WO2019179474A1 - 多联机系统及其分时除湿方法 - Google Patents

多联机系统及其分时除湿方法 Download PDF

Info

Publication number
WO2019179474A1
WO2019179474A1 PCT/CN2019/078914 CN2019078914W WO2019179474A1 WO 2019179474 A1 WO2019179474 A1 WO 2019179474A1 CN 2019078914 W CN2019078914 W CN 2019078914W WO 2019179474 A1 WO2019179474 A1 WO 2019179474A1
Authority
WO
WIPO (PCT)
Prior art keywords
dehumidification
internal machine
state
time
internal
Prior art date
Application number
PCT/CN2019/078914
Other languages
English (en)
French (fr)
Inventor
刘敏
何明顺
王晓楠
李亚军
朱海滨
孙龙
Original Assignee
青岛海信日立空调系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信日立空调系统有限公司 filed Critical 青岛海信日立空调系统有限公司
Priority to PL19772449.5T priority Critical patent/PL3770519T3/pl
Priority to EP19772449.5A priority patent/EP3770519B1/en
Publication of WO2019179474A1 publication Critical patent/WO2019179474A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1405Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification in which the humidity of the air is exclusively affected by contact with the evaporator of a closed-circuit cooling system or heat pump circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02333Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during dehumidification

Definitions

  • the present disclosure relates to the field of air conditioning, and more particularly to a multi-line system and a time-division dehumidification method thereof.
  • Multi-line system commonly known as "one-to-many” refers to an outdoor unit connecting two or more indoor units through piping.
  • the outdoor unit of the multi-connection system can effectively reduce the equipment cost, and can realize centralized management of each indoor unit. It can start one indoor unit separately or multiple indoor units can be started at the same time. It makes control more flexible and therefore an important direction for the development of air conditioners.
  • some embodiments of the present disclosure provide a time-division dehumidification method for a multi-line system, comprising: controlling a plurality of dehumidification internal machines to dehumidify in a time division in a control cycle of a time division dehumidification process At least one of the dehumidification states in the dehumidification internal machine that has not been subjected to the dehumidification state during the process, and the remaining dehumidification internal machine operation state is set to the temporary dehumidification state, and the sum of the volumes of the evaporators of the at least one dehumidification internal machine is not greater than the current operation.
  • some embodiments of the present disclosure provide a multi-line system comprising: a memory and a processor, the memory storing a computer program executable on the processor, the processor configured to run the computer a program to enable the multi-line system to be implemented:
  • the internal machine operating state is a temporary dehumidification state, and the sum of the volumes of the evaporators of the at least one dehumidification internal machine is not greater than the sum of the volumes of the condensers of the currently operating heating internal machines; wherein the primary time division dehumidification process
  • the at least two control cycles are included, and the one-time time-sharing dehumidification process includes sequentially operating the at least two control cycles until each of the plurality of dehumidification internal machines operates a dehumidification state.
  • some embodiments of the present disclosure provide a multi-line system, including: an outdoor unit, a heating internal unit, and a dehumidification internal unit, wherein the outdoor unit is provided with a first end for circulating refrigerant, and a second end, a three-terminal, the heating internal machine includes a first heat exchanger and a second heat exchanger, the dehumidification internal machine includes a third heat exchanger and a fourth heat exchanger;
  • the first end of the outdoor unit is connected to one end of the first heat exchanger through a first indoor electronic expansion valve, connected to one end of the second heat exchanger through a second indoor electronic expansion valve, and is electronically expanded through a third chamber.
  • a valve is connected to one end of the third heat exchanger, and is connected to one end of the fourth heat exchanger through a fourth indoor electronic expansion valve, and the other end of the first heat exchanger is connected to the third end of the outdoor unit,
  • the other end of the third heat exchanger is connected to the third end of the outdoor unit, the other end of the second heat exchanger is connected to the second end of the outdoor unit, and the other end of the fourth heat exchanger Connecting the second end of the outdoor unit;
  • the first indoor electronic expansion valve located in the heating internal machine is closed, and the second indoor electronic expansion valve located in the heating internal machine is opened to pass refrigerant from the second indoor heat exchanger
  • the second indoor electronic expansion valve flows into the second end of the outdoor unit
  • the fourth indoor electronic expansion valve located in the dehumidification internal machine is closed;
  • the third indoor electronic expansion valve located in the dehumidification internal machine is configured to be opened when the indoor unit is in a running dehumidification state to cause the refrigerant to expand from the third indoor heat exchanger through the third indoor electronic expansion The valve flows into the third end of the outdoor unit.
  • FIG. 1 is a schematic structural diagram of a multi-line system according to some embodiments of the disclosure.
  • FIG. 2 is a flow chart of a time division dehumidification method of a multi-line system, in accordance with some embodiments of the present disclosure
  • FIG. 3 is a schematic view of some embodiments of the time division dehumidification method shown in FIG. 2;
  • FIG. 4 is a schematic view showing an operation state of the multi-line system shown in FIG. 1 in a first control cycle in a time-division dehumidification process of the time-division dehumidification method shown in FIG. 2;
  • FIG. 5 is a schematic diagram showing an operation state of the multi-line system shown in FIG. 1 in a second control cycle in a time-division dehumidification process of the time-division dehumidification method shown in FIG. 2;
  • FIG. 6 is a schematic view showing the working state in the third control cycle of the multi-line system shown in FIG. 1 in the time-division dehumidification process of the time-division dehumidification method shown in FIG. 2;
  • FIG. 7 is a system flow diagram of a dehumidification internal machine and a heating internal machine in accordance with some embodiments of the disclosure.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” and “second” may include one or more of the features either explicitly or implicitly. In the description of the present disclosure, "a plurality of” means two or more unless otherwise stated.
  • one outdoor unit is usually connected to two or more indoor units, such as the multi-connection system shown in FIG. 1, including one outdoor unit and six indoor units.
  • a heating mode for example, a user turns on the heating mode of the indoor unit through a remote controller, a wire controller, or a control panel on the casing of the indoor unit
  • the indoor unit is called heating.
  • a dehumidification internal machine for example, a dehumidification internal machine.
  • the refrigerant also called refrigerant
  • the evaporator and the condenser of the heating internal machine circulate, and when the volume of the evaporator of each dehumidification internal machine and the volume of the condenser of each heating internal machine are matched, it is considered that the current heating internal machine can Support the current dehumidification machine to run dehumidification at the same time, and each dehumidification machine has good dehumidification performance.
  • each dehumidification internal machine When the volume of the evaporator of each dehumidification internal machine does not match the volume of the condenser of each heating internal machine (the mismatch often occurs when the number of dehumidification internal machines is greater than the number of heating internal machines) For example, as shown in Figure 1, if the indoor units A and C are in the heating mode, the indoor units B, D, E, and F are dehumidified, that is, there are 4 dehumidification machines and only 2 heating machines.
  • each dehumidification internal machine in the related art needs to simultaneously operate the dehumidification state, which makes the dehumidification performance of the dehumidification internal machine Poor, even the partial dehumidification machine can not dehumidify.
  • one scene of the number of dehumidification internal machines is larger than that of the number of heating internal machines: when the number of user rooms is large, some rooms are used as basements, and during the transitional season or winter seasons, the humidity of the local lower chambers is higher. When it is big, it is easy to mold, so it needs to be dehumidified. Therefore, some rooms may need to be heated, and some rooms need to be dehumidified.
  • the dehumidification demand is large, so that the number of dehumidification internal machines is large.
  • the dehumidification performance of the dehumidifying internal machine may be poor.
  • Some embodiments of the present disclosure provide a time-division dehumidification method for a multi-line system, which controls a plurality of dehumidification internal machines to operate a dehumidification state at different time periods, for example, during a control cycle in a time-sharing dehumidification process, and controls a dehumidification internal machine.
  • the volume and the capacity of the condenser of the heating internal machine that operates the heating state (for example, the volume of the evaporator and the volume of the condenser is less than or equal to the volume of the condenser), so that the dehumidification performance of the dehumidification machine operating in the dehumidification state is good. .
  • the indoor units A and C are heating internal units
  • the indoor units B, D, E, and F are dehumidifying internal machines as an example.
  • Some embodiments of the present disclosure provide a time division dehumidification method for a multi-line system, as shown in FIG. 2, including:
  • Step 101 In a control cycle in a time-sharing dehumidification process, set a running state of the first dehumidification internal machine to perform a dehumidification internal machine in the first set that has not been dehumidified during the current time-division dehumidification process.
  • Dehumidifying state and determining a maximum number of second dehumidifying internal machines that can be supported by the current heating internal machine in the multi-line system other than the first dehumidifying internal machine, and if there is a second dehumidifying internal machine, setting each second dehumidifying inner
  • the operating state of the machine is a dehumidification state, wherein the first set consists of the current dehumidification internal machine in the multi-line system.
  • the time-division dehumidification is initiated in response to the presence of both the dehumidification internal unit and the heating internal unit in the indoor unit. In some embodiments, the time-division dehumidification is initiated in response to the presence of the dehumidification internal machine and the heating internal machine simultaneously in the indoor unit and the volume of the heating internal machine being less than the volume of the dehumidification internal machine.
  • the current dehumidification internal machine refers to an indoor unit that needs to run a dehumidification state in a multi-line system.
  • the indoor units B, D, E, and F are current dehumidification internal machines.
  • the four dehumidification internal machines constitute the first set.
  • the indoor units A and C are the current heating internal units.
  • a time-division dehumidification process refers to a process in which the indoor units B, D, E, and F all operate in a dehumidification state, and may include one or more control periods in the process, and any one of the control periods may be provided according to the embodiment. The method is done.
  • the duration of a control period may be a preset constant or a time period determined according to a set rule.
  • the indoor unit when the dehumidification state is operated, one indoor heat exchanger of the indoor unit functions as an evaporator, and the other indoor heat exchanger does not operate; when the heating state is performed, the indoor unit One of the indoor heat exchangers acts as a condenser and the other indoor heat exchanger does not work.
  • the indoor unit may be other controls.
  • the indoor heat exchanger of the indoor unit when the indoor unit is a two-controlled indoor unit, the indoor heat exchanger of the indoor unit serves as a condenser when the heating state is performed.
  • the three-regulated indoor unit may include the first indoor heat exchanger 11 and the second indoor heat exchanger 12 as shown in FIG. 7, and are respectively connected to the indoor heat exchangers.
  • any dehumidification machine that has not been dehumidified during the time-division dehumidification process may be selected.
  • the indoor units B, D, E, and F may be any one of the indoor units B, D, E, and F, for example, indoors.
  • Machine B serves as the first dehumidification internal machine.
  • a dehumidification internal machine may be determined as a first dehumidification internal machine according to a preset rule in a dehumidification internal machine that has not been dehumidified during the current time division dehumidification process. For example, according to the order of the respective dehumidification internal machines, the first dehumidification internal machine is determined from the dehumidification internal machine in which the dehumidification process has not been dehumidified.
  • the time-sharing dehumidification method may further include the step 201 shown in FIG. 3: numbering the dehumidification internal machines in the first set, wherein the numbering may be in accordance with
  • the rules for the arithmetic progression can also follow other collation rules.
  • the dehumidification internal machines B, D, E, and F may be numbered 0, 1, 2, and 3, respectively, starting from 0 and having a tolerance of 1.
  • the dehumidification internal machine with the smallest number is determined as the first dehumidification internal machine.
  • the dehumidification internal machine in the first set is numbered, other rules may be used, for example, the dehumidification internal machines in the first set are numbered by letters in the order of 26 letters, or The dehumidification internal machine in the first set is numbered according to the rules of the series, which is not limited by the embodiment of the present disclosure.
  • the algorithm of the time division dehumidification method is relatively simple in accordance with the rules of the arithmetic progression
  • the dehumidification internal machines in the first set are numbered according to the rules of the arithmetic progression.
  • step 201 may be performed once during each time-division dehumidification process; or in step 201 when the distribution of the dehumidification internal machine is changed once during the multi-line system from on to off, for example, increasing or Reduce the number of dehumidification internal machines, or the number of dehumidification internal machines does not change, but the distribution of dehumidification internal machines changes (for example, the dehumidification internal machine is changed from indoor units B, D, E, F to indoor units B, C, E, F) ). Moreover, if the distribution of the multi-connection system from the opening to the closing of the dehumidification internal machine is not changed, the process of dehumidifying the indoor units B, D, E, and F can be performed once or repeatedly.
  • the operating state of the first dehumidification internal machine is set to Dehumidification, including:
  • the dehumidification internal machine with the lowest number is used as the first dehumidification internal machine, for example, in combination with the above, at one time division
  • the indoor unit B numbered 0 is used as the first dehumidification internal machine, and the operating state of the first dehumidification internal machine is set to perform the dehumidification state.
  • the dehumidification internal machine with the largest number may be used as the first dehumidification internal machine.
  • Some embodiments of the present disclosure will be described by taking the dehumidification internal machine with the lowest number as the first dehumidification internal machine as an example.
  • step 101 After determining the first dehumidification internal machine, in step 101, it is also necessary to determine the maximum number of second dehumidification internal machines that the current heating internal units A, C can support in the multi-line system other than the first dehumidification internal machine.
  • the numbers of the second dehumidification inner machine and the first dehumidification inner machine are continuous, that is, the numbers of the first dehumidification inner machine and each of the second dehumidification inner machines are continuously arranged in order from small to large.
  • the serial number of each of the second dehumidification internal machine and the first dehumidification internal machine means that the numbers of the respective second dehumidification internal machines are continuous, and in each control cycle, each of the second dehumidification internal machines and the first dehumidification machine The number of the internal machine is continuous. For example, when it is determined that the dehumidification internal machine of the number m (for example, m is 0) is the first dehumidification internal machine, the next dehumidification internal machine from the first dehumidification internal machine is numbered m+1 (for example, m+1 is The dehumidification internal machine of 1) starts to determine the second dehumidification internal machine.
  • the current heating internal machines A, C can support the indoor unit D running dehumidification state in addition to the first dehumidification internal machine (ie, the indoor unit B) in one control cycle, and the indoor unit numbered 1 ( That is, the indoor unit D) serves as the second dehumidification internal unit.
  • the time-division dehumidification method of the multi-line system further includes the step 102: setting the running state of the remaining dehumidifying internal machine in the first set to be temporarily dehumidified, and remaining The dehumidification internal machine is a dehumidification internal machine that is not set to perform a dehumidification state during the control cycle.
  • the state in contrast to the dehumidification state, the state is not dehumidified temporarily; the temporary dehumidification state means that the current dehumidification internal machine does not perform dehumidification in the present control cycle, except for the first dehumidification in one control cycle.
  • the operating state of the internal machine and each of the second dehumidifying internal machines is the dehumidifying state, and the operating state of the other dehumidifying internal machines (remaining dehumidifying internal machines) is temporarily not dehumidified.
  • the remaining dehumidification internal machine is a dehumidification internal machine other than the first dehumidification internal machine and the second dehumidification internal machine in one control cycle.
  • the dehumidification internal machines set to operate in the dehumidification state are numbered 0 and 1 (ie, dehumidification internal machines B and D) in the first control cycle.
  • the remaining dehumidification internal machines are numbered 2 and 3, that is, the dehumidification internal machines E and F are the remaining dehumidification internal machines.
  • the dehumidification internal machine set to run the dehumidification state is number 2 (ie, the dehumidification internal unit E) as shown in FIG. 5 in the second control cycle
  • the remaining dehumidification internal machine in the second control cycle includes the number.
  • Dehumidification internal machines of 0, 1, and 3 that is, dehumidification internal machines (numbers 0 and 1) that are set to operate dehumidification in the first control cycle, and dehumidifications that have not been dehumidified during this time-division dehumidification process Internal machine (No. 3).
  • the shaded solid line frame indicates that the dehumidification internal machine operates the dehumidification state in a control period
  • the dotted line frame indicates that the previous control period in a time division dehumidification process is performed.
  • the dehumidification internal machine runs through the dehumidification state in the current period without dehumidification
  • the unshaded dashed box indicates that the dehumidification internal machine is in a temporary dehumidification state in a control period.
  • the one-time dehumidification process of the multi-line system shown in FIG. 4 includes three control cycles as an example.
  • FIG. 4 and FIG. 6 a multi-line system according to some embodiments of the present disclosure is briefly explained.
  • Time-sharing dehumidification method The current dehumidification internal machine includes indoor units B, D, E, and F.
  • any one of the current dehumidification internal machines, such as the indoor unit B may be used as the first dehumidification unit.
  • the indoor unit D is used a second dehumidification internal machine, and setting the operating state of the indoor unit D to perform a dehumidification state; the dehumidification internal machine that is not set to the dehumidification state during the control period, that is, the operating states of the indoor units E and F are set to be temporarily not Dehumidification state. Then, in the first control cycle, the operating states of the indoor units B and D are set to perform the dehumidification state. After the end of the first control period, the second control cycle of the time division dehumidification process is entered.
  • any dehumidification internal machine that has not been dehumidified during the time-division dehumidification process that is, any one of indoor units E and F, for example, indoor
  • the machine E is used as the first dehumidification internal machine, and the operating state of the first dehumidification internal machine is set to perform the dehumidification state; it is assumed that the current heating internal machine in the multi-connection system can only support the indoor unit E, that is, the second control
  • the second dehumidification internal machine does not exist in the cycle
  • the dehumidification internal machine that is not set to the dehumidification state in the control cycle that is, the operating states of the indoor units B, D, and the indoor unit F are set to be temporarily dehumidified.
  • the operating state of the indoor unit E is set to perform the dehumidification state.
  • the dehumidification internal machine that has not been dehumidified during the time-division dehumidification process that is, the indoor unit F is used as the first dehumidification internal machine, and
  • the operating state of the first dehumidification internal machine is set to perform a dehumidification state; since the indoor unit F is the last dehumidification internal machine that has not been dehumidified during the time division dehumidification process, there is no second dehumidification in the control cycle.
  • the dehumidification internal machine that is not set to the dehumidification state during the control period, that is, the operating states of the indoor units B, D, and E are all set to the temporary dehumidification state. Then, in the third control cycle, only the operating state of the indoor unit F is set to perform the dehumidification state. After the end of the control period, the current time-division dehumidification process may end; or the various control periods described above may be executed cyclically, which is not limited in this embodiment.
  • the time-division dehumidification method provided by some embodiments of the present disclosure, in a time-sharing dehumidification process, all the current dehumidification internal machines can be guaranteed to operate once dehumidification state, and also can perform dehumidification process in one time division. During each control cycle, the dehumidification performance of each dehumidification machine operating in a dehumidified state is good.
  • Step 202 In a control cycle, the dehumidification internal machine numbered m is used as the first dehumidification internal machine.
  • step 201 the current dehumidification internal units in the multi-connection system shown in FIG. 4 are numbered 0, 1, 2, and 3, respectively.
  • the first dehumidification internal machine is the dehumidification internal machine corresponding to the smallest number in the number of the dehumidification internal machine that has not been dehumidified during this time division dehumidification process.
  • Step 203 Set the operation state of the dehumidification internal machine of the number m to perform the dehumidification state. That is, the operating state of the first dehumidification internal machine is set to perform the dehumidification state.
  • the status flag (the flag for indicating the running status) of the dehumidification internal machine of the number m may be set to a first identifier (for example, 0), the first identifier is used to indicate that the dehumidification state is performed, and the control number is m.
  • the operating state of the dehumidification internal machine is to operate the dehumidification state.
  • step 202 may be performed simultaneously with step 212.
  • Step 204 Set the operation state of the dehumidification internal machine whose number is less than or equal to m-1 (which can be expressed as ⁇ m-1, or is represented as 0 to (m-1)) to be temporarily dehumidified.
  • m-1 which can be expressed as ⁇ m-1, or is represented as 0 to (m-1)
  • the status flag of the dehumidification internal machine numbered 0 to (m-1) may be set to the second identification (for example, 1), and the second identification is used to indicate the temporary dehumidification state, and the operation of these dehumidification internal machines at this time The status is that the dehumidification state is not running.
  • step 202 the dehumidification internal machine numbered 0 and 1 is set, that is, the operation state of all the dehumidification internal machines running the dehumidification state in the first control cycle is the temporary dehumidification state.
  • step 202 the dehumidification internal machine numbered 0 and 1 is set, that is, the operation state of all the dehumidification internal machines running the dehumidification state in the first control cycle is the temporary dehumidification state.
  • Step 206 Determine whether j is smaller than N_total-1.
  • N_total is used to indicate the current number of dehumidification internal machines, that is, the number of dehumidification internal machines in the first set.
  • Step 206 is to determine whether the accumulated dehumidification internal machine includes the last dehumidification internal machine that has not been dehumidified during the time division dehumidification process.
  • j N_total-1, that is, the dehumidification internal machine of No. 3 is the last dehumidification internal machine that has not been dehumidified in the time-division dehumidification process, so there is no need to determine the second dehumidification internal machine.
  • the dehumidification internal machine numbered 3 runs the dehumidification state.
  • step 207 is performed; if j is equal to N_total-1, step 214 is performed.
  • step 207 is for determining the next dehumidification internal machine except the first dehumidification internal machine.
  • the next dehumidification internal machine except the first dehumidification internal machine is determined according to the actual numbering rule, and the embodiments of the present disclosure will not be described again.
  • Step 208 Accumulating the volume of the evaporator of the first dehumidification internal machine and the volume of the evaporator of the dehumidification internal machine that has not been dehumidified in the current time division dehumidification process in the first set to determine whether the accumulation result is satisfied.
  • the control coefficient K DH_CAP is the ratio of the volume of the heating internal machine to the volume sum of the dehumidifying internal machine that can be supported.
  • the control coefficient K DH_CAP can be set according to actual needs. In some embodiments, the control coefficient K DH — CAP ranges from 1.3 to 3.0; in some embodiments, the control coefficient K DH — CAP is 1.5.
  • step 209 since the dehumidification internal machine of No. 1 is not the last dehumidification internal machine that has not been dehumidified in the time division dehumidification process, steps 207 and 208 are performed; and the dehumidification internal machine numbered 2 is further accumulated.
  • the maximum number of the second dehumidification internal machines that the current heating internal machine can support is numbered 1.
  • step 208 it may also be determined whether the accumulated result is satisfied.
  • the dehumidification internal machine numbered 1 and 2 should theoretically be used as the second dehumidification internal machine, that is, the dehumidification state of the dehumidification internal machine numbered 0, 1 and 2 is simultaneously set in a control cycle, at this time
  • the dehumidification machine operates the dehumidification state at a critical amount that the current dehumidification internal machine can support, which may cause the dehumidification performance of the dehumidification internal machine to be poor. So in some embodiments, when the accumulated result is satisfied When the last accumulated dehumidification internal machine is not used as the second dehumidification internal machine, that is, in step 208, it is judged whether the accumulated result is satisfied.
  • Step 209 Determine whether j is equal to N_total-1.
  • step 210 the accumulation is stopped, and the dehumidification internal machine accumulated except the first dehumidification internal machine is used as the second dehumidification internal machine. If it is not added to the last dehumidification internal unit that has not been dehumidified in the time division dehumidification process, step 207 is performed.
  • Step 211 Determine whether m, n satisfy (m+1) ⁇ (n-1).
  • step 213 is performed; when m and n satisfy (m+1) ⁇ (n-1), the number range of the second dehumidification internal machine at this time If it is (m+1) to (n-1), step 212 is performed.
  • the current heating internal machine can support the dehumidification operation of the dehumidification internal machine numbered 0 and 1, and the number of the second dehumidification internal machine is 1.
  • Step 212 The operation state of the dehumidification internal machine of the number (m+1) to (n-1) is set to operate the dehumidification state.
  • the dehumidification internal machine of the number (m+1) to (n-1) is the second dehumidification internal machine, and the operation state of the second dehumidification internal machine is set to operate the dehumidification state.
  • the maximum number of dehumidification internal machines that the current heating internal machine can support in a control cycle can be determined, and the operation of the partial dehumidification internal machine can be determined.
  • the status is set to run the dehumidification state. In this case, it can be ensured that the dehumidification performance of each dehumidification machine operating in a dehumidification state is good in one control cycle.
  • Step 214 Maintain the existing state.
  • control period is not the last control period in the time division dehumidification process, after the end of the control period, the next control period in the time division dehumidification process is entered.
  • the process can be implemented by step 215 shown in FIG. 3, for example, to determine if the control period TDH is over. If the control period is not the last control period in the time division dehumidification process, after the control period TDH ends, the next control period in the current time division dehumidification process is entered, that is, the respective steps shown in FIG. 3 are re-executed.
  • control cycle After the end of the control period, all the dehumidification internal machines of the first set are operated in the dehumidification state during the time-division dehumidification process, and the control cycle is considered to be the last one in the time-sharing dehumidification process. Control cycle.
  • the time-division dehumidification method based on the number of equal-difference series in the dehumidification internal machine in the first set can ensure all current dehumidification internal machines in a time-sharing dehumidification process.
  • the dehumidification state can be operated once, and the dehumidification performance of each dehumidification machine operating in the dehumidification state is good in each control cycle of the time division dehumidification process.
  • a control cycle is the last control cycle in the time-sharing dehumidification process, after the end of the control cycle, the time-sharing dehumidification process ends.
  • multiple time-division dehumidification processes are required to be cycled so that each of the current dehumidification internal machines circulates the dehumidification state, so in some embodiments, if a control cycle is the last in the time-sharing dehumidification process A control cycle, after the end of the control cycle, enters the first control cycle in the next time-sharing dehumidification process.
  • the number m is reset to 0, so that the dehumidification machine running number 0 starts to run dehumidification in the first control cycle in the next time-sharing dehumidification process. status.
  • the dehumidification internal machine and/or the current heating internal machine in the first set of the multi-line system are adjusted (also referred to as a change in the number of operating rooms), such as the current dehumidification internal machine or The number of current heating internal machines changes, or the specific indoor unit as a dehumidification internal machine or a heating internal machine changes in a multi-line system, in some embodiments, in the multi-line system shown in FIG.
  • the current dehumidification internal machine changes to indoor units A, B, and D.
  • the current heating internal machine changes to indoor units E and F.
  • the time-sharing dehumidification method provided by the embodiment of the present disclosure further includes: if the dehumidification internal machine in the first set is adjusted during the time-division dehumidification process, or the current heating internal machine If adjustment occurs, or if the dehumidification internal machine in the first set and the current heating internal machine are adjusted, the next time-sharing dehumidification process is entered.
  • the first dehumidification internal machine and the second dehumidification internal machine are re-determined according to the above-described time-division dehumidification method, so that the dehumidification state is operated in a control cycle.
  • the dehumidification machine has good dehumidification performance.
  • the method for determining a maximum number of second dehumidification internal machines that can be supported by the current heating internal machine in the multi-line system other than the first dehumidification internal machine in the above step 101 includes:
  • the volume of the first dehumidification internal machine is not in the first set of dehumidification processes in the time division dehumidification process.
  • the volume of the dehumidification internal machine that has been dehumidified is accumulated one by one until it is determined that the cumulative number of the second dehumidification internal machines that the accumulated heating result is less than or equal to the reference threshold.
  • the dehumidification internal machine accumulated except the first dehumidification internal machine is used as the second dehumidification machine.
  • the internal machine; wherein, the reference threshold is the ratio of the volume of the current heating internal machine in the multi-line system to the control coefficient K DH_CAP .
  • the process can be implemented by using steps 206-209 shown in FIG. 3, where the reference threshold is the above. That is, the volume of the current heating internal machine in the multi-line system and the ratio of the control coefficient K DH_CAP .
  • the detailed process of the above steps 206-209 has been described in detail in the foregoing embodiment, and therefore will not be further described herein.
  • the time-division dehumidification method shown in FIG. 3 is to determine the first dehumidification internal machine and the second dehumidification internal machine by numbering; of course, the first dehumidification internal machine and the second dehumidification internal machine may be determined without using the above numbering.
  • the volume of the first dehumidification internal machine and the dehumidification in the first set that have not been dehumidified during the time division dehumidification process may be accumulated by using a pointer.
  • the volume of the internal machine is determined to determine the second dehumidification internal machine.
  • the dehumidification internal machine includes a first indoor electronic expansion valve not located on the dehumidification circuit, and a first indoor electronic expansion valve located on the dehumidification circuit.
  • the multi-line system includes an outdoor unit 01, an indoor unit 02, and an indoor unit 03, wherein the indoor unit 02 is a heating internal unit, and the indoor unit 03 is a dehumidifying internal unit, and the indoor unit 03
  • the first indoor heat exchanger 11 and the first indoor electronic expansion valve 13 are not located on the dehumidification circuit
  • the second indoor heat exchanger 12 and the second indoor electronic expansion valve 14 are located on the dehumidification circuit.
  • each indoor unit is illustrated by including a dehumidification internal machine and a heating internal machine.
  • a heating internal machines 02 and a plurality of dehumidification internal machines 03 are included, the structure of each indoor unit can be the same as the above-mentioned system.
  • the internal heat engine 02 and the dehumidification internal machine 03 have the same structure.
  • setting the operating state of the dehumidifying internal machine 03 to perform the dehumidifying state includes:
  • the first indoor electronic expansion valve 13 of the dehumidification internal machine 03 is in a closed state, so that the first indoor heat exchanger 11 does not operate;
  • the initial value EVR(0) of the opening degree of the second indoor electronic expansion valve 14 of the dehumidification internal machine 03 is a preset value; the nth control period in the dehumidification process at one time, the second indoor of the dehumidification internal machine 02
  • the second indoor heat exchanger 12 of the dehumidification internal machine 03 can be used as an evaporator to dehumidify.
  • the initial value EVR(0) may be set according to actual requirements.
  • the value range of EVR(0) is 100 puls to 150 puls.
  • the target evaporation superheat degree SHo may be a preset value, or may be determined according to the return air relative humidity of the dehumidification internal unit 02, the user-set humidity, and the liquid pipe temperature and the return air temperature of the dehumidification internal machine.
  • the above target evaporation superheat degree SHo can be determined according to Table 1:
  • ⁇ H Hs-Hi
  • Hi is used to indicate the return air relative humidity of the dehumidification internal machine
  • Hs is used to indicate the user setting humidity
  • Ti is used to indicate the return air temperature of the dehumidification internal machine
  • Tlp is used to indicate the dehumidification internal machine 02 The temperature of the liquid tube 15.
  • the return air relative humidity refers to the relative humidity of the return air of the dehumidification internal machine.
  • the embodiment of the present disclosure provides a first indoor electronic expansion valve 13 not located on the dehumidification circuit and a second indoor electronic device located on the dehumidification circuit in each control cycle in the one-time dehumidification process.
  • the opening degree control method of the expansion valve 14 is to ensure that the dehumidification performance of the dehumidification internal machine is good in each control cycle.
  • setting the operating state of the dehumidifying internal machine 03 to the temporarily dehumidifying state includes that the first indoor electronic expansion valve 13 and the second indoor electronic expansion valve 14 of the dehumidifying internal machine 03 are in the fully closed state.
  • the operating state of the above-mentioned heating internal machine is a heating state, and in some embodiments, as shown in FIG. 7, the second indoor electronic expansion valve 14' of the heating internal machine It is in the fully closed state so that the second indoor heat exchanger 12' is not in operation; the first indoor electronic expansion valve 13' is in a fully open state, so that the first indoor heat exchanger 11' functions as a condenser to heat.
  • a time-division dehumidification method determines a maximum number of second dehumidifications that a first dehumidification internal machine and a current heating internal machine can support in a control cycle during a time division dehumidification process. Setting the running state of the first dehumidifying internal machine to operate the dehumidifying state, if the second dehumidifying internal machine is present, setting the operating state of the second dehumidifying internal machine to the running dehumidifying state; and will not be set in the control period The dehumidification internal machine for the dehumidification state is set to be temporarily dehumidified.
  • the control period is not the last control period in the time division dehumidification process, after the end of the control period, the next control cycle in the time division dehumidification process is entered.
  • the second dehumidification internal machine operates the dehumidification state, so that the dehumidification performance of each dehumidification internal machine in the dehumidification state is good in each control cycle, thereby avoiding the mismatch between the current heating internal machine and the current dehumidification internal machine volume. Under the current dehumidification machine, the dehumidification performance of the dehumidification machine is poor, and even the partial dehumidification machine cannot dehumidify.
  • Some embodiments of the present disclosure also provide a multi-line system including a memory and a processor, the memory storing a computer program executable on the processor, the processor configured to run the computer program to cause the Multi-line system implementation: at least one dehumidification internal machine in a plurality of dehumidification internal machines operates a dehumidification state during a control cycle in a time division dehumidification process, so that the volume and current of the evaporator of the at least one dehumidification internal machine The volume and matching of the condenser of the operating heating internal machine; in the next control cycle during a time division dehumidification process, the at least one dehumidification internal machine stops operating the dehumidification state and causes the other at least one dehumidification internal machine to operate a dehumidification state, the volume of the evaporator of the further at least one dehumidification internal machine is matched with the volume of the condenser of the currently operating heating internal machine; and the cycle is such that
  • the processor of the multi-line system can implement various logic functions, and can be divided into different function modules according to logic functions that the processor can implement. As shown in FIG. 8, after dividing different functional modules, the processor includes a control module 10 and a determining module 20, wherein the control module 10 is configured to perform a control period in a time-division dehumidification process for the first set.
  • the dehumidification internal machine that has not been dehumidified during the time-division dehumidification process is set, and the operation state of the first dehumidification internal machine is set to perform the dehumidification state, wherein the first set is composed of the current dehumidification internal machine in the multi-line system .
  • the determining module is configured to determine a maximum number of second dehumidifying internal machines that the current heating internal machine in the multi-line system other than the first dehumidifying internal machine can support.
  • control module 10 is further configured to set the operating state of each of the second dehumidifying internal machines to perform the dehumidifying state when the second dehumidifying internal machine is present; and further configured to set the operating state of the remaining dehumidifying internal machines in the first set
  • the remaining dehumidification internal machine is a dehumidification internal machine that is not set to perform a dehumidification state during the control period.
  • control module 10 is further configured to control the next control in the time division dehumidification process after the end of the control period. cycle.
  • control module 10 is further configured to control the next time division dehumidification process.
  • the determining module 20 includes an accumulating module and a comparing module, and the accumulating module is configured to set the volume of the first dehumidifying inner machine and the dehumidifying inner machine in the first set that has not been dehumidified during the current time-division dehumidification process.
  • the volume is accumulated one by one, and the comparison module is configured to compare the accumulated result with the size of the reference threshold until the determination module 20 determines that the current heating internal machine that the accumulated result is less than or equal to the reference threshold can support the maximum number of second dehumidification internal machines.
  • the accumulation module is added to the last dehumidification internal unit that has not been dehumidified in the time-sharing dehumidification process, and the accumulated result is still less than the reference threshold, and the dehumidification is accumulated in addition to the first dehumidification internal machine.
  • the machine acts as a second dehumidification internal machine; wherein the reference threshold is the ratio of the volume of the current heating internal machine in the multi-line system to the control coefficient.
  • the multi-line system provided by some embodiments of the present disclosure further includes a numbering module 30 configured to number the dehumidifying internal machines in the first set according to the rules of the arithmetic progression.
  • control module 10 may be configured to minimize the number or for a dehumidification internal machine in the first set that has not been dehumidified during the current time-division dehumidification process during a control cycle.
  • the largest dehumidification internal machine is used as the first dehumidification internal machine, and the operating state of the first dehumidification internal machine is set to perform a dehumidification state;
  • the determination module 20 is configured to determine that the first dehumidification internal machine is The maximum number of second dehumidification internal machines that the current heating internal machine can support in the multi-line system, and the number of each second dehumidification internal machine is continuous with the number of the first dehumidification internal machine.
  • the dehumidification internal machine includes a first indoor electronic expansion valve not located on the dehumidification circuit, and a second indoor electronic expansion valve located on the dehumidification circuit, and the multi-connection system further includes an opening degree control module.
  • control module 10 is configured to perform the dehumidification state of the dehumidification internal machine, and the control module 10 is configured to control the first indoor electronic expansion valve of the dehumidification internal machine to be in a closed state;
  • the initial value EVR(0) of the opening of the indoor electronic expansion valve is a preset value, and the opening control module is configured to control the second indoor electronic of the dehumidifying internal machine during the nth control period in the demultiplexing process.
  • the target evaporation superheat degree SHo may be determined according to the above Table 1, and the embodiments of the present disclosure will not be described again.
  • each module in this embodiment may be a separately provided processor, or may be integrated in one processor of the multi-line system, or may be stored in a memory of the multi-line system in the form of program code.
  • the function of each of the above units is called and executed by one of the processors of the multi-line system.
  • the processor described herein may be a central processing unit (English name: Central Processing Unit, English abbreviation: CPU), a graphics processor (English name: Graphics Processing Unit, English abbreviation: GPU) or a specific integrated circuit (English full name) : Application Specific Integrated Circuit (ASIC): or one or more integrated circuits configured to implement the embodiments of the present disclosure.
  • the multi-line system may include a control board in the multi-line system, and the control board may include: an indoor unit control board and a total control board communicably connected to the indoor unit control board, wherein the indoor unit control board may be set
  • the internal control panel can be placed in the outdoor unit of the multi-line system in each indoor unit.
  • the total control panel may refer to the above method to determine the first dehumidification internal machine and the second dehumidification internal machine that can be set to perform the dehumidification state in one control cycle of the one-time dehumidification process, and notify the indoor unit control
  • the operation state of the first dehumidification inner machine and the second dehumidification internal machine is to operate the dehumidification state, and to control the operation state of the remaining dehumidification internal machine to be temporarily dehumidified.
  • the embodiment of the present disclosure provides a multi-line system, which applies the time-division dehumidification method of the multi-line system as described above, and has the same beneficial effects as the time-division dehumidification method of the multi-line system.
  • Embodiments of the present disclosure provide a computer storage medium storing computer instructions for causing a time-division dehumidification apparatus to perform a multi-line system as described above when the computer instructions are run on a time-division dehumidification apparatus of a multi-line system Time-sharing dehumidification method. It has the same advantageous effects as the time division dehumidification method of the multi-line system provided by the foregoing embodiment. Since the foregoing embodiments have described the beneficial effects of the time-division dehumidification method of the multi-line system in detail, no further details are provided herein.
  • the above computer storage medium may include a ROM (English full name: Read Only Memory image, Chinese name: read only memory image), RAM (English full name: Random Access Memory, Chinese name: random access memory), a disk Or a variety of media such as optical discs that can store program code.
  • ROM Read Only Memory image
  • RAM Random Access Memory
  • disk a variety of media such as optical discs that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)
  • Drying Of Gases (AREA)

Abstract

一种多联机系统的分时除湿方法,包括:在一次分时除湿过程中的一个控制周期内,控制多个除湿内机中在本次分时除湿过程中未运行过除湿状态的除湿内机中的至少一个运行除湿状态,设置其余除湿内机运行状态为暂不除湿状态,所述至少一个除湿内机的蒸发器的容积之和不大于当前运行的制热内机的冷凝器的容积之和;其中,所述一次分时除湿过程包括至少两个控制周期,所述一次分时除湿过程包括依次运行所述至少两个控制周期直至所述多个除湿内机中的每个除湿内机均运行一次除湿状态。

Description

多联机系统及其分时除湿方法
本申请要求于2018年03月21日提交中国专利局、申请号为201810233694.1、名称为“多联机系统的分时除湿方法和装置、计算机存储介质”的中国专利申请的优先权和权益,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及空调领域,尤其涉及一种多联机系统及其分时除湿方法。
背景技术
多联机系统,俗称“一拖多”,指的是一台室外机通过配管连接两台或两台以上室内机。与多台家用空调相比,多联机系统的室外机共用,可有效降低设备成本,并可实现各室内机的集中管理,可单独启动一台室内机运行,也可多台室内机同时启动运行,使得控制更加灵活,因此成为空调发展的一个重要方向。
发明内容
第一方面,本公开一些实施例提供了一种多联机系统的分时除湿方法,包括:在一次分时除湿过程中的一个控制周期内,控制多个除湿内机中在本次分时除湿过程中未运行过除湿状态的除湿内机中的至少一个运行除湿状态,设置其余除湿内机运行状态为暂不除湿状态,所述至少一个除湿内机的蒸发器的容积之和不大于当前运行的制热内机的冷凝器的容积之和;其中,所述一次分时除湿过程包括至少两个控制周期,所述一次分时除湿过程包括依次运行所述至少两个控制周期直至所述多个除湿内机中的每个除湿内机均运行一次除湿状态。
第二方面,本公开一些实施例提供了一种多联机系统,包括:存储器和处理器,所述存储器存储能够在所述处理器上运行的计算机程序,所述处理器配置为运行所述计算机程序以使所述多联机系统实现:
在一次分时除湿过程中的一个控制周期内,控制所述多个除湿内 机中在本次分时除湿过程中未运行过除湿状态的除湿内机中的至少一个运行除湿状态,设置其余除湿内机运行状态为暂不除湿状态,所述至少一个除湿内机的蒸发器的容积之和不大于当前运行的制热内机的冷凝器的容积之和;其中,所述一次分时除湿过程包括至少两个控制周期,所述一次分时除湿过程包括依次运行所述至少两个控制周期直至所述多个除湿内机中的每个除湿内机均运行一次除湿状态。
第三方面,本公开一些实施例提供了一种多联机系统,包括:室外机、制热内机、除湿内机,所述室外机设置有用于冷媒流通的第一端,第二端,第三端,所述制热内机包括第一换热器和第二换热器,所述除湿内机包括第三换热器和第四换热器;
所述室外机的第一端通过第一室内电子膨胀阀连接所述第一换热器的一端,通过第二室内电子膨胀阀连接所述第二换热器的一端,通过第三室内电子膨胀阀连接所述第三换热器的一端,通过第四室内电子膨胀阀连接所述第四换热器的一端,所述第一换热器的另一端连接所述室外机的第三端,所述第三换热器的另一端连接所述室外机的第三端,所述第二换热器的另一端连接所述室外机的第二端,所述第四换热器的另一端连接所述室外机的第二端;
位于所述制热内机内的所述第一室内电子膨胀阀关闭,位于所述制热内机内的所述第二室内电子膨胀阀开启以使冷媒从所述第二室内换热器通过所述第二室内电子膨胀阀流入所述室外机的第二端;
位于所述除湿内机内的所述第四室内电子膨胀阀关闭;
位于所述除湿内机内的所述第三室内电子膨胀阀被配置为在所述室内机运行性除湿状态时开启以使冷媒从所述第三室内换热器通过所述第三室内电子膨胀阀流入所述室外机的第三端。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些 附图获得其他的附图。
图1为根据公开一些实施例的一种多联机系统的结构示意图;
图2为根据本公开一些实施例的多联机系统的分时除湿方法的流程图;
图3为图2所示的分时除湿方法的一些实施方案示意图;
图4为图1所示的多联机系统在图2所示的分时除湿方法的一次分时除湿过程中的第一个控制周期内的工作状态示意图;
图5为图1所示的多联机系统在图2所示的分时除湿方法的一次分时除湿过程中的第二个控制周期内的工作状态示意图;
图6为图1所示的多联机系统在图2所示的分时除湿方法的一次分时除湿过程中的第三个控制周期内的工作状态示意图;
图7为根据公开一些实施例的除湿内机和制热内机的系统流路图;
图8为根据公开一些实施例的一种多联机系统。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在多联机系统中一台室外机通常连接两台或者两台以上的室内机,例如图1所示的多联机系统,包括1台室外机和6台室内机。其中,在一室内机需要运行制热模式(例如,用户通过遥控器、线控器或室内机外壳上的操控板开启室内机的制热模式)的情况下,该室内机称为制热内机;类似的,在一室内机需要运行除湿模式的情况下, 该室内机称为除湿内机。当多联机系统中同时包括至少一台(一台或多台)除湿内机和至少一台(一台或多台)制热内机时,制冷剂(也称冷媒)会在除湿内机的蒸发器和制热内机的冷凝器中循环,在各台除湿内机的蒸发器的容积和与各台制热内机的冷凝器的容积和匹配时,则认为当前的制热内机能够支持当前的除湿内机同时运行除湿状态,且各除湿内机均有良好的除湿性能。当各台除湿内机的蒸发器的容积和与各台制热内机的冷凝器的容积和不匹配时(不匹配的情况常发生于除湿内机的台数多于制热内机的台数时);例如图1所示,若室内机A、C开启制热模式的同时,室内机B、D、E、F开启除湿模式,即除湿内机有4台,而制热内机只有2台,且当除湿内机的蒸发器的容积和大于多台制热内机的冷凝器的容积和时,相关技术中各台除湿内机需同时运行除湿状态,这样会使得除湿内机的除湿性能较差,甚至出现部分除湿内机无法除湿的问题。
在多联机系统中,除湿内机的台数多于制热内机的台数的一个场景是:当用户房间个数较多时,有些房间作为地下室,在过渡季节或冬季等时节,当地下室的湿度较大时,容易发霉,所以需要除湿。因此可能一部分房间需要制热,另一部分房间需要除湿。当多联机系统中制热内机的冷凝器与除湿内机的蒸发器的容积(即换热器内用于容纳冷媒的体积)不匹配,例如除湿需求较大,使得除湿内机的台数多于制热内机的台数时,可能导致除湿内机的除湿性能不佳的问题。
本公开一些实施例提出一种多联机系统的分时除湿方法,通过控制多台除湿内机在不同的时段运行除湿状态,例如在一次分时除湿过程中的一控制周期内,控制除湿内机B、D运行除湿状态,在另一控制周期内,控制除湿内机E、F运行除湿状态,以保证在一次分时除湿过程中的一控制周期内,运行除湿状态的除湿内机的蒸发器的容积和与运行制热状态的制热内机的冷凝器的容积和匹配(例如,蒸发器的容积和小于或等于冷凝器的容积和),使得运行除湿状态的除湿内机的除湿性能良好。
以下对本公开一些实施例提供的多联机系统的分时除湿方法进行 详细的说明。以下实施例以图1所示的多联机系统中,室内机A、C为制热内机,室内机B、D、E、F为除湿内机为例进行说明。
本公开一些实施例提供一种多联机系统的分时除湿方法,如图2所示包括:
步骤101:在一次分时除湿过程中的一控制周期,针对第一集合内的在本次分时除湿过程中未进行过除湿的除湿内机,设置一个第一除湿内机的运行状态为进行除湿状态,并确定除第一除湿内机以外多联机系统中当前的制热内机还能够支持的最大数量的第二除湿内机,若存在第二除湿内机,则设置各第二除湿内机的运行状态为进行除湿状态,其中,第一集合由多联机系统中当前的除湿内机组成。
在一些实施例中,响应与室内机中同时存在除湿内机和制热内机时,启动分时除湿。在一些实施例中,响应与室内机中同时存在除湿内机和制热内机时且制热内机的容积小于除湿内机的容积时,启动分时除湿。
需要说明的是,当前的除湿内机是指多联机系统中当前需要运行除湿状态的室内机,例如本公开的一些实施例中,上述室内机B、D、E、F为当前的除湿内机,则这4台除湿内机构成第一集合。同理,上述室内机A、C为当前的制热内机。一次分时除湿过程是指上述室内机B、D、E、F均运行一次除湿状态的过程,在此过程中可以包含一个或多个控制周期,任一个控制周期内均可以按照本实施例提供的方法完成。示例的,一控制周期的时长可以是预先设定的常数,也可以是依据设定的规则而确定的时间段。
以上述室内机均为三管制的室内机为例,运行除湿状态时,该室内机的一个室内换热器作为蒸发器,另一个室内换热器不工作;运行制热状态时,该室内机的一个室内换热器作为冷凝器,另一个室内换热器不工作。当然,上述室内机也可以为其他管制,例如室内机为两管制的室内机时,运行制热状态时,该室内机的室内换热器作为冷凝器。需要说明的是,本公开实施例所述的三管制的室内机可以如图7所示包括第一室内换热器11和第二室内换热器12、以及分别与各室内 换热器相连接的第一室内电子膨胀阀13和第二室内电子膨胀阀14。
选择一个除湿内机作为第一除湿内机的方法有多种。
在一些实施例中,在一次分时除湿过程中的一个控制周期中,对于图1所示的多联机系统中,可以以本次分时除湿过程中未进行过除湿的除湿内机中任选一个作为第一除湿内机。例如,在一次分时除湿过程中的第一个控制周期,室内机B、D、E、F均未进行过除湿,则可以以室内机B、D、E、F中的任意一个,例如室内机B作为第一除湿内机。
在一些实施例中,在一个控制周期中还可以从本次分时除湿过程中未进行过除湿的除湿内机中按照预设规则确定一个除湿内机作为第一除湿内机。例如,按照各个除湿内机的排序,从本次分时除湿过程未进行过除湿的除湿内机中确定第一除湿内机。
在一次分时除湿过程中,本公开一些实施例提供的分时除湿方法还可以包括如图3所示的步骤201:对第一集合内的除湿内机进行编号,其中编号的方式可以是按照等差数列的规则,也可以按照其他排序规则。示例的,可以从0开始,以公差为1将上述除湿内机B、D、E、F分别编号为0、1、2、3。并从本次分时除湿过程未进行过除湿的除湿内机中,确定编号最小的除湿内机为第一除湿内机。
需要说明的是,对第一集合内的除湿内机进行编号时,也可以采用其他规则,例如按照26个字母的排列顺序,用字母对第一集合内的除湿内机进行编号,或者按照等比数列的规则对第一集合内的除湿内机进行编号,本公开的实施例对此不限定。考虑到按照等差数列的规则进行编号时,分时除湿方法的算法较为简单,因此在一些实施例中,按照等差数列的规则,对第一集合内的除湿内机进行编号。
在一些实施例中,可以在每次分时除湿过程中进行一次步骤201;也可以在多联机系统从开启到关闭过程中,除湿内机的分布每改变一次时进行一次步骤201,例如增加或减少除湿内机的数量,或者除湿内机的数量不变、但除湿内机的分布改变(例如除湿内机由室内机B、D、E、F,改变为室内机B、C、E、F)。并且,若多联机系统从开启到 关闭除湿内机的分布并未改变,则室内机B、D、E、F分时除湿的过程可以进行一次,也可以循环多次。
在此基础上,在一些实施例中,上述步骤101中,针对第一集合内的在本次分时除湿过程中未进行过除湿的除湿内机,设置一个第一除湿内机的运行状态为进行除湿状态,包括:
在一控制周期,针对第一集合内的在本次分时除湿过程中未进行过除湿的除湿内机,以编号最小的除湿内机作为第一除湿内机,例如结合上述,在一次分时除湿过程中的第一个控制周期,将编号为0的室内机B作为第一除湿内机,设置第一除湿内机的运行状态为进行除湿状态。
当然,也可以将编号最大的除湿内机作为第一除湿内机,本公开的一些实施例以将编号最小的除湿内机作为第一除湿内机为例进行说明。
在确定第一除湿内机后,在步骤101中,还需要确定除第一除湿内机以外多联机系统中当前的制热内机A、C还能够支持的最大数量的第二除湿内机。各第二除湿内机与第一除湿内机的编号连续,即第一除湿内机与各第二除湿内机的编号按照从小到大的顺序连续排列。
需要说明的是,各第二除湿内机与第一除湿内机的编号连续是指:各个第二除湿内机的编号连续,且在一控制周期内,各第二除湿内机与第一除湿内机的编号连续。例如,当确定编号m(例如m为0)的除湿内机为第一除湿内机后,从第一除湿内机的下一台除湿内机,即编号为m+1(例如m+1为1)的除湿内机开始确定第二除湿内机。假设在一控制周期内,当前的制热内机A、C能够支持除上述第一除湿内机(即室内机B)外还可以支持室内机D运行除湿状态,则编号为1的室内机(即室内机D)作为第二除湿内机。
在此基础上,如图2所示,本公开一些实施例提供的多联机系统的分时除湿方法还包括步骤102:设置第一集合中剩余除湿内机的运行状态为暂不除湿状态,剩余除湿内机为在该控制周期内未被设置为进行除湿状态的除湿内机。
需要说明的是,与进行除湿状态相对的是暂不除湿状态;暂不除湿状态是指,当前的除湿内机在本控制周期内不进行除湿的状态,在一控制周期内,除第一除湿内机和各第二除湿内机的运行状态为进行除湿状态外,其他的除湿内机(剩余除湿内机)的运行状态为暂不除湿状态。剩余除湿内机为一控制周期中除第一除湿内机和第二除湿内机以外的除湿内机。
结合上述,如图4所示,假设第一个控制周期中,被设置为运行除湿状态的除湿内机的编号为0和1(即除湿内机B和D),则第一个控制周期中的剩余除湿内机的编号为2和3,即除湿内机E和F为剩余除湿内机。假设第二个控制周期中如图5所示,被设置为运行除湿状态的除湿内机的编号为2(即除湿内机E),则在第二个控制周期中的剩余除湿内机包括编号为0、1和3的除湿内机,即包括第一个控制周期中被设置为运行除湿状态的除湿内机(编号0和1)以及在本次分时除湿过程中未进行过除湿的除湿内机(编号3)。
需要说明的是,图4、图5和图6中,阴影实线框表示在一控制周期内该除湿内机运行除湿状态,阴影虚线框表示在一次分时除湿过程中的之前的控制周期内该除湿内机运行过除湿状态在本周期中处于暂不除湿状态,无阴影虚线框表示在在一控制周期内该除湿内机处于暂不除湿状态。
基于此,以图4所示的多联机系统的一次分时除湿过程包括三个控制周期为例,参照图4、图5和图6,简要说明根据本公开一些实施例提供的多联机系统的分时除湿方法。当前的除湿内机包括室内机B、D、E、F,在一次分时除湿过程中的第一个控制周期,可以将当前的除湿内机的任意一个,例如室内机B作为第一除湿内机,并将该第一除湿内机的运行状态设置为进行除湿状态;假设除第一除湿内机以外多联机系统中当前的制热内机还能够支持室内机D,则以室内机D作为第二除湿内机,并设置室内机D的运行状态为进行除湿状态;将在该控制周期内未被设置为除湿状态的除湿内机,即室内机E和F的运行状态均设置为暂不除湿状态。则第一个控制周期中,设置室内机B 和D的运行状态为进行除湿状态。在该第一个控制周期结束后,进入本次分时除湿过程的第二个控制周期。
在一次分时除湿过程中的第二个控制周期,如图5所示,以本次分时除湿过程中未进行过除湿的除湿内机,即室内机E和F中的任意一个,例如室内机E作为第一除湿内机,并将该第一除湿内机的运行状态设置为进行除湿状态;假设多联机系统中当前的制热内机仅能支持室内机E,即该第二个控制周期中不存在第二除湿内机,则将在该控制周期内未被设置为除湿状态的除湿内机,即室内机B、D和室内机F的运行状态设置为暂不除湿状态。则第二个控制周期中,设置室内机E的运行状态为进行除湿状态。在该第二个控制周期结束后,进入本次分时除湿过程的第三个控制周期。
在一次分时除湿过程中的第三个控制周期,如图6所示,将本次分时除湿过程中未进行过除湿的除湿内机,即室内机F作为第一除湿内机,并将该第一除湿内机的运行状态设置为进行除湿状态;由于室内机F为本次分时除湿过程中最后一台未进行过除湿的除湿内机,则该控制周期中不存在第二除湿内机;并将在该控制周期内未被设置为除湿状态的除湿内机,即室内机B、D、E的运行状态均设置为暂不除湿状态。则第三个控制周期中,仅设置室内机F的运行状态为进行除湿状态。在该控制周期结束后,本次分时除湿过程可以结束;或者循环执行上述各个控制周期,本实施例对此不限定。
这样一来,根据本公开一些实施例提供的分时除湿方法,在一次分时除湿过程中,既可以保证所有当前除湿内机均可以运行一次除湿状态,也能使得在一次分时除湿过程的各个控制周期内,各运行除湿状态的除湿内机的除湿性能良好。从而避免了在当前的制热内机和当前的除湿内机容积不匹配的情况下,当前的所有除湿内机同时运行除湿状态导致的除湿内机的除湿性能较差、甚至部分除湿内机无法除湿的问题。
在此基础上,基于对第一集合内的除湿内机以等差数列进行编号的方案,在一些实施例中,结合图3对一次分时除湿方法中的一个控 制周期进行详细介绍,在步骤201之后,包括以下步骤:
步骤202:在一次控制周期,以编号为m的除湿内机作为第一除湿内机。
需要说明的是,以在步骤201中,将图4所示的多联机系统中当前除湿内机分别编号为0、1、2和3为例进行说明。
结合上述示例,在一次分时除湿过程的第一个控制周期中,第一除湿内机为编号为0(即室内机B,此时m=0)的除湿内机。在后续控制周期(非第一个控制周期),第一除湿内机为在本次分时除湿过程中未进行过除湿的除湿内机的编号中最小的编号所对应的除湿内机。
步骤203:设置编号m的除湿内机的运行状态为进行除湿状态。即设置第一除湿内机的运行状态为进行除湿状态。
示例的,可以将编号m的除湿内机的状态标识位(用于表示运行状态的标识位)设置成第一标识(例如0),第一标识用于表示进行除湿状态,并控制编号为m的除湿内机的运行状态为运行除湿状态。
需要说明的是,此步骤的顺序在步骤202之后即可,例如,可以与步骤212同时执行。
步骤204:设置编号为小于或等于m-1(可以表示为≤m-1,或者表示为0~(m-1))的除湿内机的运行状态为暂不除湿状态。
示例的,可以将编号0~(m-1)的除湿内机的状态标识位设置成第二标识(例如1),第二标识用于表示暂不除湿状态,此时这些除湿内机的运行状态为暂不运行除湿状态。
需要说明的是,在一次分时除湿过程的第一个控制周期,m=0,不存在编号小于或等于m-1的除湿内机;在非第一个控制周期,结合上述示例,在第二个控制周期,m=2,则设置编号为0和1的除湿内机,即在第一个控制周期中所有运行除湿状态的除湿内机的运行状态为暂不除湿状态。此步骤的顺序在步骤202之后即可,例如,可以与步骤213同时执行。
步骤205:令j=m。
步骤206:判断j是否小于N_total-1。其中,N_total用于表示当 前的除湿内机的个数,即第一集合中除湿内机的个数。步骤206是为了判断被累加的除湿内机是否包括本次分时除湿过程中的最后一台未进行过除湿的除湿内机。
结合上述示例,N_total=4;在一次分时除湿过程的第三个控制周期内,m=3,即第一除湿内机的编号为3。执行步骤206时,j=N_total-1,即编号3的除湿内机为本次分时除湿过程中的最后一台未进行过除湿的除湿内机,因此无需进行确定第二除湿内机的相关步骤,在该控制周期内,仅编号3的除湿内机运行除湿状态。
若j小于N_total-1,则执行步骤207;若j等于N_total-1,则执行步骤214。
步骤207:j=j+1。
需要说明的是,步骤207是为了确定出除第一除湿内机外的下一台除湿内机。当按照等差数列的规则对除湿内机编号后,在步骤207中执行j=j+x,其中,x表示等差数列的公差,本公开一些实施例的步骤206中以公差为1为例进行示意。当按照其他规则对除湿内机编号后,根据实际编号规则确定除第一除湿内机外的下一台除湿内机,本公开实施例对此不再赘述。
步骤208:将第一除湿内机的蒸发器的容积与第一集合内的在本次分时除湿过程中未进行过除湿的除湿内机的蒸发器的容积逐一累加,判断累加结果是否满足
Figure PCTCN2019078914-appb-000001
其中,
Figure PCTCN2019078914-appb-000002
表示从第一除湿内机开始,累加的第一集合内的在本次分时除湿过程中未进行过除湿的除湿内机的容积和;∑Heat_HP用于表示多联机系统中当前的制热内机的容积和;K DH_CAP用于表示控制系数。其中,该控制系数K DH_CAP为制热内机的容积和与能够支持的除湿内机的容积和的比值。该控制系数K DH_CAP可以根据实际需求进行设定。在一些实施例中,控制系数K DH_CAP的范围是1.3~3.0;在一些实施例中,控制系数K DH_CAP为1.5。
参照图3并结合上述示例,假设在一次分时除湿过程的第一个控制周期,累加编号为0和1的除湿内机的容积,累加结果不满足
Figure PCTCN2019078914-appb-000003
则执行步骤209,由于编号1的除湿内机不是本次分时除湿过程中的最后一台未进行过除湿的除湿内机,则执行步骤207和208;再累加编号为2的除湿内机的容积时,累加结果满足
Figure PCTCN2019078914-appb-000004
则执行步骤210,即n=j=2,此时除编号为0的除湿内机以外,当前的制热内机还能够支持的最大数量的第二除湿内机的编号为1。
需要说明的是,在上述步骤208中,也可以判断累加结果是否满足
Figure PCTCN2019078914-appb-000005
结合上述示例,在第一个控制周期,累加编号为0、1和2的除湿内机的容积时,累加结果满足
Figure PCTCN2019078914-appb-000006
则执行步骤209,由于编号2的除湿内机不是本次分时除湿过程中的最后一台未进行过除湿的除湿内机,则执行步骤207和步骤208;继续累加编号为3的除湿内机的容积,累加结果满足
Figure PCTCN2019078914-appb-000007
则执行步骤210,即n=j=3。结合上述,理论上应以编号为1和2的除湿内机作为第二除湿内机,即在一控制周期内,同时设置编号为0、1和2的除湿内机运行除湿状态,此时在除湿内机在当前的除湿内机能够支持的临界数量下运行除湿状态,此时可能会使得除湿内机的除湿性能不佳。因此在一些实施例中,当累加结果满足
Figure PCTCN2019078914-appb-000008
时,将最后一台被累加的除湿内机不作为第二除湿内机,即步骤208中,判断累加结果是否满足
Figure PCTCN2019078914-appb-000009
步骤209:判断j是否等于N_total-1。
判断在累加结果不满足
Figure PCTCN2019078914-appb-000010
时,是否累加到本次分时除湿过程中的最后一台未进行过除湿的除湿内机,若累加到本次分时除湿过程中的最后一台未进行过除湿的除湿内机,则执行步骤210,即停止累加,并以除第一除湿内机以外被累加的除湿内机作为第二除湿内机。若没有累加到本次分时除湿过程中的最后一台未进行过除湿的除湿内机,则执行步骤207。
步骤210:令n=j。
步骤211:判断m、n是否满足(m+1)≤(n-1)。
当m、n不满足(m+1)≤(n-1),则执行步骤213;当m、n满足(m+1)≤(n-1),此时第二除湿内机的编号范围是(m+1)~(n-1),执行步骤212。
结合上述示例,在一次分时除湿过程的第一个控制周期,m=0,j=2,则步骤210中,n=j=2,则m、n满足(m+1)≤(n-1),则该控制周期中,当前的制热内机能够支持编号为0和1的除湿内机运行除湿状态,此时第二除湿内机的编号为1。
在一次分时除湿过程的第二个控制周期,m=2,j=3,则步骤210中,n=j=3,则m、n不满足(m+1)≤(n-1),则该控制周期中,当前的制热内机仅能够支持编号为2的除湿内机运行除湿状态,则不存在第二除湿内机。
步骤212:设置编号(m+1)~(n-1)的除湿内机的运行状态为运行除湿状态。
结合上述示例,确定编号(m+1)~(n-1)的除湿内机为第二除湿内机,并设置第二除湿内机的运行状态为运行除湿状态。
这样一来,根据本公开一些实施例提供的分时除湿方法,可以确定出一控制周期内,当前的制热内机能够支持的最大数量的除湿内机,并将该部分除湿内机的运行状态设置为运行除湿状态。在此情况下,可以保证一控制周期内,各运行除湿状态的除湿内机的除湿性能良好。
步骤214:维持现有状态。
需要说明的是,在当前的制热内机和当前的除湿内机没有发生调整、以及控制周期未结束的情况下,多联机系统的各室内机的运行状态维持当前状态;各室内机的运行状态维持当前状态时,无需进行附加操作。
在此基础上,若该控制周期不是本次分时除湿过程中的最后一个控制周期,则在该控制周期结束后,进入本次分时除湿过程中的下一个控制周期。
在一些实施例中,该过程可以通过图3所示的步骤215实现,例如,判断该控制周期TDH是否结束。若该控制周期不是本次分时除湿 过程中的最后一个控制周期,该控制周期TDH结束后,进入本次分时除湿过程中的下一个控制周期,即重新执行图3所示的各个步骤。
需要说明的是,当该控制周期结束后,在本次分时除湿过程中第一集合的所有除湿内机均运行过除湿状态,则认为该控制周期为本次分时除湿过程中的最后一个控制周期。
综上所述,本公开一些实施例提供的基于对第一集合内的除湿内机以等差数列进行编号的分时除湿方法,在一次分时除湿过程中,既可以保证所有当前除湿内机均可以运行一次除湿状态,也能使得在一次分时除湿过程的各个控制周期内,各运行除湿状态的除湿内机的除湿性能良好。从而避免了在当前的制热内机和当前的除湿内积容积不匹配的情况下,当前的所有除湿内机同时运行除湿状态导致的除湿内机的除湿性能较差、甚至部分除湿内机无法除湿的问题。
在此基础上,若一控制周期是本次分时除湿过程中的最后一个控制周期,在该控制周期结束后,本次分时除湿过程结束。然而通常在实际应用中,需要多次分时除湿过程循环进行以使得各台当前除湿内机循环运行除湿状态,因此在一些实施例中,若一控制周期是本次分时除湿过程中的最后一个控制周期,在该控制周期结束后,进入下一次分时除湿过程中的第一个控制周期。
需要说明的是,在一次分时除湿过程结束后,将编号m重置为0,以使得在下一次分时除湿过程中的第一个控制周期,从编号为0的除湿内机开始依次运行除湿状态。
此外,当一次分时除湿过程中,多联机系统中第一集合中的除湿内机和/或当前的制热内机发生调整(也称运行室数发生变化),例如当前的除湿内机或当前的制热内机的个数发生变化,或者多联机系统中作为除湿内机或制热内机的具体室内机发生变化,在一些实施例中,若将图4所示的多联机系统中,当前的除湿内机变化为室内机A、B、D,当前的制热内机变化为室内机E、F,此时当前的制热内机E、F能够支持的最大数量的除湿内机也会发生变化,在此情况下,若依然进行本次分时除湿过程,则无法使得各当前的除湿内机均运行一次除 湿状态。
在此基础上,在一些实施例中,本公开实施例提供的分时除湿方法还包括:本次分时除湿过程中若第一集合中的除湿内机发生调整,或者当前的制热内机发生调整,又或者第一集合中的除湿内机和当前的制热内机均发生调整,则进入下一次分时除湿过程。在此情况下,在新的分时除湿过程中的各控制周期,根据上述分时除湿方法重新确定第一除湿内机和第二除湿内机,以使得在一控制周期中,运行除湿状态的除湿内机的除湿性能良好。
在一些实施例中,上述步骤101中确定除第一除湿内机以外多联机系统中当前的制热内机还能够支持的最大数量的第二除湿内机的方法包括:
若第一除湿内机不是本次分时除湿过程中的最后一台未进行过除湿的除湿内机,将第一除湿内机的容积与第一集合内的在本次分时除湿过程中未进行过除湿的除湿内机的容积逐一累加,直至确定出累加结果小于或者等于参考阈值的当前的制热内机还能够支持的最大数量的第二除湿内机。
或者,累加到本次分时除湿过程中的最后一台未进行过除湿的除湿内机,累加结果仍小于参考阈值,则以除第一除湿内机以外被累加的除湿内机作为第二除湿内机;其中,参考阈值为多联机系统中当前的制热内机的容积和与控制系数K DH_CAP的比值。
需要说明的是,该过程可以通过如图3所示的步骤206-步骤209实现,其中,参考阈值为上述
Figure PCTCN2019078914-appb-000011
即为多联机系统中当前的制热内机的容积和与控制系数K DH_CAP的比值。由于前述实施例已经对上述步骤206-步骤209的具体过程进行了详细的说明,因此此处不再赘述。图3所示的分时除湿方法是通过编号的方式确定出第一除湿内机和第二除湿内机;当然,也可以不采用上述编号的方式确定第一除湿内机和第二除湿内机,在一些实施例中,在确定第一除湿内机后,可以采用指针的方式逐一累加第一除湿内机的容积和第一集合内的在本次分时除湿过程中未进行过除湿的除湿内机的容积,以确 定出上述第二除湿内机。在本公开实施例提供的分时除湿方法的总体思路下,本领域技术人员也可以采用其他方式,对确定第二除湿内机的具体方案进行调整,本公开实施例对此不进行限定。
此外,本领域普通技术人员可以理解:实现上述方法的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,所述计算机程序被处理器执行时实现上述多联机系统的分时除湿方法。该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM(英文全称:Read Only Memory image,中文名称:只读存储器镜像)、RAM(英文全称:Random Access Memory,中文名称:随机存取存储器)、磁碟或者光盘等各种可以存储程序代码的介质。
在此基础上,上述除湿内机包括未位于除湿回路上的第一室内电子膨胀阀、以及位于除湿回路上的第一室内电子膨胀阀。以图7所示的多联机系统为例,该多联机系统包括室外机01、室内机02和室内机03,其中室内机02为制热内机,室内机03为除湿内机,室内机03的第一室内换热器11和第一室内电子膨胀阀13未位于除湿回路上,第二室内换热器12和第二室内电子膨胀阀14位于除湿回路上。图7所示的多联机系统以包括一个除湿内机和一个制热内机进行示意,当包括多个制热内机02和多个除湿内机03时,各个室内机的结构可以与上述制热内机02和除湿内机03的结构相同。
在此基础上,设置除湿内机03的运行状态为进行除湿状态包括:
除湿内机03的第一室内电子膨胀阀13为关闭状态,以使得第一室内换热器11不工作;
除湿内机03的第二室内电子膨胀阀14的开度的初始值EVR(0)为一预设值;在一次分时除湿过程中的第n个控制周期,除湿内机02的第二室内电子膨胀阀14的开度EVR(n)满足:EVR(n)=EVR(n-1)+5×(SH-SHo);其中,SH用于表示除湿内机的气管16的温度与液管15的温度的差值,SHo用于表示目标蒸发过热度。从而除湿内机03的第二室内换热器12可以作为蒸发器以除湿。
需要说明的是,上述初始值EVR(0)可以根据实际需求设定,在一些实施例中,EVR(0)的取值范围是100puls~150puls。上述目标蒸发过热度SHo可以为一预设值,也可以根据除湿内机02的回风相对湿度、用户设定湿度、以及除湿内机的液管温度和回风温度进行确定。
在此基础上,在一些实施例中上述目标蒸发过热度SHo可以根据表1确定:
表1
ΔH SHo
ΔH≤-10% (Ti-Tlp)+4
-10%<ΔH≤0 (Ti-Tlp)
0<ΔH≤10% 3×(Ti-Tlp)+4
10%<ΔH≤20% (Ti-Tlp)/2
20%<ΔH 3
其中,ΔH=Hs-Hi;Hi用于表示除湿内机的回风相对湿度,Hs用于表示用户设定湿度,Ti用于表示除湿内机的回风温度,Tlp用于表示除湿内机02的液管15的温度。其中,回风相对湿度指的是除湿内机的回风处的相对湿度。
基于此,本公开实施例提供了一种一次分时除湿过程中的各个控制周期中,除湿内机中未位于除湿回路上的第一室内电子膨胀阀13和位于除湿回路上的第二室内电子膨胀阀14的开度控制方法,以保证各个控制周期中除湿内机的除湿性能良好。
在此基础上,设置除湿内机03的运行状态为暂不除湿状态包括:除湿内机03的第一室内电子膨胀阀13和第二室内电子膨胀阀14为全关状态。
此外,在上述一次分时除湿过程中,上述制热内机的运行状态为进行制热状态,在一些实施例中,如图7所示,制热内机的第二室内电子膨胀阀14’为全关状态,以使得第二室内换热器12’不工作;第一室内电子膨胀阀13’为全开状态,以使得第一室内换热器11’作为冷凝 器以制热。
根据本公开一些实施例提供的分时除湿方法,在一次分时除湿过程中的一控制周期,确定一个第一除湿内机和当前的制热内机还能够支持的最大数量的第二除湿内机,设置第一除湿内机的运行状态为运行除湿状态,若存在上述第二除湿内机,将第二除湿内机的运行状态设置为运行除湿状态;并将在该控制周期内未被设置为除湿状态的除湿内机设置为暂不除湿状态。若该控制周期不是本次分时除湿过程中的最后一个控制周期,则在该控制周期结束后,进入本次分时除湿过程中的下一个控制周期。这样一来,在一次分时除湿过程中,既可以保证所有当前除湿内机均可以运行一次除湿状态,也能保证在各个控制周期内,当前的制热内机能够支持第一除湿内机和第二除湿内机运行除湿状态,从而在各控制周期内,各运行除湿状态的除湿内机的除湿性能良好,从而避免了在当前的制热内机和当前的除湿内机容积不匹配的情况下,当前的所有除湿内机同时运行除湿状态导致的除湿内机的除湿性能较差、甚至部分除湿内机无法除湿的问题。
本公开一些实施例还提供一种多联机系统,包括存储器和处理器,所述存储器存储能够在所述处理器上运行的计算机程序,所述处理器配置为运行所述计算机程序以使所述多联机系统实现:在一次分时除湿过程中的一控制周期内,多个除湿内机中的至少一个除湿内机运行除湿状态,使所述至少一个除湿内机的蒸发器的容积和与当前运行的制热内机的冷凝器的容积和匹配;在一次分时除湿过程中的下一控制周期内,所述至少一个除湿内机停止运行除湿状态、并使另外的至少一个除湿内机运行除湿状态,所述另外的至少一个除湿内机的蒸发器的容积和与当前运行的制热内机的冷凝器的容积和匹配;依此循环,使得在一次分时除湿过程中,所述多个除湿内机中的每个除湿内机均运行一次除湿状态。
所述多联机系统的处理器可以实现多种逻辑功能,依据处理器所能实现的逻辑功能可以将其划分为不同的功能模块。如图8所示,在划分不同的功能模块后,所述处理器包括控制模块10和确定模块20, 其中,控制模块10配置为在一次分时除湿过程中的一控制周期,针对第一集合内的在本次分时除湿过程中未进行过除湿的除湿内机,设置一个第一除湿内机的运行状态为进行除湿状态,其中,第一集合由多联机系统中当前的除湿内机组成。确定模块用于确定除第一除湿内机以外多联机系统中当前的制热内机还能够支持的最大数量的第二除湿内机。
在此基础上,控制模块10还配置为当存在第二除湿内机时,设置各第二除湿内机的运行状态为进行除湿状态;还配置为设置第一集合中剩余除湿内机的运行状态为暂不除湿状态,剩余除湿内机为在该控制周期内未被设置为进行除湿状态的除湿内机。
在此基础上,若一控制周期不是本次分时除湿过程中的最后一个控制周期,则控制模块10还配置为控制在该控制周期结束后,进入本次分时除湿过程中的下一个控制周期。
在此基础上,在本次分时除湿过程中若第一集合中的除湿内机和/或当前的制热内机发生调整,则控制模块10还配置为控制进入下一次分时除湿过程。
在此基础上,上述确定模块20包括累加模块和比较模块,累加模块配置为将第一除湿内机的容积和第一集合内的在本次分时除湿过程中未进行过除湿的除湿内机的容积逐一累加,比较模块配置为比较累加结果和参考阈值的大小,直至确定模块20确定出累加结果小于或者等于参考阈值的当前的制热内机还能够支持的最大数量的第二除湿内机;或者,累加模块累加到本次分时除湿过程中的最后一台未进行过除湿的除湿内机,累加结果仍小于所述参考阈值,则以除第一除湿内机以外被累加的除湿内机作为第二除湿内机;其中,参考阈值为多联机系统中当前的制热内机的容积和与控制系数的比值。
在此基础上,本公开一些实施例提供的多联机系统还包括编号模块30,编号模块30被配置为按照等差数列的规则,对所述第一集合内的除湿内机进行编号。
在此情况下,在一些实施例中,在一控制周期,针对第一集合内 的在本次分时除湿过程中未进行过除湿的除湿内机,控制模块10可以被配置为将编号最小或最大的所述除湿内机作为所述第一除湿内机,并设置所述第一除湿内机的运行状态为进行除湿状态;确定模块20被配置为确定除所述第一除湿内机以外所述多联机系统中当前的制热内机还能够支持的最大数量的第二除湿内机,各第二除湿内机的编号与第一除湿内机的编号连续。
在此基础上,除湿内机包括未位于所述除湿回路上的第一室内电子膨胀阀、以及位于除湿回路上的第二室内电子膨胀阀,该多联机系统还包括开度控制模块。
在此情况下,上述控制模块10设置除湿内机的运行状态为进行除湿状态,包括:控制模块10被配置为控制除湿内机的第一室内电子膨胀阀为关闭状态;除湿内机的第二室内电子膨胀阀的开度的初始值EVR(0)为一预设值,在一次分时除湿过程中的第n个控制周期,开度控制模块被配置为控制除湿内机的第二室内电子膨胀阀的开度,使第二室内电子膨胀阀的开度满足:EVR(n)=EVR(n-1)+5×(SH-SHo),其中,SH用于表示所述除湿内机的气管温度与液管温度的差值,SHo用于表示目标蒸发过热度。在一些实施例中,目标蒸发过热度SHo可以根据上述表1确定,本公开的实施例对此不再赘述。
需要说明的是,本实施例中的各模块可以为单独设置的处理器,也可以为集成在该多联机系统的某一个处理器中,还可以以程序代码的形式存储于多联机系统的存储器中,由多联机系统的某一个处理器调用并执行以上各个单元的功能。这里所述的处理器可以是一个中央处理器(英文全称:Central Processing Unit,英文简称:CPU),图形处理器(英文全称:Graphics Processing Unit,英文简称:GPU)或者是特定集成电路(英文全称:Application Specific Integrated Circuit,英文简称:ASIC),或者是被配置成实施本公开实施例的一个或多个集成电路。
在一些实施例中,多联机系统可以包含多联机系统中的控制板,该控制板可以包含:室内机控制板和与该室内机控制板通信连接的总 控制板,其中室内机控制板可以设置于各个室内机内,该总控制板可以设置于多联机系统的室外机内。在一些实施例中,总控制板可以参考上述方法,确定在一次分时除湿过程的一个控制周期中可被设置进行除湿状态的第一除湿内机和第二除湿内机,并通知室内机控制板控制第一除湿内机和第二除湿内机的运行状态为运行除湿状态,和控制剩余除湿内机的运行状态为暂不除湿状态。
基于此,本公开实施例提供一种多联机系统,应用了如上所述的多联机系统的分时除湿方法,具有与多联机系统的分时除湿方法相同的有益效果。
本公开实施例提供一种计算机存储介质,该计算机存储介质中存储有计算机指令,当计算机指令在多联机系统的分时除湿装置上运行时,使得分时除湿装置执行如上所述的多联机系统的分时除湿方法。具有与前述实施例提供的多联机系统的分时除湿方法相同的有益效果。由于前述实施例已经对该多联机系统的分时除湿方法的有益效果进行了详细的描述,此处不再赘述。
需要说明的是,上述计算机存储介质可以包括ROM(英文全称:Read Only Memory image,中文名称:只读存储器镜像)、RAM(英文全称:Random Access Memory,中文名称:随机存取存储器)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的一些实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种多联机系统的分时除湿方法,包括:
    在一次分时除湿过程中的一个控制周期内,控制多个除湿内机中在本次分时除湿过程中未运行过除湿状态的除湿内机中的至少一个运行除湿状态,设置其余除湿内机运行状态为暂不除湿状态,所述至少一个除湿内机的蒸发器的容积之和不大于当前运行的制热内机的冷凝器的容积之和;其中,所述一次分时除湿过程包括至少两个控制周期,所述一次分时除湿过程包括依次运行所述至少两个控制周期直至所述多个除湿内机中的每个除湿内机均运行一次除湿状态。
  2. 根据权利要求1所述的分时除湿方法,其中,在一次分时除湿过程中的一控制周期内,控制多个除湿内机中的第一除湿内机运行除湿状态包括:
    在一次分时除湿过程中的一控制周期,针对第一集合内的在本次分时除湿过程中未进行过除湿的除湿内机,设置一个第一除湿内机的运行状态为进行除湿状态,并判断除支持所述第一除湿内机以外所述多联机系统中当前的制热内机还能够支持的最大数量的第二除湿内机,若存在所述第二除湿内机,则设置所述第二除湿内机的运行状态为进行除湿状态,其中,所述第一集合由所述多联机系统中当前的除湿内机组成;
    设置所述第一集合中剩余除湿内机的运行状态为暂不除湿状态,所述剩余除湿内机为在该控制周期内未被设置为运行除湿状态的除湿内机。
  3. 根据权利要求2所述的分时除湿方法,还包括:
    若当前控制周期不是本次分时除湿过程中的最后一个控制周期,则在当前控制周期结束后,进入本次分时除湿过程中的下一个控制周期。
  4. 根据权利要求3所述的分时除湿方法,还包括:
    若该控制周期是本次分时除湿过程中的最后一个控制周期,则在该控制周期结束后,进入下一次分时除湿过程中的第一个控制周期。
  5. 根据权利要求2所述的分时除湿方法,还包括:
    在本次分时除湿过程中若接收到调整指令,则进入下一次分时除湿 过程,其中,所述调整指令被配置为执行以下操作中的至少一种:
    增加或减少所述第一集合中的除湿内机的数量;或,
    增加或减少当前的制热内机的数量;或,
    在所述第一集合中的除湿内机的数量不变的情况下改变除湿内机的分布;或,
    在当前的制热内机的数量不变的情况下改变制热内机的分布。
  6. 根据权利要求2所述的分时除湿方法,其中,所述“判断除支持所述第一除湿内机以外所述多联机系统中当前的制热内机还能够支持的最大数量的第二除湿内机”包括:
    若所述第一除湿内机不是本次分时除湿过程中的最后一台未进行过除湿的除湿内机,将所述第一除湿内机的容积与所述第一集合内的在本次分时除湿过程中未进行过除湿的除湿内机的容积逐一累加,直至确定出累加结果小于或者等于参考阈值的当前的制热内机还能够支持的最大数量的第二除湿内机;或者,累加到本次分时除湿过程中的最后一台未进行过除湿的除湿内机,所述累加结果仍小于所述参考阈值,则以除所述第一除湿内机以外被累加的所述除湿内机作为所述第二除湿内机;
    其中,所述参考阈值为所述多联机系统中当前的制热内机的容积和与控制系数的比值。
  7. 根据权利要求2所述的分时除湿方法,其中,所述分时除湿方法还包括:按照等差数列的规则,对所述第一集合内的除湿内机进行编号;
    所述在一次分时除湿过程中的一控制周期,针对第一集合内的在本次分时除湿过程中未进行过除湿的除湿内机,设置一个第一除湿内机的运行状态为进行除湿状态,并判断除支持所述第一除湿内机以外所述多联机系统中当前的制热内机还能够支持的最大数量的第二除湿内机包括:
    在所述一控制周期,针对第一集合内的在本次分时除湿过程中未进行过除湿的除湿内机,以编号最小或最大的所述除湿内机作为所述第一除湿内机,设置所述第一除湿内机的运行状态为进行除湿状态,并确定除所述第一除湿内机以外所述多联机系统中当前的制热内机还能够支持 的第二除湿内机,所述第二除湿内机的编号与所述第一除湿内机的编号连续。
  8. 根据权利要求2所述的分时除湿方法,其中,所述除湿内机包括未位于所述除湿回路上的第一室内电子膨胀阀,以及位于除湿回路上的第二室内电子膨胀阀;设置所述除湿内机的运行状态为进行除湿状态包括:
    所述除湿内机的第一室内电子膨胀阀为关闭状态;
    所述除湿内机的第二室内电子膨胀阀的开度的初始值EVR(0)为一预设值;在一次分时除湿过程中的第n个控制周期,所述除湿内机的第二室内电子膨胀阀的开度EVR(n)满足:EVR(n)=EVR(n-1)+5×(SH-SHo);其中,SH用于表示所述除湿内机的气管温度与液管温度的差值,SHo用于表示目标蒸发过热度。
  9. 根据权利要求8所述的分时除湿方法,其中,所述除湿内机还包括第一换热器和作为蒸发器的第二换热器,所述第一室内电子膨胀阀位于所述除湿回路和所述第一换热器之间的管道上,所述第二室内电子膨胀阀和所述第二换热器依次位于所述除湿回路上。
  10. 根据权利要求8所述的分时除湿方法,其中,所述目标蒸发过热度SHo满足:
    Figure PCTCN2019078914-appb-100001
    其中,ΔH=Hs-Hi;
    Hi用于表示所述除湿内机的回风相对湿度,Hs用于表示用户设定湿度,Ti用于表示所述除湿内机的回风温度,Tlp用于表示所述除湿内机的液管温度。
  11. 一种多联机系统,包括:存储器和处理器,所述存储器存储能够在所述处理器上运行的计算机程序,所述处理器配置为运行所述计算机程序以使所述多联机系统实现:
    在一次分时除湿过程中的一个控制周期内,控制所述多个除湿内机 中在本次分时除湿过程中未运行过除湿状态的除湿内机中的至少一个运行除湿状态,设置其余除湿内机运行状态为暂不除湿状态,所述至少一个除湿内机的蒸发器的容积之和不大于当前运行的制热内机的冷凝器的容积之和;其中,所述一次分时除湿过程包括至少两个控制周期,所述一次分时除湿过程包括依次运行所述至少两个控制周期直至所述多个除湿内机中的每个除湿内机均运行一次除湿状态。
  12. 根据权利要求11所述的多联机系统,其中,所述处理器还被配置为:
    在一次分时除湿过程中的一控制周期,针对第一集合内的在本次分时除湿过程中未进行过除湿的除湿内机,设置一个第一除湿内机的运行状态为进行除湿状态,并判断除支持所述第一除湿内机以外所述多联机系统中当前的制热内机还能够支持的最大数量的第二除湿内机,若存在所述第二除湿内机,则设置所述第二除湿内机的运行状态为进行除湿状态,其中,所述第一集合由所述多联机系统中当前的除湿内机组成;
    设置所述第一集合中剩余除湿内机的运行状态为暂不除湿状态,所述剩余除湿内机为在该控制周期内未被设置为运行除湿状态的除湿内机。
  13. 根据权利要求12所述的多联机系统,其中,所述除湿内机包括未位于所述除湿回路上的第一室内电子膨胀阀、第一换热器、作为蒸发器的第二换热器以及位于除湿回路上的第二室内电子膨胀阀;所述第一室内电子膨胀阀位于所述除湿回路和所述第一换热器之间的管道上,所述第二室内电子膨胀阀和所述第二换热器依次位于所述除湿回路上,所述处理器还配置为:
    设置所述除湿内机的第一室内电子膨胀阀为关闭状态,所述除湿内机的第二室内电子膨胀阀的开度的初始值EVR(0)为一预设值;在一次分时除湿过程中的第n个控制周期,所述处理器控制所述除湿内机的第二室内电子膨胀阀的开度EVR(n)满足:EVR(n)=EVR(n-1)+5×(SH-SHo);其中,SH用于表示所述除湿内机的气管温度与液管温度的差值,SHo用于表示目标蒸发过热度。
  14. 一种多联机系统,包括:室外机、制热内机、除湿内机,所述室外机设置有用于冷媒流通的第一端,第二端,第三端,所述制热内机包括第一换热器和第二换热器,所述除湿内机包括第三换热器和第四换热器;
    所述室外机的第一端通过第一室内电子膨胀阀连接所述第一换热器的一端,通过第二室内电子膨胀阀连接所述第二换热器的一端,通过第三室内电子膨胀阀连接所述第三换热器的一端,通过第四室内电子膨胀阀连接所述第四换热器的一端,所述第一换热器的另一端连接所述室外机的第三端,所述第三换热器的另一端连接所述室外机的第三端,所述第二换热器的另一端连接所述室外机的第二端,所述第四换热器的另一端连接所述室外机的第二端;
    位于所述制热内机内的所述第一室内电子膨胀阀关闭,位于所述制热内机内的所述第二室内电子膨胀阀开启以使冷媒从所述第二室内换热器通过所述第二室内电子膨胀阀流入所述室外机的第二端;
    位于所述除湿内机内的所述第四室内电子膨胀阀关闭;
    位于所述除湿内机内的所述第三室内电子膨胀阀被配置为在所述室内机运行性除湿状态时开启以使冷媒从所述第三室内换热器通过所述第三室内电子膨胀阀流入所述室外机的第三端。
  15. 根据权利要求14所述的多联机系统,其中,所述除湿内机包括第一除湿内机和所述第二除湿内机,所述第一除湿内机和所述第二除湿内机均包括两个换热器,在一个周期内,响应与所述第一除湿内机为除湿状态,所述第一除湿内机内的第三室内电子膨胀阀开启,所述第一除湿内机内的第四室内电子膨胀阀关闭,响应与所述第二除湿内机为暂不除湿状态,所述第二除湿内机内的第三室内电子膨胀阀和第四室内电子膨胀阀均关闭。
  16. 根据权利要求15所述的多联机系统,在另一个周期内,响应与所述第一除湿内机为暂不除湿状态,所述第一除湿内机内的第三室内电子膨胀阀和第四室内电子膨胀阀均关闭,响应与所述第二除湿内机为除湿状态,所述第二除湿内机内的第三室内电子膨胀阀开启,所述第二除湿内机内的第四室内电子膨胀阀关闭。
PCT/CN2019/078914 2018-03-21 2019-03-20 多联机系统及其分时除湿方法 WO2019179474A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL19772449.5T PL3770519T3 (pl) 2018-03-21 2019-03-20 System typu multi-split oraz odnośny sposób osuszania ze współdzieleniem czasu
EP19772449.5A EP3770519B1 (en) 2018-03-21 2019-03-20 Multi-split system and time-sharing dehumidification method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810233694.1A CN108758960B (zh) 2018-03-21 2018-03-21 多联机系统的分时除湿方法和装置、计算机存储介质
CN201810233694.1 2018-03-21

Publications (1)

Publication Number Publication Date
WO2019179474A1 true WO2019179474A1 (zh) 2019-09-26

Family

ID=63980570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078914 WO2019179474A1 (zh) 2018-03-21 2019-03-20 多联机系统及其分时除湿方法

Country Status (4)

Country Link
EP (1) EP3770519B1 (zh)
CN (1) CN108758960B (zh)
PL (1) PL3770519T3 (zh)
WO (1) WO2019179474A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4220028A4 (en) * 2020-10-13 2024-04-03 Midea Group Wuhan Refrigeration Equipment Co., Ltd. MULTISPLIT AIR CONDITIONING SYSTEM AND CONTROL METHODS THEREFOR AND COMPUTER STORAGE MEDIUM
US12359837B2 (en) * 2020-10-13 2025-07-15 Midea Group Wuhan Refrigeration Equipment Co., Ltd. Variable refrigerant flow air conditioning system, control method thereof, and computer-readable storage medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108758960B (zh) * 2018-03-21 2020-02-04 青岛海信日立空调系统有限公司 多联机系统的分时除湿方法和装置、计算机存储介质
CN111023478B (zh) * 2019-12-26 2021-12-03 广州华凌制冷设备有限公司 空调器控制方法、装置、空调器和存储介质
CN111174394A (zh) * 2020-01-02 2020-05-19 珠海格力电器股份有限公司 一种水多联空调及其控制方法、装置和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016782A (ja) * 2003-06-24 2005-01-20 Matsushita Electric Ind Co Ltd 多室空気調和機の膨張弁制御方法
CN103062851A (zh) * 2013-01-07 2013-04-24 青岛海信日立空调系统有限公司 空调系统及其除湿方法
CN202902496U (zh) * 2012-10-31 2013-04-24 青岛海信日立空调系统有限公司 多联机热泵空调系统
CN104633771A (zh) * 2013-11-13 2015-05-20 珠海格力电器股份有限公司 多联式空调机组及其控制方法
CN108758960A (zh) * 2018-03-21 2018-11-06 青岛海信日立空调系统有限公司 多联机系统的分时除湿方法和装置、计算机存储介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2161858Y (zh) * 1993-08-16 1994-04-13 张良 分时切换式微型中央空调机
JPH07332795A (ja) * 1994-06-02 1995-12-22 Matsushita Seiko Co Ltd 多室型空気調和装置
JPH08189690A (ja) * 1995-01-13 1996-07-23 Matsushita Electric Ind Co Ltd 多室形空気調和システムの暖房除湿運転制御装置
JP3137114B1 (ja) * 1999-10-06 2001-02-19 松下電器産業株式会社 多室形空気調和装置
CN1202387C (zh) * 2003-01-27 2005-05-18 广东科龙电器股份有限公司 一种一拖三空调器及其变频控制方法
CN100504196C (zh) * 2006-09-21 2009-06-24 海尔集团公司 健康除湿空调器
KR100854829B1 (ko) * 2007-02-13 2008-08-27 엘지전자 주식회사 공기조화 시스템 및 그 제어방법
JP2011052847A (ja) * 2009-08-31 2011-03-17 Panasonic Corp 多室型空気調和装置
CN102878613B (zh) * 2012-09-20 2015-09-02 青岛海信日立空调系统有限公司 控制多联机空调系统中温湿度的方法及多联机空调系统
CN103353147B (zh) * 2013-06-28 2016-05-25 青岛海信日立空调系统有限公司 三管制全热处理多联机空调系统及温湿度独立控制方法
CN203964187U (zh) * 2014-07-21 2014-11-26 深圳市沃森空调技术有限公司 可同时制冷制热的多联式空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016782A (ja) * 2003-06-24 2005-01-20 Matsushita Electric Ind Co Ltd 多室空気調和機の膨張弁制御方法
CN202902496U (zh) * 2012-10-31 2013-04-24 青岛海信日立空调系统有限公司 多联机热泵空调系统
CN103062851A (zh) * 2013-01-07 2013-04-24 青岛海信日立空调系统有限公司 空调系统及其除湿方法
CN104633771A (zh) * 2013-11-13 2015-05-20 珠海格力电器股份有限公司 多联式空调机组及其控制方法
CN108758960A (zh) * 2018-03-21 2018-11-06 青岛海信日立空调系统有限公司 多联机系统的分时除湿方法和装置、计算机存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3770519A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4220028A4 (en) * 2020-10-13 2024-04-03 Midea Group Wuhan Refrigeration Equipment Co., Ltd. MULTISPLIT AIR CONDITIONING SYSTEM AND CONTROL METHODS THEREFOR AND COMPUTER STORAGE MEDIUM
US12359837B2 (en) * 2020-10-13 2025-07-15 Midea Group Wuhan Refrigeration Equipment Co., Ltd. Variable refrigerant flow air conditioning system, control method thereof, and computer-readable storage medium

Also Published As

Publication number Publication date
CN108758960B (zh) 2020-02-04
EP3770519A1 (en) 2021-01-27
EP3770519A4 (en) 2021-12-29
EP3770519B1 (en) 2024-07-17
PL3770519T3 (pl) 2024-11-25
CN108758960A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
WO2019179474A1 (zh) 多联机系统及其分时除湿方法
CN108895567B (zh) 室外机、多联机系统及控制方法、装置、计算机存储介质
US10830514B2 (en) Method and apparatus for charge compensator reheat valve
CN112797598A (zh) 多联式空调的室内机控制方法、装置及空调器
KR20160056515A (ko) 공기조화기 및 그 제어방법
CN111706970B (zh) 用于空调器除湿的控制方法及控制装置、空调器
US11306928B2 (en) Method and apparatus for re-heat circuit operation
CN108870807B (zh) 多联机系统的回油控制方法和装置、计算机存储介质
WO2020199376A1 (zh) 空调器及其防凝露方法和装置
US20190234650A1 (en) System and method for operating a packaged terminal air conditioner unit
US10989456B2 (en) Method and apparatus for common manifold charge compensator
US11859849B2 (en) HVAC systems with evaporator bypass and supply air recirculation and methods of using same
WO2020133902A1 (zh) 回油控制方法和空调系统
CN108800420B (zh) 空调的控制方法和装置
US11788739B2 (en) Method and apparatus for hybrid dehumidification
JP5216813B2 (ja) 空調システムの制御方法
WO2018211612A1 (ja) 空気調和装置
CN110542183B (zh) 运行控制方法、运行控制装置、空调器和存储介质
US10712040B2 (en) HVAC blower
JPH08200776A (ja) マルチ式空調システムにおける冷媒制御方法
JP2025066901A (ja) 空気調和システム、空気調和システムの制御方法、プログラム
CN115218448A (zh) 空调控制方法、设备及存储介质
CN115711472A (zh) 空调控制方法和控制装置、空调系统及存储介质
CN117663392A (zh) 多联机控制方法、装置、多联机和存储介质
CN117308309A (zh) 膨胀阀开度更新方法、装置、空调设备、存储介质和产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019772449

Country of ref document: EP

Effective date: 20201021