidazopyrrolone structure represented by the general formula (1-2) is provided. Repeating units can be formed more efficiently. Further, the repeating unit having the imide precursor structure represented by the general formula (9) can also be intramolecularly condensed by such a heating step, thereby cyclizing the structure of the repeating unit.
  • the resin precursor is a repeating unit having an imidazopyrrolone precursor structure represented by the general formula (8-1) and / or an imidazopyrrolone precursor structure represented by the general formula (8-2).
  • the resin precursor includes a repeating unit having a repeating unit having an imide precursor structure represented by the general formula (9), each repeating unit in the resin precursor is simultaneously heated. It is possible to proceed with an intramolecular condensation reaction, and it has a repeating unit having an imidazopyrrolone structure represented by the general formula (1-1) and / or an imidazopyrrolone structure represented by the general formula (1-2).
  • the conditions for performing such heat treatment are not particularly limited, but the heating temperature is preferably 50 to 550 ° C. (more preferably 75 to 500 ° C., still more preferably 100 to 450 ° C.).
  • the heating time is preferably 0.1 to 50 hours (and more preferably 0.5 to 10).
  • each recurring unit in the resin precursor has a predetermined time. Water, alcohol, silanol, etc. generated by the intramolecular condensation of water cannot be efficiently distilled off, and the progress of the reaction is hindered, making it difficult to increase the molecular weight of the resulting resin.
  • a condensing agent for example, acetic anhydride, anhydrous Acid anhydrides such as on acid, carbodiimides such as DCC), catalysts (p-TsOH, CsF), toluene azeotropic method, chemical imidization method, partial chemical imidization method, etc. may be used as appropriate. .
  • the atmospheric conditions during the heat treatment are not particularly limited, but from the viewpoint of preventing oxidation of the terminal amino group by oxygen, main chain cleavage, coloring and deterioration, an inert gas atmosphere such as nitrogen gas, A vacuum is preferred.
  • the pressure condition during such heat treatment is not particularly limited, but is preferably 0.1 hPa to 10 MPa, and more preferably 10 hPa to 1 MPa. If such pressure is less than the lower limit, bubbles and voids due to an improvement in drying speed, an increase in surface roughness of the film surface, an increase in Haze value, and the like tend to occur, and on the other hand, when the upper limit is exceeded. The cyclization reaction due to the increase in water concentration and the post-polymerization (post-polymerization reaction) between oligomers tend to be suppressed.
  • reaction liquid obtained by the said process (A) react with said 1st monomer and said 2nd monomer in presence of the said organic solvent.
  • the reaction solution (the solution containing the organic solvent and the resin precursor of the present invention) is used as it is, and the reaction solution is subjected to a treatment (solvent removal treatment) for removing the organic solvent by evaporation.
  • a resin having a desired form may be formed by performing the heat treatment.
  • the reaction solution obtained in the step (A) is directly applied on a substrate (for example, a glass plate), and the organic solvent is removed by evaporation.
  • Heat treatment may be sequentially performed.
  • the temperature condition in the treatment for removing the organic solvent by evaporation is preferably 0 to 180 ° C., more preferably 30 to 150 ° C. If the temperature condition in such solvent removal treatment is less than the lower limit, it tends to be difficult to remove the solvent by sufficiently evaporating, and if it exceeds the upper limit, depolymerization of the resin precursor occurs, The solvent tends to boil and bubbles and voids tend to be formed in the final product (resin).
  • the resin of the present invention can be efficiently produced by the step (A) and the step (B).
  • the method that can be suitably used for producing the resin of the present invention has been described by exemplifying the production method (I) of the resin.
  • the method for producing the resin of the present invention is described above.
  • the resin production method (I) is not limited, and the repeating unit having an imidazopyrrolone structure represented by the above general formula (1-1) and the imidazopyrrolone structure represented by the above general formula (1-2) Any method that can obtain a resin containing at least one selected from the group consisting of repeating units having the above (resin of the present invention) can be used as appropriate.
  • the resin precursor solution of the present invention contains the resin precursor of the present invention and a solvent.
  • the same organic solvent as described in the above-described resin production method (I) can be suitably used. Therefore, you may prepare the resin precursor solution of this invention by implementing the above-mentioned process (A) and making the reaction liquid obtained after reaction into a resin precursor solution as it is.
  • the content of the pre-resin precursor in such a resin precursor solution is not particularly limited, but is preferably 1 to 80% by mass, and more preferably 5 to 50% by mass.
  • the content is less than the lower limit, it tends to be difficult to produce a film-like resin using the resin precursor solution.
  • the content exceeds the upper limit the viscosity is increased or the fluidity is decreased. Decreased coatability due to decline, leveling effect, uneven surface of coated film after coating, wrinkles on coated film surface after coating, etc. , It tends to be difficult to produce various types of resins (for example, film-like resins) using such a resin precursor solution.
  • such a resin precursor solution can be suitably used for producing the resin of the present invention, and can be suitably used for producing resins having various shapes.
  • a resin in a film shape can be easily produced by applying such a resin precursor solution on various substrates, imidizing and curing the resin precursor solution.
  • such a resin precursor solution contains various additives (deterioration inhibitors, antioxidants, light stabilizers, UV absorbers, modifiers, antistatic agents, difficult additives, which can be used for resin preparation.
  • An agent glass fiber, filler, talc, mica, silica, etc.
  • the content of the additive in the resin precursor solution is not particularly limited, but is about 0.0001 to 80% by mass (more preferably 0.1 to 50% by mass).
  • such a resin precursor solution may be prepared by using other resins (for example, cellulose nanofiber, nylon, polycarbonate, polyester, polyamide, polyketone, polyetherketone, polysulfone, polyether depending on the use of the finally obtained resin.
  • the amount of other resin added to the resin precursor solution is not particularly limited, but is preferably about 0.1 to 50% by mass (more preferably 1 to 30% by mass).
  • Such a resin precursor solution of the present invention can be suitably used as a resin varnish for obtaining the resin of the present invention.
  • the tetracarboxylic dianhydride represented by the general formula (A-1) is hereinafter referred to as “CpODA”).
  • Tetracarboxylic dianhydride (first monomer)
  • CpODA tetracarboxylic dianhydride represented by the above formula (A-1)
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • CPDA 1,2,3,4-cyclopentanetetracarboxylic dianhydride
  • H-BPDA 3,3 ′, 4,4′-bi Cyclohexyltetracarboxylic dianhydride
  • BODA Bicyclo [2.2.2] octane-2,3,5,6-tetracarboxylic dianhydride
  • Aromatic tetraamines, aromatic triamines and aromatic diamines (secondary Monomer)
  • TAB-E 3,3 ′, 4,4′-tetraaminodiphenyl ether
  • TAB-S 3,3 ′, 4,4′-tetraaminodiphenylsulfone
  • TAB-K 3,3 ′, 4,4
  • Example 1 ⁇ Resin precursor preparation process> First, a 30 ml three-necked flask was heated with a heat gun and sufficiently dried. Next, the atmosphere gas in the three-necked flask that was sufficiently dried was replaced with nitrogen, and the inside of the three-necked flask was changed to a nitrogen atmosphere. Next, 0.2303 g (1.00 mmol) of TAB-E as a second monomer was added to the three-necked flask, and then 5.53 g of tetramethylurea (TMU) was further added as a solvent, followed by stirring. TAB-E was dissolved in the TMU to obtain a solution.
  • TAB-E tetramethylurea
  • ⁇ Resin preparation process> A large slide glass (trade name “S9213” manufactured by Matsunami Glass Industrial Co., Ltd., length: 76 mm, width 52 mm, thickness 1.3 mm) was prepared as a glass substrate, and the reaction solution obtained as described above (polyimidazopyrrolone) The precursor solution was spin-coated on the surface of the glass substrate so that the thickness of the coating film after heat curing was 10 ⁇ m, thereby forming a coating film on the glass substrate. Thereafter, the glass substrate on which the coating film was formed was placed on a hot plate at 60 ° C. and allowed to stand for 2 hours, and the solvent was evaporated and removed from the coating film (solvent removal treatment).
  • the glass substrate on which the coating film has been formed is put into an inert oven in which nitrogen is flowing at a flow rate of 3 L / min, and in the inert oven, at 25 ° C. in a nitrogen atmosphere.
  • the coating film was cured to form a thin film (resin film) made of resin (polyimidazopyrrolone) on the glass substrate to obtain a resin film laminated glass in which the resin film was coated on the glass substrate.
  • the resin film laminated glass thus obtained is immersed in hot water at 90 ° C., and the resin film is peeled off from the glass substrate to obtain a resin film (length 76 mm, width 52 mm, thickness 10 ⁇ m). Of the size of the film).
  • the repeating unit having an imidazopyrrolone intermediate structure represented by the following formula is formed, and then the intramolecular dehydration condensation reaction of the repeating unit further proceeds to form the following formula (103):
  • Example 2 Instead of using TAB-E alone as the second monomer, a mixture of TAB-E (0.2303 g: 0.50 mmol) and DABAN (0.1136 g: 0.50 mmol) is used as the second monomer, And the resin precursor and resin were manufactured like Example 1 except having changed the usage-amount of TMU into 3.47g and adjusting the said polymerization concentration to 15 mass%, and obtained the resin film.
  • the obtained resin contains a repeating unit having an imide structure formed by the reaction of CpODA and DABAN together with a repeating unit having an imidazopyrrolone structure represented by the above formula (103). It was.
  • Example 3 Instead of using TAB-E alone as the second monomer, a mixture of TAB-E (0.0345 g: 0.15 mmol) and DABAN (0.1932 g: 0.85 mmol) is used as the second monomer, And the resin precursor and resin were manufactured like Example 1 except having changed the usage-amount of TMU into 3.47g and adjusting the said polymerization concentration to 15 mass%, and obtained the resin film.
  • the obtained resin contains a repeating unit having an imide structure formed by the reaction of CpODA and DABAN together with a repeating unit having an imidazopyrrolone structure represented by the above formula (103). It was.
  • Example 4 instead of using TAB-E alone as the second monomer, a mixture of TAB-E (0.023 g: 0.10 mmol) and DABAN (0.2045 g: 0.90 mmol) is used as the second monomer, And the resin precursor and resin were manufactured like Example 1 except having changed the usage-amount of TMU into 3.47g and adjusting the said polymerization concentration to 15 mass%, and obtained the resin film.
  • the obtained resin contains a repeating unit having an imide structure formed by the reaction of CpODA and DABAN together with a repeating unit having an imidazopyrrolone structure represented by the above formula (103). It was.
  • Example 5 Instead of using TAB-E alone as the second monomer, a mixture of TAB-E (0.0115 g: 0.05 mmol) and DABAN (0.2159 g: 0.95 mmol) is used as the second monomer, And the resin precursor and resin were manufactured like Example 1 except having changed the usage-amount of TMU into 3.47g and adjusting the said polymerization concentration to 15 mass%, and obtained the resin film.
  • the obtained resin contains a repeating unit having an imide structure formed by the reaction of CpODA and DABAN together with a repeating unit having an imidazopyrrolone structure represented by the above formula (103). It was.
  • Example 6 Instead of using TAB-E alone as the second monomer, a mixture of TAB-S (0.0278 g: 0.10 mmol) and DABAN (0.2045 g: 0.90 mmol) is used as the second monomer, And the resin precursor and resin were manufactured similarly to Example 1 except having changed the usage-amount of TMU into 2.47g and adjusting the said polymerization concentration to 20 mass%, and obtained the resin film.
  • the obtained resin contains a repeating unit having an imide structure formed by the reaction of CpODA and DABAN together with a repeating unit having an imidazopyrrolone structure formed by the reaction of CpODA and TAB-S. It had been.
  • Example 7 Instead of using TAB-E alone as the second monomer, a mixture of TAB-S (0.0139 g: 0.05 mmol) and DABAN (0.2159 g: 0.95 mmol) is used as the second monomer, And the resin precursor and resin were manufactured similarly to Example 1 except having changed the usage-amount of TMU into 2.46g and adjusting the said polymerization concentration to 20 mass%, and obtained the resin film.
  • the obtained resin contains a repeating unit having an imide structure formed by the reaction of CpODA and DABAN together with a repeating unit having an imidazopyrrolone structure formed by the reaction of CpODA and TAB-S. It had been.
  • Example 8 Instead of using TAB-E alone as the second monomer, a mixture of TAB-K (0.0363 g: 0.15 mmol) and DABAN (0.1932 g: 0.85 mmol) is used as the second monomer, And the resin precursor and resin were manufactured similarly to Example 1 except having changed the usage-amount of TMU into 2.46g and adjusting the said polymerization concentration to 20 mass%, and obtained the resin film.
  • the obtained resin contains a repeating unit having an imide structure formed by the reaction of CpODA and DABAN together with a repeating unit having an imidazopyrrolone structure formed by the reaction of CpODA and TAB-K. It had been.
  • Example 9 instead of using TAB-E alone as the second monomer, a mixture of TAB-K (0.0242 g: 0.10 mmol) and DABAN (0.2045 g: 0.90 mmol) is used as the second monomer, And the resin precursor and resin were manufactured similarly to Example 1 except having changed the usage-amount of TMU into 2.45g and adjusting the said polymerization concentration to 20 mass%, and obtained the resin film.
  • the obtained resin contains a repeating unit having an imide structure formed by the reaction of CpODA and DABAN together with a repeating unit having an imidazopyrrolone structure formed by the reaction of CpODA and TAB-K. It had been.
  • Example 10 Instead of using TAB-E alone as the second monomer, a mixture of TAB-K (0.0121 g: 0.05 mmol) and DABAN (0.2159 g: 0.95 mmol) is used as the second monomer, And the resin precursor and resin were manufactured similarly to Example 1 except having changed the usage-amount of TMU into 2.45g and adjusting the said polymerization concentration to 20 mass%, and obtained the resin film.
  • the obtained resin contains a repeating unit having an imide structure formed by the reaction of CpODA and DABAN together with a repeating unit having an imidazopyrrolone structure formed by the reaction of CpODA and TAB-K. It had been.
  • Example 11 Instead of using CpODA as the first monomer, H-BPDA (0.3063 g: 1.00 mmol) was used as the first monomer, and the amount of TMU used was changed to 2.15 g.
  • a resin precursor and a resin were produced in the same manner as in Example 1 except that the content was adjusted to 20% by mass to obtain a resin film.
  • the obtained resin contained a repeating unit having an imidazopyrrolone structure formed by the reaction of H-BPDA and TAB-E.
  • Example 12 instead of using CpODA as the first monomer, bicyclooctanoic acid dianhydride: BODA (0.2502 g: 1.00 mmol) was used as the first monomer, and the amount of TMU used was changed to 2.61 g. Then, a resin precursor and a resin were produced in the same manner as in Example 1 except that the polymerization concentration was adjusted to 15% by mass to obtain a resin film. As a result of IR measurement, the obtained resin contained a repeating unit having an imidazopyrrolone structure formed by the reaction of BODA and TAB-E.
  • TrAB-E (0.2153 g: 1.00 mmol) was used alone as the second monomer, and the amount of TMU used was changed to 5.40 g.
  • a resin precursor and a resin are produced in the same manner as in Example 1 except that the polymerization concentration is adjusted to 10% by mass and the final heating temperature (firing temperature) is changed to 370 ° C. during heating in the inert oven. Thus, a resin film was obtained. The result of IR measurement of the obtained resin film is shown in FIG.
  • the obtained resin contained a repeating unit having an imidazopyrrolone structure formed by the reaction of CpODA and TrAB-E.
  • Example 14 Instead of using TAB-E alone as the second monomer, a mixture of TAB-E (0.0461 g: 0.20 mmol) and PPD (0.0865 g: 0.80 mmol) is used as the second monomer, And except having changed the usage-amount of TMU to 8.88g and adjusting the said polymerization density
  • Example 15 A resin precursor and a resin were produced in the same manner as in Example 14 except that the final heating temperature (firing temperature) was changed to 400 ° C. during heating in the inert oven, and a resin film was obtained.
  • the obtained resin contains a repeating unit having an imide structure formed by reaction of CpODA and PPD together with a repeating unit having an imidazopyrrolone structure represented by the above formula (103). It was.
  • Example 16 Instead of using TAB-E alone as the second monomer, a mixture of TAB-E (0.0461 g: 0.20 mmol) and PPD (0.0865 g: 0.80 mmol) is used as the second monomer, Example except that the amount of TMU used was changed to 4.65 g, the polymerization concentration was adjusted to 10% by mass, and the final heating temperature (firing temperature) was changed to 400 ° C. during heating in the inert oven. In the same manner as in Example 1, a resin precursor and a resin were produced to obtain a resin film. As a result of IR measurement, the obtained resin contains a repeating unit having an imide structure formed by reaction of CpODA and PPD together with a repeating unit having an imidazopyrrolone structure represented by the above formula (103). It was.
  • Example 17 A resin precursor and a resin were produced in the same manner as in Example 16 except that the final heating temperature (baking temperature) was changed to 420 ° C. during heating in the inert oven, and a resin film was obtained.
  • the obtained resin contains a repeating unit having an imide structure formed by reaction of CpODA and PPD together with a repeating unit having an imidazopyrrolone structure represented by the above formula (103). It was.
  • TAB-E (0.0230 g: 0.100 mmol), PPD (0.0730 g: 0.675 mmol) and DABAN (0.0511 g) are used as the second monomer. : 0.225 mmol), the amount of TMU used was changed to 4.784 g to adjust the polymerization concentration to 10% by mass, and the final heating temperature (calcination temperature) during heating in the inert oven ) was changed to 400 ° C., and a resin precursor and a resin were produced in the same manner as in Example 1 to obtain a resin film.
  • the obtained resin contains a repeating unit having an imidazopyrrolone structure represented by the above formula (103), a repeating unit having an imide structure formed by reaction of CpODA and PPD, and CpODA. It contained repeating units having an imide structure formed by reaction with DABAN.
  • Example 19 A resin precursor and a resin were produced in the same manner as in Example 18 except that the final heating temperature (baking temperature) was changed to 420 ° C. during heating in the inert oven, and a resin film was obtained.
  • the obtained resin contains a repeating unit having an imidazopyrrolone structure represented by the above formula (103), a repeating unit having an imide structure formed by reaction of CpODA and PPD, and CpODA. It contained repeating units having an imide structure formed by reaction with DABAN.
  • the total light transmittance (unit:%) of the resin constituting the resin film obtained in each example or the like was measured as follows. That is, each resin film (thickness: 10 ⁇ m) is used as it is as a sample for measurement, and as a measuring device, a trade name “Haze Meter NDH-5000” manufactured by Nippon Denshoku Industries Co., Ltd. is used. 1997), the total light transmittance (unit:%) of each resin film was determined. The obtained results are shown in Table 1.
  • the glass transition temperature (Tg) value (unit: ° C.) of the resin constituting the resin film obtained in each example was measured as follows. That is, a sample having a size of 20 mm in length and 5 mm in width cut out from each resin film (thickness: 10 ⁇ m) (the thickness of the sample was kept as the thickness of the film obtained in the example) and a measuring device Using a thermomechanical analyzer (trade name “TMA8311” manufactured by Rigaku Corporation) under a nitrogen atmosphere, in a tensile mode (49 mN), and at a temperature rising rate of 5 ° C./min to obtain a TMA curve, By extrapolating the curve before and after the inflection point of the TMA curve resulting from the transition, the value of the glass transition temperature (Tg) of the resin constituting the film obtained in each example (unit: ° C.) Asked. The obtained results are shown in Table 1.
  • the tensile strength (unit: MPa) and elongation at break (unit:%) of the resin film obtained in each example were measured as follows. That is, first, each resin film was transferred to an SD-type lever-type sample cutter (duplicator made by Dumbbell Co., Ltd. (model SDL-200)).
  • each resin film is: total length: 75 mm, distance between tab portions: 57 mm, parallel portion length: 30 mm, Shoulder radius: 30 mm, end width: 10 mm, center parallel width: 5 mm, thickness: cut to 10 ⁇ m, dumbbell-shaped test piece (JIS K7139 type except that thickness is 10 ⁇ m) A22 (according to the standard of scale test piece) was prepared as a measurement sample.
  • the measurement sample is set to have a width of 57 mm between the gripping tools and a width of the gripping portion of 10 mm (full width of the end portion). Then, a tensile test was conducted by pulling the measurement sample under the conditions of load cell: 1.0 kN, test speed: 5 mm / min, and the tensile strength and elongation at break were determined. Such a test was a test based on JIS K7162 (issued in 1994).
  • the CTE (unit: ppm / K) of the resin constituting the resin film obtained in each example was determined as follows. That is, first, a measurement film (thickness: 10 ⁇ m) having a size of 20 mm in length and 5 mm in width was formed from each resin film. Next, the obtained film for measurement was vacuum-dried (120 ° C., 1 hour), and then heat-treated at 200 ° C. for 1 hour in a nitrogen atmosphere to prepare a measurement sample (dry film).
  • thermomechanical analyzer (trade name “TMA8311” manufactured by Rigaku) as a measuring device, in a nitrogen atmosphere, in a tensile mode (49 mN), a rate of temperature increase Using the condition of 5 ° C./min, measuring the change in length of the sample from 50 ° C. to 200 ° C., and calculating the average value of the change in length per 1 ° C. in the temperature range of 100 ° C. to 200 ° C. Measured by seeking. The obtained results are shown in Table 1.
  • the films made of the resin of the present invention all have a total light transmittance of 80% or more and have sufficient transparency.
  • Tg is 389.8 ° C. (about 390 ° C.) or more, and even when compared with the polyimide obtained in Comparative Example 3, it is confirmed that it exhibits higher heat resistance. It was done.
  • the resin constituting the film obtained in Example 1 had a Tg of 448 ° C. and was found to be a resin having extremely high heat resistance.
  • the films made of the resin of the present invention all had a breaking strength of 50 MPa or more.
  • an alicyclic tetracarboxylic dianhydride having a cyclic structure other than a 6-membered ring such as CBDA or CPDA (4-membered or 5-membered cyclic structure) is used (Comparative Examples 1 and 2).
  • CBDA or CPDA 4-membered or 5-membered cyclic structure
  • the film made of polyimide obtained in Comparative Example 3 had a breaking strength of 31 MPa and showed sufficient mechanical strength as a self-supporting film.
  • all of the films made of the resin of the present invention had a breaking strength of 50 MPa or more and exhibited higher mechanical strength.
  • the transparency and heat resistance of the obtained resin are sufficiently high, and the mechanical strength based on the breaking strength is sufficiently high. It turned out that it is also possible.
  • the films made of the resin of the present invention all have a CTE of 50 ppm / K or less, have a relatively low CTE, and have sufficiently high processability. I found out.
  • a resin having sufficiently high light transmittance and higher heat resistance, and having excellent mechanical strength the resin It is possible to provide a resin precursor that is a precursor of the resin, and a resin precursor solution that can be suitably used for the production of the resin.
  • the resin of the present invention not only has sufficiently high transparency (light transmittance) but also has higher heat resistance and is suitable as a transparent material having very high heat resistance.
  • the resin of the present invention can be formed into a powder or various molded bodies, for example, for automobile parts, aerospace parts, bearing parts, seals, etc. It can also be suitably applied to materials, bearing parts, gear wheels and valve parts.

Abstract

下記一般式(1-1): [式中、X1は6員環の脂環構造を有する4価の有機基を示し、X2は4価の有機基を示す。] で表されるイミダゾピロロン構造を有する繰り返し単位、及び、下記一般式(1-2): [式中、X1は6員環の脂環構造を有する4価の有機基を示し、X3は3価の有機基を示す。] で表されるイミダゾピロロン構造を有する繰り返し単位からなる群から選択される少なくとも1種の繰り返し単位を含む、樹脂。

Description

樹脂、樹脂前駆体及び樹脂前駆体溶液
 本発明は、樹脂、樹脂前駆体並びに樹脂前駆体溶液に関する。
 従来より様々な分野(例えばディスプレイ機器の分野等)の基板等に用いる材料として、ガラスのように光透過性が高くかつ十分に高度な耐熱性を有する樹脂の出現が求められてきた。このような樹脂としては、例えば、国際公開第2011/099518号(特許文献1)においては、特定の一般式で記載される繰り返し単位を有するポリイミドが開示されている。このようなポリイミドは、光透過性が高くかつ十分に高度な耐熱性を有するものであり、様々な分野に応用可能なものであった。しかしながら、このような樹脂の分野においては、特許文献1に記載のポリイミドと同等の光透過性を有しつつ、より高度な耐熱性を示すことが可能な樹脂の出現が求められている。
 一方、耐熱性の高い樹脂としては、従来よりポリイミダゾピロロンが知られており、例えば、特開平8-290046号公報(特許文献2)や特開平5-301959号公報(特許文献3)においては、テトラカルボン酸二無水物成分とテトラアミン成分とを反応して得られるポリイミダゾピロロンが開示されている。そして、特許文献2や特許文献3においては、テトラカルボン酸二無水物成分として様々な化合物が広く開示されている。しかしながら、特許文献2や特許文献3の実施例において実際に製造されている樹脂は、いずれも芳香族系のテトラカルボン酸二無水物成分と芳香族系のテトラアミン成分との反応物(いわゆる全芳香族ポリイミダゾピロロン)に過ぎない。そして、このような全芳香族ポリイミダゾピロロンは、光透過性の点で十分なものではなく、ガラス代替用途に利用することができなかった。
国際公開第2011/099518号 特開平8-290046号公報 特開平5-301959号公報
 本発明は、前記従来技術の有する課題に鑑みてなされたものであり、十分に高度な光透過性と、より高度な耐熱性とを有するとともに、優れた機械的強度を有するものとすることを可能とする樹脂、その樹脂の前駆体である樹脂前駆体、並びに、その樹脂の製造に好適に利用可能な樹脂前駆体溶液を提供することを目的とする。
 本発明者らは、前記目的を達成すべく鋭意研究を重ねた結果、下記一般式(1-1)で表される特定のイミダゾピロロン構造を有する繰り返し単位、及び、下記一般式(1-2)で表される特定のイミダゾピロロン構造を有する繰り返し単位からなる群から選択される少なくとも1種の繰り返し単位を含有することにより、その樹脂を、十分に高度な光透過性と、より高度な耐熱性とを有するものとすることが可能となるとともに、優れた機械的強度を有するものとすることが可能となることを見出し、本発明を完成するに至った。
 すなわち、本発明の樹脂は、下記一般式(1-1):
Figure JPOXMLDOC01-appb-C000013
[式中、Xは6員環の脂環構造を有する4価の有機基を示し、Xは4価の有機基を示す。]
で表されるイミダゾピロロン構造を有する繰り返し単位、及び、下記一般式(1-2):
Figure JPOXMLDOC01-appb-C000014
[式中、Xは6員環の脂環構造を有する4価の有機基を示し、Xは3価の有機基を示す。]
で表されるイミダゾピロロン構造を有する繰り返し単位からなる群から選択される少なくとも1種の繰り返し単位を含むものである。
 また、上記本発明の樹脂においては、下記一般式(2):
Figure JPOXMLDOC01-appb-C000015
[式中、Xは6員環の脂環構造を有する4価の有機基を示し、Xは炭素数6~50のアリーレン基を示す。]
で表されるイミド構造を有する繰り返し単位を更に含むことが好ましい。
 また、本発明の樹脂前駆体は、下記一般式(8-1):
Figure JPOXMLDOC01-appb-C000016
[式中、Xは6員環の脂環構造を有する4価の有機基を示し、Xは4価の有機基を示す。]
で表されるイミダゾピロロン前駆体構造を有する繰り返し単位、及び、下記一般式(8-2):
Figure JPOXMLDOC01-appb-C000017
[式中、Xは6員環の脂環構造を有する4価の有機基を示し、Xは3価の有機基を示す。]
で表されるイミダゾピロロン前駆体構造を有する繰り返し単位からなる群から選択される少なくとも1種の繰り返し単位を含むものである。
 上記本発明の樹脂前駆体においては、下記一般式(9):
Figure JPOXMLDOC01-appb-C000018
[式中、Xは6員環の脂環構造を有する4価の有機基を示し、Xは炭素数6~50のアリーレン基を示す。]
で表されるイミド前駆体構造を有する繰り返し単位を更に含むことが好ましい。
 また、上記本発明の樹脂及び上記本発明の樹脂前駆体においては、それぞれ、上記式中のXが、下記一般式(3)~(5):
Figure JPOXMLDOC01-appb-C000019
[式(3)中、mは0~2の整数を示し、式(4)中、nは1~2の整数を示し、式(5)中、Aは単結合;及び置換基を有していてもよくかつ芳香環を形成する炭素原子の数が6~30である2価の芳香族基;よりなる群から選択される1種を示し、式(3)~(5)中の記号*1~*4は該記号の付された結合手がそれぞれXに結合している4本の結合手のうちのいずれかであることを示す。]
で表される4価の有機基の中から選択される1種であることが好ましい。
 さらに、上記本発明の樹脂及び上記本発明の樹脂前駆体においては、それぞれ、上記式中のXが、下記一般式(6-1)~(7-1):
Figure JPOXMLDOC01-appb-C000020
[式(7-1)中、Zは、単結合、9,9-フルオレニリデン基、式:-O-で表されるエーテル基、-C(=O)-で表されるカルボニル基、-S(=O)-で表されるスルホキシド基、-S(=O)-で表されるスルホニル基、-CH-で表されるメチレン基、-C(CH-で表されるイソプロピリデン基、-C(CF-で表されるヘキサフルオロイソプロピリデン基、-S-で表されるチオエーテル基、-NHCO-で表されるアミド基、-COO-で表されるエステル型、-C-で表されるフェニレン基、-O-C-O-で表されるフェニレンジオキシ基、-O-C-C-O-で表されるビフェニレンジオキシ基、-O-C-Z-C-O-[式中のZは-O-で表されるエーテル基、-C(=O)-で表されるカルボニル基、-S(=O)-で表されるスルホニル基、-C(CH-で表されるイソプロピリデン基、-C(CF-で表されるヘキサフルオロイソプロピリデン基、及び、-CH-で表されるメチレン基よりなる群から選択される1種を示す]で表されるビス(フェニレンジオキシ)基、-P(=O)(C)-で表される基、及び、-N(C)-で表される基よりなる群から選択される1種を示し、式(6-1)~(7-1)中の記号*1~*4は該記号の付された結合手がそれぞれXに結合している4本の結合手のうちのいずれかであることを示す。]
で表される4価の有機基の中から選択される1種であることが好ましい。
 さらに、上記本発明の樹脂及び上記本発明の樹脂前駆体においては、それぞれ、上記式中のXが、下記一般式(6-2)~(7-2):
Figure JPOXMLDOC01-appb-C000021
[式(7-2)中、Zは、単結合、9,9-フルオレニリデン基、式:-O-で表されるエーテル基、-C(=O)-で表されるカルボニル基、-S(=O)-で表されるスルホキシド基、-S(=O)-で表されるスルホニル基、-CH-で表されるメチレン基、-C(CH-で表されるイソプロピリデン基、-C(CF-で表されるヘキサフルオロイソプロピリデン基、-S-で表されるチオエーテル基、-NHCO-で表されるアミド基、-COO-で表されるエステル型、-C-で表されるフェニレン基、-O-C-O-で表されるフェニレンジオキシ基、-O-C-C-O-で表されるビフェニレンジオキシ基、-O-C-Z-C-O-[式中のZは-O-で表されるエーテル基、-C(=O)-で表されるカルボニル基、-S(=O)-で表されるスルホニル基、-C(CH-で表されるイソプロピリデン基、-C(CF-で表されるヘキサフルオロイソプロピリデン基、及び、-CH-で表されるメチレン基よりなる群から選択される1種を示す]で表されるビス(フェニレンジオキシ)基、-P(=O)(C)-で表される基、及び、-N(C)-で表される基よりなる群から選択される1種を示し、式(6-2)~(7-2)中の記号*1~*3は該記号の付された結合手がそれぞれXに結合している3本の結合手のうちのいずれかであることを示す。]
で表される3価の有機基の中から選択される1種であることが好ましい。
 また、本発明の樹脂前駆体溶液は、上記本発明の樹脂前駆体と溶媒とを含有するものである。
 本発明によれば、十分に高度な光透過性と、より高度な耐熱性とを有するとともに、優れた機械的強度を有するものとすることを可能とする樹脂、その樹脂の前駆体である樹脂前駆体、並びに、その樹脂の製造に好適に利用可能な樹脂前駆体溶液を提供することが可能となる。
実施例1で得られたフィルムを構成する樹脂のIRスペクトルのグラフである。 実施例13で得られたフィルムを構成する樹脂のIRスペクトルのグラフである。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 先ず、本発明の樹脂について説明する。本発明の樹脂は、上記一般式(1-1)で表されるイミダゾピロロン構造を有する繰り返し単位(以下、場合により、かかるイミダゾピロロン構造を有する繰り返し単位を、便宜上、単に「繰り返し単位(A)」と称する。)、及び、上記一般式(1-2)で表されるイミダゾピロロン構造を有する繰り返し単位(以下、場合により、かかるイミダゾピロロン構造を有する繰り返し単位を、便宜上、単に「繰り返し単位(A’)」と称する。)からなる群から選択される少なくとも1種の繰り返し単位を含むものである。
 上記一般式(1-1)及び上記一般式(1-2)中のXはいずれも、6員環の脂環構造を有する4価の有機基である。ここにいう「6員環」としては、環状の構造を形成する原子の数が6個となっている環であればよく特に制限されない[なお、架橋構造を含む二環式の構造等、多環構造を形成している場合(例えばノルボルナン環構造やビシクロオクタン環構造の場合等)には、そのうちのいずれかの環が、原子の数が6個となっている環であればよい]。このような4価の有機基中の6員環の脂環構造としては、特に制限されるものではないが、例えば、下記一般式(i)~(iii):
Figure JPOXMLDOC01-appb-C000022
で表されるような脂肪族6員環からなる構造が挙げられる。このような6員環の脂環構造としては、より高度な耐熱性が得られるといった観点、及び、引張り応力に対する耐性がより高度なものとなり、より高度な機械的強度が得られるといった観点から、上記一般式(ii)で表される脂肪族6員環(ノルボルネン環)からなる構造であることがより好ましい。
 また、このような一般式(1-1)及び一般式(1-2)中のXとして選択され得る6員環の脂環構造を有する4価の有機基としては、前記6員環の脂環構造を有していればよく、前記6員環の脂環構造を形成する炭素原子には、水素原子、水素原子以外の原子等の各種原子や、他の置換基(他の有機基を含む)等が結合していてもよい。
 また、このような一般式(1-1)及び一般式(1-2)中のXとして選択され得る6員環の脂環構造を有する4価の有機基は、前記繰り返し単位(A)及び前記繰り返し単位(A’)がいずれも、6員環の脂環構造を有するテトラカルボン酸二無水物を原料として利用することでより効率よく形成することが可能となるものであること、すなわち、これらが6員環の脂環構造を有するテトラカルボン酸二無水物とテトラアミンとの反応、および/または、6員環の脂環構造を有するテトラカルボン酸二無水物とトリアミンとの反応により、より効率よく形成することが可能となるものであることから、6員環の脂環構造を有するテトラカルボン酸二無水物から2つの酸無水物基を除いた残基(4価の有機基:なお、下記式(I)で表される化合物においては、酸無水物基中のカルボニル基(式:-C(=O)-で表される基)に結合する4つの結合手が上記各式中のXに結合する4つの結合手となる)が好適なものとして挙げられる。
 このような6員環の脂環構造を有するテトラカルボン酸二無水物は下記式(I):
Figure JPOXMLDOC01-appb-C000023
[式(I)中のXは、上記一般式(1-1)及び一般式(1-2)中のXと同義である。]
で表すことができる。このような6員環の脂環構造を有するテトラカルボン酸二無水物としては、例えば、ビシクロヘプタンテトラカルボン酸二無水物(BHDA)、ジメタノナフタレンテトラカルボン酸二無水物(DNDA)、ビシクロオクタンテトラカルボン酸二無水物(BODA)、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物(H-BPDA)、[1,1’-ビ(シクロヘキサン)]-3,3’,4,4’-テトラカルボン酸二無水物、[1,1’-ビ(シクロヘキサン)]-2,3,3’,4’-テトラカルボン酸二無水物、[1,1’-ビ(シクロヘキサン)]-2,2’,3,3’-テトラカルボン酸二無水物、4,4’-メチレンビス(シクロヘキサン-1,2-ジカルボン酸無水物)、4,4’-(プロパン-2,2-ジイル)ビス(シクロヘキサン-1,2-ジカルボン酸無水物)、4,4’-オキシビス(シクロヘキサン-1,2-ジカルボン酸無水物)、4,4’-チオビス(シクロヘキサン-1,2-ジカルボン酸無水物)、4,4’-スルホニルビス(シクロヘキサン-1,2-ジカルボン酸無水物)、4,4’-(ジメチルシランジイル)ビス(シクロヘキサン-1,2-ジカルボン酸無水物)、4,4’-(テトラフルオロプロパン-2,2-ジイル)ビス(シクロヘキサン-1,2-ジカルボン酸無水物)、オクタヒドロペンタレン-1,3,4,6-テトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸二無水物、6-(カルボキシメチル)ビシクロ[2.2.1]ヘプタン-2,3,5-トリカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタ-5-エン-2,3,7,8-テトラカルボン酸二無水物、トリシクロ[4.2.2.02,5]デカン-3,4,7,8-テトラカルボン酸二無水物、トリシクロ[4.2.2.02,5]デカ-7-エン-3,4,9,10-テトラカルボン酸二無水物、9-オキサトリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸二無水物、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2c,3c,6c,7c-テトラカルボン酸二無水物、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2t,3t,6c,7c-テトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2c,3c,6c,7c-テトラカルボン酸二無水物、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物、[2,2’-ビ(ノルボルナン)]-5,5’,6,6’-テトラカルボン酸二無水物、1,4-フェニレンビス(2-ノルボルナン-5,6-ジカルボン酸無水物)、4,4‘-ビフェニレンビス(2-ノルボルナン-5,6-ジカルボン酸無水物)、4,4’‘-ターフェニレンビス(2-ノルボルナン-5,6-ジカルボン酸無水物)、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物のトランス異性体、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物のシス異性体等が挙げられる。また、このような6員環の脂環構造を有するテトラカルボン酸二無水物としては、例えば、下記一般式(IA)~(IB):
Figure JPOXMLDOC01-appb-C000024
[式(IA)中、R、R、Rはそれぞれ独立に水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは0~12の整数を示す。また、式(IB)中、Aは上記式(5)中のAと同義であり、Rはそれぞれ独立に水素原子及び炭素数1~10のアルキル基よりなる群から選択される1種を示し、Rはそれぞれ独立に水素原子及び炭素数1~10のアルキル基よりなる群から選択される1種を示す。]
で表される化合物等も好適なものとして挙げられる。このような6員環の脂環構造を有するテトラカルボン酸二無水物は、1種を単独で使用してもよく、あるいは、複数種を組み合わせて使用してもよい。
 このような一般式(IA)中のR、R、Rとして選択され得るアルキル基の炭素数としては、精製がより容易となるという観点から、1~6であることが好ましく、1~5であることがより好ましく、1~4であることが更に好ましく、1~3であることが特に好ましい。また、このようなR、R、Rとして選択され得るアルキル基は直鎖状であっても分岐鎖状であってもよい。更に、このようなアルキル基としては精製の容易さの観点から、メチル基、エチル基がより好ましい。また、前記一般式(IA)中のR、R、Rとしては、樹脂を製造した際により高度な耐熱性が得られるという観点から、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であることがより好ましく、水素原子又はメチル基であることが更に好ましく、いずれも水素原子であることが特に好ましい。また、このような式中の複数のR、R、Rは精製の容易さ等の観点から、同一のものであることが特に好ましい。さらに、前記一般式(IA)中のnに関して、より精製が容易となるといった観点から、上限値は5(特に好ましくは3)であることががより好ましく、また、原料化合物の安定性の観点から、下限値は1(特に好ましくは2)であることがより好ましい。2であることが特に好ましい。このように、一般式(IA)中のnとしては、2~3の整数であることが特に好ましい。
 前記一般式(IB)中のR及びRはそれぞれ独立に水素原子及び炭素数1~10のアルキル基よりなる群から選択される1種である。このようなR及びRとして選択され得るアルキル基の炭素数としては、より高度な耐熱性が得られるという観点から、1~6であることが好ましく、1~5であることがより好ましく、1~4であることが更に好ましく、1~3であることが特に好ましい。また、このようなR及びRとして選択され得るアルキル基は直鎖状であっても分岐鎖状であってもよい。また、前記一般式(IB)中のR及びRは、より高度な耐熱性が得られること、原料の入手が容易であること、精製がより容易であること、等といった観点から、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基であることがより好ましく、水素原子、メチル基であることが更に好ましく、いずれも水素原子であることが特に好ましい。また、このような式(IB)中のR及びRは、それぞれ、同一のものであってもあるいは異なるものであってもよいが、精製の容易さ等の観点からは、同一のものであることが好ましい。また、前記一般式(IB)中のAは、一般式(5)中のAと同義であり、単結合;及び置換基を有していてもよくかつ芳香環を形成する炭素原子の数が6~30である2価の芳香族基;よりなる群から選択される1種を示す。このようなAとして選択され得る2価の芳香族基や、その好適なもの等については後述する。
 このような一般式(IA)で表される化合物としては、例えば、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(CpODA)、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(ChODA)等が挙げられる。このような一般式(IA)で表される化合物の製造方法は特に制限されず、公知の方法(例えば、国際公開第2011/099518号に記載の方法等)を適宜採用できる。また、上記一般式(IB)で表される化合物としては、例えば、下記式(B-1)~(B-3):
Figure JPOXMLDOC01-appb-C000025
で表される化合物が挙げられる。このような一般式(IB)で表される化合物の製造方法は特に制限されず、公知の方法(例えば国際公開第2015/163314号、国際公開第2017/030019号に記載の方法等)を適宜採用できる。
 このような6員環の脂環構造を有するテトラカルボン酸二無水物としては、中でも、透明性や耐熱性、高寸法安定性の観点から、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(CpODA)、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(ChODA)、上記式(B-1)で表される化合物(BNBDA)、上記式(B-2)で表される化合物(BzDA)、上記式(B-3)で表される化合物(BpDA)が好ましく、CpODA、BNBDA、BzDAがより好ましい。
 また、このような式(1-1)及び式(1-2)中のXとして選択され得る4価の有機基としては、透明性や耐熱性、高寸法安定性の観点から、前記6員環の脂環構造(より好ましくはノルボルネン環からなる構造)を2つ以上有するものが好ましく、中でも、透明性や耐熱性、高寸法安定性の観点から、上記一般式(3)~(5)で表される4価の有機基がより好ましい。
 このような一般式(3)~(5)で表される4価の有機基に関して、式(3)中のmは0~2(より好ましくは1~2、更に好ましくは1)の整数である。このようなmの値が前記上限を超えると製造および精製が困難となる傾向にある。また、式(4)中のnは1~2(より好ましくは1)の整数である。このようなnの値が前記上限を超えると製造および精製が困難となる傾向にある。
 また、上記一般式(5)中のAは、単結合;及び置換基を有していてもよくかつ芳香環を形成する炭素原子の数が6~30である2価の芳香族基;よりなる群から選択される1種である(なお、上記一般式(IB)中のAも同義である)。
 このようなAとして選択され得る2価の芳香族基は、置換基を有していてもよい2価の芳香族基であり、該芳香族基中に含まれる芳香環を形成する炭素の数(なお、ここにいう「芳香環を形成する炭素の数」とは、その芳香族基が炭素を含む置換基(炭化水素基など)を有している場合、その置換基中の炭素の数は含まず、芳香族基中の芳香環が有する炭素の数のみをいう。例えば、2-エチル-1,4-フェニレン基の場合、芳香環を形成する炭素の数は6となる。)が6~30のものである。このように、上記式中のAとして選択され得る2価の芳香族基は、置換基を有していてもよく、かつ、炭素数が6~30の芳香環を有する2価の基(2価の芳香族基)である。このような芳香環を形成する炭素の数が前記上限を超えると、かかる繰り返し単位を有する樹脂を利用して樹脂を調製した場合に、その樹脂の着色を十分に抑制することが困難となる傾向にある。また、透明性及び精製の容易さの観点からは、前記2価の芳香族基の芳香環を形成する炭素の数は、6~18であることがより好ましく、6~12であることが更に好ましい。
 また、このようなAとして選択され得る2価の芳香族基としては、上記炭素の数の条件を満たすものであればよく、特に制限されないが、例えば、ベンゼン、ナフタレン、ターフェニル、アントラセン、フェナントレン、トリフェニレン、ピレン、クリセン、ビフェニル、ターフェニル、クオターフェニル、キンクフェニル等の芳香族系の化合物から2つの水素原子が脱離した残基(なお、このような残基としては、脱離する水素原子の位置は特に制限されないが、例えば、1,4-フェニレン基、2,6-ナフチレン基、2,7-ナフチレン基、4,4’-ビフェニレン基、9,10-アントラセニレン基等が挙げられる。);及び該残基中の少なくとも1つの水素原子が置換基と置換した基(例えば、2,5-ジメチル-1,4-フェニレン基、2,3,5,6-テトラメチル-1,4-フェニレン基)等を適宜利用することができる。なお、このような残基において、前述のように、脱離する水素原子の位置は特に制限されず、例えば、前記残基がフェニレン基である場合においてはオルト位、メタ位、パラ位のいずれの位置であってもよい。
 このようなAとして選択され得る2価の芳香族基としては、樹脂を調製した場合に、その樹脂の透明性がより優れたものとなるといった観点から、置換基を有していてもよいフェニレン基、置換基を有していてもよいビフェニレン基、置換基を有していてもよいナフチレン基、置換基を有していてもよいアントラセニレン基、置換基を有していてもよいターフェニレン基が好ましい。すなわち、このようなAとして選択され得る2価の芳香族基としては、それぞれ置換基を有していてもよい、フェニレン基、ビフェニレン基、ナフチレン基、アントラセニレン基、ターフェニレン基が好ましい。また、このような2価の芳香族基の中でも、上記観点でより高い効果が得られることから、それぞれ置換基を有していてもよい、フェニレン基、ビフェニレン基、ナフチレン基がより好ましく、それぞれ置換基を有していてもよい、フェニレン基、ビフェニレン基が更に好ましく、置換基を有していてもよいフェニレン基が最も好ましい。
 また、このようなAとして選択され得る2価の芳香族基の中でも、樹脂を製造した際に樹脂の機械強度がより優れたものとなるといった観点からは、それぞれ置換基を有していてもよい、フェニレン基、ビフェニレン基、ナフチレン基、アントラセニレン基、ターフェニレン基であることが好ましく、それぞれ置換基を有していてもよい、フェニレン基、ビフェニレン基、ナフチレン基であることがより好ましく、それぞれ置換基を有していてもよい、フェニレン基、ビフェニレン基であることが更に好ましく、最も好ましいのは、置換基を有していてもよいフェニレン基である。
 さらに、このような2価の芳香族基の中でも、より高度な耐熱性が得られるといった観点からは、それぞれ置換基を有していてもよい、フェニレン基、ビフェニレン基、ナフチレン基、アントラセニレン基、ターフェニレン基であることが好ましく、それぞれ置換基を有していてもよい、フェニレン基、ビフェニレン基、ナフチレン基、ターフェニレン基であることがより好ましく、それぞれ置換基を有していてもよい、フェニレン基、ビフェニレン基、ナフチレン基であることが更に好ましく、最も好ましいのは、置換基を有していてもよいフェニレン基である。
 また、このようなAとして選択され得る2価の芳香族基が有していてもよい置換基としては、特に制限されず、例えば、アルキル基、アルコキシ基、ハロゲン原子等が挙げられる。このような2価の芳香族基が有してよい置換基の中でも、樹脂を製造した際に樹脂の透明性がより優れたものとなるといった観点から、炭素数が1~10のアルキル基、炭素数が1~10のアルコキシ基がより好ましい。このような置換基として好適なアルキル基及びアルコキシ基の炭素数が10を超えると、得られる樹脂の耐熱性が低下する傾向にある。また、このような置換基として好適なアルキル基及びアルコキシ基の炭素数は、樹脂を製造した際に、より高度な耐熱性が得られるという観点から、1~6であることが好ましく、1~5であることがより好ましく、1~4であることが更に好ましく、1~3であることが特に好ましい。また、このような置換基として選択され得るアルキル基及びアルコキシ基はそれぞれ直鎖状であっても分岐鎖状であってもよい。
 また、このような式(5)中のAとしては、より高度な耐熱性が得られるといった観点からは、単結合、置換基を有していてもよいフェニレン基、置換基を有していてもよいビフェニレン基、置換基を有していてもよいナフチレン基又は置換基を有していてもよいターフェニレン基がより好ましく、単結合、置換基を有していてもよいフェニレン基、置換基を有していてもよいビフェニレン基又は置換基を有していてもよいナフチレン基が更に好ましく、単結合、置換基を有していてもよいフェニレン基又は置換基を有していてもよいビフェニレン基が特に好ましく、単結合又は置換基を有していてもよいフェニレン基が最も好ましい。
 上記一般式(3)~(5)で表される4価の有機基において、記号*1~*4は該記号の付された結合手がそれぞれXに結合している4本の結合手のうちのいずれかであることを示す。なお、一般式(1-1)を例に挙げて説明すると、繰り返し単位の構造上、記号*1~*4が該記号の付された結合手のうち、記号*1~*2が付された結合手のうちのいずれかの結合手が一般式(1-1)中のXに結合しているカルボニル基(式:-C(=O)-)のうちの一つと結合する結合手となり、かつ、記号*3~*4が付された結合手のうちのいずれかの結合手が一般式(1-1)中のXに結合しているもう一つのカルボニル基と結合する結合手となる。
 また、上記一般式(1-1)中のXは4価の有機基を示す。このような4価の有機基としては特に制限されないが、テトラアミンから4つのアミノ基を除いた残基であることが好ましい。このようなテトラアミンとしては、芳香族テトラアミンであっても、あるいは、脂環式テトラアミンであってもよい。また、ここで用いるテトラアミンは、ワニスの保管性や安定性を向上させるために、-NH中の一つのHをシリル化して、トリメチルシリル基又はt-ブチルジメチルシリル基にしても良い。
 このような芳香族テトラアミンとしては特に制限されず、公知の芳香族テトラアミン(例えば、ベンゼンテトラアミン型、ジフェニルエーテル型、ジフェニルスルホン型、ジフェニルケトン型、ビフェニル型、ベンズアミド型、ベンゾエート型、ジフェニルチオエーテル型、Bis-A型(ジフェニルイソプロピリデン型)、ヘキサフルオロBis-A型、Bis-M型(ジフェニルメタン型)、Bis-C型(ジフェニルシクロヘキサン型)、Bis-F型(ジフェニルフルオレン型)、ターフェニル型(トリフェニル型)、フェニレンジオキシ型、ビス(フェニレンジオキシ)型、フルオレン型、スピロ型、シリコン系等の各種芳香族テトラアミン等)を適宜利用することができる。
 このような芳香族テトラアミンとしては、例えば、3,3’,4,4’-テトラアミノジフェニルエーテル(TAB-E)、3,3’,4,4’-テトラアミノジフェニルスルホン(TAB-S)、3,3’,4,4’-テトラアミノジフェニルケトン(TAB-K)、3,3’,4,4’-テトラアミノビフェニル(TABP)、1,2,4,5-テトラアミノベンゼン(TAB)、3,3’,4,4’-テトラアミノジフェニルメタン、3,3’,4,4’-テトラアミノジフェニルシクロヘキサン、3,3’,4,4’-テトラアミノジフェニルフルオレン、3,3’,4,4’-テトラアミノジフェニルチオエーテル、2,2-イソプロピリデンビス(3,4-ジアミノベンゼン)、2,2-ビス(3,4-ジアミノフェニル)プロパン、2,2-ヘキサフルオロイソプロピリデンビス(3,4-ジアミノベンゼン)、2,2-ビス(3,4-ジアミノフェニル)ヘキサフルオロプロパン、3,3’,4,4’-テトラアミノジフェニルエステル、3,3’,4,4’-テトラアミノジフェニルアミド、3,3’’,4,4’’-テトラアミノターフェニル、9,9-フルオレニリデンビス(3,4-ジアミノベンゼン)、9,9-ビス(3,4-ジアミノフェニル)フルオレン、9,9-フルオレニリデンビス(3,4-ジアミノベンゼン)、1,2-ビス(3,4-ジアミノフェノキシ)ベンゼン、1,3-ビス(3,4-ジアミノフェノキシ)ベンゼン、1,4-ビス(3,4-ジアミノフェノキシ)ベンゼン、4,4’-ビス(3,4-ジアミノフェノキシ)ビフェニル、2,2-ビス[4-(3,4-ジアミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3,4-ジアミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(3,4-ジアミノフェノキシ)フェニル]スルホン、2,2-ビス[3-(3,4-ジアミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(3,4-ジアミノフェノキシ)フェニル]メタン、2,2-ビス[4-(3,4-ジアミノフェノキシ)フェニル]ケトン、2,2-ビス[4-(3,4-ジアミノフェノキシ)フェニル]エーテル等が挙げられる。
 また、脂環式テトラアミンとしては、例えば、上述の各種芳香族テトラアミンの水素化物(例えば、3,3’,4,4’-テトラアミノジシクロヘキシルエーテル、3,3’,4,4’-テトラアミノジシクロヘキシルスルホン、3,3’,4,4’-テトラアミノジシクロヘキシルケトン、3,3’,4,4’-テトラアミノジシクロヘキサン、1,2,4,5-テトラアミノシクロヘキサン等)を好適なものとして挙げられる。
 このようなテトラアミンとしては、耐熱性の観点から、中でも、芳香族テトラアミンが好ましく、TAB-E、TAB-S、TAB-K、TABP、TAB、2,2-イソプロピリデンビス(3,4-ジアミノベンゼン)、2,2-ヘキサフルオロイソプロピリデンビス(3,4-ジアミノベンゼン)がより好ましく、TAB-E、TAB-S、TAB-K、TABP、TABが特に好ましい。
 また、このような式(1-1)中のXとして選択され得る4価の有機基としては、機械強度の観点から、上記一般式(6-1)~(7-1)で表される4価の基であることが好ましい。ここにおいて、式(7-1)中のZは、単結合、9,9-フルオレニリデン基、式:-O-で表されるエーテル基、-C(=O)-で表されるカルボニル基、-S(=O)-で表されるスルホキシド基、-S(=O)-で表されるスルホニル基、-CH-で表されるメチレン基、-C(CH-で表されるイソプロピリデン基、-C(CF-で表されるヘキサフルオロイソプロピリデン基、-S-で表されるチオエーテル基、-NHCO-で表されるアミド基、-COO-で表されるエステル型、-C-で表されるフェニレン基、-O-C-O-で表されるフェニレンジオキシ基、-O-C-C-O-で表されるビフェニレンジオキシ基、-O-C-Z-C-O-[式中のZは-O-で表されるエーテル基、-C(=O)-で表されるカルボニル基、-S(=O)-で表されるスルホニル基、-C(CH-で表されるイソプロピリデン基、-C(CF-で表されるヘキサフルオロイソプロピリデン基、及び、-CH-で表されるメチレン基よりなる群から選択される1種を示す]で表されるビス(フェニレンジオキシ)基、-P(=O)(C)-で表される基、及び、-N(C)-で表される基よりなる群から選択される1種である。このようなZとしては、中でも、耐熱性と機械強度を両立させるという観点からは-O-で表されるエーテル基及び単結合が好ましく、また、透明性と機械強度を両立させるという観点からは-C(=O)-で表されるカルボニル基及び-S(=O)-で表されるスルホニル基が好ましい。また、式(6-1)~(7-1)中の記号*1~*4の付された結合手は、それぞれXに結合している4本の結合手のうちのいずれかである。なお、このような一般式(6-1)~(7-1)で表される4価の基は、上述のテトラアミンの中から適宜選択したもの(例えばTAB-E、TAB-S、TAB-K、TABP、TAB等)を、繰り返し単位の製造時に利用することで、そのテトラアミンから4つのアミノ基を除いた残基として、Xの位置に導入することができる。
 また、上記一般式(1-1)で表される繰り返し単位(A)は、例えば、前記6員環の脂環構造を有するテトラカルボン酸二無水物と、前記テトラアミンとを反応(重合)させることで、樹脂中に、より効率よく導入することが可能である。そのため、一般式(1-1)で表される繰り返し単位(A)を含む樹脂としては、前記6員環の脂環構造を有するテトラカルボン酸二無水物を含む第一のモノマーと、前記テトラアミンを含む第二のモノマーとの重合物であることが好ましい。
 また、上記一般式(1-2)中のXは3価の有機基を示す。このような3価の有機基としては特に制限されないが、トリアミンから3つのアミノ基を除いた残基であることが好ましい。このようなトリアミンとしては、芳香族トリアミンであっても、あるいは、脂環式トリアミンであってもよい。また、ここで用いるトリアミンは、ワニスの保管性や安定性を向上させるために、-NH中の一つのHをシリル化して、トリメチルシリル基又はt-ブチルジメチルシリル基にしても良い。
 このような芳香族トリアミンとしては特に制限されず、公知の芳香族トリアミン(例えば、ベンゼントリアミン型、ジフェニルエーテル型、ジフェニルスルホン型、ジフェニルケトン型、ビフェニル型、ベンズアミド型、ベンゾエート型、ジフェニルチオエーテル型、Bis-A型(ジフェニルイソプロピリデン型)、ヘキサフルオロBis-A型、Bis-M型(ジフェニルメタン型)、Bis-C型(ジフェニルシクロヘキサン型)、Bis-F型(ジフェニルフルオレン型)、ターフェニル型(トリフェニル型)、フェニレンジオキシ型、ビス(フェニレンジオキシ)型、フルオレン型、スピロ型、シリコン系等の各種芳香族トリアミン等)を適宜利用することができる。
 このような芳香族トリアミンとしては、例えば、3,4,4’-トリアミノジフェニルエーテル(TrAB-E)、3,4,4’-トリアミノジフェニルスルホン(TrAB-S)、3,4,4’-トリアミノジフェニルケトン(TrAB-K)、3,4,4’-トリアミノビフェニル(TrABP)、1,2,4-トリアミノベンゼン(TrAB)、3,4,4’-トリアミノジフェニルメタン、3,4,4’-トリアミノジフェニルシクロヘキサン、3,4,4’-トリアミノジフェニルフルオレン、3,4,4’-トリアミノジフェニルチオエーテル、3,4,4’-トリアミノジフェニルエステル、3,4,4’-トリアミノジフェニルアミド、3,4,4’’-トリアミノターフェニル等が挙げられる。
 また、脂環式トリアミンとしては、例えば、上述の各種芳香族トリアミンの水素化物(例えば、3,4,4’-トリアミノジシクロヘキシルエーテル、3,4,4’-トリアミノジシクロヘキシルスルホン、3,4,4’-トリアミノジシクロヘキシルケトン、3,4,4’-トリアミノジシクロヘキサン、1,2,4-トリアミノシクロヘキサン等)を好適なものとして挙げられる。
 このようなトリアミンとしては、耐熱性の観点から、中でも、芳香族トリアミンが好ましく、TrAB-E、TrAB-S、TrAB-K、TrABP、TrABがより好ましく、TrAB-E、TrAB-S、TrAB-Kが特に好ましい。
 また、このような式(1-2)中のXとして選択され得る3価の有機基としては、機械強度の観点から、上記一般式(6-2)~(7-2)で表される3価の基であることが好ましい。ここにおいて、式(7-2)中のZは、単結合、9,9-フルオレニリデン基、式:-O-で表されるエーテル基、-C(=O)-で表されるカルボニル基、-S(=O)-で表されるスルホキシド基、-S(=O)-で表されるスルホニル基、-CH-で表されるメチレン基、-C(CH-で表されるイソプロピリデン基、-C(CF-で表されるヘキサフルオロイソプロピリデン基、-S-で表されるチオエーテル基、-NHCO-で表されるアミド基、-COO-で表されるエステル型、-C-で表されるフェニレン基、-O-C-O-で表されるフェニレンジオキシ基、-O-C-C-O-で表されるビフェニレンジオキシ基、-O-C-Z-C-O-[式中のZは-O-で表されるエーテル基、-C(=O)-で表されるカルボニル基、-S(=O)-で表されるスルホニル基、-C(CH-で表されるイソプロピリデン基、-C(CF-で表されるヘキサフルオロイソプロピリデン基、及び、-CH-で表されるメチレン基よりなる群から選択される1種を示す]で表されるビス(フェニレンジオキシ)基、-P(=O)(C)-で表される基、及び、-N(C)-で表される基よりなる群から選択される1種である。このようなZとしては、中でも、耐熱性と機械強度を両立させるという観点からは-O-で表されるエーテル基及び単結合が好ましく、また、透明性と機械強度を両立させるという観点からは-C(=O)-で表されるカルボニル基及び-S(=O)-で表されるスルホニル基が好ましい。また、式(6-2)~(7-2)中の記号*1~*3の付された結合手は、それぞれXに結合している3本の結合手のうちのいずれかである。なお、このような一般式(6-2)~(7-2)で表される3価の基は、上述のトリアミンの中から適宜選択したもの(例えばTrAB-E、TrAB-S、TrAB-K、TrABP、TrAB等)を、繰り返し単位の製造時に利用することで、そのトリアミンから3つのアミノ基を除いた残基として、Xの位置に導入することが可能である。
 また、上記一般式(1-2)で表される繰り返し単位(A’)は、例えば、前記6員環の脂環構造を有するテトラカルボン酸二無水物と、前記トリアミンとを反応(重合)させることで、樹脂中により効率よく導入することが可能である。そのため、一般式(1-2)で表される繰り返し単位(A’)を含む樹脂としては、前記6員環の脂環構造を有するテトラカルボン酸二無水物を含む第一のモノマーと、前記トリアミンを含む第二のモノマーとの重合物であることが好ましい。
 また、本発明の樹脂においては、上記一般式(2)で表されるイミド構造を有する繰り返し単位(以下、場合により、かかるイミド構造を有する繰り返し単位を、便宜上、単に「繰り返し単位(B)」と称する。)を更に含むことが好ましい。
 なお、本発明の樹脂が、繰り返し単位(A)及び(A’)からなる群から選択される少なくとも1種の繰り返し単位とともに繰り返し単位(B)を含む樹脂である場合、その製造時において、繰り返し単位(A)及び(A’)からなる群から選択される少なくとも1種の繰り返し単位の構造中に含まれる、窒素原子を2つ含む環状の構造部分(特に好ましくはイミダゾール構造の構造部分:なお、X、Xがそれぞれ芳香族である場合には、その構造部分をそれぞれイミダゾール構造とすることが可能である)が、繰り返し単位(B)を製造する際(熱イミド化の際)に自己触媒として作用して、イミド構造を有する繰り返し単位(B)を形成する反応をより促進させることができ、かかる繰り返し単位(B)を含む共重合物(繰り返し単位(A)及び(A’)からなる群から選択される少なくとも1種の繰り返し単位を含む本発明の樹脂:反応物)の分子量をより大きくすることが可能であるため、繰り返し単位(B)のみからなる樹脂を製造する場合と比較して、繰り返し単位(B)を含む樹脂の強度や耐熱性といった特性をより高度なものとすることができ、特に引張り応力に対してより強靭な膜を得ることが可能となるものと本発明者らは推察する。このように、繰り返し単位(A)及び/又は(A’)と、繰り返し単位(B)とを含む樹脂(共重合物)においては、その共重合物の製造時に形成された繰り返し単位(A)及び/又は(A’)の構造によって繰り返し単位(B)を形成する反応を促進させることができるため、繰り返し単位(A)及び(A’)の総量(含有量)が微量であっても、繰り返し単位(B)のみからなる樹脂と比較して、より高度な特性を有する樹脂を製造することが可能である。
 このような一般式(2)中のXは6員環の脂環構造を有する4価の有機基であり、一般式(1-1)中のXと同義である(その好適なものも同様である)。
 一般式(2)中のXは炭素数6~50のアリーレン基である。このようなアリーレン基の炭素数は6~40であることが好ましく、6~30であることがより好ましく、12~20であることが更に好ましい。このような炭素数が前記下限未満では、樹脂を調製した場合に樹脂の耐熱性が低下する傾向にあり、他方、前記上限を超えると、樹脂を調製した場合に、その樹脂の透明性が低下する傾向にある。
 また、このような一般式(2)中のXとしては、より高度な耐熱性と機械的強度が得られるといった観点から、下記一般式(a)~(d):
Figure JPOXMLDOC01-appb-C000026
[式(c)中、R11は、水素原子、フッ素原子、メチル基、メトキシ基、エチル基、水酸基、及びトリフルオロメチル基よりなる群から選択される1種を示し、式(d)中、Qは、9,9-フルオレニリデン基;式:-O-、-S-、-CO-、-CONH-、-NHCO-、-SO-、-SO-、-C(CF-、-O-C-O-、-C(CH-、-CH-、-O-C-C(CH-C-O-、-O-C-C(CF-C-O-、-O-C-SO-C-O-、-O-C-CO-C-O-、-C(CH-C-C(CH-、-O-C-C-O-、-CONH-C-NHCO-、-NHCO-C-CONH-、-C-及び、-O-C-O-、-O-C-O-C-O-、-COO-、-OCO-、-NH-CO-NH-、-N(Ph)-、-P(=O)(Ph)-で表される基;1,1-シクロヘキシリデン基;1,1-シクロペンチリデン基;並びに、下記一般式(e):
Figure JPOXMLDOC01-appb-C000027
(式(e)中、Raはそれぞれ独立に炭素数1~10のアルキル基、フェニル基及びトリル基のうちのいずれか1種を示し、yは1~100の整数を示す。)
で表される基;からなる群から選択される1種を示す。]
で表される基のうちの少なくとも1種であることが好ましい。
 このような一般式(c)中のR11としては、耐熱性の観点から、水素原子、フッ素原子、メチル基又はエチル基がより好ましく、水素原子が特に好ましい。さらに、一般式(c)中のR11としては、線膨張係数の観点からは、メチル基、水酸基、又、トリフルオロメチル基であることがより好ましい。
 また、上記一般式(d)中のQとして選択され得る上記一般式(e)で表される基において、Raはそれぞれ独立に炭素数1~10のアルキル基、フェニル基及びトリル基のうちのいずれか1種である。このようなアルキル基の炭素数が前記上限を超えると、樹脂を調製した場合に、その樹脂の耐熱性や透明性が低下する傾向にある。このようなRaとしては、メチル基、エチル基、プロピル基、イソプロピル基、フェニル基、トリル基であることが好ましく、メチル基、エチル基であることがより好ましく、メチル基が更に好ましい。また、上記一般式(e)中のyは1~100の整数を示し、3~50であることがより好ましく、5~25であることが更に好ましい。なお、yが前記下限未満では機械的強度が低下する傾向にあり、他方、前記上限を超えると樹脂を調製した場合に、その樹脂の耐熱性や透明性が低下する傾向にある。
 また、上記一般式(d)中のQとしては、耐熱性と透明性と機械的強度とを十分な水準でよりバランスよく有する硬化物を得ることが可能となるといった観点から、9,9-フルオレニリデン基、式:-CONH-、-NHCO-、-O-C-O-、-O-、-C(CH-、-C-、-O-C-SO-C-O-、-O-C-CO-C-O-、-CH-、-O-C-C-O-、-O-C-C(CH-C-O-、-SO-、-SO-、-OCO-、又は、-COO-で表される基、又は、1,1-シクロヘキシリデン基が好ましく、9,9-フルオレニリデン基、又は、式:-CONH-、-NHCO-、-CH-、-O-C-O-、-O-C-C-O-、-SO-、-OCO-,-COO-、若しくは-O-で表される基が特に好ましく、9,9-フルオレニリデン基、又は、式:-CONH-、-SO-、-OCO-、-COO-、-CH-又は-O-で表される基が最も好ましい。さらに、上記一般式(d)中のQとしては、接着性やレーザ剥離性の観点からは、上記一般式(e)で表される基であることが好ましく、線膨張係数と耐熱性の観点からは、式:-OCO-、-COO-、-CONH-、-NHCO-で表される基が好ましい。
 また、このようなXとしては、耐熱性と透明性と機械的強度とを十分な水準でよりバランスよく有する樹脂を得ることが可能となるといった観点から、4,4’-ジアミノベンズアニリド(DABAN)、4,4’-ジアミノジフェニルエーテル(DDE)、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、9,9’-ビス(4-アミノフェニル)フルオレン(FDA)、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、p-ジアミノベンゼン(PPD)、p-ジアミノトルエン、p-ジアミノキシレン、p-ジアミノトリメチルベンゼン、p-ジアミノテトラメチルベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル(別名:m-トリジン)、3,3’-ジメチル-4,4’-ジアミノビフェニル(別名:o-トリジン)、3,3’-ジメトキシ-4,4’-ジアミノビフェニル(別名:ジアニシジン)、4,4’-ジフェニルジアミノメタン(DDM)、4-アミノフェニル―4-アミノ安息香酸(BAAB)、4,4’-ビス(4-アミノベンズアミド)-3,3’-ジヒドロキシビフェニル(BABB)、3,3’-ジアミノジフェニルスルホン(3,3’-DDS)及び、4,4’-ジアミノジフェニルスルホン(4,4’-DDS)からなる群から選択される少なくとも1種の芳香族ジアミンから2つのアミノ基を除いた2価の基(アリーレン基)が好ましく、4,4’-ジアミノベンズアニリド(DABAN)、4,4’-ジアミノジフェニルエーテル(DDE)、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、9,9’-ビス(4-アミノフェニル)フルオレン(FDA)、m-トリジン(m-Tol)、4,4‘-ジアミノ-3,3’-ジヒドロキシビフェニル(DAHB)、p-ジアミノベンゼン(PPD)及び4-アミノフェニル―4-アミノ安息香酸(BAAB)からなる群から選択される少なくとも1種の芳香族ジアミンから2つのアミノ基を除いた2価の基(アリーレン基)であることがより好ましく、4,4’-ジアミノベンズアニリド(DABAN)、4,4’-ジアミノジフェニルエーテル(DDE)、及び、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)からなる群から選択される少なくとも1種の芳香族ジアミンから2つのアミノ基を除いた2価の基(アリーレン基)であることが更に好ましい。
 このような一般式(2)で表される繰り返し単位(B)は、例えば、前記6員環の脂環構造を有するテトラカルボン酸二無水物と、ジアミンとを反応(重合)させることで、樹脂中に、より効率よく導入することが可能である。このような6員環の脂環構造を有するテトラカルボン酸二無水物は、前述のものと同様のものである。
 また、一般式(2)で表される繰り返し単位(B)を樹脂中に導入するために利用可能なジアミンとしては、特に制限されず、脂肪族ジアミンであってもあるいは芳香族ジアミンであってもよい。このようなジアミンとしては、耐熱性、及び、重合方法の簡便さの観点から、芳香族ジアミンが好ましい。また、このような芳香族ジアミンとしては、下記一般式(iv):
   HN-X-NH    (iv)
[式(iv)中、Xは炭素数6~50のアリーレン基を示す。]
で表される芳香族ジアミンがより好ましい。また、ここで用いるジアミンは、ワニスの保管性や安定性を向上させるために、-NH中の一つのHをシリル化して、トリメチルシリル基又はt-ブチルジメチルシリル基にしても良い。
 このような式:HN-X-NHで表される芳香族ジアミンとしては、特に制限されず、公知のものを適宜利用でき、市販のものを適宜用いてもよい。このような芳香族ジアミンとしては、例えば、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエタン、3,3’-ジアミノジフェニルエタン、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2-ビス(4-アミノフェノキシフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(3-フルオロ-4-アミノフェニル)フルオレン、9,9-ビス(3-クロロ-4-アミノフェニル)フルオレン、9,9-ビス(3-ブロモ-4-アミノフェニル)フルオレン、1,1-ビス(4-アミノフェニル)シクロヘキサン、1,1-ビス(4-アミノフェニル)シクロペンタン、p-ジアミノベンゼン、m-ジアミノベンゼン、o-ジアミノベンゼン、4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ジメチルビフェニル、4,4’-ジアミノ-3,3’-ジメチルビフェニル,3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、3,4’-ジアミノビフェニル、2,6-ジアミノナフタレン、1,4-ジアミノナフタレン、1,5-ジアミノナフタレン、4,4’-[1,3-フェニレンビス(1-メチル-エチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチル-エチリデン)]ビスアニリン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノベンズアニリド、3,4’-ジアミノベンズアニリド、9,9’-ビス(4-アミノフェニル)フルオレン、o-トリジンスルホン、2,3,5,6-テトラメチル-1,4-フェニレンジアミン、3,3’,5,5’-テトラメチルベンジジン、1,5-ビス(4-アミノフェノキシ)ペンタン、2,2-ビス(4-アミノフェノキシフェニル)ヘキサフルオロプロパン、2,2’-ビス(トリフルオロメチル)ベンジジン、4-アミノフェニル―4-アミノ安息香酸、4,4’-ビス(4-アミノベンズアミド)-3,3’-ジヒドロキシビフェニル等が挙げられる。また、このような芳香族ジアミンは1種を単独であるいは2種以上を組み合わせて利用してもよい。
 また、芳香族ジアミンを2種類以上組み合わせて利用する場合には、4,4’-ジアミノベンズアニリド(DABAN)、4,4’-ジアミノジフェニルエーテル(DDE)、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、9,9’-ビス(4-アミノフェニル)フルオレン(FDA)、p-ジアミノベンゼン(PPD)、2,2’-ジメチル-4,4’-ジアミノビフェニル(別名:m-トリジン)、4,4’-ジフェニルジアミノメタン(DDM)、4-アミノフェニル―4-アミノ安息香酸(BAAB)、4,4’-ビス(4-アミノベンズアミド)-3,3’-ジヒドロキシビフェニル(BABB)、3,3’-ジアミノジフェニルスルホン(3,3’-DDS)及び4,4’-ジアミノジフェニルスルホン(4,4’-DDS)の中から選択される少なくとも2種を利用することが好ましく、4,4’-ジアミノベンズアニリド(DABAN)、4,4’-ジアミノジフェニルエーテル(DDE)、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、9,9’-ビス(4-アミノフェニル)フルオレン(FDA)、p-ジアミノベンゼン(PPD)、4-アミノフェニル―4-アミノ安息香酸(BAAB)、3,3’-ジアミノジフェニルスルホン(3,3’-DDS)及び4,4’-ジアミノジフェニルスルホン(4,4’-DDS)の中から選択される少なくとも2種を利用することが好ましい。また、芳香族ジアミンを2種類以上組み合わせて利用する場合、4,4’-ジアミノベンズアニリド(DABAN)と4,4’-ジアミノジフェニルエーテル(DDE)の組み合わせ、4,4’-ジアミノベンズアニリド(DABAN)と2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)の組み合わせ、4,4’-ジアミノベンズアニリド(DABAN)とp-ジアミノベンゼン(PPD)の組み合わせ、3,3’-ジアミノジフェニルスルホン(3,3’-DDS)と4,4’-ジアミノジフェニルスルホン(4,4’-DDS)の組み合わせ、4-アミノフェニル―4-アミノ安息香酸(BAAB)と2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)の組み合わせ、及び、4-アミノフェニル―4-アミノ安息香酸(BAAB)とp-ジアミノベンゼン(PPD)の組み合わせの中から選択される少なくとも1つの組み合わせを含むことがより好ましい。
 なお、上述のように、前記繰り返し単位(B)は、例えば、前記6員環の脂環構造を有するテトラカルボン酸二無水物と、前記ジアミンとを反応(重合)させることで、樹脂中に、より効率よく導入することが可能である。そのため、前記繰り返し単位(B)を含む本発明の樹脂としては、前記6員環の脂環構造を有するテトラカルボン酸二無水物を含む第一のモノマー(場合により前記6員環の脂環構造を有するテトラカルボン酸二無水物とともに他のテトラカルボン酸二無水物等を含んでいてもよい)と、テトラアミン及び/又はトリアミン、並びに、ジアミンを含む第二のモノマー(アミン成分)との重合物であることが好ましい。
 また、本発明の樹脂において、前記繰り返し単位(A)及び前記繰り返し単位(A’)の総量(含有量)は、特に制限されず、その樹脂中に含有される全繰り返し単位に対するモル比を基準として3~100モル%であることが好ましく、5~50モル%であることがより好ましい。このようなモル比が前記下限未満では、得られる樹脂に繰り返し単位(A)及び/又は(A’)に由来する特性を必ずしも十分に付与することができなくなる傾向にある。なお、前記繰り返し単位(A)及び前記繰り返し単位(A’)からなる群から選択される少なくとも1種の繰り返し単位によれば、いわゆるラダー構造を形成することが可能であり、かかる構造に基づいて、その繰り返し単位を含む樹脂により高度な耐熱性を付与することが可能なものである。
 また、本発明の樹脂は、前述のように前記繰り返し単位(B)を更に含むことが好ましい。このように、本発明の樹脂は、前記繰り返し単位(A)及び(A’)からなる群から選択される少なくとも1種の繰り返し単位と、前記繰り返し単位(B)とを含有する共重合体であることが好ましい。このように繰り返し単位(B)を含有する場合、前記繰り返し単位(A)、前記繰り返し単位(A’)及び前記繰り返し単位(B)の総量(合計量)が、全繰り返し単位に対して20~100モル%(更に好ましくは30~100モル%、より好ましくは40~100モル%、更に好ましくは50~100モル%、特に好ましくは60~100モル%)であることが好ましい。また、このような繰り返し単位(A)、前記繰り返し単位(A’)及び前記繰り返し単位(B)の総量(合計量)に関して、前記数値範囲の下限値は70モル%であることがより好ましく、80モル%であることが更に好ましく、90モル%であることが最も好ましい。このような繰り返し単位の総量(合計量)が前記下限未満では、高度な耐熱性を付与できない傾向にある。
 また、本発明の樹脂は、前記繰り返し単位(A)及び(A’)からなる群から選択される少なくとも1種の繰り返し単位と、前記繰り返し単位(B)とを含有する共重合体である場合、前記繰り返し単位(B)の含有量は、前記繰り返し単位(A)、前記繰り返し単位(A’)及び前記繰り返し単位(B)の総量(合計量)に対して1~99モル%であることが好ましく、5~95モル%であることがより好ましく、10~90モル%であることが特に好ましい。前記繰り返し単位(A)、前記繰り返し単位(A’)及び前記繰り返し単位(B)の総量に対する繰り返し単位(B)の含有量(モル比)が前記下限未満では透明性と寸法安定性の点で、より高度な特性を得ることが困難となる傾向にあり、他方、前記上限を超えると高度な耐熱性と機械特性の点で、より高度な特性を得ることが困難となる傾向にある。
 また、このような本発明の樹脂は、前記繰り返し単位(A)及び(A’)からなる群から選択される少なくとも1種の繰り返し単位を含むものであればよく、特に制限されず、例えば、前記繰り返し単位(A)とともに前記繰り返し単位(A’)を含んでいるものであってもよく、また、前記繰り返し単位(A)及び前記繰り返し単位(A’)とともに、前記繰り返し単位(B)を含んでいるものであってもよい。さらに、本発明の樹脂は、前記繰り返し単位(A)、前記繰り返し単位(A’)及び前記繰り返し単位(B)以外の他の繰り返し単位を含んでいてもよい。このような他の繰り返し単位としては、例えば、前記6員環の脂環構造を有するテトラカルボン酸二無水物以外の他のテトラカルボン酸二無水物と、ジアミン、トリアミン及びテトラアミンからなる群から選択される少なくとも1種との反応により形成することが可能な繰り返し単位;前記6員環の脂環構造を有するテトラカルボン酸二無水物と、多官能アルコール、多官能フェノール、多官能チオール、多官能チオフェノールとの反応により形成することが可能な繰り返し単位;等を利用してもよい。このような他のテトラカルボン酸二無水物としては、特に制限されるものではないが、例えば、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’-テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4-フランテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジフタル酸二無水物、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p-フェニレン-ビス(トリフェニルフタル酸)二無水物、m-フェニレン-ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルエーテル二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルメタン二無水物などの芳香族テトラカルボン酸二無水物;ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、シクロヘプタンテトラカルボン酸二無水物、シクロオクタンテトラカルボン酸二無水物、シクロノナンテトラカルボン酸二無水物、シクロデカンテトラカルボン酸二無水物、meso-ブタン-1,2,3,4-テトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、3-(カルボキシメチル)-1,2,4-シクロペンタントリカルボン酸1,4:2,3-二無水物 、5―(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、4―(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、トリシクロ[6.4.0.02,7]ドデカン-1,8:2,7-テトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物のトランス異性体、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物のシス異性体、シクロブタン-1,2,3,4-テトラカルボン酸二無水物のトランス異性体、シクロブタン-1,2,3,4-テトラカルボン酸二無水物のシス異性体などの脂肪族または脂環式テトラカルボン酸二無水物が挙げられる。
 また、前記多官能アルコール、前記多官能フェノール、前記多官能チオール、前記多官能チオフェノールとしては、特に制限されず、例えば、脂肪族ジオール、脂環式ジオール、ジフェノール、ビスフェノール、脂肪族ジチオール、脂環式ジチオール、ジチオフェノール、ビスチオフェノール等を用いてもよい。
 なお、前記繰り返し単位(A)及び前記繰り返し単位(A’)からなる群から選択される少なくとも1種の繰り返し単位は、前述の前記6員環の脂環構造を有するテトラカルボン酸二無水物と前述のアミン成分との反応を利用して形成する以外にも、例えば、前記6員環の脂環構造を有するテトラカルボン酸二無水物の誘導体(変性物)である、ジエステルジカルボン酸、及び、ジエステルジカルボン酸ジクロライドのうちの少なくとも1種を利用して、該変性物と、前記トリアミン及び前記テトラアミンから選択される少なくとも1種のアミン成分とを反応させて形成することもできる。更に、前記前記繰り返し単位(A)及び前記繰り返し単位(A’)からなる群から選択される少なくとも1種の繰り返し単位は、前記6員環の脂環構造を有するテトラカルボン酸二無水物と、前記トリアミンの誘導体及び前記テトラアミンの誘導体から選択される少なくとも1種のアミン成分の等価体とを反応させて形成することもできる。
 前記6員環の脂環構造を有するテトラカルボン酸二無水物の誘導体(変性物)である、ジエステルジカルボン酸、及び、ジエステルジカルボン酸ジクロライドに関して、例えば、前記誘導体としてジエステルジカルボン酸を調製する場合には、前記6員環の脂環構造を有するテトラカルボン酸二無水物を任意のアルコールと反応させることで、対応するジエステルジカルボン酸を得る方法等を採用でき、また、前記誘導体としてジエステルジカルボン酸ジクロライドを調製する場合には、前記6員環の脂環構造を有するテトラカルボン酸二無水物を任意のアルコールと反応させてジエステルジカルボン酸を得た後に、該ジエステルジカルボン酸と塩素化試薬(チオニルクロライド、オキサリルクロライドなど)とを反応させてジエステルジカルボン酸ジクロライドを得る方法等を採用してもよい。
 さらに、前記トリアミンの誘導体及び前記テトラアミンの誘導体としては、前述のトリアミン及びテトラアミンからなる群から選択される少なくとも1種の化合物をシリル化剤と反応させて得られる、シリル化されたテトラアミン及び/又はシリル化されたトリアミン等が挙げられる。例えば、前述のトリアミン中の-NH基のうちの一つのHをシリル化して、トリメチルシリル基又はt-ブチルジメチルシリル基にしたもの等が挙げられる。また、このようなシリル化されたテトラアミンとしては、例えば、TAB-E、TAB-S、TAB-K、TABP、TAB等のテトラシリル誘導体が挙げられ、また、このようなシリル化されたトリアミンとしては、例えば、TrAB-E、TrAB-S、TrAB-K、TrABP、TrAB等のトリシリル誘導体が挙げられる。このようなシリル化剤としては、例えば、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザン、トリメチルシリルクロリドなどが挙げられる。このようなシリル化アミンを製造するための方法も特に制限されず、公知の方法を適宜採用することができる。また、このようなシリル化アミンとしては市販品を適宜利用してもよい。
 また、前記繰り返し単位(B)は、前述の前記6員環の脂環構造を有するテトラカルボン酸二無水物と、前述のジアミンとの反応を利用して形成する以外にも、例えば、上記6員環の脂環構造を有するテトラカルボン酸二無水物の誘導体(変性物)である、ジエステルジカルボン酸、及び、ジエステルジカルボン酸ジクロライドも利用して、該変性物と、前記ジアミンから選択される少なくとも1種のアミン成分とを反応させて形成することもできる。更に、前記繰り返し単位(B)は、前記6員環の脂環構造を有するテトラカルボン酸二無水物と、前記ジアミンの誘導体とを反応させて形成することもできる。
 前記ジアミンの誘導体としては、前述のジアミンをシリル化剤と反応させて得られる、シリル化されたジアミン等が挙げられ、例えば、式:HN-X-NHで表される芳香族ジアミンとシリル化剤とを反応させて得られるシリル化されたジアミンが挙げられる。このようなシリル化されたジアミンとしては、例えば、DDE、TFMB、FDA、PPD、m-トリジン等のジシリル誘導体が挙げられる。このようなシリル化剤としては、例えば、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザン、トリメチルシリルクロリドなどが挙げられる。このようなシリル化されたジアミンを製造するための方法も特に制限されず、公知の方法を適宜採用することができる。また、このようなシリル化されたジアミンとしては市販品を適宜利用してもよい。
 また、本発明の樹脂としては、ガラス転移温度(Tg)が300℃以上のものが好ましく、300℃~550℃のものがより好ましく、350~500℃のものが更に好ましい。このようなガラス転移温度(Tg)が前記下限未満では、高度な水準の耐熱性を達成することが困難となる傾向にあり、他方、前記上限を超えるとそのような特性を有する樹脂を製造することが困難となる傾向にある。なお、このようなガラス転移温度(Tg)は、熱機械的分析装置(リガク製の商品名「TMA8311」)を使用して引張モードにより測定することができる。すなわち、縦20mm、横5mmの大きさの樹脂のフィルム(かかるフィルムの厚みは測定値に影響するものではないため特に制限されるものではないが、5~100μmとすることが好ましい)を形成して測定試料とし、窒素雰囲気下、引張りモード(49mN)、昇温速度5℃/分の条件を採用して測定を行い、ガラス転移に起因するTMA曲線の変曲点に対し、その前後の曲線を外挿することにより求めることができる。
 また、このような樹脂としては、5%重量減少温度が450℃以上のものが好ましく、460~550℃のものがより好ましく、470~530℃のものが更に好ましい。このような5%重量減少温度が前記下限未満では十分な耐熱性が達成困難となる傾向にあり、他方、前記上限を超えると、そのような特性を有する樹脂を製造することが困難となる傾向にある。なお、このような5%重量減少温度は、窒素ガス雰囲気下、窒素ガスを流しながら室温(例えば、30℃)から徐々に加熱していき、用いた試料の重量が5%減少する温度を測定することにより求めることができる。
 さらに、このような樹脂としては、軟化温度が300℃以上のものが好ましく、350~550℃のものがより好ましく、400~500℃のものが更に好ましい。このような軟化温度が前記下限未満では十分な耐熱性が達成困難となる傾向にあり、他方、前記上限を超えるとそのような特性を有する樹脂を製造することが困難となる傾向にある。なお、このような軟化温度は、熱機械的分析装置(リガク製の商品名「TMA8311」)を使用してペネトレーションモードにより測定することができる。また、測定に際しては、試料のサイズ(縦、横、厚み等)は測定値に影響するものではないため、用いる熱機械的分析装置(リガク製の商品名「TMA8311」)の治具に装着可能なサイズに試料のサイズを適宜調整すればよい。
 このような樹脂は、破断点伸度が3%以上であることが好ましく、5%以上であることがより好ましく、7%以上であることが特に好ましい。このような破断点伸度が前記下限未満では靱性が低く、機械的に脆い傾向がある。また、本発明の樹脂は、引張強度が50MPa以上であることが好ましく、70MPa以上であることがより好ましく、100MPa以上であることが特に好ましい。このような引張強度が前記下限未満では、より高度な靱性を有するフィルムを得ることができなくなる。なお、このような樹脂の引張強度の上限値としては、特に制限されないが、1000MPa以下であることが好ましい。このような引張強度が前記上限値を超えた値となると加工が困難となる傾向にある。なお、このような引張強度及び破断伸びの値は、JIS K7162(1994年発行)に準拠した試験により求めることができ、例えば、以下のようにして求められる値を採用することができる。すなわち、先ず、厚みを10μmとする以外はJIS K7139(2009年発行)に記載されているタイプA22(縮尺試験片)の規格に沿った試験片を準備し、電気機械式万能材料試験機(例えば、INSTRON製の型番「5943」)を用いて、前記測定試料を掴み具間の幅が57mm、掴み部分の幅が10mm(試験片の端部の全幅)となるようにして配置した後、ロードセル:1.0kN、試験速度:5mm/分の条件で前記測定試料を引っ張る引張試験を行って求められる引張強度(破断時の応力[単位:MPa])及び破断伸びの値(単位:%)の値を採用することができる。
 また、このような樹脂は、線膨張係数(CTE)が-50~100ppm/Kであることが好ましく、0~50ppm/Kであることがより好ましい。このような線膨張係数が前記上限を超えると、線膨張係数の範囲が5~20ppm/Kである金属や無機物と組合せて複合化した場合に熱履歴で剥がれが生じ易くなってしまう傾向にある。また、前記線膨張係数が、前記下限未満においても金属や無機物と組合せて複合化した場合に熱履歴で剥がれが生じ易くなってしまう傾向にある。このような樹脂の線膨張係数の測定方法としては、以下に記載の方法を採用する。すなわち、先ず、前記樹脂からなる縦20mm、横5mmの大きさのフィルム(かかるフィルムの厚みは測定値に影響するものではないため特に制限されるものではないが、5~100μmとすることが好ましい)を形成して測定試料とし、測定装置として熱機械的分析装置(リガク製の商品名「TMA8311」)を利用して、窒素雰囲気下、引張りモード(49mN)、窒素雰囲気下、引張りモード(49mN)、昇温速度5℃/分の条件を採用して、50℃~200℃における前記試料の縦方向の長さの変化を測定して、50℃~200℃の温度範囲における1℃あたりの長さの変化の平均値を求めることにより得られる値を採用する。
 また、このような樹脂としては、フィルムを形成した場合に透明性が十分に高いものであることが好ましく、全光線透過率が80%以上(更に好ましくは83%以上、特に好ましくは85%以上)であるものがより好ましい。このような全光線透過率は、樹脂中の繰り返し単位の有機基の種類やその含有量等を適宜選択することにより容易に達成することができる。また、このような樹脂としては、より高度な無色透明性を得るといった観点から、ヘイズ(濁度)が5~0(更に好ましくは4~0、特に好ましくは3~0)であるものがより好ましい。このようなヘイズの値が前記上限を超えると、より高度な水準の無色透明性を達成することが困難となる傾向にある。さらに、このような樹脂としては、より高度な無色透明性を得るといった観点から、黄色度(YI)が10~0(更に好ましくは8~0、特に好ましくは6~0)であるものがより好ましい。このような黄色度が前記上限を超えると、より高度な水準の無色透明性を達成することが困難となる傾向にある。なお、このような全光線透過率、ヘイズ(濁度)及び黄色度(YI)は、測定装置として、日本電色工業株式会社製の商品名「ヘーズメーターNDH-5000」又は日本電色工業株式会社製の商品名「分光色彩計SD6000」を用いて(日本電色工業株式会社製の商品名「ヘーズメーターNDH-5000」で全光線透過率とヘイズとを測定し、日本電色工業株式会社製の商品名「分光色彩計SD6000」で黄色度を測定する。)、前記樹脂からなる厚みが10μmのフィルムを測定用の試料として用いて測定した値を採用することができる。また、測定試料の縦、横の大きさは、前記測定装置の測定部位に配置できるサイズ(5cm角以上)であればよく、縦、横の大きさは適宜変更してもよい。なお、このような全光線透過率は、JIS K7361-1(1997年発行)に準拠した測定を行うことにより求め、ヘイズ(濁度)は、JIS K7136(2000年発行)に準拠した測定を行うことにより求め、黄色度(YI)はASTM E313-05(2005年発行)に準拠した測定を行うことにより求める。
 また、このような樹脂中には、本発明の効果を損なわない範囲において、樹脂の用途に応じて利用する各種添加剤や、樹脂の製造時に利用した成分(例えば、触媒等)、他の樹脂、等を含んでいてもよく、例えば、イミド化促進触媒、化学イミド化剤、酸化防止剤(フェノール系、ホスファイト系、チオエーテル系など)、紫外線吸収剤、ヒンダードアミン系光安定剤、核剤、樹脂添加剤(ナノシリカ等の無機化合物からなるフィラー、タルク、ガラス繊維、アルミナ繊維など)、カップリング剤(シランカップリング剤等)、加工性改良剤、滑材、染料、顔料、難燃材、消泡剤、レベリング剤、レオロジーコントロール剤(流動補助剤)、剥離剤、プライマー等を含有していてもよい。なお、他の樹脂を含有させる場合(添加する場合)、例えば、セルロースナノファイバー、ナイロン、ポリカーボネート、ポリエステル、ポリアミド、ポリケトン、ポリエーテルケトン、ポリスルホン、ポリエーテルスルホン、PMMA、ポリエチレン、ポリプロピレン、ポリスチレン、テフロン(登録商標)、PPO、PPS、COC、COP、ポリアセタール、トリアセチルセルロース(TAC)等の他の樹脂を使用してもよい。
 次に、本発明の樹脂前駆体について説明する。本発明の樹脂前駆体は、上記一般式(8-1)で表されるイミダゾピロロン前駆体構造を有する繰り返し単位(以下、場合により、かかるイミダゾピロロン前駆体構造を有する繰り返し単位を、便宜上、単に「繰り返し単位(C)」と称する)、及び、上記一般式(8-2)で表されるイミダゾピロロン前駆体構造を有する繰り返し単位(以下、場合により、かかるイミダゾピロロン前駆体構造を有する繰り返し単位を、便宜上、単に「繰り返し単位(C’)」と称する。)からなる群から選択される少なくとも1種の繰り返し単位を含むものである。
 このような一般式(8-1)及び一般式(8-2)中のXはいずれも、6員環の脂環構造を有する4価の有機基であり、上記一般式(1-1)及び(1-2)中のXと同義である(その好適なものも同様である)。また、上記一般式(8-1)中のXは4価の有機基を示し、上記一般式(1-1)中のXと同義である(その好適なものも同様である)。さらに、上記一般式(8-2)中のXは3価の有機基を示し、上記一般式(1-2)中のXと同義である(その好適なものも同様である)。
 このような一般式(8-1)で表される繰り返し単位及び一般式(8-2)で表される繰り返し単位からなる群から選択される少なくとも1種の繰り返し単位は、例えば、上記6員環の脂環構造を有するテトラカルボン酸二無水物とテトラアミンとの反応、及び/又は、6員環の脂環構造を有するテトラカルボン酸二無水物とトリアミンとの反応により形成することができる。なお、モノマー成分を目的の設計に併せて適宜選択することで所望の一般式(8-1)及び/又は一般式(8-2)で表される繰り返し単位を樹脂中に導入できる。
 また、本発明の樹脂前駆体においては、上記一般式(9)で表されるイミド前駆体構造を有する繰り返し単位(以下、場合により、かかるイミド前駆体構造を有する繰り返し単位を、便宜上、単に「繰り返し単位(D)」と称する)を更に含むことが好ましい。
 このような一般式(9)中のXは6員環の脂環構造を有する4価の有機基であり、前記一般式(1-1)及び(1-2)中のXと同義である(その好適なものも同様である)。また、このような一般式(9)中のXは炭素数6~50のアリーレン基であり、上記一般式(2)中のXと同義である(その好適なものも同様である)。
 このような一般式(9)で表される繰り返し単位は、例えば、上記6員環の脂環構造を有するテトラカルボン酸二無水物と、上記一般式(iv)で表される芳香族ジアミンとを反応させることで得ることができる。なお、モノマー成分を目的の設計に併せて適宜選択することで、所望の一般式(9)で表される繰り返し単位を樹脂中に導入できる。
 また、本発明の樹脂前駆体において、前記繰り返し単位(C)及び前記繰り返し単位(C’)の総量(含有量)は、特に制限されず、その樹脂中に含有される全繰り返し単位に対するモル比を基準として3~100モル%であることが好ましく、5~50モル%であることがより好ましい。このようなモル比が前記下限未満では、かかる樹脂前駆体を用いて得られる樹脂に、前記繰り返し単位(A)および/または前記繰り返し単位(A’)に由来する特性を必ずしも十分に付与することができなくなる傾向にある。
 また、本発明の樹脂前駆体は、前記繰り返し単位(D)を更に含むことが好ましい。このように、本発明の樹脂前駆体は、前記繰り返し単位(C)及び前記繰り返し単位(C’)からなる群から選択される少なくとも1種の繰り返し単位と、前記繰り返し単位(D)とを含有する共重合体であることが好ましい。このように繰り返し単位(D)を含有する場合、前記繰り返し単位(C)、前記繰り返し単位(C’)及び前記繰り返し単位(D)の総量(合計量)が、全繰り返し単位に対して20~100モル%(更に好ましくは30~100モル%、より好ましくは40~100モル%、更に好ましくは50~100モル%、特に好ましくは60~100モル%)であることが好ましい。また、前記繰り返し単位(C)、前記繰り返し単位(C’)及び前記繰り返し単位(D)の総量(合計量)に関して、前記数値範囲の下限値は70モル%であることがより好ましく、80モル%であることが更に好ましく、90モル%であることが最も好ましい。このような繰り返し単位の総量(合計量)が前記下限未満では、かかる樹脂前駆体を用いて得られる樹脂に、繰り返し単位(A)及び繰り返し単位(A’)からなる群から選択される少なくとも1種の繰り返し単位、並びに、繰り返し単位(B)に由来する特性を必ずしも十分に付与することができなくなる傾向にある。
 また、本発明の樹脂前駆体は、前記繰り返し単位(C)及び前記繰り返し単位(C’)からなる群から選択される少なくとも1種の繰り返し単位と、前記繰り返し単位(D)とを含有する共重合体である場合、前記繰り返し単位(D)の含有量は、前記繰り返し単位(C)、前記繰り返し単位(C’)及び前記繰り返し単位(D)の総量(合計量)対して1~99モル%であることが好ましく、25~95モル%であることがより好ましく、50~90モル%であることが特に好ましい。前記繰り返し単位(C)、前記繰り返し単位(C’)及び前記繰り返し単位(D)の総量に対する繰り返し単位(D)の含有量(モル比)が前記下限未満では、かかる樹脂前駆体を用いて得られる樹脂に、繰り返し単位(B)に由来する特性を必ずしも十分に付与することができなくなる傾向にあり、他方、前記上限を超えると、かかる樹脂前駆体を用いて得られる樹脂に、繰り返し単位(A)及び/又は繰り返し単位(A’)に由来する特性を必ずしも十分に付与することができなくなる傾向にある。
 また、このような本発明の樹脂前駆体は、前記繰り返し単位(C)及び(C’)からなる群から選択される少なくとも1種の繰り返し単位を含むものであればよく、特に制限されず、例えば、前記繰り返し単位(C)とともに前記繰り返し単位(C’)を含んでいてもよく、前記繰り返し単位(C)及び/又は前記繰り返し単位(C’)とともに、前記繰り返し単位(D)を含んでいてもよい。さらに、本発明の樹脂前駆体は、前記繰り返し単位(C)、前記繰り返し単位(C’)及び前記繰り返し単位(D)以外の他の繰り返し単位を含んでいてもよい。このような他の繰り返し単位としては、前記6員環の脂環構造を有するテトラカルボン酸二無水物以外の他のテトラカルボン酸二無水物と、ジアミン、トリアミン及びテトラアミンからなる群から選択される少なくとも1種との反応により形成することが可能な繰り返し単位;前記6員環の脂環構造を有するテトラカルボン酸二無水物の誘導体(変性物)である、ジエステルジカルボン酸、及び、ジエステルジカルボン酸ジクロライドからなる群から選択される少なくとも1種と、ジアミン、トリアミン及びテトラアミンからなる群から選択される少なくとも1種との反応により形成することが可能な繰り返し単位;前記6員環の脂環構造を有するテトラカルボン酸二無水物と、多官能アルコール、多官能フェノール、多官能チオール、多官能チオフェノールとの反応により形成することが可能な繰り返し単位;前記6員環の脂環構造を有するテトラカルボン酸二無水物と、前記トリアミンの誘導体及び前記テトラアミンの誘導体からなる群から選択される少なくとも1種との反応により形成することが可能な繰り返し単位;等を利用してもよい。
 なお、このような樹脂前駆体には、本発明の効果を損なわない範囲において、最終的に形成する樹脂の用途に応じて、各種添加剤や、樹脂の製造時に利用した成分(例えば、触媒等)、他の樹脂、等を含んでいてもよく、例えば、イミド化促進触媒、化学イミド化剤、酸化防止剤(フェノール系、ホスファイト系、チオエーテル系など)、紫外線吸収剤、ヒンダードアミン系光安定剤、核剤、樹脂添加剤(ナノシリカ等の無機化合物からなるフィラー、タルク、ガラス繊維、アルミナ繊維など)、カップリング剤(シランカップリング剤等)、加工性改良剤、滑材、染料、顔料、難燃材、消泡剤、レベリング剤、レオロジーコントロール剤(流動補助剤)、剥離剤、プライマー等を含有していてもよい。なお、他の樹脂を含有させる場合(添加する場合)、例えば、セルロースナノファイバー、ナイロン、ポリカーボネート、ポリエステル、ポリアミド、ポリケトン、ポリエーテルケトン、ポリスルホン、ポリエーテルスルホン、PMMA、ポリエチレン、ポリプロピレン、ポリスチレン、テフロン(登録商標)、PPO、PPS、COC、COP、ポリアセタール、トリアセチルセルロース(TAC)等の他の樹脂を使用してもよい。
 以下、このような本発明の樹脂及び樹脂前駆体を製造するための方法として好適に利用することが可能な方法について説明する。なお、本発明の樹脂前駆体は、本発明の樹脂を製造する際に反応中間体として得ることが可能であるため、以下、本発明の樹脂を製造するために好適に利用することが可能な方法を説明することにより、併せて本発明の樹脂前駆体を製造するための方法として好適に利用することが可能な方法を説明する。
 本発明の樹脂を製造するために好適に利用することが可能な方法は、特に制限されるものではないが、例えば、
 有機溶媒の存在下、前記6員環の脂環構造を有するテトラカルボン酸二無水物を含む第一のモノマーと、前記テトラアミン及び前記トリアミンのうちの少なくとも1種を含む第二のモノマーとを反応させることにより、上記一般式(8-1)で表されるイミダゾピロロン前駆体構造を有する繰り返し単位及び上記一般式(8-2)で表されるイミダゾピロロン前駆体構造を有する繰り返し単位からなる群から選択される少なくとも1種の繰り返し単位を含む樹脂前駆体(上記本発明の樹脂前駆体)を得る工程(A)と、
 前記樹脂前駆体を加熱することにより、上記一般式(1-1)で表されるイミダゾピロロン構造を有する繰り返し単位及び上記一般式(1-2)で表されるイミダゾピロロン構造を有する繰り返し単位からなる群から選択される少なくとも1種の繰り返し単位を含む樹脂(上記本発明の樹脂)を得る工程(B)と、
を含む樹脂の製造方法(I)を好適に利用することができる。以下、このような本発明の樹脂を製造するために好適に利用することが可能な方法である、樹脂の製造方法(I)について、工程(A)及び工程(B)を分けて説明する。
 <工程(A)>
 工程(A)は、有機溶媒の存在下、前記6員環の脂環構造を有するテトラカルボン酸二無水物を含む第一のモノマーと、前記テトラアミン及び前記トリアミンのうちの少なくとも1種を含む第二のモノマーとを反応させることにより、樹脂前駆体(好ましくは上記本発明の樹脂前駆体)を得る工程である。
 このような工程に用いる前記第一のモノマーは、前記6員環の脂環構造を有するテトラカルボン酸二無水物を含んでいればよく、目的とする上記本発明の樹脂前駆体及び樹脂の構造に応じて、前記6員環の脂環構造を有するテトラカルボン酸二無水物の誘導体や、前記6員環の脂環構造を有するテトラカルボン酸二無水物以外の他のテトラカルボン酸二無水物等を適宜利用することができる。例えば、上記本発明の樹脂前駆体に、前記繰り返し単位(C)及び前記繰り返し単位(C’)以外の繰り返し単位を導入する場合においては、例えば、前記6員環の脂環構造を有するテトラカルボン酸二無水物とともに、その誘導体(例えば、該テトラカルボン酸二無水物の変性物であるジエステルジカルボン酸及びジエステルジカルボン酸ジクロライド)を含有させてもよく、また、それ以外の他のテトラカルボン酸二無水物を含有させてもよい。また、例えば、前記6員環の脂環構造を有するテトラカルボン酸二無水物の誘導体としてジエステルジカルボン酸及びジエステルジカルボン酸ジクロライドを利用してジアミンと反応せしめた場合には、該誘導体中のジエステル基に由来して、一般式(9)中の-COOHで表される基のHが、メチル基やエチル基等に置換された、他の繰り返し単位を導入することができる。このような一般式(9)中の-COOHで表される基のHが、メチル基やエチル基等に置換された形態の他の繰り返し単位を含有せしめた場合には、ワニスの保管性や安定性を向上させることもできる。
 このような工程に用いる前記第二のモノマーは、前記テトラアミン及び前記トリアミンのうちのいずれか1種を含んでいればよく、目的とする上記本発明の樹脂前駆体及び樹脂の構造に応じて、前記テトラアミン及び前記トリアミン以外の他のテトラアミン、ジアミン、他のトリアミンを適宜含有させてもよい。例えば、上記本発明の樹脂前駆体中に、上記一般式(8-1)で表される繰り返し単位及び/又は上記一般式(8-2)で表される繰り返し単位とともに、上記一般式(9)で表されるイミド前駆体構造を有する繰り返し単位を更に含有させる場合(最終的に得られる本発明の樹脂前駆体中に、上記一般式(8-1)で表される繰り返し単位及び/又は上記一般式(8-2)で表される繰り返し単位とともに、上記一般式(9)で表されるイミド前駆体構造を有する繰り返し単位を更に含有させる場合)には、上記一般式(iv)で表される芳香族ジアミンを含有させてもよい。また、前記テトラアミン及び前記トリアミン以外の他のテトラアミン、ジアミン、他のトリアミンとして、例えば、一般式(iv)で表される芳香族ジアミンをシリル化したシリル化ジアミンを利用してもよく、この場合には、上記一般式(9)中の-COOHで表される基のHがシリル基に置換された繰り返し単位を形成することが可能となる。これによりワニスの保管性や安定性を向上させることもできる。
 このような工程に用いる有機溶媒としては、重合時に利用可能な公知の溶媒を適宜利用でき、中でも、前記第一のモノマーと前記第二のモノマーの両者を溶解することが可能な有機溶媒が好ましい。また、このような有機溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-バレロラクトン、δ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン、エチレンカーボネート、プロピレンカーボネート、トリエチレングリコール、テトラメチル尿素(テトラメチルウレア)、1,3-ジメチル-2-イミダゾリジノン、ヘキサメチルホスホリックトリアミド、ピリジンなどの非プロトン系極性溶媒;m-クレゾール、p-クレゾール、キシレノール、フェノール、ハロゲン化フェノールなどのフェノール系溶媒;テトラハイドロフラン、ジオキサン、セロソルブ、グライムなどのエーテル系溶媒;ベンゼン、トルエン、キシレンなどの芳香族系溶媒;アセトニトリル、ベンゾニトリル等のニトリル系溶媒、酢酸エチル、酢酸ブチル、酢酸イソブチル、プロピレングリコールメチルアセテート等の酢酸エステル系溶媒、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルエチルケトン、アセトン等のケトン系溶媒等が挙げられる。
 また、このような有機溶媒としては、溶解性、成膜性、生産性、工業的入手性、既存設備の有無、価格といった観点から、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、γ-ブチロラクトン、プロピレンカーボネート、テトラメチル尿素、1,3-ジメチル-2-イミダゾリジノンが好ましく、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、γ-ブチロラクトン、テトラメチル尿素がより好ましく、N,N-ジメチルアセトアミド、γ-ブチロラクトンが特に好ましい。なお、このような有機溶媒は1種を単独で、あるいは2種以上を組み合わせて利用してもよい。
 また、工程(A)において、第一のモノマーと第二のモノマーとを反応させる方法としては、第一のモノマーと第二のモノマーとの重合反応を行うことが可能な方法を適宜利用でき、特に制限されないが、例えば、窒素、ヘリウム、アルゴン等の不活性雰囲気下において、反応温度において、前記有機溶媒中に前記第一のモノマーと前記第二のモノマーとを添加して反応させる方法を採用することが好ましい。このように、不活性雰囲気下において反応させることで、最終的に得られる樹脂が繰り返し単位に由来する特性を十分に発揮できる傾向にある。
 このようにして第一のモノマーと第二のモノマーとを反応させる際の圧力条件としては特に制限されず、第一のモノマーと第二のモノマーとを反応させることが可能な範囲に適宜設定すればよいが、圧力の制御が不要で、より簡便な工程となることから、第一のモノマーと第二のモノマーとは大気圧下において反応させることがより好ましい。
 また、第一のモノマーと第二のモノマーとを反応させるための温度条件は、これらのモノマーを反応させることで、上記一般式(8-1)で表されるイミダゾピロロン前駆体構造を有する構造部分(繰り返し単位)および/または上記一般式(8-2)で表されるイミダゾピロロン前駆体構造を有する構造部分(繰り返し単位)が形成できるように、利用するモノマーに応じて、その温度条件を適宜設定すればよく、特に制限されないが、-20~100℃(より好ましくは5~80℃)とすることが好ましい。また、前記第一のモノマーと前記第二のモノマーを反応させる際の反応時間は1~72時間程度(より好ましくは3~48時間)とすることが好ましい。このような反応温度や反応時間が前記下限未満では、樹脂前駆体の分子量が十分に向上しない傾向にある。なお、反応温度や反応時間が前記上限を超えると、モノマーの種類によっては樹脂前駆体の解重合が進行して分子量が低下してしまう場合や、架橋によって樹脂前駆体が不溶化(ゲル化または析出)してしまう場合も生じ得るため、反応温度や反応時間は上記範囲内とすることが好ましい。
 なお、第一のモノマーと第二のモノマー中の各成分の含有量は、目的の設計(例えば目的とする樹脂の繰り返し単位の種類等)に応じて適宜設定すればよい。また、このような第一のモノマーと第二のモノマーの反応には、必要に応じて、触媒(例えば、塩基性化合物であるトリメチルアミン、トリエチルアミン、トリブチルアミン、イミダゾール、メチルイミダゾール、ジメチルイミダゾール、テトラヘキシルアミン、1,8-ジアザビシクロ[5.4.0]-ウンデセン-7、ピリジン、イソキノリン、α-ピコリン等)やリン系化合物である亜リン酸トリフェニルエステル、リン酸トリフェニル、トリフェニルホスフィン、トリフェニルホスフィンオキシド等、またはイミダゾール系アミノ酸類等を適宜利用してもよい。また、第一のモノマー及び第二のモノマーの総量(合計量)は、有機溶媒と第一のモノマーと第二のモノマーの合計量(有機溶媒と第一のモノマーと第二のモノマーの混合液の質量)に対して1~50質量%であることが好ましく、5~30質量%であることがより好ましい。このような第一のモノマー及び第二のモノマーの総量(合計量)が前記下限未満では反応速度が小さくなり十分な重合度を有する樹脂前駆体が得られない傾向にあり、他方、前記上限を超えるとモノマーが完全に溶解せず、局部的に反応速度が大きくなり、結果として架橋反応などが進行して、均一な樹脂前駆体が得られない傾向にある。
 このような工程(A)により、上記本発明の樹脂前駆体を得ることができる。なお、このような工程(A)においては、有機溶媒中で反応を進行せしめて、有機溶媒中において上記本発明の樹脂前駆体を調製するため、反応後に得られる反応液は、該有機溶媒と上記本発明の樹脂前駆体とを含むもの(溶液)となる。このようにして得られる反応液をそのまま工程(B)に利用することで、より効率よく、上記本発明の樹脂を製造することができる。
 <工程(B)>
 工程(B)は、前記樹脂前駆体を加熱することにより、上記一般式(1-1)で表されるイミダゾピロロン構造を有する繰り返し単位及び上記一般式(1-2)で表されるイミダゾピロロン構造を有する繰り返し単位からなる群から選択される少なくとも1種の繰り返し単位を含む樹脂(上記本発明の樹脂)を得る工程である。
 なお、前記一般式(8-1)で表されるイミダゾピロロン前駆体構造を有する繰り返し単位及び前記一般式(8-2)で表されるイミダゾピロロン前駆体構造を有する繰り返し単位はいずれも、このような加熱工程により分子内縮合させて、その繰り返し単位の構造を環化させることが可能である。そのため前記樹脂前駆体を加熱することにより、上記一般式(1-1)で表されるイミダゾピロロン構造を有する繰り返し単位および/または上記一般式(1-2)で表されるイミダゾピロロン構造を有する繰り返し単位をより効率よく形成できる。また、前記一般式(9)で表されるイミド前駆体構造を有する繰り返し単位も、このような加熱工程により分子内縮合させることが可能であり、これによりその繰り返し単位の構造を環化させてイミド化することができ、前記一般式(2)で表されるイミド構造を有する繰り返し単位を形成することができる。そのため、例えば、前記樹脂前駆体が、前記一般式(8-1)で表されるイミダゾピロロン前駆体構造を有する繰り返し単位および/または一般式(8-2)で表されるイミダゾピロロン前駆体構造を有する繰り返し単位と、前記一般式(9)で表されるイミド前駆体構造を有する繰り返し単位とを含む樹脂前駆体である場合においても、加熱により、樹脂前駆体中の各繰り返し単位にそれぞれ同時に分子内縮合反応を進行させることが可能となり、上記一般式(1-1)で表されるイミダゾピロロン構造を有する繰り返し単位および/または一般式(1-2)で表されるイミダゾピロロン構造を有する繰り返し単位と、上記一般式(2)で表されるイミド構造を有する繰り返し単位とを含む樹脂を効率よく製造することが可能となる。また、このようにして加熱処理する場合には、樹脂前駆体分子同士において、分子鎖の再重合を進行させながら、分子内縮合を進行させることが可能となることから、分子量をより増加させることも可能となる。
 このような加熱処理を施す場合の条件としては、特に制限されないが、加熱温度は50~550℃(より好ましくは75~500℃、更に好ましくは100~450℃)とすることが好ましく、また、その加熱時間は0.1~50時間((より好ましくは0.5~10)とすることが好ましい。このような加熱温度及び加熱時間が前記下限未満では、樹脂前駆体中の各繰り返し単位内の分子内縮合により発生する水やアルコールやシラノール等を効率よく留去することができず、反応の進行が阻害されて、得られる樹脂の分子量を大きなものとすることが困難となる傾向にあり、他方、前記上限を超えると、熱分解や着色が生じ易くなる傾向にある。また、このような加熱に際しては、必要に応じて、縮合剤(例えば、無水酢酸、無水プロピオン酸等の酸無水物や、DCC等のカルボジイミド等)や、触媒(p-TsOH、CsF)や、トルエン共沸法、化学イミド化法、部分化学イミド化法等を適宜利用してもよい。
 また、このような加熱処理の際の雰囲気条件としては、特に制限されないが、酸素による末端アミノ基の酸化、主鎖切断、着色や劣化を防止する観点から、窒素ガスなどの不活性ガス雰囲気や真空下とすることが好ましい。
 また、このような加熱処理の際の圧力条件としては特に制限されるものではないが、0.1hPa~10MPaであることが好ましく、10hPa~1MPaであることがより好ましい。このような圧力が前記下限未満では、乾燥速度向上による気泡やボイドの発生、フィルム表面の表面粗さの増大、Haze値の増大、等が起こり易くなる傾向にあり、他方、前記上限を超えると、水分濃度上昇による環化反応やオリゴマー同士のポスト重合(後重合反応)が抑制される傾向にある。
 また、このような工程(B)においては、上記工程(A)により得られた反応液(前記有機溶媒の存在下において前記第一のモノマーと前記第二のモノマーとを反応させて得られた反応液(前記有機溶媒と、上記本発明の樹脂前駆体とを含む溶液))をそのまま利用し、前記反応液に対して有機溶媒を蒸発除去する処理(溶媒除去処理)を施して、前記反応液から溶媒を除去した後、前記加熱処理を施すことにより所望の形態の樹脂を形成してもよい。例えば、フィルム状の樹脂を形成する場合には、上記工程(A)により得られた反応液をそのまま基材(例えばガラス板等)上に塗布し、前記有機溶媒を蒸発除去する処理と、前期加熱処理とを順次施せばよい。このような有機溶媒を蒸発除去する処理(溶媒除去処理)における温度条件としては0~180℃であることが好ましく、30~150℃であることがより好ましい。このような溶媒除去処理における温度条件が前記下限未満では溶媒を十分に蒸発させて除去することが困難となる傾向にあり、他方、前記上限を超えると、樹脂前駆体の解重合が生じたり、溶媒が沸騰し最終生成物(樹脂)中に気泡やボイドが形成される傾向にある。
 このように、工程(A)及び工程(B)により、上記本発明の樹脂を効率よく製造することが可能となる。以上、本発明の樹脂を製造するために好適に利用することが可能な方法について、上記樹脂の製造方法(I)を例示して説明したが、本発明の樹脂を製造するための方法は上記樹脂の製造方法(I)に限定されるものではなく、上記一般式(1-1)で表されるイミダゾピロロン構造を有する繰り返し単位及び上記一般式(1-2)で表されるイミダゾピロロン構造を有する繰り返し単位からなる群から選択される少なくとも1種を含む樹脂(上記本発明の樹脂)を得ることが可能な方法であれば適宜採用することが可能である。
 以上、本発明の樹脂及び樹脂前駆体について説明したが、以下、本発明の樹脂前駆体溶液について説明する。
 本発明の樹脂前駆体溶液は、上記本発明の樹脂前駆体と溶媒とを含有するものである。
 このような樹脂前駆体溶液(ワニス)に用いる有機溶媒としては、前述の樹脂の製造方法(I)において説明した有機溶媒と同様のものを好適に利用することができる。そのため、本発明の樹脂前駆体溶液は、上述の工程(A)を実施して反応後に得られた反応液をそのまま樹脂前駆体溶液とすることで調製してもよい。
 このような樹脂前駆体溶液における前樹脂前駆体の含有量は特に制限されないが、1~80質量%であることが好ましく、5~50質量%であることがより好ましい。このような含有量が前記下限未満では、かかる樹脂前駆体溶液を用いてフィルム状の樹脂を製造することが困難になる傾向にあり、他方、前記上限を超えると、高粘度化や流動性の低下等による塗工性の低下、レべリング効果の低下、塗工後の塗膜表面の凹凸化、塗工後の塗膜表面におけるしわの発生、等が起こり易く、加工性が低下して、かかる樹脂前駆体溶液を用いて各種形態の樹脂(例えばフィルム状の樹脂)を製造することが困難になる傾向にある。なお、このような樹脂前駆体溶液は、上記本発明の樹脂の製造に好適に利用することができ、各種形状の樹脂を製造するために好適に利用できる。例えば、このような樹脂前駆体溶液を各種基板の上に塗布し、これをイミド化して硬化することで、容易にフィルム形状の樹脂を製造することもできる。
 さらに、このような樹脂前駆体溶液は、樹脂の調製に利用することが可能な各種添加剤(劣化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、改質剤、帯電防止剤、難燃剤、可塑剤、造核剤、安定剤、密着向上剤、滑剤、離型剤、染料、発泡剤、消泡剤、表面改質剤、ハードコート剤、レべリング剤、界面活性剤、充填剤(ガラス繊維、フィラー、タルク、マイカ、シリカ等)等)を適宜添加して利用してもよい。また、このような添加剤を用いる場合に関して、樹脂前駆体溶液中の添加剤の含有量は特に制限されないが、0.0001~80質量%(より好ましくは0.1~50質量%)程度とすることが好ましい。また、このような樹脂前駆体溶液は、最終的に得られる樹脂の用途に応じて、他の樹脂(例えばセルロースナノファイバー、ナイロン、ポリカーボネート、ポリエステル、ポリアミド、ポリケトン、ポリエーテルケトン、ポリスルホン、ポリエーテルスルホン、PMMA、ポリエチレン、ポリプロピレン、ポリスチレン、テフロン(登録商標)、PPO、PPS、COC、COP、ポリアセタール、トリアセチルセルロース(TAC)等)を適宜添加して利用してもよい。樹脂前駆体溶液中の他の樹脂の添加量は特に制限されないが、0.1~50質量%(より好ましくは1~30質量%)程度とすることが好ましい。なお、このような本発明の樹脂前駆体溶液は、上記本発明の樹脂を得るための樹脂ワニスとして好適に利用することができる。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 (合成例1:CpODAの合成)
 国際公開第2011/099518号の合成例1、実施例1及び実施例2に記載された方法に準拠して、下記式(A-1):
Figure JPOXMLDOC01-appb-C000028
で表されるテトラカルボン酸二無水物(ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物:以下、上記一般式(A-1)で表されるテトラカルボン酸二無水物を「CpODA」と称する)を合成した。
 <モノマー等の略称について>
 以下の実施例等において用いたテトラカルボン酸二無水物、芳香族テトラアミン、芳香族トリアミン、芳香族ジアミンについて、略称等を以下に記載する。なお、実施例中の記載には、場合により下記略称等を利用する。
 (1)テトラカルボン酸二無水物(第一のモノマー)
 CpODA : 上記式(A-1)で表されるテトラカルボン酸二無水物(合成例1)
 CBDA  : 1,2,3,4-シクロブタンテトラカルボン酸二無水物
 CPDA  : 1,2,3,4-シクロペンタンテトラカルボン酸二無水物
 H-BPDA: 3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物
 BODA  : ビシクロ[2.2.2]オクタン‐2,3,5,6‐テトラカルボン酸二無水物
 (2)芳香族テトラアミン、芳香族トリアミン及び芳香族ジアミン(第二のモノマー)
 TAB-E : 3,3’,4,4’-テトラアミノジフェニルエーテル
 TAB-S : 3,3’,4,4’-テトラアミノジフェニルスルホン
 TAB-K : 3,3’,4,4’-テトラアミノジフェニルケトン
 TrAB-E: 3,4,4’-トリアミノジフェニルエーテル
 DABAN : 4,4’-ジアミノベンズアニリド
 PPD   : p-ジアミノベンゼン
 なお、これらのモノマーに関して、CBDA、CPDA、H-BPDA、BODA、TAB-E、TAB-S、TAB-K、TrAB-E、DABAN、及び、PPDはいずれも市販品を利用した(CBDA:東京化成製、CPDA:東京化成製、H-BPDA:LCY Chemical Corp.製、BODA:LCY Chemical Corp.製、TAB-E:和歌山精化工業株式会社製、TAB-S:和歌山精化工業株式会社製、TAB-K:和歌山精化工業株式会社製、TrAB-E:東京化成製、DABAN:日本純良薬品株式会社製、PPD:大新化成工業株式会社製「パラミン」)。
 (実施例1)
 〈樹脂前駆体の調製工程〉
 先ず、30mlの三口フラスコをヒートガンで加熱して十分に乾燥させた。次に、十分に乾燥させた前記三口フラスコ内の雰囲気ガスを窒素で置換し、前記三口フラスコ内を窒素雰囲気とした。次いで、前記三口フラスコ内に、第二のモノマーとしてTAB-Eを0.2303g(1.00mmol)添加した後、更に、溶媒としてテトラメチルウレア(TMU)を5.53g添加して撹拌することにより、前記TMU中にTAB-Eを溶解させて溶解液を得た。次に、前記溶解液を含有する三口フラスコ内に、窒素雰囲気下、第一のモノマーとしてCpODAを0.3844g(1.00mmol)添加して重合用混合液を得た。なお、このような重合用混合液中の第一のモノマーと第二のモノマーの濃度(かかる濃度を、以下、単に「重合濃度」と称する)は10質量%であった。その後、重合用混合液を、窒素雰囲気下、室温(25℃)で5時間撹拌することにより、CpODAとTAB-Eとを反応せしめて樹脂前駆体(ポリイミダゾピロロン前駆体)を形成し、樹脂前駆体を含む反応液を得た。なお、得られた樹脂前駆体は、用いたモノマーの種類から、下記式(101):
Figure JPOXMLDOC01-appb-C000029
で表されるイミダゾピロロン前駆体構造を有する繰り返し単位を含むものであった。
 〈樹脂の調製工程〉
 ガラス基板として大型スライドグラス(松浪硝子工業株式会社製の商品名「S9213」、縦:76mm、横52mm、厚み1.3mm)を準備し、上述のようにして得られた反応液(ポリイミダゾピロロン前駆体溶液)を、前記ガラス基板の表面上に、加熱硬化後の塗膜の厚みが10μmとなるようにスピンコートして、前記ガラス基板上に塗膜を形成した。その後、前記塗膜の形成されたガラス基板を60℃のホットプレート上に載せて2時間静置して、前記塗膜から溶媒を蒸発させて除去した(溶媒除去処理)。
 このような溶媒除去処理を施した後、前記塗膜の形成されたガラス基板を3L/分の流量で窒素が流れているイナートオーブンに投入し、イナートオーブン内で、窒素雰囲気下、25℃の温度条件で0.5時間静置した後、80℃の温度条件で0.5時間加熱し、更に380℃の温度条件(最終加熱温度:焼成温度)で1時間加熱することにより、前記塗膜を硬化して、前記ガラス基板上に樹脂(ポリイミダゾピロロン)からなる薄膜(樹脂フィルム)を形成せしめ、前記ガラス基板上に樹脂フィルムがコートされた樹脂フィルム積層ガラスを得た。
 次に、このようにして得られた樹脂フィルム積層ガラスを、90℃のお湯の中に浸漬して、前記ガラス基板から樹脂フィルムを剥離することにより、樹脂フィルム(縦76mm、横52mm、厚み10μmの大きさのフィルム)を得た。
 なお、このようにして得られた樹脂フィルムを形成する化合物の分子構造を同定するため、IR測定機(日本分光株式会社製、商品名:FT/IR-4100)を用いて、IRスペクトルを測定した。このような測定の結果として得られたIRスペクトルを図1に示す。図1に示す結果からも明らかなように、本実施例において形成されたフィルムを構成する化合物には、IRスペクトルにおいて、イミド環の特性吸収に基づくピークが1701.8cm-1に認められ、かつ、イミダゾール環の特性吸収に基づくピークが1625.3cm-1に認められた。このような測定結果に基づいて同定された分子構造から、得られたフィルムは確かにポリイミダゾピロロンからなるフィルムであることが確認された。なお、得られたモノマーの種類から、前記樹脂前駆体を加熱することにより、先ず、上記式(101)で表されるイミダゾピロロン前駆体構造を有する繰り返し単位の分子内脱水縮合反応が進行して、下記式(102):
Figure JPOXMLDOC01-appb-C000030
で表されるイミダゾピロロン中間体構造を有する繰り返し単位が形成され、続いて、かかる繰り返し単位の分子内脱水縮合反応が更に進行して、下記式(103):
Figure JPOXMLDOC01-appb-C000031
で表されるイミダゾピロロン構造を有する繰り返し単位が形成されたことが分かった。このように、用いたモノマーの種類やIR測定の結果から、本実施例においては、イミダゾピロロン構造を有する繰り返し単位を含む樹脂が得られたことが分かった。
 (実施例2)
 第二のモノマーとしてTAB-Eを単独で利用する代わりに、第二のモノマーとしてTAB-E(0.2303g:0.50mmol)とDABAN(0.1136g:0.50mmol)の混合物を利用し、かつ、TMUの使用量を3.47gに変更して前記重合濃度を15質量%に調整した以外は、実施例1と同様にして、樹脂前駆体及び樹脂を製造し、樹脂フィルムを得た。なお、IR測定の結果、得られた樹脂には上記式(103)で表されるイミダゾピロロン構造を有する繰り返し単位とともにCpODAとDABANとの反応により形成されたイミド構造を有する繰り返し単位が含有されていた。
 (実施例3)
 第二のモノマーとしてTAB-Eを単独で利用する代わりに、第二のモノマーとしてTAB-E(0.0345g:0.15mmol)とDABAN(0.1932g:0.85mmol)の混合物を利用し、かつ、TMUの使用量を3.47gに変更して前記重合濃度を15質量%に調整した以外は、実施例1と同様にして、樹脂前駆体及び樹脂を製造し、樹脂フィルムを得た。なお、IR測定の結果、得られた樹脂には上記式(103)で表されるイミダゾピロロン構造を有する繰り返し単位とともにCpODAとDABANとの反応により形成されたイミド構造を有する繰り返し単位が含有されていた。
 (実施例4)
 第二のモノマーとしてTAB-Eを単独で利用する代わりに、第二のモノマーとしてTAB-E(0.023g:0.10mmol)とDABAN(0.2045g:0.90mmol)の混合物を利用し、かつ、TMUの使用量を3.47gに変更して前記重合濃度を15質量%に調整した以外は、実施例1と同様にして、樹脂前駆体及び樹脂を製造し、樹脂フィルムを得た。なお、IR測定の結果、得られた樹脂には上記式(103)で表されるイミダゾピロロン構造を有する繰り返し単位とともにCpODAとDABANとの反応により形成されたイミド構造を有する繰り返し単位が含有されていた。
 (実施例5)
 第二のモノマーとしてTAB-Eを単独で利用する代わりに、第二のモノマーとしてTAB-E(0.0115g:0.05mmol)とDABAN(0.2159g:0.95mmol)の混合物を利用し、かつ、TMUの使用量を3.47gに変更して前記重合濃度を15質量%に調整した以外は、実施例1と同様にして、樹脂前駆体及び樹脂を製造し、樹脂フィルムを得た。なお、IR測定の結果、得られた樹脂には上記式(103)で表されるイミダゾピロロン構造を有する繰り返し単位とともにCpODAとDABANとの反応により形成されたイミド構造を有する繰り返し単位が含有されていた。
 (実施例6)
 第二のモノマーとしてTAB-Eを単独で利用する代わりに、第二のモノマーとしてTAB-S(0.0278g:0.10mmol)とDABAN(0.2045g:0.90mmol)の混合物を利用し、かつ、TMUの使用量を2.47gに変更して前記重合濃度を20質量%に調整した以外は、実施例1と同様にして、樹脂前駆体及び樹脂を製造し、樹脂フィルムを得た。なお、IR測定の結果、得られた樹脂にはCpODAとTAB-Sの反応により形成されたイミダゾピロロン構造を有する繰り返し単位とともにCpODAとDABANとの反応により形成されたイミド構造を有する繰り返し単位が含有されていた。
 (実施例7)
 第二のモノマーとしてTAB-Eを単独で利用する代わりに、第二のモノマーとしてTAB-S(0.0139g:0.05mmol)とDABAN(0.2159g:0.95mmol)の混合物を利用し、かつ、TMUの使用量を2.46gに変更して前記重合濃度を20質量%に調整した以外は、実施例1と同様にして、樹脂前駆体及び樹脂を製造し、樹脂フィルムを得た。なお、IR測定の結果、得られた樹脂にはCpODAとTAB-Sの反応により形成されたイミダゾピロロン構造を有する繰り返し単位とともにCpODAとDABANとの反応により形成されたイミド構造を有する繰り返し単位が含有されていた。
 (実施例8)
 第二のモノマーとしてTAB-Eを単独で利用する代わりに、第二のモノマーとしてTAB-K(0.0363g:0.15mmol)とDABAN(0.1932g:0.85mmol)の混合物を利用し、かつ、TMUの使用量を2.46gに変更して前記重合濃度を20質量%に調整した以外は、実施例1と同様にして、樹脂前駆体及び樹脂を製造し、樹脂フィルムを得た。なお、IR測定の結果、得られた樹脂にはCpODAとTAB-Kの反応により形成されたイミダゾピロロン構造を有する繰り返し単位とともにCpODAとDABANとの反応により形成されたイミド構造を有する繰り返し単位が含有されていた。
 (実施例9)
 第二のモノマーとしてTAB-Eを単独で利用する代わりに、第二のモノマーとしてTAB-K(0.0242g:0.10mmol)とDABAN(0.2045g:0.90mmol)の混合物を利用し、かつ、TMUの使用量を2.45gに変更して前記重合濃度を20質量%に調整した以外は、実施例1と同様にして、樹脂前駆体及び樹脂を製造し、樹脂フィルムを得た。なお、IR測定の結果、得られた樹脂にはCpODAとTAB-Kの反応により形成されたイミダゾピロロン構造を有する繰り返し単位とともにCpODAとDABANとの反応により形成されたイミド構造を有する繰り返し単位が含有されていた。
 (実施例10)
 第二のモノマーとしてTAB-Eを単独で利用する代わりに、第二のモノマーとしてTAB-K(0.0121g:0.05mmol)とDABAN(0.2159g:0.95mmol)の混合物を利用し、かつ、TMUの使用量を2.45gに変更して前記重合濃度を20質量%に調整した以外は、実施例1と同様にして、樹脂前駆体及び樹脂を製造し、樹脂フィルムを得た。なお、IR測定の結果、得られた樹脂にはCpODAとTAB-Kの反応により形成されたイミダゾピロロン構造を有する繰り返し単位とともにCpODAとDABANとの反応により形成されたイミド構造を有する繰り返し単位が含有されていた。
 (実施例11)
 第一のモノマーとしてCpODAを利用する代わりに、第一のモノマーとしてH-BPDA(0.3063g:1.00mmol)を利用し、かつ、TMUの使用量を2.15gに変更して前記重合濃度を20質量%に調整した以外は、実施例1と同様にして、樹脂前駆体及び樹脂を製造し、樹脂フィルムを得た。なお、IR測定の結果、得られた樹脂にはH-BPDAとTAB-Eの反応により形成されたイミダゾピロロン構造を有する繰り返し単位が含有されていた。
 (実施例12)
 第一のモノマーとしてCpODAを利用する代わりに、第一のモノマーとしてビシクロオクタン酸二無水物:BODA(0.2502g:1.00mmol)を利用し、かつ、TMUの使用量を2.61gに変更して前記重合濃度を15質量%に調整した以外は、実施例1と同様にして、樹脂前駆体及び樹脂を製造し、樹脂フィルムを得た。なお、IR測定の結果、得られた樹脂にはBODAとTAB-Eの反応により形成されたイミダゾピロロン構造を有する繰り返し単位が含有されていた。
 (実施例13)
 第二のモノマーとしてTAB-Eを利用する代わりに、第二のモノマーとしてTrAB-E(0.2153g:1.00mmol)を単独で利用し、TMUの使用量を5.40gに変更して前記重合濃度を10質量%に調整し、かつ、イナートオーブン内での加熱に際して最終加熱温度(焼成温度)を370℃に変更した以外は、実施例1と同様にして、樹脂前駆体及び樹脂を製造し、樹脂フィルムを得た。得られた樹脂フィルムのIR測定の結果を図2に示す。イミド環の特性吸収に基づくピークが1701.5cm-1に認められ、かつ、イミダゾール環の特性吸収に基づくピークが1626.1cm-1に認められた。このような測定結果に基づいて同定された分子構造から、得られた樹脂にはCpODAとTrAB-Eの反応により形成されたイミダゾピロロン構造を有する繰り返し単位が含有されていた。
 (実施例14)
 第二のモノマーとしてTAB-Eを単独で利用する代わりに、第二のモノマーとしてTAB-E(0.0461g:0.20mmol)とPPD(0.0865g:0.80mmol)の混合物を利用し、かつ、TMUの使用量を8.88gに変更して前記重合濃度を5.5質量%に調整した以外は、実施例1と同様にして、樹脂前駆体及び樹脂を製造し、樹脂フィルムを得た。なお、IR測定の結果、得られた樹脂には上記式(103)で表されるイミダゾピロロン構造を有する繰り返し単位とともにCpODAとPPDとの反応により形成されたイミド構造を有する繰り返し単位が含有されていた。
 (実施例15)
 イナートオーブン内での加熱に際して最終加熱温度(焼成温度)を400℃に変更した以外は、実施例14と同様にして、樹脂前駆体及び樹脂を製造し、樹脂フィルムを得た。なお、IR測定の結果、得られた樹脂には上記式(103)で表されるイミダゾピロロン構造を有する繰り返し単位とともにCpODAとPPDとの反応により形成されたイミド構造を有する繰り返し単位が含有されていた。
 (実施例16)
 第二のモノマーとしてTAB-Eを単独で利用する代わりに、第二のモノマーとしてTAB-E(0.0461g:0.20mmol)とPPD(0.0865g:0.80mmol)の混合物を利用し、TMUの使用量を4.65gに変更して前記重合濃度を10質量%に調整し、かつ、イナートオーブン内での加熱に際して最終加熱温度(焼成温度)を400℃に変更した以外は、実施例1と同様にして、樹脂前駆体及び樹脂を製造し、樹脂フィルムを得た。なお、IR測定の結果、得られた樹脂には上記式(103)で表されるイミダゾピロロン構造を有する繰り返し単位とともにCpODAとPPDとの反応により形成されたイミド構造を有する繰り返し単位が含有されていた。
 (実施例17)
 イナートオーブン内での加熱に際して最終加熱温度(焼成温度)を420℃に変更した以外は、実施例16と同様にして、樹脂前駆体及び樹脂を製造し、樹脂フィルムを得た。なお、IR測定の結果、得られた樹脂には上記式(103)で表されるイミダゾピロロン構造を有する繰り返し単位とともにCpODAとPPDとの反応により形成されたイミド構造を有する繰り返し単位が含有されていた。
 (実施例18)
 第二のモノマーとしてTAB-Eを単独で利用する代わりに、第二のモノマーとしてTAB-E(0.0230g:0.100mmol)とPPD(0.0730g:0.675mmol)とDABAN(0.0511g:0.225mmol)との混合物を利用し、TMUの使用量を4.784gに変更して前記重合濃度を10質量%に調整し、かつ、イナートオーブン内での加熱に際して最終加熱温度(焼成温度)を400℃に変更した以外は、実施例1と同様にして、樹脂前駆体及び樹脂を製造し、樹脂フィルムを得た。なお、IR測定の結果、得られた樹脂には上記式(103)で表されるイミダゾピロロン構造を有する繰り返し単位とともに、CpODAとPPDとの反応により形成されたイミド構造を有する繰り返し単位及びCpODAとDABANとの反応により形成されたイミド構造を有する繰り返し単位が含有されていた。
 (実施例19)
 イナートオーブン内での加熱に際して最終加熱温度(焼成温度)を420℃に変更した以外は、実施例18と同様にして、樹脂前駆体及び樹脂を製造し、樹脂フィルムを得た。なお、IR測定の結果、得られた樹脂には上記式(103)で表されるイミダゾピロロン構造を有する繰り返し単位とともに、CpODAとPPDとの反応により形成されたイミド構造を有する繰り返し単位及びCpODAとDABANとの反応により形成されたイミド構造を有する繰り返し単位が含有されていた。
 (比較例1)
 第一のモノマーとしてCpODAを利用する代わりに、第一のモノマーとしてCBDA(0.1961g:1.00mmol)を利用し、第二のモノマーとしてTAB-Eを単独で利用する代わりに、第二のモノマーとしてTAB-E(0.0230g:0.10mmol)とDABAN(0.2045g:0.90mmol)の混合物を利用し、かつ、TMUの使用量を1.69gに変更して前記重合濃度を20質量%に調整した以外は、実施例1と同様にして、樹脂前駆体及び樹脂の調製を試みた。しかしながら、樹脂前駆体の調製時にゲル化してしまい、そもそも製膜できなかった。
 (比較例2)
 第一のモノマーとしてCpODAを利用する代わりに、第一のモノマーとしてCPDA(0.2101g:1.00mmol)を利用し、第二のモノマーとしてTAB-Eを単独で利用する代わりに、第二のモノマーとしてTAB-E(0.0230g:0.10mmol)とDABAN(0.2045g:0.90mmol)の混合物を利用し、かつ、TMUの使用量を1.75gに変更して前記重合濃度を20質量%に調整した以外は、実施例1と同様にして、樹脂前駆体及び樹脂を調製した。しかしながら、得られた樹脂は脆くクラックが入り、フィルム形状のものとして得ることができなかった。
 (比較例3)
 第二のモノマーとしてTAB-Eを利用する代わりに、第二のモノマーとしてDABAN(0.2273g:1.00mmol)を利用し、かつ、TMUの使用量を2.45gに変更して前記重合濃度を20質量%に調整した以外は、実施例1と同様にして、樹脂前駆体及び樹脂を製造し、樹脂フィルムを得た。
 [実施例1~19及び比較例3で得られた樹脂(樹脂フィルム)の特性評価]
 実施例1~19及び比較例3で得られた樹脂(樹脂フィルム)の特性を以下のようにして評価し、結果を表1に示す(なお、比較例1及び2については、そもそもフィルム状の樹脂(樹脂フィルム)を得ることができなかったため、試料を調製できず、以下の測定を行うことができなかった)。なお、表1には、実施例1~19及び比較例1~3で用いたモノマーの種類等も併せて示す。
 <全光線透過率の測定>
 各実施例等で得られた樹脂フィルムを構成する樹脂の全光線透過率(単位:%)を、以下のようにして測定した。すなわち、各樹脂フィルム(厚み:10μm)をそのまま測定用の試料として用い、かつ、測定装置として日本電色工業株式会社製の商品名「ヘーズメーターNDH-5000」を用いて、JIS K7361-1(1997年発行)に準拠した測定を行うことにより、各樹脂フィルムの全光線透過率(単位:%)を求めた。得られた結果を表1に示す。
 <ガラス転移温度(Tg)の測定>
 各実施例等で得られた樹脂フィルムを構成する樹脂のガラス転移温度(Tg)の値(単位:℃)を以下のようにして測定した。すなわち、各樹脂フィルム(厚み:10μm)から切り出した縦20mm、横5mmの大きさの試料(かかる試料の厚みは実施例で得られたフィルムの厚みのままとした)を用い、かつ、測定装置として熱機械的分析装置(リガク製の商品名「TMA8311」)を用いて、窒素雰囲気下、引張りモード(49mN)、昇温速度5℃/分の条件で測定を行ってTMA曲線を求め、ガラス転移に起因するTMA曲線の変曲点に対し、その前後の曲線を外挿することにより、各実施例で得られたフィルムを構成する樹脂のガラス転移温度(Tg)の値(単位:℃)を求めた。得られた結果を表1に示す。
 <引張強度及び破断伸びの測定>
 各実施例等で得られた樹脂フィルムの引張強度(単位:MPa)及び破断伸び(単位:%)は、以下のようにして測定した。すなわち、先ず、各樹脂フィルムを、それぞれ、SD型レバー式試料裁断器(株式会社ダンベル製の裁断器(型式SDL-200))に、株式会社ダンベル製の商品名「スーパーダンベルカッター(型:SDMK-1000-D、JIS K7139(2009年発行)のA22規格に準拠)」を取り付けて、各樹脂フィルムの大きさが、全長:75mm、タブ部間距離:57mm、平行部の長さ:30mm、肩部の半径:30mm、端部の幅:10mm、中央の平行部の幅:5mm、厚み:10μmとなるように裁断して、ダンベル形状の試験片(厚みを10μmにした以外はJIS K7139 タイプA22(縮尺試験片)の規格に沿ったもの)を、測定試料として、それぞれ調製した。次いで、電気機械式万能材料試験機(INSTRON製の型番「5943」)を用いて、前記測定試料を掴み具間の幅が57mm、掴み部分の幅が10mm(端部の全幅)となるようにして配置した後、ロードセル:1.0kN、試験速度:5mm/分の条件で前記測定試料を引っ張る引張試験を行って、引張強度及び破断伸びの値を求めた。なお、このような試験は、JIS K7162(1994年発行)に準拠した試験とした。また、破断伸びの値(%)は、試料のタブ部間距離(=掴み具間の幅:57mm)をL0、破断するまでの試料のタブ部間距離(破断した際の掴み具間の幅:57mm+α)をLとすると、下記式:
  [破断伸び(%)]={(L-L)/L}×100
を計算して求めた。得られた結果を表1に示す。
 <線膨張係数(CTE)の測定>
 各実施例等で得られた樹脂フィルムを構成する樹脂のCTE(単位:ppm/K)は以下のようにして求めた。すなわち、先ず、各樹脂フィルムから、縦:20mm、横:5mmの大きさの測定用のフィルム(厚み:10μm)を形成した。次に、得られた測定用のフィルムを真空乾燥(120℃、1時間)した後、窒素雰囲気下で200℃で1時間熱処理することにより、測定試料(乾燥フィルム)を調製した。次いで、得られた測定試料(乾燥フィルム)を用い、測定装置として熱機械的分析装置(リガク製の商品名「TMA8311」)を利用して、窒素雰囲気下、引張りモード(49mN)、昇温速度5℃/分の条件を採用して、50℃~200℃における前記試料の長さの変化を測定して、100℃~200℃の温度範囲における1℃あたりの長さの変化の平均値を求めることにより測定した。得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000032
 表1に示した結果から明らかなように、本発明の樹脂からなるフィルム(実施例1~19)はいずれも、全光線透過率が80%以上となっており、十分な透明性を有することが確認されるとともに、Tgが389.8℃(約390℃)以上の値となっており、比較例3で得られたポリイミドと比較した場合においても、より高度な耐熱性を示すことが確認された。特に、実施例1で得られたフィルムを構成する樹脂はTgが448℃であり、極めて高度な耐熱性を有する樹脂であることが分かった。
 さらに、本発明の樹脂からなるフィルム(実施例1~19)はいずれも破断強度が50MPa以上となっていた。これに対して、CBDAやCPDAといった6員環以外の環状構造(4員環や5員環の環状構造)を有する脂環式のテトラカルボン酸二無水物を用いた場合(比較例1及び2)には、そもそもフィルムを得ることができず、例えば、比較例2においては製膜工程を実施しても、得られた樹脂は脆くクラックが入り、フィルム形状を維持できないものとなっていた。このような結果から、本発明の樹脂からなるフィルム(実施例1~19)によれば、十分に高度な強度が得られることが分かった。また、比較例3で得られたポリイミドからなるフィルムと対比すると、比較例3で得られたポリイミドからなるフィルムは、破断強度が31MPaとなっており自立膜としては十分な機械的強度を示したが、本発明の樹脂からなるフィルム(実施例1~19)はいずれも破断強度が50MPa以上となり、より高い機械的強度を示すことが分かった。
 これらの結果から、本発明(実施例1~19)によれば、得られる樹脂の透明性や耐熱性を十分に高いものとしつつ、破断強度を基準とした機械的強度を十分に高度なものとすることも可能であることが分かった。なお、本発明の樹脂からなるフィルム(実施例1~19)はいずれもCTEが50ppm/K以下の値となっており、比較的低いCTEを有しており、加工性も十分に高いものであることが分かった。
 以上説明したように、本発明によれば、十分に高度な光透過性と、より高度な耐熱性とを有するとともに、優れた機械的強度を有するものとすることを可能とする樹脂、その樹脂の前駆体である樹脂前駆体、並びに、その樹脂の製造に好適に利用可能な樹脂前駆体溶液を提供することが可能となる。
 したがって、本発明の樹脂は、前述のように、透明性(光透過性)が十分に高いばかりか、耐熱性がより高度なものとなり、非常に高度な耐熱性を有する透明な材料等として好適に利用することが可能であることから、例えば、フレキシブル配線基板用フィルム、耐熱絶縁テープ、電線エナメル、半導体の保護コーティング剤、液晶配向膜、有機EL用透明導電性フィルム、フレキシブル基板フィルム、フレキシブル透明導電性フィルム、有機薄膜型太陽電池用透明導電性フィルム、色素増感型太陽電池用透明導電性フィルム、フレキシブルガスバリアフィルム、タッチパネル用フィルム、TFT基板フィルム(LTPS、ポリシリコン向け)、フラットパネルディテクタ用TFT基板フィルム、複写機用シームレス樹脂ベルト(いわゆる転写ベルト)、透明電極基板(有機EL用透明電極基板、太陽電池用透明電極基板、電子ペーパーの透明電極基板等)、層間絶縁膜、センサー基板、イメージセンサーの基板、発光ダイオード(LED)の反射板(LED照明の反射板:LED反射板)、LED照明用のカバー、LED反射板照明用カバー、カバーレイフィルム、高延性複合体基板、半導体向けレジスト、リチウムイオンバッテリー、有機メモリ用基板、有機トランジスタ用基板、有機半導体用基板、カラーフィルタ基材、医療用耐熱トレイ、医療用γ線耐性樹脂シャーレ、医療用透明高耐熱ピペット、透明高耐熱レンズ、車載センシング用レンズ、モバイル顔認証用レンズ、ハンダリフロー対応レンズ、赤外線カメラ用レンズ、光学フィルター、環境光センサー、全固体電池用バインダー、全固体電池用ゲル材料等を製造するための材料として特に有用である。また、本発明の樹脂は、上述のような用途以外にも、その形状を粉状体としたり、各種成形体とすること等により、例えば、自動車用部品、航空宇宙用部品、軸受部品、シール材、ベアリング部品、ギアホイール及びバルブ部品などに好適に応用することも可能である。

Claims (11)

  1.  下記一般式(1-1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Xは6員環の脂環構造を有する4価の有機基を示し、Xは4価の有機基を示す。]
    で表されるイミダゾピロロン構造を有する繰り返し単位、及び、下記一般式(1-2):
    Figure JPOXMLDOC01-appb-C000002
    [式中、Xは6員環の脂環構造を有する4価の有機基を示し、Xは3価の有機基を示す。]
    で表されるイミダゾピロロン構造を有する繰り返し単位からなる群から選択される少なくとも1種の繰り返し単位を含む、樹脂。
  2.  下記一般式(2):
    Figure JPOXMLDOC01-appb-C000003
    [式中、Xは6員環の脂環構造を有する4価の有機基を示し、Xは炭素数6~50のアリーレン基を示す。]
    で表されるイミド構造を有する繰り返し単位を更に含む、請求項1に記載の樹脂。
  3.  上記式中のXが、下記一般式(3)~(5):
    Figure JPOXMLDOC01-appb-C000004
    [式(3)中、mは0~2の整数を示し、式(4)中、nは1~2の整数を示し、式(5)中、Aは単結合;及び置換基を有していてもよくかつ芳香環を形成する炭素原子の数が6~30である2価の芳香族基;よりなる群から選択される1種を示し、式(3)~(5)中の記号*1~*4は該記号の付された結合手がそれぞれXに結合している4本の結合手のうちのいずれかであることを示す。]
    で表される4価の有機基の中から選択される1種である、請求項1又は2に記載の樹脂。
  4.  上記式中のXが、下記一般式(6-1)~(7-1):
    Figure JPOXMLDOC01-appb-C000005
    [式(7-1)中、Zは、単結合、9,9-フルオレニリデン基、式:-O-で表されるエーテル基、-C(=O)-で表されるカルボニル基、-S(=O)-で表されるスルホキシド基、-S(=O)-で表されるスルホニル基、-CH-で表されるメチレン基、-C(CH-で表されるイソプロピリデン基、-C(CF-で表されるヘキサフルオロイソプロピリデン基、-S-で表されるチオエーテル基、-NHCO-で表されるアミド基、-COO-で表されるエステル型、-C-で表されるフェニレン基、-O-C-O-で表されるフェニレンジオキシ基、-O-C-C-O-で表されるビフェニレンジオキシ基、-O-C-Z-C-O-[式中のZは-O-で表されるエーテル基、-C(=O)-で表されるカルボニル基、-S(=O)-で表されるスルホニル基、-C(CH-で表されるイソプロピリデン基、-C(CF-で表されるヘキサフルオロイソプロピリデン基、及び、-CH-で表されるメチレン基よりなる群から選択される1種を示す]で表されるビス(フェニレンジオキシ)基、-P(=O)(C)-で表される基、及び、-N(C)-で表される基よりなる群から選択される1種を示し、式(6-1)~(7-1)中の記号*1~*4は該記号の付された結合手がそれぞれXに結合している4本の結合手のうちのいずれかであることを示す。]
    で表される4価の有機基の中から選択される1種である、請求項1~3のうちのいずれか一項に記載の樹脂。
  5.  上記式中のXが、下記一般式(6-2)~(7-2):
    Figure JPOXMLDOC01-appb-C000006
    [式(7-2)中、Zは、単結合、9,9-フルオレニリデン基、式:-O-で表されるエーテル基、-C(=O)-で表されるカルボニル基、-S(=O)-で表されるスルホキシド基、-S(=O)-で表されるスルホニル基、-CH-で表されるメチレン基、-C(CH-で表されるイソプロピリデン基、-C(CF-で表されるヘキサフルオロイソプロピリデン基、-S-で表されるチオエーテル基、-NHCO-で表されるアミド基、-COO-で表されるエステル型、-C-で表されるフェニレン基、-O-C-O-で表されるフェニレンジオキシ基、-O-C-C-O-で表されるビフェニレンジオキシ基、-O-C-Z-C-O-[式中のZは-O-で表されるエーテル基、-C(=O)-で表されるカルボニル基、-S(=O)-で表されるスルホニル基、-C(CH-で表されるイソプロピリデン基、-C(CF-で表されるヘキサフルオロイソプロピリデン基、及び、-CH-で表されるメチレン基よりなる群から選択される1種を示す]で表されるビス(フェニレンジオキシ)基、-P(=O)(C)-で表される基、及び、-N(C)-で表される基よりなる群から選択される1種を示し、式(6-2)~(7-2)中の記号*1~*3は該記号の付された結合手がそれぞれXに結合している3本の結合手のうちのいずれかであることを示す。]
    で表される3価の有機基の中から選択される1種である、請求項1~4のうちのいずれか一項に記載の樹脂。
  6.  下記一般式(8-1):
    Figure JPOXMLDOC01-appb-C000007
    [式中、Xは6員環の脂環構造を有する4価の有機基を示し、Xは4価の有機基を示す。]
    で表されるイミダゾピロロン前駆体構造を有する繰り返し単位、及び、下記一般式(8-2):
    Figure JPOXMLDOC01-appb-C000008
    [式中、Xは6員環の脂環構造を有する4価の有機基を示し、Xは3価の有機基を示す。]
    で表されるイミダゾピロロン前駆体構造を有する繰り返し単位からなる群から選択される少なくとも1種の繰り返し単位を含む、樹脂前駆体。
  7.  下記一般式(9):
    Figure JPOXMLDOC01-appb-C000009
    [式中、Xは6員環の脂環構造を有する4価の有機基を示し、Xは炭素数6~50のアリーレン基を示す。]
    で表されるイミド前駆体構造を有する繰り返し単位を更に含む、請求項6に記載の樹脂前駆体。
  8.  上記式中のXが、下記一般式(3)~(5):
    Figure JPOXMLDOC01-appb-C000010
    [式(3)中、mは0~2の整数を示し、式(4)中、nは1~2の整数を示し、式(5)中、Aは単結合;及び置換基を有していてもよくかつ芳香環を形成する炭素原子の数が6~30である2価の芳香族基;よりなる群から選択される1種を示し、式(3)~(5)中の記号*1~*4は該記号の付された結合手がそれぞれXに結合している4本の結合手のうちのいずれかであることを示す。]
    で表される4価の有機基の中から選択される1種である、請求項6又は7に記載の樹脂前駆体。
  9.  上記式中のXが、下記一般式(6-1)~(7-1):
    Figure JPOXMLDOC01-appb-C000011
    [式(7-1)中、Zは、単結合、9,9-フルオレニリデン基、式:-O-で表されるエーテル基、-C(=O)-で表されるカルボニル基、-S(=O)-で表されるスルホキシド基、-S(=O)-で表されるスルホニル基、-CH-で表されるメチレン基、-C(CH-で表されるイソプロピリデン基、-C(CF-で表されるヘキサフルオロイソプロピリデン基、-S-で表されるチオエーテル基、-NHCO-で表されるアミド基、-COO-で表されるエステル型、-C-で表されるフェニレン基、-O-C-O-で表されるフェニレンジオキシ基、-O-C-C-O-で表されるビフェニレンジオキシ基、-O-C-Z-C-O-[式中のZは-O-で表されるエーテル基、-C(=O)-で表されるカルボニル基、-S(=O)-で表されるスルホニル基、-C(CH-で表されるイソプロピリデン基、-C(CF-で表されるヘキサフルオロイソプロピリデン基、-CH-で表されるメチレン基よりなる群から選択される1種を示す]で表されるビス(フェニレンジオキシ)基、-P(=O)(C)-で表される基、及び、-N(C)-で表される基よりなる群から選択される1種を示し、式(6-1)~(7-1)中の記号*1~*4は該記号の付された結合手がそれぞれXに結合している4本の結合手のうちのいずれかであることを示す。]
    で表される4価の有機基の中から選択される1種である、請求項6~8のうちのいずれか一項に記載の樹脂前駆体。
  10.  上記式中のXが、下記一般式(6-2)~(7-2):
    Figure JPOXMLDOC01-appb-C000012
    [式(7-2)中、Zは、単結合、9,9-フルオレニリデン基、式:-O-で表されるエーテル基、-C(=O)-で表されるカルボニル基、-S(=O)-で表されるスルホキシド基、-S(=O)-で表されるスルホニル基、-CH-で表されるメチレン基、-C(CH-で表されるイソプロピリデン基、-C(CF-で表されるヘキサフルオロイソプロピリデン基、-S-で表されるチオエーテル基、-NHCO-で表されるアミド基、-COO-で表されるエステル型、-C-で表されるフェニレン基、-O-C-O-で表されるフェニレンジオキシ基、-O-C-C-O-で表されるビフェニレンジオキシ基、-O-C-Z-C-O-[式中のZは-O-で表されるエーテル基、-C(=O)-で表されるカルボニル基、-S(=O)-で表されるスルホニル基、-C(CH-で表されるイソプロピリデン基、-C(CF-で表されるヘキサフルオロイソプロピリデン基、及び、-CH-で表されるメチレン基よりなる群から選択される1種を示す]で表されるビス(フェニレンジオキシ)基、-P(=O)(C)-で表される基、及び、-N(C)-で表される基よりなる群から選択される1種を示し、式(6-2)~(7-2)中の記号*1~*3は該記号の付された結合手がそれぞれXに結合している3本の結合手のうちのいずれかであることを示す。]
    で表される3価の有機基の中から選択される1種である、請求項6~9のうちのいずれか一項に記載の樹脂前駆体。
  11.  請求項6~10のうちのいずれか一項に記載の樹脂前駆体と溶媒とを含有する樹脂前駆体溶液。
PCT/JP2019/010379 2018-03-23 2019-03-13 樹脂、樹脂前駆体及び樹脂前駆体溶液 WO2019181699A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207030042A KR102458537B1 (ko) 2018-03-23 2019-03-13 수지, 수지 전구체 및 수지 전구체 용액
CN201980021572.9A CN111936555A (zh) 2018-03-23 2019-03-13 树脂、树脂前体以及树脂前体溶液
JP2020508276A JPWO2019181699A1 (ja) 2018-03-23 2019-03-13 樹脂、樹脂前駆体及び樹脂前駆体溶液

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-057198 2018-03-23
JP2018057198 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019181699A1 true WO2019181699A1 (ja) 2019-09-26

Family

ID=67986429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010379 WO2019181699A1 (ja) 2018-03-23 2019-03-13 樹脂、樹脂前駆体及び樹脂前駆体溶液

Country Status (5)

Country Link
JP (1) JPWO2019181699A1 (ja)
KR (1) KR102458537B1 (ja)
CN (1) CN111936555A (ja)
TW (1) TW201945435A (ja)
WO (1) WO2019181699A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308503A (ja) * 1993-04-27 1994-11-04 Japan Synthetic Rubber Co Ltd 液晶配向剤
JP2012098715A (ja) * 2010-10-06 2012-05-24 Hitachi Displays Ltd 配向膜、配向膜形成用組成物、および液晶表示装置
US20130281618A1 (en) * 2012-04-24 2013-10-24 Chi Mei Corporation Liquid crystal alignment agent, and liquid crystal alignment film and liquid crystal display element formed from the liquid crystal alignment agent

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3498948A (en) * 1965-09-13 1970-03-03 Toray Industries Reaction products of tetracarboxylic acid dianhydrides with triamines and mixtures of triamines and diamines
US3532673A (en) * 1967-05-17 1970-10-06 Nasa Imidazopyrrolone/imide copolymers
US3414543A (en) * 1967-05-19 1968-12-03 Du Pont Heterocyclic polymers prepared from the reaction of tetracarboxylic acid dianhydrides and tetramines
JPS4630499B1 (ja) * 1968-01-26 1971-09-04
JPS5821245B2 (ja) * 1978-04-07 1983-04-28 株式会社日立製作所 液晶表示素子
JP3047647B2 (ja) 1992-01-20 2000-05-29 日立化成工業株式会社 新規ジアミノ化合物、ポリアミド酸樹脂、ポリアミド酸エステル樹脂、ポリイミド樹脂、それらの製造方法及び該樹脂を含有する感光性樹脂組成物並びにポリイミダゾピロロン樹脂及びポリイミダゾピロロンイミド樹脂
JPH08290046A (ja) 1995-02-24 1996-11-05 Dainippon Ink & Chem Inc ポリイミダゾピロロン中空糸複合膜及びその製造方法
CN101693667B (zh) * 2009-10-23 2012-12-26 中国科学院化学研究所 芳香族四胺及其衍生物以及它们的制备方法与应用
WO2011099518A1 (ja) 2010-02-09 2011-08-18 Jx日鉱日石エネルギー株式会社 ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸二無水物類、ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸及びそのエステル類、ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸二無水物類の製造方法、それを用いて得られるポリイミド、並びに、ポリイミドの製造方法
CN105714410B (zh) * 2015-10-09 2018-08-21 江西师范大学 一种基于分子组装的聚吡咙/聚酰亚胺复合纤维的制备方法及其制品
CN106674818A (zh) * 2016-12-29 2017-05-17 扬州市江都区德辉新材料有限公司 Pvc焊条用环保型钙锌复合稳定剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308503A (ja) * 1993-04-27 1994-11-04 Japan Synthetic Rubber Co Ltd 液晶配向剤
JP2012098715A (ja) * 2010-10-06 2012-05-24 Hitachi Displays Ltd 配向膜、配向膜形成用組成物、および液晶表示装置
US20130281618A1 (en) * 2012-04-24 2013-10-24 Chi Mei Corporation Liquid crystal alignment agent, and liquid crystal alignment film and liquid crystal display element formed from the liquid crystal alignment agent

Also Published As

Publication number Publication date
JPWO2019181699A1 (ja) 2021-03-11
KR20200135430A (ko) 2020-12-02
TW201945435A (zh) 2019-12-01
CN111936555A (zh) 2020-11-13
KR102458537B1 (ko) 2022-10-26

Similar Documents

Publication Publication Date Title
JP6531812B2 (ja) ポリイミド前駆体及びポリイミド
JP6485358B2 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
KR102066385B1 (ko) 수지 전구체 및 그것을 함유하는 수지 조성물, 수지 필름 및 그 제조 방법, 그리고, 적층체 및 그 제조 방법
JP6669074B2 (ja) ポリイミドフィルム、ポリイミド前駆体、及びポリイミド
JP5978288B2 (ja) ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
JP6607193B2 (ja) ポリイミド前駆体、ポリイミド、及びポリイミドフィルム
JP6283954B2 (ja) ポリイミド前駆体、ポリイミド、ワニス、ポリイミドフィルム、及び基板
WO2015053312A1 (ja) ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
WO2018066522A1 (ja) ポリイミド、ポリイミド前駆体樹脂、それらの溶液、ポリイミドの製造方法、及び、ポリイミドを用いたフィルム
JP2018044180A (ja) ポリイミド樹脂組成物及びポリイミドワニス
JPWO2015080139A1 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
JP2017133027A (ja) ポリイミド、ポリイミドの製造方法、ポリイミド溶液及びポリイミドフィルム
JP2018172669A (ja) ポリアミドイミド、樹脂溶液、及び、フィルム
JP7203082B2 (ja) ポリイミド前駆体樹脂組成物
JP6461470B2 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
WO2013146460A1 (ja) 高透明性ポリイミド樹脂
JP2014114429A (ja) 溶剤可溶性ポリイミド樹脂
WO2019181699A1 (ja) 樹脂、樹脂前駆体及び樹脂前駆体溶液
JP2015134842A (ja) 溶剤可溶性ポリイミド樹脂
TW202102583A (zh) 聚醯亞胺、聚醯胺酸、樹脂溶液、塗劑及聚醯亞胺膜
JP2015134843A (ja) 高透明性ポリイミド樹脂
JP2013227499A (ja) 高透明性ポリイミド樹脂
WO2015080156A1 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508276

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207030042

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19770648

Country of ref document: EP

Kind code of ref document: A1