WO2019178977A1 - 基于定位孔的电路板缺陷追踪方法、装置及计算机设备 - Google Patents

基于定位孔的电路板缺陷追踪方法、装置及计算机设备 Download PDF

Info

Publication number
WO2019178977A1
WO2019178977A1 PCT/CN2018/093622 CN2018093622W WO2019178977A1 WO 2019178977 A1 WO2019178977 A1 WO 2019178977A1 CN 2018093622 W CN2018093622 W CN 2018093622W WO 2019178977 A1 WO2019178977 A1 WO 2019178977A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning hole
circuit board
information
aperture
determining
Prior art date
Application number
PCT/CN2018/093622
Other languages
English (en)
French (fr)
Inventor
钟利东
何欢
江武骏
Original Assignee
广州兴森快捷电路科技有限公司
深圳市兴森快捷电路科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州兴森快捷电路科技有限公司, 深圳市兴森快捷电路科技股份有限公司 filed Critical 广州兴森快捷电路科技有限公司
Publication of WO2019178977A1 publication Critical patent/WO2019178977A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/398Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/10Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/392Floor-planning or layout, e.g. partitioning or placement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0008Apparatus or processes for manufacturing printed circuits for aligning or positioning of tools relative to the circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09063Holes or slots in insulating substrate not used for electrical connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09918Optically detected marks used for aligning tool relative to the PCB, e.g. for mounting of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0047Drilling of holes

Definitions

  • the present invention relates to the field of electronic circuit technologies, and in particular, to a method and apparatus for tracking circuit board defects based on positioning holes, a computer device, and a storage medium.
  • Defect Mapping can track the position information of the defective unit of the board.
  • the defect information includes the panel, strip/set, and PCS unit.
  • the defect location can be traced directly to the unit. , with high accuracy and effectiveness.
  • CAM Computer Aided Manufacturing
  • engineers need to create a center file drilling file (center alignment file, referred to as center file or drilling file) for each production model of pnl (panel abbreviation) file. ).
  • the machine can automatically align according to the coordinates of the drilling file and find the printing position of the positioning hole.
  • the inventors have found that at least the following problems exist in the prior art: the current production of the drilling file and the format modification are mainly done manually by the CAM engineer, but the manual modification is not only time-consuming and labor-intensive but also error-prone, and the positioning is lowered. The speed at which the holes are generated, so as to affect the efficiency of the defect tracking process.
  • the present invention provides a circuit board defect tracking method and device based on a positioning hole, which can automatically control the device to generate a positioning hole according to the actual situation of the circuit board, thereby improving the efficiency of circuit board defect tracking.
  • a method for tracking a circuit board defect based on a positioning hole comprising the steps of: determining a positioning hole on the circuit board according to size information of the circuit board, and determining position information corresponding to each positioning hole; acquiring aperture information of each positioning hole, Establishing a correspondence relationship between the aperture information and the positioning hole cutter number; generating a drilling file corresponding to the circuit board according to the corresponding relationship and position information corresponding to each positioning hole; generating the drilling file on the circuit board according to the drilling file
  • Corresponding virtual positioning holes determine the position of the defect in the circuit board according to the virtual positioning hole.
  • the determining the position information corresponding to each positioning hole comprises: determining a fixed positioning hole of the circuit board, and position information of each fixed positioning hole; determining the circuit board according to the size information of the circuit board Dynamic positioning holes, as well as position information of each dynamic positioning hole.
  • the circuit board includes a plurality of panel boards, the panel board includes a plurality of strip boards, the strip board includes a plurality of unit boards; the fixed positioning holes of the determining circuit board, and each fixing
  • the step of locating the position information of the hole includes: determining a machine table reference point of the circuit board, a panel alignment hole and a foolproof hole, and a position where the panel edge needs to print a two-dimensional code, and the corresponding hole serves as a fixed positioning hole.
  • the determining the dynamic positioning holes of the circuit board according to the size information of the circuit board and the position information of each dynamic positioning hole comprises: determining, by the incam software, the first of each of the unit boards The contour information and the second contour information of each of the strip boards determine the position of each unit center point based on the first contour information, and determine the position of each strip center point and the origin according to the second contour information.
  • the step of acquiring the aperture information of each positioning hole and establishing the correspondence between the aperture information and the positioning hole cutter number includes: acquiring aperture information of each positioning hole, and pressing each aperture according to a preset rule. The order is associated with each of the positioning hole cutter numbers.
  • the step of associating each aperture with the positioning holes of each positioning hole according to a preset rule includes: performing numerical processing on each aperture to obtain a corresponding value of the aperture; if a certain aperture corresponds to The value satisfies a certain preset condition, and the corresponding relationship between the aperture and the corresponding positioning hole cutter number is established according to the preset condition; so that the respective apertures correspond to the respective positioning hole cutter numbers in order from small to large.
  • the step of generating a drilling file according to the correspondence relationship and the position information further comprises: determining a header of the drilling file according to the correspondence; and causing the header to be The aperture information corresponds to the positioning hole cutter number.
  • an embodiment of the present invention provides a circuit board defect tracking device based on a positioning hole, comprising: an information determining module, configured to determine a positioning hole on the circuit board according to size information of the circuit board, and determine corresponding to each positioning hole
  • the position determining module is configured to obtain the aperture information of each positioning hole, and establish a correspondence relationship between the aperture information and the positioning hole cutter number
  • the file generating module is configured to use the corresponding relationship and the position information corresponding to each positioning hole according to the correspondence relationship, Generating a corresponding drilling hole file on the circuit board
  • the defect tracking module is configured to generate a corresponding virtual positioning hole on the circuit board according to the drilling file, and determine a defect position in the circuit board according to the virtual positioning hole.
  • the above-mentioned positioning hole-based circuit board defect tracking method and device determine the positioning holes on the circuit board according to the size information of the circuit board, and determine the positions of the positioning holes. And the aperture is matched with the positioning hole cutter number, and the drilling file is generated according to the position of the positioning hole and the corresponding relationship, and the position of the positioning hole, the aperture information and the corresponding positioning hole cutter number in the drilling file can be determined. Positioning holes make each positioning hole. If there are defects on the board, the defects can be located based on the information about the positioning holes on these boards. The embodiment of the invention can automatically generate the drilling file, and the obtained positioning hole can accurately realize the defect positioning, thereby effectively improving the efficiency of the circuit board defect positioning.
  • a computer device comprising a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor executing the computer program to: determine the circuit according to size information of the circuit board a positioning hole on the board, and determining position information corresponding to each positioning hole; obtaining aperture information of each positioning hole, establishing a correspondence relationship between the aperture information and the positioning hole knife number; according to the corresponding relationship and position information corresponding to each positioning hole, Generating a drilling file corresponding to the circuit board; generating a corresponding virtual positioning hole on the circuit board according to the drilling file, and determining a defect position in the circuit board according to the virtual positioning hole.
  • the above computer device can automatically generate a drilling file, and the obtained positioning hole can accurately realize the defect positioning, thereby effectively improving the efficiency of the circuit board defect positioning.
  • a computer readable storage medium having stored thereon a computer program, the computer program being executed by a processor to: determine a positioning hole on the circuit board according to size information of the circuit board, and determine each corresponding positioning hole The position information of each positioning hole is obtained, and the corresponding relationship between the aperture information and the positioning hole tool number is established; and the corresponding drilling file is generated according to the corresponding relationship and the position information corresponding to each positioning hole; The drilling file generates a corresponding virtual positioning hole on the circuit board, and determines a defect position in the circuit board according to the virtual positioning hole.
  • the computer readable storage medium can automatically generate a drilling file, and the obtained positioning hole can accurately realize the defect positioning, thereby effectively improving the efficiency of the board defect positioning.
  • FIG. 1 is an application environment diagram of a circuit board defect tracking method based on a positioning hole in an embodiment
  • FIG. 2 is a schematic flow chart of a method for tracking a defect of a circuit board based on a positioning hole in an embodiment
  • FIG. 3 is a schematic flow chart of a method for tracking a defect based on a positioning hole in another embodiment
  • FIG. 4 is a block diagram showing the structure of a circuit board defect tracking device based on a positioning hole in one embodiment.
  • the Defect Mapping system performs position information tracking of defective units
  • the management of a batch of unit boards is changed to the defects of a panel, a strip, and a unit (PCS unit).
  • Information such a way to directly track the defect location to the unit, greatly improving the accuracy and effectiveness of defect tracking.
  • the CAM engineer needs to create a center file drilling file for each production model board.
  • the coordinates of the positioning holes on the drilling file allow the machine to automatically align and find the printing position.
  • the production and format modification of center drilling files are manually performed by CAM, but it takes about 10 minutes for CAM engineers to make each drilling file. Manual modification is also error-prone and cumbersome, affecting the efficiency and quality of document production, and more influence.
  • the efficiency of defect tracking To solve the above problems, embodiments of the present invention provide a board hole defect tracking method, apparatus, computer device, and storage medium based on a positioning hole.
  • the locating hole-based circuit board defect tracking method provided by the present application can be applied to a computer device as shown in FIG. 1.
  • the computer device can be a server, and its internal structure diagram can be as shown in FIG. 1.
  • the computer device includes a processor, memory, network interface, and database connected by a system bus.
  • the processor of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium, an internal memory.
  • the non-volatile storage medium stores an operating system, a computer program, and a database.
  • the internal memory provides an environment for operation of an operating system and computer programs in a non-volatile storage medium.
  • the database of the computer device is used to store data such as drilling files and positioning hole information.
  • the network interface of the computer device is used to communicate with an external terminal via a network connection.
  • the computer program is executed by the processor to implement a locating hole based circuit board defect tracking method.
  • FIG. 1 is only a block diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation of the computer device to which the solution of the present application is applied.
  • the specific computer device may It includes more or fewer components than those shown in the figures, or some components are combined, or have different component arrangements.
  • a locating hole based circuit board defect tracking method including the following steps:
  • This step determines the positioning hole to be printed, and determines the position information of the positioning hole according to the specific size information of the circuit board.
  • the locating holes are holes used to describe the location of the defect. Describe the defect location through the positioning hole to make the position description specific to the unit, effectively improving the accuracy of the board defect positioning.
  • the size information may be information such as a profile size of the circuit board, and the information may be represented by coordinates.
  • the locating holes determined by different sized circuit boards may be different, so that the defects of the circuit board can be described in a targeted manner in this way.
  • S220 Obtain aperture information of each positioning hole, and establish a correspondence relationship between the aperture information and the positioning hole cutter number.
  • the aperture information of each positioning hole is associated with the positioning hole cutter number, and when the positioning hole is printed, the positioning hole corresponding to the aperture can be printed in the order of the positioning hole cutter number.
  • the positioning hole cutter number refers to the number used by the positioning hole making machine when printing the positioning hole, and the machine gradually produces the positioning hole according to the order of the positioning hole cutter number.
  • the correspondence relationship may be that the aperture information is in one-to-one correspondence with the positioning hole cutter number, or may be one-to-many or many-to-many; the correspondence relationship may be established in the order of the aperture size, and the aperture information may be established according to other methods.
  • the corresponding relationship of the positioning hole cutter number may be that the aperture information is in one-to-one correspondence with the positioning hole cutter number, or may be one-to-many or many-to-many; the correspondence relationship may be established in the order of the aperture size, and the aperture information may be established according to other methods.
  • the corresponding relationship of the positioning hole cutter number may be that the aperture information is in one-to-one correspondence with the positioning hole cutter number, or may be one-to-many or many-to-many; the correspondence relationship may be established in the order of the aperture size, and the aperture information may be established according to other methods.
  • the corresponding relationship of the positioning hole cutter number may be that the aperture information is in one-to-one correspondence with the positioning hole cutter number, or may
  • the corresponding relationship between the positioning hole aperture and the positioning hole cutter number and the position information of each positioning hole are combined to generate a corresponding circuit board drilling file, and the drilling files obtained by different circuit boards may have differences.
  • each positioning hole is formed according to the information about the positioning hole in the drilling file and the corresponding control instruction, and the positioning holes can represent the overall shape of the circuit board. Therefore, when there is a defect in the board, the defect position can be tracked through the virtual positioning hole.
  • the drilling file is automatically generated according to the specific condition of the circuit board, and the defect of the circuit board can be specifically targeted; and the positioning hole is formed according to the obtained drilling file, and the obtained virtual positioning hole can accurately realize the defect positioning. , effectively improve the efficiency of board defect positioning.
  • the determining the position information corresponding to each positioning hole comprises: determining a fixed positioning hole of the circuit board, and position information of each fixed positioning hole; determining the circuit board according to the size information of the circuit board. Dynamic positioning holes, as well as position information of each dynamic positioning hole.
  • the positioning holes in the circuit board include a fixed positioning hole and a dynamic positioning hole.
  • the position of the fixed positioning hole is fixed; and the dynamic positioning hole is specifically determined according to the specific size of the circuit board, and the positions of the dynamic positioning holes of different circuit boards may be different.
  • the position information of the fixed positioning hole and the dynamic positioning hole is determined, and the position information of the dynamic positioning hole needs to be determined according to the actual size information of the circuit board.
  • the position information of the positioning hole can be determined in a targeted manner according to the size of the circuit board and the like, and a positioning hole capable of representing the characteristics of the circuit board can be produced.
  • the circuit board includes a plurality of panel boards, the panel board includes a plurality of strip boards, the strip board includes a plurality of unit boards, the fixed positioning holes of the determining circuit board, and each fixed positioning
  • the step of position information of the hole includes: determining a machine reference point of the circuit board, a panel alignment hole and a foolproof hole, and a position of the panel edge to print a two-dimensional code, and the corresponding hole serves as a fixed positioning hole.
  • the preset fixed positioning holes and the position information of the fixed positioning holes are obtained.
  • the fixed positioning holes are fixed on various circuit boards, and the determination of the fixed positioning holes can be conveniently traced frequently in the circuit board. Defects at specific locations.
  • the determining the dynamic positioning holes of the circuit board according to the size information of the circuit board and the position information of each dynamic positioning hole comprises: determining, by using the incam software, the first contour of each of the unit boards The information and the second contour information of each of the strip boards determine the position of each unit center point according to the first contour information, and determine the position of each strip center point and the origin according to the second contour information.
  • the specific process of determining the position information of the dynamic positioning hole in the embodiment may be: inputting corresponding information of the circuit board into the incam software (incam software for drilling and output drilling for engineers), and obtaining the script language csh
  • the first contour information of the unit determines the position of the unit center point according to the first contour information.
  • the second contour information of the strip and the position of the origin are obtained by the script language csh, and the position of the strip center point is calculated according to the second contour information.
  • the unit center point position of the circuit board and the center point and the origin position of the strip are respectively determined according to the size information of the unit and the strip, and the position information of the dynamic positioning hole of the circuit board is determined in a targeted manner.
  • the step of acquiring the aperture information of each positioning hole and establishing the correspondence between the aperture information and the positioning hole cutter number includes: acquiring aperture information of each positioning hole, and sequentially ordering the apertures according to a preset rule. Correspondence is established with each positioning hole cutter number.
  • the aperture information may be information such as the aperture size and shape of the positioning hole.
  • the aperture of the positioning hole is corresponding to the positioning hole cutter number, and in this way, the positioning hole corresponding to the aperture can be printed when a certain positioning hole cutter number is output.
  • the step of associating the apertures with the positioning holes of each positioning hole according to a preset rule includes: performing numerical processing on each aperture to obtain a corresponding value of the aperture; if a certain aperture corresponds to a value A predetermined condition is met, and the corresponding relationship between the aperture and the corresponding positioning hole cutter number is established according to the preset condition; so that the respective apertures correspond to the respective positioning hole cutter numbers in order from small to large.
  • the apertures correspond to the positioning hole cutter numbers in the order of small to large, and the correspondences may be one-to-one correspondence or not one-to-one correspondence.
  • the numerical processing of the aperture may be performed on the aperture according to a preset algorithm, or may be other processing methods.
  • the specific implementation process of the embodiment may be: cyclically acquiring an aperture, performing numerical processing on the aperture, setting a unit of the aperture to mm, and multiplying the aperture value by 1000 to obtain a corresponding value of the aperture. If the corresponding aperture value is 1100, the positioning hole cutter number (T number) is determined as T01; if the aperture corresponding value is 1200, the T number is determined as T02; ...; if the aperture corresponding value is 2100, the T number is determined It is T11; if the aperture corresponding value is 3100, the T number is determined as T71; if the aperture corresponding value is 3200, the T number is determined as T72; if the aperture corresponding value is 3300, the T number is determined as T73.
  • T number the positioning hole cutter number
  • the step of generating a drilling file according to the correspondence relationship and the position information further comprises: determining a header of the drilling file according to the correspondence relationship; and making a header in the header The aperture information corresponds to the positioning hole cutter number.
  • the contents of the drilling file are as follows:
  • the correspondence between the aperture of the positioning hole and the T number is determined, and the header of the drilling file is modified according to the corresponding relationship.
  • the entire drill file is joined back and forth by modifying the header of the drill file.
  • FIG. 3 is a schematic diagram of a specific process of a circuit board defect tracking method based on a locating hole. As shown in FIG. 3, the locating hole based circuit board defect tracking method includes the following steps:
  • S320 Determine, according to the size information of the circuit board, a dynamic positioning hole of the circuit board, and position information of each dynamic positioning hole.
  • the positioning holes on the circuit board are determined according to the size information of the board, and the positions of the positioning holes are determined.
  • Corresponding relationship between the aperture and the positioning hole cutter number, generating a drilling file according to the position of the positioning hole and the corresponding relationship, and determining the positioning according to the positioning hole position, the aperture information and the corresponding positioning hole cutter number in the drilling file Holes make each positioning hole. If there are defects on the board, the defects can be located based on the information about the positioning holes on these boards.
  • the drilling file can be automatically generated, and the obtained positioning hole can accurately realize the defect positioning, and the positioning of the defect of the circuit board is specific to the unit, thereby effectively improving the efficiency of the defect positioning of the circuit board.
  • the implementation code for obtaining the outline of the outline of the board is as follows:
  • the X-axis maximum and minimum values of the first contour and the Y-axis maximum and minimum values are obtained.
  • the implementation code is as follows:
  • the sum of the maximum and minimum values of the contour is divided by 2 to obtain the center of the X and Y coordinates of the corresponding unit area.
  • the calculation method is as follows:
  • An initial drilling file is generated based on the coordinates acquired above and the generation rules of the drilling file.
  • the out_file file mainly controls the drilling output head, the output tail, the tool definition in the program, the tool definition, the tool end definition, the beginning of the panel part definition and the end of the panel part definition; for example:
  • # ⁇ file can control the following parts of the output files:-
  • the loop acquires the aperture size and assigns a value to the corresponding variable tnum.
  • the assignment variable is tnum equal to T01, (if, else if is to judge the different hole sizes)
  • the modified hole size and the corresponding T number are output to the drilling file.
  • ncTOOL_CHANGE indicates the definition of the T number before the drilling coordinate output, and the implementation code is consistent with the header.
  • the implementation code is as follows:
  • the present invention also provides a locating hole based circuit board defect tracking device, which can be used to perform the above locating hole based circuit board defect tracking method.
  • a locating hole based circuit board defect tracking device which can be used to perform the above locating hole based circuit board defect tracking method.
  • the illustrated structure does not constitute a limitation of the device. It is possible to include more or fewer components than those illustrated, or to combine certain components, or different component arrangements.
  • the locating hole based circuit board defect tracking device includes an information determining module 410, a relationship determining module 420, a file generating module 430, and a defect tracking module 440.
  • the information determining module 410 is configured to determine positioning holes on the circuit board according to size information of the circuit board, and determine position information corresponding to each positioning hole.
  • the relationship determining module 420 is configured to acquire aperture information of each positioning hole, and establish a correspondence between the aperture information and the positioning hole cutter number.
  • the file generating module 430 is configured to generate a drilling file corresponding to the circuit board according to the correspondence relationship and position information corresponding to each positioning hole.
  • a defect tracking module 440 configured to generate a corresponding virtual positioning hole on the circuit board according to the drilling file, and determine a defect position in the circuit board according to the virtual positioning hole.
  • the positioning holes on the circuit board are determined according to the size information of the circuit board, and the positions of the positioning holes are determined.
  • the aperture is matched with the positioning hole cutter number, and the drilling file is generated according to the position of the positioning hole and the corresponding relationship, and the position of the positioning hole, the aperture information and the corresponding positioning hole cutter number in the drilling file can be determined.
  • Positioning holes make each positioning hole. If there are defects on the board, the defects can be located based on the information about the positioning holes on these boards.
  • the embodiment of the invention can automatically generate the drilling file, and the obtained positioning hole can accurately realize the defect positioning, thereby effectively improving the efficiency of the circuit board defect positioning.
  • the information determining module 410 includes: a fixed position acquiring submodule, configured to determine a fixed positioning hole of the circuit board, and position information of each fixed positioning hole; and a dynamic position acquiring submodule, configured to: The dynamic positioning holes of the circuit board and the position information of each dynamic positioning hole are determined according to the size information of the circuit board.
  • the circuit board includes a plurality of panel boards, the panel board includes a plurality of strip boards, the strip board includes a plurality of unit boards, a fixed position acquisition sub-module, and a machine for determining a circuit board.
  • the table reference point, the panel alignment hole and the anti-dwelling hole, and the position of the panel edge where the two-dimensional code needs to be printed, and the corresponding hole serves as a fixed positioning hole.
  • the dynamic position acquisition sub-module is further configured to determine, by using the incam software, first contour information of each of the unit boards and second contour information of each of the strip boards, according to the first contour information. Determining the position of each unit center point, and determining the position of each strip center point and the origin according to the second contour information.
  • the relationship determining module 420 is further configured to acquire aperture information of each positioning hole, and associate each aperture in sequence with each positioning hole tool number according to a preset rule.
  • the relationship determining module 420 includes: an aperture processing sub-module, configured to perform numerical processing on each aperture to obtain an aperture corresponding value; and a relationship determining sub-module, configured to if a certain aperture corresponds to a certain value Presetting conditions, establishing a correspondence relationship between the aperture and the corresponding positioning hole cutter number according to the preset condition; so that the respective apertures respectively correspond to the respective positioning hole cutter numbers in an order from small to large.
  • the file generating module 430 is further configured to determine a header of the drilling file according to the correspondence relationship; and the aperture information in the header corresponds to a positioning hole cutter number.
  • the locating hole-based circuit board defect tracking device of the present invention corresponds to the locating hole-based circuit board defect tracking method of the present invention, and is described in the embodiment of the locating hole-based circuit board defect tracking method.
  • the technical features and the beneficial effects thereof are applicable to the embodiment of the locating hole-based circuit board defect tracking device.
  • details refer to the description in the method embodiment of the present invention, and details are not described herein again.
  • the logical division of each program module is only an example, and the actual application may be implemented according to requirements, for example, according to the configuration requirements of the corresponding hardware or software.
  • the above-mentioned function allocation is completed by different program modules, that is, the internal structure of the positioning hole-based circuit board defect tracking device is divided into different program modules to complete all or part of the functions described above.
  • a computer apparatus comprising a memory, a processor, and a computer program stored on the memory and executable on the processor, the processor executing the computer program to implement the following steps: according to the size information of the circuit board Determining positioning holes on the circuit board, and determining position information corresponding to each positioning hole; acquiring aperture information of each positioning hole, establishing a correspondence relationship between the aperture information and the positioning hole cutter number; corresponding to the corresponding relationship and each positioning hole Position information, generating a drilling file corresponding to the circuit board; generating a corresponding virtual positioning hole on the circuit board according to the drilling file, and determining a defect position in the circuit board according to the virtual positioning hole.
  • the step of: determining the position information corresponding to each positioning hole comprises: determining a fixed positioning hole of the circuit board, and position information of each fixed positioning hole; The size information of the board determines the dynamic positioning holes of the board and the position information of each of the dynamic positioning holes.
  • the processor further implements the following steps when the processor executes the computer program: the circuit board includes a plurality of panel boards, the panel board includes a plurality of strip boards, and the strip board includes a plurality of unit boards;
  • the fixing positioning hole of the circuit board and the step of fixing the position information of each positioning hole include: determining a machine board reference point, a panel alignment hole and a foolproof hole, and a position of the panel edge to print the two-dimensional code, The corresponding hole serves as a fixed positioning hole.
  • the processor executes the computer program, the following steps are further implemented: the step of determining the dynamic positioning holes of the circuit board according to the size information of the circuit board, and the position information of each dynamic positioning hole, including: by incam Determining, by the software, first contour information of each of the unit boards and second contour information of each of the strip boards, determining a position of each unit center point according to the first contour information, and determining each strip center according to the second contour information The location of the point and origin.
  • the processor executes the computer program, the following steps are further performed: the step of acquiring the aperture information of each positioning hole, and establishing the correspondence between the aperture information and the positioning hole cutter number, comprising: acquiring the aperture information of each positioning hole According to a preset rule, each aperture is sequentially associated with each positioning hole cutter number.
  • the processor executes the computer program, the following steps are further performed: the step of sequentially associating each aperture with each positioning hole cutter according to a preset rule, including: performing numerical processing on each aperture Obtaining a corresponding value of the aperture; if a corresponding value of the aperture meets a predetermined condition, establishing a correspondence between the aperture and the corresponding positioning hole cutter number according to the preset condition; so that the apertures are respectively in order from small to large Corresponding to each positioning hole cutter number.
  • a preset rule including: performing numerical processing on each aperture Obtaining a corresponding value of the aperture; if a corresponding value of the aperture meets a predetermined condition, establishing a correspondence between the aperture and the corresponding positioning hole cutter number according to the preset condition; so that the apertures are respectively in order from small to large Corresponding to each positioning hole cutter number.
  • the processor further implements the following steps: the step of generating a drilling file according to the correspondence relationship and the location information, further comprising: determining the drilling file according to the correspondence relationship The head of the head; the aperture information in the header corresponds to the positioning hole cutter number.
  • a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of: determining a positioning hole on the circuit board based on size information of the circuit board, And determining location information corresponding to each positioning hole; obtaining aperture information of each positioning hole, establishing a correspondence relationship between the aperture information and the positioning hole knife number; generating corresponding to the circuit board according to the corresponding relationship and position information corresponding to each positioning hole a drilling file; generating a corresponding virtual positioning hole on the circuit board according to the drilling file, and determining a defect position in the circuit board according to the virtual positioning hole.
  • the step of: determining the position information corresponding to each positioning hole comprises: determining a fixed positioning hole of the circuit board, and position information of each fixed positioning hole; The dynamic positioning holes of the circuit board and the position information of each dynamic positioning hole are determined according to the size information of the circuit board.
  • the computer program when executed by the processor, further implements the steps of: the circuit board comprising a plurality of panel boards, the panel board comprising a plurality of strip boards, the strip board comprising a plurality of unit boards; Determining the fixed positioning holes of the circuit board and the position information of each fixed positioning hole, including: determining the machine board reference point, the panel alignment hole and the foolproof hole, and the position of the panel edge to print the two-dimensional code
  • the corresponding hole serves as a fixed positioning hole.
  • the step of determining the dynamic positioning holes of the circuit board according to the size information of the circuit board, and the position information of each dynamic positioning hole including: The incam software determines first contour information of each of the unit boards and second contour information of each of the strip boards, determines a position of each unit center point according to the first contour information, and determines each strip according to the second contour information. The position of the center point and the origin.
  • the following steps are further performed: the step of acquiring the aperture information of each positioning hole, and establishing the correspondence between the aperture information and the positioning hole cutter number, comprising: obtaining the aperture of each positioning hole The information is associated with each of the positioning hole cutter numbers in order according to a preset rule.
  • the following steps are further implemented: the step of sequentially associating each aperture with each positioning hole cutter according to a preset rule, including: performing numerical processing on each aperture Obtaining a corresponding value of the aperture; if a corresponding value of the aperture meets a predetermined condition, establishing a correspondence between the aperture and the corresponding positioning hole number according to the preset condition; so that the apertures are respectively in order from small to large Corresponds to each positioning hole cutter number.
  • the computer program is further executed by the processor, the step of: generating the drilling file according to the correspondence relationship and the position information, further comprising: determining the drilling hole according to the correspondence relationship The header of the file; the aperture information in the header corresponds to the positioning hole cutter number.
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Architecture (AREA)
  • Manufacturing & Machinery (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

基于定位孔的电路板缺陷追踪方法、装置及计算机设备,属于电子电路技术领域。所述方法包括:根据电路板的尺寸信息确定所述电路板上的定位孔,以及确定各个定位孔对应的位置信息(S210);获取各个定位孔的孔径信息,建立孔径信息与定位孔刀号的对应关系(S220);根据所述对应关系以及各个定位孔对应的位置信息,生成所述电路板对应的钻孔文件(S230);根据所述钻孔文件在所述电路板上生成对应的虚拟定位孔,根据虚拟定位孔确定电路板中的缺陷位置(S240)。上述技术方案,解决了手动修改钻孔文件以致缺陷追踪效率低下的问题,能根据电路板的实际情况自动控制设备生成定位孔,提高电路板缺陷追踪的效率。

Description

基于定位孔的电路板缺陷追踪方法、装置及计算机设备 技术领域
本发明涉及电子电路技术领域,特别是涉及基于定位孔的电路板缺陷追踪方法、装置、计算机设备和存储介质。
背景技术
Defect Mapping(缺陷报废追溯系统)能进行电路板缺陷单元的位置信息追踪,缺陷信息包括板号(panel),条号(strip/set),单元(PCS unit),缺陷位置追溯可直接追踪至unit,具有较高的准确性与有效性。在进行缺陷追踪之前,CAM(Computer Aided Manufacturing,计算机辅助制造)工程师需要为每个生产型号的pnl(panel的简称)文件制作center档钻孔文件(中心对位文件,简称center文件或钻孔文件)。机台根据钻孔文件的坐标可以自动对位并找出定位孔的打印位置。在实现本发明的过程中,发明人发现现有技术中至少存在如下问题:目前钻孔文件的制作以及格式修改主要由CAM工程师手动完成,但是手动修改不仅耗时耗力而且容易出错,降低定位孔的生成速度,以致影响缺陷追踪过程的效率。
发明内容
基于此,本发明提供了基于定位孔的电路板缺陷追踪方法及装置,能根据电路板的实际情况自动控制设备生成定位孔,提高电路板缺陷追踪的效率。
本发明实施例的内容如下:
一种基于定位孔的电路板缺陷追踪方法,包括以下步骤:根据电路板的尺寸信息确定所述电路板上的定位孔,以及确定各个定位孔对应的位置信息;获取各个定位孔的孔径信息,建立孔径信息与定位孔刀号的对应关系;根据所述对应关系以及各个定位孔对应的位置信息,生成所述电路板对应的钻孔文件;根据所述钻孔文件在所述电路板上生成对应的虚拟定位孔,根据虚拟定位孔确定电路板中的缺陷位置。
在其中一个实施例中,所述确定各个定位孔对应的位置信息的步骤,包括:确定电路板的固定定位孔,以及各个固定定位孔的位置信息;根据电路板的尺寸信息确定所述电路板的动态定位孔,以及各个动态定位孔的位置信息。
在其中一个实施例中,所述电路板包括多个panel板,所述panel板包括多个strip板,所述strip板包括多个unit板;所述确定电路板的固定定位孔,以及各个固定定位孔的位置信息的步骤,包括:确定电路板的机台参考点、panel对位孔和防呆孔,以及panel板边需要打印二维码的位置,对应的孔作为固定定位孔。
在其中一个实施例中,所述根据电路板的尺寸信息确定所述电路板的动态定位孔,以及各个动态定位孔的位置信息的步骤,包括:通过incam软件确定各个所述unit板的第一轮廓信息和各个所述strip板的第二轮廓信息,根据所述第一轮廓信息确定各个unit中心点的位置,根据所述第二轮廓信息确定各个strip中心点和原点的位置。
在其中一个实施例中,所述获取各个定位孔的孔径信息,建立孔径信息与定位孔刀号的对应关系的步骤,包括:获取各个定位孔的孔径信息,根据预设的规则将各个孔径按顺序与各个定位孔刀号建立对应关系。
在其中一个实施例中,所述根据预设的规则将各个孔径按顺序与各个定位孔刀号建立对应关系的步骤,包括:对各个孔径进行数值处理,得到孔径对应值;若某一孔径对应值满足某一预设条件,根据所述预设条件建立所述孔径与相应定位孔刀号的对应关系;以使各个孔径按照从小到大的顺序分别与各个定位孔刀号对应。
在其中一个实施例中,所述根据所述对应关系以及所述位置信息生成钻孔文件的步骤,还包括:根据所述对应关系确定所述钻孔文件的表头;使所述表头中的孔径信息与定位孔刀号对应。
相应的,本发明实施例提供一种基于定位孔的电路板缺陷追踪装置,包括:信息确定模块,用于根据电路板的尺寸信息确定所述电路板上的定位孔,以及确定各个定位孔对应的位置信息;关系确定模块,用于获取各个定位孔的孔径信息,建立孔径信息与定位孔刀号的对应关系;文件生成模块,用于根据所述对应关系以及各个定位孔对应的位置信息,生成所述电路板对应的钻孔文件;以及,缺陷追踪模块,用于根据所述钻孔文件在所述电路板上生成对应的虚拟定位孔,根据虚拟定位孔确定电路板中的缺陷位置。
上述基于定位孔的电路板缺陷追踪方法及装置,根据电路板的尺寸信息确定电路板上的定位孔,确定这些定位孔的位置。并将孔径与定位孔刀号建立对应关系,根据定位孔的位置以及上述对应关系生成钻孔文件,根据这个钻孔文件中的定位孔位置、孔径信息以及对应的定位孔刀号就可以确定各个定位孔制作出各个定位孔。如果电路板上存在缺陷,则根据这些电路板上的定位孔的相关信息就可以对缺陷进行定位。本发明实施例可以自动生成钻孔文件,得到的定位孔能准确地实现缺陷定位,有效地提高了电路板缺陷定位的效率。
一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现以下步骤:根据电路板的尺寸信息确定所述电路板上的定位孔,以及确定各个定位孔对应的位置信息;获取各个定位孔的孔径信息,建立孔径信息与定位孔刀号的对应关系;根据所述对应关系以及各个定位孔对应的位置信息,生成所述电路板对应的钻孔文件;根据所述钻孔文件在所述电路板上生成对应的虚拟定位孔,根据虚拟定位孔确定电路板中的缺陷位置。
上述计算机设备,可以自动生成钻孔文件,得到的定位孔能准确地实现缺陷定位,有效地提高了电路板缺陷定位的效率。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:根据电路板的尺寸信息确定所述电路板上的定位孔,以及确定各个定位孔对应的位置信息;获取各个定位孔的孔径信息,建立孔径信息与定位孔刀号的对应关系;根据所述对应关系以及各个定位孔对应的位置信息,生成所述电路板对应的钻孔文件;根据所述钻孔文件在所述电路板上生成对应的虚拟定位孔,根据虚拟定位孔确定电路板中的缺陷位置。
上述计算机可读存储介质,可以自动生成钻孔文件,得到的定位孔能准确地实现缺陷定 位,有效地提高了电路板缺陷定位的效率。
附图说明
图1为一个实施例中基于定位孔的电路板缺陷追踪方法的应用环境图;
图2为一个实施例中基于定位孔的电路板缺陷追踪方法的流程示意图;
图3为另一个实施例中基于定位孔的电路板缺陷追踪方法的流程示意图;
图4为一个实施例中基于定位孔的电路板缺陷追踪装置的结构框图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
目前,Defect Mapping系统进行缺陷单元的位置信息追踪时,将一批次(lot)单位板号(panel)的管理改为板号(panel)、条号(strip)和单元(PCS unit)的缺陷信息,这样的方式可以将缺陷位置直接追踪至unit,大大提高缺陷追踪的准确性与有效性。CAM工程师需要为每个生产型号的电路板制作center档钻孔文件,根据钻孔文件上定位孔的坐标让机台自动对位并找出打印位置。目前,center钻孔文件的制作和格式修改由CAM手动进行,但是CAM工程师制作每个钻孔文件需花费大概10分钟,手动修改还容易出错且操作繁琐,影响文件制作的效率和品质,更影响了缺陷追踪的效率。为解决上述问题,本发明实施例提供基于定位孔的电路板缺陷追踪方法、装置、计算机设备和存储介质。
本申请提供的基于定位孔的电路板缺陷追踪方法,可以应用于如图1所示的计算机设备中。该计算机设备可以是服务器,其内部结构图可以如图1所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储钻孔文件和定位孔信息等数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种基于定位孔的电路板缺陷追踪方法。
本领域技术人员可以理解,图1中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,如图2所示,提供了一种基于定位孔的电路板缺陷追踪方法,包括以下步骤:
S210、根据电路板的尺寸信息确定所述电路板上的定位孔,以及确定各个定位孔对应的位置信息。
本步骤确定需要打印的定位孔,并根据电路板的具体尺寸信息有针对性地确定定位孔的 位置信息。
定位孔是在用于描述缺陷位置的孔。通过定位孔来描述缺陷位置能使位置描述具体到unit,有效提高电路板缺陷定位的精度。
其中,尺寸信息可以为电路板的轮廓(profile)尺寸等信息,这些信息可以通过坐标来表示。不同尺寸的电路板确定的定位孔可能不同,因此,通过这样的方式能有针对性地对电路板的缺陷进行描述。
S220、获取各个定位孔的孔径信息,建立孔径信息与定位孔刀号的对应关系。
本步骤将各个定位孔的孔径信息与定位孔刀号联系起来,在打印制作定位孔时,按定位孔刀号的顺序就能打印对应孔径的定位孔。
其中,定位孔刀号(T号)指的是打印定位孔时定位孔制作机器使用的编号,机器根据定位孔刀号的顺序来逐步制作定位孔。
对应关系可以是孔径信息与定位孔刀号一一对应,也可以是一对多或多对多等形式;可以按孔径大小的顺序来建立对应关系,也可以按照其他的方式来建立孔径信息与定位孔刀号的对应关系。
S230、根据所述对应关系以及各个定位孔对应的位置信息,生成所述电路板对应的钻孔文件。
本步骤将定位孔孔径与定位孔刀号的对应关系以及各个定位孔的位置信息结合在一起,生成对应的电路板钻孔文件,不同电路板得到的钻孔文件可能存在差异。
S240、根据所述钻孔文件在所述电路板上生成对应的虚拟定位孔,根据虚拟定位孔确定电路板中的缺陷位置。
本步骤根据钻孔文件中关于定位孔的相关信息以及相应的控制指令制作各个定位孔,这些定位孔可以将电路板的整体形态表征出来。因此,当电路板存在缺陷时,通过虚拟定位孔就可以对缺陷位置进行追踪。
本实施例根据电路板的具体情况自动生成钻孔文件,能够有针对性地对电路板的缺陷进行定位;并根据得到的钻孔文件制作定位孔,得到的虚拟定位孔能准确地实现缺陷定位,有效地提高了电路板缺陷定位的效率。
在一个实施例中,所述确定各个定位孔对应的位置信息的步骤,包括:确定电路板的固定定位孔,以及各个固定定位孔的位置信息;根据电路板的尺寸信息确定所述电路板的动态定位孔,以及各个动态定位孔的位置信息。
电路板中的定位孔包括固定定位孔和动态定位孔。固定定位孔的位置固定;而动态定位孔是根据电路板的具体尺寸等信息具体确定的,不同电路板的动态定位孔的位置可能不同。
本实施例确定固定定位孔和动态定位孔的位置信息,动态定位孔的位置信息需要根据电路板的实际尺寸信息来确定。能根据电路板的尺寸等信息有针对性地确定定位孔的位置信息,进而可以制作能代表电路板特征的定位孔。
在一个实施例中,所述电路板包括多个panel板,所述panel板包括多个strip板,所述strip板包括多个unit板;所述确定电路板的固定定位孔,以及各个固定定位孔的位置信息的 步骤,包括:确定电路板的机台参考点、panel对位孔和防呆孔,以及panel板边需要打印二维码的位置,对应的孔作为固定定位孔。
本实施例获取预设的固定定位孔以及这些固定定位孔的位置信息,这些固定定位孔在各种电路板上都是固定的,通过固定定位孔的确定能方便地追踪出电路板中经常出现在特定位置的缺陷。
在一个实施例中,所述根据电路板的尺寸信息确定所述电路板的动态定位孔,以及各个动态定位孔的位置信息的步骤,包括:通过incam软件确定各个所述unit板的第一轮廓信息和各个所述strip板的第二轮廓信息,根据所述第一轮廓信息确定各个unit中心点的位置,根据所述第二轮廓信息确定各个strip中心点和原点的位置。
可选地,本实施例确定动态定位孔位置信息的具体过程可以为:将电路板的相应信息输入到incam软件(incam为工程师制作钻孔和输出钻孔的软件)中,通过脚本语言csh获取unit的第一轮廓信息,根据第一轮廓信息确定出unit中心点的位置。通过脚本语言csh获取strip的第二轮廓信息以及原点的位置,根据第二轮廓信息计算strip中心点的位置。
本实施例,根据unit和strip的尺寸信息分别确定电路板的unit中心点位置以及strip的中心点和原点位置,有针对性地确定了电路板动态定位孔的位置信息。
在一个实施例中,所述获取各个定位孔的孔径信息,建立孔径信息与定位孔刀号的对应关系的步骤,包括:获取各个定位孔的孔径信息,根据预设的规则将各个孔径按顺序与各个定位孔刀号建立对应关系。
其中,孔径信息可以为定位孔的孔径大小、形状等信息。
本实施例将定位孔的孔径与定位孔刀号进行了对应,通过这样的方式能在输出某一定位孔刀号时打印对应孔径的定位孔。
在一个实施例中,所述根据预设的规则将各个孔径按顺序与各个定位孔刀号建立对应关系的步骤,包括:对各个孔径进行数值处理,得到孔径对应值;若某一孔径对应值满足某一预设条件,根据所述预设条件建立所述孔径与相应定位孔刀号的对应关系;以使各个孔径按照从小到大的顺序分别与各个定位孔刀号对应。
可选地,孔径按从小到大的顺序与定位孔刀号对应,其对应可以是一一对应,也可以不是一一对应。
对孔径进行的数值处理可以为根据预设的算法对孔径进行的处理,也可以为其他的处理方式。
可选地,本实施例的具体实现过程可以为:循环获取孔径,对孔径进行数值处理,将孔径的单位设置为mm,将孔径值乘以1000,得到孔径对应值。若得到的孔径对应值为1100,将定位孔刀号(T号)确定为T01;若孔径对应值为1200,将T号确定为T02;……;若孔径对应值为2100,将T号确定为T11;若孔径对应值为3100将T号确定为T71;若孔径对应值为3200,将T号确定为T72;若孔径对应值为3300,将T号确定为T73。
在一个实施例中,所述根据所述对应关系以及所述位置信息生成钻孔文件的步骤,还包括:根据所述对应关系确定所述钻孔文件的表头;使所述表头中的孔径信息与定位孔刀号对 应。
其中,钻孔文件的内容如下:
Figure PCTCN2018093622-appb-000001
本实施例确定定位孔孔径与T号的对应关系,根据这个对应关系修改钻孔文件的表头。通过修改钻孔文件的表头,使整个钻孔文件前后衔接。
在一个实施例中,图3为基于定位孔的电路板缺陷追踪方法的具体流程示意图,如图3所示,基于定位孔的电路板缺陷追踪方法包括以下步骤:
S310、确定电路板的固定定位孔,以及各个固定定位孔的位置信息。
S320、根据电路板的尺寸信息确定所述电路板的动态定位孔,以及各个动态定位孔的位置信息。
S330、获取各个定位孔的孔径信息。
S340、对各个孔径进行数值处理,得到孔径对应值。
S350、若某一孔径对应值满足某一预设条件,根据所述预设条件建立所述孔径与相应定 位孔刀号的对应关系;以使各个孔径按照从小到大的顺序分别与各个定位孔刀号对应。
S360、根据所述对应关系以及各个定位孔对应的位置信息,生成所述电路板对应的钻孔文件。
S370、根据所述钻孔文件在所述电路板上生成对应的虚拟定位孔,根据虚拟定位孔确定电路板中的缺陷位置。
根据电路板的尺寸信息确定电路板上的定位孔,并确定这些定位孔的位置。将孔径与定位孔刀号建立对应关系,根据定位孔的位置以及上述对应关系生成钻孔文件,根据这个钻孔文件中的定位孔位置、孔径信息以及对应的定位孔刀号就可以确定各个定位孔制作出各个定位孔。如果电路板上存在缺陷,则根据这些电路板上的定位孔的相关信息就可以对缺陷进行定位。可以自动生成钻孔文件,得到的定位孔能准确地实现缺陷定位,将电路板缺陷的定位具体到unit,有效地提高了电路板缺陷定位的效率。
为了更好地理解上述方法,以下详细阐述一个本发明基于定位孔的电路板缺陷追踪方法的应用实例。
1)确定unit中心点的位置信息:通过incam软件获取电路板的轮廓边界profile(unit对应的第一轮廓)信息、电路板的原点坐标、原点坐标的对角坐标以及unit边缘线的最大坐标值。
其中,获取电路板外形线的轮廓的实现代码如下:
Figure PCTCN2018093622-appb-000002
获取第一轮廓的X轴最大值和最小值以及Y轴最大值和最小值。实现代码如下:
set gP_xmin=$gPROF_LIMITSxmin
set gP_ymin=$gPROF_LIMITSymin
set gP_xmax=$gPROF_LIMITSxmax
set gP_ymax=$gPROF_LIMITSymax。
通过轮廓的最大值最小值相加的和除以2,得到对应的unit区域的X坐标和Y坐标的中心,计算方法如下:
set st_xmin=`echo"scale=6;($gP_xmin+$gP_xmax)/2"|bc`
set st_ymin=`echo"scale=6;($gP_ymin+$gP_ymax)/2"|bc`
得到unit中心点的坐标。
2)通过incam软件获取电路板的轮廓边界profile(strip对应的第二轮廓)信息、电路板的原点坐标、原点坐标的对角坐标以及strip边缘线的最大坐标值,通过与步骤1)相同的方法,获取strip的中心点和原点坐标。
3)根据钻孔文件的要求,获取固定定位孔的坐标,在panel上对应坐标添加指定大小的 钻孔焊盘。
4)根据上述获取的坐标以及钻孔文件的生成规则,生成初始钻孔文件。
5)将定位孔的孔径与T号建立一一对应的关系,对应关系如下:
1.1mm对应T01,
1.2mm对应T02,
1.3mm对应T03,
1.4mm对应T04,
1.5mm对应T05,
1.6mm对应T06,
1.8mm对应T08,
2.1mm对应T11,
3.1mm对应T71,
3.2mm对应T72,
3.3mm对应T73。
6)调用incam软件输出钻孔文件的程序,实现每种孔径与相应的T号对应。根据每种钻孔的大小,分别赋值为不同的T号的变量,输出钻孔文件时,将每种孔径与相关的T号对应。因此,输出程序需作如下控制:
在钻孔文件中定义输出头、输出尾、刀具、拼板;
out_file文件主要控制钻孔输出头、输出尾、程序中刀具定义、刀具定义、刀具结尾定义、拼板部分开始定义和拼板部分结束定义;例如:
#This file can control the following parts of the output files:-
#1.The header.                   ---ncHEADER_PATH
#2.The end of file.              ---ncEOF_PATH
#3.The tool changes.             ---ncTOOL_CHANGE
#4.The tool finish.              ---ncTOOL_FINISH
#5.The step and repeat start.    ---ncFULL_SR_START
#6.The step and repeat finish.   ---ncFULL_SR_END
建立定位孔孔径与T号的对应关系参照以下实现代码:
##选择输出的机器格式模板
if($ncMACHINE=="fastprint_excellon2_center")then
##定义变量i为1
set i=1
##当i小于等于相同尺寸定位孔的总数量($#ncTOOL_NUM),循环获取孔径大小,并为对应的变量tnum赋值。
while($i<=$#ncTOOL_NUM)
##获取钻孔尺寸大小,单位为mm,保留小数点3位
set mmdrillsize=`echo"scale=3;$ncTOOL_SIZE2[$i]"|bc|awk-F′′'{printf("%4.3f",$1)}'`
##将钻孔尺寸大小乘以1000,保留整数
set mmds=`echo"$mmdrillsize*1000"|bc|awk-F″′{printf("%4.0f",$1)}'`
##当钻孔尺寸等于1100时,赋值变量为tnum等于T01,(if,else if是对不同钻孔尺寸进行判断)
if($mmds==1100)then
set tnum=T01
##将修改好的钻孔尺寸和对应T号,输出到钻孔文件中
echo${tnum}C{$mmdrillsize}>>$ncHEADER_PATH
else if($mmds==1200)then
set tnum=T02
echo${tnum}C{$mmdrillsize}>>$ncHEADER_PATH
else if($mmds==1300)then
set tnum=T03
echo${tnum}C{$mmdrillsize}>>$ncHEADER_PATH
else if($mmds==1400)then
set tnum=T04
echo${tnum}C{$mmdrillsize}>>$ncHEADER_PATH
else if($mmds==1500)then
set tnum=T05
echo${tnum}C{$mmdrillsize}>>$ncHEADER_PATH
else if($mmds==1600)then
set tnum=T06
echo${tnum}C{$mmdrillsize}>>$ncHEADER_PATH
else if($mmds==1800)then
set tnum=T08
echo${tnum}C{$mmdrillsize}>>$ncHEADER_PATH
else if($mmds==2100)then
set tnum=T11
echo${tnum}C{$mmdrillsize}>>$ncHEADER_PATH
else if($mmds==3100)then
set tnum=T71
echo${tnum}C{$mmdrillsize}>>$ncHEADER_PATH
else if($mmds==3200)then
set tnum=T72
echo${tnum}C{$mmdrillsize}>>$ncHEADER_PATH
else if($mmds==3300)then
set tnum=T73
echo${tnum}C{$mmdrillsize}>>$ncHEADER_PATH
else
##当以上条件都不满足时,按以下从小到大的方式排序:
Figure PCTCN2018093622-appb-000003
7)根据定位孔孔径与T号的对应关系修改钻孔文件的表头(修改钻孔坐标前的T号)ncTOOL_CHANGE表示钻孔坐标输出前的T号定义,实现代码与表头一致。
实现代码如下:
Figure PCTCN2018093622-appb-000004
Figure PCTCN2018093622-appb-000005
Figure PCTCN2018093622-appb-000006
生成的钻孔文件举例如下:
M48
T01C1.1000
T02C1.2000
T03C1.3000
T04C1.4000
T05C1.5000
T06C1.6000
T07C1.7000
T08C1.8000
T11C2.1000
......
......
M71
G93X0Y0
T01
X040462Y532575
T02
M25
X079284Y057441
X059984Y057441
X079284Y076741
X059984Y076741
X079284Y096041
X059984Y096041
X079284Y115341
X059984Y115341
X079284Y134641
X059984Y134641
X079284Y153941
X059984Y153941
X079284Y173241
X059984Y173241
X079284Y192541
X059984Y192541
X079284Y211841
X059984Y211841
X079284Y231141
X059984Y231141
M01
M02X000000Y212889
M02X064313Y-212889
M02X000000Y212889
M02X064313Y-212889
M02X000000Y212889
M02X203581Y075692M80M90
M02X000000Y212889M80M90
M02X064313Y-212889M80M90
M02X000000Y212889M80M90
M02X064313Y-212889M80M90
M02X000000Y212889M80M90
M02X-372714Y064580M70M80
M02
M08
T03
X053158Y034903
X053158Y531897
X410974Y034903
X410974Y530881
T04
M25
X069634Y144291
M01
M02X000000Y212889
M02X064313Y-212889
M02X000000Y212889
M02X064313Y-212889
M02X000000Y212889
M02X203581Y075692M80M90
M02X000000Y212889M80M90
M02X064313Y-212889M80M90
M02X000000Y212889M80M90
M02X064313Y-212889M80M90
M02X000000Y212889M80M90
M02X-372714Y064580M70M80
M02
M08
T05
M25
X053894Y244095
M01
M02X000000Y212889
M02X064313Y-212889
M02X000000Y212889
M02X064313Y-212889
M02X000000Y212889
M02X203581Y075692M80M90
M02X000000Y212889M80M90
M02X064313Y-212889M80M90
M02X000000Y212889M80M90
M02X064313Y-212889M80M90
M02X000000Y212889M80M90
M02X-372714Y064580M70M80
M02
M08
T06
M25
X093838Y144269
M01
M02X000000Y212889
M02X064313Y-212889
M02X000000Y212889
M02X064313Y-212889
M02X000000Y212889
M02X203581Y075692M80M90
M02X000000Y212889M80M90
M02X064313Y-212889M80M90
M02X000000Y212889M80M90
M02X064313Y-212889M80M90
M02X000000Y212889M80M90
M02X-372714Y064580M70M80
M02
M08
T07
X034422Y445400
T08
X045350Y532445
T11
M25
X048057Y045182
X091211Y243400
M01
M02X000000Y212889
M02X064313Y-212889
M02X000000Y212889
M02X064313Y-212889
M02X000000Y212889
M02X203581Y075692M80M90
M02X000000Y212889M80M90
M02X064313Y-212889M80M90
M02X000000Y212889M80M90
M02X064313Y-212889M80M90
M02X000000Y212889M80M90
M02X-372714Y064580M70M80
M02
M08
T51
M25
X053894Y244095
M01
M02X000000Y212889
M02X064313Y-212889
M02X000000Y212889
M02X064313Y-212889
M02X000000Y212889
M02X203581Y075692M80M90
M02X000000Y212889M80M90
M02X064313Y-212889M80M90
M02X000000Y212889M80M90
M02X064313Y-212889M80M90
M02X000000Y212889M80M90
M02X-372714Y064580M70M80
M02
M08
T70
M25
X093838Y144269
M01
T71
M25
X083838Y144269
M01
T72
M25
X073838Y144269
M01
T73
M25
X063838Y144269
M01
M30
需要说明的是,对于前述的各方法实施例,为了简便描述,将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其它顺序或者同时进行。
基于与上述实施例中的基于定位孔的电路板缺陷追踪方法相同的思想,本发明还提供基于定位孔的电路板缺陷追踪装置,该装置可用于执行上述基于定位孔的电路板缺陷追踪方法。 为了便于说明,基于定位孔的电路板缺陷追踪装置实施例的结构示意图中,仅仅示出了与本发明实施例相关的部分,本领域技术人员可以理解,图示结构并不构成对装置的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图4所述,基于定位孔的电路板缺陷追踪装置包括信息确定模块410、关系确定模块420、文件生成模块430和缺陷追踪模块440。
信息确定模块410,用于根据电路板的尺寸信息确定所述电路板上的定位孔,以及确定各个定位孔对应的位置信息。
关系确定模块420,用于获取各个定位孔的孔径信息,建立孔径信息与定位孔刀号的对应关系。
文件生成模块430,用于根据所述对应关系以及各个定位孔对应的位置信息,生成所述电路板对应的钻孔文件。
以及,缺陷追踪模块440,用于根据所述钻孔文件在所述电路板上生成对应的虚拟定位孔,根据虚拟定位孔确定电路板中的缺陷位置。
本实施例根据电路板的尺寸信息确定电路板上的定位孔,确定这些定位孔的位置。并将孔径与定位孔刀号建立对应关系,根据定位孔的位置以及上述对应关系生成钻孔文件,根据这个钻孔文件中的定位孔位置、孔径信息以及对应的定位孔刀号就可以确定各个定位孔制作出各个定位孔。如果电路板上存在缺陷,则根据这些电路板上的定位孔的相关信息就可以对缺陷进行定位。本发明实施例可以自动生成钻孔文件,得到的定位孔能准确地实现缺陷定位,有效地提高了电路板缺陷定位的效率。
在一个实施例中,所述信息确定模块410,包括:固定位置获取子模块,用于确定电路板的固定定位孔,以及各个固定定位孔的位置信息;以及,动态位置获取子模块,用于根据电路板的尺寸信息确定所述电路板的动态定位孔,以及各个动态定位孔的位置信息。
在一个实施例中,所述电路板包括多个panel板,所述panel板包括多个strip板,所述strip板包括多个unit板;固定位置获取子模块,还用于确定电路板的机台参考点、panel对位孔和防呆孔,以及panel板边需要打印二维码的位置,对应的孔作为固定定位孔。
在一个实施例中,所述动态位置获取子模块,还用于通过incam软件确定各个所述unit板的第一轮廓信息和各个所述strip板的第二轮廓信息,根据所述第一轮廓信息确定各个unit中心点的位置,根据所述第二轮廓信息确定各个strip中心点和原点的位置。
在一个实施例中,所述关系确定模块420,还用于获取各个定位孔的孔径信息,根据预设的规则将各个孔径按顺序与各个定位孔刀号建立对应关系。
在一个实施例中,所述关系确定模块420,包括:孔径处理子模块,用于对各个孔径进行数值处理,得到孔径对应值;关系确定子模块,用于若某一孔径对应值满足某一预设条件,根据所述预设条件建立所述孔径与相应定位孔刀号的对应关系;以使各个孔径按照从小到大的顺序分别与各个定位孔刀号对应。
在一个实施例中,所述文件生成模块430,还用于根据所述对应关系确定所述钻孔文件的表头;使所述表头中的孔径信息与定位孔刀号对应。
需要说明的是,本发明的基于定位孔的电路板缺陷追踪装置与本发明的基于定位孔的电路板缺陷追踪方法一一对应,在上述基于定位孔的电路板缺陷追踪方法的实施例阐述的技术特征及其有益效果均适用于基于定位孔的电路板缺陷追踪装置的实施例中,具体内容可参见本发明方法实施例中的叙述,此处不再赘述,特此声明。
此外,上述示例的基于定位孔的电路板缺陷追踪装置的实施方式中,各程序模块的逻辑划分仅是举例说明,实际应用中可以根据需要,例如出于相应硬件的配置要求或者软件的实现的便利考虑,将上述功能分配由不同的程序模块完成,即将所述基于定位孔的电路板缺陷追踪装置的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分功能。
在一个实施例中,提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现以下步骤:根据电路板的尺寸信息确定所述电路板上的定位孔,以及确定各个定位孔对应的位置信息;获取各个定位孔的孔径信息,建立孔径信息与定位孔刀号的对应关系;根据所述对应关系以及各个定位孔对应的位置信息,生成所述电路板对应的钻孔文件;根据所述钻孔文件在所述电路板上生成对应的虚拟定位孔,根据虚拟定位孔确定电路板中的缺陷位置。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:所述确定各个定位孔对应的位置信息的步骤,包括:确定电路板的固定定位孔,以及各个固定定位孔的位置信息;根据电路板的尺寸信息确定所述电路板的动态定位孔,以及各个动态定位孔的位置信息。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:所述电路板包括多个panel板,所述panel板包括多个strip板,所述strip板包括多个unit板;所述确定电路板的固定定位孔,以及各个固定定位孔的位置信息的步骤,包括:确定电路板的机台参考点、panel对位孔和防呆孔,以及panel板边需要打印二维码的位置,对应的孔作为固定定位孔。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:所述根据电路板的尺寸信息确定所述电路板的动态定位孔,以及各个动态定位孔的位置信息的步骤,包括:通过incam软件确定各个所述unit板的第一轮廓信息和各个所述strip板的第二轮廓信息,根据所述第一轮廓信息确定各个unit中心点的位置,根据所述第二轮廓信息确定各个strip中心点和原点的位置。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:所述获取各个定位孔的孔径信息,建立孔径信息与定位孔刀号的对应关系的步骤,包括:获取各个定位孔的孔径信息,根据预设的规则将各个孔径按顺序与各个定位孔刀号建立对应关系。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:所述根据预设的规则将各个孔径按顺序与各个定位孔刀号建立对应关系的步骤,包括:对各个孔径进行数值处理,得到孔径对应值;若某一孔径对应值满足某一预设条件,根据所述预设条件建立所述孔径与相应定位孔刀号的对应关系;以使各个孔径按照从小到大的顺序分别与各个定位孔刀号对应。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:所述根据所述对应关系以及所述位置信息生成钻孔文件的步骤,还包括:根据所述对应关系确定所述钻孔文件的表头;使所述表头中的孔径信息与定位孔刀号对应。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:根据电路板的尺寸信息确定所述电路板上的定位孔,以及确定各个定位孔对应的位置信息;获取各个定位孔的孔径信息,建立孔径信息与定位孔刀号的对应关系;根据所述对应关系以及各个定位孔对应的位置信息,生成所述电路板对应的钻孔文件;根据所述钻孔文件在所述电路板上生成对应的虚拟定位孔,根据虚拟定位孔确定电路板中的缺陷位置。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:所述确定各个定位孔对应的位置信息的步骤,包括:确定电路板的固定定位孔,以及各个固定定位孔的位置信息;根据电路板的尺寸信息确定所述电路板的动态定位孔,以及各个动态定位孔的位置信息。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:所述电路板包括多个panel板,所述panel板包括多个strip板,所述strip板包括多个unit板;所述确定电路板的固定定位孔,以及各个固定定位孔的位置信息的步骤,包括:确定电路板的机台参考点、panel对位孔和防呆孔,以及panel板边需要打印二维码的位置,对应的孔作为固定定位孔。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:所述根据电路板的尺寸信息确定所述电路板的动态定位孔,以及各个动态定位孔的位置信息的步骤,包括:通过incam软件确定各个所述unit板的第一轮廓信息和各个所述strip板的第二轮廓信息,根据所述第一轮廓信息确定各个unit中心点的位置,根据所述第二轮廓信息确定各个strip中心点和原点的位置。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:所述获取各个定位孔的孔径信息,建立孔径信息与定位孔刀号的对应关系的步骤,包括:获取各个定位孔的孔径信息,根据预设的规则将各个孔径按顺序与各个定位孔刀号建立对应关系。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:所述根据预设的规则将各个孔径按顺序与各个定位孔刀号建立对应关系的步骤,包括:对各个孔径进行数值处理,得到孔径对应值;若某一孔径对应值满足某一预设条件,根据所述预设条件建立所述孔径与相应定位孔刀号的对应关系;以使各个孔径按照从小到大的顺序分别与各个定位孔刀号对应。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:所述根据所述对应关系以及所述位置信息生成钻孔文件的步骤,还包括:根据所述对应关系确定所述钻孔文件的表头;使所述表头中的孔径信息与定位孔刀号对应。
本领域普通技术人员可以理解,实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,作为独立的产品销售或使用。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其 存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本发明实施例的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或(模块)单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,不能理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种基于定位孔的电路板缺陷追踪方法,其特征在于,包括以下步骤:
    根据电路板的尺寸信息确定所述电路板上的定位孔,以及确定各个定位孔对应的位置信息;
    获取各个定位孔的孔径信息,建立孔径信息与定位孔刀号的对应关系;
    根据所述对应关系以及各个定位孔对应的位置信息,生成所述电路板对应的钻孔文件;
    根据所述钻孔文件在所述电路板上生成对应的虚拟定位孔,根据虚拟定位孔确定电路板中的缺陷位置。
  2. 根据权利要求1所述的基于定位孔的电路板缺陷追踪方法,其特征在于,所述根据电路板的尺寸信息确定所述电路板上的定位孔,以及确定各个定位孔对应的位置信息的步骤,包括:
    确定电路板的固定定位孔,以及各个固定定位孔的位置信息;
    根据电路板的尺寸信息确定所述电路板的动态定位孔,以及各个动态定位孔的位置信息。
  3. 根据权利要求2所述的基于定位孔的电路板缺陷追踪方法,其特征在于,所述电路板包括多个panel板,所述panel板包括多个strip板,所述strip板包括多个unit板;
    所述确定电路板的固定定位孔,以及各个固定定位孔的位置信息的步骤,包括:
    确定电路板的机台参考点、panel对位孔和防呆孔,以及panel板边需要打印二维码的位置,对应的孔作为固定定位孔。
  4. 根据权利要求3所述的基于定位孔的电路板缺陷追踪方法,其特征在于,所述根据电路板的尺寸信息确定所述电路板的动态定位孔,以及各个动态定位孔的位置信息的步骤,包括:
    通过incam软件确定各个所述unit板的第一轮廓信息和各个所述strip板的第二轮廓信息,根据所述第一轮廓信息确定各个unit中心点的位置,根据所述第二轮廓信息确定各个strip中心点和原点的位置。
  5. 根据权利要求1所述的基于定位孔的电路板缺陷追踪方法,其特征在于,所述获取各个定位孔的孔径信息,建立孔径信息与定位孔刀号的对应关系的步骤,包括:
    获取各个定位孔的孔径信息,根据预设的规则将各个孔径按顺序与各个定位孔刀号建立对应关系。
  6. 根据权利要求5所述的基于定位孔的电路板缺陷追踪方法,其特征在于,所述根据预设的规则将各个孔径按顺序与各个定位孔刀号建立对应关系的步骤,包括:
    对各个孔径进行数值处理,得到孔径对应值;
    若某一孔径对应值满足某一预设条件,根据所述预设条件建立所述孔径与相应定位孔刀号的对应关系;以使各个孔径按照从小到大的顺序分别与各个定位孔刀号对应。
  7. 根据权利要求1至6任一所述的基于定位孔的电路板缺陷追踪方法,其特征在于,所述根据所述对应关系以及所述位置信息生成钻孔文件的步骤,还包括:
    根据所述对应关系确定所述钻孔文件的表头;使所述表头中的孔径信息与定位孔刀号对 应。
  8. 一种基于定位孔的电路板缺陷追踪装置,其特征在于,包括:
    信息确定模块,用于根据电路板的尺寸信息确定所述电路板上的定位孔,以及确定各个定位孔对应的位置信息;
    关系确定模块,用于获取各个定位孔的孔径信息,建立孔径信息与定位孔刀号的对应关系;
    文件生成模块,用于根据所述对应关系以及各个定位孔对应的位置信息,生成所述电路板对应的钻孔文件;
    以及,缺陷追踪模块,用于根据所述钻孔文件在所述电路板上生成对应的虚拟定位孔,根据虚拟定位孔确定电路板中的缺陷位置。
  9. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至7中任一项所述方法的步骤。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述的方法的步骤。
PCT/CN2018/093622 2018-03-22 2018-06-29 基于定位孔的电路板缺陷追踪方法、装置及计算机设备 WO2019178977A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810240823.XA CN108804738B (zh) 2018-03-22 2018-03-22 基于定位孔的电路板缺陷追踪方法、装置及计算机设备
CN201810240823.X 2018-03-22

Publications (1)

Publication Number Publication Date
WO2019178977A1 true WO2019178977A1 (zh) 2019-09-26

Family

ID=64095336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093622 WO2019178977A1 (zh) 2018-03-22 2018-06-29 基于定位孔的电路板缺陷追踪方法、装置及计算机设备

Country Status (2)

Country Link
CN (1) CN108804738B (zh)
WO (1) WO2019178977A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113221505B (zh) * 2021-06-04 2024-04-12 中科可控信息产业有限公司 电路板孔位确定方法、装置、电子设备及可读存储介质
CN114152615A (zh) * 2021-10-12 2022-03-08 宏华胜精密电子(烟台)有限公司 电路板检测设备的检测方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1518083A (zh) * 2003-01-28 2004-08-04 ͬ�Ϳ�ҵ��ʽ���� 安装电子器件的薄膜型载带及使用该载带的最后缺陷标记方法
US20090161943A1 (en) * 2007-12-25 2009-06-25 Hitachi High-Technologies Corporation Inspection apparatus and inspection method
CN102565073A (zh) * 2011-12-31 2012-07-11 北京航空航天大学 基于fpga的便携式电路板缺陷快速检测装置
CN102721695A (zh) * 2012-05-18 2012-10-10 深圳大学 一种检测印刷电路板缺陷的方法
CN104039083A (zh) * 2013-03-08 2014-09-10 北大方正集团有限公司 一种确定定位孔信息的方法、电子设备及印刷电路板
IL162650A (en) * 2004-06-21 2014-09-30 Camtek Ltd Incorrect unit mapping system for mapping multiple layers of single board and associated method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102521437A (zh) * 2011-11-30 2012-06-27 中国航空工业集团公司第六三一研究所 一种采用自动排版生产印制板的方法
CN104281745B (zh) * 2014-09-28 2018-01-05 深圳市兴森快捷电路科技股份有限公司 一种利用指定格式文件的钻孔方法
CN105911960A (zh) * 2016-04-01 2016-08-31 广州兴森快捷电路科技有限公司 针对封装基板进行激光钻孔的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1518083A (zh) * 2003-01-28 2004-08-04 ͬ�Ϳ�ҵ��ʽ���� 安装电子器件的薄膜型载带及使用该载带的最后缺陷标记方法
IL162650A (en) * 2004-06-21 2014-09-30 Camtek Ltd Incorrect unit mapping system for mapping multiple layers of single board and associated method
US20090161943A1 (en) * 2007-12-25 2009-06-25 Hitachi High-Technologies Corporation Inspection apparatus and inspection method
CN102565073A (zh) * 2011-12-31 2012-07-11 北京航空航天大学 基于fpga的便携式电路板缺陷快速检测装置
CN102721695A (zh) * 2012-05-18 2012-10-10 深圳大学 一种检测印刷电路板缺陷的方法
CN104039083A (zh) * 2013-03-08 2014-09-10 北大方正集团有限公司 一种确定定位孔信息的方法、电子设备及印刷电路板

Also Published As

Publication number Publication date
CN108804738A (zh) 2018-11-13
CN108804738B (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
CN113312879B (zh) 芯片电路功能验证系统、方法、设备及存储介质
CN109857451B (zh) Ip核文件生成方法、装置、设备及介质
US11604916B2 (en) Method, system, and electronic device for detecting open/short circuit of PCB design layout
WO2019178977A1 (zh) 基于定位孔的电路板缺陷追踪方法、装置及计算机设备
CN106844040B (zh) 一种作业提交方法、系统及服务器
CN113763335A (zh) 检查在印刷电路板贴装的部件的装置、其运转方法
CN108304614B (zh) 集成电路版图引脚的设置方法及装置
CN113514475A (zh) 用于芯片检测的参考模板的生成方法及相关设备
CN111445319A (zh) 一种凭证生成方法、装置、计算机设备及存储介质
US11330705B2 (en) Method, system and apparatus for detecting polarity of component, and computer-readable storage medium
CN109426674B (zh) 一种印刷电路板检测方法和系统
CN113535225A (zh) 应用软件的环境配置文件处理方法、装置、设备和介质
CN116932304A (zh) 一种寄存器测试方法、装置、电子设备及存储介质
CN116775550A (zh) 基于fpga的risc-v处理器自动化部署方法
CN111598832A (zh) 一种槽孔缺陷标注方法、装置和存储介质
US11921776B2 (en) Surface mount data conversion method, system, medium and device based on component three-dimensional database
CN114444431A (zh) 差动阻抗线自动挑选方法、装置和存储介质
CN112862696A (zh) 掩模版修复控制方法、装置及计算机可读存储介质
CN112559888A (zh) 一种推荐内容追溯方法、系统、电子设备及可读存储介质
CN116629199B (zh) 一种电路原理图的自动修改方法、装置、设备及存储介质
CN117172187A (zh) 自动标pnl板v-cut数据的方法,系统,pcb制造软件及加工设备
CN116822445B (zh) 一种用于高速并行计算的片间总线协议实现方法
CN118052179A (zh) 一种可视化建模方法及建模工具
CN112597721B (zh) 一种高效的fpga集成验证方法
CN117556494A (zh) 车站设备房模型的生成方法、装置、设备以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.02.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18910653

Country of ref document: EP

Kind code of ref document: A1