WO2020199376A1 - 空调器及其防凝露方法和装置 - Google Patents

空调器及其防凝露方法和装置 Download PDF

Info

Publication number
WO2020199376A1
WO2020199376A1 PCT/CN2019/092734 CN2019092734W WO2020199376A1 WO 2020199376 A1 WO2020199376 A1 WO 2020199376A1 CN 2019092734 W CN2019092734 W CN 2019092734W WO 2020199376 A1 WO2020199376 A1 WO 2020199376A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
compressor
input voltage
operating frequency
frequency
Prior art date
Application number
PCT/CN2019/092734
Other languages
English (en)
French (fr)
Inventor
席战利
齐虹杰
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Priority to EP19922305.8A priority Critical patent/EP3926249B1/en
Publication of WO2020199376A1 publication Critical patent/WO2020199376A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F2013/221Means for preventing condensation or evacuating condensate to avoid the formation of condensate, e.g. dew
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This application relates to the technical field of air conditioners, in particular to an air conditioner and its anti-condensation method and device.
  • the minimum operating voltage of the inverter air conditioner can reach 150V, the wind speed of the indoor fan is relatively high, and the evaporation temperature is relatively high.
  • the condensed water produced can flow away through the internal machine water tray, so there is no risk of condensation.
  • the minimum operating voltage of inverter air conditioners can reach 40V or even lower.
  • the lower the voltage the lower the speed of the indoor fan.
  • the temperature of the evaporator will be greatly reduced, and serious condensation will occur in the evaporator, causing the air conditioner Problems such as water blowing and dripping affect the reliability of air conditioner operation.
  • the embodiments of the application provide an air conditioner and its anti-condensation method and device, which can limit the operating frequency of the compressor according to the current input voltage of the air conditioner, thereby effectively solving the problem of indoor heat exchange when the input voltage is low.
  • the problem of water blowing and dripping on the air conditioner improves the reliability of the air conditioner.
  • the embodiment of the present application provides an anti-condensation method for an air conditioner, which includes the following steps: obtaining the current input voltage of the air conditioner; identifying that the air conditioner enters a low voltage operating state according to the current input voltage; The voltage limits the operating frequency of the compressor in the air conditioner.
  • the anti-condensation method for an air conditioner proposed according to the above embodiments of the present application may also have the following additional technical features:
  • the limiting the operating frequency of the compressor in the air conditioner according to the current input voltage further includes: obtaining the current actual speed of the indoor fan in the air conditioner; Input voltage and the current actual speed to obtain the target maximum operable frequency of the compressor in the air conditioner; control the operation frequency of the compressor to be lower than or equal to the target maximum operable frequency.
  • controlling the operating frequency of the compressor to be lower than or equal to the target maximum operable frequency further includes: obtaining the target minimum operable frequency of the compressor in the air conditioner; controlling; The operating frequency of the compressor is higher than or equal to the target minimum operable frequency.
  • the controlling the operating frequency of the compressor to be higher than or equal to the target minimum operable frequency further includes: obtaining the current indoor humidity and indoor temperature, and according to the current humidity and indoor temperature Temperature, obtain the dew point temperature; obtain the indoor unit coil temperature in the air conditioner, identify that the indoor unit coil temperature is less than or equal to the dew point temperature, control to reduce the current operating frequency of the compressor, and control the reduced The current operating frequency is greater than or equal to the target minimum operable frequency.
  • the target maximum operable frequency is updated according to the current humidity.
  • the above method further includes: the maximum operable frequency of the compressor is positively correlated with the input voltage of the air conditioner.
  • the above method further includes: the maximum operable frequency of the compressor is positively correlated with the actual rotation speed of the indoor fan.
  • the above method further includes: the maximum operable frequency of the compressor is negatively correlated with indoor humidity.
  • the embodiment of the present application provides an anti-condensation device for an air conditioner, including: an acquisition module for acquiring the current input voltage of the air conditioner; an identification module for identifying that the air conditioner enters a low voltage according to the current input voltage Operating state; a control module for limiting the operating frequency of the compressor in the air conditioner according to the current input voltage.
  • the embodiment of the present application provides an air conditioner, which includes the aforementioned anti-condensation device of the air conditioner.
  • An embodiment of the present application provides an electronic device including a memory and a processor; wherein the processor reads the executable program code stored in the memory to run a program corresponding to the executable program code to It is used to realize the anti-condensation method of the air conditioner.
  • the embodiment of the present application provides a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the program is executed by a processor, the foregoing anti-condensation method for an air conditioner is implemented.
  • the present application can effectively solve the problem of water blowing and dripping in the indoor heat exchanger when the input voltage is low, and improve the reliability of the operation of the air conditioner.
  • Fig. 1 is a flow chart of an anti-condensation method for an air conditioner according to Embodiment 1 of the application;
  • Figure 2 is a system structure diagram of the air conditioner according to the first embodiment of the application.
  • FIG. 3 is a schematic block diagram of the anti-condensation device of the air conditioner according to the second embodiment of the application.
  • Fig. 4 is a block diagram of the air conditioner according to the third embodiment of the application.
  • Fig. 1 is a flow chart of an anti-condensation method for an air conditioner according to Embodiment 1 of the application.
  • the air conditioner may include: input power, electric control system, compressor, outdoor heat exchanger, indoor heat exchanger, outdoor fan, indoor fan and throttling element.
  • the outdoor fan corresponds to the outdoor heat exchanger
  • the indoor fan corresponds to the indoor heat exchanger.
  • One end of the compressor is connected to one end of the outdoor heat exchanger, and the other end of the outdoor heat exchanger is connected to one end of the throttling element.
  • the other end of the element is connected with one end of the indoor heat exchanger, the other end of the indoor heat exchanger is connected with the other end of the compressor, and the electric control system is respectively connected with the input power supply, indoor fan, outdoor fan and compressor.
  • the high-temperature and high-pressure gaseous refrigerant from the compressor first enters the outdoor heat exchanger for heat exchange, then passes through the throttling element for throttling and pressure reduction, and then enters the indoor heat exchanger and passes through the indoor heat exchanger. After the heat exchanger exchanges heat, it returns to the compressor.
  • the high-temperature and high-pressure gaseous refrigerant from the compressor first enters the indoor heat exchanger for heat exchange, then passes through the throttling element for throttling and pressure reduction, then enters the outdoor heat exchanger and passes through the outdoor After the heat exchanger exchanges heat, it returns to the compressor.
  • the anti-condensation method of an air conditioner in the embodiment of the present application may include the following steps:
  • S3 Limit the operating frequency of the compressor in the air conditioner according to the current input voltage.
  • the current input voltage of the air conditioner is obtained and the current input voltage of the air conditioner is judged.
  • the preset voltage value calibraration can be performed according to the actual situation
  • the air conditioner enters a low-voltage operation state.
  • the speed of the indoor fan decreases.
  • the evaporation temperature of the indoor heat exchanger will also decrease.
  • the temperature Condensation on relatively low objects (evaporators) will cause condensation problems, causing the indoor unit to drip or blow out condensed water.
  • the operating frequency of the compressor that is, compress
  • the operating frequency of the unit should be reduced correspondingly with the decrease of the input voltage to increase the temperature of the indoor heat exchanger, so as to prevent condensation and prevent the indoor unit from dripping or blowing out condensation.
  • limiting the operating frequency of the compressor in the air conditioner according to the current input voltage further includes: obtaining the current actual speed of the indoor fan in the air conditioner; obtaining the air conditioner according to the current input voltage and the current actual speed
  • the target maximum operating frequency of the medium compressor; the operating frequency of the control compressor is lower than or equal to the target maximum operating frequency.
  • the target maximum operating frequency of the compressor is: in order to prevent the air conditioner from reducing the speed of the indoor fan, when condensation is serious, limit the operating frequency of the compressor to not exceed the target maximum operating frequency to ensure that the air conditioner does not blow water Condensation problems such as dripping water.
  • a voltage-speed-frequency table is pre-stored in the air conditioner.
  • Table 1 when the air conditioner enters a low-voltage operating state, the current actual speed of the indoor fan is obtained, and the pre-stored voltage-speed-frequency is called According to the table, according to the current input voltage and the current actual speed, the target maximum operating frequency of the corresponding compressor can be obtained, and the compressor is controlled to run at a frequency not higher than the target maximum operating frequency.
  • V1 ⁇ V2 ⁇ V3 ⁇ ... ⁇ Vn the actual speed of the corresponding indoor fan r1 ⁇ r2 ⁇ r3 ⁇ ... ⁇ rn
  • the target maximum operating frequency of the corresponding compressor f1 ⁇ f2 ⁇ f3 ⁇ ... ⁇ fn that is, the maximum operable frequency of the compressor is positively related to the input voltage of the air conditioner
  • the maximum operable frequency of the compressor is positively related to the actual speed of the indoor fan.
  • the target maximum operating frequency of the compressor can also be calculated according to the formula method.
  • controlling the operating frequency of the compressor to be lower than or equal to the target maximum operable frequency may further include: obtaining the target minimum operable frequency of the compressor in the air conditioner; controlling the operating frequency of the compressor to be higher than Or equal to the target minimum operable frequency.
  • the target minimum operating frequency of the compressor is: when the operating frequency of the compressor is operating at low frequency, the lower the frequency, the greater the pipeline vibration. In order to ensure that the pipeline vibration is within the allowable range, the minimum operating frequency of the compressor must not be low. At the lowest target operating frequency.
  • the opening of the throttle element can also be adjusted to prevent condensation problems in the indoor heat exchanger.
  • controlling the operating frequency of the compressor to be higher than or equal to the target minimum operable frequency also includes: obtaining the current indoor humidity and indoor temperature, and obtaining the dew point temperature according to the current humidity and indoor temperature; obtaining the air conditioner The indoor unit coil temperature in the device is identified, the indoor unit coil temperature is less than or equal to the dew point temperature, the current operating frequency of the compressor is reduced, and the reduced current operating frequency is greater than or equal to the target minimum operating frequency.
  • the current indoor humidity and indoor temperature can be acquired through the temperature and humidity sensor set on the indoor unit of the air conditioner, or the air conditioner can be used for data transmission with other household appliances to acquire the current indoor humidity and indoor temperature. And according to the current humidity and indoor temperature to obtain the dew point temperature, for example, the dew point temperature can be obtained through the preset humidity-temperature-dew point temperature table.
  • the indoor unit coil temperature can be calculated according to the indoor temperature and indoor humidity, or the indoor unit coil temperature can be obtained through the temperature sensor installed at the indoor unit coil, and the indoor coil temperature can be compared with the indoor unit coil temperature. Determine the size of the dew point temperature. When the indoor unit coil temperature is less than or equal to the dew point temperature, it means that condensation will occur. At this time, reduce the operating frequency of the compressor and not less than the target minimum operating frequency until the indoor unit coil temperature is greater than the dew point temperature; When the indoor unit coil temperature is greater than the dew point temperature, no condensation will occur.
  • the opening of the throttle element can be adjusted to prevent condensation problems.
  • the target maximum operable frequency is updated according to the current humidity.
  • updating the target maximum operating frequency according to the current humidity includes: obtaining frequency correction parameters according to the current humidity, and updating the target maximum operating frequency using the frequency correction parameters.
  • obtaining the target maximum operating frequency of the compressor in the air conditioner according to the current input voltage and the current actual speed may include: querying and obtaining the air conditioner according to the current input voltage and the current actual speed
  • the candidate maximum operating frequency of the compressor, according to the candidate maximum operating frequency determine the target maximum operating frequency; update the target maximum operating frequency according to the current humidity, including: determining the target range of the current humidity and reselecting the target range
  • the corresponding candidate maximum operable frequency is taken as the target maximum operable frequency, for example, when the input voltage is constant, as shown in Table 2.
  • the target maximum operable frequency f of the compressor is limited, which can raise the temperature of the indoor heat exchanger and suppress the problem of condensation and water blowing.
  • the compressor's target maximum operating frequency f1 when the current humidity ⁇ 2 ⁇ (60%, 80%), the compressor's target maximum operating frequency f2;
  • the compressor's target maximum operating frequency f3 when the current humidity ⁇ 4 ⁇ (0, 40%), the compressor's target maximum operating frequency f4; where f1 ⁇ f2 ⁇ f3 ⁇ f4..., the higher the humidity, the lower the target maximum operating frequency of the compressor, that is, the maximum operating frequency of the compressor is negatively correlated with the indoor humidity.
  • obtaining the target maximum operating frequency of the compressor in the air conditioner includes: inputting the current input voltage and the current actual speed into a pre-built In the first correspondence between the input voltage and the actual speed and the target maximum operable frequency, the target maximum operable frequency is obtained.
  • Update the target maximum operating frequency according to the current humidity including: input the current input voltage, current actual speed, and current humidity, and input the second correspondence between the pre-built input voltage, actual speed and humidity and the maximum operating frequency In the relationship, reacquire the target maximum operating frequency.
  • the target maximum operating frequency of the compressor that is, the maximum operating frequency of the compressor can also be limited to the indoor humidity, according to the pre-built input voltage-actual speed-humidity-target maximum operating frequency one by one
  • the present application can limit the operating frequency of the compressor according to the current input voltage of the air conditioner, thereby effectively solving the problem of water blowing and dripping in the indoor heat exchanger when the input voltage is low, and improving the reliability of the air conditioner operation.
  • the embodiment of the present application also provides a device corresponding to the method in the first embodiment, see the second embodiment.
  • Fig. 3 is a schematic block diagram of an anti-condensation device of an air conditioner according to a second embodiment of the application.
  • the anti-condensation device of the air conditioner of the present application may include: an acquisition module 10, an identification module 20, and a control module 30.
  • the obtaining module 10 is used to obtain the current input voltage of the air conditioner.
  • the identification module 20 is used for identifying that the air conditioner enters a low voltage operating state according to the current input voltage.
  • the control module 30 is used to limit the operating frequency of the compressor in the air conditioner according to the current input voltage.
  • control module 30 limits the operating frequency of the compressor in the air conditioner according to the current input voltage, and is specifically used to obtain the current actual speed of the indoor fan in the air conditioner; according to the current input voltage and the current actual speed , Obtain the target maximum operating frequency of the compressor in the air conditioner; control the operating frequency of the compressor to be lower than or equal to the target maximum operating frequency.
  • control module 30 controls the operating frequency of the compressor to be lower than or equal to the target maximum operable frequency, and is also used to obtain the target minimum operable frequency of the compressor in the air conditioner; to control the operation of the compressor The frequency is higher than or equal to the target minimum operable frequency.
  • control module 30 controls the operating frequency of the compressor to be higher than or equal to the target minimum operable frequency, specifically for obtaining the current indoor humidity and indoor temperature, and obtaining the dew point according to the current humidity and indoor temperature Temperature: Obtain the indoor unit coil temperature in the air conditioner, identify that the indoor unit coil temperature is less than or equal to the dew point temperature, control to reduce the current operating frequency of the compressor, and control the reduced current operating frequency to be greater than or equal to the target minimum operating frequency.
  • control module 30 is further configured to update the target maximum operable frequency according to the current humidity.
  • the maximum operable frequency of the compressor is positively correlated with the input voltage of the air conditioner.
  • the maximum operable frequency of the compressor is positively correlated with the actual rotation speed of the indoor fan.
  • the maximum operable frequency of the compressor is negatively related to the humidity in the room.
  • the present application can limit the operating frequency of the compressor according to the current input voltage of the air conditioner, thereby effectively solving the problem of water blowing and dripping in the indoor heat exchanger when the input voltage is low, and improving the reliability of the air conditioner operation.
  • the embodiment of the present application also provides an air conditioner corresponding to the device in the second embodiment, see the third embodiment.
  • Fig. 4 is a block diagram of the air conditioner according to the third embodiment of the application.
  • the air conditioner 100 of the embodiment of the present application may include the aforementioned anti-condensation device 110 of the air conditioner.
  • the present application can limit the operating frequency of the compressor according to the current input voltage of the air conditioner, thereby effectively solving the problem of water blowing and dripping in the indoor heat exchanger when the input voltage is low, and improving the reliability of the air conditioner operation.
  • This application also proposes an electronic device, including a memory and a processor; wherein the processor reads the executable program code stored in the memory to run a program corresponding to the executable program code, so as to implement the above air conditioner Anti-condensation method.
  • the present application can limit the operating frequency of the compressor according to the current input voltage of the air conditioner, thereby effectively solving the problem of water blowing and dripping in the indoor heat exchanger when the input voltage is low, and improving the reliability of the air conditioner operation.
  • the present application also proposes a computer-readable storage medium with a computer program stored on the computer-readable storage medium, and when the program is executed by a processor, the foregoing anti-condensation method for an air conditioner is realized.
  • the present application can limit the operating frequency of the compressor according to the current input voltage of the air conditioner, thereby effectively solving the problem of water blowing and dripping in the indoor heat exchanger when the input voltage is low, and improving the reliability of the air conditioner operation.
  • the embodiments of the present application can be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.
  • any reference signs located between parentheses should not be constructed as limitations on the claims.
  • the word “comprising” does not exclude the presence of parts or steps not listed in the claims.
  • the word “a” or “an” preceding a component does not exclude the presence of multiple such components.
  • This application can be realized by means of hardware including several different components and by means of a suitably programmed computer. In the unit claims enumerating several devices, several of these devices may be embodied by the same hardware item.
  • the use of the words first, second, and third, etc. do not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请公开了一种空调器及其防凝露方法和装置,所述方法包括以下步骤:获取空调器的当前输入电压;根据当前输入电压识别空调器进入低电压运行状态;根据当前输入电压,限制空调器中压缩机的运行频率。本申请的防凝露方法,能够有效解决在输入电压较低时,室内换热器吹水、滴水的问题,提高空调器运行的可靠性。

Description

空调器及其防凝露方法和装置
相关申请的交叉引用
本申请基于申请号为201910250595.9,申请日为2019年03月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调技术领域,特别涉及一种空调器及其防凝露方法和装置。
背景技术
目前,变频空调器最低运行电压可以达到150V,室内风机的风速比较高,蒸发温度相对较高,所产生的凝露水可通过内机接水盘流走,因此不会出现凝露风险。
相关技术中,变频空调器最低运行电压可达到40V,甚至更低,电压越低室内风机转速越低,相同频率下,蒸发器温度会大幅降低,蒸发器会出现严重的凝露现象,造成空调器吹水、滴水等问题,影响空调器运行的可靠性。
发明内容
本申请实施例通过提供一种空调器及其防凝露方法和装置,能够根据空调器的当前输入电压对压缩机的运行频率进行限制,从而能够有效解决在输入电压较低时,室内换热器吹水、滴水的问题,提高空调器运行的可靠性。
本申请实施例提供了一种空调器的防凝露方法,包括以下步骤:获取空调器的当前输入电压;根据所述当前输入电压识别所述空调器进入低电压运行状态;根据所述当前输入电压,限制所述空调器中压缩机的运行频率。
另外,根据本申请上述实施例提出的空调器的防凝露方法还可以具有如下附加的技术特征:
在本申请的一个实施例中,所述根据所述当前输入电压,限制所述空调器中压缩机的运行频率,还包括:获取所述空调器中室内风机的当前实际转速;根据所述当前输入电压和所述当前实际转速,获取所述空调器中压缩机的目标最高可运行频率;控制所述压缩机的运行频率低于或者等于所述目标最高可运行频率。
在本申请的一个实施例中,所述控制所述压缩机的运行频率低于或者等于所述目标最高可运行频率,还包括:获取所述空调器中压缩机的目标最低可运行频率;控制所述压缩 机的运行频率高于或者等于所述目标最低可运行频率。
在本申请的一个实施例中,所述控制所述压缩机的运行频率高于或者等于所述目标最低可运行频率,还包括:获取室内的当前湿度和室内温度,根据所述当前湿度和室内温度,获取露点温度;获取所述空调器中室内机盘管温度,识别所述室内机盘管温度小于或者等于所述露点温度,控制降低所述压缩机的当前运行频率,并控制降低后的当前运行频率大于或者等于所述目标最低可运行频率。
在本申请的一个实施例中,根据所述当前湿度对所述目标最高可运行频率进行更新。
在本申请的一个实施例中,上述的方法,还包括:所述压缩机的最高可运行频率与所述空调器的输入电压成正相关。
在本申请的一个实施例中,上述的方法,还包括:所述压缩机的最高可运行频率与所述室内风机的实际转速成正相关。
在本申请的一个实施例中,上述的方法,还包括:所述压缩机的最高可运行频率与室内的湿度成成负相关。
本申请实施例提供了一种空调器的防凝露装置,包括:获取模块,用于获取空调器的当前输入电压;识别模块,用于根据所述当前输入电压识别所述空调器进入低电压运行状态;控制模块,用于根据所述当前输入电压,限制所述空调器中压缩机的运行频率。
本申请实施例提供了一种空调器,包括:上述的空调器的防凝露装置。
本申请实施例提供了一种电子设备,包括存储器、处理器;其中,所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于实现上述的空调器的防凝露方法。
本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现上述的空调器的防凝露方法。
本申请实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
本申请能够有效解决在输入电压较低时,室内换热器吹水、滴水的问题,提高空调器运行的可靠性。
附图说明
图1为本申请实施例一的空调器的防凝露方法的流程图;
图2为本申请实施例一的空调器的系统结构图;
图3为本申请实施例二的空调器的防凝露装置的方框示意图;以及
图4为本申请实施例三的空调器的方框示意图。
具体实施方式
为了解决现有技术中变频空调器最低运行电压可达到40V,甚至更低,电压越低室内风机转速越低,相同频率下,蒸发器温度会大幅降低,蒸发器会出现严重的凝露现象,造成空调器吹水、滴水等,影响空调器运行的可靠性的技术问题,本申请提出了一种空调器的防凝露方法,能够根据空调器的当前输入电压对压缩机的运行频率进行限制,从而能够有效解决在输入电压较低时,室内换热器吹水、滴水的问题,提高空调器运行的可靠性。
为了更好的理解上述技术方案,下面将参照附图更详细地描述本申请的示例性实施例。虽然附图中显示了本申请的示例性实施例,然而应当理解,可以以各种形式实现本申请而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本申请,并且能够将本申请的范围完整的传达给本领域的技术人员。
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明。
实施例一
图1为本申请实施例一的空调器的防凝露方法的流程图。
在本申请的一个实施例中,如图2所示,空调器可包括:输入电源、电控系统、压缩机、室外换热器、室内换热器、室外风机、室内风机和节流元件。其中,室外风机对应室外换热器设置,室内风机对应室内换热器设置,压缩机的一端与室外换热器的一端相连,室外换热器的另一端与节流元件的一端相连,节流元件的另一端与室内换热器的一端相连,室内换热器的另一端与压缩机的另一端相连,电控系统分别与输入电源、室内风机、室外风机和压缩机相连。
当空调器以制冷模式运行时,从压缩机出来的高温高压气态冷媒,先进入室外换热器进行换热,然后经过节流元件进行节流降压后,进入室内换热器,经过室内换热器进行换热后,回到压缩机。
当空调器以制热模式运行时,从压缩机出来的高温高压气态冷媒,先进入室内换热器进行换热,然后经过节流元件进行节流降压后,进入室外换热器,经过室外换热器进行换热后,回到压缩机。
如图1所示,本申请实施例的空调器的防凝露方法,可包括以下步骤:
S1,获取空调器的当前输入电压。
S2,根据当前输入电压识别空调器进入低电压运行状态。
S3,根据当前输入电压,限制空调器中压缩机的运行频率。
具体地,在空调器运行的过程中,获取空调器的当前输入电压,并对空调器的当前输入电压进行判断,当空调器的输入电压小于预设电压值(可根据实际情况进行标定)时, 认为空调器进入低电压运行状态,此时,室内风机的转速降低,在相同频率下,室内换热器蒸发的温度也会降低,当水蒸气在空气中达到饱和度的程度时,在温度相对较低的物体上(蒸发器)凝结,就会产生凝露问题,导致室内机滴水或吹出冷凝水,为了防止室内机滴水或吹出冷凝水,可通过降低压缩机的运行频率,即,压缩机的运行频率随着输入电压的降低也要相应的降低,来提高室内换热器的温度,从而能够防止出现凝露,也就可以避免室内机滴水或者吹出冷凝水的现象。
在本申请的一个实施例中,根据当前输入电压,限制空调器中压缩机的运行频率,还包括:获取空调器中室内风机的当前实际转速;根据当前输入电压和当前实际转速,获取空调器中压缩机的目标最高可运行频率;控制压缩机的运行频率低于或者等于目标最高可运行频率。其中,压缩机的目标最高可运行频率为:为了防止空调器在室内风机转速降低,凝露现象严重时,限制压缩机的运行频率不能超过目标最高可运行频率,保证空调器不会出现吹水和滴水等凝露问题。
具体地,空调器中预先存储有电压-转速-频率表格,如表1所示,当空调器进入低电压运行状态时,获取室内风机的当前实际转速,并调用预先存储的电压-转速-频率表格,根据当前输入电压和当前实际转速可得到对应的压缩机的目标最高可运行频率,并控制压缩机以不高于目标最高可运行频率的频率运行。
表1
Figure PCTCN2019092734-appb-000001
其中,如表1所示,V1<V2<V3<…<Vn,对应的室内风机的实际转速r1<r2<r3<…<rn,对应的压缩机的目标最高可运行频率f1<f2<f3<…<fn,即,压缩机的最高可运行频率与空调器的输入电压成正相关,压缩机的最高可运行频率与室内风机的实际转速成正相关。
可以理解的是,还可以根据公式法计算获得压缩机的目标最高可运行频率,压缩机的目标最高可运行频率与室内风机的实际转速和输入电压成正相关,所以,可以采用公式法根据输入电压V和实际转速r,列公式计算:最高运行频率f=f(V,r)。
在本申请的一个实施例中,控制压缩机的运行频率低于或者等于目标最高可运行频率,还可包括:获取空调器中压缩机的目标最低可运行频率;控制压缩机的运行频率高于或者等于目标最低可运行频率。其中,压缩机的目标最低可运行频率为:压缩机的运行频率在低频运行时,频率越低管路振动越大,为了保证管路振动在允许的范围内,限制压缩机最 低运行频率不能低于目标最低可运行频率。
具体地,在根据当前输入电压降低压缩机的运行频率时,如果压缩机的运行频率达到压缩机的目标最低可运行频率时,则不再对压缩机进行降频处理,以防止出现管路振动过大,影响空调器的稳定运行。在压缩机的运行频率达到压缩机的目标最低可运行频率时,为了防止出现凝露问题,还可通过对节流元件的开度进行调节,来防止室内换热器出现凝露的问题。
在本申请的一个实施例中,控制压缩机的运行频率高于或者等于目标最低可运行频率,还包括:获取室内的当前湿度和室内温度,根据当前湿度和室内温度,获取露点温度;获取空调器中室内机盘管温度,识别室内机盘管温度小于或者等于露点温度,控制降低压缩机的当前运行频率,并控制降低后的当前运行频率大于或者等于目标最低可运行频率。
具体地,可通过设置在空调器室内机上的温湿度传感器获取室内的当前湿度和室内温度,或者通过空调器与其它家用电器进行数据传输,以获取室内的当前湿度和室内温度。并根据当前湿度和室内温度获取露点温度,例如,露点温度可通过预先设定的湿度-温度-露点温度表格进行获取。
在当前输入电压一定的情况下,可根据室内的温度和室内湿度计算室内机盘管温度,或者通过设置在室内机盘管处的温度传感器获取室内机盘管温度,并对室内盘管温度与露点温度的大小进行判断。当室内机盘管温度小于或者等于露点温度时,说明会产生凝露水,此时,降低压缩机的运行频率,且不小于目标最低可运行频率,直至室内机盘管温度大于露点温度;当室内机盘管温度大于露点温度时,便不会产生凝露水。
同样地,在压缩机的运行频率降低到目标最低可运行频率时,室内机盘管温度仍然小于或者等于露点温度,此时可通过调节节流元件的开度来防止出现凝露问题。
在本申请的一个实施例,根据当前湿度对目标最高可运行频率进行更新。
其中,根据当前湿度对目标最高可运行频率进行更新,包括:根据当前湿度,获取频率修正参数,利用频率修正参数对目标最最高可运行频率进行更新。
例如,在本申请的一个实施例中,根据当前输入电压和当前实际转速,获取空调器中压缩机的目标最高可运行频率,可包括:根据当前输入电压和当前实际转速,查询获取空调器中压缩机的候选最高可运行频率,根据候选最高可运行频率,确定目标最高可运行频率;根据当前湿度对目标最高可运行频率进行更新,包括:确定当前湿度所处的目标范围,重新选取目标范围对应的候选最高可运行频率作为目标最高可运行频率,例如,当输入电压一定时,如表2所示。
表2
Figure PCTCN2019092734-appb-000002
Figure PCTCN2019092734-appb-000003
其中,通过检测室内的湿度Φ,来限定压缩机的目标最高可运行频率f,可以升高室内换热器温度,抑制凝露吹水问题产生。例如,当当前湿度Φ1∈(80%,100%],压缩机的目标最高可运行频率f1;当当前湿度Φ2∈(60%,80%]时,压缩机的目标最高可运行频率f2;当当前湿度Φ3∈(40%,60%]时,压缩机的目标最高可运行频率f3;当当前湿度Φ4∈(0,40%]时,压缩机的目标最高可运行频率f4;其中f1<f2<f3<f4…,湿度越高时,压缩机的目标最高可运行频率越低,即,压缩机的最高可运行频率与室内的湿度成负相关。
又如,在本申请的另一个实施例中,根据当前输入电压和当前实际转速,获取空调器中压缩机的目标最高可运行频率,包括:将当前输入电压和当前实际转速,输入预先构建的输入电压和实际转速二者与目标最高可运行频率之间的第一对应关系中,获取目标最高可运行频率。
根据当前湿度对目标最高可运行频率进行更新,包括:将当前输入电压、当前实际转速和当前湿度,输入预先构建的输入电压、实际转速和湿度三者与最高可运行频率之间的第二对应关系中,重新获取目标最高可运行频率。
换句话说,可先预先构建输入电压-实际转速-目标最高可运行频率的一一对应关系,如f=f(V,r),然后根据当前湿度对目标最高可运行频率进行更新,湿度越高,压缩机的目标最高可运行频率越低,即压缩机的最高可运行频率还可受限制于室内的湿度,根据预先构建的输入电压-实际转速-湿度-目标最高可运行频率的一一对应关系,可重新获取目标最高可运行频率,如f=f(V,r,Φ)。
上述本申请实施例中的技术方案,至少具有如下技术效果或优点:
本申请能够根据空调器的当前输入电压对压缩机的运行频率进行限制,从而能够有效解决在输入电压较低时,室内换热器吹水、滴水的问题,提高空调器运行的可靠性。
基于同一构思,本申请实施例还提供了实施例一中方法对应的装置,见实施例二。
实施例二
图3为本申请实施例二的空调器的防凝露装置的方框示意图。
如图3所示,本申请的空调器的防凝露装置,可包括:获取模块10、识别模块20和控制模块30。
其中,获取模块10用于获取空调器的当前输入电压。识别模块20用于根据当前输入电压识别空调器进入低电压运行状态。控制模块30用于根据当前输入电压,限制空调器中压缩机的运行频率。
在本申请的一个实施例中,控制模块30根据当前输入电压,限制空调器中压缩机的运行频率,具体用于,获取空调器中室内风机的当前实际转速;根据当前输入电压和当前实际转速,获取空调器中压缩机的目标最高可运行频率;控制压缩机的运行频率低于或者等于目标最高可运行频率。
在本申请的一个实施例中,控制模块30控制压缩机的运行频率低于或者等于目标最高可运行频率,还用于,获取空调器中压缩机的目标最低可运行频率;控制压缩机的运行频率高于或者等于目标最低可运行频率。
在本申请的一个实施例中,控制模块30控制压缩机的运行频率高于或者等于目标最低可运行频率,具体用于,获取室内的当前湿度和室内温度,根据当前湿度和室内温度,获取露点温度;获取空调器中室内机盘管温度,识别室内机盘管温度小于或者等于露点温度,控制降低压缩机的当前运行频率,并控制降低后的当前运行频率大于或者等于目标最低可运行频率。
在本申请的一个实施例中,控制模块30还用于根据当前湿度对目标最高可运行频率进行更新。
在本申请的一个实施例中,压缩机的最高可运行频率与空调器的输入电压成正相关。
在本申请的一个实施例中,压缩机的最高可运行频率与室内风机的实际转速成正相关。
在本申请的一个实施例中,压缩机的最高可运行频率与室内的湿度成负相关。
需要说明的是,本申请实施例中的空调器的防凝露装置中未披露的细节,请参照本申请实施例中的空调器的防凝露方法中所披露的细节,具体这里不再赘述。
上述本申请实施例中的技术方案,至少具有如下技术效果或优点:
本申请能够根据空调器的当前输入电压对压缩机的运行频率进行限制,从而能够有效解决在输入电压较低时,室内换热器吹水、滴水的问题,提高空调器运行的可靠性。
实施例三
基于同一构思,本申请实施例还提供了实施例二中装置对应的空调器,见实施例三。
图4为本申请实施例三的空调器的方框示意图。
如图4所示,本申请实施例的空调器100可包括:上述的空调器的防凝露装置110。
上述本申请实施例中的技术方案,至少具有如下技术效果或优点:
本申请能够根据空调器的当前输入电压对压缩机的运行频率进行限制,从而能够有效解决在输入电压较低时,室内换热器吹水、滴水的问题,提高空调器运行的可靠性。
实施例四
本申请还提出了一种电子设备,包括存储器、处理器;其中,处理器通过读取存储器中存储的可执行程序代码来运行与可执行程序代码对应的程序,以用于实现上述空调器的 防凝露方法。
上述本申请实施例中的技术方案,至少具有如下技术效果或优点:
本申请能够根据空调器的当前输入电压对压缩机的运行频率进行限制,从而能够有效解决在输入电压较低时,室内换热器吹水、滴水的问题,提高空调器运行的可靠性。
实施例五
本申请还提出了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现上述的空调器的防凝露方法。
上述本申请实施例中的技术方案,至少具有如下技术效果或优点:
本申请能够根据空调器的当前输入电压对压缩机的运行频率进行限制,从而能够有效解决在输入电压较低时,室内换热器吹水、滴水的问题,提高空调器运行的可靠性。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
应当注意的是,在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的部件或步骤。位于部件之前的单 词“一”或“一个”不排除存在多个这样的部件。本申请可以借助于包括有若干不同部件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (12)

  1. 一种空调器的防凝露方法,其特征在于,包括以下步骤:
    获取空调器的当前输入电压;
    根据所述当前输入电压识别所述空调器进入低电压运行状态;
    根据所述当前输入电压,限制所述空调器中压缩机的运行频率。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述当前输入电压,限制所述空调器中压缩机的运行频率,还包括:
    获取所述空调器中室内风机的当前实际转速;
    根据所述当前输入电压和所述当前实际转速,获取所述空调器中压缩机的目标最高可运行频率;
    控制所述压缩机的运行频率低于或者等于所述目标最高可运行频率。
  3. 根据权利要求2所述的方法,其特征在于,所述控制所述压缩机的运行频率低于或者等于所述目标最高可运行频率,还包括:
    获取所述空调器中压缩机的目标最低可运行频率;
    控制所述压缩机的运行频率高于或者等于所述目标最低可运行频率。
  4. 根据权利要求3所述的方法,其特征在于,所述控制所述压缩机的运行频率高于或者等于所述目标最低可运行频率,还包括:
    获取室内的当前湿度和室内温度,根据所述当前湿度和室内温度,获取露点温度;
    获取所述空调器中室内机盘管温度,识别所述室内机盘管温度小于或者等于所述露点温度,控制降低所述压缩机的当前运行频率,并控制降低后的当前运行频率大于或者等于所述目标最低可运行频率。
  5. 根据权利要求3或4中所述的方法,其特征在于,
    根据所述当前湿度对所述目标最高可运行频率进行更新。
  6. 根据权利要求5所述的方法,其特征在于,还包括:所述压缩机的最高可运行频率与所述空调器的输入电压成正相关。
  7. 根据权利要求5或6所述的方法,其特征在于,还包括:
    所述压缩机的最高可运行频率与所述室内风机的实际转速成正相关。
  8. 根据权利要求5-7中任一项所述的方法,其特征在于,还包括:
    所述压缩机的最高可运行频率与室内的湿度成负相关。
  9. 一种空调器的防凝露装置,其特征在于,包括:
    获取模块,用于获取空调器的当前输入电压;
    识别模块,用于根据所述当前输入电压识别所述空调器进入低电压运行状态;
    控制模块,用于根据所述当前输入电压,限制所述空调器中压缩机的运行频率。
  10. 一种空调器,其特征在于,包括:如权利要求9所述的空调器的防凝露装置。
  11. 一种电子设备,其特征在于,包括存储器、处理器;
    其中,所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于实现如权利要求1-8中任一所述的空调器的防凝露方法。
  12. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-8中任一所述的空调器的防凝露方法。
PCT/CN2019/092734 2019-03-29 2019-06-25 空调器及其防凝露方法和装置 WO2020199376A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19922305.8A EP3926249B1 (en) 2019-06-25 Air conditioner and condensation preventing method and device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910250595.9A CN109945397B (zh) 2019-03-29 2019-03-29 空调器及其防凝露方法和装置
CN201910250595.9 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020199376A1 true WO2020199376A1 (zh) 2020-10-08

Family

ID=67012311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092734 WO2020199376A1 (zh) 2019-03-29 2019-06-25 空调器及其防凝露方法和装置

Country Status (2)

Country Link
CN (1) CN109945397B (zh)
WO (1) WO2020199376A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114674071A (zh) * 2020-12-24 2022-06-28 广东美的制冷设备有限公司 一种电加热器控制方法、装置、空调器及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110398021A (zh) * 2019-07-30 2019-11-01 宁波奥克斯电气股份有限公司 空调风口防凝露控制方法、装置及空调器
CN110513849B (zh) * 2019-08-07 2021-03-16 深圳创维空调科技有限公司 一种空调器控制方法、存储介质及空调器
CN111256330A (zh) * 2020-01-19 2020-06-09 广东美的制冷设备有限公司 调整空调器运行参数的方法、装置、空调器和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068812A (ja) * 2007-09-18 2009-04-02 Panasonic Corp 空気調和機
CN102538151A (zh) * 2012-03-26 2012-07-04 宁波奥克斯空调有限公司 变频空调的低电压控制方法
CN102889668A (zh) * 2012-10-25 2013-01-23 宁波奥克斯空调有限公司 变频空调在低电压下的控制方法
CN105241031A (zh) * 2015-11-09 2016-01-13 广东美的制冷设备有限公司 用于空调器的防凝露处理方法、防凝露处理装置和空调器
CN107621050A (zh) * 2017-09-04 2018-01-23 青岛海尔空调器有限总公司 用于控制空调的方法及装置、空调

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114124A (ja) * 1997-06-20 1999-01-22 Sharp Corp 空気調和機
CN1260531C (zh) * 2003-08-06 2006-06-21 海尔集团公司 防止室内盘管温度过低的方法及其空调机
CN101162871B (zh) * 2007-09-28 2012-01-25 艾默生网络能源有限公司 提升空调对电网电压和频率的适应范围的方法及其装置
CN104566826B (zh) * 2014-12-31 2017-06-16 广东美的制冷设备有限公司 变频空调及其压缩机控制方法和装置
CN104949270B (zh) * 2015-06-12 2017-10-27 广东美的制冷设备有限公司 空调器的制冷控制方法、装置及空调器
WO2017068640A1 (ja) * 2015-10-20 2017-04-27 三菱電機株式会社 運転制御装置
CN105783185B (zh) * 2016-03-04 2019-01-08 广东美的制冷设备有限公司 空调器防凝露控制方法及装置
CN105716208B (zh) * 2016-04-05 2019-06-28 广东美的制冷设备有限公司 空调器的工作控制方法及装置
CN106500266B (zh) * 2016-10-27 2019-07-30 广东美的制冷设备有限公司 空调器及其双缸压缩机的控制方法和装置
CN107101328B (zh) * 2017-04-21 2019-12-06 青岛海尔空调器有限总公司 空调及其控制方法
CN107421061B (zh) * 2017-07-06 2020-04-24 青岛海尔空调器有限总公司 空调器的防凝露控制方法及装置
CN108562015B (zh) * 2018-04-18 2020-11-03 青岛海尔空调器有限总公司 一种防凝露的空调控制方法及装置
CN108917093A (zh) * 2018-06-26 2018-11-30 Tcl空调器(中山)有限公司 一种空调器防冻保护的控制方法和控制装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068812A (ja) * 2007-09-18 2009-04-02 Panasonic Corp 空気調和機
CN102538151A (zh) * 2012-03-26 2012-07-04 宁波奥克斯空调有限公司 变频空调的低电压控制方法
CN102889668A (zh) * 2012-10-25 2013-01-23 宁波奥克斯空调有限公司 变频空调在低电压下的控制方法
CN105241031A (zh) * 2015-11-09 2016-01-13 广东美的制冷设备有限公司 用于空调器的防凝露处理方法、防凝露处理装置和空调器
CN107621050A (zh) * 2017-09-04 2018-01-23 青岛海尔空调器有限总公司 用于控制空调的方法及装置、空调

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3926249A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114674071A (zh) * 2020-12-24 2022-06-28 广东美的制冷设备有限公司 一种电加热器控制方法、装置、空调器及存储介质
CN114674071B (zh) * 2020-12-24 2024-01-23 广东美的制冷设备有限公司 一种电加热器控制方法、装置、空调器及存储介质

Also Published As

Publication number Publication date
EP3926249A1 (en) 2021-12-22
EP3926249A4 (en) 2022-04-06
CN109945397A (zh) 2019-06-28
CN109945397B (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
WO2020199376A1 (zh) 空调器及其防凝露方法和装置
CN108375170B (zh) 一种电子膨胀阀的控制方法、装置及空调器
CN108195053B (zh) 空调防凝露控制的方法、装置及计算机存储介质
US9810467B2 (en) Controlling air conditioner modes
CN106839263B (zh) 空调及其控制方法
CN103884140A (zh) 空调压缩机排气过热度的控制方法及系统
CN109945391A (zh) 空调器及其高温保护方法和装置
CN112484258B (zh) 一种空调器控制方法、装置、电子设备及存储介质
CN107084479B (zh) 一种空调器制热运行控制方法
CN107192085B (zh) 一种空调器制冷运行控制方法
WO2019179474A1 (zh) 多联机系统及其分时除湿方法
CN113739378B (zh) 空调系统的控制方法及空调系统、存储介质
CN109959110B (zh) 空调器及其防凝露方法和装置
CN104006489A (zh) 空调系统及其空调控制装置和制冷方法
US20150276276A1 (en) Low ambient temperature operation management
CN110542192B (zh) 运行控制方法、运行控制装置、空调器和存储介质
CN109974194B (zh) 空调器及其高温保护方法和装置
CN114963467B (zh) 空调器制热控制方法、装置、电子设备及存储介质
KR102087737B1 (ko) 항온항습 공조설비
CN114294798B (zh) 空调恒温除湿控制方法及空调
CN109945398B (zh) 空调器及其控制方法和控制装置
US20220082286A1 (en) Control system for an hvac system
CN111121242B (zh) 一种空调系统运行参数的调节方法、调节装置和空调系统
CN109945400A (zh) 空调器及其防凝露方法和装置
CN110470027B (zh) 一种直流风机调节方法、控制器以及调温系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019922305

Country of ref document: EP

Effective date: 20210915

NENP Non-entry into the national phase

Ref country code: DE