JP5940180B2 - 消弧用絶縁材料成形体、それを用いたガス遮断器 - Google Patents

消弧用絶縁材料成形体、それを用いたガス遮断器 Download PDF

Info

Publication number
JP5940180B2
JP5940180B2 JP2014560633A JP2014560633A JP5940180B2 JP 5940180 B2 JP5940180 B2 JP 5940180B2 JP 2014560633 A JP2014560633 A JP 2014560633A JP 2014560633 A JP2014560633 A JP 2014560633A JP 5940180 B2 JP5940180 B2 JP 5940180B2
Authority
JP
Japan
Prior art keywords
arc
material molded
insulating material
polymer
extinguishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014560633A
Other languages
English (en)
Other versions
JPWO2014122814A1 (ja
Inventor
久保 一樹
一樹 久保
達也 大川
達也 大川
堀之内 克彦
克彦 堀之内
基宗 佐藤
基宗 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP5940180B2 publication Critical patent/JP5940180B2/ja
Publication of JPWO2014122814A1 publication Critical patent/JPWO2014122814A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/323Polymers modified by chemical after-treatment with inorganic compounds containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/002Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds
    • C08G65/005Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens
    • C08G65/007Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/06Insulating body insertable between contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/22Selection of fluids for arc-extinguishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7023Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by an insulating tubular gas flow enhancing nozzle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/905Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism the compression volume being formed by a movable cylinder and a semi-mobile piston
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7076Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by the use of special materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/76Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid wherein arc-extinguishing gas is evolved from stationary parts; Selection of material therefor
    • H01H33/78Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid wherein arc-extinguishing gas is evolved from stationary parts; Selection of material therefor wherein the break is in gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/91Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism the arc-extinguishing fluid being air or gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Circuit Breakers (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Organic Insulating Materials (AREA)
  • Polyethers (AREA)

Description

本発明は、電流遮断時に発生するアークに暴露されて絶縁性ガスを発生しアークの消弧に寄与する消弧用絶縁材料成形体、および、それを用いたガス遮断器に関する。
ガス絶縁開閉装置(GIS、Gas Insulated Switchgear)は、変電所や発電所、受電設備などで高圧電力系統の遮断、接続を行う装置である。本装置は、遮断器・断路器・母線電線路・避雷器・計器用変成器・作業用接地装置などを、絶縁性が高いガスを充填した単一の接地容器内に収めている。
ガス絶縁開閉装置は、気中絶縁方式の開閉装置に比べて、著しく小形に構成することが可能である。近年では、地価高騰による用地取得の困難性から、小形化が可能なガス絶縁開閉装置が多くの電気開閉所において採用され設置されている。
ガス遮断器は、短絡・過電流・地絡状態の電路を遮断できる装置である。電流を遮断する際に遮断器の電極接点間に発生するアーク放電に対し、気体を吹き付けることでアーク放電を消滅(消弧)させることができる。従来、ガス遮断器では、遮断時に可動接触子と固定接触子との間で発生するアークに対して、消弧性ガスを吹き付け、効率よく消弧して遮断動作を完了するための工夫がなされてきた(特許文献1:特開平7−312155号公報、特許文献2:特開2001−155595号公報参照)。
ガス絶縁開閉装置(GIS)およびガス遮断器で用いられる絶縁ガスには、一般的に六フッ化硫黄(SF)が用いられる。六フッ化硫黄は絶縁性が高く、その絶縁耐力は空気の3倍にも及ぶ。また不活性であり、熱伝導性も高いことからアーク放電によって過熱した電極を速やかに冷却することができる。
現在、ガス遮断器において、主流となっている遮断方式は、電極を開く動作に連動してピストンを駆動し、六フッ化硫黄などの絶縁ガスを電極部分に吹き出すパッファ式である。一般に、大電流を少ない操作力で効率よく遮断するため、アークの熱を利用して絶縁ガスの圧力を高める加熱室(熱パッファ)や機械的操作力により容積を縮小させることで絶縁ガスの圧力を高めるシリンダおよびピストンの対(機械パッファ)を備えている。近年、遮断電流の増加や遮断点数の減少による遮断容量増加への要請、機器の小型化の要請等により、ガス遮断器の消弧室における単位体積当たりの処理エネルギーが増加し、従来以上に強力な消弧性能が必要になってきている。
前述のパッファ式ガス遮断器などでは、強力な消弧性能を得るための一つの有力な方策として、消弧室内部に樹脂材料を設け、アークに暴露することにより樹脂材料を分解し、ガスを発生し、消弧に寄与する仕組みが提案されている。
このようなガス遮断器では、開閉する電極の接点周辺部に、アークの消弧に寄与する消弧用絶縁材料成形体を配置する。消弧用絶縁材料成形体は、アークの光と熱に暴露されることによって、その成型物を構成する材料自体が分解してガスを発生し、発生したガスの吹きつけによるアークの冷却、絶縁ガスの圧力上昇によるアーク絞り込みや絶縁抵抗の増加によりアークの消弧を促進する。
例えば、特許文献3(特開2003−297200号公報)に示す従来のガス遮断器では、アーク空間においてアークにより加熱され蒸発ガスを発生する化学組成に酸素を含まない重合体で構成された部材を加熱室内部に配置し、加熱室内の圧力上昇を強化している。
特許文献4(特開平11−329191号公報)では、アークにより加熱され蒸発ガスを発生する材料として、ポリスチレン、ポリエチレン、ポリプロピレン、ポリメチルペンテン等の炭素と水素から構成される樹脂を例示し、熱拡散性に優れた水素ガスまたは炭化水素ガスが発生するので、効率的にアークを冷却し優れた消弧性能を得ることができると記載されている。
また、特許文献4では、蒸発ガスを発生する材料として、ポリオキシメチレン、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、メラミン樹脂等を例示している。
ところで、上記のような従来技術において、アーク暴露による分解ガスを、吹付けガスに混合して消弧した場合、遮断終了後、吹付けガスが数百度程度に冷却されると、水分の発生が見られる。これは、主として、ポリマーに含まれる酸素原子と水素原子に起因するものである。しかし、ガス遮断器においては、水分含有量が数百から数千PPMに達すると、絶縁物で構成される部材の絶縁劣化を引き起こすことが知られている。このため、従来のガス遮断器では、電流遮断後に十分な絶縁性能および遮断性能を達成できない場合が有り得る。また、水分は電流遮断によって分解生成物として発生したフッ化物を溶解し、フッ酸となるため、金属材料をも腐食する可能性がある。
このため、従来のガス遮断器では、分解ガスを発生する材料として、絶縁物の絶縁劣化を引き起こさない四フッ化ポリエチレン樹脂を使用することが多い。
然るに、遮断電流の増加や遮断点数の減少による遮断容量増加への要請、機器の小型化の要請等を満足するためには、四フッ化ポリエチレン樹脂では発生ガス圧力が十分でなく、よりアークの消弧性能の高い消弧用絶縁材料が求められていた。
特開平7−312155号公報 特開2001−155595号公報 特開2003−297200号公報 特開平11−329191号公報
本発明は、以上のような従来技術の問題点を解決するために提案されたものであり、その目的は、アーク暴露時の発生ガスの量が多く、安定して高い遮断性能を得ることができ、且つ、ガス遮断器内の絶縁物で構成される部材の劣化(絶縁劣化)を抑制することのできる消弧用絶縁材料成形体、および、それを用いたガス遮断器を提供することにある。
本発明は、ガス遮断器において、接触子の接点近傍に設置される消弧用絶縁材料成形体であって、
主鎖に炭素−酸素結合を有し、末端原子の一部または全部が水素原子以外の原子である重合体を含むことを特徴とする消弧用絶縁材料成形体である。
前記重合体を主たる材料として含むことが好ましい。また、前記重合体における構成元素中の水素原子の含有率が2質量%以下であることが好ましい。また、前記水素以外の原子がフッ素原子であることが好ましい。
前記重合体はポリエーテル系重合体であることが好ましく、フッ素化ポリエーテル系重合体であることがより好ましい。また、前記重合体は、主鎖にケイ素原子を含むことが好ましい。
前記重合体がフッ素化ポリエーテルのシリコーン架橋物であることが好ましい。また、前記重合体が二酸化ケイ素を含むことが好ましい。
上記消弧用絶縁材料成形体は、窒化ホウ素、酸化アルミニウムおよび酸化チタンからなる群から選択される少なくとも1種を耐消耗用充填材として含むことが好ましい。
また、本発明は、上記の消弧用絶縁材料成形体を電極近傍に備えたガス遮断器にも関する。該ガス遮断器において、遮断に用いられる絶縁性ガスはSFガスであることが好ましい。
本発明の消弧用絶縁材料成形体を構成する重合体は、主鎖に含まれる炭素−酸素結合(C−O結合)が切れやすく、分解し易いため、本発明の消弧用絶縁材料成形体をガス遮断器に用いた場合、アーク暴露時の発生ガス量が多く、消弧室の圧力を十分高く上昇させることで、安定して高い遮断性能を得ることができる。また、重合体中の水素原子の含有率が少ないため、アーク暴露による分解時のHFやHOの発生が抑制されているので、ガス遮断器に使用される絶縁材料の腐食や絶縁劣化を抑制することができる。
また、重合体の主鎖中にケイ素原子(Si)を含む場合、成型時に、フッ素化ポリエーテル骨格と末端のシリコーン架橋反応基とを有する高分子化合物からなる液体またはペースト状材料を用いることができるため、成形性に優れる。また、その硬化物は、化学薬品に対する耐久性、耐熱性に優れた材料である。
また、消弧用絶縁材料成形体中に窒化ホウ素、酸化アルミニウムおよび酸化チタンからなる群から選択される少なくとも1種を耐消耗用充填材として含む場合、これらの耐消耗用充填材は、深紫外領域の光を吸収し、近紫外光−可視光−赤外光の領域の光に対する反射率の大きい化合物であるため、アーク光が絶縁成型物内部まで浸入することを防ぎ、消弧用絶縁成形体の過剰な損耗を防ぐことができる。
さらに、本発明の消弧用絶縁材料成形体をガス遮断器に用いることにより、遮断性能に優れ、遮断後の絶縁劣化が抑制された信頼性に優れたガス遮断器を得ることが出来る。
本発明の実施の形態4に係るガス遮断器を示す概略断面図である。 本発明の実施の形態4に係るガス遮断器の消弧装置を示す概略断面図である。(a)は、ガス遮断器の遮断過程の前半の状態を示し、(b)は、ガス遮断器の遮断過程の後半の状態を示す。
以下、本発明について詳細に説明する。なお、以下の実施の形態の説明では、図面を用いて説明しているが、本願の図面において同一の参照符号を付したものは、同一部分または相当部分を示している。
(実施の形態1: 消弧用絶縁材料成形体1)
本発明の消弧用絶縁材料成形体は、ガス遮断器において、電流遮断時に開動した電極間(例えば、可動接触子と固定接触子との間)に発生したアークに絶縁性ガスを吹き付けて消弧させるためのものであって、アーク発生部近傍である接触子の接点近傍に配置される。
本発明の消弧用絶縁材料成形体を構成する重合体は、主鎖に炭素−酸素結合を有し、末端原子の一部または全部が「水素原子以外の原子」である重合体である。
前記重合体における構成元素中の水素原子の含有率(水素含有率)が2質量%以下であることが好ましい。1質量%以下がより好ましく、重合体は実質的に水素原子を含まないことが更に好ましい。
上述の「水素原子以外の原子」としては、置換基となり得るものであれば特に限定されないが、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子、アスタチン原子の内の少なくとも1種が挙げられ、少なくともフッ素原子を含むことが好ましい。フッ素原子は、全原子中もっとも電気陰性度が高く、炭素を含む様々な原子と硬く結合し、化学的に分離することがほとんどなく、末端原子の一部または全部がフッ素原子である重合体は、耐熱性、耐薬品性に優れるからである。
重合体の具体例としては、例えば、次の化学式(化1−1)で示される高分子化合物が挙げられる。
Figure 0005940180
式中、R,R,R,RおよびRは、炭素、窒素、酸素、ケイ素、水素、フッ素などを含むそれぞれ独立の官能基である。R,R,R,RおよびRの内の少なくともいずれかの官能基には、フッ素原子が含まれることが好ましい。また、nは自然数であり、好ましくは、2〜5000である(以下の化学式においても同様である)。
重合体は、より具体的には、ポリエーテル系材料であることが好ましく、フッ素化ポリエーテル系材料であることがより好ましい。また、ポリエーテル系材料は、ポリエーテルの繰り返し部にベンゼン環を含まないことが好ましい。ベンゼン環は分解しにくく、ベンゼン環が多く含まれるとアーク暴露後に炭化物が多く発生することから、絶縁性の低下をもたらす可能性があるためである。
フッ素化ポリエーテル系材料としては、次の化学式(化1−2)〜(化1−9)で示される化合物が例示される。
Figure 0005940180
Figure 0005940180
Figure 0005940180
Figure 0005940180
Figure 0005940180
Figure 0005940180
Figure 0005940180
Figure 0005940180
式中、mは自然数であり、好ましくは2〜5000である(以下の化学式においても同様である)。
上述の重合体は、アークに暴露されて、アークの光と熱によって、自らが分解しガスを発生する材料(アブレーション材料)である。したがって、分解しやすい結合を持つ材料が好ましく、また、分解してガス化し易いように、重合体を構成する高分子化合物の主鎖(該高分子化合物の中で最も長く結合が繋がる部位)に炭素−酸素結合を含んでいることが好ましく、このような場合においてアーク暴露時の発生ガス圧力が大きくなる。
上記重合体(主鎖に炭素−酸素結合を有し、末端原子の一部または全部が水素原子以外の原子である重合体)は、そのものが樹脂材料として消弧用絶縁材料成形体の形成に用いられてもよいし、他の樹脂材料に混合して用いられても良い。また、上記重合体が液体状であってもよく、そのような重合体を、消弧用絶縁材料成形体の基材に含浸させる手法、カプセル状で内包させる手法、多孔質フィラーに染みこませる方法などにより、消弧用絶縁材料成形体を構成してもよい。
消弧用絶縁材料成形体中に含まれる上記重合体の比率は、10質量%より大きいことが好ましい。また、消弧用絶縁材料成形体中に含まれる有機材料成分の総量に対する上記重合体の比率が、50質量%以上であることがより好ましい。
消弧用絶縁材料成形体は、上記重合体を主たる材料として含むことが好ましい。「主たる材料」とは、消弧用絶縁材料成形体中に含まれる有機材料成分の総量に対して50質量%以上を占める材料を意味する。
また、本発明者らは、水素原子を多量に含む材料、例えば、ポリオキシメチレン樹脂やメラミン樹脂などを用いると、絶縁物で構成される部材の絶縁劣化を引き起こすことを見出した。これは、化合物中に水素原子があると、アーク暴露時にSFガスに含まれる物質(例えば、SF、SF、HOなど)と反応し腐食性ガス(SFガスの場合にはHFなど)を発生し、絶縁物で構成される部材の絶縁劣化を引き起こすものと考えられる。絶縁部材の絶縁性が低下すると、電流遮断後に十分な絶縁性能が維持できず、必要な遮断性能を達成できない。そこで、消弧用絶縁材料成形体の構成元素中の水素原子の一部または全部をフッ素原子等の他の原子で置き換えることにより、絶縁物で構成される部材の絶縁劣化を抑制することができた。
(実施の形態2: 消弧用絶縁材料成形体2)
本実施の形態の消弧用絶縁材料成形体を構成する重合体もフッ素化ポリエーテル系重合体であるが、主鎖にケイ素原子を含んでいる点で実施の形態1とは異なっている。
本実施の形態の消弧用絶縁材料成形体を構成する重合体としては、次の化学式(化2−1)〜(化2−4)で示される化合物が例示される。
Figure 0005940180
Figure 0005940180
Figure 0005940180
Figure 0005940180
式中、R、R、R、R14、R15およびR16は、それぞれ独立に、炭素原子、フッ素原子、酸素原子、窒素原子および硫黄原子よりなる群から選ばれた原子からなる置換基である。R、R、R14およびR19は、それぞれ独立に、結合途中に酸素原子、窒素原子およびイオウ原子よりなる群から選ばれた少なくとも1種の原子を含む置換基、または、アミド結合もしくはスルホンアミド結合を含有する置換基である。R〜R13およびR1821は、それぞれ独立に、炭素原子、フッ素原子、水素原子、酸素原子、窒素原子、ケイ素原子およびイオウ原子よりなる群から選ばれた原子からなる置換基である。
上記化学式(化2−4)において、R22はフッ素化ポリエーテル基である。かかるフッ素化ポリエーテル基の具体例としては、次の(化2−5)に示す6種類の置換基のいずれかが挙げられる。
Figure 0005940180
また、末端が架橋反応基となっている上記化合物の重合体を使用することもできる。末端の架橋反応基としては、Si−OH基、Si−X基(Xはアセトキシ基、イソプロペノキシ基等)、Si−OCH基、エチレン性不飽和基などが挙げられる。重合体の例として、末端にSi−OH基を持つ上記化合物と末端にSi−X(Xはアセトキシ基、イソプロペノキシ基等)を持つ上記化合物の縮合反応による重合物やSi−OCH基の加水分解縮合による重合物、両末端にエチレン性不飽和基を有する上記材料と一分子中に二つ以上のSi−H基を有する有機ケイ素化合物との付加反応による重合物などが挙げられる。
さらに、末端の架橋反応基がシリコーン架橋反応基の場合には、二酸化ケイ素(シリカ)のフィラー(シリカ粒子など)を混合し、二酸化ケイ素表面の一部水酸基化した部分と上記化合物の反応により二酸化ケイ素を介して重合することもできる。この二酸化ケイ素のフィラーの配合量を調整することにより、消弧用絶縁材料成形体の硬さを調整することができる。
本実施の形態における具体的な化合物例として、次の化学式(化2−6)〜(化2−8)で示される化合物、および、これら化合物の重合体が挙げられる。
Figure 0005940180
化学式(2−6)中、qおよびrは、それぞれ独立の2〜1000の整数である。
Figure 0005940180
Figure 0005940180
化学式(化2−7)および(化2−8)中、sおよびtは、それぞれ独立の自然数であり、sとtの和が2〜200である。
本発明の消弧用絶縁材料成形体においては、補強、増量等のために、フッ素化ポリエーテル系重合体100重量部当たり500重量部以下、好ましくは10〜100重量部の量で充填材を配合することができる。この充填材としては、煙霧質シリカ、沈降性シリカ、カーボン粉末、二酸化チタン、酸化アルミニウム、石英粉末、タルク、セリサイトおよびベントナイトなどの補強剤、ガラス繊維および有機繊維などの繊維質充填材等を例示することができる。
また、必要に応じて、有機錫化合物、有機チタン化合物等の縮合硬化触媒、メタクリル酸カリウムなどの耐油性向上剤、着色剤、ベンガラおよび酸化セリウムなどの耐熱性向上剤、耐寒性向上剤、ポリエーテルなどのチクソトロピー剤、脱水剤、γ−アミノプロピルトリエトキシシランなどの接着性向上剤などを添加してもよく、これらは、耐溶剤性、耐薬品性、耐熱性および耐寒性の全てに優れた硬化物を形成できる程度の量で目的に応じて使用される。
本発明の消弧用絶縁材料成形体は、構成材料の主鎖に含まれるC−O結合が切れやすく、消弧用絶縁成形体が分解し易いため発生ガス量が多く、消弧室の圧力を十分高く上昇させることで遮断性能が高くすることができ、また、構成材料中の水素元素の含有量を減らすことで、アーク暴露による分解時のHFやHOの発生が抑制されているので、ガス遮断器の内部に使用される絶縁材料の腐食や絶縁劣化を抑止できる防ぐことが出来る。
また、主鎖中にSiを入れることによって、成型時にフッ素化ポリエーテル骨格と末端のシリコーン架橋反応基をもつ液体またはペースト状材料を用いることができ、成形性に優れる。また、その硬化物は、化学薬品に耐久性、耐熱性に優れた材料である。
(実施の形態3: 消弧用絶縁材料成形体+耐消耗用充填材)
本実施の形態の消弧用絶縁材料成形体は、実施の形態1および実施の形態2で示した消弧用絶縁材料成形体に加えて、さらに、窒化ホウ素、酸化アルミニウムおよび酸化チタンからなる群から選択される少なくとも1種(耐消耗用充填材)を含む形態である。
ガス遮断器では、電流が遮断されると、可動接触子と固定接触子との間に10000K〜20000Kの高温プラズマ状のアークが発生する。従来、このアークを消弧させるために絶縁ノズルから空気、SFガスなどの絶縁性ガスをアークに吹き付けていた。高圧空気または高圧ガス中で発生した高温プラズマ状のアーク光は、200nm〜近赤外域において強いエネルギー強度を有することが知られている。そのため、このアーク光に絶縁ノズルが曝されると、アークから発生した光がノズルの表面のみならず内部まで侵入し、ノズルの内部にボイドやカーボンを生じさせ(内部爆裂)、絶縁性能を著しく低下させるという欠点があった。
また、繰り返しの遮断によって、絶縁ノズルの消耗量が増大して遮断性能が低下するという問題があった。
以上のように、アーク光は紫外〜赤外の広い波長の光を含み、深紫外域の発光が特に強い。消弧用絶縁材料成形体を構成する樹脂は、全領域のアーク光を吸収し分解していると考えられる。耐消耗用充填材は、近紫外〜赤外の反射率が高いと考えられるため、消弧用絶縁材料の消耗を抑えられると考えられる。さらに、深紫外域に強い吸収を持つ無機充填材を耐消耗用充填材として添加することで、表層で集中的にエネルギーを吸収することで、消弧用絶縁材料の消耗をより確実に抑えられると考えられる。つまり、上記耐消耗用充填材による近紫外〜赤外の高反射率により、消弧用絶縁材料成形体の深さ方向への光浸入を防止し、上記耐消耗用充填材による深紫外域のアーク光の吸収により、光浸入防止と表層でのエネルギー吸収によって、消弧用絶縁材料成形体の内部爆裂を抑制し、さらに、比較的表層でエネルギーを吸収することによって、損耗量が低減しても、消弧用絶縁材料成形体の分解ガス種が低分子化し、発生ガスのモル量増加によって、損耗量低減に加え、発生ガス圧力の低下が抑えられることがわかった。
窒化ホウ素、酸化アルミニウムおよび酸化チタンは、近紫外〜赤外の反射率が高く、深紫外域に強い吸収を持つ無機充填材であり、消弧用絶縁材料成形体の消耗を抑制するための充填材(耐消耗用充填材)として好適である。特に、窒化ホウ素は、近紫外〜赤外の反射率が高く、深紫外域の吸収が大きいので好ましい。
耐消耗用充填材(窒化ホウ素、酸化アルミニウムおよび酸化チタンからなる群から選択される少なくとも1種)の平均粒径は、0.5μm〜20μmであることが好ましく、平均粒径が1μm〜10μmであることがより好ましい。ここで、平均粒径は、レーザ回折・散乱法による粒度分布測定により測定される値である。粒径が小さいほど、その表面積が大きくなるため、近紫外〜赤外の反射率が高く、深紫外域に強い吸収を持つ消弧用絶縁材料成形体ができ、消耗抑制に効果があるため、平均粒径は20μm以下が好ましく、10μm以下がより好ましい。また、最大粒径が50μm以下であることが好ましい。ここで、最大粒径は、粒度分布を測定した場合の累積頻度99%に相当する粒径である。一方、平均粒径が小さくなると、上記重合体等への混合時の粘度が上昇し成形性に難が生じるため、平均粒径は、0.5μm以上が好ましい。
耐消耗用充填材の配合量は、好ましくは0.1体積%〜20体積%であり、より好ましくは0.5体積%〜10体積%である。充填量が少なくなると効果がなくなり、0.5体積%以下、特に0.1%以下では効果が得られない。また、配合量が多くなると、耐消耗用充填材を混合した上記重合体等の粘度が上がり成形性が悪くなると共に、ガス発生量も減少することから、20体積%以下が好ましく、10体積%以下がより好ましい。
耐消耗用充填材の粒径および配合量は、成形品の光反射率が240nm〜1300nmの波長において85%以上となるように、平均粒径が0.5μm〜20μm好ましくは平均粒径1μm〜10μmで、最大粒径40μm以下の粒径範囲および0.1体積%〜20体積%の配合量、特に0.5体積%〜10体積%の配合量から適宜設定される。また、上記粒径および反射率の条件を満たすものであれば、偏平状のもの、不定形状のもの(粉砕したもの)のいずれも耐消耗用充填材として使用することができる。また、耐消耗用充填材は、他の物質を微量でも含むと紫外域に吸収が生じて成形品の反射率低下の要因となることから、純度が99%以上であることが望ましい。
(実施の形態4: ガス遮断器)
図1は、本発明の実施の形態4に係るガス遮断器の一例を示す概略断面図である。図1に示すガス遮断器において、消弧装置1は、第1ブッシング2から伸びる第1導体2aと、第2ブッシング3から伸びる第2導体3aとの間に電気的に接続されており、可動通電接触子11(図2に記載)を駆動する動作機構4は、例えば、バネ機構、油圧機構などによって動作する操作装置5と、リンク6と、絶縁性のロッド7から構成されている。可動通電接触子11は、ロッド7によりリンク6に結合されて、操作装置5により開閉極動作する。
消弧装置1を消弧ガス中に密閉する筐体9から、ロッド7を引出す部分には、気密を保ったまま摺動できるように、例えば、Oリングなどを有する摺動部品10が設けられている。また、消弧装置1は、絶縁支持体8によって筐体9から絶縁支持されている。
図2は、実施の形態4に係るガス遮断器の消弧装置の主要部を示す概略断面図の一例である。図2(a)は、ガス遮断器の遮断過程の前半の状態を示し、図2(b)は、ガス遮断器の遮断過程の後半の状態を示す。図2に示すガス遮断器は、消弧性ガスが充填された筐体9内(図1参照)に、可動通電接触子11および可動アーク接触子13と、固定通電接触子12および固定アーク接触子14とを対向配置して収納してなり、可動アーク接触子13と固定アーク接触子14の外周には、可動側に設けられたパッファシリンダ16に固定された絶縁ノズル15が設けられている。ここで、絶縁ノズルの全部または一部を実施の形態1乃至3の消弧用絶縁材料成形体で形成している。
絶縁ノズル15の一部を消弧用絶縁材料成形体で形成する場合には、絶縁ノズル15と可動アーク接触子13により形成される流路を大きく変形させないような位置に消弧用絶縁材料成形体を配置する。さらに、図には示されていないが、可動アーク接触子13と絶縁ノズル15の間にフローガイドを設けて、そこに消弧用絶縁材料成形体を配置してもよい。
また、消弧用ガスとしては絶縁性ガスが用いられ、例えば、六フッ化硫黄(SF)、二酸化炭素(CO)、ヨウ化トリフルオロメタン(CFI)、窒素(N)、酸素(O)、4フッ化メタン(CF)、アルゴン(Ar)、ヘリウム(He)あるいは、これらの少なくも2つを混合したガスが挙げられる。特に、六フッ化硫黄(SF)単体または、二酸化炭素(CO)、窒素(N)との混合物が好ましい。
また、パッファシリンダ16は、操作ロッド17(図1におけるロッド7の一部)を介して動作機構4と接続されている。また、ピストン18は図に示されていない方法でガス遮断器筐体に固定された状態にある。このパッファシリンダ16と操作ロッド17とパッファシリンダ16に固定されている隔壁24で、熱パッファ室19aという空間が形成されている。また、パッファシリンダ16と隔壁24と操作ロッド17とピストン18とで、機械パッファ室19bという空間が形成されている。機械パッファ室19bでは、ピストン18とパッファシリンダ16に固定されている隔壁24との間にあるので、操作ロッド17が図で右方向に駆動するときに空間が狭くなり、内部の消弧ガスを圧縮することで機械パッファ室19b内の圧力を高め、機械パッファ室19b内の圧力が熱パッファ室19a内の圧力より大きくなったときに、逆止弁23を通して、絶縁ノズル開口部に向けて絶縁消弧ガスを押し出す仕組みになっている。
上述のガス遮断器において、投入状態から開極動作を始めると、可動部11aは、動作機構4側(図2の右方向)に移動する。このような開極過程において、まず図2(a)に示すように、遮断過程前半では、固定アーク接触子14と可動アーク接触子13との間にアーク20が点弧する。
このアーク20は高温であるため、アーク20に加熱された周りの消弧性ガスが高温になるとともに、アーク20に曝された消弧用絶縁成形体からなる絶縁ノズルから高温のガスが発生する。このように発生した高温ガスは、図中に矢印で示すように、絶縁ノズル15と可動アーク接触子13とで形成される空間を通って熱パッファ室19a内に流れ込む。この流れ込んだ高温ガスによって熱パッファ室19a内のガス圧力は高められ、開動とともに、絶縁ノズル開口部に向けて絶縁ガスを吹き出す。
その後、図2(b)に示すような遮断過程後半では、電流零点に向けてアーク20が小さくなり、可動接触子の開動と共に、機械パッファ室19b内の圧力が高まり、機械パッファ室19b内の高圧空気を逆止弁23を通してノズル開口部に向けて押し出す。
このようにして、アークに消弧ガスを吹き付けて電極間の熱を効率的に外部に排出することでアークを消弧すると共に、可動通電接触子(可動電極)11と固定通電接触子(固定電極)12とを、電極間に現れる再起電圧に耐えうる十分な距離まで引き離すことで、電極間の絶縁回復を得て遮断が完了する。特に、高い電圧系統に適用するガス遮断器の場合には、遮断完了直前に現れる再起電圧が大きいので絶縁回復に必要な電極間の距離が長くなるが、電極間の熱を効率的に外部に排出することで、上記必要な距離を短くすることができ、消弧装置1の長手方向の小型化につながる。
さらに、消弧装置1から外部に排出された熱ガスは水素が少ないため、フッ化水素などの腐食を促進するガスや水など絶縁劣化させる水素化合物が発生しないため、絶縁支持体8などに使われる絶縁物にガスが触れても絶縁劣化を防止することができる。
このように、実施の形態4におけるガス遮断器では、本発明の消弧用絶縁材料成形体を接触子の接点近傍の絶縁ノズル15の一部または全部に用いたことにより、消弧装置1から排出された熱ガスに含まれる水素や水素イオンが減少しているので、絶縁材料を劣化させるフッ化水素や、絶縁を低下させる水などの水素化合物の生成を抑止することができ、絶縁劣化を抑制できるとともに、十分なパッファ圧力を得ることができる。このため、絶縁劣化を抑制し、動作機構が単純で小型化ができるガス遮断器を得ることができるという顕著な効果がある。
以下に、本発明の実施例を記載するが、本発明はこれらに限定されるわけではない。
(実施例1〜3、比較例1〜3)
表1に示す各種の重合体を準備した。なお、フッ素化ポリエーテル系重合体として、実施例1では、市販されており一般に入手可能なパーフロロポリエーテルゴム(ShoreA硬度50)を用い、実施例2では、市販されており一般に入手可能なフッ素化ポリエーテルのシリコーン架橋物A(市販の二液型材料の硬化物、ShoreA硬度70、二酸化ケイ素含有)を用いた。実施例3では、フッ素化ポリエーテルのシリコーン架橋物B(市販の二液型材料の硬化物、二酸化ケイ素無し)を用いた。これらの重合体を金型成形後、機械加工することにより所定の消弧用絶縁材料成型体(実施例1〜3および比較例1〜3)を得た。
比較例1の四フッ化エチレン樹脂の場合、原料組成物を室温で200kg/cm2の圧力で圧縮成形した後、370℃で焼成して成形品を得る必要がある。これに対して、実施例2のフッ素化ポリエーテルのシリコーン架橋物の成形は、フッ素化ポリエーテル骨格と末端のシリコーン架橋反応基とを有する高分子化合物からなる液体またはペースト状材料を用いて、金型による成形後、加熱硬化することにより、1次成形を行い、機械加工による2次加工を行うことができ、非常に成形性に優れていた。
また、実施例1〜3および比較例1〜3の成形体を用いて、水素含有率(重合体における構成元素中の水素原子の含有率)の測定と、成形体の発生ガス圧力および絶縁物に対する腐食性の評価を行った。なお、これらの測定および評価結果は表1に示した。
(水素含有率の測定)
水素含有率(重合体における構成元素中の水素原子の含有率)の測定には、CHN元素分析を用いる。具体的には、成形体をヘリウム/酸素気流で高温に加熱して燃焼させ、成形体の構成元素の各々を酸化することで、炭素はCO、水素はHO、窒素はNOとなり、さらにこれらを還元銅を含む還元炉内を通過させることで、NOはNとなる。そして、生成したHOを定量することによって、それぞれの成形体における水素含有率を算出する。なお、成形体はフッ素を含んでいるため、データがばらつき易いので、燃焼温度を通常より上げる(たとえば、1150℃で燃焼させる)などの測定条件に十分な注意が必要である。また、測定前には、水分の影響を除くため、減圧乾燥(50℃)2時間を実施した。
(成形体の発生ガス圧力および絶縁物に対する腐食性の評価)
まず、成型体が収容されたガス遮断器の密閉チャンバー内にSFガスを充填し、定格84kV、通電電流20kA(実効値)および遮断時間10〜15msの条件で接点を開動し、アークを発生させて10回の遮断試験を実施した。
発生ガス圧力の評価として、10回目の遮断試験中の発生ガス圧力の最大値を計測し、比較例1についての10回目の遮断試験中の発生ガス圧力の最大値に対する比を、発生ガス圧力比として求めた。
絶縁物に対する腐食性は、上記遮断試験において、別途、密閉チャンバー内のアークに暴露されない位置に、電極を取り付けたエポキシ樹脂成型物を設置し、遮断試験の前後での表面抵抗値の変化を観測することにより、評価した。試験後のエポキシ樹脂成型物の表面抵抗率が初期値から2オーダーを超えて低下した場合(例えば、初期値が10の13乗Ω/□であれば、試験後の表面抵抗率が10の11乗Ω/□未満となる場合)に、腐食性ありと評価した。
Figure 0005940180
表1の結果に示されるように、実施例1〜3では、比較例1(四フッ化エチレン樹脂)に対し、発生ガス圧力の向上が認められ、発生ガスによる絶縁物の腐食性もなかった。比較例2のポリオキシメチレン(フッ素化されていないポリエーテル樹脂)および比較例3のメラミン樹脂では、発生ガス圧力は比較例1の四フッ化エチレン樹脂よりも高いが、発生ガスによる絶縁物の腐食性があり、SFを含むガス遮断器には適用できない。
以上のことから、実施例1〜3の消弧用絶縁材料成型体は、発生ガス圧力が高く、遮断性能に優れており、且つ、発生ガスによる絶縁物の腐食性が抑えられた消弧用絶縁材料成型体であることが分かる。また、水素含有率が2重量%を超える比較例2および3では、発生ガスによる絶縁物の腐食性があり、SFを含むガス遮断器には適用できない。
(実施例4〜10、比較例4)
表2に、実施例4〜10および比較例4の消弧用絶縁材料成型体の製造に用いた重合体の種類と、耐消耗用充填材の種類、平均粒径、最大粒径および配合比を示す。これらの材料を用いて、所定の割合で重合体に耐消耗用充填材を配合した組成物を調製し、金型成形後、機械加工することにより所定の消弧用絶縁材料成型体(実施例4〜10、比較例4)を得た。
得られた実施例4〜10および比較例4の消弧用絶縁材料成型体について、前述と同様の遮断試験を実施し、成形品の発生ガス圧力比、消弧用絶縁材料成型体を構成する組成物の消耗比(重量比)、内部損耗の有無を評価した。発生ガス圧力比は、実施例2の圧力最大値に対する比とした。また、消耗比は、遮断試験前後の重量を計測し、その差(消耗量)から算出した消耗量の実施例2の消弧用絶縁材料成形体について別途測定した消耗量に対する比を示している。また、内部損耗については、遮断試験後の消弧用絶縁材料成型体の断面観察を行い、成形体内部に表面とは個別に爆裂部分が存在する場合を内部損耗ありと判断した。評価結果を表2に併記する。
Figure 0005940180
表2の結果に示されるように、実施例4〜10の消弧用絶縁材料成型体では、耐消耗用充填材(窒化ホウ素、酸化アルミニウム、酸化チタン)を用いていない実施例2に比べ、消弧用絶縁材料成型体の消耗量を抑えられている。また、実施例4〜10の消弧用絶縁材料成型体は、比較例4の四フッ化エチレン樹脂に窒化ホウ素5体積%を加えた場合よりも、高い発生ガス圧力を示している。また、実施例4〜10では内部損耗は生じていないが、比較例4では内部損耗が発生していた。
以上のことから、実施例4〜10の消弧用絶縁材料成型体は、窒化ホウ素等の耐消耗用充填材の配合により、遮断試験後の消弧用絶縁材料成型体の消耗抑制に効果があり、発生ガス圧力も高く、遮断性能に優れた消弧用絶縁材料成型体であることが分かる。
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 消弧装置、2 第1ブッシング、2a 第1導体、3 第2ブッシング、3a 第2導体、4 動作機構、5 操作装置、6 リンク、7 ロッド、8 絶縁支持体、9 筐体、10 摺動部品、11 可動通電接触子、11a 可動部、12 固定通電接触子、13 可動アーク接触子、14 固定アーク接触子、15 絶縁ノズル、16 パッファシリンダ、17 操作ロッド、18 ピストン、19a 熱パッファ室、19b 機械パッファ室、20 アーク、21 中空部、22 通気口、23 逆止弁、24 隔壁。

Claims (14)

  1. ガス遮断器において、接触子の接点近傍に設置される消弧用絶縁材料成形体であって、
    主鎖に炭素−酸素結合を有し、末端原子の一部または全部がフッ素原子、塩素原子、臭素原子、ヨウ素原子およびアスタチン原子の内の少なくとも1種である重合体を含むことを特徴とする消弧用絶縁材料成形体。
  2. 前記重合体を主たる材料として含む、請求項1に記載の消弧用絶縁材料成形体。
  3. 前記重合体における構成元素中の水素原子の含有率が2質量%以下である、請求項1または2に記載の消弧用絶縁材料成形体。
  4. 前記末端原子の一部または全部がフッ素原子である、請求項1〜3のいずれか1項に記載の消弧用絶縁材料成形体。
  5. 前記重合体はポリエーテル系重合体である、請求項1〜4のいずれか1項に記載の消弧用絶縁材料成形体。
  6. 前記ポリエーテル系重合体はフッ素化ポリエーテル系重合体である、請求項に記載の消弧用絶縁材料成形体。
  7. 前記ポリエーテル系重合体は、ポリエーテルの繰り返し部にベンゼン環を含まない、請求項5または6のいずれか1項に記載の消弧用絶縁材料成形体。
  8. 前記重合体が前記主鎖にケイ素原子を含む、請求項1〜のいずれか1項に記載の消弧用絶縁材料成形体。
  9. 前記重合体がフッ素化ポリエーテルのシリコーン架橋物である、請求項1〜のいずれか1項に記載の消弧用絶縁材料成形体。
  10. 酸化ケイ素をさらに含む、請求項に記載の消弧用絶縁材料成形体。
  11. 窒化ホウ素、酸化アルミニウムおよび酸化チタンからなる群から選択される少なくとも1種を充填材として含む、請求項1〜10のいずれか1項に記載の消弧用絶縁材料成形体。
  12. ガス遮断器において、接触子の接点近傍に設置される消弧用絶縁材料成形体であって、
    主鎖に炭素−酸素結合およびケイ素原子を有し、末端原子の一部または全部が水素原子以外の原子である重合体を含むことを特徴とする消弧用絶縁材料成形体。
  13. 請求項1〜12のいずれか1項に記載の消弧用絶縁材料成形体を電極近傍に備えたガス遮断器。
  14. 遮断に用いられる絶縁性ガスがSFガスである、請求項13に記載のガス遮断器。
JP2014560633A 2013-02-07 2013-09-11 消弧用絶縁材料成形体、それを用いたガス遮断器 Active JP5940180B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013022217 2013-02-07
JP2013022217 2013-02-07
PCT/JP2013/074489 WO2014122814A1 (ja) 2013-02-07 2013-09-11 消弧用絶縁材料成形体、それを用いたガス遮断器

Publications (2)

Publication Number Publication Date
JP5940180B2 true JP5940180B2 (ja) 2016-06-29
JPWO2014122814A1 JPWO2014122814A1 (ja) 2017-01-26

Family

ID=51299423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014560633A Active JP5940180B2 (ja) 2013-02-07 2013-09-11 消弧用絶縁材料成形体、それを用いたガス遮断器

Country Status (6)

Country Link
US (1) US9475906B2 (ja)
EP (1) EP2958124B1 (ja)
JP (1) JP5940180B2 (ja)
CN (1) CN104969323B (ja)
CA (1) CA2900227C (ja)
WO (1) WO2014122814A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088430A1 (ja) * 2014-12-03 2016-06-09 株式会社日立製作所 耐摩耗材、パッファシリンダ及びパッファ型ガス遮断器
ES2759262T5 (es) 2015-04-13 2022-11-30 Hitachi Energy Switzerland Ag Dispositivo para interrumpir solo corrientes que no son de cortocircuito, en particular seccionador o conmutador de puesta a tierra
JP6075423B1 (ja) * 2015-09-03 2017-02-08 株式会社明電舎 真空遮断器
DE102015218003A1 (de) * 2015-09-18 2017-03-23 Siemens Aktiengesellschaft Mittel- oder Hochspannungsschaltanlage mit einem gasdichten Isolierraum
JP6189008B1 (ja) * 2016-03-14 2017-08-30 三菱電機株式会社 消弧用絶縁材料成形体およびこれを備えるガス遮断器
WO2017159433A1 (ja) * 2016-03-14 2017-09-21 三菱電機株式会社 消弧用絶縁材料成形体およびこれを備えるガス遮断器
RU2738087C2 (ru) * 2016-06-03 2020-12-08 Абб Швайц Аг Изолированный газом выключатель нагрузки низкого или среднего напряжения
WO2019116945A1 (ja) * 2017-12-11 2019-06-20 三菱電機株式会社 消弧用絶縁材料成形体及び回路遮断器
US11322322B2 (en) * 2018-03-12 2022-05-03 Mitsubishi Electric Corporation Insulating molded body and gas circuit breaker
JP6996525B2 (ja) * 2019-03-13 2022-01-17 三菱電機株式会社 ガス絶縁開閉機器
KR102540141B1 (ko) * 2021-06-08 2023-06-07 한국전력공사 가스절연 개폐장치용 아크화염 소화장치
CN114429879B (zh) * 2021-12-16 2024-03-22 河南平高电气股份有限公司 一种隔离静触头及三工位隔离接地开关

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202003A (en) * 1981-06-03 1982-12-10 Hitachi Ltd Sf6 gas insulating electric device and method of producing same
JP2003297200A (ja) * 2002-04-01 2003-10-17 Toshiba Corp ガス遮断器
JP2003323837A (ja) * 2002-04-26 2003-11-14 Toshiba Corp ガス遮断器

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3351619A (en) * 1966-08-01 1967-11-07 Du Pont Crosslinkable polymers formed from iodine-containing perfluoroalkyl vinyl ethers
US4444671A (en) * 1976-03-29 1984-04-24 S&C Electric Company Arc extinguishing material
JPS63150350A (ja) * 1986-12-12 1988-06-23 Shin Etsu Chem Co Ltd シリコ−ンゴム組成物
JP2612979B2 (ja) * 1991-07-25 1997-05-21 信越化学工業株式会社 ハードディスク装置用カバー・パッキング組立体
TW293130B (ja) * 1994-03-10 1996-12-11 Mitsubishi Electric Corp
JPH07312155A (ja) 1994-05-17 1995-11-28 Nissin Electric Co Ltd 熱パッファ形ガス遮断器
DE19517540A1 (de) 1995-05-12 1996-11-14 Abb Research Ltd Löschgasabgebender Werkstoff und Druckgasschalter mit einem solchen Werkstoff
DE19645524A1 (de) * 1996-11-05 1998-05-07 Abb Research Ltd Leistungsschalter
JPH1129191A (ja) 1997-07-09 1999-02-02 Mitsubishi Chem Corp 開封防止機構付蓋体の締付方法
DE19816505A1 (de) 1998-04-14 1999-10-21 Asea Brown Boveri Leistungsschalter
JP3336958B2 (ja) * 1998-06-11 2002-10-21 日本メクトロン株式会社 含フッ素ブロック共重合体の製造法
JP2001155595A (ja) 1999-11-25 2001-06-08 Mitsubishi Electric Corp パッファ型ガス遮断器
WO2001080268A1 (fr) * 2000-04-14 2001-10-25 Mitsubishi Denki Kabushiki Kaisha Interrupteur de circuit
JP2002373561A (ja) * 2001-06-15 2002-12-26 Toshiba Corp ガス遮断器用ノズルおよびその製造方法
JP4618955B2 (ja) 2001-09-21 2011-01-26 株式会社小松製作所 エレクタ制御装置及びその制御方法
JP2003292761A (ja) * 2002-04-01 2003-10-15 Shin Etsu Chem Co Ltd 硬化性フルオロポリエーテル系ゴム組成物及びゴム製品
DE60311485T2 (de) 2003-12-19 2007-11-15 Abb Technology Ag Gasisolierte Schaltvorrichtung mit einer Düse
JP4753289B2 (ja) * 2004-07-12 2011-08-24 信越化学工業株式会社 フッ素系エラストマー又はフッ素系ゲル用プライマー組成物
JP5328991B2 (ja) * 2010-12-07 2013-10-30 三菱電機株式会社 ガス遮断器
CH707827B1 (fr) * 2012-02-06 2017-05-15 Mitsubishi Electric Corp Disjoncteur à gaz.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202003A (en) * 1981-06-03 1982-12-10 Hitachi Ltd Sf6 gas insulating electric device and method of producing same
JP2003297200A (ja) * 2002-04-01 2003-10-17 Toshiba Corp ガス遮断器
JP2003323837A (ja) * 2002-04-26 2003-11-14 Toshiba Corp ガス遮断器

Also Published As

Publication number Publication date
CA2900227C (en) 2018-04-17
WO2014122814A1 (ja) 2014-08-14
CN104969323B (zh) 2017-10-20
US9475906B2 (en) 2016-10-25
CA2900227A1 (en) 2014-08-14
EP2958124A1 (en) 2015-12-23
EP2958124A4 (en) 2016-10-12
US20150357137A1 (en) 2015-12-10
JPWO2014122814A1 (ja) 2017-01-26
CN104969323A (zh) 2015-10-07
EP2958124B1 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
JP5940180B2 (ja) 消弧用絶縁材料成形体、それを用いたガス遮断器
KR101996233B1 (ko) 유전성 절연 매질
KR102649609B1 (ko) 헵타플루오로이소부티로니트릴 및 테트라플루오로메탄을 포함하는 가스 절연 중간전압 또는 고전압 전기 장치
KR102242307B1 (ko) 전기 에너지의 생성, 전송, 분배 및/또는 이용을 위한 co2 절연된 전기 장치용 물 및 오염 흡착제
KR20130128433A (ko) 유전성 절연 매질
KR102429605B1 (ko) 전기 에너지의 생성, 배분 및/또는 사용을 위한 장치 및 이러한 장치용 컴포넌트
WO2008073790A2 (en) Gaseous dielectrics with low global warming potentials
KR20140078689A (ko) 절연 및/또는 아크 소거성 매질로서의 사용을 위한 히드로플루오로올레핀 및 플루오로케톤의 혼합물 및 이를 포함하는 가스 절연된 중간 전압 전기적 디바이스
CN111211515A (zh) 一种灭弧和/或绝缘电气设备
US10825576B2 (en) Apparatus for the generation, the distribution and/or the usage of electrical energy and component for such an apparatus
CN114072881B (zh) 介电绝缘或消弧流体
WO2016146197A1 (en) Dielectric insulation or arc-extinction fluid
JP6189008B1 (ja) 消弧用絶縁材料成形体およびこれを備えるガス遮断器
WO2017159433A1 (ja) 消弧用絶縁材料成形体およびこれを備えるガス遮断器
EP3384508B1 (en) Methods for dielectrically insulating electrical active parts
EP3982377B1 (en) Method for re-establishing an electrical apparatus of medium or high voltage
EP3055867A1 (en) Apparatus for the generation, the distribution and/or the usage of electrical energy and component for such an apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160517

R150 Certificate of patent or registration of utility model

Ref document number: 5940180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250