WO2019177281A1 - 내산화성이 우수한 전기 도금 비드와이어 - Google Patents

내산화성이 우수한 전기 도금 비드와이어 Download PDF

Info

Publication number
WO2019177281A1
WO2019177281A1 PCT/KR2019/002258 KR2019002258W WO2019177281A1 WO 2019177281 A1 WO2019177281 A1 WO 2019177281A1 KR 2019002258 W KR2019002258 W KR 2019002258W WO 2019177281 A1 WO2019177281 A1 WO 2019177281A1
Authority
WO
WIPO (PCT)
Prior art keywords
electroplating
plating
plating layer
bead wire
wire
Prior art date
Application number
PCT/KR2019/002258
Other languages
English (en)
French (fr)
Inventor
박평렬
박옥실
전지호
Original Assignee
홍덕산업(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 홍덕산업(주) filed Critical 홍덕산업(주)
Priority to US16/977,012 priority Critical patent/US11447886B2/en
Priority to EP19767200.9A priority patent/EP3767013A4/en
Priority to CN201980013933.5A priority patent/CN111936672A/zh
Priority to BR112020018244-3A priority patent/BR112020018244A2/pt
Priority to JP2020545790A priority patent/JP7162067B2/ja
Priority to MX2020008210A priority patent/MX2020008210A/es
Publication of WO2019177281A1 publication Critical patent/WO2019177281A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/619Amorphous layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/04Bead cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/58Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0607Wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • B60C2009/0014Surface treatments of steel cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/04Bead cores
    • B60C2015/046Cable cores, i.e. cores made-up of twisted wires

Definitions

  • the present invention relates to an electroplating bead wire having excellent oxidation resistance, and more particularly, an electroplating bead having excellent oxidation resistance by forming a copper and cobalt plating layer by an electroplating method to improve oxidation resistance and aging adhesion with tire rubber. It is about a wire.
  • the bead wire embedded in the bead portion of the automobile tire is plated on the surface of the copper and tin alloy mainly by chemical plating or substitution plating to improve the adhesion to the rubber.
  • the adhesion between the bronze-plated beadwire and the rubber is known to depend on the bond between the copper component in the bronze and the sulfur in the rubber, and thus the bond between the rubber and the beadwire during the curing (vulcanization) of the bronze-plated beadwire
  • the bonding force is gradually increased by the chemical reaction between bronze and rubber at the contact of the two materials.
  • the bead wire is made of bronze containing tin in an appropriate ratio of copper. It will be plated.
  • Adhesion between the bronze-plated bead wire and tire rubber by chemical plating or substitution plating is gradually reduced by various factors over time compared to the initial stage of vulcanization.
  • the main factors of this decrease in adhesion force include repeated compressive and tensile loads applied to the tires while the tire is running, and extreme heat and moisture conditions applied by the outside, and the adhesion between rubber and bead wires by such moisture or oxygen Deterioration occurs.
  • a relative humidity condition of 80 RH% or more is derived, and when exposed to such an environment for 10 days or more, condensation phenomenon (vaporized dew point or less) is liquefied due to temperature difference. Absolute humidity is greater than the amount of saturated water vapor) to be oxidized bead wire surface or there is a problem that the adhesion can be reduced.
  • the plating layer 20 bronze-plated by the conventional chemical plating or substitution plating method does not have the plating layer 20 formed deep to the surface of the wire 10, and the surface is not plated (Bare). ) Will occur. More specifically, referring to FIG. 2B, when the bronze plating layer 20 is formed on the surface of the wire 10 by chemical plating or substitution plating, the plating layer 20 is not formed uniformly, and the plating layer 20 is partially formed. Will cause a difference. In addition, a surface (Bare) in which no plating layer is formed may be formed deep in the surface of the wire 10.
  • the rubber adhesion force is not formed because a smooth adhesive interface is not formed during rubber and vulcanization, and the unplated surface is easily corroded by external environment such as moisture or oxygen. There is a problem that a decrease in adhesion (and a decrease in aging adhesive strength) between the bead wire and.
  • the present invention has been made to solve the above-mentioned problems, and more particularly, electroplating bead wires having excellent oxidation resistance by forming copper and cobalt plating layers by electroplating to improve oxidation resistance and aging adhesion with tire rubber. It is about.
  • the electroplating bead wire excellent in oxidation resistance of the present invention for solving the above problems is made, including a plating layer formed through electroplating, the plating layer, 40 to 99% by weight of copper, 1 to 40% by weight of It is characterized by including cobalt.
  • the plating layer of the electroplating bead wire excellent in oxidation resistance of the present invention for solving the above problems further comprises a third element, the third element is preferably made of 1 to 20% by weight of phosphorus.
  • the plating layer of the electroplating bead wire excellent in oxidation resistance of the present invention for solving the above problems further comprises a third element, the third element of nickel, indium, bismuth, zinc, tin, manganese, molybdenum Any one element, and the third element is preferably 1 to 20% by weight.
  • the thickness of the plating layer of the electroplating bead wire excellent in oxidation resistance of the present invention for solving the above problems is preferably 0.005 to 2.0 ⁇ m
  • the copper of the plating layer is formed by electroplating in the first electroplating bath
  • the cobalt of the plating layer is preferably formed by being electroplated in the second electroplating bath after passing through the first electroplating bath.
  • the plating solution used in the first electroplating bath and the second electroplating bath of the electroplating bead wire excellent in oxidation resistance of the present invention for solving the above problems is cyanide, pyrophosphoric acid, chloride, sulfide-based, dental phosphate plating solution It is preferable to include any one or more of the above, the plating liquid of the first electroplating bath is used as the metal salt of copper, the concentration of the metal salt of copper is 20 to 150g / L, the plating solution of the second electroplating bath is It is used as the metal salt of cobalt, and the concentration of the metal salt of cobalt is preferably 1 to 20 g / L.
  • the electroplating temperature of the first electroplating bath and the second electroplating bath of the electroplating bead wire excellent in oxidation resistance of the present invention for solving the above problems is preferably 20 to 60 degrees.
  • the present invention relates to a bead wire formed with a copper and cobalt plating layer by an electroplating method, and can form a dense plated layer without an unplated surface by forming a copper and cobalt plating layer using an electroplating method. This has the advantage of improving the oxidation resistance and aging adhesive strength with the tire rubber.
  • the present invention can improve the oxidation resistance and aging adhesive strength by forming the plating layer with cobalt through the electroplating method, and at the same time has the advantage of reducing the production cost by reducing the content of the bead wire plating layer.
  • the plating layer is formed of cobalt through an electroplating method, an organic solvent coating process is unnecessary, thereby preventing environmental pollution and reducing the cost of manufacturing bead wires.
  • 1 is a view showing the temperature and humidity conditions of the bead wire transport process.
  • 2a and 2b is a view showing the surface of the plating layer according to the conventional chemical plating or substitution plating.
  • FIG 3 is a view showing a schematic diagram of the element arrangement of the plating layer according to an embodiment of the present invention.
  • FIG. 4 is a view showing the surface of the copper and cobalt plating layer formed through electroplating according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a first electroplating step of electroplating copper through a first electroplating bath according to an embodiment of the present invention.
  • FIG. 6 is a view showing a second electroplating step of electroplating cobalt through a second electroplating bath according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of manufacturing an electroplating bead wire having excellent oxidation resistance according to an exemplary embodiment of the present invention.
  • FIG. 8 is a view showing a direct current electroplating in electroplating according to an embodiment of the present invention.
  • FIG. 9 is a view showing pulse electroplating in electroplating according to an embodiment of the present invention.
  • the present invention relates to an electroplating bead wire having excellent oxidation resistance, and to an electroplating bead wire having excellent oxidation resistance by forming a copper and cobalt plating layer by an electroplating method to improve oxidation resistance and aging adhesion with tire rubber.
  • Electroplating bead wire excellent in oxidation resistance is made to include a plating layer 120 formed through electroplating.
  • the plating layer 120 is formed by electroplating the wire 110 (or steel wire), and the plating layer 120 is formed on the wire 110. Referring to FIG. 3, the plating layer 120 is formed through electroplating, and may include 40 to 99 wt% copper 121 and 1 to 40 wt% cobalt 122.
  • the copper 121 may be made of 40 to 80% by weight, and the cobalt 122 may be made of 1 to 40% by weight.
  • the plating layer 120 is formed of the copper 121 and the cobalt 122 through electroplating, a plating layer having improved oxidation resistance and aging adhesive strength may be obtained as compared with the conventional plating layer of bronze plating (copper and tin). Can be formed.
  • the plating layer 120 by electroplating the cobalt 122, there is an advantage that can reduce the amount of copper used in conventional chemical plating or substitution plating by about 10 to 70% by weight, this There is an advantage that can reduce the content of the plating layer through. (In addition, since the atomic weight of cobalt is smaller than that of copper and tin, the content of the plating layer may be reduced by using cobalt instead of tin.)
  • the plating layer 120 is preferably used as a binary plating layer made of the copper 121 and the cobalt 122, but is not limited thereto.
  • the plating layer 120 together with the copper 121 and the cobalt 122 may be made of a three-way plating layer while using a third element.
  • the plating layer 120 may further comprise a third element, the third element may be made of 1 to 20% by weight of phosphorus.
  • the third element may be any one element of nickel, indium, bismuth, zinc, tin, manganese, and molybdenum, and the third element may include 1 to 20 wt%.
  • the phosphorus component which is a non-metallic material
  • the plating layer 120 is alloyed on the plating layer 120 or alloyed with metals such as nickel, indium, bismuth, zinc, tin, manganese, and molybdenum
  • the heterogeneity of heteroatoms is higher than that of the homogeneous atoms.
  • a strong amorphous plating layer (Amorphous) can be formed. Through such a plating layer it is possible to significantly improve the oxidation resistance and aging adhesive strength.
  • the plating layer 120 may be formed of a binary plating layer of the copper 121 and the cobalt 122, and may be formed of the three-dimensional plating layer of the copper 121, the cobalt 122, and the third element. It may be done. However, the present invention is not limited thereto, and if necessary, the plating layer 120 may be formed while a plurality of the above-described third elements are used simultaneously.
  • the plating layer 120 may have a thickness of 0.005 to 2.0 ⁇ m.
  • Conventional chemical plating or substitution plating method has to use a complexing agent and a reducing agent in order to plate more than one component on copper-tin, this method has a problem that it is difficult to apply to industrial sites because the plating speed is significantly slow.
  • the thickness of the plating layer 120 plated with at least two or more components may be 0.0 to 2.0 ⁇ m.
  • the thickness of the plating layer 120 may be 0.1 to 2.0 ⁇ m, and may be 0.01 to 2.0 ⁇ m.
  • the plating layer 120 is formed through electroplating.
  • the plating layer 120 may be formed to be dense as compared with the conventional chemical plating or substitution plating. Can be.
  • steel wires have complex irregularities on the surface, but in the case of conventional chemical plating or substitution plating, the surface is not plated by the complicated irregularities (bare surface) (see FIGS. 2A and 2B).
  • the present invention can minimize the surface that is not plated (Bare surface) by forming an amorphous plating layer through the electroplating method, it is possible to increase the oxidation resistance and aging adhesive strength of the bead wire.
  • FIG. 2A and FIG. 4 are results obtained by performing EDX qualitative analysis after observing whether the plating layer surface of the bead wire is uniformly formed up to the inside of the wire unevenness using FE-SEM.
  • the wire 110 is electroplated while passing through the electroplating bath.
  • the copper 121 of the plating layer 120 is formed by being electroplated in the first electroplating bath 130.
  • the cobalt 122 of the plating layer 120 is formed.
  • the second electroplating bath 140 may be electroplated. That is, the copper 121 and the cobalt 122 of the plating layer 120 may be formed through an electroplating method, respectively.
  • the wire 110 is electroplated while passing through the first electroplating bath 130.
  • the cathode is hung on the wire 110 through a first cathode roller 132 (Cathod Roller) installed at the inlet and the outlet of the first electroplating bath 130, and the first electroplating bath 130 A positive electrode is applied to the immersed first positive electrode plate 131 (Anode) to form a circuit.
  • a first cathode roller 132 Cathod Roller
  • a positive electrode is applied to the immersed first positive electrode plate 131 (Anode) to form a circuit.
  • the plating solution used in the first electroplating bath 130 may include any one or more of cyanide, pyrophosphoric acid, chloride, sulfide-based, phosphate-based plating solution, cyanide, pyrophosphate, chloride, sulfide, Plating liquid consisting of the tooth phosphoric acid can be used as a metal salt of copper. That is, the plating solution including any one or more of cyanide, pyrophosphoric acid, chloride, sulfide, and phosphate is made of a compound containing copper. As such, when the electroplating is performed in the first electroplating bath 130 through the compound containing copper, the plating layer including the copper 121 may be formed.
  • the metal salt concentration of copper is preferably 20 to 150 g / L. If the metal salt concentration of the copper is too small (less than 20g / L), the plating rate precipitated on the wire 110 is faster than the buffering speed to be burned. In addition, when the metal salt concentration of the copper is too high (higher than 150 g / L), the metal salt may precipitate in the plating liquid and the plating liquid may become unstable, so the metal salt concentration of the copper is preferably 20 g / L to less than 150 g / L. . However, the concentration of the plating liquid is not limited thereto, and may be modified and used as necessary.
  • the conventional chemical plating or substitution plating method had to go through a diffusion heat treatment process of 500 degrees or more, such a high temperature diffusion heat treatment has a problem that the strength of the bead wire occurs.
  • the electroplating can be electroplated at a temperature of 20 degrees to 60 degrees without a high temperature diffusion heat treatment process, there is an advantage that can prevent the strength degradation of the bead wire.
  • the electroplating temperature of the first electroplating bath 130 is preferably 20 to 60 degrees. (Sludge may precipitate in the plating solution when the temperature of the electroplating is 60 degrees or more, so that the plating layer may become unstable. Therefore, the electroplating temperature of the first electroplating bath 130 may be 20 to 60 degrees. desirable.)
  • Electroplating through the second electroplating bath 140 may be the same as the process of the first electroplating bath 130, and the metal salt of copper metal salt dash cobalt.
  • the cathode is hung on the wire 110 through a second cathode roller 142 (Cathod Roller) installed at the inlet and outlet of the second electroplating tank 140, and the second electroplating tank ( A positive electrode is applied to the second positive electrode plate 141 (Anode) immersed in 140 to configure a circuit.
  • a second cathode roller 142 Cathod Roller
  • a positive electrode is applied to the second positive electrode plate 141 (Anode) immersed in 140 to configure a circuit.
  • the plating solution used in the second electroplating bath 130 may include any one or more of cyanide, pyrophosphoric acid, chloride, sulfide, and phosphate plating solution, and may include cyanide, pyrophosphate, chloride, sulfide, Plating solution consisting of chia phosphate can be used as a metal salt of cobalt. That is, the plating liquid containing any one or more of cyanide, pyrophosphoric acid, chloride, sulfide, and phosphate is made of a compound containing cobalt. As such, when the electroplating is performed in the second electroplating bath 140 through the compound containing cobalt, the plating layer including the cobalt 122 may be formed.
  • the metal salt concentration of the cobalt is preferably 1 to 20 g / L. If the metal salt concentration of the cobalt is too small (less than 1g / L), the plating rate precipitated on the wire 110 is faster than the buffering speed can cause burning (Burning). In addition, when the metal salt concentration of cobalt is too high (higher than 20 g / L), the metal salt may precipitate in the plating liquid and the plating liquid may become unstable, so the metal salt concentration of the cobalt is preferably 1 g / L to less than 20 g / L. . However, the concentration of the plating liquid is not limited thereto, and may be modified and used as necessary.
  • the electroplating temperature of the second electroplating bath 130 is preferably 20 degrees to 60 degrees, and through this, there is an advantage of preventing a decrease in the strength of the bead wire generated during the high temperature heat treatment. (When the temperature of the electroplating is 60 degrees or more, sludge may precipitate in the plating solution and the plating layer may become unstable. Therefore, the electroplating temperature of the second electroplating bath 140 is 20 to 60 degrees. desirable.)
  • the first rectifier 133 and the second rectifier 143 may be used in the first electroplating bath 130 and the second electroplating bath 140, and the rectifier is a well-known technology, and thus detailed description thereof will be omitted. .
  • the current density is preferably 1 to 50 A / dm2, the electroplating time is 10 seconds or less is preferable. (Does not include 0 seconds.)
  • the current applied to the first electroplating bath 130 and the second electroplating bath 140 preferably uses a direct current or pulse method. Do.
  • the method of applying a cathode to the wire 110 may be a high-productivity direct current method as shown in Figure 8, in the case of a very rough surface of the wire periodically to form a uniform plating layer of the uneven portion It is good to use a pulse method to give a cathode.
  • the plating layer 120 formed by electroplating has a thickness of 0.005 to 2.0 ⁇ m.
  • the density of current applied to maintain the thickness is 1 to 50 A / dm 2 , and the time is 10 seconds or less.
  • the current density is not limited to this, and the current density may be 50 A / dm 2 or more in order to achieve the normal adhesion amount of the bead wire, You can also adjust.
  • the electroplating bead wire manufacturing method having excellent oxidation resistance includes a wire preparation step (S100), a wire arrangement step (S200), and an electroplating step (S300).
  • the wire preparation step (S100) is a step of processing the wire 110 before the electroplating.
  • the wire 110 may be drawn before electroplating, and may be heat treated. It can also be pickled through a hydrochloric acid solution.
  • the wire preparation step (S100) is a preparation step before electroplating the wire 110, and may include the above-described wire processing, heat treatment, and acid washing, but the wire preparation step (S100) is not limited thereto. If there is a necessary process before the electroplating, other processes may be included as a matter of course.
  • the wire arranging step (S200) is a step of arranging the wire 110 to electroplat the wire 110.
  • the wire 110 is electroplated while passing through the electroplating bath, and the wire arranging step (S200) is a step of arranging the wire 110 to pass through the electroplating bath.
  • the electroplating step (S300) is a step of applying an electric current to the electroplating bath, and electroplating the wire 110 by passing the wire 110 through the electroplating bath.
  • the plating layer 120 including 40 to 99 wt% copper 121 and 1 to 40 wt% cobalt 122 may be formed.
  • the copper 121 may be made of 40 to 80% by weight, and the cobalt 122 may be made of 1 to 40% by weight.
  • the plating layer 120 is formed of the copper 121 and the cobalt 122 through electroplating, a plating layer having improved oxidation resistance and aging adhesive strength may be obtained as compared with the conventional plating layer of bronze plating (copper and tin). Can be formed.
  • the plating layer 120 is preferably used as a binary plating layer made of the copper 121 and the cobalt 122, but is not limited thereto.
  • the plating layer 120 together with the copper 121 and the cobalt 122 may be made of a three-way plating layer while using a third element. (The third element may also be formed by electroplating.)
  • the plating layer 120 may further comprise a third element, the third element may be made of 1 to 20% by weight of phosphorus.
  • the third element may be any one element of nickel, indium, bismuth, zinc, tin, manganese, and molybdenum, and the third element may include 1 to 20 wt%.
  • the plating layer 120 may have a thickness of 0.005 to 2.0 ⁇ m.
  • Conventional chemical plating or substitution plating method has to use a complexing agent and a reducing agent in order to plate more than one component on copper-tin, this method has a problem that it is difficult to apply to industrial sites because the plating speed is significantly slow.
  • the thickness of the plating layer 120 on which the at least two or more components are plated can be set to 0.005 to 2.0 ⁇ m.
  • the thickness of the plating layer 120 may be 0.1 to 2.0 ⁇ m, or 0.01 to 2.0 ⁇ m.
  • the electroplating step S300 may include a first electroplating step S310 and a second electroplating step S330.
  • the first electroplating step (S310) is a step of electroplating the wire 110 in the first electroplating bath 130 through a metal salt containing copper
  • the second electroplating step (S330) The wire 110 passed through the first electroplating step S310 is electroplated in the second electroplating bath 140 through a metal salt including cobalt. That is, the copper 121 of the plating layer 120 is formed by being electroplated in the first electroplating bath 130, and the cobalt 122 of the plating layer 120 is formed in the second electroplating bath 140. It is formed by electroplating.
  • the wire 110 is electroplated while passing through the first electroplating bath 130.
  • the cathode is hung on the wire 110 through a cathode roller 132 (Cathod Roller) installed at the inlet and the outlet of the first electroplating bath 130 and immersed in the first electroplating bath 130.
  • a positive electrode is applied to the first positive electrode plate 131 (Anode) to configure a circuit.
  • the plating solution used in the first electroplating bath 130 may include any one or more of cyanide, pyrophosphoric acid, chloride, sulfide-based, phosphate-based plating solution, cyanide, pyrophosphate, chloride, sulfide, Plating liquid consisting of the tooth phosphoric acid can be used as a metal salt of copper. That is, the plating solution including any one or more of cyanide, pyrophosphoric acid, chloride, sulfide, and phosphate is made of a compound containing copper. As such, when the electroplating is performed in the first electroplating bath 130 through the compound containing copper, the plating layer including the copper 121 may be formed.
  • the metal salt concentration of copper is preferably 20 to 150 g / L. If the metal salt concentration of the copper is too small (less than 20g / L), the plating rate precipitated on the wire 110 is faster than the buffering speed to be burned. In addition, when the metal salt concentration of the copper is too high (higher than 150 g / L), the metal salt may precipitate in the plating liquid and the plating liquid may become unstable, so the metal salt concentration of the copper is preferably 20 g / L to less than 150 g / L. . However, the concentration of the plating liquid is not limited thereto, and may be modified and used as necessary.
  • the conventional chemical plating or substitution plating method had to go through a diffusion heat treatment process of 500 degrees or more, such a high temperature diffusion heat treatment has a problem that the strength of the bead wire occurs.
  • the electroplating can be electroplated at a temperature of 20 degrees to 60 degrees without a high temperature diffusion heat treatment process, there is an advantage that can prevent the strength degradation of the bead wire.
  • the electroplating temperature of the first electroplating step (S310) is preferably 20 degrees to 60 degrees. (Sludge may precipitate in the plating solution when the temperature of the electroplating is 60 degrees or more, so that the plating layer may become unstable. Therefore, the electroplating temperature of the first electroplating bath 130 may be 20 to 60 degrees. desirable.)
  • the second electroplating step (S330) is to electroplate the wire 110 electroplated in the first electroplating bath 130 while passing through the second electroplating bath 140, thereby the plating layer.
  • Cobalt may be electroplated on 120. Electroplating through the second electroplating bath 140 may also be performed in the same manner as the first electroplating bath 130, and a metal salt of copper metal dash dash cobalt is used.
  • the cathode is hung on the wire 110 through a cathode roller 142 (Cathod Roller) installed at the inlet and outlet of the second electroplating bath 140, and is immersed in the second electroplating bath 140.
  • a positive electrode is applied to the positive electrode plate 131 (Anode) to construct a circuit.
  • the plating solution used in the second electroplating bath 130 may include any one or more of cyanide, pyrophosphoric acid, chloride, sulfide, and phosphate plating solution, and may include cyanide, pyrophosphate, chloride, sulfide, Plating solution consisting of chia phosphate can be used as a metal salt of cobalt. That is, the plating liquid containing any one or more of cyanide, pyrophosphoric acid, chloride, sulfide, and phosphate is made of a compound containing cobalt. As such, when the electroplating is performed in the second electroplating bath 140 through the compound containing cobalt, the plating layer including the cobalt 122 may be formed.
  • the metal salt concentration of the cobalt is preferably 1 to 20 g / L. If the metal salt concentration of the cobalt is too small (less than 1g / L), the plating rate precipitated on the wire 110 is faster than the buffering speed can cause burning (Burning). In addition, when the metal salt concentration of cobalt is too high (higher than 20 g / L), the metal salt may precipitate in the plating liquid and the plating liquid may become unstable, so the metal salt concentration of the cobalt is preferably 1 g / L to less than 20 g / L. . However, the concentration of the plating liquid is not limited thereto, and may be modified and used as necessary.
  • the electroplating temperature of the second electroplating step (S330) is preferably 20 degrees to 60 degrees, through which there is an advantage that can prevent the strength degradation of the bead wire generated during the high temperature heat treatment process. (When the temperature of the electroplating is 60 degrees or more, sludge may precipitate in the plating solution and the plating layer may become unstable. Therefore, the electroplating temperature of the second electroplating bath 140 is 20 to 60 degrees. desirable.)
  • the current density is preferably 1 to 50 A / dm2, the electroplating time is 10 seconds or less is preferable. (Does not include 0 seconds.)
  • the current applied in the first electroplating step (S310) and the second electroplating step (S330) is preferably using a direct current or a pulse method. Do.
  • the method of applying a cathode to the wire 110 may be a high-productivity direct current method as shown in Figure 8, in the case of a very rough surface of the wire periodically to form a uniform plating layer of the uneven portion It is good to use a pulse method to give a cathode.
  • the plating layer 120 formed by electroplating has a thickness of 0.005 to 2.0 ⁇ m.
  • the density of current applied to maintain the thickness is 1 to 50 A / dm 2 , and the time is 10 seconds or less.
  • the current density is not limited to this, and the current density may be 50 A / dm 2 or more in order to achieve the normal adhesion amount of the bead wire, You can also adjust.
  • the electroplating step (S300) may further comprise an intermediate processing step (S320).
  • the intermediate processing step (S320) is a process that can be performed after the first electroplating step (S310) and before the second electroplating step (S330), and the above after the first electroplating step (S310) The step of cleaning the surface of the wire 110 is performed.
  • the intermediate treatment step (S320) is a washing tank or washing tank step of preparing the second electroplating step (S330), the pretreatment for increasing the electroplating effect of the cobalt metal salt in the second electroplating step (S330). It can be a process.
  • the intermediate processing step (S320) is not limited thereto, and the process may be performed after the first electroplating step (S310) and before the second electroplating step (S330). Various processes may be included.
  • the carbon content was 0.80% and the diameter of 5.5 mm wire was pickled after the pickling to 1.30 mm diameter, and the wire was heat-treated at a temperature in the range of 400 ⁇ 500 °C. Subsequently, the line surface was washed through a hydrochloric acid bath in which 15 ⁇ 10% hydrochloric acid solution was maintained at 40 ⁇ 10 ° C.
  • the wire 110 is passed through the first cathode roller 132 installed at the inlet / outlet of the first electroplating bath 130 while passing the cleaned wire 110 through the first electroplating bath 130.
  • the circuit was constructed by applying a cathode to the cathode and applying an anode to the first cathode plate Ti 131 immersed in the plating bath.
  • the plating solution was composed of copper pyrophosphate 100g / L, tin tin chloride 10g / L, cobalt chloride 15g / L, sodium hypophosphite 100g / L, potassium pyrophosphate 300g / L, the plating solution temperature was fixed to 45 degrees.
  • the current applied to the wire 110 was a direct current method, the current density was 10 A / dm 2 , and the plating time was 2 seconds. (The first electroplating step (S310))
  • the wire 110 is passed through the second cathode roller 142 installed at the inlet / outlet of the second electroplating bath 140 while passing the cleaned wire 110 through the second electroplating bath.
  • the circuit was constructed by applying a cathode to the cathode and applying an anode to the second cathode plate Ti 141 immersed in the plating bath.
  • the plating solution was composed of copper pyrophosphate 100g / L, tin tin chloride 10g / L, cobalt chloride 15g / L, sodium hypophosphite 100g / L, potassium pyrophosphate 300g / L, the plating solution temperature was fixed to 45 degrees.
  • the current applied to the wire 110 was a direct current method, the current density was 5 A / dm 2 , and the plating time was 7 seconds. (The second electroplating step (S330))
  • the current density is 1 to 100A / dm 2
  • the plating treatment time is preferably adjusted to 0.5 to 20 seconds in the experimental conditions.
  • the current density and the plating treatment time are not limited thereto. If the experimental conditions are improved, the current density and the plating treatment time may be shorter.
  • Figure 10 is a conventional electroplating bead wire and electroplating according to an embodiment of the present invention through the analysis This table compares the oxidation resistance, initial adhesive strength and aging adhesive strength of a bead wire.
  • the bead wire according to the embodiment of the present invention compared to the conventional chemical plating bead wire is increased the initial adhesive strength, the adhesion appearance is improved, the line surface oxygen fraction is reduced.
  • the aging adhesive strength after 3 months and 6 months of aging is significantly increased as compared with the conventional chemical plating bead wire, and the adhesion appearance is remarkably improved.
  • the presurface oxygen fraction after 3 and 6 months of aging is significantly smaller than the presurface oxygen fraction of conventional chemically-plated bead wires.
  • the conventional oxygen-plated bead wire increases the surface oxygen fraction as time passes, but bead wire according to an embodiment of the present invention, because the change in the surface oxygen fraction is small, 3 months and 6 months The aging adhesive force after aging will rise remarkably.
  • Electroplated bead wire excellent in oxidation resistance according to an embodiment of the present invention has the following effects.
  • the bead wire according to the embodiment of the present invention may form a plating layer including copper and cobalt through an electroplating method. 2B and 3, it can be seen that the bead wire according to the embodiment of the present invention forms a denser plating layer than the conventional copper-tin bead wire, thereby improving oxidation resistance and aging adhesive strength with the tire rubber. There is an advantage to this.
  • FIGS. 2A and 2B in the conventional chemical plating or substitution plating bead wires, a surface Bare is formed in which the plating layer 20 is not formed deep to the surface of the wire, but the bead wires according to the embodiment of the present invention 3 and 4 through the copper and cobalt plated layer to form a dense plated layer has the advantage of improving the oxidation resistance and aging adhesive strength with the tire rubber.
  • FIGS. 2A and 2B show the result of EDX qualitative analysis after observing whether the plating layer surface of the bead wire is uniformly formed to the inside of the wire unevenness using FE-SEM.
  • bead wire according to an embodiment of the present invention can improve the plating speed through electroplating By controlling the current density and time, there is an advantage in that a plating layer having an appropriate thickness can be formed.
  • the bead wire according to an embodiment of the present invention has an advantage that can be prevented from falling in strength of the bead wire generated in the diffusion heat treatment of 500 degrees or more as the electroplating proceeds 20 to 60 degrees.
  • the bead wire according to an embodiment of the present invention as the plating layer is formed using electroplating and cobalt, it is possible to reduce the adhesion amount of copper by 10 to 70% by weight compared to the plating layer using a conventional chemical plating and tin, This has the advantage of reducing the content of the plating layer.
  • the conventional chemical plating or substitution plating had to be coated with organic solvents such as xylene after the plating process by the surface (bare) where the plating layer was not formed, thereby increasing environmental pollution and manufacturing cost.
  • organic solvents such as xylene
  • the bead wire according to the embodiment of the present invention is not necessary to the organic solvent coating process by using electroplating, thereby preventing environmental pollution, there is an advantage that can reduce the cost.
  • the bead wire according to the embodiment of the present invention forms a plating layer including copper and cobalt through electroplating to improve oxidation resistance and physical properties of the plating layer, thereby oxidizing the bead wire in the process of transporting the bead wire.
  • oxidation resistance and physical properties of the bead wire is improved, there is an advantage that can simplify the product packaging for transporting the bead wire.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Ropes Or Cables (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Tires In General (AREA)

Abstract

본 발명은 전기 도금 방식으로 구리 및 코발트 도금층을 형성시켜, 내산화성 및 타이어 고무와의 시효 접착력을 향상시킨 내산화성이 우수한 전기 도금 비드와이어에 관한 것으로, 전기 도금을 통해 형성된 도금층을 포함하여 이루어지며, 상기 도금층은, 40 내지 99 중량 %의 구리, 1 내지 40 중량 %의 코발트를 포함하는 것을 특징으로 하는 것이다.

Description

내산화성이 우수한 전기 도금 비드와이어
본 발명은 내산화성이 우수한 전기 도금 비드와이어에 관한 것으로, 더욱 상세하게는 전기 도금 방식으로 구리 및 코발트 도금층을 형성시켜, 내산화성 및 타이어 고무와의 시효 접착력을 향상시킨 내산화성이 우수한 전기 도금 비드와이어에 관한 것이다.
일반적으로 자동차 타이어의 비드부에 매입되는 비드와이어는 고무와의 접착력을 향상시키기 위해 주로 화학도금 또는 치환도금 방법으로 구리와 주석합금을 와이어 표면에 도금시킨다. 청동으로 도금된 비드와이어와 고무 사이의 접착력은 청동 중의 구리 성분과 고무 중의 유황 간의 결합에 좌우되는 것으로 알려져 있는데, 이와 같이 청동으로 도금된 비드와이어가 경화(가류)되는 동안 고무와 비드와이어 사이의 결합력은 두 재료의 접촉부분에서 청동과 고무와의 화학적 반응에 의해 점차적으로 증가하게 된다.
비드와이어와 고무 사이의 높은 접착력을 얻기 위해서는 경화기간 동안에 접착반응의 속도를 적절하게 제어하여야 하는바, 이와 같은 접착반응의 속도를 제어 하기 위해 구리에 적절한 비율의 주석이 함유된 청동으로 비드와이어를 도금하게 된다.
그러나 비드와이어를 이와 같은 화학도금 또는 치환도금으로 제작할 경우 다음과 같은 문제점이 있다.
화학도금 또는 치환도금 방식으로 청동 도금된 비드와이어와 타이어 고무간의 접착력은 가류 초기에 비해 시간이 경과함에 따라 여러 요인에 의해 점차적으로 감소하게 된다. 이러한 접착력 감소의 주된 요인으로는 타이어 주행 중 타이어에 가해지는 반복적인 압축 및 인장하중과 외부에 의해 가해지는 극심한 열기 및 습기상황을 들 수 있으며, 이러한 수분이나 산소에 의해서 고무와 비드와이어 간의 접착성 저하가 발생하게 된다.
또한, 비드와이어는 제조된 후 타이어 제조를 위해 타이어 제조 장소까지 운반이 되어야 한다. 비드와이어 운반과정을 보면, 도 1과 같이 80RH% 이상의 상대습도 조건이 도출되는데, 이러한 환경에 10일 이상 노출될 경우 제품 인근의 기화된 습기가 온도차에 의해 액화되는 결로현상(이슬점 이하로 냉각되어 절대습도가 포화수증기량을 초과)이 발생하여 비드와이어 표면이 산화되거나 접착력이 저하될 수 있는 문제점이 있다.
이와 함께, 도 2a를 참조하면, 종래의 화학도금 또는 치환도금 방식으로 청동 도금된 도금층(20)은 와이어(10)의 표면 깊은 곳까지 도금층(20)이 형성되지 않고, 도금되지 않은 표면(Bare)이 발생하게 된다. 조금 더 구체적으로, 도 2b를 참조하면, 화학도금 또는 치환도금 방식으로 와이어(10) 표면에 청동 도금층(20)을 형성하면, 도금층(20)이 균일하게 형성되지 않게 되면서 부분적으로 도금층(20)의 차이가 발생하게 된다. 또한, 와이어(10) 표면 깊은 곳에는 도금층이 전혀 형성되지 않은 표면(Bare)이 발생할 수 있게 된다.
도금되지 않은 철 소지금속(와이어)이 남아있을 경우 고무와 가류 시 원활한 접착 계면이 형성되지 않아 고무접착력이 불량할 뿐 아니라, 수분이나 산소 등의 외부 환경에 의해 도금되지 않은 표면이 부식되기 쉬워 고무와 비드와이어 간의 접착성 저하(및 시효 접착력 저하)가 발생하게 되는 문제점이 있다.
청동으로 도금된 비드와이어의 경우 상술한 문제점을 해결하기 위해 도금공정 후 자일렌(Xylene) 등을 용제로 유기 용제 코팅을 하게 되지만, 환경 유해 물질인 자일렌(Xylene) 사용에 의해 환경이 오염되는 문제점이 있다. 환경오염 문제를 방지하기 위해 배출설비와 같은 환경 방지 설비를 사용할 수 있으나, 이는 제조 원가적으로 비용이 상승되는 문제점이 있다.
본 발명은 상술한 문제점을 해결하기 위한 창출된 것으로, 더욱 상세하게는 전기 도금 방식으로 구리 및 코발트 도금층을 형성시켜, 내산화성 및 타이어 고무와의 시효 접착력을 향상시킨 내산화성이 우수한 전기 도금 비드와이어에 관한 것이다.
상술한 문제점을 해결하기 위한 본 발명의 내산화성이 우수한 전기 도금 비드와이어는, 전기 도금을 통해 형성된 도금층을 포함하여 이루어지며, 상기 도금층은, 40 내지 99 중량 %의 구리, 1 내지 40 중량 %의 코발트를 포함하는 것을 특징으로 하는 것이다.
상술한 문제점을 해결하기 위한 본 발명의 내산화성이 우수한 전기 도금 비드와이어의 상기 도금층은, 제3원소를 더 포함하며, 상기 제3원소는 1 내지 20 중량 %의 인으로 이루어지는 것이 바람직하다.
상술한 문제점을 해결하기 위한 본 발명의 내산화성이 우수한 전기 도금 비드와이어의 상기 도금층은, 제3원소를 더 포함하며, 상기 제3원소는 니켈, 인듐, 비스무트, 아연, 주석, 망간, 몰리브덴 중 어느 한가지 원소이며, 상기 제3원소는 1 내지 20 중량 %인 것이 바람직하다.
상술한 문제점을 해결하기 위한 본 발명의 내산화성이 우수한 전기 도금 비드와이어의 상기 도금층의 두께는 0.005 내지 2.0 ㎛인 것이 바람직하며, 상기 도금층의 구리는 제1전기 도금조에서 전기 도금되어 형성되며, 상기 도금층의 코발트는 상기 제1전기 도금조를 거친 이후, 제2전기 도금조에서 전기 도금되어 형성되는 것이 바람직하다.
상술한 문제점을 해결하기 위한 본 발명의 내산화성이 우수한 전기 도금 비드와이어의 상기 제1전기 도금조 및 상기 제2전기 도금조에 사용되는 도금액은, 시안화, 피로인산, 염화, 황화계, 치아인산 도금액 중 어느 하나 이상을 포함하는 것이 바람직하며, 상기 제1전기 도금조의 도금액은 상기 구리의 금속염으로 사용되며, 상기 구리의 금속염의 농도는 20 내지 150g/L이고, 상기 제2전기 도금조의 도금액은 상기 코발트의 금속염으로 사용되며, 상기 코발트의 금속염의 농도는 1 내지 20g/L로 인 것이 바람직하다.
상술한 문제점을 해결하기 위한 본 발명의 내산화성이 우수한 전기 도금 비드와이어의 상기 제1전기 도금조 및 상기 제2전기 도금조의 전기 도금 온도는 20도 내지 60도 인 것이 바람직하다.
본 발명은 전기 도금 방식으로 구리 및 코발트 도금층을 형성시킨 비드와이어에 관한 것으로, 전기 도금 방식을 이용하여 구리 및 코발트 도금층을 형성함에 따라 도금되지 않은 표면(Bare)이 없는 치밀한 도금층을 형성시킬 수 있으며, 이를 통해 내산화성 및 타이어 고무와의 시효 접착력을 향상시킬 수 있는 장점이 있다.
또한, 본 발명은 전기 도금 방식을 통해 코발트로 도금층을 형성시킴에 따라 내산화성 및 시효 접착력을 향상시킬 수 있으며, 동시에 비드와이어 도금층의 함량을 감소시켜 제조비용을 절감할 수 있는 장점이 있다.
또한, 본 발명은 전기 도금 방식을 통해 코발트로 도금층을 형성시킴에 따라 유기 용제 코팅 공정이 불필요하며, 이를 통해 환경오염을 방지할 수 있고 비드와이어 제조비용을 절감할 수 있는 장점이 있다.
도 1은 비드와이어 운반과정의 온도 및 습도 조건을 나타내는 도면이다.
도 2a 및 도 2b는 종래의 화학도금 또는 치환도금에 따른 도금층 표면을 나타내는 도면이다.
도 3은 본 발명의 실시 예에 따른 도금층의 원소 배열의 모식도를 나타내는 도면이다.
도 4는 본 발명의 실시 예에 따라 전기 도금을 통해 형성된 구리 및 코발트 도금층의 표면을 나타내는 도면이다.
도 5는 본 발명의 실시 예에 따른 제1전기 도금조를 통해 구리를 전기 도금하는 제1전기 도금 단계를 나타내는 도면이다.
도 6은 본 발명의 실시 예에 따른 제2전기 도금조를 통해 코발트를 전기 도금하는 제2전기 도금 단계를 나타내는 도면이다.
도 7은 본 발명의 실시 예에 따른 내산화성이 우수한 전기 도금 비드와이어 제조방법을 나타내는 순서도이다.
도 8은 본 발명의 실시 예에 따른 전기 도금에서 직류전기 도금을 나타내는 도면이다.
도 9는 본 발명의 실시 예에 따른 전기 도금에서 펄스 전기 도금을 나타내는 도면이다.
도 10은 본 발명의 실시 예에 따른 내산환성이 우수한 전기 도금 비드와이어와 종래의 비드와이어를 비교해 놓은 실험 결과표이다.
본 발명은 내산화성이 우수한 전기 도금 비드와이어에 관한 것으로, 전기 도금 방식으로 구리 및 코발트 도금층을 형성시켜, 내산화성 및 타이어 고무와의 시효 접착력을 향상시킨 내산화성이 우수한 전기 도금 비드와이어에 관한 것이다. 이하, 본 발명의 바람직한 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.
본 발명의 실시 예에 따른 내산화성이 우수한 전기 도금 비드와이어는 전기 도금을 통해 형성된 도금층(120)을 포함하여 이루어진 것이다.
상기 도금층(120)은 와이어(110)(또는 스틸 와이어)를 전기 도금하여 형성되는 것으로, 상기 와이어(110)에 상기 도금층(120)이 형성된다. 도 3을 참조하면, 상기 도금층(120)은 전기 도금을 통해 형성된 것으로, 40 내지 99 중량 %의 구리(121), 1 내지 40 중량 %의 코발트(122)를 포함하여 이루어질 수 있는 것이다.
여기서, 바람직하게는 상기 구리(121)는 40 내지 80 중량 %로 이루어질 수 있으며, 상기 코발트(122)는 1 내지 40 중량 %로 이루어질 수 있다. 이와 같이 전기 도금을 통해 상기 구리(121)와 상기 코발트(122)로 상기 도금층(120)을 형성하면, 종래의 청동 도금(구리, 주석)에 의한 도금층에 비해 내산화성 및 시효 접착력이 향상된 도금층을 형성할 수 있다.
또한, 상기 코발트(122)를 전기 도금하여 상기 도금층(120)을 형성시킴에 따라, 종래의 화학도금 또는 치환도금에서 사용하는 구리의 양을 10 내지 70 중량 % 정도 줄일 수 있는 장점이 있으며, 이를 통해 도금층의 함량을 감소시킬 수 있는 장점이 있다. (또한, 코발트의 원자량은 구리, 주석에 비해 원자량이 작기 때문에, 주석 대신 코발트를 사용함으로써 도금층의 함량을 감소시킬 수도 있다.)
본 발명의 실시 예에 따른 상기 도금층(120)은 상기 구리(121)와 상기 코발트(122)로 이루어진 이원계 도금층으로 사용되는 것이 바람직하지만, 이에 한정되지는 않는다. 가령, 상기 도금층(120)은 상기 구리(121) 및 상기 코발트(122)와 함께, 제3원소가 사용되면서 삼원계 도금층으로도 이루어질 수 있다.
구체적으로, 상기 도금층(120)은 제3원소를 더 포함하여 이루어질 수 있으며, 상기 제3원소는 1 내지 20 중량 %의 인으로 이루어질 수 있다. 또한, 상기 제3원소는 니켈, 인듐, 비스무트, 아연, 주석, 망간, 몰리브덴 중 어느 한가지 원소일 수 있으며, 상기 제3원소는 1 내지 20 중량 %로 이루어질 수 있다.
이와 같이 상기 도금층(120)에 비금속물질인 상기 인 성분을 합금처리하거나, 금속성분인 니켈, 인듐, 비스무트, 아연, 주석, 망간, 몰리브덴을 합금처리 하게 되면, 동종원자간 친화력보다 이종원자가 친화력이 강한 비정질 도금층(Amorphous)을 형성할 수 있다. 이와 같은 도금층을 통해 내산화성과 시효 접착력을 현저하게 향상시킬 수 있게 된다.
구체적으로, 전기 도금방식으로 도금층에 비금속물질인 상기 인 성분을 합금처리하거나, 금속성분인 니켈, 인듐, 비스무트, 아연, 주석, 망간, 몰리브덴을 합금처리 하게 되면, 동종원자간 친화력보다 이종원자가 친화력이 강한 비정질 도금층이 형성된다. 이는 상기 도금층(120)에 더욱 치밀한 조직을 형성시킬 수 있게 되고, 이를 통해 복잡한 요철 형상을 갖는 스틸 와이어에 도금되지 않은 표면(Bare 표면)을 줄일 수 있게 된다.
상술한 바와 같이 상기 도금층(120)은 상기 구리(121) 및 상기 코발트(122)의 이원계 도금층으로 이루어질 수 있으며, 상기 구리(121), 상기 코발트(122), 상기 제3원소의 삼원계 도금층으로 이루어질 수도 있다. 다만, 이에 한정되는 것은 아니며, 필요에 따라서는 상술한 상기 제3원소 중 복수 개가 동시에 사용되면서 상기 도금층(120)을 형성시킬 수도 있다.
상기 도금층(120)의 두께는 0.005 ~ 2.0 ㎛으로 이루어질 수 있다. 종래의 화학도금 또는 치환도금 방식은 구리-주석에 이종 이상의 성분을 도금시키기 위해 착화제 및 환원제를 사용해야 하나, 이와 같은 방법은 도금속도가 현저하게 느려 산업 현장에 적용이 어려운 문제가 있었다. 그러나 본 발명은 전기 도금을 통해 도금함에 따라, 이종 이상의 성분을 적절한 도금속도로 도금할 수 있고, 이를 통해 이종 이상의 성분이 도금된 상기 도금층(120) 두께를 0.0 내지 2.0㎛로 할 수 있게 된다. (여기서 바람직하게는, 상기 도금층(120)의 두께는 0.1 내지 2.0㎛로 할 수 있으며, 0.01 내지 2.0㎛로 할 수도 있다.)
본 발명의 실시 예에 따른 상기 도금층(120)은 전기 도금을 통해 형성되는데, 도 4를 참조하면, 전기 도금방법을 사용하여 도금층을 형성할 경우 종래의 화학도금 또는 치환도금 대비 치밀한 도금층을 형성할 수 있다. 일반적으로 스틸 와이어는 표면에 복잡한 요철형상을 갖는데, 종래의 화학도금 또는 치환도금의 경우 복잡한 요철형상에 의해 표면이 도금되지 않는(Bare 표면) 경우가 발생한다.(도 2a 및 도 2b 참조) 그러나 본 발명은 전기 도금방식을 통해 비정질 도금층을 형성시킴에 따라 도금되지 않는 표면(Bare 표면)을 최소화시킬 수 있고, 이를 통해 비드와이어의 내산화성 및 시효 접착력을 높일 수 있다. (도 2a 및 도 4는 비드와이어의 도금층 표면은 FE-SEM을 사용하여 도금층이 와이어 요철 내부까지 균일하게 형성되어 있는지 관찰한 후 EDX 정성분석을 실시하여 얻어진 결과이다.)
전기 도금을 통해 상기 도금층(120) 형성하는 과정을 살펴보면, 다음과 같다.
상기 와이어(110)는 전기 도금조를 통과하면서 전기 도금되는 것이다. 도 5를 참조하면, 상기 도금층(120)의 상기 구리(121)는 제1전기 도금조(130)에서 전기 도금되어 형성되며, 도 6을 참조하면, 상기 도금층(120)의 상기 코발트(122)는 상기 제1전기 도금조(130)를 거친 이후, 제2전기 도금조(140)에서 전기 도금되어 형성될 수 있다. 즉, 상기 도금층(120)의 상기 구리(121)와 상기 코발트(122)는 각각 전기 도금방식을 통해 형성될 수 있는 것이다.
먼저, 상기 와이어(110)를 상기 제1전기 도금조(130)에 통과시키면서 전기 도금한다. 상기 제1전기 도금조(130)의 입, 출구에 설치된 제1캐쏘드 롤러(132)(Cathod Roller)를 통해 상기 와이어(110)에 음극을 걸어주고, 상기 제1전기 도금조(130)에 침지된 제1양극판(131)(Anode)에 양극을 인가하여 회로를 구성한다. 상기 제1전기 도금조(130)에는 도금액이 채워지면서 전류가 인가되면 도금이 진행된다.
이때, 상기 제1전기 도금조(130)에 사용되는 도금액은 시안화, 피로인산, 염화, 황화계, 치아인산 도금액 중 어느 하나 이상을 포함하며 이루어질 수 있으며, 시안화, 피로인산, 염화, 황화계, 치아인산으로 이루어진 도금액은 구리의 금속염으로 사용될 수 있는 것이다. 즉, 시안화, 피로인산, 염화, 황화계, 치아인산 중 어느 하나 이상을 포함하여 이루어진 도금액은 구리를 포함하는 화합물로 이루어진 것이다. 이와 같이 구리를 포함하는 화합물을 통해 상기 제1전기 도금조(130)에서 전기 도금을 진행하면, 상기 구리(121)를 포함하는 도금층을 형성시킬 수 있게 된다.
여기서, 상기 구리의 금속염 농도는 20 내지 150g/L 인 것이 바람직하다. 상기 구리의 금속염 농도가 너무 작으면(20g/L 보다 작으면), 상기 와이어(110)에 석출되는 도금속도가 완충속도보다 빠르게 되어 버닝(Burning)이 발생할 수 있게 된다. 또한, 상기 구리의 금속염 농도가 너무 높으면(150g/L 보다 높으면), 도금액 내에서 금속염이 석출되어 도금액이 불안정해질 수 있기 때문에, 상기 구리의 금속염 농도는 20g/L 내지 150g/L 미만인 것이 바람직하다. 다만, 도금액의 농도는 이에 한정되는 것은 아니며, 필요에 따라 변형되어 사용될 수 있음은 물론이다.
또한, 종래의 화학도금 또는 치환도금 방식은 500도 이상의 확산 열처리 과정을 거쳐야 했는데, 이와 같은 고온의 확산 열처리는 비드와이어의 강도 저하가 발생하게 되는 문제점이 있다. 그러나 전기 도금은 고온의 확산 열처리 과정 없이 20도 내지 60도의 온도에서 전기 도금을 할 수 있어, 비드와이어의 강도 저하를 방지할 수 있는 장점이 있다. 이에 상기 제1전기 도금조(130)의 전기 도금 온도는 20도 내지 60도인 것이 바람직하다. (전기 도금의 온도가 60도 이상인 경우 도금액 내에서 슬러지(Sludge)가 석출될 수 있어 도금층이 불안정해질 수 있기 때문에, 상기 제1전기 도금조(130)의 전기 도금 온도는 20도 내지 60도인 것이 바람직하다.)
상기 제1전기 도금조(130)에서 전기 도금된 상기 와이어(110)는 상기 제2전기 도금조(140)를 통과하면서 전기 도금되고, 이를 통해 상기 도금층(120)에 코발트를 전기 도금시킬 수 있게 된다. 상기 제2전기 도금조(140)를 통한 전기 도금은 상기 제1전기 도금조(130)의 과정과 동일하게 이루어질 수 있으며, 구리의 금속염 대시 코발트의 금속염을 사용하게 된다.
구체적으로, 상기 제2전기 도금조(140)의 입, 출구에 설치된 제2캐쏘드 롤러(142)(Cathod Roller)를 통해 상기 와이어(110)에 음극을 걸어주고, 상기 제2전기 도금조(140)에 침지된 제2양극판(141)(Anode)에 양극을 인가하여 회로를 구성한다. 상기 제2전기 도금조(140)에는 도금액이 채워지면서 전류가 인가되면 도금이 진행된다.
이때, 상기 제2전기 도금조(130)에 사용되는 도금액은 시안화, 피로인산, 염화, 황화계, 치아인산 도금액 중 어느 하나 이상을 포함하며 이루어질 수 있으며, 시안화, 피로인산, 염화, 황화계, 치아인산으로 이루어진 도금액은 코발트의 금속염으로 사용될 수 있는 것이다. 즉, 시안화, 피로인산, 염화, 황화계, 치아인산 중 어느 하나 이상을 포함하여 이루어진 도금액은 코발트를 포함하는 화합물로 이루어진 것이다. 이와 같이 코발트를 포함하는 화합물을 통해 상기 제2전기 도금조(140)에서 전기 도금을 진행하면, 상기 코발트(122)를 포함하는 도금층을 형성시킬 수 있게 된다.
여기서, 상기 코발트의 금속염 농도는 1 내지 20g/L 인 것이 바람직하다. 상기 코발트의 금속염 농도가 너무 작으면(1g/L 보다 작으면), 상기 와이어(110)에 석출되는 도금속도가 완충속도보다 빠르게 되어 버닝(Burning)이 발생할 수 있게 된다. 또한, 상기 코발트의 금속염 농도가 너무 높으면(20g/L 보다 높으면), 도금액 내에서 금속염이 석출되어 도금액이 불안정해질 수 있기 때문에, 상기 코발트의 금속염 농도는 1g/L 내지 20g/L 미만인 것이 바람직하다. 다만, 도금액의 농도는 이에 한정되는 것은 아니며, 필요에 따라 변형되어 사용될 수 있음은 물론이다.
상기 제2전기 도금조(130)의 전기 도금 온도는 20도 내지 60도인 것이 바람직하며, 이를 통해 고온의 열처리 과정에서 발생하는 비드와이어의 강도 저하를 방지할 수 있는 장점이 있다. (전기 도금의 온도가 60도 이상인 경우 도금액 내에서 슬러지(Sludge)가 석출될 수 있어 도금층이 불안정해질 수 있기 때문에, 상기 제2전기 도금조(140)의 전기 도금 온도는 20도 내지 60도인 것이 바람직하다.)
상기 제1전기 도금조(130)와 상기 제2전기 도금조(140)에는 제1정류기(133)와 제2정류기(143) 등을 사용할 수 있으며, 정류기는 공지된 기술인 바 상세한 설명은 생략한다.
상기 제1전기 도금조(130)와 상기 제2전기 도금조(140)에서 전기 도금을 진행하기 위해 전류를 인가할 때, 전류밀도는 1 내지 50 A/dm²인 것이 바람직하며, 전기 도금시간은 10초 이하가 바람직하다.(0초를 포함하지 않음) 또한, 상기 제1전기 도금조(130)와 상기 제2전기 도금조(140)에 인가되는 전류는 직류 또는 펄스방식을 사용하는 것이 바람직하다.
구체적으로, 상기 와이어(110)에 음극을 걸어주는 방식은 도 8과 같은 생산성이 높은 직류방식을 사용할 수 있으며, 표면이 매우 거친 와이어의 경우 요철부의 균일한 도금층 형성을 위해 도 9와 같이 주기적으로 음극을 부여하는 펄스 방식을 사용하는 것이 좋다.
전기 도금에 의해 형성된 상기 도금층(120)의 두께는 0.005 내지 2.0㎛으로 형성되는 데 이와 같은 두께를 유지하기 위해서 인가되는 전류의 밀도는 1 내지 50 A/dm2 로, 시간은 10초 이하로 하는 것이 좋다.(0 초를 포함하지 않음) 다만, 전류의 밀도는 이에 한정되는 것은 아니며, 비드와이어의 통상적인 부착량을 달성하기 위해 전류밀도를 50 A/dm2 이상으로 할 수도 있으며, 적절한 시간을 조절할 수도 있다.
본 발명의 실시 예에 따른 내산화성이 우수한 전기 도금비드와이어의 제조방법을 구체적으로 살펴보면 다음과 같다.
도 7을 참조하면, 내산화성이 우수한 전기 도금 비드와이어 제조방법은 와이어 준비 단계(S100), 와이어 배치 단계(S200), 전기 도금 단계(S300)를 포함하여 이루어진다.
상기 와이어 준비 단계(S100)는 전기 도금을 하기 전 와이어(110)를 가공하는 단계이다. 상기 와이어(110)는 전기 도금 전에 신선 가공될 수 있으며, 열처리 될 수 있다. 또한, 염산 용액을 통해 산세척 될 수 있다. 상기 와이어 준비 단계(S100)는 상기 와이어(110)를 전기 도금 하기 전 준비 단계로, 상술한 신선 가공, 열처리, 산 세척을 포함하여 이루어질 수 있으나, 상기 와이어 준비 단계(S100)는 이에 한정되는 것은 아니며, 전기 도금 전에 필요한 과정이 있다면 다른 과정도 포함될 수 있음은 물론이다.
상기 와이어 배치 단계(S200)는 상기 와이어(110)를 전기 도금하기 위해 상기 와이어(110)를 배치하는 단계이다. 상기 와이어(110)는 상기 전기 도금조를 통과하면서 전기 도금 되는데, 상기 와이어 배치 단계(S200)는 상기 와이어(110)가 상기 전기 도금조를 통과할 수 있도록 배치하는 단계이다.
상기 전기 도금 단계(S300)는 상기 전기 도금조에 전류를 인가하고, 상기 와이어(110)를 상기 전기 도금조에 통과시켜 상기 와이어(110)를 전기 도금하는 단계이다. 이와 같은 전기 도금 방법을 통해, 40 내지 99 중량 %의 구리(121), 1 내지 40 중량 %의 코발트(122)를 포함하여 이루어진 상기 도금층(120)이 형성될 수 있게 된다.
여기서, 바람직하게는 상기 구리(121)는 40 내지 80 중량 %로 이루어질 수 있으며, 상기 코발트(122)는 1 내지 40 중량 %로 이루어질 수 있다. 이와 같이 전기 도금을 통해 상기 구리(121)와 상기 코발트(122)로 상기 도금층(120)을 형성하면, 종래의 청동 도금(구리, 주석)에 의한 도금층에 비해 내산화성 및 시효 접착력이 향상된 도금층을 형성할 수 있다.
상기 도금층(120)은 상기 구리(121)와 상기 코발트(122)로 이루어진 이원계 도금층으로 사용되는 것이 바람직하지만, 이에 한정되지는 않는다. 가령, 상기 도금층(120)은 상기 구리(121) 및 상기 코발트(122)와 함께, 제3원소가 사용되면서 삼원계 도금층으로도 이루어질 수 있다. (이때 상기 제3원소도 전기 도금을 통해 형성될 수 있다.)
구체적으로, 상기 도금층(120)은 제3원소를 더 포함하여 이루어질 수 있으며, 상기 제3원소는 1 내지 20 중량 %의 인으로 이루어질 수 있다. 또한, 상기 제3원소는 니켈, 인듐, 비스무트, 아연, 주석, 망간, 몰리브덴 중 어느 한가지 원소일 수 있으며, 상기 제3원소는 1 내지 20 중량 %로 이루어질 수 있다.
상기 도금층(120)의 두께는 0.005 ~ 2.0 ㎛으로 이루어질 수 있다. 종래의 화학도금 또는 치환도금 방식은 구리-주석에 이종 이상의 성분을 도금시키기 위해 착화제 및 환원제를 사용해야 하나, 이와 같은 방법은 도금속도가 현저하게 느려 산업 현장에 적용이 어려운 문제가 있었다. 그러나 본 발명은 전기 도금을 통해 도금함에 따라, 이종 이상의 성분을 적절한 도금속도로 도금할 수 있고, 이를 통해 이종 이상의 성분이 도금된 상기 도금층(120) 두께를 0.005 내지 2.0㎛로 할 수 있게 된다. (여기서 바람직하게는, 상기 도금층(120)의 두께는 0.1 내지 2.0㎛로 할 수도 있으며, 0.01 내지 2.0㎛로 할 수도 있다.)
도 7을 참조하면, 상기 전기 도금 단계(S300)는 제1전기 도금 단계(S310)와 제2전기 도금 단계(S330)를 포함하여 이루어질 수 있다. 상기 제1전기 도금 단계(S310)는, 상기 와이어(110)를 구리를 포함하는 금속염을 통해 상기 제1전기 도금조(130)에서 전기 도금 하는 단계이며, 상기 제2전기 도금 단계(S330)는 상기 제1전기 단계(S310)를 거친 상기 와이어(110)를, 코발트를 포함하는 금속염을 통해 상기 제2전기 도금조(140)에서 전기 도금하는 것이다. 즉, 상기 도금층(120)의 구리(121)는 상기 제1전기 도금조(130)에서 전기 도금되어 형성되며, 상기 도금층(120)의 코발트(122)는 상기 제2전기 도금조(140)에서 전기 도금되어 형성되는 것이다.
구체적으로, 상기 제1전기 도금 단계(S310)는, 상기 와이어(110)를 상기 제1전기 도금조(130)에 통과시키면서 전기 도금한다. 상기 제1전기 도금조(130)의 입, 출구에 설치된 캐쏘드 롤러(132)(Cathod Roller)를 통해 상기 와이어(110)에 음극을 걸어주고, 상기 제1전기 도금조(130)에 침지된 제1양극판(131)(Anode)에 양극을 인가하여 회로를 구성한다. 상기 제1전기 도금조(130)에는 도금액이 채워지면서 전류가 인가되면 도금이 진행된다.
이때, 상기 제1전기 도금조(130)에 사용되는 도금액은 시안화, 피로인산, 염화, 황화계, 치아인산 도금액 중 어느 하나 이상을 포함하며 이루어질 수 있으며, 시안화, 피로인산, 염화, 황화계, 치아인산으로 이루어진 도금액은 구리의 금속염으로 사용될 수 있는 것이다. 즉, 시안화, 피로인산, 염화, 황화계, 치아인산 중 어느 하나 이상을 포함하여 이루어진 도금액은 구리를 포함하는 화합물로 이루어진 것이다. 이와 같이 구리를 포함하는 화합물을 통해 상기 제1전기 도금조(130)에서 전기 도금을 진행하면, 상기 구리(121)를 포함하는 도금층을 형성시킬 수 있게 된다.
여기서, 상기 구리의 금속염 농도는 20 내지 150g/L 인 것이 바람직하다. 상기 구리의 금속염 농도가 너무 작으면(20g/L 보다 작으면), 상기 와이어(110)에 석출되는 도금속도가 완충속도보다 빠르게 되어 버닝(Burning)이 발생할 수 있게 된다. 또한, 상기 구리의 금속염 농도가 너무 높으면(150g/L 보다 높으면), 도금액 내에서 금속염이 석출되어 도금액이 불안정해질 수 있기 때문에, 상기 구리의 금속염 농도는 20g/L 내지 150g/L 미만인 것이 바람직하다. 다만, 도금액의 농도는 이에 한정되는 것은 아니며, 필요에 따라 변형되어 사용될 수 있음은 물론이다.
또한, 종래의 화학도금 또는 치환도금 방식은 500도 이상의 확산 열처리 과정을 거쳐야 했는데, 이와 같은 고온의 확산 열처리는 비드와이어의 강도 저하가 발생하게 되는 문제점이 있다. 그러나 전기 도금은 고온의 확산 열처리 과정 없이 20도 내지 60도의 온도에서 전기 도금을 할 수 있어, 비드와이어의 강도 저하를 방지할 수 있는 장점이 있다. 이에 상기 제1전기 도금 단계(S310)의 전기 도금 온도는 20도 내지 60도인 것이 바람직하다. (전기 도금의 온도가 60도 이상인 경우 도금액 내에서 슬러지(Sludge)가 석출될 수 있어 도금층이 불안정해질 수 있기 때문에, 상기 제1전기 도금조(130)의 전기 도금 온도는 20도 내지 60도인 것이 바람직하다.)
상기 제2전기 도금 단계(S330)는 상기 제1전기 도금조(130)에서 전기 도금된 상기 와이어(110)를 상기 제2전기 도금조(140)를 통과시키면서 전기 도금 하는 것이며, 이를 통해 상기 도금층(120)에 코발트를 전기 도금시킬 수 있게 된다. 상기 제2전기 도금조(140)를 통한 전기 도금도 상기 제1전기 도금조(130)의 과정과 동일하게 이루어질 수 있으며, 구리의 금속염 대시 코발트의 금속염을 사용하게 된다.
상기 제2전기 도금조(140)의 입, 출구에 설치된 캐쏘드 롤러(142)(Cathod Roller)를 통해 상기 와이어(110)에 음극을 걸어주고, 상기 제2전기 도금조(140)에 침지된 양극판(131)(Anode)에 양극을 인가하여 회로를 구성한다. 상기 제2전기 도금조(140)에는 도금액이 채워지면서 전류가 인가되면 도금이 진행된다.
이때, 상기 제2전기 도금조(130)에 사용되는 도금액은 시안화, 피로인산, 염화, 황화계, 치아인산 도금액 중 어느 하나 이상을 포함하며 이루어질 수 있으며, 시안화, 피로인산, 염화, 황화계, 치아인산으로 이루어진 도금액은 코발트의 금속염으로 사용될 수 있는 것이다. 즉, 시안화, 피로인산, 염화, 황화계, 치아인산 중 어느 하나 이상을 포함하여 이루어진 도금액은 코발트를 포함하는 화합물로 이루어진 것이다. 이와 같이 코발트를 포함하는 화합물을 통해 상기 제2전기 도금조(140)에서 전기 도금을 진행하면, 상기 코발트(122)를 포함하는 도금층을 형성시킬 수 있게 된다.
여기서, 상기 코발트의 금속염 농도는 1 내지 20g/L 인 것이 바람직하다. 상기 코발트의 금속염 농도가 너무 작으면(1g/L 보다 작으면), 상기 와이어(110)에 석출되는 도금속도가 완충속도보다 빠르게 되어 버닝(Burning)이 발생할 수 있게 된다. 또한, 상기 코발트의 금속염 농도가 너무 높으면(20g/L 보다 높으면), 도금액 내에서 금속염이 석출되어 도금액이 불안정해질 수 있기 때문에, 상기 코발트의 금속염 농도는 1g/L 내지 20g/L 미만인 것이 바람직하다. 다만, 도금액의 농도는 이에 한정되는 것은 아니며, 필요에 따라 변형되어 사용될 수 있음은 물론이다.
상기 제2전기 도금 단계(S330)의 전기 도금 온도는 20도 내지 60도인 것이 바람직하며, 이를 통해 고온의 열처리 과정에서 발생하는 비드와이어의 강도 저하를 방지할 수 있는 장점이 있다. (전기 도금의 온도가 60도 이상인 경우 도금액 내에서 슬러지(Sludge)가 석출될 수 있어 도금층이 불안정해질 수 있기 때문에, 상기 제2전기 도금조(140)의 전기 도금 온도는 20도 내지 60도인 것이 바람직하다.)
상기 제1전기 도금 단계(S310)와 상기 제2전기 도금 단계(S330)에서 전기 도금을 진행하기 위해 전류를 인가할 때, 전류밀도는 1 내지 50 A/dm²인 것이 바람직하며, 전기 도금시간은 10초 이하가 바람직하다.(0초를 포함하지 않음) 또한, 상기 제1전기 도금 단계(S310)와 상기 제2전기 도금 단계(S330)에서 인가되는 전류는 직류 또는 펄스방식을 사용하는 것이 바람직하다.
구체적으로, 상기 와이어(110)에 음극을 걸어주는 방식은 도 8과 같은 생산성이 높은 직류방식을 사용할 수 있으며, 표면이 매우 거친 와이어의 경우 요철부의 균일한 도금층 형성을 위해 도 9와 같이 주기적으로 음극을 부여하는 펄스 방식을 사용하는 것이 좋다.
전기 도금에 의해 형성된 상기 도금층(120)의 두께는 0.005 내지 2.0㎛으로 형성되는 데 이와 같은 두께를 유지하기 위해서 인가되는 전류의 밀도는 1 내지 50 A/dm2 로, 시간은 10초 이하로 하는 것이 좋다.(0 초를 포함하지 않음) 다만, 전류의 밀도는 이에 한정되는 것은 아니며, 비드와이어의 통상적인 부착량을 달성하기 위해 전류밀도를 50 A/dm2 이상으로 할 수도 있으며, 적절한 시간을 조절할 수도 있다.
상기 전기 도금 단계(S300)는 중간 처리 단계(S320)를 더 포함하여 이루어질 수도 있다. 상기 중간 처리 단계(S320)는 상기 제1전기 도금 단계(S310) 이후, 상기 제2전기 도금 단계(S330)가 진행되기 전에 이루어질 수 있는 과정으로, 상기 제1전기 도금 단계(S310) 이후의 상기 와이어(110) 표면을 세척할 수 있는 단계이다.
구체적으로, 상기 중간 처리 단계(S320)는 상기 제2전기 도금 단계(S330)를 준비하는 수세조 또는 세척조 단계로, 상기 제2전기 도금 단계(S330)에서 코발트 금속염의 전기 도금 효과를 높이기 위한 전처리 과정이 될 수 있다. 다만, 상기 중간 처리 단계(S320)는 이에 한정되는 것은 아니며, 상기 제1전기 도금 단계(S310) 이후, 상기 제2전기 도금 단계(S330) 이전에 상기 와이어(110)를 처리할 수 있는 공정이라면 다양한 공정이 포함될 수 있다.
본 발명의 내산화성이 우수한 전기 도금 비드와이어의 실시 예를 살펴보면 다음과 같다.
[실시 예]
탄소 함량이 0.80%이고 직경이 5.5㎜인 와이어를 산세 후 직경이 1.30㎜가 되도록 신선가공 하고, 신선된 상기 와이어를 400~500℃ 범위의 온도로 열처리 하였다. 이어서 15±10%의 염산용액을 40±10℃ 온도로 유지한 염산조를 통과하여 선표면을 세척하였다.
세척된 상기 와이어(110)를 상기 제1전기 도금조(130)를 통과 시키면서, 상기 제1전기 도금조(130) 입구/출구에 설치된 제1캐쏘드 롤러(132)를 통해 상기 와이어(110)에 음극을 걸어주고, 도금조에 침지된 제1양극판(Ti)(131)에 양극을 인가하여 회로를 구성하였다. 이 때 도금액은 피로인산구리 100g/L, 염화제일주석 10g/L, 염화코발트 15g/L, 차아인산나트륨 100g/L, 피로인산칼륨 300g/L로 구성되었고, 도금액 온도는 45도로 고정하였다. 그리고 와이어(110)에 인가되는 전류는 직류방식으로 전류밀도는 10A/dm2, 도금처리 시간을 2초로 하였다. (상기 제1전기 도금 단계(S310))
이후, 세척된 상기 와이어(110)를 상기 제2전기 도금조를 통과 시키면서, 상기 제2전기 도금조(140) 입구/출구에 설치된 상기 제2캐쏘드 롤러(142)를 통해 상기 와이어(110)에 음극을 걸어주고, 도금조에 침지된 제2양극판(Ti)(141)에 양극을 인가하여 회로를 구성하였다. 이 때 도금액은 피로인산구리 100g/L, 염화제일주석 10g/L, 염화코발트 15g/L, 차아인산나트륨 100g/L, 피로인산칼륨 300g/L로 구성되었고, 도금액 온도는 45도로 고정하였다. 그리고 와이어(110)에 인가되는 전류는 직류방식으로 전류밀도는 5A/dm2, 도금처리 시간을 7초로 하였다. (상기 제2전기 도금 단계(S330))
여기서, 전류밀도는 1 내지 100A/dm2으로, 도금처리 시간은 0.5 내지 20초로 조절하는 것이 실험 여건상 바람직하다. 다만, 전류밀도와 도금처리 시간은 이에 한정되는 것은 아니며, 실험 여건이 개선된다면 더 큰 전류밀도, 더 짧은 도금처리 시간이 될 수 있음은 물론이다.
도 4는 이와 같은 분석을 통해 와이어 요철 내부까지 구리 및 코발트 도금층이 형성되어 있는 것을 나타내는 도면이며, 도 10은 이와 같은 분석을 통해 종래의 화학도금한 비드와이어와 본 발명의 실시 예에 따른 전기 도금한 비드와이어의 내산화성, 초기접착력, 시효접착력을 비교한 결과표이다.
도 10을 살펴보면, 전기 도금 조건별 비드와이어의 초기접착력, 3개월 습윤시효 접착력, 3개월 습윤시효 후 선표면 산소분율, 6개월 습윤시효 접착력, 6개월 습윤시효 후 선표면 산소분율이 나타나 있다. 도 10의 결과를 살펴보면 도금층 내 코발트 분율이 3~40%에서 습윤시효 접착력이 향상됨을 알 수 있다.
구체적으로, 종래의 화학도금 비드와이어에 비해 본 발명의 실시 예에 따른 비드와이어는 초기 접착력이 상승하고 접착외관이 좋아지며, 선표면 산소분율이 감소한다.
또한, 3개월 및 6개월 시효 후의 시효 접착력이 종래의 화학도금 비드와이어에 비하여 현저하게 상승하고, 접착외관이 현저하게 좋아지는 것을 알 수 있다. 이는 3개월 및 6개월 시효 후의 선표면 산소분율이 종래의 화학도금 비드와어의 선표면 산소분율 보다 현저하게 작기 때문이다. 조금 더 구체적으로, 종래의 화학도금 비드와이어는 시간이 경과할 수록 선표면 산소분율이 높아지지만, 본 발명의 실시 예에 따른 비드와이어는 선표면 산소분율의 변화가 작기 때문에, 3개월 및 6개월 시효 후의 시효 접착력이 현저하게 상승하게 되는 것이다.
본 발명의 실시 예에 따른 내산화성이 우수한 전기 도금 비드와이어는 다음과 같은 효과가 있다.
본 발명의 실시 예에 따른 비드와이어는 전기 도금 방식을 통해 구리와 코발트를 포함하는 도금층을 형성시킬 수 있다. 도 2b와 도 3을 참고하면, 본 발명의 실시 예에 따른 비드와이어는 종래의 구리-주석 비드와이어 보다 치밀한 도금층을 형성하는 것을 알 수 있고, 이를 통해 내산화성 및 타이어 고무와의 시효 접착력을 향상시킬 수 있는 장점이 있다.
또한, 도 2a 및 도 2b와 같이 종래의 화학도금 또는 치환도금 비드와이어는 와이어의 표면 깊은 곳까지 도금층(20) 형성되지 않는 표면(Bare)이 발생하였으나, 본 발명의 실시 예에 따른 비드와이어는 구리 및 코발트 도금층을 통해 도 3 및 도 4와 같이 치밀한 도금층을 형성시켜 내산화성 및 타이어 고무와의 시효 접착력을 향상시킬 수 있는 장점이 있다. (도 2a와 도 4는 비드와이어의 도금층 표면은 FE-SEM을 사용하여 도금층이 와이어 요철 내부까지 균일하게 형성되었는지 관찰한 후 EDX 정성분석 실시 결과이다.)
종래의 화학도금 또는 치환도금 방식은 구리-주석의 도금속도가 현저하게 느려 산업 현장에 적용이 어려운 문제가 있었으나, 본 발명의 실시 예에 따른 비드와이어는 전기 도금을 통해 도금 속도를 향상시킬 수 있으며, 전류밀도 및 시간을 조절함에 따라 적절한 두께의 도금층을 형성할 수 있는 장점이 있다. 이와 함께, 본 발명의 실시 예에 따른 비드와이어는 20도 내지 60도로 전기 도금이 진행됨에 따라, 500도 이상의 확산 열처리에 발생하는 비드와이어의 강도 저하를 방지할 수 있는 장점이 있다.
또한, 본 발명의 실시 예에 따른 비드와이어는 전기 도금 및 코발트를 사용하여 도금층을 형성함에 따라, 종래의 화학도금 및 주석을 사용하는 도금층에 비하여 구리의 부착량을 10 내지 70 중량 % 줄일 수 있으며, 이를 통해 도금층의 함량을 감소시킬 수 있는 장점이 있다.
또한, 종래의 화학도금 또는 치환도금은 도금층이 형성되지 않은 표면(Bare)에 의해 도금공정 후 자일렌(Xylene) 등을 용제로 유기 용제 코팅을 해야했으며, 이에 따라 환경오염 및 제조 원가 비용이 상승하는 문제가 있다. 그러나 본 발명의 실시 예에 따른 비드와이어는 전기 도금을 사용함에 따라 유기 용제 코팅 공정이 불필요하며, 이에 환경오염을 방지할 수 있으며, 원가를 절감할 수 있는 장점이 있다.
이와 같이 본 발명의 실시 예에 따른 비드와이어는 전기 도금을 통해 구리와 코발트를 포함하는 도금층을 형성시켜 도금층의 내산화성 및 물성을 향상시킴에 따라, 비드와이어를 운반하는 과정에서 일어나는 비드와이어의 산화를 방지할 수 있는 장점이 있다. 이와 함께 비드와이어의 내산화성 및 물성이 향상됨에 따라 비드와이어를 운반하기 위한 제품포장을 간소화 시킬 수 있는 장점이 있다.
이상에서 본 발명을 도면에 실시된 실시 예를 참고하여 설명하였으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능함을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호범위는 첨부된 특허청구범위에 의해서 정해져야 할 것이다.

Claims (8)

  1. 자동차 타이어 보강재로 사용하는 비드와이어에 있어서,
    전기 도금을 통해 형성된 도금층을 포함하여 이루어지며,
    상기 도금층은,
    40 내지 99 중량 %의 구리, 1 내지 40 중량 %의 코발트를 포함하는 것을 특징으로 하는 내산화성이 우수한 전기 도금 비드와이어.
  2. 제1항에 있어서,
    상기 도금층은, 제3원소를 더 포함하며,
    상기 제3원소는 1 내지 20 중량 %의 인으로 이루어지는 것을 특징으로 하는 내산화성이 우수한 전기 도금 비드와이어.
  3. 제1항에 있어서,
    상기 도금층은, 제3원소를 더 포함하며,
    상기 제3원소는 니켈, 인듐, 비스무트, 아연, 주석, 망간, 몰리브덴 중 어느 한가지 원소이며, 상기 제3원소는 1 내지 20 중량 %인 것을 특징으로 하는 내산화성이 우수한 전기 도금 비드와이어.
  4. 제1항에 있어서,
    상기 도금층의 두께는 0.005 내지 2.0 ㎛인 것을 특징으로 하는 내산화성이 우수한 전기 도금 비드와이어.
  5. 제1항에 있어서,
    상기 도금층의 구리는 제1전기 도금조에서 전기 도금되어 형성되며,
    상기 도금층의 코발트는 상기 제1전기 도금조를 거친 이후, 제2전기 도금조에서 전기 도금되어 형성되는 것을 특징으로 하는 내산화성이 우수한 전기 도금 비드와이어.
  6. 제5항에 있어서,
    상기 제1전기 도금조 및 상기 제2전기 도금조에 사용되는 도금액은, 시안화, 피로인산, 염화, 황화계, 치아인산 도금액 중 어느 하나 이상을 포함하는 것을 특징으로 하는 내산화성이 우수한 전기 도금 비드와이어.
  7. 제6항에 있어서,
    상기 제1전기 도금조의 도금액은 상기 구리의 금속염으로 사용되며,
    상기 구리의 금속염의 농도는 20 내지 150g/L이고,
    상기 제2전기 도금조의 도금액은 상기 코발트의 금속염으로 사용되며,
    상기 코발트의 금속염의 농도는 1 내지 20g/L로 인 것을 특징을 하는 내산화성이 우수한 전기 도금 비드와이어.
  8. 제5항에 있어서,
    상기 제1전기 도금조 및 상기 제2전기 도금조의 전기 도금 온도는 20도 내지 60도 인 것을 특징으로 하는 내산화성이 우수한 전기 도금 비드와이어.
PCT/KR2019/002258 2018-03-12 2019-02-25 내산화성이 우수한 전기 도금 비드와이어 WO2019177281A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/977,012 US11447886B2 (en) 2018-03-12 2019-02-25 Electroplated bead wire having excellent oxidation resistance
EP19767200.9A EP3767013A4 (en) 2018-03-12 2019-02-25 ELECTRO-PLATED HEEL ROD WITH EXCELLENT RESISTANCE TO OXIDATION
CN201980013933.5A CN111936672A (zh) 2018-03-12 2019-02-25 具有优异的抗氧化性的电镀胎圈钢丝
BR112020018244-3A BR112020018244A2 (pt) 2018-03-12 2019-02-25 Fio de aro eletrogalvanizado que tem excelente resistência à oxidação e é usado como um reforço de pneu de automóvel
JP2020545790A JP7162067B2 (ja) 2018-03-12 2019-02-25 耐酸化性にすぐれる電気メッキビードワイヤ
MX2020008210A MX2020008210A (es) 2018-03-12 2019-02-25 Aro de talon electrogalvanizado que tiene excelente resistencia a la oxidacion.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0028848 2018-03-12
KR1020180028848A KR102125998B1 (ko) 2018-03-12 2018-03-12 내산화성이 우수한 전기 도금 비드와이어

Publications (1)

Publication Number Publication Date
WO2019177281A1 true WO2019177281A1 (ko) 2019-09-19

Family

ID=67906785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002258 WO2019177281A1 (ko) 2018-03-12 2019-02-25 내산화성이 우수한 전기 도금 비드와이어

Country Status (8)

Country Link
US (1) US11447886B2 (ko)
EP (1) EP3767013A4 (ko)
JP (1) JP7162067B2 (ko)
KR (1) KR102125998B1 (ko)
CN (1) CN111936672A (ko)
BR (1) BR112020018244A2 (ko)
MX (1) MX2020008210A (ko)
WO (1) WO2019177281A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100291467B1 (ko) * 1999-05-19 2001-05-15 최의박 고무접착성이 우수한 스틸 타이어코드
KR20020055203A (ko) * 2000-12-28 2002-07-08 정생규 내부식성이 우수한 스틸 코드
KR20020078168A (ko) * 2001-04-06 2002-10-18 금호산업 주식회사 스틸코드 및 이를 사용한 타이어
JP2014519435A (ja) * 2011-12-26 2014-08-14 シャンドン ダイ エイ シーオー.,エルティーディー 高強度の錫青銅めっきビードワイヤ及びその製造方法
KR101670266B1 (ko) * 2015-05-12 2016-10-28 홍덕산업(주) 접착력이 우수한 비드와이어 및 그 제조방법
KR101877890B1 (ko) * 2017-01-19 2018-07-12 고려제강 주식회사 내식성이 우수한 전기도금 비드와이어 및 그 제조방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4265678A (en) * 1977-12-27 1981-05-05 Tokyo Rope Mfg. Co., Ltd. Metal wire cord
KR820001983B1 (ko) * 1979-05-18 1982-10-23 진-마르크 도프치 고무성형물 보강용 강선
CA1258999A (en) * 1984-09-13 1989-09-05 Thomas W. Starinshak Quaternary brass alloy coated steel element and rubber reinforced therewith
GB8615746D0 (en) 1986-06-27 1986-08-06 Bekaert Sa Nv Brass-coated steel elements
JP5452875B2 (ja) * 2008-03-10 2014-03-26 株式会社ブリヂストン スチールコード−ゴム複合体
JP5333331B2 (ja) * 2010-04-13 2013-11-06 新日鐵住金株式会社 ゴムとの接着性に優れた極細めっき鋼線
JP5333332B2 (ja) 2010-04-13 2013-11-06 新日鐵住金株式会社 ゴムとの接着性に優れた極細めっき鋼線
JP6137587B2 (ja) 2011-09-06 2017-05-31 栃木住友電工株式会社 ゴム補強用金属線、その製造方法及びタイヤ
SI2812481T1 (sl) * 2012-02-06 2019-01-31 Nv Bekaert Sa Podolgovat jeklen element, ki vsebuje oplaščenje iz ternarne ali kvaternarne medeninaste zlitine in odgovarjajoči postopek
WO2013117248A1 (en) 2012-02-06 2013-08-15 Nv Bekaert Sa Elongated steel element comprising a ternary or quaternary brass alloy coating and corresponding method
JP6537966B2 (ja) 2012-07-24 2019-07-03 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニムN V Bekaert Societe Anonyme 選択的に真鍮が被覆されたフィラメントを有するゴム補強用鋼コード
JP6248862B2 (ja) 2014-08-22 2017-12-20 新日鐵住金株式会社 ゴムとの接着性に優れた極細めっき鋼線およびそれを用いたゴム複合体
KR101508683B1 (ko) * 2014-11-10 2015-04-07 홍덕산업(주) 고무 보강용 스틸코드 및 그 제조방법
JP6532768B2 (ja) * 2015-06-18 2019-06-19 株式会社ブリヂストン スチールコード−ゴム複合体
JP2018119190A (ja) 2017-01-26 2018-08-02 新日鐵住金株式会社 めっき鋼線、スチールコード及びゴム−スチールコード複合体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100291467B1 (ko) * 1999-05-19 2001-05-15 최의박 고무접착성이 우수한 스틸 타이어코드
KR20020055203A (ko) * 2000-12-28 2002-07-08 정생규 내부식성이 우수한 스틸 코드
KR20020078168A (ko) * 2001-04-06 2002-10-18 금호산업 주식회사 스틸코드 및 이를 사용한 타이어
JP2014519435A (ja) * 2011-12-26 2014-08-14 シャンドン ダイ エイ シーオー.,エルティーディー 高強度の錫青銅めっきビードワイヤ及びその製造方法
KR101670266B1 (ko) * 2015-05-12 2016-10-28 홍덕산업(주) 접착력이 우수한 비드와이어 및 그 제조방법
KR101877890B1 (ko) * 2017-01-19 2018-07-12 고려제강 주식회사 내식성이 우수한 전기도금 비드와이어 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3767013A4 *

Also Published As

Publication number Publication date
KR102125998B1 (ko) 2020-07-02
US11447886B2 (en) 2022-09-20
JP7162067B2 (ja) 2022-10-27
KR20190107511A (ko) 2019-09-20
EP3767013A1 (en) 2021-01-20
BR112020018244A2 (pt) 2020-12-29
EP3767013A4 (en) 2021-12-22
CN111936672A (zh) 2020-11-13
MX2020008210A (es) 2020-09-18
JP2021515853A (ja) 2021-06-24
US20210002782A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
KR20200066279A (ko) 내산화성이 우수한 전기 도금 비드와이어
CA1037896A (en) Electrodeposition of non-conductive surfaces
US6777108B1 (en) Electrolytic copper foil with carrier foil and method for manufacturing the same and copper-clad laminate using the electrolytic copper foil with carrier foil
WO2014196692A1 (ko) 도금 신뢰성 향상 기능을 갖는 내장형 안테나 제조방법
US7416763B2 (en) Process for forming metal layers
WO2015102323A1 (ko) 동박, 이를 포함하는 전기부품 및 전지
WO2019177281A1 (ko) 내산화성이 우수한 전기 도금 비드와이어
KR20190107512A (ko) 내산화성이 우수한 전기 도금 비드와이어 제조방법
WO1987005057A1 (en) Electrical contact surface coating
WO2018088644A1 (ko) 저온 물성이 우수한 이차전지용 전해동박 및 그의 제조방법
CN109338343B (zh) 一种化学镀银液及镀银方法
WO2018088646A1 (ko) 이차전지용 전해동박 및 그의 제조방법
WO2014092335A1 (ko) 폴리머 필름과 금속층 간의 접합력 향상 방법
US3867265A (en) Process for electroplating an aluminum wire
KR100227581B1 (ko) 구리재 표면에 강인한 전기 절연층의 형성방법
WO2020130554A1 (ko) 도금 밀착성 및 내식성이 우수한 도금 강재 및 그 제조방법
KR101877890B1 (ko) 내식성이 우수한 전기도금 비드와이어 및 그 제조방법
WO2023120954A1 (ko) 사출 도금물의 부동태 처리 방법
WO2020256220A1 (ko) 비 전도성 플라스틱의 습식 표면처리 방법
Jin et al. 1-(2-Pyridylazo)-2-naphthol as a synergistic additive for improving throwing power of through hole copper electronic electroplating
WO2014010914A1 (ko) 티타늄 전기도금액 및 도금방법
WO2021020650A1 (ko) 전도성 유연 탄소섬유
CN114438482B (zh) 一种快速提升化学浸金厚度的处理液及其应用
US5547559A (en) Process for plating metals onto various substrates in an adherent fashion
WO2021045327A1 (ko) 무전해 금속 도금 탄소섬유 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020545790

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019767200

Country of ref document: EP

Effective date: 20201012

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020018244

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020018244

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200908