WO2019178972A1 - 一种用于锂离子电池的聚合物电解质及聚合物电池 - Google Patents

一种用于锂离子电池的聚合物电解质及聚合物电池 Download PDF

Info

Publication number
WO2019178972A1
WO2019178972A1 PCT/CN2018/092970 CN2018092970W WO2019178972A1 WO 2019178972 A1 WO2019178972 A1 WO 2019178972A1 CN 2018092970 W CN2018092970 W CN 2018092970W WO 2019178972 A1 WO2019178972 A1 WO 2019178972A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
polymer electrolyte
polyester
battery
group
Prior art date
Application number
PCT/CN2018/092970
Other languages
English (en)
French (fr)
Inventor
石桥
王秋君
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Publication of WO2019178972A1 publication Critical patent/WO2019178972A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion battery polymer electrolyte and a polymer battery using the polymer electrolyte, and more particularly to a solid lithium ion battery polymer electrolyte and a solid lithium ion battery.
  • Lithium-ion batteries have been widely used in electronic appliances such as mobile phones and notebook computers because of their high energy density, high operating voltage, no memory effect, long cycle life and environmental friendliness.
  • electronic digital products, electric vehicles, and large energy storage devices have higher requirements on energy density.
  • Lithium-ion batteries using commercial liquid electrolytes are difficult to meet.
  • the liquid electrolyte will undergo serious decomposition reaction on the surface of the electrode material under high temperature and high pressure conditions, resulting in deterioration of battery performance.
  • the low flash point solvent used in the liquid electrolyte has poor safety when the temperature rises.
  • the use of a gel electrolyte formed of a polymer and an organic liquid electrolyte can prevent liquid flow, to some extent, it prevents the safety hazard caused by battery leakage, but does not meet safety and high energy density requirements.
  • the use of a solid polymer electrolyte can fundamentally improve the safety of the battery.
  • the solid polymer electrolyte has poor ion conductivity compared to the liquid electrolyte.
  • the polymer electrolyte having a high ionic conductivity is a polymer matrix of a polyether polymer such as polyethylene oxide (PEO), but the polyether polymer has poor oxidation resistance, resulting in a low operating voltage of the battery.
  • PEO polyethylene oxide
  • the polyether polymer has poor oxidation resistance, resulting in a low operating voltage of the battery.
  • lithium iron phosphate can be used as the positive electrode active material, resulting in a low energy density of the battery. Therefore, there is an urgent need to develop a polymer electrolyte having a high operating voltage and suitable for a high voltage positive electrode such as lithium cobaltate or lithium nickel cobalt manganate and having high conductivity.
  • the technical problem to be solved by the present invention is to provide a novel polymer electrolyte having a high working voltage and a high electrical conductivity in view of the problems of low operating voltage and low electrical conductivity of the polymer electrolyte in the prior art.
  • a polymer electrolyte for a lithium ion battery comprising a lithium salt and a polyester-based polymer, and lithium ions in the lithium salt in the polymer electrolyte and moles of ester functional groups in the polyester-based polymer The ratio is 1/6 or more.
  • the present invention also provides a polymer battery comprising a positive electrode, a negative electrode, a polymer electrolyte between the positive electrode and the negative electrode, and the polymer electrolyte is a polymer electrolyte as described above.
  • the polyether polymer has poor oxidation resistance and is not suitable for a high voltage positive electrode such as lithium cobaltate or lithium nickel cobalt manganese oxide.
  • the polyester-based polymer has significantly better oxidation resistance than the polyether polymer, and there is a possibility of being suitable for a high-voltage positive electrode.
  • the inventors have found through extensive experiments that when the molar ratio of lithium ions in the lithium salt in the polymer electrolyte to the ester functional group in the polyester-based polymer is less than 1/6, lithium ions need to be dependent on polymerization.
  • the ether polymer is a matrix polymer electrolyte.
  • the oxidation resistance of the polyester-based polymer matrix is still insufficient, and the conventional polymer electrolyte based on the polyester-based polymer is still difficult to use for the high-voltage positive electrode.
  • the inventors of the present invention have found through extensive experiments that for polyester-based polymer electrolytes, the relative content of lithium salt and ester functional groups in the polymer electrolyte has a significant influence on the withstand voltage performance and electrical conductivity of the polymer electrolyte.
  • the molar ratio of lithium ions to ester functional groups in the lithium salt is less than 1/6, lithium ions need to be guided by the movement of the segments to cause conduction, resulting in low electrical conductivity.
  • the molar ratio of lithium ion to ester functional group in the lithium salt is more than 1/6, most of the ester functional groups are complexed with lithium ions, and at this time, a part of the lithium ion is complexed with the ester functional group, and the other part is
  • the presence of free ion clusters facilitates the formation of a number of lithium ion transport channels that are independent of segmental motion, thereby greatly increasing the conductivity of the polymer electrolyte.
  • the decomposition voltage of the polyester-based polymer is increased, so that the polymer electrolyte has better withstand voltage performance.
  • the inventors of the present invention have found through extensive experiments that the number of carbon atoms in the repeating unit of the polyester-based polymer also has an important influence on the electrical conductivity of the polymer electrolyte.
  • the repeating unit in the polyester-based polymer The larger the average number of carbon atoms (i.e., the ratio of the sum of the number of carbon atoms in all repeating units to the total number of repeating units), the lower the conductivity of the polymer electrolyte. The reason for this is that as the above ratio increases, the proportion of the ester group functional group in the polymer decreases, and the possibility of complexing with lithium ions to form an ion transport channel is lowered, resulting in a decrease in the ion transport channel.
  • the inventors of the present invention have found that the use of a homopolymer of a polyester-based polymer is disadvantageous for the improvement of the electrical conductivity of the polymer electrolyte because the homopolymer of the polyester-based polymer is easily crystallized, resulting in a polymer electrolyte.
  • the copolymer of polyester with two different structural units and/or the polyester polymer with branched structure can effectively inhibit the occurrence of crystallization, facilitate the formation of ion transport channels, and obtain higher conductivity. Polymer electrolyte.
  • a functional group containing an unsaturated bond such as an allyl group, an acrylate group, a methacrylate group or the like is introduced at the terminal group of the polyester-based polymer, and an initiator such as azobisisobutyronitrile can be used.
  • the polymerization reaction occurs under the action of (AIBN) and benzoyl peroxide (BPO) to form a comb-like or network-like polymer, which can suppress the crystallization of the polyester-based polymer and improve the mechanical properties.
  • the polyester-based polymer using the above comb-like or network-like polymer has higher electrical conductivity and better mechanical properties.
  • the introduction of the inorganic filler in the above polymer electrolyte can further improve the electrical conductivity and mechanical properties of the polymer electrolyte.
  • the inorganic filler includes SiO 2 , Al 2 O 3 , TiO 2 , ZrO 2 , MgO, Li 7 La 3 Zr 2 O 12 , Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 , Li 10 GeP 2 S 12 , Li 1.3 One or more of Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 2.88 PO 3.73 N 0.14 , montmorillonite, kaolin, diatomaceous earth.
  • the above inorganic filler has the following effects on the improvement of the electrical conductivity and mechanical properties of the polymer electrolyte: First, the above inorganic filler can suppress the crystallization of the polyester-based polymer, and is advantageous for improving the electrical conductivity. Secondly, the above inorganic filler such as Al 2 O 3 is a Lewis acid, which has a certain binding force with an anion in the lithium salt, and is advantageous in the case where the ratio of the lithium ion to the ester group functional group in the lithium salt is high. The dissociation of lithium salts and the increase in the number of lithium ion migrations are helpful for the transport of lithium ions.
  • inorganic fillers such as Li 7 La 3 Zr 2 O 12 have a higher ionic conductivity, which facilitates the formation of better ion transport channels.
  • mechanical properties of the polymer electrolyte are also significantly improved after compounding with the inorganic filler.
  • the polymer electrolyte for a lithium ion battery provided by the present invention includes a polyester-based polymer and a lithium salt; in the polymer electrolyte, a molar ratio of lithium ions in the lithium salt to ester functional groups in the polymer is 1/ 6 or more.
  • the conductivity of the polymer electrolyte is greatly improved.
  • the molar ratio of lithium ions in the lithium salt to the ester functional groups in the polymer is 1/6-1/1.
  • the average molecular weight of the repeating unit is calculated by the weight ratio of each repeating unit
  • the ester is calculated according to the weight of the polyester-based polymer and the above average molecular weight.
  • the number of moles of the group functional group When the molar ratio of the lithium ion in the lithium salt to the ester functional group in the polymer is too high, the lithium salt precipitates in the polyester-based polymer to cause phase separation, deteriorating the performance of the polymer electrolyte.
  • a molar ratio of lithium ions to ester functional groups in the lithium salt is 1/4 or more, and more preferably 1/4 to 1/1.
  • a polyester-based polymer is a high molecular polymer having an ester group functional group as a repeating unit, and its main component is an ester group, and the weight ratio of other atoms or functional groups is extremely low and negligible.
  • the ratio of the weight of the polyester-based polymer to the molecular weight of the repeating unit having an ester group-functional group is taken as the number of moles of the ester group functional group.
  • the polyester-based polymer has a weight average molecular weight of from 1,000 to 1,000,000. When the molecular weight is too low, the mechanical properties of the polymer electrolyte are poor.
  • the ratio of the total number of carbon atoms in all repeating units to the total number of repeating units is 4 or less (that is, the average number of carbon atoms in the repeating unit is 4 or less).
  • the average number of carbon atoms in the repeating unit of the polyester-based polymer is more than 4, the density of the ester-functional group is low, which is disadvantageous for forming an ion transport channel, thereby lowering the conductivity of the polymer electrolyte.
  • the polyester-based polymer comprises the polymer of the following formula 1:
  • A is a hydrocarbon group or an oxygen-containing hydrocarbon group
  • L is an integer and L ⁇ 1;
  • R a and R b are each independently selected from an alkylene group, R x is selected from an organic group or a halogen; m1 is an integer greater than 0, and n1 is a natural number. Further preferably, R x is one selected from the group consisting of a hydroxyl group, an oxygen-containing hydrocarbon group, an ester group, or a hydrocarbon group having an unsaturated bond.
  • the number of carbon atoms in R a is a'
  • the number of carbon atoms in R b is b', ((a'+1)*m1+(b'+1)*n1)/ (m1+n1) ⁇ 4.
  • the number of carbon atoms a' and b' in the above R a and R b are each independently selected from a natural number of 3 or less.
  • the R may be selected from one of a homopolymer or a copolymer of polylactide, polycaprolactone, polyglycolide, polyhydroxybutyrate, polyhydroxyvalerate or A variety. More preferably, the above formula 1 has a branched structure, and L ⁇ 3. Specifically, the polyester-based polymer is selected from one or more of the following structural formulas:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 and R 17 are each independently selected from
  • R a and R b are each independently selected from an alkylene group
  • R x is selected from an organic group or a halogen
  • m1 is an integer greater than
  • n1 is a natural number.
  • R x is one selected from the group consisting of a hydroxyl group, an oxygen-containing hydrocarbon group, an ester group, or a hydrocarbon group having an unsaturated bond.
  • R a and R b are each independently selected from one of the following structural formulae:
  • m2, m3, m4, and m5 are each independently selected from a natural number, and m2 ⁇ 1, m3 ⁇ 0, m4 ⁇ 0, and m5 ⁇ 0.
  • m2 is selected from the group consisting of a natural number of 1 to 5, m3, m4, and m5, each independently being an integer selected from 0 to 3.
  • polyester-based polymer When the polyester-based polymer has the above structure, a large amount of ester-based functional groups are stretched outward, and the polyester-based polymer has a branched structure as a whole, which can effectively inhibit the crystallization of the polymer, and is more favorable for the formation of ion transport channels, and can be obtained. Higher conductivity polymer electrolyte.
  • a copolymer formed from a polyester having two different structural units can also inhibit the crystallization of the polyester and increase the electrical conductivity of the polymer electrolyte.
  • R a and R b are each independently selected from an alkylene group such as a methylene group or an ethylene group.
  • R x is selected from the group consisting of an organic functional group and a halogen.
  • the organic functional group may be selected from a hydroxyl group, an oxygen-containing hydrocarbon group, an ester group or a hydrocarbon group having an unsaturated bond.
  • R x is selected from a hydrocarbon group containing an unsaturated bond, and a hydrocarbon group containing an unsaturated bond introduced at a terminal group of the polyester polymer may be polymerized to form a comb-like or network-like polymer (for example, a BPO initiator is added).
  • the cross-linking reaction occurs, which is advantageous for suppressing the crystallization of the polymer itself and improving the mechanical properties of the polymer electrolyte.
  • R x may be selected from one of the following structural formulas:
  • polyester-based polymer examples of the above polyester-based polymer are shown in Table 1 below.
  • the above polyester-based polymer can be synthesized by a conventional synthesis method in the chemical field, for example, a polyhydric alcohol can be used to initiate ring-opening polymerization of a cyclic lactone, or a hydroxy fatty acid can be obtained by condensation, and a polyhydric alcohol or a diol can also be used.
  • the dicarboxylic acid is condensed.
  • the above polyester-based polymer may also adopt other conventional commercially available polyester-based polymers.
  • the molecular weight of the ester-based functional group in the polyester-based polymer may be commercially available. Make a choice.
  • the lithium salt used in the present invention is not particularly limited, and various lithium salts commonly used in the art may be employed.
  • the lithium salt is selected from the group consisting of LiN(SO 2 CF 3 ) 2 , LiN(SO 2 F) 2 , LiPF. 6.
  • LiBF 4 LiBOB, LiDFOB, LiCF 3 SO 3 .
  • the polymer electrolyte further includes an inorganic filler including SiO 2 , Al 2 O 3 , TiO 2 , ZrO 2 , MgO, Li 7 La 3 Zr 2 O 12 , Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 , Li 10 GeP 2 S 12 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 2.88 PO 3.73 N 0.14 , one of montmorillonite, kaolin, diatomaceous earth or A variety.
  • the above inorganic filler can further improve the electrical conductivity and mechanical properties of the polymer electrolyte.
  • the content of the inorganic filler is preferably from 1 to 80% by weight.
  • the present invention also provides a polymer battery comprising a positive electrode, a negative electrode, a polymer electrolyte between the positive electrode and the negative electrode, and the polymer electrolyte is a polymer electrolyte as described above.
  • the positive electrode includes a positive electrode active material
  • the active material of the positive electrode is LiNi x Co y MnzL (1-xyz) O 2 , LiCo x' L (1-x) ') at least one of O 2 , LiNi x" L' y' Mn (2-x"-y') O 4 , Li z ' MPO 4 ;
  • L is Al, Sr, Mg, Ti, Ca, At least one of Zr, Zn, Si or Fe; 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ x + y + z ⁇ 1, 0 ⁇ x' ⁇ 1, 0.3 ⁇ x" ⁇ 0.6,0.01 ⁇ y' ⁇ 0.2
  • L' is at least one of Co, Al, Sr, Mg, Ti, Ca, Zr, Zn, Si, Fe; 0.5 ⁇ z' ⁇ 1, M is Fe At least
  • the above positive electrode active material is selected from the group consisting of lithium cobaltate, lithium nickel cobalt aluminate, lithium nickel cobalt manganese oxide, lithium spinel manganate, lithium iron phosphate, lithium iron phosphate One or more of them.
  • the negative electrode includes one or more of lithium metal, graphite, and silicon-containing material.
  • the polymer battery provided by the invention can work under a voltage of 4V or more and has good rate performance.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • the molar ratio of lithium ion to ester functional group in the lithium salt (m 2 /M w2 ) / (m 1 /M w1 )
  • m 1 is the mass of the polyester-based polymer
  • m 2 is the mass of the lithium salt
  • M w1 is the repeating unit molecular weight of the polyester-based polymer
  • M w2 is the molecular weight of the lithium salt.
  • the molar ratio was calculated to be 1/6.
  • Film thickness test The thickness of 5 points on the polymer electrolyte membrane was measured using a thickness gauge, and the average value was calculated.
  • Oxidative decomposition potential platinum is used as the working electrode, lithium sheet is the working electrode and the counter electrode, and the 2032 type button battery is assembled.
  • the electrochemical window was measured by linear voltammetric scanning with an electrochemical workstation. The voltage range is open circuit voltage to 6.0V and the scan speed is l mV/s.
  • Preparation of positive electrode sheet Dissolving polyvinylidene fluoride (PVDF) in N,N-methylpyrrolidone (NMP), LiNi 0.5 Mn 0.3 Co 0.2 O 2 cathode material, PVDF, conductive carbon black, polymerization described above
  • PVDF polyvinylidene fluoride
  • NMP N,N-methylpyrrolidone
  • LiNi 0.5 Mn 0.3 Co 0.2 O 2 cathode material LiNi 0.5 Mn 0.3 Co 0.2 O 2 cathode material
  • PVDF LiNi 0.5 Mn 0.3 Co 0.2 O 2 cathode material
  • PVDF LiNi 0.5 Mn 0.3 Co 0.2 O 2 cathode material
  • conductive carbon black conductive carbon black
  • the negative electrode is a lithium piece having a thickness of about 35 ⁇ m.
  • the 2032 button battery was assembled in the order of the negative electrode case-spring piece-gasket-lithium piece-polymer electrolyte-positive electrode-gasket-positive electrode case.
  • Battery charge and discharge performance test The charge and discharge rate and cycle performance of the polymer battery at 60 ° C were tested by a blue electric tester.
  • the rate performance test adopts the following method: charging with constant current of 0.1C to 4.2V, then charging with constant voltage until the current drops to 0.20mA, and then constant current of 0.1C, 0.2C, 0.5C, 1.0C, 2.0C respectively. The flow was discharged to 3.0V. The discharge capacity at different rate discharges was recorded at a cycle of 5 cycles per magnification.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 2 The same as Example 1 except that the molar ratio of lithium ion to ester group functional group in the lithium salt in the preparation of the polymer electrolyte was changed to 1/4.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 2 The same as Example 1 except that the molar ratio of lithium ion to ester group functional group in the lithium salt in the preparation of the polymer electrolyte was changed to 1/3.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 1 The same as Example 1 except that the lithium salt was changed to LiPF 6 in the preparation of the polymer electrolyte.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 2 The same as Example 1 except that the lithium salt was changed to LiN(SO 2 F) 2 in the preparation of the polymer electrolyte.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 1 The same as Example 1 except that the polymer compound was used in the preparation of the polymer electrolyte.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 6 The same as Example 6 except that the molar ratio of the lithium salt to the ester functional group in the preparation of the polymer electrolyte was changed to 1/4.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 6 The same as Example 6 except that the molar ratio of lithium ion to ester group functional group in the lithium salt in the preparation of the polymer electrolyte was changed to 1/3.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 1 The same as Example 1 except that the polymer compound was used in the preparation of the polymer electrolyte.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 1 The same as Example 1 except that the polymer compound was used in the preparation of the polymer electrolyte.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 1 The same as Example 1 except that the polymer compound was used in the preparation of the polymer electrolyte.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 1 The same as Example 1 except that the polymer compound was used in the preparation of the polymer electrolyte.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 2 The same procedure as in Example 1 was carried out except that the polymer compound was used in the preparation of the polymer electrolyte, the polymer-7 was added, 0.05 wt% of BPO was added to the solution, and the film was crosslinked at 80 ° C after casting.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 1 The same as Example 1 except that the polymer compound was used in the preparation of the polymer electrolyte.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 1 The same as Example 1 except that the polymer compound was used in the preparation of the polymer electrolyte.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 1 The same as Example 1 except that the polymer compound was used in the preparation of the polymer electrolyte.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 1 The same as Example 1 except that the polymer compound was used in the preparation of the polymer electrolyte.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 2 Other than Example 1, except that the inorganic filler SiO 2 was added to the polyester compound and the lithium salt in the preparation of the polymer electrolyte, the content of SiO 2 in the polymer electrolyte was 10% by weight.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • the content of Al 2 O 3 in the polymer electrolyte was 10% by weight, except that the inorganic filler Al 2 O 3 was added to the polyester compound and the lithium salt in the preparation of the polymer electrolyte.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • the content of SiO 2 in the polymer electrolyte was 10% by weight, except that the inorganic filler SiO 2 was added to the polyester compound and the lithium salt in the preparation of the polymer electrolyte.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 15 Other than Example 15, except that the inorganic filler SiO 2 was added to the polyester compound and the lithium salt in the preparation of the polymer electrolyte, the content of SiO 2 in the polymer electrolyte was 10% by weight.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 2 The same as Example 1 except that the molar ratio of lithium ion to ester group functional group in the lithium salt in the preparation of the polymer electrolyte was changed to 2/1.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 2 The same as Example 1 except that the positive electrode of the battery was changed to LiCoO 2 .
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 6 The same as Example 6 except that the positive electrode of the battery was changed to LiCoO 2 .
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 20 The same as Example 20 except that the positive electrode of the battery was changed to LiCoO 2 .
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 2 The same as Example 1 except that the polymer used in the preparation of the polymer electrolyte was polyethylene oxide.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 2 The same as Example 1 except that the molar ratio of lithium ion to ester group functional group in the lithium salt in the preparation of the polymer electrolyte was changed to 1/16.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 28 The same as Example 28 except that the molar ratio of lithium ion to ester group functional group in the lithium salt was changed to 1/16.
  • This example is intended to illustrate the polymer electrolyte and polymer battery disclosed herein.
  • Example 29 The same as Example 29 except that the molar ratio of lithium ion to ester group functional group in the lithium salt was changed to 1/16.
  • Example 6 7.6 ⁇ 10 -4 5.6
  • Example 7 8.1 ⁇ 10 -4 5.8
  • Example 8 8.8 ⁇ 10 -4 5.6
  • Example 9 7.4 ⁇ 10 -4 5.5
  • Example 16 6.7 ⁇ 10 -4 5.7
  • Example 17 7.9 ⁇ 10 -4 5.4
  • Example 18 5.6 ⁇ 10 -4 5.2
  • Example 19 8.3 ⁇ 10 -4 5.6
  • Example 20 8.5 ⁇ 10 -4 5.8
  • Comparative example 1 4.8 ⁇ 10 -5 4.3 Comparative example 2 1.02 ⁇ 10 -5 4.8
  • Example 6 Comparing Example 6 with Example 10, it can be seen that when the average number of carbon atoms in all repeating units of the polymer is increased from 2.5 to 4, the conductivity of the polymer electrolyte is lowered from 7.6 ⁇ 10 -4 S cm -1 to 6.1 ⁇ 10 -4 S cm -1 , the effect of Comparative Example 9 and Example 11 can be seen that the average number of carbon atoms in all repeating units of the polyester-based polymer is increased from 3.2 to 4.8, the polymer electrolyte The conductivity decreased from 7.4 ⁇ 10 -4 S cm -1 to 4.8 ⁇ 10 -4 S cm -1 , indicating that the larger the average number of carbon atoms in all repeating units, the lower the proportion of ester functional groups in the polymer. The lower the probability of complexing with lithium ions to form an ion transport channel, the less the ion transport channel, the lower the conductivity of the polymer electrolyte.
  • Example 1 Comparing the effects of Example 1 and Example 6, it can be seen that the conductivity of the polymer electrolyte of the copolymer of polyester using two different structural units is increased from 6.5 ⁇ 10 -4 S cm -1 to 7.6 ⁇ 10 -4 . S cm -1 , indicating that copolymerization is beneficial to inhibit the crystallization of the polymer, facilitate the formation of ion channels, and improve the conductivity of the polymer.
  • Example 1 and Example 19, Example 20, and Example 21 Comparing the effects of Example 1 and Example 19, Example 20, and Example 21, it can be seen that inorganic fillers SiO 2 , Al 2 O 3 , Li 7 La 3 Zr 2 O 12 , and polymers are respectively added to the polymer electrolyte.
  • the conductivity of the electrolyte increased from 6.5 ⁇ 10 -4 S cm -1 to 8.3 ⁇ 10 -4 S cm -1 , 8.5 ⁇ 10 -4 S cm -1 , 9.6 ⁇ 10 -4 S cm -1 , indicating inorganic filler It can inhibit the crystallization of the polymer and contribute to the improvement of electrical conductivity.
  • Li 7 La 3 Zr 2 O 12 itself has a high ionic conductivity, which is more conducive to the formation of ion transport channels, and has obvious advantages in improving ionic conductivity.
  • Example 10 Comparing the effects of Example 10 and Example 13, it can be seen that the conductivity of the polymer electrolyte in which the terminal group introduces an unsaturated bond and cross-links is increased from 6.1 ⁇ 10 -4 S cm -1 to 7.2 ⁇ 10 -4 S cm. -1 , indicating that the unsaturated bond is polymerized to form a comb or network structure, which can inhibit the crystallization of the polymer, and the polymer electrolyte has a higher electrical conductivity.
  • Example 18 Comparing the results of Example 18 and Example 1, it can be seen that when the polyester-based polymer adopts a linear structure, the conductivity of the polymer electrolyte is 5.6 ⁇ 10 -4 S cm -1 , and when a branched structure is used, the polymer The conductivity of the electrolyte is increased to 6.5 ⁇ 10 -4 S cm -1 , indicating that the branched structure is favorable for inhibiting the crystallization of the polymer and increasing the ionic conductivity.
  • Example 9 Comparing the effects of Example 9 and Example 11, it can be seen that the average number of carbon atoms in all repeating units of the polyester-based polymer is increased from 3.2 to 4.8, and the discharge capacity of the battery at a current of 0.1 C at 60 ° C is 151.0. mAh g -1 was reduced to 140.5 mAh g -1 . The cell rate performance (2.0C/0.1C) decreased from 63.75% to 43.21% at 60 °C. The larger the average number of carbon atoms in all repeating units, the lower the conductivity of the polymer electrolyte and the lower the performance of the battery at large magnification. .
  • Example 1 Comparing the effects of Example 1 and Example 19, Example 20, and Example 21, it can be seen that inorganic fillers SiO 2 , Al 2 O 3 , Li 7 La 3 Zr 2 O 12 , 60 ° C were respectively added to the polymer electrolyte.
  • the battery rate performance (2.0C/0.1C) was increased from 68.51% to 76.85%, 77.78%, and 79.06%, respectively, indicating that the inorganic filler is beneficial to improve the conductivity and improve the rate performance of the battery.
  • Example 10 Comparing the results of Example 10 and Example 13, it can be seen that the cell rate performance (2.0C/0.1C) increased from 53.42% to 60.96% at 60 ° C, indicating that the end groups of the polymer contain unsaturated bonds and are polymerized. Union can improve battery performance.
  • Example 18 Comparing the results of Example 18 and Example 1, it can be seen that when the polyester-based polymer adopts a linear structure, the rate performance (2.0 C/0.1 C) of the polymer battery at 60 ° C is 65.64%, when a branched structure is used. The rate performance (2.0C/0.1C) increased to 68.51%, indicating that the branched structure has advantages in inhibiting the crystallization of the polymer, improving the ionic conductivity, and improving the performance of the battery.
  • Example 25 Comparing the results of Example 25 and Comparative Example 3, it can be seen that in a battery using LiCoO 2 as a positive electrode active material and Li metal as a negative electrode material, when the molar ratio of lithium ions to ester functional groups in the lithium salt is 1/16 When the temperature is increased to 1/6, the rate performance (2.0C/0.1C) of the battery is increased from 43.34% to 59.51% at 60 °C, and the capacity retention rate of the polymer battery is increased from 61.1% to 90.8% after cycling for 100 weeks at 60 °C.

Abstract

为克服现有技术中聚合物电解质耐电压低和电导率低的问题,提供一种用于锂离子电池的聚合物电解质,包括锂盐和聚酯类聚合物,且所述聚合物电解质中的锂盐中的锂离子与聚酯类聚合物中的酯基官能团的摩尔比为1/6以上。优选的,该聚酯类聚合物中,所有重复单元中碳原子数的总和相对于重复单元总数的比值为4以下。更优选的,该聚酯类聚合物具有支化的结构。同时,本发明还提供了一种包括上述聚合物电解质的聚合物锂离子电池。本发明提供的聚合物电解质具有耐电压高,电导率高的优点,可显著提高聚合物锂离子电池的性能。

Description

一种用于锂离子电池的聚合物电解质及聚合物电池 技术领域
本发明涉及锂离子电池聚合物电解质和使用该聚合物电解质的聚合物电池,特别涉及一种固体锂离子电池聚合物电解质及固体锂离子电池。
背景技术
锂离子电池因其具有能量密度高、工作电压高、无记忆效应、循环寿命长和环境友好等优点,在手机、笔记本电脑等电子电器领域得到了广泛的应用。目前电子数码产品、电动车、大型储能装置等对能量密度有更高的要求。使用商用液态电解质的锂离子电池难以满足要求。一方面液态电解质在高温、高压条件下会在电极材料表面发生严重的分解反应导致电池性能劣化,另一方面液态电解质使用的低闪点溶剂在温度升高时安全性差。虽然使用由聚合物和有机液态电解液形成的凝胶电解质可以阻止液体流动,在一定程度上防止了电池漏液带来的安全隐患,但并不能满足安全和高能量密度的要求。
另一方面,采用固态聚合物电解质可以从根本上提高电池的安全性。但与液态电解质相比,固态聚合物电解质的离子导电性差。而且,目前离子电导率高的聚合物电解质是以聚醚类聚合物如聚环氧乙烷(PEO)为聚合物基体的,但聚醚类聚合物的抗氧化性差,导致电池的工作电压低,通常只能使用磷酸铁锂作为正极活性物质,导致电池的能量密度低。因此,亟需开发一种工作电压高、适用于钴酸锂或镍钴锰酸锂等高电压正极、电导率高的聚合物电解质。
发明内容
本发明所要解决的技术问题是针对现有技术中的聚合物电解质工作电压低和电导率低的问题,提供一种新型的工作电压高且电导率高的聚合物电解质。
本发明解决上述技术问题所采用的技术方案如下:
提供一种用于锂离子电池的聚合物电解质,包括锂盐和聚酯类聚合物,且所述聚合物电解质中的锂盐中的锂离子与聚酯类聚合物中的酯基官能团的摩尔比为1/6以上。
同时,本发明还提供了一种聚合物电池,包括正极、负极、位于所述正极和负极之间的聚合物电解质,所述聚合物电解质为如前所述的聚合物电解质。
从聚合物基体来看,聚醚类聚合物的耐氧化性差,不适用于如钴酸锂、镍钴锰酸锂等高电压的正极。而聚酯类聚合物的耐氧化性要明显好于聚醚类聚合物,存在适用于高电压正极的可能。但发明人通过大量实验总结发现,当所述聚合物电解质中的锂盐中的锂离子与聚酯类聚合物中的酯基官能团的摩尔比小于1/6的情况下,锂离子需要依赖聚酯类聚合物中链段的运动来实现锂离子的传导,而聚酯类聚合物链段的柔性差,导致以聚酯类聚合物为基体的聚合物电解质的离子电导率显著低于以聚醚类聚合物为基体的聚合物电解质。不仅如此,聚酯类聚合物基体的耐氧化性仍然有所不足,普通的以聚酯类聚合物为基体的聚合物电解质用于高电压的正极仍存在困难。本发明的发明人通过大量实验发现,对于聚酯类聚合物电解质,聚合物电解质中锂盐与酯基官能团的相对含量对聚合物电解质的耐电压性能及电导率有显著影响。当锂盐中的锂离子与酯基官能团的摩尔比小于1/6时,锂离子需要依赖链段的运动来进行传导,导致电导率低。而当锂盐中的锂离子与酯基官能团的摩尔比在1/6以上时,大部分酯基官能团与锂离子络合,此时,锂离子中的一部分与酯基官能团络合,另一部分以游离的离子簇形式存在,有利于形成许多不依赖于链段运动的锂离子传输通道,从而大幅度提高聚合物电解质的电导率。而且,由于聚酯类聚合物中的大量酯基官能团与锂离子发生络合,提高了聚酯类聚合物的分解电压,从而使聚合物电解质具有更好的耐电压性能。
进一步地,本发明的发明人通过大量实验发现聚酯类聚合物的重复单元中的碳原子数也对聚合物电解质的电导率有重要影响,一般来说,聚酯类聚合物中重复单元中的平均碳原子数(即所有重复单元中碳原子数的总和相对于重复单元总数的比值)越大,聚合物电解质的电导率越低。其原因在于:随着上述比值增大,酯基官能团在聚合物中所占的比例降低,与锂离子络合形成离子传输通道的可能性降低,导致离子传输通道减少。
更进一步地,本发明的发明人发现采用聚酯类聚合物的均聚物不利于聚合物电解质的电导率的提高,其原因在于聚酯类聚合物的均聚物容易结晶,导致聚合物电解质中存在很多聚酯类聚合物的结晶相,阻碍了锂离子的传输。而采用两种不同结构单元的聚酯的共聚物和/或具有支化结构的聚酯类聚合物,可以有效抑制结晶现象的发生,更有利于离子传输通道的形成,可以得到更高电导 率的聚合物电解质。
更进一步地,发明人发现在聚酯类聚合物的端基引入含有不饱和键的官能团如烯丙基、丙烯酸酯基、甲基丙烯酸酯基等,可以在引发剂如偶氮二异丁腈(AIBN)、过氧化苯甲酰(BPO)的作用下发生聚合反应,形成梳状或网络状聚合物,能够抑制聚酯类聚合物的结晶并且提高机械性能。采用上述梳状或网络状聚合物的聚酯类聚合物具有更高的电导率和更好的机械性能。
更进一步地,在上述聚合物电解质中引入无机填料可以进一步改善聚合物电解质的电导率和机械性能。所述无机填料包括SiO 2、Al 2O 3、TiO 2、ZrO 2、MgO、Li 7La 3Zr 2O 12、Li 6.4La 3Zr 1.4Ta 0.6O 12、Li 10GeP 2S 12、Li 1.3Al 0.3Ti 1.7(PO 4) 3、Li 2.88PO 3.73N 0.14、蒙脱土、高岭土、硅藻土中的一种或多种。上述无机填料对于聚合物电解质的电导率和机械性能的改善有以下几方面的原因:首先,上述无机填料可以抑制聚酯类聚合物的结晶,有利于提高电导率。其次,上述无机填料如Al 2O 3为一种路易斯酸,与锂盐中的阴离子有一定的结合力,在锂盐中的锂离子相对于酯基官能团的比值较高的情况下,有利于锂盐的解离并提高锂离子迁移数,对于锂离子的传输有帮助。再次,无机填料如Li 7La 3Zr 2O 12自身具有较高的离子电导率,有利于形成更好的离子传输通道。并且,与无机填料复合后,聚合物电解质的机械性能也会得到显著提高。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供的用于锂离子电池的聚合物电解质包括聚酯类聚合物和锂盐;所述聚合物电解质中,锂盐中的锂离子与聚合物中的酯基官能团的摩尔比为1/6以上。
当锂盐中的锂离子与聚合物中的酯基官能团的摩尔比为1/6以上时,锂离子中的一部分与酯基官能团络合,另一部分以离子簇形式存在,有利于形成许多不依赖于链段运动的锂离子传输通道,从而大幅度提高聚合物电解质的电导率。优选情况下,所述聚合物电解质中,锂盐中的锂离子与聚合物中的酯基官能团的摩尔比为1/6-1/1。可以理解的,当聚酯类聚合物为具有不同重复单元的共聚物时,以各重复单元的重量比计算重复单元的平均分子量,进而根据聚酯类聚 合物的重量和上述平均分子量计算出酯基官能团的摩尔数。当锂盐中的锂离子与聚合物中的酯基官能团的摩尔比过高时,锂盐会在聚酯类聚合物中析出导致分相,劣化聚合物电解质的性能。
进一步优选情况下,所述聚合物电解质中,锂盐中的锂离子与酯基官能团的摩尔比为1/4以上,更优选为1/4-1/1。
众所周知,聚酯类聚合物为含有酯基官能团作为重复单元的高分子聚合物,其主要组成为酯基,其他原子或官能团所占的重量比非常低,可忽略不计。本发明中,以聚酯类聚合物的重量与含酯基官能团的重复单元的分子量的比值作为酯基官能团的摩尔数。本发明中,优选情况下,上述聚酯类聚合物的重均分子量为1000-1000000。分子量过低时,聚合物电解质的机械性能差。
本发明中,优选情况下,所述聚酯类聚合物中,所有重复单元中碳原子数的总和相对于重复单元总数的比值为4以下(即重复单元中的平均碳原子数为4以下)。当聚酯类聚合物的重复单元中的平均碳原子数大于4时,酯基官能团的密度较低,不利于形成离子传输通道,从而降低了聚合物电解质的电导率。
根据本发明,优选情况下,所述的聚酯类聚合物包括如下式1所述的聚合物:
式1:A-R L
其中,A为烃基或含氧的烃基,L为整数且L≥1;
R为
Figure PCTCN2018092970-appb-000001
R a、R b各自独立的选自亚烷基,R x选自有机基团或卤素;m1是大于0的整数,n1是自然数。进一步优选情况下,R x选自羟基、含氧烃基、酯基或含有不饱和键的烃基中的一种。
优选的,所述式1中,R a中的碳原子数为a’,R b中的碳原子数为b’,((a’+1)*m1+(b’+1)*n1)/(m1+n1)≤4。
更优选的,上述R a、R b中的碳原子数a’和b’各自独立的选自3以下的自然数。
具体的,本发明中,所述R可以选自聚丙交酯、聚己内酯、聚乙交酯、聚羟基丁酸酯、聚羟基戊酸酯的均聚物或共聚物中的一种或多种。更优选为,上述式1成支化结构,L≥3。具体的,所述聚酯类聚合物选自如下结构式中的一 种或多种:
Figure PCTCN2018092970-appb-000002
其中,所述R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17各自独立的选自
Figure PCTCN2018092970-appb-000003
并且,R a、R b各自独立的选自亚烷基,R x选自有机基团或卤素,m1是大于0的整数,n1是自然数。进一步优选情况下,R x选自羟基、含氧烃基、酯基或含有不饱和键的烃基中的一种。
所述R a、R b各自独立的选自如下结构式中的一种:
Figure PCTCN2018092970-appb-000004
其中,m2、m3、m4、m5各自独立的选自自然数,并且m2≥1,m3≥0,m4≥0,m5≥0。优选情况下,m2选自1~5的自然数、m3、m4、m5各自独立的选自0~3的整数。
当聚酯类聚合物具有上述结构时,大量的酯基官能团向外伸展,聚酯类聚合物整体呈支化结构,可以有效抑制聚合物的结晶,更有利于离子传输通道的形成,可以得到更高电导率的聚合物电解质。或者,采用两种不同结构单元的聚酯形成的共聚物,也可以抑制聚酯的结晶,提高聚合物电解质的电导率。上述基团R中,R a、R b各自独立的选自亚烷基,例如亚甲基、亚乙基等。
R x选自有机官能团和卤素。其中,有机官能团可选自羟基、含氧烃基、酯基或含有不饱和键的烃基。优选情况下,R x选自含有不饱和键的烃基,在聚酯类聚合物的端基引入的含有不饱和键的烃基可以发生聚合反应形成梳状或网络状聚合物(例如加入BPO引发剂发生交联反应),有利于抑制聚合物自身的结晶并提高聚合物电解质的机械性能。
具体的,所述R x可以选自如下结构式中的一种:
Figure PCTCN2018092970-appb-000005
上述聚酯类聚合物的示例如下表1所示。
表1
Figure PCTCN2018092970-appb-000006
Figure PCTCN2018092970-appb-000007
上述聚酯类聚合物可通过化学领域的常规合成方法合成得到,例如,可采用多元醇引发环状内酯开环聚合得到,也可用羟基脂肪酸缩合得到,还可以用多元醇、二元醇、二元羧酸缩合得到。具体采用的醇类和酯类单体以及相应的聚合方式和分子量控制方法是本领域技术人员根据本发明所提供的具体化合物 结构所能知晓的,本发明中不做详述。
可以理解的,本发明中,上述聚酯类聚合物也可以采用其他常规的可商购获得的聚酯类聚合物,此时,聚酯类聚合物中酯基官能团的分子量可以在商购时进行选择。
本发明中所采用的锂盐没有特殊限制,可采用本领域通常使用的各种锂盐,例如,所述锂盐选自LiN(SO 2CF 3) 2、LiN(SO 2F) 2、LiPF 6、LiBF 4、LiBOB、LiDFOB、LiCF 3SO 3中的一种或多种。
根据本发明,优选情况下,所述聚合物电解质中还包括无机填料,所述无机填料包括SiO 2、Al 2O 3、TiO 2、ZrO 2、MgO、Li 7La 3Zr 2O 12、Li 6.4La 3Zr 1.4Ta 0.6O 12、Li 10GeP 2S 12、Li 1.3Al 0.3Ti 1.7(PO 4) 3、Li 2.88PO 3.73N 0.14、蒙脱土、高岭土、硅藻土中的一种或多种。上述无机填料可进一步提高聚合物电解质的电导率和机械性能。
所述聚合物电解质中,无机填料的含量优选为1-80wt%。
本发明还提供了一种聚合物电池,包括正极、负极、位于所述正极和负极之间的聚合物电解质,所述聚合物电解质为如前所述的聚合物电解质。
本发明提供的上述聚合物电池中,优选情况下,所述正极包括正极活性材料,所述正极的活性材料为LiNi xCo yMnzL (1-x-y-z)O 2、LiCo x’L (1-x’)O 2、LiNi x”L’ y’Mn (2-x”-y’)O 4、Li z’MPO 4中的至少一种;其中,L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe中的至少一种;0≤x≤1,0≤y≤1,0≤z≤1,0<x+y+z≤1,0<x’≤1,0.3≤x”≤0.6,0.01≤y’≤0.2;L’为Co、Al、Sr、Mg、Ti、Ca、Zr、Zn、Si、Fe中的至少一种;0.5≤z’≤1,M为Fe、Mn、Co中的至少一种。具体的,上述正极活性材料选自钴酸锂、镍钴铝酸锂、镍钴锰酸锂、尖晶石锰酸锂、磷酸铁锰锂、磷酸铁锂中的一种或多种。
所述负极包括锂金属、石墨、含硅材料中的一种或多种。
本发明提供的聚合物电池能够工作在4V以上的电压下,并具有良好的倍率性能。
以下通过实施例对本发明进行进一步的说明。
实施例1
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
(1)聚合物电解质的制备
将1.212g分子量为1,000,000的聚合物-1和1.0g LiN(SO 2CF 3) 2加入到30g 乙腈溶液中,搅拌至完全溶解,将溶液浇铸到聚四氟乙烯的模板中,常温挥发4h,再50℃真空干燥6h,得到聚合物电解质。其中锂盐中的锂离子与酯基官能团的摩尔比按照下述公式计算(当聚酯类聚合物的分子量足够大时,聚酯类聚合物的端基官能团所占的重量比非常低,在计算摩尔比时可忽略不计):
锂盐中的锂离子与酯基官能团的摩尔比=(m 2/M w2)/(m 1/M w1)
m 1为聚酯类聚合物的质量,m 2为锂盐的质量,M w1为聚酯类聚合物的重复单元分子量,M w2为锂盐的分子量。
本实施例中,摩尔比计算为1/6。
(2)聚合物电解质性能表征:
膜厚度测试:采用厚度计测试聚合物电解质膜上5个点的厚度,并计算平均值。
离子电导率:选用不锈钢作为工作电极,组装2032型扣式电池。采用电化学交流阻抗谱来测量聚合物电解质的阻抗,频率范围为0.01Hz~100kHz,采用公式σ=D/RS,其中,D为聚合物电解质的厚度,R为交流阻抗测试得到的聚合物电解质的阻抗,S为聚合物电解质的面积。
氧化分解电位;选用铂为工作电极,锂片为工作电极和对电极,组装2032型扣式电池。用电化学工作站进行线性伏安扫描测量电化学窗口。电压范围为开路电压到6.0V,扫描速度为l mV/s。
(3)聚合物电池性能测试:
正极片的制备:将聚偏氟乙烯(PVDF)溶于N,N-甲基毗咯烷酮(NMP)中,将LiNi 0.5Mn 0.3Co 0.2O 2正极材料、PVDF、导电炭黑、上述聚合物电解质以83:4:3:10的质量比混合,加入NMP研磨至混合均匀。将上述所得的浆料均匀地涂敷在铝箔上,厚度为70~100μm,先在80℃下烘干,再120℃真空烘干。
电池的组装:负极选用厚度约为35μm的锂片。按照负极壳-弹片-垫片-锂片-聚合物电解质-正极-垫片-正极壳的顺序组装2032扣式电池。
电池充放电性能测试:采用蓝电测试仪测试60℃时聚合物电池的充放电的倍率和循环性能。循环性能测试采用以下方法:以0.2C的电流恒流充电至4.2V,再恒压充电至电流下降至0.20mA,再以0.2C的电流恒流放电至3.0V。如此循环100周,记录第1周的放电容量和第100周的放电容量,然后根据公式:容量保持率=第100周的放电容量/第1周的放电容量×100%,计算出电池循环的容量保持率。倍率性能测试采用以下方法:以0.1C的电流恒流充电至4.2V,再 恒压充电至电流下降至0.20mA,再分别以0.1C、0.2C、0.5C、1.0C、2.0C的电流恒流放电至3.0V。每一个倍率下循环5周记录不同倍率放电时的放电容量。
实施例2
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中锂盐中的锂离子与酯基官能团的摩尔比换成1/4以外,其他与实施例1相同。
实施例3
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中锂盐中的锂离子与酯基官能团的摩尔比换成1/3以外,其他与实施例1相同。
实施例4
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中锂盐换成LiPF 6以外,其他与实施例1相同。
实施例5
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中锂盐换成LiN(SO 2F) 2以外,其他与实施例1相同。
实施例6
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中聚酯类化合物使用聚合物-2以外,其他与实施例1相同。
实施例7
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中锂盐与酯基官能团的摩尔比换成1/4以外,其他与实施例6相同。
实施例8
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中锂盐中的锂离子与酯基官能团的摩尔比换成1/3以外,其他与实施例6相同。
实施例9
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中聚酯类化合物使用聚合物-4以外,其他与实施例1相同。
实施例10
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中聚酯类化合物使用聚合物-5以外,其他与实施例1相同。
实施例11
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中聚酯类化合物使用聚合物-6以外,其他与实施例1相同。
实施例12
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中聚酯类化合物使用聚合物-8以外,其他与实施例1相同。
实施例13
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中聚酯类化合物使用聚合物-7,溶液中加入0.05wt%的BPO,铸膜后80℃交联以外,其他与实施例1相同。
实施例14
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中聚酯类化合物使用聚合物-19以外,溶液中加入 0.05wt%的BPO,铸膜后80℃交联,其他与实施例1相同。
实施例15
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中聚酯类化合物使用聚合物-15以外,其他与实施例1相同。
实施例16
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中聚酯类化合物使用聚合物-9以外,其他与实施例1相同。
实施例17
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中聚酯类化合物使用聚合物-25以外,其他与实施例1相同。
实施例18
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中聚酯类化合物使用聚合物-21以外,其他与实施例1相同。
实施例19
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中在聚酯类化合物和锂盐基础上添加无机填料SiO 2外,其他与实施例1相同,所述聚合物电解质中,SiO 2的含量为10wt%。
实施例20
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中在聚酯类化合物和锂盐基础上添加无机填料Al 2O 3外,其他与实施例1相同,所述聚合物电解质中,Al 2O 3的含量为10wt%。
实施例21
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中在聚酯类化合物和锂盐基础上添加无机填料Li 7La 3Zr 2O 12外,其他与实施例1相同,所述聚合物电解质中,Li 7La 3Zr 2O 12的含量为10wt%。
实施例22
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中在聚酯类化合物和锂盐基础上添加无机填料SiO 2外,其他与实施例18相同,所述聚合物电解质中,SiO 2的含量为10wt%。
实施例23
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中在聚酯类化合物和锂盐基础上添加无机填料SiO 2外,其他与实施例15相同,所述聚合物电解质中,SiO 2的含量为10wt%。
实施例24
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中锂盐中的锂离子与酯基官能团的摩尔比换成2/1以外,其他与实施例1相同。
实施例25
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了电池正极换成LiCoO 2以外,其他与实施例1相同。
实施例26
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了电池正极换成LiCoO 2以外,其他与实施例6相同。
实施例27
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了电池正极换成LiCoO 2以外,其他与实施例20相同。
实施例28
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
选用Si作为电池负极,极片组成为Si负极材料:CMC:导电炭黑:LiN(SO 2CF 3) 2=80:5:5:10(质量比)。除此以外,其他与实施例1相同。
实施例29
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
选用石墨作为电池负极,极片组成为石墨:CMC:导电炭黑:LiN(SO 2CF 3) 2=85:3:2:10(质量比)。除此以外,其他与实施例1相同。
对比例1
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中聚合物使用聚环氧乙烷以外,其他与实施例1相同。
对比例2
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了聚合物电解质制备中锂盐中的锂离子与酯基官能团的摩尔比换成1/16以外,其他与实施例1相同。
对比例3
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了电池正极换成LiCoO 2以外,其他与对比例2相同。
对比例4
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了锂盐中的锂离子与酯基官能团的摩尔比换成1/16以外,其他与实施例28相同。
对比例5
本实施例用于说明本发明公开的聚合物电解质及聚合物电池。
除了锂盐中的锂离子与酯基官能团的摩尔比换成1/16以外,其他与实施例29相同。
上述实施例1-29和对比例1-5可参照表2。
表2
Figure PCTCN2018092970-appb-000008
Figure PCTCN2018092970-appb-000009
离子电导率和氧化分解电位结果示于下表3。
表3
实施例/对比例 60℃电导率/S cm -1 氧化电位/V
实施例1 6.5×10 -4 5.5
实施例2 8.5×10 -4 5.3
实施例3 8.9×10 -4 5.6
实施例4 4.7×10 -4 5.5
实施例5 8.2×10 -4 5.4
实施例6 7.6×10 -4 5.6
实施例7 8.1×10 -4 5.8
实施例8 8.8×10 -4 5.6
实施例9 7.4×10 -4 5.5
实施例10 6.1×10 -4 5.7
实施例11 4.8×10 -4 5.3
实施例12 7.1×10 -4 5.5
实施例13 7.2×10 -4 5.4
实施例14 6.5×10 -4 5.1
实施例15 6.6×10 -4 5.4
实施例16 6.7×10 -4 5.7
实施例17 7.9×10 -4 5.4
实施例18 5.6×10 -4 5.2
实施例19 8.3×10 -4 5.6
实施例20 8.5×10 -4 5.8
实施例21 9.6×10 -4 5.5
实施例22 6.3×10 -4 5.0
实施例23 7.7×10 -4 5.6
实施例24 4.4×10 -4 5.2
对比例1 4.8×10 -5 4.3
对比例2 1.02×10 -5 4.8
从表3的对比例2和实施例1的测试结果可以看出,当锂盐中的锂离子与酯基官能团的摩尔比由1/16增加到1/6时,聚合物电解质的电导率从1.02×10 -5S cm -1提高到6.5×10 -4S cm -1,氧化分解电位从4.8V提高到5.0V以上,说明锂盐中的锂离子与酯基官能团的摩尔比达到1/6可明显提高聚合物电解质的电导率和氧化分解电位。并且,对比实施例1与实施例24的效果可以看出,当锂盐中的锂离子与酯基官能团的摩尔比增加到2/1时,电导率降低到4.4×10 -4S cm -1。说明过量的锂盐会在聚合物中析出导致分相,劣化聚合物电解质的性能。
对比实施例6与实施例10可以看出,当聚合物的所有重复单元中的平均碳原子数由2.5增加到4时,聚合物电解质的电导率从7.6×10 -4S cm -1降低到6.1×10 -4S cm -1,对比实施例9与实施例11的效果可以看出,聚酯类聚合物的所有重复单元中的平均碳原子数由3.2增加到4.8时,聚合物电解质的电导率从7.4×10 -4S cm -1降低到4.8×10 -4S cm -1,说明所有重复单元中的平均碳原子数越大,酯基官能团在聚合物中所占的比例越低,与锂离子络合形成离子传输通道的可能性越低,离子传输通道越少,聚合物电解质的电导率越低。
对比实施例1与实施例6的效果可以看出,采用两种不同结构单元的聚酯的共聚物的聚合物电解质的电导率从6.5×10 -4S cm -1提高到7.6×10 -4S cm -1,说明共聚有利于抑制聚合物结晶,利于离子通道的形成,提升聚合物的电导率。
对比实施例1与实施例19、实施例20、实施例21的效果可以看出,在聚合物电解质中分别添加无机填料SiO 2、Al 2O 3、Li 7La 3Zr 2O 12,聚合物电解质的电导率从6.5×10 -4S cm -1分别提高到8.3×10 -4S cm -1、8.5×10 -4S cm -1、9.6×10 -4S cm -1,说明无机填料可以抑制聚合物的结晶,有利于提高电导率。Li 7La 3Zr 2O 12自身具有较高的离子电导率,更有利于离子传输通道的形成,在提高离子电导率方面有明显优势。
对比实施例10与实施例13的效果可以看出,端基引入不饱和键并进行交联的聚合物电解质的电导率由6.1×10 -4S cm -1提高到7.2×10 -4S cm -1、说明不饱和键发生聚合反应形成梳状或网络状结构,能够抑制聚合物的结晶,聚合物电解质具有更高的电导率。
对比实施例18与实施例1结果可以看出,当聚酯类聚合物采用线性结构时,聚合物电解质的电导率为5.6×10 -4S cm -1,当采用支化结构时,聚合物电解质的 电导率提高到6.5×10 -4S cm -1,说明支化结构有利于抑制聚合物的结晶,提高离子电导率。
电池性能结果示于下表4。
表4
Figure PCTCN2018092970-appb-000010
从表4的对比例2和实施例1的电池性能结果可以看出,当锂盐中的锂离子与酯基官能团的摩尔比由1/16增加到1/6时,60℃时电池倍率性能(2.0C/0.1C)由41.40%提高到68.51%,聚合物电池60℃时循环100周后容量保持率由63.1%左右提升到92.6%,说明增加锂盐中的锂离子与酯基官能团的摩尔比可明显改善电池的循环性能和倍率性能,尤其在大倍率时表现出明显的优势。
对比实施例9与实施例11的效果可以看出,聚酯类聚合物的所有重复单元中的平均碳原子数由3.2增加到4.8时,60℃时电池在0.1C的电流下放电容量由151.0mAh g -1降低到140.5mAh g -1。60℃时电池倍率性能(2.0C/0.1C)由63.75%降低到43.21%,所有重复单元中的平均碳原子数越大,聚合物电解质的电导率越低,电池在大倍率时性能越低。
由对比例1与实施例1的对比结果可以看出,60℃时电池在0.1C的电流下放电容量由50.2mAh g -1提高到150.5mAh g -1。该聚酯类聚合物电解质的氧化电位较PEO基电解质有明显提升,在以LiNi 0.5Mn 0.3Co 0.2O 2为正极材料,Li金属为负极材料的电池中的性能得到了明显改善。
对比实施例1与实施例19、实施例20、实施例21的效果可以看出,在聚合物电解质中分别添加无机填料SiO 2、Al 2O 3、Li 7La 3Zr 2O 12,60℃时电池倍率性能(2.0C/0.1C)由68.51%分别提高到76.85%、77.78%、79.06%,说明无机填料有利于提高电导率,提高电池的倍率性能。
对比实施例1与实施例6的效果可以看出,采用两种不同结构单元的聚酯的共聚物的电池在60℃时倍率性能(2.0C/0.1C)由68.51%提高到72.37%,说明共聚有利于抑制聚合物结晶,提升电池的倍率性能。
对比实施例10和实施例13的结果可以看出,60℃时电池倍率性能(2.0C/0.1C)由53.42%分别提高到60.96%,说明聚合物的端基含不饱和键且进行聚合交联能改善电池性能。
对比实施例18与实施例1结果可以看出,当聚酯类聚合物采用线性结构时,60℃时聚合物电池的倍率性能(2.0C/0.1C)为65.64%,当采用支化结构时,倍率性能(2.0C/0.1C)提升到68.51%,说明支化结构在抑制聚合物的结晶,提高离子电导率,提升电池性能方面有优势。
对比实施例25与对比例3的结果可以看出,在以LiCoO 2为正极活性材料,Li金属为负极材料的电池中,当锂盐中的锂离子与酯基官能团的摩尔比由1/16 增加到1/6时,电池在60℃时倍率性能(2.0C/0.1C)由43.34%提高到59.51%,聚合物电池60℃时循环100周后容量保持率由61.1%左右提升到90.8%,说明增加锂盐中的锂离子与聚合物中的酯基官能团的摩尔比利于锂离子的传输,提高了电池的倍率性能,且聚酯类聚合物中的大量酯基官能团与锂离子发生络合,提高了聚酯类聚合物的分解电压,使聚合物电解质具有更好的耐电压性能,电池的循环性能得到改善。并且,类似的效果在以LiNi 0.5Mn 0.3Co 0.2O 2为正极活性材料,Si为负极活性材料的电池(对比实施例28与对比例4)和以LiNi 0.5Mn 0.3Co 0.2O 2为正极活性材料,石墨为负极活性材料的电池(对比实施例29与对比例5)中得到验证。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种用于锂离子电池的聚合物电解质,其特征在于,包括锂盐和聚酯类聚合物,且所述聚合物电解质中的锂盐中的锂离子与聚酯类聚合物中的酯基官能团的摩尔比为1/6以上。
  2. 根据权利要求1所述的聚合物电解质,其特征在于,所述聚合物电解质中的锂盐中的锂离子与聚酯类聚合物中的酯基官能团的摩尔比为1/4以上,优选为1/4~1/1。
  3. 根据权利要求1或2所述的聚合物电解质,其特征在于,所述聚酯类聚合物中,所有重复单元中碳原子数的总和相对于重复单元总数的比值为4以下。
  4. 根据权利要求1-3中任意一项所述的聚合物电解质,其特征在于,所述的聚酯类聚合物是如下式1所述的聚合物:
    式1:A-R L
    其中,A为烃基或含氧的烃基,L为整数且L≥1;
    R为
    Figure PCTCN2018092970-appb-100001
    R a、R b各自独立的选自亚烷基,R x选自有机官能团或卤素,m1是大于0的自然数,n1是自然数。
  5. 根据权利要求4所述的聚合物电解质,其特征在于,所述式1中,R a中的碳原子数为a’,R b中的碳原子数为b’,((a’+1)*m1+(b’+1)*n1)/(m1+n1)≤4。
  6. 根据权利要求4或5所述的聚合物电解质,其特征在于,所述式1中,L≥3。
  7. 根据权利要求6所述的聚合物电解质,其特征在于,所述聚酯类聚合物选自如下结构式中的一种或多种:
    Figure PCTCN2018092970-appb-100002
    其中,所述R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17各自独立的选自
    Figure PCTCN2018092970-appb-100003
    并且,R a、R b各自独立的选自亚烷基,R x选自有机官能团或卤素,m1是大于0的整数,n1是自然数。
  8. 根据权利要求4-7中任意一项所述的聚合物电解质,其特征在于,R a、R b各自独立的选自如下结构式中的一种:
    Figure PCTCN2018092970-appb-100004
    其中,m2选自1~5的自然数、m3、m4、m5各自独立的选自0~3的自然数。
  9. 根据权利要求4~8中任意一项所述的聚合物电解质,其中R x选自含有不饱和键的烃基、含氧烃基或酯基,且所述不饱和键发生或不发生聚合反应形成梳状或交联网络状结构。
  10. 根据权利要求1所述的聚合物电解质,其特征在于,所述锂盐选自LiN(SO 2CF 3) 2、LiN(SO 2F) 2、LiPF 6、LiBF 4、LiBOB、LiDFOB、LiCF 3SO 3中的一种或多种。
  11. 根据权利要求1所述的聚合物电解质,其特征在于,所述聚合物电解质中还包括无机填料。
  12. 根据权利要求11所述的聚合物电解质,其特征在于,所述无机填料包 括SiO 2、Al 2O 3、TiO 2、ZrO 2、MgO、Li 7La 3Zr 2O 12、Li 6.4La 3Zr 1.4Ta 0.6O 12、Li 10GeP 2S 12、Li 1.3Al 0.3Ti 1.7(PO 4) 3、Li 2.88PO 3.73N 0.14、蒙脱土、高岭土、硅藻土中的一种或多种。
  13. 一种聚合物电池,其特征在于,包括正极、负极、位于所述正极和负极之间的聚合物电解质,所述聚合物电解质为权利要求1~12中任意一项所述的聚合物电解质。
  14. 根据权利要求13所述的聚合物电池,其特征在于,所述正极包括正极活性材料,所述正极活性材料为LiNi xCo yMnzL (1-x-y-z)O 2、LiCo x’L (1-x’)O 2、LiNi x”L’ y’Mn (2-x”-y’)O 4、Li z’MPO 4中的至少一种;其中,L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe中的至少一种;0≤x≤1,0≤y≤1,0≤z≤1,0<x+y+z≤1,0<x’≤1,0.3≤x”≤0.6,0.01≤y’≤0.2;L’为Co、Al、Sr、Mg、Ti、Ca、Zr、Zn、Si、Fe中的至少一种;0.5≤z’≤1,M为Fe、Mn、Co中的至少一种。
  15. 根据权利要求13所述的聚合物电池,其特征在于,所述负极包括锂金属、石墨、含硅材料中的一种或多种。
PCT/CN2018/092970 2018-03-19 2018-06-27 一种用于锂离子电池的聚合物电解质及聚合物电池 WO2019178972A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810223295.7 2018-03-19
CN201810223295.7A CN110289446B (zh) 2018-03-19 2018-03-19 一种用于锂离子电池的聚合物电解质及聚合物电池

Publications (1)

Publication Number Publication Date
WO2019178972A1 true WO2019178972A1 (zh) 2019-09-26

Family

ID=67986719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092970 WO2019178972A1 (zh) 2018-03-19 2018-06-27 一种用于锂离子电池的聚合物电解质及聚合物电池

Country Status (2)

Country Link
CN (1) CN110289446B (zh)
WO (1) WO2019178972A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111162313A (zh) * 2019-12-23 2020-05-15 珠海冠宇电池有限公司 一种聚合物电解质及锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254303A (ja) * 1986-04-26 1987-11-06 日立マクセル株式会社 リチウムイオン伝導性ポリマ−電解質
US6569572B1 (en) * 1998-08-11 2003-05-27 Yuasa Corporation Lithium battery, polymer electrolyte, electrolyte material, di(meth)acrylic ester, and di(meth)acrylate polymer
CN106374139A (zh) * 2016-11-04 2017-02-01 北京大学 一种凝胶电解质材料用单体、聚合物、制备方法及其应用
CN106876784A (zh) * 2017-01-04 2017-06-20 沈阳工业大学 一种peo基固态聚合物电解质膜及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066323B (zh) * 2012-12-17 2015-03-04 华中科技大学 一种无机纳米粒子改性的聚合物电解质及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254303A (ja) * 1986-04-26 1987-11-06 日立マクセル株式会社 リチウムイオン伝導性ポリマ−電解質
US6569572B1 (en) * 1998-08-11 2003-05-27 Yuasa Corporation Lithium battery, polymer electrolyte, electrolyte material, di(meth)acrylic ester, and di(meth)acrylate polymer
CN106374139A (zh) * 2016-11-04 2017-02-01 北京大学 一种凝胶电解质材料用单体、聚合物、制备方法及其应用
CN106876784A (zh) * 2017-01-04 2017-06-20 沈阳工业大学 一种peo基固态聚合物电解质膜及其制备方法

Also Published As

Publication number Publication date
CN110289446B (zh) 2021-05-14
CN110289446A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
WO2020207450A1 (zh) 一种固态电解质及聚合物锂离子电池
CN106159313B (zh) 锂金属电池
Lu et al. A novel solid composite polymer electrolyte based on poly (ethylene oxide) segmented polysulfone copolymers for rechargeable lithium batteries
CN102473917B (zh) 二次电池用电极及二次电池
US8357470B2 (en) Organic solid electrolyte and secondary battery
KR20150083724A (ko) 2차전지용 바인더 조성물, 이를 채용한 양극과 리튬전지
CN110574209A (zh) 用于二次电池的聚合物电解质和包括该聚合物电解质的锂二次电池
CN108886149A (zh) 电化学元件用粘接剂
KR102465691B1 (ko) 전기 화학 소자용 도전재 분산액, 전기 화학 소자 전극용 슬러리, 전기 화학 소자용 전극 및 전기 화학 소자
WO2021135899A1 (zh) 一种固态电解质及固态锂离子电池
CN112074984A (zh) 锂二次电池用电解质
CN116420247A (zh) 电极
EP3910704A1 (en) Non-aqueous electrolyte cell electrode binder, non-aqueous electrolyte cell electrode binder solution, non-aqueous electrolyte cell electrode slurry, non-aqueous electrolyte cell electrode, and non-aqueous electrolyte cell
US11489203B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery including same
JPH10294015A (ja) 高分子固体電解質及びその用途
WO2019178972A1 (zh) 一种用于锂离子电池的聚合物电解质及聚合物电池
KR20210153053A (ko) 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 정극용 슬러리 조성물, 비수계 이차 전지용 정극, 및 비수계 이차 전지
JP4985959B2 (ja) 有機固体電解質及びこれを用いた2次電池
WO2019178973A1 (zh) 一种用于锂离子电池的聚合物电解质及聚合物电池
CN112615049B (zh) 固态电解质及包含它的电池
KR20180007544A (ko) 고분자, 및 이를 포함하는 전해질과 리튬 전지
CN113661591A (zh) 非水系二次电池电极用粘结剂组合物、非水系二次电池正极用浆料组合物、非水系二次电池用正极和非水系二次电池
WO2021135900A1 (zh) 一种固态电解质及固态锂离子电池
WO2022117082A1 (zh) 一种凝胶型聚合物及含该凝胶型聚合物的锂离子电池
US20230246231A1 (en) Solid polymer electrolytes for solid-state lithium metal batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911259

Country of ref document: EP

Kind code of ref document: A1