WO2019176159A1 - 絶縁成形体、及びガス遮断器 - Google Patents

絶縁成形体、及びガス遮断器 Download PDF

Info

Publication number
WO2019176159A1
WO2019176159A1 PCT/JP2018/040325 JP2018040325W WO2019176159A1 WO 2019176159 A1 WO2019176159 A1 WO 2019176159A1 JP 2018040325 W JP2018040325 W JP 2018040325W WO 2019176159 A1 WO2019176159 A1 WO 2019176159A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating
arc
molded body
fluororesin
generated
Prior art date
Application number
PCT/JP2018/040325
Other languages
English (en)
French (fr)
Inventor
秀一 檜座
隆志 川名
文彦 細越
基宗 佐藤
研史 三村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/962,691 priority Critical patent/US11322322B2/en
Priority to JP2019511678A priority patent/JP6576597B1/ja
Publication of WO2019176159A1 publication Critical patent/WO2019176159A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/72Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid having stationary parts for directing the flow of arc-extinguishing fluid, e.g. arc-extinguishing chamber
    • H01H33/74Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid having stationary parts for directing the flow of arc-extinguishing fluid, e.g. arc-extinguishing chamber wherein the break is in gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7023Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by an insulating tubular gas flow enhancing nozzle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/76Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid wherein arc-extinguishing gas is evolved from stationary parts; Selection of material therefor
    • H01H33/78Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid wherein arc-extinguishing gas is evolved from stationary parts; Selection of material therefor wherein the break is in gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/22Selection of fluids for arc-extinguishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7076Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by the use of special materials

Definitions

  • the present invention relates to an insulating molded body and a gas circuit breaker used in a gas circuit breaker that blows an insulating gas on an arc generated when a current is interrupted to extinguish the arc.
  • gas circuit breakers are used as current interrupting devices.
  • the gas circuit breaker extinguishes the arc by blowing an insulating gas onto the arc generated between the movable contact and the fixed contact when the energization current is interrupted.
  • the gas circuit breakers having these structures increase the pressure of the insulating gas and blow the insulating gas from the insulating nozzle to the arc. By blowing the insulating gas, the heat between the movable contact and the fixed contact can be discharged to the outside and the arc can be extinguished efficiently.
  • Some insulating nozzles that blow insulating gas onto the arc are made of fluororesins with excellent heat resistance.
  • the arc light enters the inside of the fluororesin and decomposes not only the surface of the fluororesin but also the inside. Therefore, carbon contained in the fluororesin is generated.
  • the generated carbon is deposited on the surface of the insulating nozzle, and deteriorates the insulating performance of the surface of the insulating nozzle.
  • an insulating nozzle in which titanium oxide is added to the resin forming the insulating nozzle is disclosed. The added titanium oxide suppresses decomposition inside the insulating nozzle by reflecting the arc light, and reduces the amount of carbon generated. Thereby, it is suppressed that carbon is deposited on the surface, and a decrease in insulation performance is suppressed.
  • titanium oxide suppresses the decomposition of the surface of the insulating nozzle, so that the gas generated from the fluororesin that forms the insulating nozzle is reduced. For this reason, there existed a subject that the pressure for blowing out insulating gas decreased and arc-extinguishing performance fell. For this reason, it has been difficult to achieve both improvement in arc extinguishing performance and suppression of reduction in insulation performance of the insulating nozzle.
  • the present invention has been made to solve the above problems. Specifically, it is to provide an insulating molded body and a gas circuit breaker that can improve arc-extinguishing performance and suppress deterioration of insulating performance.
  • the insulating molded body of the present invention is an insulating molded body used for an arc extinguishing device of a gas circuit breaker, and is thermally decomposed at 450 ° C. or higher and 1150 ° C. or lower by a fluorine resin and an arc generated when a conduction current is interrupted.
  • An insulating molded body comprising a fluororesin mixture in which the oxygen generator is dispersed in a fluororesin.
  • the arc-extinguishing insulating molded body according to the present invention includes a fluorine resin and an oxygen generator that thermally decomposes at 450 ° C. to 1150 ° C. to generate oxygen, and the oxygen generator is dispersed in the fluorine resin.
  • a resin mixture is provided. Thereby, the arc extinguishing performance and the durability of the insulating performance of the insulating nozzle are improved.
  • the gas circuit breaker by Embodiment 1 of this invention is a side view of the gas circuit breaker which made the housing
  • FIG. 1 is a side view of a gas circuit breaker according to Embodiment 1 for carrying out the present invention.
  • the housing 9 is shown in cross section so that the internal structure of the gas circuit breaker can be seen.
  • the gas circuit breaker of the present embodiment is connected to an arc extinguishing device 1 that conducts or interrupts an electric current, a first conductor 2a and a second conductor 2b that are connected to the arc extinguishing device 1, and an arc extinguishing device 1, respectively.
  • An actuating mechanism 4 that generates a driving force, a housing 9 that houses the arc extinguishing device 1, an insulating support 8 that supports the arc extinguishing device 1 inside the housing 9, and a housing 9.
  • the provided sliding member 10 is provided. Further, the inside of the housing 9 is filled with an insulating gas. The insulating gas is also filled in the arc extinguishing device 1.
  • One end of each of the first conductor 2a and the second conductor 2b is connected to the arc extinguishing device 1.
  • the other ends of the first conductor 2a and the second conductor 2b are connected to other devices not shown.
  • the operating mechanism 4 has a driving device 5, a transmission device 6, and a connecting device 7.
  • the operation mechanism 4 generates a driving force and transmits the driving force to the arc-extinguishing device 1 to drive the arc-extinguishing device 1.
  • ⁇ ⁇ Drive device 5 is a spring mechanism including a spring.
  • the drive device 5 is a device that uses the biasing force of a spring as a drive force.
  • the driving device 5 includes a holding device that holds the spring, and a switching device that switches between a storage state and a release state of the urging force of the spring.
  • a hydraulic mechanism including a hydraulic pump or an electric mechanism including a motor may be used.
  • the transmission device 6 is a link member formed in a V shape.
  • the transmission device 6 is rotatably supported by a central bent portion. One end of the transmission device 6 is connected to the drive device 5. Further, the other end portion of the transmission device 6 is coupled to the coupling device 7.
  • the transmission device 6 transmits the driving force generated by the driving device 5 to the coupling device 7.
  • the connecting device 7 is a rod-shaped link member.
  • the other end of the transmission device 6 is connected to one end of the connecting device 7.
  • the driving force is transmitted from the transmission device 6 to the coupling device 7.
  • the other end of the connecting device 7 is connected to the arc extinguishing device 1, and the driving force is transmitted from the connecting device 7 to the arc extinguishing device 1.
  • the housing 9 includes a plurality of walls.
  • the arc extinguishing device 1 is supported by a plurality of insulating supports 8 inside the housing 9.
  • the housing 9 has a first opening 9a and a second opening 9b on one wall.
  • the first opening 9a and the second opening 9b are respectively connected to the bushing 3a and the bushing 3b so that the insulating gas inside the housing 9 does not leak.
  • the first conductor 2a passes through the first opening 9a and the bushing 3a.
  • the second conductor 2b passes through the second opening 9b and the bushing 3b.
  • a cylindrical sliding member 10 is provided on the other wall of the housing 9 on the side in contact with the operating mechanism 4.
  • the connecting device 7 passes through the sliding member 10.
  • An O-ring is provided on the inner peripheral surface of the sliding member 10, and the connecting device 7 passes through the O-ring.
  • the connecting device 7 can slide inside the sliding member 10 while keeping the airtight so that the insulating gas inside the housing 9 does not leak by the O-ring.
  • the insulating gas filled in the housing 9 includes sulfur hexafluoride (SF 6 ), carbon dioxide (CO 2 ), trifluoromethane iodide (CF 3 I), nitrogen (N 2 ), oxygen (O 2 ). Tetrafluoromethane (CF 4 ), argon (Ar), helium (He), or a mixture of at least two of these is used.
  • the filling gas is preferably sulfur hexafluoride (SF 6 ), which has high insulation and thermal conductivity. Sulfur hexafluoride (SF 6 ) is used alone or in a mixture with carbon dioxide (CO 2 ) or nitrogen (N 2 ).
  • FIG. 2 and 3 are cross-sectional views showing the main parts of the gas circuit breaker.
  • FIG. 2 shows a first half state when the gas circuit breaker is opened.
  • FIG. 3 shows the latter half of the same part as FIG. 2 at the time of opening.
  • the arc-extinguishing device 1 has a fixed energizing contact 12 and a fixed arc contact 14.
  • the fixed energizing contact 12 and the fixed arc contact 14 are integrally formed of a conductive material, and are fixed to the housing 9 by a method not shown.
  • the fixed energizing contact 12 is a bottomed cylindrical member having one end opened. On the inner surface of the opening of the bottomed cylindrical member, a protrusion is provided on the entire circumference.
  • the fixed arc contact 14 is a rod-shaped member disposed inside the fixed energizing contact 12. One end of the fixed arc contact 14 is fixed to the center of the bottom of the fixed energization contact 12.
  • the arc extinguishing device 1 further includes an operation rod 17, a movable arc contact 13, a partition wall 24, a puffer cylinder 16, a movable energizing contact 11, an insulating nozzle 15, and a piston cylinder 25. These members constitute the movable part 30.
  • the piston 18 is fixed to the housing 9 by a method not shown.
  • the operating rod 17 is a rod-shaped member made of a conductive material. One end of the operating rod 17 is fixed to the connecting device 7. The operating rod 17 receives driving force from the coupling device 7.
  • the movable arc contact 13 is a hollow cylindrical member having both ends open and a space 21 inside.
  • the movable arc contact 13 is made of a conductive material.
  • the end surface of one end of the movable arc contact 13 is fixed to the end surface of the other end of the operating rod 17.
  • an annular convex portion 13b is formed over the entire circumference.
  • the annular projection 13b of the movable arc contact 13 contacts the fixed arc contact 14 when the arc extinguishing device 1 is closed.
  • a vent 13 a is provided at one end of the movable arc contact 13.
  • the movable arc contact 13 moves while contacting the fixed arc contact 14 between the annular convex portion 13 b and the fixed arc contact 14. At that time, according to the volume change of the space 21, the insulating gas enters and exits from the vent 13a.
  • the partition wall 24 is a disk-shaped member. In the partition wall 24, the outer peripheral surface of the other end portion of the operation rod 17 is passed through a through hole provided in the center. The partition wall 24 and the operation rod 17 are fixed.
  • the partition wall 24 is provided with a plurality of check valves 23. The plurality of check valves 23 allow a one-way insulating gas flow from the mechanical puffer chamber 19b to the heat puffer chamber 19a.
  • the puffer cylinder 16 is a hollow bottomed cylindrical member having one end opened.
  • a partition wall 24 is fitted and fixed to the opening of the cylindrical member.
  • a circular opening 16a is provided in the center of the bottom of the cylindrical member.
  • a movable arc contact 13 having an outer diameter smaller than the inner diameter of the opening 16a is inserted into the opening 16a.
  • the puffer cylinder 16 and the partition wall 24 form a heat puffer chamber 19a.
  • the movable energizing contact 11 is a hollow cylindrical member having a constant inner diameter.
  • the movable energizing contact 11 is formed with a large diameter portion and a small diameter portion.
  • the inner diameter of the movable energizing contact 11 is larger than the inner diameter of the opening 16 a of the puffer cylinder 16.
  • the end surface of the large-diameter portion of the movable energizing contact 11 is coaxially fixed to the bottom of the puffer cylinder 16.
  • the outer peripheral surface of the small-diameter portion of the movable energizing contact 11 is in contact with the protrusion of the fixed energizing contact 12 when the pole is closed.
  • the movable energizing contact 11 is made of a conductive material.
  • the insulating nozzle 15 is a hollow cylindrical member having a constant outer diameter.
  • the insulating nozzle 15 is fitted on the inner peripheral surface of the movable energizing contact 11.
  • the end face of one end of the insulating nozzle 15 is coaxially fixed to the bottom of the puffer cylinder 16.
  • an annular convex portion 15 a projecting radially inward along the entire circumference of the inner peripheral surface is formed integrally with the cylindrical member.
  • the inner diameter on the one end side of the annular convex portion 15a is constant.
  • the inner diameter on the other end side of the annular convex portion 15a is formed in a tapered shape that gradually increases from the inner diameter on the one end side toward the tip of the other end portion.
  • the inner diameter of the insulating nozzle 15 and the inner diameter of the opening 16a of the puffer cylinder 16 are the same. That is, the inner peripheral surface of the insulating nozzle 15 fixed to the bottom of the puffer cylinder 16 and the inner peripheral surface of the opening 16a of the puffer cylinder 16 are configured on the same surface.
  • the insulating nozzle 15 encloses the other half of the movable arc contact 13 which is the tip side.
  • An annular gap 27 is formed between the outer peripheral surface of the other end of the movable arc contact 13 and the inner peripheral surface of one end of the insulating nozzle 15.
  • the annular gap 27 serves as a flow path through which the insulating gas flows according to the progress of the opening operation of the arc extinguishing device 1.
  • Insulating gas flows in the first half of the opening operation of the arc extinguishing device 1 in the annular gap 27, as shown by the broken line arrow X in FIG. 2, from the other end of the movable arc contact 13 toward the heat puffer chamber 19a.
  • the insulating gas blows out from the heat puffer chamber 19 a toward the other end of the movable arc contact 13.
  • the insulating nozzle 15 is an insulating molded body formed from a fluororesin mixture having excellent heat resistance and a fluororesin mixture containing an oxygen generator.
  • a tetrafluoroethylene resin is used for the fluororesin that forms the insulating nozzle 15.
  • any one of a copolymer resin of tetrafluoroethylene and propylene hexafluoride, or a tetrafluoroethylene perfluoroalkyl ether copolymer resin may be used.
  • An inorganic peroxide having a thermal decomposition temperature in the range of 450 ° C. or higher and 1150 ° C. or lower is used as the oxygen generator compounded in the fluororesin.
  • the inorganic peroxide at least one of potassium peroxide, sodium peroxide, and barium peroxide is used.
  • the inorganic oxide at least one of manganese dioxide, cobalt oxide (II, III), and copper oxide (II) is used. When the arc is generated, the fluororesin is decomposed to generate carbon.
  • the generated carbon deposits on the surface of the insulating nozzle 15 and degrades the insulating performance of the insulating nozzle 15.
  • the oxygen generated from the oxygen generator is combined with the carbon generated from the fluororesin to form carbon dioxide or carbon monoxide. It becomes. Therefore, it is possible to suppress the carbon generated from the fluororesin from being deposited on the surface of the insulating nozzle 15 and to suppress a decrease in the insulating performance of the insulating nozzle 15.
  • the mechanism for generating oxygen from the oxygen generator uses the thermal decomposition reaction of the oxygen generator by the heat of the arc generated when the conduction current is interrupted.
  • the oxygen generator generates oxygen based on the following reaction formula, for example.
  • the oxygen generator is dispersed in the fluororesin. Thereby, oxygen can be generated near the carbon deposited on the surface of the insulating nozzle 15. Therefore, oxygen can be efficiently combined with the carbon deposited on the surface of the insulating nozzle 15.
  • the thermal decomposition reaction proceeds due to heating during the fluororesin molding process.
  • the function of the arc extinguishing device 1 as an oxygen generator is impaired, and the generated carbon cannot be suppressed from being deposited on the surface of the insulating nozzle 15.
  • the molding temperature of the fluororesin varies depending on the type of fluororesin and is a maximum of 400 ° C. During the heating process, the molded body rises to a certain temperature, but it may become higher than the certain temperature due to variations in heating. Therefore, taking into account the variation of 50 ° C, oxygen generation with a thermal decomposition temperature of 450 ° C or higher is generated.
  • the thermal decomposition temperature of the material that can be used as the oxygen generator in the present invention is 490 ° C. for potassium peroxide, 660 ° C. for sodium peroxide, 800 ° C. for barium peroxide, 550 ° C. for manganese dioxide, cobalt oxide (II, III) is 900 ° C., and copper (II) oxide is 1050 ° C.
  • the oxygen generating agent when an oxygen generating agent having a thermal decomposition temperature higher than 1150 ° C. is used, the oxygen generating agent is thermally decomposed even when the arc extinguishing device 1 is opened, that is, exposed to an arc generated when the conduction current is interrupted. Since the reaction does not proceed sufficiently, the amount of oxygen generated is not sufficient. Therefore, since there is not enough oxygen to bond with carbon generated from the fluororesin, carbon deposition cannot be sufficiently suppressed. In order to increase the amount of oxygen generated, the amount of oxygen generator added can be increased, but the amount of fluorine resin as the main material is reduced, and the durability and mechanical strength of the insulating nozzle 15 are reduced.
  • thermal decomposition sufficiently in a temperature range that can be reached by exposure to an arc. Therefore, it is preferable to use an oxygen generator having a thermal decomposition temperature of 1150 ° C. or lower.
  • the amount of oxygen generator added is desirably 0.5 wt% or more and less than 50 wt% with respect to the fluororesin mixture.
  • the oxygen generator is added in an amount of 0.5% by weight or more, a necessary oxygen amount can be obtained.
  • it is less than 50 weight%, sufficient gas generation
  • An exhaustion inhibitor may be added to the fluororesin mixture forming the insulating nozzle 15 of the present invention as long as the effects of the invention are not impaired.
  • the consumption inhibitor is white inorganic fine particles. Specifically, titanium oxide, boron nitride, alumina, and silica are added, and any of these is added.
  • the wear suppression agent prevents the arc light from entering the inside of the insulating nozzle 15 and prevents excessive wear of the insulating nozzle 15.
  • the standard of the amount of the consumption inhibitor is 10% by weight or less.
  • the piston cylinder 25 is a hollow cylindrical member.
  • the inner diameter and the outer diameter of the piston cylinder 25 are the same as the inner diameter and the outer diameter of the puffer cylinder 16 which are also cylindrical.
  • the end of the piston cylinder 25 is connected to the end of the puffer cylinder 16 on the opening side. Therefore, the piston cylinder 25 and the puffer cylinder 16 are connected and connected with the outer peripheral surfaces and the inner peripheral surfaces being the same surface.
  • a piston 18 having an outer diameter equal to the inner diameter of the piston cylinder 25 is slidably fitted.
  • the piston 18 is fixed to the housing 9 by a method not shown.
  • a sliding hole 18 a through which the operation rod 17 passes is provided at the center of the piston 18. With such a configuration, the operating rod 17 and the piston cylinder 25 are slidably reciprocated.
  • the piston cylinder 25, the piston 18, and the partition wall 24 form a mechanical puffer chamber 19b.
  • the movable portion 30 is in a position close to the fixed energizing contact 12 and the fixed arc contact 14.
  • the fixed arc contact 14 is accommodated inside the annular convex portion 15 a of the insulating nozzle 15.
  • the outer diameter surface of the small diameter portion of the movable energizing contact 11 is in contact with the fixed energizing contact 12.
  • the tip of the fixed arc contact 14 is in contact with the annular convex portion 13 b of the movable arc contact 13.
  • the driving device 5 does not output driving force.
  • FIG. 2 is a cross-sectional view of the main part of the arc extinguishing device 1 in the first stage of the opening operation of the arc extinguishing device 1.
  • the movable portion 30 is pulled by the connecting device 7 driven by the driving device 5, and the annular convex portion 13 b of the movable arc contact 13 is separated from the fixed arc contact 14. Accordingly, an arc 20 is generated between the annular convex portion 13b and the fixed arc contact 14. Since the arc 20 has a high temperature, the insulating gas heated by the arc 20 has a high temperature.
  • the fluororesin of the insulating nozzle 15 exposed to the arc 20 is decomposed to generate a high temperature gas. Then, as indicated by a broken line arrow X in the figure, the high-temperature insulating gas and the generated high-temperature gas pass through the annular gap 27 formed by the insulating nozzle 15 and the movable arc contactor 13 in the heat puffer chamber 19a. Flow into. When the pressure is increased by the flowing high temperature gas, the insulating gas in the heat puffer chamber 19 a blows out toward the insulating nozzle 15.
  • the oxygen generating agent mixed in the insulating nozzle 15 is decomposed to generate oxygen.
  • Oxygen generated from the oxygen generator is combined with carbon generated from the fluororesin to form carbon dioxide or carbon monoxide.
  • the partition 24 and the piston cylinder 25 also move together with the movable portion 30.
  • the volume of the mechanical puffer chamber 19b does not change so much, and the pressure in the mechanical puffer chamber 19b increases only slightly. Therefore, the insulating gas does not blow out from the mechanical puffer chamber 19b.
  • FIG. 3 is a cross-sectional view of the same portion as FIG. 2 in the latter stage of the opening operation of the arc extinguishing device 1.
  • the movable part 30 moves, and the annular convex part 13 b moves to a position further away from the fixed arc contactor 14.
  • the arc 20 extends as the annular protrusion 13b moves away from the fixed arc contact 14 and gradually becomes thinner.
  • the volume of the mechanical puffer chamber 19b formed by the partition wall 24, the piston cylinder 25, and the piston 18 is smaller than that at the start of the opening operation. Therefore, the pressure in the mechanical puffer chamber 19b increases, and the insulating gas in the mechanical puffer chamber 19b is pushed out.
  • the insulating gas in the mechanical puffer chamber 19b passes through the check valve 23, the heat puffer chamber 19a, and the annular gap 27, as shown by the broken line arrow Y in the figure, and the tapered shape of the nozzle opening, that is, the insulating nozzle 15. It is pushed out toward the ring-shaped convex part 15a that spreads out.
  • the arc is extinguished while the insulating gas is blown onto the arc 20 to efficiently discharge the heat between the movable arc contact 13 and the fixed arc contact 14 to the outside.
  • the movable energizing contact 11 and the fixed energizing contact 12 are completely separated by separating them to a sufficient distance where no arc is generated by the reactivation voltage applied between the movable energizing contact 11 and the fixed energizing contact 12. Completes the current interruption.
  • Examples of the present invention will be described below. The present invention is not limited to these examples.
  • Examples 1 to 6 of the insulating nozzle 15 were produced. Specifically, as the fluororesin used for the fluororesin mixture, an ethylene tetrafluoride resin was used in all of Examples 1 to 6.
  • the oxygen generator potassium peroxide, sodium peroxide, barium peroxide, manganese dioxide, cobalt oxide (II, III), and copper oxide (II) were used individually, respectively. 2, Example 3, Example 4, Example 5, and Example 6.
  • the fluororesin and each of the oxygen generators described above were mixed and compression molded, and heat treatment was performed at 380 ° C. for 10 hours in an electric furnace to obtain an insulating nozzle 15.
  • Comparative Examples 1 to 5 were prepared for comparison.
  • the insulating nozzle 15 was made of only tetrafluoroethylene resin without adding an oxygen generator.
  • an insulating nozzle 15 was produced by adding calcium peroxide having a thermal decomposition temperature of 275 ° C., which is lower than the molding temperature of the insulating nozzle 15, to the tetrafluoroethylene resin as an oxygen generator.
  • titanium oxide having a thermal decomposition temperature of 1860 ° C. was added as an oxygen generator to tetrafluoroethylene resin to produce an insulating nozzle 15.
  • Comparative Example 4 chromium oxide (VI) having a thermal decomposition temperature of 250 ° C. was added to the tetrafluoroethylene resin as an oxygen generator to produce an insulating nozzle 15.
  • iron oxide (III) having a thermal decomposition temperature of 1400 ° C. was added as an oxygen generator to tetrafluoroethylene resin to produce an insulating nozzle 15.
  • Examples 1 to 6 and Comparative Examples 1 to 5 only the presence or absence of the oxygen generator and the type of the oxygen generator added were different, and the compression molding and the heat treatment were performed in the same method and under the same conditions. . In Examples 1 to 6 and Comparative Examples 1 to 5, no additive other than the oxygen generator is added.
  • Examples 1 to 6 and Comparative Examples 1 to 5 produced as described above were subjected to an arc exposure test under the same conditions.
  • Each insulating nozzle 15 was set in a sealed chamber of the test apparatus, and the sealed chamber was filled with sulfur hexafluoride.
  • a rated voltage of 84 kV and an effective energization current value of 20 kA were applied, the movable contact was moved at a breaking time of 10 to 15 ms to generate an arc, and 10 breaking tests were performed.
  • the generated gas pressure was measured with a pressure sensor.
  • the pressure sensor used was a charge output type pressure sensor 112A05 made by PCB PIEZORONICS.
  • the average value of each generated gas pressure value in 10 tests was calculated. Thereafter, the ratio of the average value in each Example and Comparative Example to the average value in Comparative Example 1 was determined and used as the generated pressure.
  • the insulation resistance of the surface of the insulating nozzle 15 was measured, and the change in the surface insulation performance due to the arc exposure was evaluated.
  • FIG. 4 shows the results of the arc exposure test of each example and comparative example.
  • the insulation resistance “> 1 ⁇ 10 15 ” means the maximum value that can be measured by a measuring instrument.
  • Example 1 an increase in the generated pressure was observed in all of Comparative Example 1 in which no oxygen generator was added.
  • the generated pressure of Example 2 was the highest and was 113%.
  • the generated pressure in Example 1 is 110%
  • the generated pressure in Example 3 is 108%
  • the generated pressure in Example 4 is 111%
  • the generated pressure in Example 5 is 105%
  • the generated pressure in Example 6 is 101%. there were. This is because in addition to the generated gas pressure due to the thermal decomposition of the fluororesin, the oxygen generation due to the thermal decomposition of the oxygen generating agent contributed to the pressure improvement.
  • Example 1 there was no change in insulation performance before and after the test, and high insulation performance was maintained.
  • Example 6 the insulation resistance value decreased after the test.
  • the insulation performance was higher than that of Comparative Example 1, and an improvement in insulation performance due to the oxygen generator was observed. This is because oxygen generated by thermal decomposition of the oxygen generator oxidizes free carbon generated in the thermal decomposition process of the fluororesin, thereby suppressing carbon deposition on the insulating nozzle 15, and It is thought that the insulation deterioration was prevented.
  • Comparative Example 1 a significant decrease in insulation performance after the test was observed.
  • Comparative Example 1 since no oxygen generator is added, it is considered that carbon generated in the thermal decomposition process of the fluororesin is deposited on the surface of the insulating nozzle 15 and the insulating property is lowered.
  • Comparative Example 2 and Comparative Example 4 a significant decrease in insulation performance was observed after the test.
  • the oxygen generator added to Comparative Example 2 and Comparative Example 4 is calcium peroxide or chromium oxide (VI) whose thermal decomposition temperature is lower than the molding temperature. This is because, before the arc exposure test, calcium peroxide or chromium (VI) oxide was decomposed to lose the oxygen generation function, and there was no oxidizing action of carbon generated during the pyrolysis process of the fluororesin. In contrast to Comparative Example 1, in Comparative Example 2 and Comparative Example 4, a slight decrease in the generated gas pressure was confirmed. In Comparative Example 2 and Comparative Example 4, as described above, it is considered that calcium peroxide or chromium oxide (VI) added as an oxygen generator was decomposed before the arc exposure test, and the generated gas was considered to be small.
  • Comparative Example 3 a significant decrease in the generated pressure was confirmed compared to Comparative Example 1.
  • the thermal decomposition temperature of the added titanium oxide was as high as 1860 ° C., and oxygen was not generated by the thermal decomposition reaction by the arc exposure test.
  • the added titanium oxide increases the surface reflectance of the insulating nozzle 15 and decreases the arc light entering the insulating nozzle 15. This is because the amount of thermal decomposition of the insulating nozzle 15 as a whole is reduced because the amount of arc light entering the insulating nozzle 15 is reduced and the amount of thermal decomposition inside the insulating nozzle 15 is reduced.
  • the insulation performance slightly decreased after the test.
  • Comparative Example 5 the insulation performance significantly decreased after the test.
  • the thermal decomposition temperature of iron (III) oxide added as an oxygen generator to the tetrafluoroethylene resin in Comparative Example 5 is as high as 1400 ° C.
  • the cause of the deterioration of the insulation performance is that oxygen was not generated by the pyrolysis reaction in the arc exposure test, and the carbon generated in the pyrolysis process of the fluororesin was not oxidized.
  • a slight decrease in the generated gas pressure was confirmed in Comparative Example 5. As described above, it is considered that the added iron oxide (III) did not generate oxygen by arc exposure and the amount of generated gas was small.
  • the insulating nozzle 15 includes a fluororesin and an oxygen generator that thermally decomposes at 450 ° C. to 1150 ° C., and the oxygen generator is contained in the fluororesin. It is formed from a dispersed fluororesin mixture.
  • an oxygen generator that thermally decomposes at 450 ° C. or higher and 1150 ° C. or lower to generate oxygen is blended. Therefore, when the arc is generated, sufficient oxygen is generated, and it is possible to suppress the deposition of carbon on the surface of the insulating nozzle 15 by combining with the carbon generated by the decomposition of the fluororesin. Accordingly, it is possible to suppress a decrease in the insulating performance of the insulating nozzle 15.
  • the insulating nozzle 15 is formed of a fluororesin and a fluororesin mixture containing an oxygen generator that generates oxygen by pyrolysis at 450 ° C. or higher and 1150 ° C. or lower, and the oxygen generator is dispersed in the fluororesin. Yes. Therefore, the arc can be effectively extinguished when the arc is generated. As a result, the distance between the movable arc contact 13 and the fixed arc contact 14 necessary for maintaining the insulation state can be made shorter than before. Therefore, the arc extinguishing device 1 can be reduced in size.
  • the insulating nozzle 15 is formed from a fluororesin mixture composed of a fluororesin and an oxygen generator.
  • an insulating gas flow guide may be provided between the movable arc portion and the insulating nozzle, and an insulating molded body may be provided on the flow guide.
  • the flow guide may be an insulating molded body. Further, only a part of the insulating nozzle 15 may be an insulating molded body.

Abstract

本発明による絶縁成形体は、ガス遮断器の消弧装置1に用いられる。絶縁成形体は、フッ素樹脂と、導通電流の遮断時に発生するアークにより450℃以上1150℃以下で熱分解して酸素を発生する酸素発生剤と、を含むフッ素樹脂混合物を備えている。酸素発生剤は、フッ素樹脂中に分散している。また、ガス遮断器は、絶縁成形体から形成される絶縁ノズルを有している。

Description

絶縁成形体、及びガス遮断器
 この発明は、電流の遮断時に発生するアークに絶縁ガスを吹き付けてアークを消滅させるガス遮断器に用いる絶縁成形体及びガス遮断器に関する。
 電気設備では、電流の遮断装置としてガス遮断器が用いられている。ガス遮断器は、通電電流の遮断時において、可動接点と固定接点との間に発生するアークに絶縁ガスを吹き付けてアークを消滅させる。絶縁ガスを強力に吹き付けるための工夫として、アークの熱を利用して吹き付ける絶縁ガスの圧力を高める熱パッファ室、あるいは機械的に吹き付ける絶縁ガスの圧力を高める機械パッファ室を備える構造のガス遮断器がある。これらの構造のガス遮断器は、絶縁ガスの圧力を高めて、絶縁ノズルからアークに絶縁ガスを吹き付ける。絶縁ガスを吹き付けることにより、可動接点と固定接点との間の熱を外部に排出して効率的にアークを消弧できる。
 絶縁ガスをアークに吹き付ける絶縁ノズルには、耐熱性が優れたフッ素樹脂で形成されたものがある。しかし、フッ素樹脂製の絶縁ノズルがアークに晒されると、アーク光がフッ素樹脂の内部にも侵入し、フッ素樹脂の表面のみならず内部も分解する。そのため、フッ素樹脂に含まれている炭素が発生する。発生した炭素は絶縁ノズルの表面に析出し、絶縁ノズルの表面の絶縁性能を低下させる。それを防ぐため、絶縁ノズルを形成する樹脂に、酸化チタンを添加した絶縁ノズルが開示されている。添加された酸化チタンは、アーク光を反射することで絶縁ノズルの内部の分解を抑制して、発生する炭素量を減らす。それにより、炭素が表面に析出することを抑制し、絶縁性能の低下を抑えている。
特開昭57-210507号公報
しかしながら、上記の従来技術では、酸化チタンが絶縁ノズルの表面の分解を抑制するため、絶縁ノズルを形成するフッ素樹脂からの発生ガスが減少する。このため、絶縁ガスが吹き出すための圧力が減少し、消弧性能が低下するという課題があった。そのため、消弧性能の向上と、絶縁ノズルの絶縁性能の低下の抑制との両立が困難であった。
 本発明は、上記課題を解決するためになされたものである。具体的には、消弧性能を向上させると共に絶縁性能の低下を抑制できる、絶縁成形体、及びガス遮断器を提供することにある。
 本発明の絶縁成形体は、ガス遮断器の消弧装置に用いられる絶縁成形体であって、フッ素樹脂と、導通電流の遮断時に発生するアークにより450℃以上1150℃以下で熱分解して酸素を発生する酸素発生剤とを含み、酸素発生剤がフッ素樹脂中に分散しているフッ素樹脂混合物を備えている絶縁成形体である。
 本発明による消弧用絶縁成形体は、フッ素樹脂と、450℃以上1150℃以下で熱分解して酸素を発生する酸素発生剤とを含み、酸素発生剤がフッ素樹脂中に分散しているフッ素樹脂混合物を備えている。それにより、消弧性能と、絶縁ノズルの絶縁性能の耐久性とを向上させている。
本発明の実施の形態1によるガス遮断器において、筐体を断面としたガス遮断器の側面図である。 ガス遮断器の要部における開極時前半を示す断面図である。 ガス遮断器の要部における開極時後半を示す断面図である。 本発明の実施の形態1によるガス遮断器の実験結果を示す図である。
 実施の形態1.
 図1は、本発明を実施するための実施の形態1によるガス遮断器の側面図である。
 図1では、ガス遮断器の内部構造がわかるように、筐体9は断面により示されている。
 本実施の形態のガス遮断器は、電流を導通又は遮断する消弧装置1、消弧装置1にそれぞれ接続されている第一導体2a及び第二導体2b、消弧装置1に連結されており、駆動力を発生する作動機構4、消弧装置1を内部に収容している筐体9、筐体9の内部において消弧装置1を支持している絶縁支持体8、及び筐体9に設けられている摺動部材10を備えている。また、筐体9の内部には、絶縁ガスが充填されている。絶縁ガスは、消弧装置1にも充填されている。
 第一導体2a及び第二導体2bの各々の一端部は、消弧装置1に接続されている。また、第一導体2a及び第二導体2bの他端部は、図示されていない他の機器類にそれぞれ接続されている。
 作動機構4は、駆動装置5、伝達装置6、及び連結装置7を有している。作動機構4は、駆動力を発生し消弧装置1に駆動力を伝達して、消弧装置1を駆動する。
 駆動装置5は、ばねを含んだばね機構である。駆動装置5は、ばねの付勢力を駆動力として利用する装置である。駆動装置5は、ばねを保持する保持装置、及びばねの付勢力の蓄積状態と解放状態とを切り替える切替装置を有している。駆動装置5の他の形態として、油圧ポンプを含んだ油圧機構、又はモータを含んだ電動機構でもよい。
 伝達装置6は、V字形状に形成されたリンク部材である。伝達装置6は、中央の折れ曲り部で回動自在に支持されている。伝達装置6の一端部は、駆動装置5に連結されている。また、伝達装置6の他端部は、連結装置7に連結されている。伝達装置6は、駆動装置5によって発生した駆動力を連結装置7に伝達する。
 連結装置7は、棒状のリンク部材である。連結装置7の一端部には、伝達装置6の他端部が連結されている。これにより、伝達装置6から連結装置7へ駆動力が伝達される。連結装置7の他端部には、消弧装置1に連結され、連結装置7から消弧装置1へ駆動力が伝達される。
 筐体9は、複数の壁を含んで構成されている。消弧装置1は、筐体9の内部において、複数の絶縁支持体8により支持されている。筐体9は、一の壁に第一開口部9a及び第二開口部9bを有している。第一開口部9a及び第二開口部9bは、筐体9の内部の絶縁ガスが漏れないように、ブッシング3a、及びブッシング3bにそれぞれ接続されている。第一開口部9a及びブッシング3aには、第一導体2aが通っている。また、第二開口部9b、及びブッシング3bには、第二導体2bが通っている。
 また、筐体9の作動機構4と接する側の他の壁には、筒状の摺動部材10が設けられている。摺動部材10の内部には連結装置7が貫通している。摺動部材10の内周面には、Oリングが設けられており、連結装置7はOリングを貫通している。Oリングにより筐体9の内部の絶縁ガスが漏れないよう気密を保ちながら、連結装置7が摺動部材10の内部を摺動できるようになっている。
 筐体9に充填されている絶縁ガスには、六フッ化硫黄(SF6)、二酸化炭素(CO2)、ヨウ化トリフルオロメタン(CF3I)、窒素(N2)、酸素(O2)、4フッ化メタン(CF4)、アルゴン(Ar)、ヘリウム(He)あるいは、これらの少なくも2つを混合したものが用いられる。充填ガスには、絶縁性及び熱伝導性がともに高い六フッ化硫黄(SF6)が好ましい。六フッ化硫黄(SF6)は単体で用いられるか、二酸化炭素(CO2)、又は窒素(N2)との混合物で用いられる。
 図2及び図3は、ガス遮断器における要部を示す断面図である。図2は、ガス遮断器の開極時の前半の状態を示している。図3は、図2と同じ部位における開極時の後半の状態を示している。
 消弧装置1は、固定通電接触子12及び固定アーク接触子14を有している。固定通電接触子12及び固定アーク接触子14は、導電性材料で一体的に形成されており、図示しない方法で筐体9に固定されている。
 固定通電接触子12は、一端部が開口された有底円筒部材である。有底円筒部材の開口部の内面には、全周において突条が設けられている。
 固定アーク接触子14は、固定通電接触子12の内側に配置された棒状部材である。固定アーク接触子14の一端部は、固定通電接触子12の底部の中央に固定されている。
 消弧装置1は、さらに、操作ロッド17、可動アーク接触子13、隔壁24、パッファシリンダ16、可動通電接触子11、絶縁ノズル15、及びピストンシリンダ25を有している。これらの部材は、可動部30を構成している。また、ピストン18は、図示しない方法で筐体9に固定されている。
 操作ロッド17は、導電性材料からなる棒状部材である。操作ロッド17の一端部は、連結装置7に固定されている。操作ロッド17は、連結装置7から駆動力を伝達される。
 可動アーク接触子13は、両端部が開口しており、内部に空間21がある中空の筒状部材である。可動アーク接触子13は、導電性材料からなっている。可動アーク接触子13の一端部の端面は、操作ロッド17の他端部の端面に固定されている。可動アーク接触子13の他端部の内側には、全周にわたって環状凸部13bが形成されている。可動アーク接触子13の環状凸部13bは、消弧装置1の閉極時に固定アーク接触子14と接触する。可動アーク接触子13の一端部には、通気口13aが設けられている。閉極移行時、及び開極移行時には、可動アーク接触子13が固定アーク接触子14に対して、環状凸部13bと固定アーク接触子14とで接触しながら移動する。その際、空間21の体積変化に応じて、絶縁ガスが通気口13aから出入りする。
 隔壁24は円板状部材である。隔壁24は、中央に設けられた貫通穴に操作ロッド17の他端部の外周面が貫通されている。隔壁24と、操作ロッド17とは固定されている。また、隔壁24には、複数の逆止弁23が設けられている。複数の逆止弁23は、機械パッファ室19bから熱パッファ室19aへの一方向の絶縁ガスの流れを許容する。
 パッファシリンダ16は、一端部が開口されている中空の有底円筒部材である。円筒部材の開口部には、隔壁24が嵌められ固定されている。円筒部材の底部の中央には、円形の開口16aが設けられている。開口16aには、開口16aの内径より小さい外径の可動アーク接触子13が差し込まれて配置されている。パッファシリンダ16、及び隔壁24は、熱パッファ室19aを形成している。
 可動通電接触子11は、内径が一定に形成されている中空の筒状部材である。可動通電接触子11には、大径部と小径部とが形成されている。可動通電接触子11の内径は、パッファシリンダ16の開口16aの内径より大きくなっている。可動通電接触子11の大径部の端面は、パッファシリンダ16の底部に同軸に固定されている。可動通電接触子11の小径部の外周面は、閉極時に固定通電接触子12の突条と接触する。可動通電接触子11は、導電性材料から形成されている。
 絶縁ノズル15は、外径が一定に形成された中空の円筒部材である。絶縁ノズル15は、可動通電接触子11の内周面に嵌合されている。絶縁ノズル15の一端部の端面は、パッファシリンダ16の底部に、同軸に固定されている。絶縁ノズル15の他端部の内周面には、内周面の全周において径方向内側に張り出している環状凸部15aが、円筒部材と一体に形成されている。環状凸部15aの一端部側の内径は、一定である。環状凸部15aの他端側の内径は、他端部の先端に向かって、一端部側の内径から徐々に大きくなるテーパ状に形成されている。絶縁ノズル15の内径及びパッファシリンダ16の開口16aの内径は、同じである。すなわち、パッファシリンダ16の底部に固定された絶縁ノズル15の内周面と、パッファシリンダ16の開口16aの内周面とは、同一面に構成されている。
 絶縁ノズル15は、可動アーク接触子13の先端側である他端側の半分を囲っている。可動アーク接触子13の他端部の外周面と、絶縁ノズル15の一端部の内周面との間には、環状隙間27が形成されている。この環状隙間27は、消弧装置1の開極作動の進捗に応じて絶縁ガスが流れる流路となる。この環状隙間27において、消弧装置1の開極作動の前半では、図2において破線矢印Xで示されているように、可動アーク接触子13の他端部から熱パッファ室19aに向かって、絶縁ガスが流れ込む。また、消弧装置1の開極作動の後半では、図3において破線矢印Yで示されているように、熱パッファ室19aから可動アーク接触子13の他端部方向へ絶縁ガスが吹き出す。
 絶縁ノズル15は、耐熱性に優れるフッ素樹脂、及び酸素発生剤を含むフッ素樹脂混合物から形成される絶縁成形体である。絶縁ノズル15を形成するフッ素樹脂には、四フッ化エチレン樹脂が用いられる。上記以外のフッ素樹脂として、四フッ化エチレンと六フッ化プロピレンとの共重合樹脂、又は四フッ化エチレンパーフルオロアルキルエーテル共重合樹脂の何れか1つを用いてもよい。
 フッ素樹脂に配合する酸素発生剤には、熱分解温度が450℃以上1150℃以下の範囲の無機過酸化物を用いる。無機過酸化物には、過酸化カリウム、過酸化ナトリウム、及び過酸化バリウムの少なくとも何れか1つが用いられる。なお、フッ素樹脂に配合する酸素発生剤には、熱分解温度が450℃以上1150℃以下の範囲の無機酸化物を用いてもよい。無機酸化物には、二酸化マンガン、酸化コバルト(II,III)、及び酸化銅(II)の少なくとも何れか1つが用いられる。アーク発生時には、フッ素樹脂が分解されて炭素が発生する。発生した炭素は、絶縁ノズル15の表面に析出して、絶縁ノズル15の絶縁性能を低下させてしまう。これに対し、酸素発生剤がフッ素樹脂に配合されている本実施の形態の絶縁ノズル15では、酸素発生剤から発生する酸素が、フッ素樹脂から発生する炭素と結合して二酸化炭素又は一酸化炭素となる。したがって、フッ素樹脂から発生する炭素が絶縁ノズル15の表面に析出することが抑制され、絶縁ノズル15の絶縁性能の低下を抑制することができる。
 酸素発生剤から酸素が発生する機構は、導通電流の遮断時に発生するアークの熱による酸素発生剤の熱分解反応を利用している。酸素発生剤は、例えば以下のような反応式に基づいて酸素を発生する。
 2MnO2→2MnO+O2
 酸素発生剤は、フッ素樹脂中に分散している。これにより、絶縁ノズル15の表面に析出する炭素の近くに酸素を発生させることができる。従って、絶縁ノズル15の表面に析出した炭素に対して酸素を効率良く結合させることができる。
 熱分解温度が450℃未満の酸素発生剤を用いた場合、フッ素樹脂の成形工程中の加熱により熱分解反応が進行してしまう。その結果、消弧装置1の酸素発生剤としての機能が損なわれ、発生した炭素が絶縁ノズル15の表面に析出することを抑制できない。フッ素樹脂の成形温度は、フッ素樹脂の種類により異なっており、最高400℃である。加熱工程中、成形体は一定温度まで上昇するが、加熱ばらつきのために一定温度より高くなる可能性があるため、ばらつき分の50℃を考慮して、熱分解温度が450℃以上の酸素発生剤を用いることが好ましい。本発明において酸素発生剤として用いることができる材料の熱分解温度は、過酸化カリウムが490℃、過酸化ナトリウムが660℃、過酸化バリウムが800℃、二酸化マンガンが550℃、酸化コバルト(II,III)が900℃、酸化銅(II)が1050℃である。
 また、熱分解温度が1150℃よりも高い酸素発生剤を用いた場合、消弧装置1が開極する時、即ち導通電流の遮断時に発生するアークに晒されても、酸素発生剤の熱分解反応が十分に進行しないため、酸素発生量が十分ではない。そのため、フッ素樹脂から発生した炭素と結合する酸素が足りないため、炭素の析出が十分に抑制できない。発生酸素量を増やすために酸素発生剤の配合量を増やすことはできるが、主材であるフッ素樹脂の配合量を減らすことになり、絶縁ノズル15の耐久性及び機械的強度が低下する。つまり、発生する炭素に足りるだけの酸素を発生させるには、アークに晒されて到達し得る温度範囲において十分に熱分解することが好ましい。したがって、熱分解温度が1150℃以下の酸素発生剤を用いることが好ましい。
 酸素発生剤の添加量は、フッ素樹脂混合物に対し0.5重量%以上50重量%未満であることが望ましい。酸素発生剤の添加量は、0.5重量%以上であると必要な酸素量が得られる。また、50重量%未満であれば、フッ素樹脂混合物に混合されているフッ素樹脂から十分な量のガス発生が得られ、絶縁ノズル15の機械的強度も得られる。
 本発明の絶縁ノズル15を形成するフッ素樹脂混合物には、発明の効果を損なわない範囲で、消耗抑制剤を添加しても良い。消耗抑制剤は白色無機微粒子である。具体的には、酸化チタン、窒化ホウ素、アルミナ、及びシリカであり、これらの何れかを添加する。消耗抑制剤は、アーク光が絶縁ノズル15の内部に侵入することを妨げ、絶縁ノズル15の過剰な消耗を防ぐ。消耗抑制剤の配合量の目安は、10重量%以下である。
 ピストンシリンダ25は、中空の円筒部材である。ピストンシリンダ25の内径及び外径は、同じく円筒形状であるパッファシリンダ16の内径及び外径とそれぞれ同じである。ピストンシリンダ25の端部は、パッファシリンダ16の開口側の端部に接続されている。したがって、ピストンシリンダ25とパッファシリンダ16とは、外周面同士及び内周面同士が同一面として、つながって接続されている。
 ピストンシリンダ25の内部には、ピストンシリンダ25の内径と等しい寸法の外径のピストン18が摺動自在に嵌合されている。ピストン18は、図示しない方法で筐体9に固定されている。ピストン18の中央部には、操作ロッド17が貫通する摺動穴18aが設けられている。このような構成により、操作ロッド17とピストンシリンダ25が、摺動自在に往復動する。ピストンシリンダ25、ピストン18、及び隔壁24は、機械パッファ室19bを形成している。
 以下に消弧装置1の作動を説明する。
 図示されていない消弧装置1の閉極時には、可動部30は、固定通電接触子12及び固定アーク接触子14に接近した位置にある。この位置では、固定アーク接触子14は、絶縁ノズル15の環状凸部15aの内側に収容されている。可動通電接触子11の小径部の外径面は、固定通電接触子12に接触している。また、固定アーク接触子14の先端部は、可動アーク接触子13の環状凸部13bに当接している。駆動装置5は駆動力を出力していない。この状態では、固定通電接触子12と可動通電接触子11との間で電流が流れている。アーク20は発生していないため、熱パッファ室19aは常圧である。また、駆動力が隔壁24に伝えられていないため、機械パッファ室19bも常圧である。
 図2は、消弧装置1の開極作動の前期における消弧装置1の要部の断面図である。消弧装置1が開極し始めると、駆動装置5に駆動された連結装置7により可動部30が引っ張られ、可動アーク接触子13の環状凸部13bは、固定アーク接触子14から離れる。それに伴い、環状凸部13bと固定アーク接触子14との間にアーク20が発生する。アーク20は高温であるため、アーク20に加熱された絶縁ガスが高温になる。また、アーク20に晒された絶縁ノズル15のフッ素樹脂が分解して、高温のガスが発生する。そうすると、図中に破線矢印Xで示すように、高温の絶縁ガスと発生した高温ガスとは、絶縁ノズル15と可動アーク接触子13とで形成される環状隙間27を通って熱パッファ室19a内に流れ込む。流れ込んだ高温ガスによって圧力が高められると熱パッファ室19a内の絶縁ガスは、絶縁ノズル15に向けて吹き出る。
 絶縁ノズル15からガスが発生する時には、絶縁ノズル15に配合されている酸素発生剤が分解して酸素が発生する。酸素発生剤から発生した酸素は、フッ素樹脂から発生する炭素と結合して、二酸化炭素又は一酸化炭素となる。可動アーク接触子13が図中で右方向へ移動するのに伴い、可動部30と共に、隔壁24、及びピストンシリンダ25も移動する。しかし、開極作動の前期では、移動量がわずかのため、機械パッファ室19bの体積はあまり変わらず、機械パッファ室19bの圧力の上昇もわずかである。したがって、絶縁ガスが機械パッファ室19bから吹き出さない。
 図3は、消弧装置1の開極作動の後期における図2と同じ部位の断面図である。
 消弧装置1の開極作動の後期では、可動部30が移動して、環状凸部13bが固定アーク接触子14からさらに離れた位置に移動する。アーク20は、環状凸部13bが固定アーク接触子14から離れるにつれて伸び、徐々に細くなる。可動アーク接触子13が図中で右方向に移動する際に、可動部30と共に隔壁24、及びピストンシリンダ25も移動するが、ピストン18は筐体9に固定されており移動しない。したがって、隔壁24、ピストンシリンダ25及びピストン18で形成されている機械パッファ室19bは、開極作動開始時より体積が減少する。そのため、機械パッファ室19b内の圧力は高まり、機械パッファ室19b内の絶縁ガスは押し出される。機械パッファ室19b内の絶縁ガスは、図中に破線矢印Yで示すように、逆止弁23、熱パッファ室19a、及び環状隙間27を通って、ノズル開口部、すなわち絶縁ノズル15のテーパ状に広がった環状凸部15aに向けて押し出される。
 このようにして、アーク20に絶縁ガスを吹き付けて可動アーク接触子13と固定アーク接触子14との間の熱を、効率的に外部に排出しながらアークを消弧する。同時に、可動通電接触子11と固定通電接触子12とを、可動通電接触子11と固定通電接触子12との間にかかる再起電圧でアークが発生することがない十分な距離まで引き離すことで完全な絶縁状態にして、電流の遮断が完了する。
 以下、本発明の実施例をあげて説明する。なお、本発明はこれらの実施例に限定されるものではない。
 上記に示した実施の形態1に基づき、絶縁ノズル15の実施例1~6を作製した。具体的には、フッ素樹脂混合物に用いるフッ素樹脂は、四フッ化エチレン樹脂を実施例1~6の全てに用いた。また、酸素発生剤については、過酸化カリウム、過酸化ナトリウム、過酸化バリウム、二酸化マンガン、酸化コバルト(II,III)、及び酸化銅(II)を個別に用いて、それぞれ実施例1、実施例2、実施例3、実施例4、実施例5、及び実施例6とした。フッ素樹脂と上記のそれぞれの酸素発生剤とを混合して圧縮成形し、電気炉にて380℃で10時間の加熱処理を行い、絶縁ノズル15を得た。
 本発明の実施例1~6の他に、比較のため比較例1~5を作製した。比較例1は、酸素発生剤を添加せず、四フッ化エチレン樹脂のみで絶縁ノズル15を作製したものである。比較例2は、四フッ化エチレン樹脂に、酸素発生剤として、熱分解温度が絶縁ノズル15の成形温度よりも低い275℃の過酸化カルシウムを添加し、絶縁ノズル15を作製した。比較例3は、四フッ化エチレン樹脂に、酸素発生剤として、熱分解温度が1860℃である酸化チタンを添加し、絶縁ノズル15を作製した。比較例4は、四フッ化エチレン樹脂に、酸素発生剤として、熱分解温度が250℃である酸化クロム(VI)を添加し、絶縁ノズル15を作製した。比較例5は、四フッ化エチレン樹脂に、酸素発生剤として、熱分解温度が1400℃である酸化鉄(III)を添加し、絶縁ノズル15を作製した。なお、実施例1~6と比較例1~5では、酸素発生剤の添加の有無、及び添加した酸素発生剤の種類が異なるのみで、圧縮成形及び加熱処理は、同じ方法、同じ条件とした。また、実施例1~6と比較例1~5には、酸素発生剤以外の添加剤は添加していない。
 上記のように作製した実施例1~6及び比較例1~5を、同じ条件においてアーク曝露試験を行った。それぞれの絶縁ノズル15について、試験装置の密閉チャンバ内にセットし、密閉チャンバ内を六フッ化硫黄で充填した。その状態で、定格電圧84kV、通電電流実効値20kAを印加して、遮断時間10~15msで可動接点を移動させてアークを発生させ、10回の遮断試験を実施した。
 上記のアーク曝露試験中において、発生ガス圧力を圧力センサにより計測した。圧力センサには、PCB PIEZOTRONICS社製 電荷出力型圧力センサ 112A05を使用した。それぞれの実施例又は比較例ごとに、10回の試験における各発生ガス圧力値の平均値を算出した。その後、それぞれの実施例及び比較例ごとにおける上記平均値の、比較例1における上記平均値に対する比を求めて発生圧力とした。また、アーク曝露試験に供する前後において、絶縁ノズル15の表面の絶縁抵抗を測定し、アーク曝露による表面絶縁性能の変化を評価した。
 図4は、各実施例及び比較例のアーク曝露試験による結果を示している。なお図中において、絶縁抵抗が「>1×1015」とは、測定器で測定できる最大値であることを意味する。
 実施例1~6では、酸素発生剤を添加しない比較例1に対して、何れも発生圧力の増加が認められた。比較例1に対し、実施例2の発生圧力が一番高く113%であった。実施例1の発生圧力は110%、実施例3の発生圧力は108%、実施例4の発生圧力は111%、実施例5の発生圧力は105%、実施例6の発生圧力は101%であった。これは、フッ素樹脂の熱分解による発生ガス圧に加え、酸素発生剤の熱分解による酸素発生が圧力向上に寄与したためである。
 また、実施例1~5では、試験前後において絶縁性能に変化はなく、高い絶縁性能が維持されていた。実施例6では試験後に絶縁抵抗値が低下した。しかし、比較例1よりも高い絶縁性能を示しており、酸素発生剤による絶縁性能の改善が認められた。これは、酸素発生剤の熱分解により発生した酸素が、フッ素樹脂の熱分解過程で生成された遊離炭素を酸化することで、絶縁ノズル15への炭素の析出を抑制して、絶縁ノズル15の絶縁性低下を防いだものと考えられる。
 比較例1では、試験後の絶縁性能に大幅な低下が見られた。比較例1は酸素発生剤を添加していないため、フッ素樹脂の熱分解過程で生成した炭素が絶縁ノズル15の表面に析出して、絶縁性が低下したものと考えられる。
 比較例2及び比較例4では、試験後に絶縁性能の大幅な低下が見られた。比較例2及び比較例4に添加された酸素発生剤は、熱分解温度が成形温度より低い過酸化カルシウム又は酸化クロム(VI)である。アーク曝露試験以前に過酸化カルシウム又は酸化クロム(VI)が分解されて酸素発生機能が失われ、フッ素樹脂の熱分解過程で生成された炭素の酸化作用がなかったためである。また、比較例1に対し、比較例2及び比較例4では発生ガス圧力の若干の低下が確認された。比較例2及び比較例4では、上記のとおり、酸素発生剤として添加した過酸化カルシウム又は酸化クロム(VI)がアーク曝露試験以前に分解されたとみられ、発生ガスが少なかったものと考えられる。
 比較例3では、比較例1に対し、発生圧力の大幅な低下が確認された。要因の1つは、添加した酸化チタンの熱分解温度が1860℃と高温であり、アーク曝露試験による熱分解反応により酸素が発生しなかったためである。他の要因として、添加した酸化チタンにより絶縁ノズル15の表面反射率が上昇し、絶縁ノズル15に侵入するアーク光が減少したことが挙げられる。絶縁ノズル15に侵入するアーク光が減少して絶縁ノズル15の内部の熱分解量が減少したことで、絶縁ノズル15全体の熱分解量が少なくなったためである。比較例3では、絶縁性能が、試験後にわずかに低下した。これは、酸化チタンの分解による酸素の発生がなく、フッ素樹脂の熱分解過程に発生した炭素の析出を抑制できなかったものの、アーク光の絶縁ノズル15への侵入が抑制されたことにより、炭素の発生量が抑制されたためと考えられる。
 比較例5では、試験後に絶縁性能の大幅な低下が見られた。比較例5で四フッ化エチレン樹脂に酸素発生剤として添加した酸化鉄(III)の熱分解温度は、1400℃と高温である。絶縁性能低下の要因は、アーク暴露試験による熱分解反応により酸素が発生せず、フッ素樹脂の熱分解過程で生成された炭素が酸化されなかったためである。また、比較例1に対し、比較例5では発生ガス圧力の若干の低下が確認された。これは、上記のとおり、添加した酸化鉄(III)がアーク暴露によって酸素を発生せず、発生ガス量が少なかったものと考えられる。
 本発明の実施の形態1によれば、絶縁ノズル15は、フッ素樹脂と、450℃以上1150℃以下で熱分解して酸素を発生する酸素発生剤とを含み、酸素発生剤がフッ素樹脂中に分散しているフッ素樹脂混合物から形成されている。それにより、アーク発生時において、フッ素樹脂が熱分解して発生するガスにより高い吹き出し圧力が得られ、効率的に消弧できる。したがって、ガス遮断器の消弧性能を向上できる。
 絶縁ノズル15を形成するフッ素樹脂混合物には、450℃以上1150℃以下で熱分解して酸素を発生する酸素発生剤が配合されている。したがって、アーク発生時において、十分な酸素が発生し、フッ素樹脂が分解して発生する炭素と結合することで、絶縁ノズル15の表面に炭素が析出することを抑制できる。したがって、絶縁ノズル15の絶縁性能の低下を抑制することができる。
 絶縁ノズル15が、フッ素樹脂と、450℃以上1150℃以下で熱分解して酸素を発生する酸素発生剤とを含み、酸素発生剤がフッ素樹脂中に分散しているフッ素樹脂混合物から形成されている。そのため、アーク発生時に効率的に消弧することができる。その結果、絶縁状態の維持に必要な可動アーク接触子13と固定アーク接触子14との離間距離を従来より短くすることができる。したがって、消弧装置1を小型化できる。
 なお、実施の形態1では、絶縁ノズル15をフッ素樹脂と酸素発生剤とからなるフッ素樹脂混合物から形成した。その他の実施例として、可動アーク部と絶縁ノズルとの間に絶縁ガスのフローガイドを設け、そのフローガイドに絶縁成形体を設けてもよい。また、そのフローガイドを絶縁成形体としてもよい。また、絶縁ノズル15の一部のみを絶縁成形体としてもよい。
 本発明の実施の形態及び実施例は、単に例示であって本発明を何ら制限するものではない。本発明の範囲は、上記の実施例における説明ではなく、請求の範囲によって示される。また、本発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。
 1 消弧装置、15 絶縁ノズル。

Claims (7)

  1.  ガス遮断器の消弧装置に用いられる絶縁成形体であって、
     フッ素樹脂と、導通電流の遮断時に発生するアークにより450℃以上1150℃以下で熱分解して酸素を発生する酸素発生剤と、を含み、前記酸素発生剤が前記フッ素樹脂中に分散しているフッ素樹脂混合物
     を備えている絶縁成形体。
  2.  前記酸素発生剤が無機過酸化物である請求項1に記載の絶縁成形体。
  3.  前記無機過酸化物が、過酸化ナトリウム、過酸化カリウム、及び過酸化バリウムの少なくとも何れか1つである請求項2に記載の絶縁成形体。
  4.  前記酸素発生剤が無機酸化物である請求項1に記載の絶縁成形体。
  5.  前記無機酸化物が、二酸化マンガン、酸化コバルト(II,III)、及び酸化銅(II)の少なくとも何れか1つである請求項4に記載の絶縁成形体。
  6.  請求項1~5のいずれか一項に記載の前記絶縁成形体から形成される絶縁ノズルを有するガス遮断器。
  7.  前記消弧装置には絶縁ガスが充填されており、前記絶縁ガスが六フッ化硫黄である請求項6に記載のガス遮断器。
PCT/JP2018/040325 2018-03-12 2018-10-30 絶縁成形体、及びガス遮断器 WO2019176159A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/962,691 US11322322B2 (en) 2018-03-12 2018-10-30 Insulating molded body and gas circuit breaker
JP2019511678A JP6576597B1 (ja) 2018-03-12 2018-10-30 絶縁ノズル、及びガス遮断器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-043957 2018-03-12
JP2018043957 2018-03-12

Publications (1)

Publication Number Publication Date
WO2019176159A1 true WO2019176159A1 (ja) 2019-09-19

Family

ID=67908265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040325 WO2019176159A1 (ja) 2018-03-12 2018-10-30 絶縁成形体、及びガス遮断器

Country Status (3)

Country Link
US (1) US11322322B2 (ja)
JP (1) JP6576597B1 (ja)
WO (1) WO2019176159A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166170A1 (ja) * 2020-02-20 2021-08-26 三菱電機株式会社 絶縁ノズル及びこれを用いたガス遮断器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4858373A (ja) * 1971-11-26 1973-08-16
JPS57210507A (en) * 1981-06-22 1982-12-24 Hitachi Ltd Breaker
JPH0845411A (ja) * 1994-05-23 1996-02-16 Mitsubishi Electric Corp 発弧時に飛散する金属類の絶縁体化方法、それに用いるガス発生源材料およびそれを用いた開閉器
JPH08176704A (ja) * 1991-07-03 1996-07-09 Takao Cho In Situ Al及びMg複合材料 の製造法
JP2014179301A (ja) * 2013-03-15 2014-09-25 Toshiba Corp 電力用ガス絶縁機器及びその運転方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119121A (ja) * 1986-11-07 1988-05-23 三菱電機株式会社 遮断器用絶縁ノズル
TW293130B (ja) 1994-03-10 1996-12-11 Mitsubishi Electric Corp
DE19645524A1 (de) * 1996-11-05 1998-05-07 Abb Research Ltd Leistungsschalter
US20070119819A1 (en) * 2005-11-30 2007-05-31 Thangavelu Asokan Axial current interrupter
JP5940180B2 (ja) * 2013-02-07 2016-06-29 三菱電機株式会社 消弧用絶縁材料成形体、それを用いたガス遮断器
CN105308125B (zh) * 2013-06-14 2017-12-19 三菱电机株式会社 热固性树脂组合物、导热性片材的制造方法及电源模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4858373A (ja) * 1971-11-26 1973-08-16
JPS57210507A (en) * 1981-06-22 1982-12-24 Hitachi Ltd Breaker
JPH08176704A (ja) * 1991-07-03 1996-07-09 Takao Cho In Situ Al及びMg複合材料 の製造法
JPH0845411A (ja) * 1994-05-23 1996-02-16 Mitsubishi Electric Corp 発弧時に飛散する金属類の絶縁体化方法、それに用いるガス発生源材料およびそれを用いた開閉器
JP2014179301A (ja) * 2013-03-15 2014-09-25 Toshiba Corp 電力用ガス絶縁機器及びその運転方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166170A1 (ja) * 2020-02-20 2021-08-26 三菱電機株式会社 絶縁ノズル及びこれを用いたガス遮断器

Also Published As

Publication number Publication date
JPWO2019176159A1 (ja) 2020-04-16
US20200357587A1 (en) 2020-11-12
US11322322B2 (en) 2022-05-03
JP6576597B1 (ja) 2019-09-18

Similar Documents

Publication Publication Date Title
US8674253B2 (en) Gas insulation apparatus
CA2900227C (en) Arc-extinguishing insulation material molded product and gas circuit breaker including the same
JP2014179301A (ja) 電力用ガス絶縁機器及びその運転方法
JP5721866B2 (ja) ガス遮断器
JP2010211966A (ja) ガス遮断器
JP2006164673A (ja) パッファ形ガス遮断器の電流遮断方法およびそれに用いるパッファ形ガス遮断器
JP6576597B1 (ja) 絶縁ノズル、及びガス遮断器
JP2018521466A (ja) 誘電ガスで充填されたガス絶縁型電気装置
JP6382543B2 (ja) ガス遮断器
KR20180051629A (ko) 기밀식 절연 공간을 갖는 중간-전압 또는 고전압 스위치기어
JP6829411B1 (ja) 絶縁ノズル及びこれを用いたガス遮断器
JP4634259B2 (ja) パッファ形ガス遮断器
US2733316A (en) browne
JP2005332745A (ja) ガス遮断器
JP5051911B2 (ja) ガス開閉器
JP5286569B2 (ja) パッファ型ガス遮断器
JP6189008B1 (ja) 消弧用絶縁材料成形体およびこれを備えるガス遮断器
JP2012054097A (ja) ガス遮断器
JP2010056023A (ja) ガス遮断器
JP2013054989A (ja) ガス遮断器
WO2017159433A1 (ja) 消弧用絶縁材料成形体およびこれを備えるガス遮断器
JP2014200155A (ja) ガス絶縁開閉器
JP7228714B2 (ja) ガス絶縁機器
WO2023281045A1 (en) Gas-insulated high or medium voltage circuit breaker
SU386450A1 (ru) Дугогасительное автопневматическое устройство

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019511678

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910024

Country of ref document: EP

Kind code of ref document: A1