WO2019179499A1 - 射频测试探头、射频测试系统及方法 - Google Patents

射频测试探头、射频测试系统及方法 Download PDF

Info

Publication number
WO2019179499A1
WO2019179499A1 PCT/CN2019/079059 CN2019079059W WO2019179499A1 WO 2019179499 A1 WO2019179499 A1 WO 2019179499A1 CN 2019079059 W CN2019079059 W CN 2019079059W WO 2019179499 A1 WO2019179499 A1 WO 2019179499A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
port
detected
shielding
component
Prior art date
Application number
PCT/CN2019/079059
Other languages
English (en)
French (fr)
Inventor
吴兴旺
赵丽
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019179499A1 publication Critical patent/WO2019179499A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0807Measuring electromagnetic field characteristics characterised by the application
    • G01R29/0814Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning
    • G01R29/0835Testing shielding, e.g. for efficiency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0871Complete apparatus or systems; circuits, e.g. receivers or amplifiers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0878Sensors; antennas; probes; detectors

Definitions

  • the present disclosure relates to the field of radio frequency testing technologies, and in particular, to an RF test probe, a radio frequency test system, and a method.
  • FIG. 1 is a schematic structural diagram of the filter in the related art, as shown in FIG. 1 , the RF connector 102 is coupled to the filter 100 by a flange 104 and a fastening screw. If there is a gap between the filter and the flange and there is a gap, the RF interference signal cannot be completely shielded and is coupled into the receiving channel of the RRU through the slot antenna formed between the flange and the filter housing. In turn, the RRU receiving channel bottom noise is raised, the received signal is interfered, the actual received signal cannot be demodulated, the RRU receiving channel error code and the RRU whole machine sensitivity test are not limited.
  • Embodiments of the present disclosure provide a radio frequency test probe, a radio frequency test system, and a method to at least solve the problem of testing radio frequency shielding performance of a component that cannot be detected in the related art.
  • a radio frequency test probe for detecting radio frequency shielding performance of a component to be detected, the radio frequency test probe comprising:
  • the shielding chamber can accommodate at least a portion of the component to be detected
  • a radio frequency triggering port configured to send a radio frequency trigger signal to the to-be-detected component when at least a portion of the to-be-detected component is located inside the shielding cavity;
  • the signal receiving device is disposed inside the shielding cavity for receiving a radiation signal inside the shielding cavity, and transmitting the received radiation signal to the outside of the shielding cavity.
  • the radio frequency test probe further includes a test port for accommodating at least a portion of the component to be detected into the interior of the shielding cavity.
  • a radio frequency plug-in is disposed in the radio frequency trigger port for inserting at least part of the inside of the to-be-detected component and transmitting a radio frequency trigger signal to the to-be-detected component.
  • the radio frequency insert is displaceable along an axial direction of the radio frequency trigger port inside the radio frequency trigger port.
  • the radio frequency trigger port includes a first port and a second port, a first port of the radio frequency trigger port extends into the shielding cavity, and a second port of the radio frequency trigger port extends to the
  • the outer wall of the first port is for fitting with at least a part of the side end surface of the component to be detected, and the inner wall of the second port is for fitting with the side end surface of the radio frequency insert.
  • the inner diameter of the first port is smaller than the inner diameter of the second port.
  • the radio frequency test probe further includes:
  • a fastening device for fitting the housing over at least a portion of the component to be inspected.
  • the fastening device includes a supporting end body, the supporting end body is fixedly disposed on the radio frequency insert, and the supporting end body is located outside the housing;
  • a support spring is disposed between the support end body and the housing, and two ends of the support spring are respectively connected to the support end body and the housing.
  • a plurality of support springs are disposed between the support end body and the housing.
  • a plurality of fastening bolts are disposed between the support end body and the housing, and the fastening bolts are used for bolting between the support end body and the housing.
  • the radio frequency test probe further includes:
  • a fastening device for fitting the housing over at least a portion of the component to be inspected.
  • the signal receiving device comprises a coupling antenna
  • the coupling antenna is disposed on an inner wall of the shielding cavity
  • the coupling antenna is annular along a connection position of the radio frequency trigger port and the shielding cavity. distributed.
  • a radio frequency test system for detecting radio frequency shielding performance of a component to be detected, the test system comprising:
  • the radio frequency test probe
  • test unit configured to send a radio frequency trigger signal to the to-be-detected component through the radio frequency trigger port, and receive a radiation signal inside the shielding cavity by the signal receiving device, and send the received radiation signal to the The outside of the shielding chamber.
  • the test unit comprises a vector network analyzer.
  • a radio frequency test method for detecting radio frequency shielding performance of a component to be detected including:
  • the RF test method is used to detect the RF shielding performance of a flange connected between the RF connector and the filter.
  • the radio frequency triggering port can send a radio frequency trigger signal to the component to be detected when the component to be detected is located in the shielding cavity in the housing, and the radio frequency triggering signal can pass the detection when the radio frequency interface of the component to be detected is poorly shielded by the radio frequency interface.
  • the equivalent slot antenna existing in the component is coupled into the shielding cavity, and the signal receiving device receives and transmits the radiation signal inside the shielding cavity to the outside of the shielding cavity, and can complete the shielding performance of the component to be detected by detecting the received signal strength. Detection. Therefore, the technical solution in the present disclosure can solve the problem that the radio frequency shielding performance of the detecting component cannot be tested in the related art, so as to achieve an effect of accurately testing the radio frequency shielding performance of the component to be detected.
  • FIG. 1 is a schematic structural view of a filter in the related art
  • FIG. 2 is a schematic structural diagram of a radio frequency test probe according to an embodiment of the present disclosure
  • FIG. 3 is a cross-sectional view of a radio frequency test probe provided in accordance with an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a radio frequency test system according to an embodiment of the present disclosure.
  • FIG. 5 is a flow chart of a radio frequency testing method provided in accordance with an embodiment of the present disclosure.
  • a radio frequency test probe for detecting radio frequency shielding performance of a component to be detected, in particular, the radio frequency test probe in the embodiment of the present disclosure is used for the filter 100 and the radio frequency The RF shielding performance of the flange 104 to which the connectors 102 are connected is tested.
  • 2 is a schematic structural view of a radio frequency test probe according to an embodiment of the present disclosure.
  • FIG. 3 is a cross-sectional view of a radio frequency test probe according to an embodiment of the present disclosure. As shown in FIG. 2 and FIG. 3, the radio frequency test probe includes:
  • the housing 106 is provided with a shielding chamber 108, the shielding chamber 108 can accommodate the RF connector 102 and the flange 104;
  • the RF trigger port 110 is configured to send a radio frequency trigger signal to the RF connector 102 when the RF connector 102 and the flange 104 are located inside the shielding chamber 108;
  • a coupling antenna 112 is disposed at the bottom of the shielding chamber 108 for receiving a radiation signal inside the shielding chamber 108 and transmitting the received radiation signal to the outside of the shielding chamber 108 through the antenna feeding device 114.
  • the radio frequency unit when the component to be detected is located in the shielding chamber in the housing, the radio frequency unit can send a radio frequency trigger signal to the component to be detected through the radio frequency trigger port, and the radio frequency trigger signal is generated when the radio frequency shielding of the radio frequency port of the component to be detected is poorly shielded.
  • the signal receiving device can receive and transmit the radiation signal inside the shielding chamber to the RF unit outside the shielding chamber by detecting the strength of the received signal by the equivalent slot antenna present in the component to be detected. The detection of the shielding performance of the component to be tested can be completed. Therefore, the technical solution in the present disclosure can solve the problem that the shielding performance of the detecting component cannot be tested in the related art, so as to achieve an effect of accurately testing the shielding performance of the component to be detected.
  • the RF test probe in the embodiment of the present disclosure can perform the test of the RF shielding performance of the flange after the filter is completed and installed, and then the problems that may exist in the flange installation process can be found in time, and then the filter The flange mounting of the RF connector is corrected.
  • the radio frequency test probe in the embodiment of the present disclosure is convenient to carry and convenient to operate, and can enable the tester to test the RF shielding performance of the flange under any environment or working condition.
  • the RF connector and the flange together constitute the component to be detected; in the specific implementation of the embodiment of the present disclosure, the RF connector and the flange are both placed inside the shielding cavity, wherein The blue disk can be attached to the corresponding opening position of the shielding chamber to form a closed space with the shielding cavity, and the RF connector can extend into the RF trigger port in the shielding cavity to receive the RF trigger signal sent by the related device.
  • the coupled antenna in the embodiment of the present disclosure constitutes a signal receiving device.
  • the coupled antenna needs to transmit the radiation signal to the outside of the shielding cavity through the matched antenna feeding device, and the antenna is fed.
  • the device extends from the interior of the shielded chamber to the exterior. Since the space inside the shielding cavity is small, the coupling antenna should use a near-field coupling antenna, preferably a microstrip antenna.
  • the shielding chamber is preferably made of a metal material.
  • the RF test probe further includes a test port 116 for receiving the RF connector 102 and the flange 104 to the interior of the shielded chamber 108.
  • test port extends from the shielding chamber to the outside of the housing, so that the shielding chamber forms an open structure; in the implementation of the embodiment, the test port can be aligned with the RF connector and the method. a blue disk, and the housing is placed in a corresponding position of the filter, so that the RF connector and the flange are located inside the shielding cavity; in the above case, the RF connector extends into the RF trigger port inside the shielding cavity, The end face of the filter cooperates with the RF connector such that the shielding chamber forms a closed chamber with a shielding function.
  • a radio frequency plug-in 118 is disposed in the radio frequency trigger port 110 for inserting into the radio frequency connector 102 and transmitting a radio frequency trigger signal to the radio frequency connector 102.
  • the RF plug-in and the RF connector to be tested are electrically connected by plugging, and the RF plug-in and the RF connector can form a closed structure of the RF trigger port inside the RF trigger port on the one hand, and the RF plug-in can be directly The RF trigger signal is transmitted to the RF connector.
  • the RF card 118 can be displaced within the RF trigger port 110 along the axial direction of the RF trigger port.
  • the axial displacement setting of the RF plug-in relative to the RF trigger port can make the RF plug-in applicable to the connection of the RF connectors of different lengths, so that the RF test probe in the embodiment of the present disclosure has better application. Sex.
  • the RF trigger port 110 includes a first port 1101 and a second port 1102.
  • the first port 1101 of the RF trigger port 110 extends into the shielding chamber 108.
  • the second port 1102 of the RF trigger port 110 extends to the shell. Outside the body 1, the inner wall of the first port 1101 is for fitting with the side end surface of the radio frequency connector 102, and the inner wall of the second port 1102 is for fitting with the side end surface of the radio frequency insert 118;
  • the inner diameter of the first port 1101 is smaller than the inner diameter of the second port 1102.
  • the radio frequency plug can form an axial displacement along the inner wall of the second port in the second port of the radio frequency trigger port, and form a mutual socket relationship between the second port of the radio frequency trigger port and the radio frequency plug, the radio frequency plug-in
  • the displacement of the second port relative to the RF trigger port should have a certain damping sense to ensure that the RF plug forms a closed structure inside the RF trigger port.
  • the relative inner diameters of the first port and the second port in the RF trigger port can meet the smooth insertion of the RF plug and the RF connector, and the RF plug has a certain limit when moving in the direction of the RF connector.
  • the RF test probe further includes:
  • a fastening device for fitting the housing over the corresponding end face of the flange 104 in the filter 100.
  • the fastening device includes a supporting end body 120 fixedly disposed on the radio frequency insert 118, and the supporting end body 120 is located outside the housing 106;
  • a support spring 122 is disposed between the support end body 120 and the housing 106. The two ends of the support spring 122 are respectively connected to the support end body 120 and the housing 106.
  • the support end body preferably adopts a plate-like structure extending radially along the radio frequency insert.
  • the RF plug can be inserted into the RF connector to transmit the RF trigger signal. Because the fixed connection between the support end and the RF connector, the RF plug and the RF connector are mutually connected.
  • the supporting end body can also be fixed with respect to the flange and the filter; at this time, the supporting end body provides a supporting point for the supporting spring, and the housing can face away from the supporting end body under the action of the supporting force of the supporting spring.
  • the filter is moved such that the housing fits over the filter under the support of the support spring such that the RF connector and the support spring are placed in the shield chamber, and the shield chamber is closely attached to the filter to The chamber is formed into a closed space.
  • the RF test probe in the embodiment of the present disclosure is attached to the filter for testing, it is ensured that the RF test probe and the filter maintain a close fit, thereby making the shielding chamber tightly sealed. It is guaranteed to ensure the detection accuracy of the RF shielding performance of the flange.
  • a plurality of support springs 122 are disposed between the support end body 120 and the housing 106.
  • a plurality of fastening bolts 124 are disposed between the support end body 120 and the housing 106 for supporting the bolt connection between the end body 120 and the housing 106.
  • the position of the housing is further fixed by the fastening bolt, so that the tightness of the connection between the housing and the filter can be further improved. improve.
  • the RF test probe further includes:
  • a fastening device for fitting the housing over at least a portion of the component to be tested.
  • the fastening device is not limited to the above-mentioned support end body and the arrangement of the elastic spring, and the device may be provided on the housing for attaching the housing to the filter for fastening. It may include: a magnetic device, a bolting device, a snap device, and the like. Any device that can cause the housing in the embodiments of the present disclosure to be fastened over the filter is within the scope of the fastening device of the present disclosure.
  • the coupling antenna 112 is disposed above the inner wall of the shielding chamber 108, and the coupling antenna 112 is annularly distributed along the connection position of the radio frequency trigger port 110 and the shielding chamber 108.
  • FIG. 4 is a schematic structural diagram of a radio frequency testing system according to an embodiment of the present disclosure. As shown in FIG. 4, the radio frequency testing system includes:
  • the testing unit 126 is configured to send a radio frequency trigger signal to the radio frequency connector through the radio frequency trigger port 110, and receive the radiation signal inside the shielding chamber 108 through the signal receiving device, and send the received radiation signal to the shielding chamber 108. external.
  • the radio frequency unit can send a radio frequency trigger signal to the component to be detected through the radio frequency trigger port, and the radio frequency shielding of the component to be detected is shielded by radio frequency shielding.
  • the RF trigger signal can be coupled into the shielding cavity through the equivalent slot antenna present in the component to be detected, and the signal receiving device receives and transmits the radiation signal inside the shielding cavity to the RF unit outside the shielding cavity.
  • the detection of the shielding performance of the component to be detected can be performed by detecting the intensity of the received signal. Therefore, the technical solution in the present disclosure can solve the problem that the shielding performance of the detecting component cannot be tested in the related art, so as to achieve an effect of accurately testing the shielding performance of the component to be detected.
  • test unit 126 includes a vector network analyzer.
  • the radio frequency plug in the radio frequency test probe in the embodiment of the present disclosure is adjusted to a suitable position so that the radio frequency plug is inserted through the plug with the radio frequency connector to complete the connection.
  • the support end body fixed on the RF plug can also be fixed relative to the flange and the filter.
  • the position of the housing in the RF test probe is adjusted such that the housing moves toward the filter under the support spring above the support end body until the shielded chamber in the housing covers the RF connector to be tested and Above the flange, at this time, the RF connector and the flange are located inside the shielding chamber through the test port, and the RF connector and the RF plug are inserted inside the RF trigger port, thereby forming the shielding chamber to form a shielding function. space.
  • the vector network analyzer is used as the detection unit, including the port1 interface and the port2 interface, wherein the port1 interface is used for transmitting the radio frequency trigger signal, the port2 interface is used for receiving the radiation signal, and the port1 interface is connected with the radio frequency plug, and the port2 interface and the shell are connected.
  • the antenna feeding device in the body is connected, and the antenna feeding device is configured to receive a signal of the coupling antenna inside the shielding cavity.
  • the port1 interface of the vector network analyzer sends a radio frequency trigger signal, and the radio frequency trigger signal is sent to the radio frequency plug and then transmitted to the radio frequency connector and the filter through the radio frequency cable, and the output end of the filter is connected with a matching load. If the flange has a certain gap due to poor connection, the radiation signal generated via the slot antenna is transmitted to the shielding cavity and further received by the coupling antenna in the shielding cavity, and transmitted through the SMA interface of the antenna feeding device. To the outside of the housing, up to the port2 interface of the vector network analyzer.
  • the vector network analyzer obtains the S21 parameter based on the received radiation signal, and the S21 parameter can accurately determine whether the flange has good RF shielding performance.
  • a radio frequency testing method is further provided for detecting radio frequency shielding performance of a component to be detected.
  • the testing method in the embodiment of the present disclosure is specifically used for connecting a filter to a radio frequency.
  • the RF shielding performance of the flanges connected between the devices is tested.
  • FIG. 5 is a flowchart of a radio frequency testing method according to an embodiment of the present disclosure. As shown in FIG. 5, the testing method includes the following steps:
  • the component to be detected when the component to be detected is located inside the sealed space with the shielding function, the component to be detected can receive the radio frequency trigger signal, and when the radio frequency shielding of the RF port of the component to be detected is poorly shielded, the radio frequency trigger signal is
  • the signal receiving device can receive and transmit the radiation signal inside the sealed space to the radio frequency unit outside the sealed space by the equivalent slot antenna existing in the component to be detected, and can complete the treatment by detecting the strength of the received signal. Detection of the shielding performance of the sensing element. Therefore, the technical solution in the present disclosure can solve the problem that the shielding performance of the detecting component cannot be tested in the related art, so as to achieve an effect of accurately testing the shielding performance of the component to be detected.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本公开提供了一种射频测试探头、射频测试系统及方法,其中,射频测试探头包括壳体,所述壳体内设置有屏蔽腔室,所述屏蔽腔室可容纳至少部分的所述待检测元件;射频触发端口,用于在至少部分的所述待检测元件位于所述屏蔽腔室内部时,向所述待检测元件发送射频触发信号;信号接收装置,设置在所述屏蔽腔室内部,用于接收所述屏蔽腔室内部的辐射信号,并将接收到的辐射信号发送至所述屏蔽腔室外部。该技术方案可以解决相关技术中无法对待检测元件的射频屏蔽性能进行测试的问题,以达到针对待检测元件的射频屏蔽性能进行精确测试的效果。

Description

射频测试探头、射频测试系统及方法 技术领域
本公开涉及射频测试技术领域,具体而言,涉及一种射频测试探头、射频测试系统及方法。
背景技术
滤波器是RRU(射频拉远单元,Radio Remote Unit)重要组成部分,在RRU系统中,滤波器可使带内信号通过,带外信号反射。滤波器在实际使用过程中,普遍采用N型或者DIN型射频连接器与相关设备连接以接入射频触发信号,图1是相关技术中滤波器的结构示意图,如图1所示,射频连接器102通过法兰盘104与紧固螺钉与滤波器100连接。如果滤波器与法兰盘之间存在连接不良而出现缝隙的现象,射频干扰信号则无法完全屏蔽,并通过法兰盘与滤波器壳体之间形成的缝隙天线耦合到RRU的接收通道之中,进而导致RRU接收通道底噪被抬高,接收信号被干扰,无法解调实际的接收信号,RRU接收通道误码以及RRU整机灵敏度测试不过等一系列问题。
目前,相关技术中对于上述滤波器与法兰盘之间存在连接不良而导致射频干扰信号屏蔽效果不佳的问题尚无针对性的检测方法,多数情况下仅能在RRU整机测试阶段检测至RRU整机灵敏度测试不过时,才能够去反复查验产生原因。并且,由于环境干扰的不确定性,上述通过对RRU整机的检测方法在射频干扰信号强度较小的情况下,存在将故障泄露到外场的风险,进而严重影响整机的生产测试及外场使用。相关技术中,包括上述滤波器与射频连接器之间连接用法兰盘在内的射频相关元件的射频屏蔽性能均无法得到有效的测试。
针对相关技术中,无法对待检测元件的射频屏蔽性能进行测试的问题,相关技术中尚未提出有效的解决方案。
发明内容
本公开实施例提供了一种射频测试探头、射频测试系统及方法,以至少解决相关技术中无法对待检测元件的射频屏蔽性能进行测试的问题。
根据本公开的一个实施例,提供了一种射频测试探头,用于对待检测元件的射频屏蔽性能进行检测,所述射频测试探头包括:
壳体,所述壳体内设置有屏蔽腔室,所述屏蔽腔室可容纳至少部分的所述待检测元件;
射频触发端口,用于在至少部分的所述待检测元件位于所述屏蔽腔室内部时,向所述待检测元件发送射频触发信号;
信号接收装置,设置在所述屏蔽腔室内部,用于接收所述屏蔽腔室内部的辐射信号,并将接收到的辐射信号发送至所述屏蔽腔室外部。
可选地,所述射频测试探头还包括测试端口,用于将至少部分的所述待检测元件容纳至所述屏蔽腔室内部。
可选地,所述射频触发端口之中设置有射频插件,用于插入至少部分的所述待检测元件内部并向所述待检测元件发送射频触发信号。
可选地,所述射频插件可在所述射频触发端口内部沿所述射频触发端口的轴向进行位移。
可选地,所述射频触发端口包括有第一端口与第二端口,所述射频触发端口的第一端口延伸至所述屏蔽腔室之中,所述射频触发端口的第二端口延伸至所述壳体外部,所述第一端口的内壁用于与至少部分的所述待检测元件的侧端面相贴合,所述第二端口的内壁用于与所述射频插件的侧端面相贴合;
所述第一端口的内径小于所述第二端口的内径。
可选地,所述射频测试探头还包括:
紧固装置,用于使得所述壳体贴合在至少部分的所述待检测元件之上。
可选地,所述紧固装置包括有支撑端体,所述支撑端体固定设置在所 述射频插件之上,所述支撑端体位于所述壳体的外部;
所述支撑端体与所述壳体之间设置有支撑弹簧,所述支撑弹簧的两端分别连接在所述支撑端体与所述壳体之上。
可选地,所述支撑端体与所述壳体之间设置有多个支撑弹簧。
可选地,所述支撑端体与所述壳体之间设置有多个紧固螺栓,所述紧固螺栓用于所述支撑端体与所述壳体之间进行螺栓连接。
可选地,所述射频测试探头还包括:
紧固装置,用于使得所述壳体贴合在至少部分的所述待检测元件之上。
可选地,所述信号接收装置包括耦合天线,所述耦合天线设置在所述屏蔽腔室的内壁之上,所述耦合天线沿所述射频触发端口与所述屏蔽腔室的连接位置呈环形分布。
根据本公开的一个实施例,还提供了一种射频测试系统,用于对待检测元件的射频屏蔽性能进行检测,所述测试系统包括:
所述射频测试探头;
测试单元,用于通过所述射频触发端口向所述待检测元件发送射频触发信号,以及通过所述信号接收装置接收所述屏蔽腔室内部的辐射信号,并将接收到的辐射信号发送至所述屏蔽腔室外部。
可选地,所述测试单元包括矢量网络分析仪。
根据本公开的一个实施例,还提供了一种射频测试方法,用于对待检测元件的射频屏蔽性能进行检测,包括:
在至少部分的待检测元件位于具有屏蔽功能的密闭空间内部时,向所述待检测元件发送射频触发信号;
接收所述密闭空间内部的辐射信号。
可选地,所述射频测试方法用于对射频连接头与滤波器之间进行连接的法兰盘的射频屏蔽性能进行检测。
通过本公开,由于待检测元件位于壳体内的屏蔽腔室中时,射频触发端口可向待检测元件发送射频触发信号,当待检测元件的射频接口射频屏蔽不良时,射频触发信号可通过待检测元件存在的等效缝隙天线耦合至屏蔽腔室之中,信号接收装置将屏蔽腔室内部的辐射信号接收并发送至屏蔽腔室外部,通过检测接收信号强度即可完成对待检测元件的屏蔽性能的检测。因此,本公开中的技术方案可以解决相关技术中无法对待检测元件的射频屏蔽性能进行测试的问题,以达到针对待检测元件的射频屏蔽性能进行精确测试的效果。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是相关技术中滤波器的结构示意图;
图2是根据本公开实施例提供的射频测试探头的结构示意图;
图3是根据本公开实施例提供的射频测试探头的剖面示意图;
图4是根据本公开实施例提供的射频测试系统的结构示意图;
图5是根据本公开实施例提供的射频测试方法的流程图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
根据本公开的一个实施例,提供了一种射频测试探头,用于对待检测 元件的射频屏蔽性能进行检测,具体而言,本公开实施例中的射频测试探头是用于对滤波器100与射频连接器102之间进行连接的法兰盘104的射频屏蔽性能进行测试的。图2是根据本公开实施例提供的射频测试探头的结构示意图,图3是根据本公开实施例提供的射频测试探头的剖面示意图,如图2与图3所示,射频测试探头包括:
壳体106,壳体106内设置有屏蔽腔室108,屏蔽腔室108可容纳射频连接器102与法兰盘104;
射频触发端口110,用于在射频连接器102与法兰盘104位于屏蔽腔室108内部时,向射频连接器102发送射频触发信号;
耦合天线112,设置在屏蔽腔室108底部,用于接收屏蔽腔室108内部的辐射信号,并通过天线馈电装置114将接收到的辐射信号发送至屏蔽腔室108外部。
通过本公开,由于待检测元件位于壳体内的屏蔽腔室中时,射频单元可通过射频触发端口向待检测元件发送射频触发信号,当待检测元件的射频端口射频屏蔽屏蔽不良时,射频触发信号可通过待检测元件存在的等效缝隙天线耦合至屏蔽腔室之中,信号接收装置将屏蔽腔室内部的辐射信号接收并发送至屏蔽腔室外部的射频单元中,通过检测接收信号的强度即可完成对待检测元件的屏蔽性能的检测。因此,本公开中的技术方案可以解决相关技术中无法对待检测元件的屏蔽性能进行测试的问题,以达到针对待检测元件的屏蔽性能进行精确测试的效果。
此外,本公开实施例中的射频测试探头可在滤波器完成生产与安装后即进行法兰盘射频屏蔽性能的测试,进而可及时发现法兰盘安装过程中可能存在的问题,进而滤波器中射频连接器对应的法兰盘安装进行修正。并且,本公开实施例中的射频测试探头便于携带,操作便捷,可使得测试人员在任意环境或工况下对法兰盘的射频屏蔽性能进行测试。
需要进一步说明的是,上述射频连接器与法兰盘共同构成了待检测元件;本公开实施例具体实施过程中,需将射频连接器与法兰盘均置于屏蔽 腔室内部,其中,法兰盘可贴合在屏蔽腔室的对应开口位置,以与屏蔽腔室构成密闭空间,射频连接器可在屏蔽腔室内延伸至射频触发端口之中,进而接收相关设备发送的射频触发信号。
同时,本公开实施例中的耦合天线构成了信号接收装置,耦合天线接收屏蔽腔室内的辐射信号过程中,需通过配套的天线馈电装置以将辐射信号传输至屏蔽腔室外部,天线馈电装置由屏蔽腔室内部延伸至外部。由于屏蔽腔室内部空间较小,故耦合天线应采用近场耦合天线,优选采用微带天线。
此外,为使得屏蔽腔室具有良好的射频屏蔽性能,屏蔽腔室优选采用金属材质制成。
可选地,射频测试探头还包括测试端口116,用于将射频连接器102与法兰盘104容纳至屏蔽腔室108内部。
需要进一步说明的是,测试端口由屏蔽腔室之中延伸至壳体外部,以使得屏蔽腔室形成开口式结构;本公开实施例在实施过程中,可将测试端口对准射频连接器与法兰盘,并将壳体贴紧在滤波器的对应位置,进而使得射频连接器与法兰盘位于屏蔽腔室内部;上述情况下,射频连接器在屏蔽腔室内部延伸至射频触发端口之中,滤波器的端面与射频连接器共同使得屏蔽腔室形成具有屏蔽功能的密闭腔室。
可选地,射频触发端口110之中设置有射频插件118,用于插入射频连接器102内部并向射频连接器102发送射频触发信号。
具体而言,射频插件与待测的射频连接器通过插接形成电连接,射频插件与射频连接器一方面可在射频触发端口内部使得射频触发端口形成封闭结构,另一方面,射频插件可直接将射频触发信号传输至射频连接器之中。
可选地,射频插件118可在射频触发端口110内部沿射频触发端口的轴向进行位移。
通过上述技术方案,射频插件相对射频触发端口的可轴向位移设置可 使得射频插件可适用于不同长度的射频连接器的连接,以使得本公开实施例中的射频测试探头具有更为良好的适用性。
可选地,射频触发端口110包括有第一端口1101与第二端口1102,射频触发端口110的第一端口1101延伸至屏蔽腔室108之中,射频触发端口110的第二端口1102延伸至壳体1外部,第一端口1101的内壁用于与射频连接器102的侧端面相贴合,第二端口1102的内壁用于与射频插件118的侧端面相贴合;
第一端口1101的内径小于第二端口1102的内径。
具体而言,射频插件可在射频触发端口的第二端口内可形成沿第二端口的内壁进行轴向位移,射频触发端口的第二端口与射频插件之间形成相互套接的关系,射频插件相对于射频触发端口的第二端口进行位移时应具有一定的阻尼感,以确保射频插件在射频触发端口内部形成封闭结构。此外,射频触发端口中第一端口与第二端口的相对内径既可满足射频插件与射频连接器的顺利插合,又可使得射频插件在朝向射频连接器所在方向进行运动时具有一定的限位功能。
可选地,射频测试探头还包括:
紧固装置,用于使得壳体贴合在滤波器100中法兰盘104对应的端面之上。
可选地,紧固装置包括有支撑端体120,支撑端体120固定设置在射频插件118之上,支撑端体120位于壳体106的外部;
支撑端体120与壳体106之间设置有支撑弹簧122,支撑弹簧122的两端分别连接在支撑端体120与壳体106之上。
需要进一步说明的是,支撑端体优选采用沿射频插件径向延伸的板状结构。本公开实施例在实际实施过程中,可将射频插件插入射频连接器之上以进行射频触发信号的传输,由于支撑端体与射频连接器之间采用固定连接,当射频插件与射频连接器相互连接时,支撑端体亦可相对于法兰盘以及滤波器固定;此时,支撑端体为支撑弹簧提供了支点,壳体即可在支 撑弹簧的反作用力的作用下背离支撑端体而朝向滤波器进行运动,以使得壳体在支撑弹簧的支撑作用下贴合在滤波器之上,以使得射频连接器与支撑弹簧置于屏蔽腔室内,而屏蔽腔室与滤波器的紧密贴合以使得腔室形成密闭空间。
通过上述技术方案,可使得本公开实施例中的射频测试探头贴合在滤波器上进行测试时,确保射频测试探头与滤波器之间保持紧密的贴合度,进而使得屏蔽腔室的密闭性得以保障以确保对法兰盘射频屏蔽性能的检测精度。
可选地,支撑端体120与壳体106之间设置有多个支撑弹簧122。
通过上述技术方案,可使得壳体所受支撑效果得以进一步的保障。本公开实施例中优选采用四个支撑弹簧。
可选地,支撑端体120与壳体106之间设置有多个紧固螺栓124,紧固螺栓124用于支撑端体120与壳体106之间进行螺栓连接。
通过上述技术方案,可在壳体受支撑弹簧支撑作用而贴合在滤波器之上时,通过紧固螺栓进一步固定壳体的位置,以壳体与滤波器之间连接的紧密性得以进一步的改善。
可选地,射频测试探头还包括:
紧固装置,用于使得壳体贴合在至少部分的待检测元件之上。
需要进一步说明的是,紧固装置不仅限于上述支撑端体以及弹性弹簧的设置,亦可在壳体上设置用于将壳体贴合在滤波器之上,以起到紧固作用的装置,具体可包括:磁吸装置、螺栓连接装置、卡扣装置等等。任何可使得本公开实施例中的壳体可紧固在滤波器之上的装置均属于本公开紧固装置的范围。
可选地,耦合天线112设置在屏蔽腔室108的内壁之上,耦合天线112沿射频触发端口110与屏蔽腔室108的连接位置呈环形分布。
实施例2
根据本公开的一个实施例,还提供了一种射频测试系统,用于对待检测元件的射频屏蔽性能进行检测,具体而言,本公开实施例中的测试系统可用于对滤波器100与射频连接器102之间进行连接的法兰盘104的射频屏蔽性能进行测试,图4是根据本公开实施例提供的射频测试系统的结构示意图,如图4所示,射频测试系统包括:
射频测试探头;
测试单元126,用于通过射频触发端口110向射频连接器发送射频触发信号,以及通过信号接收装置接收屏蔽腔室108内部的辐射信号,并将接收到的辐射信号发送至所述屏蔽腔室108外部。
通过本公开实施例中的测试系统,由于待检测元件位于壳体内的屏蔽腔室中时,射频单元可通过射频触发端口向待检测元件发送射频触发信号,当待检测元件的射频端口射频屏蔽屏蔽不良时,射频触发信号可通过待检测元件存在的等效缝隙天线耦合至屏蔽腔室之中,信号接收装置将屏蔽腔室内部的辐射信号接收并发送至屏蔽腔室外部的射频单元中,通过检测接收信号的强度即可完成对待检测元件的屏蔽性能的检测。因此,本公开中的技术方案可以解决相关技术中无法对待检测元件的屏蔽性能进行测试的问题,以达到针对待检测元件的屏蔽性能进行精确测试的效果。
可选地,测试单元126包括矢量网络分析仪。
以下通过具体实例说明本公开实施例中的测量系统对滤波器100与射频连接器102之间进行连接的法兰盘104的射频屏蔽性能进行测试的过程:
将本公开实施例中的射频测试探头内的射频插件调节至合适位置,以使得射频插件通过与射频连接头之间的插合以完成连接。当射频插件与射频连接头完成插合后,固定在射频插件之上的支撑端体亦可相对于法兰盘以及滤波器固定。此时,调节射频测试探头中壳体的位置,以使得壳体在支撑端体之上的支撑弹簧作用下朝向滤波器运动,直至壳体中的屏蔽腔室覆盖在待检测的射频连接器与法兰盘之上,此时,射频连接器与法兰盘通过测试端口位于屏蔽腔室内部,射频连接器与射频插件在射频触发端口内 部插合,进而使得屏蔽腔室形成具有屏蔽功能的密闭空间。
采用矢量网络分析仪作为检测单元,包括有port1接口与port2接口,其中,port1接口用于发送射频触发信号,port2接口用于接收辐射信号,将port1接口与射频插件相连接,将port2接口与壳体中的天线馈电装置连接,天线馈电装置用于接收屏蔽腔室内部耦合天线的信号。
此时,矢量网络分析仪的port1接口发送射频触发信号,射频触发信号经由射频线缆发送至射频插件后进而向射频连接器与滤波器传输,滤波器的输出端则接有匹配负载。如若法兰盘由于连接不良而存在一定的缝隙,则经由上述缝隙天线产生的辐射信号会传输至屏蔽腔室内,并进一步被屏蔽腔室内的耦合天线接收,并通过天线馈电装置的SMA接口发送至壳体外部,直至矢量网络分析仪的port2接口。
矢量网络分析仪根据接收到的辐射信号以得到S21参数,通过S21参数即可精确判断法兰盘是否具有良好的射频屏蔽性能。
上述具体应用实例对于N型射频连接器法兰以及DIN型连接器标准均可实现良好的测试效果。
实施例3
根据本公开的一个实施例,还提供了一种射频测试方法,用于对待检测元件的射频屏蔽性能进行检测,具体而言,本公开实施例中的测试方法具体用于对滤波器与射频连接器之间进行连接的法兰盘的射频屏蔽性能进行测试;图5是根据本公开实施例提供的射频测试方法的流程图,如图5所示,该测试方法包括以下步骤:
S100,在射频连接器与法兰盘位于具有屏蔽功能的密闭空间内部时,向射频连接器发送射频触发信号;
S102,接收密闭空间内部的辐射信号。
通过本公开实施例中的测试方法,由于待检测元件位于具有屏蔽功能的密闭空间内部时,待检测元件可接收到射频触发信号,当待检测元件的射频端口射频屏蔽屏蔽不良时,射频触发信号可通过待检测元件存在的等 效缝隙天线耦合至密闭空间之中,信号接收装置将密闭空间内部的辐射信号接收并发送至密闭空间外部的射频单元中,通过检测接收信号的强度即可完成对待检测元件的屏蔽性能的检测。因此,本公开中的技术方案可以解决相关技术中无法对待检测元件的屏蔽性能进行测试的问题,以达到针对待检测元件的屏蔽性能进行精确测试的效果。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (14)

  1. 一种射频测试探头,用于对待检测元件的射频屏蔽性能进行检测,所述射频测试探头包括:
    壳体,所述壳体内设置有屏蔽腔室,所述屏蔽腔室可容纳至少部分的所述待检测元件;
    射频触发端口,用于在至少部分的所述待检测元件位于所述屏蔽腔室内部时,向所述待检测元件发送射频触发信号;
    信号接收装置,设置在所述屏蔽腔室内部,用于接收所述屏蔽腔室内部的辐射信号,并将接收到的辐射信号发送至所述屏蔽腔室外部。
  2. 根据权利要求1所述的射频测试探头,其中,所述射频测试探头还包括测试端口,用于将至少部分的所述待检测元件容纳至所述屏蔽腔室内部。
  3. 根据权利要求1所述的射频测试探头,其中,所述射频触发端口之中设置有射频插件,用于插入至少部分的所述待检测元件内部并向所述待检测元件发送射频触发信号。
  4. 根据权利要求3所述的射频测试探头,其中,所述射频插件可在所述射频触发端口内部沿所述射频触发端口的轴向进行位移。
  5. 根据权利要求4所述的射频测试探头,其中,所述射频触发端口包括有第一端口与第二端口,所述射频触发端口的第一端口延伸至所述屏蔽腔室之中,所述射频触发端口的第二端口延伸至所述壳体外部,所述第一端口的内壁用于与至少部分的所述待检测元件的侧端面相贴合,所述第二端口的内壁用于与所述射频插件的侧端面相贴合;
    所述第一端口的内径小于所述第二端口的内径。
  6. 根据权利要求4所述的射频测试探头,其中,所述射频测试 探头还包括:
    紧固装置,用于使得所述壳体贴合在至少部分的所述待检测元件之上。
  7. 根据权利要求6所述的射频测试探头,其中,所述紧固装置包括有支撑端体,所述支撑端体固定设置在所述射频插件之上,所述支撑端体位于所述壳体的外部;
    所述支撑端体与所述壳体之间设置有支撑弹簧,所述支撑弹簧的两端分别连接在所述支撑端体与所述壳体之上。
  8. 根据权利要求7所述的射频测试探头,其中,所述支撑端体与所述壳体之间设置有多个支撑弹簧。
  9. 根据权利要求1所述的射频测试探头,其中,所述射频测试探头还包括:
    紧固装置,用于使得所述壳体贴合在至少部分的所述待检测元件之上。
  10. 根据权利要求1至9中任一项所述的射频测试探头,其中,所述信号接收装置包括耦合天线,所述耦合天线设置在所述屏蔽腔室的内壁之上,所述耦合天线沿所述射频触发端口与所述屏蔽腔室的连接位置呈环形分布。
  11. 一种射频测试系统,包括权利要求1-10任一项所述的射频测试探头,用于对待检测元件的射频屏蔽性能进行检测,所述射频测试系统包括:
    所述射频测试探头;
    测试单元,用于通过所述射频触发端口向所述待检测元件发送射频触发信号,以及通过所述信号接收装置接收所述屏蔽腔室内部的辐 射信号,并将接收到的辐射信号发送至所述屏蔽腔室外部。
  12. 根据权利要求11所述的射频测试系统,其中,所述测试单元包括矢量网络分析仪。
  13. 一种射频测试方法,用于对待检测元件的射频屏蔽性能进行检测,所述射频测试方法包括:
    在至少部分的待检测元件位于具有屏蔽功能的密闭空间内部时,向所述待检测元件发送射频触发信号;
    接收所述密闭空间内部的辐射信号。
  14. 根据权利要求13所述的射频测试方法,其中,所述测试方法用于对射频连接头与滤波器之间进行连接的法兰盘的射频屏蔽性能进行检测。
PCT/CN2019/079059 2018-03-22 2019-03-21 射频测试探头、射频测试系统及方法 WO2019179499A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810241070.4A CN110297131B (zh) 2018-03-22 2018-03-22 射频测试探头、射频测试系统及方法
CN201810241070.4 2018-03-22

Publications (1)

Publication Number Publication Date
WO2019179499A1 true WO2019179499A1 (zh) 2019-09-26

Family

ID=67988199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079059 WO2019179499A1 (zh) 2018-03-22 2019-03-21 射频测试探头、射频测试系统及方法

Country Status (2)

Country Link
CN (1) CN110297131B (zh)
WO (1) WO2019179499A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937557A (zh) * 2021-10-22 2022-01-14 陕西晟思智能测控有限公司 一种移动式射频电缆自动对接设备
CN117353842A (zh) * 2023-12-06 2024-01-05 宁波吉品科技有限公司 多路多方向针状射频口测试平台
CN117907667A (zh) * 2024-03-20 2024-04-19 季华实验室 一种采集装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001061367A1 (en) * 2000-02-14 2001-08-23 Tokyo Electron Limited Device and method for measuring an electric field inside a plasma
US20030042883A1 (en) * 2001-08-28 2003-03-06 Thurston William E. Electrical contact spring probe with RF shielding
CN102955085A (zh) * 2012-10-25 2013-03-06 西安开容电子技术有限责任公司 一种射频泄漏测试方法
CN206060771U (zh) * 2016-08-31 2017-03-29 维沃移动通信有限公司 一种射频测试头结构及应用其的射频测试仪

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220821A (ja) * 1994-02-01 1995-08-18 Matsushita Electric Ind Co Ltd アンテナ接栓装置
JP2007271525A (ja) * 2006-03-31 2007-10-18 Sunx Ltd 表面電位検出センサ、並びにプローブ
CN101217223A (zh) * 2007-01-04 2008-07-09 南京依纳科技有限公司 小型射频同轴连接器
CN201307630Y (zh) * 2008-11-26 2009-09-09 海泰超导通讯科技(天津)有限公司 两体式微带滤波器封装屏蔽盒
CN102375094A (zh) * 2010-08-19 2012-03-14 鸿富锦精密工业(深圳)有限公司 电磁辐射测量装置
WO2014106078A2 (en) * 2012-12-28 2014-07-03 Exxonmobil Research And Engineering Company Instruments for monitoring electrostatic phenomena in reactors
CN203101443U (zh) * 2013-01-06 2013-07-31 中国电子科技集团公司第四十一研究所 一种射频测试电路的屏蔽结构
FR3004261B1 (fr) * 2013-04-03 2015-12-11 Centre Nat Rech Scient Chambre reverberante a uniformite de champ electromagnetique amelioree
CN103618987B (zh) * 2013-11-28 2016-10-05 歌尔声学股份有限公司 Wifi无线耳机批量听音和射频测试方法
CN104730369A (zh) * 2013-12-24 2015-06-24 上海市计量测试技术研究院 用于平面型电磁屏蔽材料的屏蔽效能法兰同轴测试装置
CN107547144B (zh) * 2016-06-27 2021-09-28 中兴通讯股份有限公司 射频测试系统
CN107733537A (zh) * 2017-08-18 2018-02-23 广东小天才科技有限公司 一种用于射频性能测试的类暗室耦合测试方法和测试设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001061367A1 (en) * 2000-02-14 2001-08-23 Tokyo Electron Limited Device and method for measuring an electric field inside a plasma
US20030042883A1 (en) * 2001-08-28 2003-03-06 Thurston William E. Electrical contact spring probe with RF shielding
CN102955085A (zh) * 2012-10-25 2013-03-06 西安开容电子技术有限责任公司 一种射频泄漏测试方法
CN206060771U (zh) * 2016-08-31 2017-03-29 维沃移动通信有限公司 一种射频测试头结构及应用其的射频测试仪

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937557A (zh) * 2021-10-22 2022-01-14 陕西晟思智能测控有限公司 一种移动式射频电缆自动对接设备
CN113937557B (zh) * 2021-10-22 2023-02-24 陕西晟思智能测控有限公司 一种移动式射频电缆自动对接设备
CN117353842A (zh) * 2023-12-06 2024-01-05 宁波吉品科技有限公司 多路多方向针状射频口测试平台
CN117353842B (zh) * 2023-12-06 2024-03-08 宁波吉品科技有限公司 多路多方向针状射频口测试平台
CN117907667A (zh) * 2024-03-20 2024-04-19 季华实验室 一种采集装置
CN117907667B (zh) * 2024-03-20 2024-05-28 季华实验室 一种采集装置

Also Published As

Publication number Publication date
CN110297131A (zh) 2019-10-01
CN110297131B (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
WO2019179499A1 (zh) 射频测试探头、射频测试系统及方法
US8570178B2 (en) Coaxial cable connector with internal floating ground circuitry and method of use thereof
CN101919120B (zh) 同轴电缆连接器及其使用方法
CN202183525U (zh) 同轴电缆连接器结构和同轴电缆连接器连接系统
US20100194382A1 (en) Method for determining electrical power signal levels in a transmission system
CN105116249B (zh) 一种小型屏蔽机箱的宽频段屏蔽效能测试装置及方法
US8618944B2 (en) Coaxial cable connector parameter monitoring system
US20100081324A1 (en) Coaxial cable connector with an internal coupler and method of use thereof
US4134119A (en) Antenna test shield
US7994990B2 (en) Simulator for internal antennas in telemetry devices
CN218240424U (zh) 抗干扰测试装置
KR101352520B1 (ko) 전력설비용 극초단파 부분 방전 센서 반 조립체 및 전력설비용 극초단파 부분 방전 센서 조립체
US7440741B2 (en) Over-the-air testing of compact flash radio
CN102955086A (zh) 一种波导转换开关屏蔽效能测试方法
CN102944779A (zh) 滤波屏蔽一体化组件的屏蔽效能测试方法
JP2006220511A (ja) 放射電磁界イミュニティ試験装置
CN102955085A (zh) 一种射频泄漏测试方法
CN114019333A (zh) 用于检测局部放电超高频电磁信号的复合传感器
Parhami et al. Innovative pre-compliance test methodology using ambient cancellation and coherence detection techniques
CN109596911B (zh) 一种射电天文台址电磁兼容性控制方法
KR101952035B1 (ko) 알에프 검사장비용 비접촉식 안테나 커플러
CN220105165U (zh) 一种屏蔽效能检测装置
CN209390076U (zh) 一种近场通信检测设备
TW201141102A (en) Noise budget and wireless product test method applying the same
JP2008034761A (ja) 2重構造の電磁シールド材を用いた電磁シールドルームシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19771854

Country of ref document: EP

Kind code of ref document: A1