WO2019176128A1 - ガスエンジンおよびこれを備えた船舶 - Google Patents

ガスエンジンおよびこれを備えた船舶 Download PDF

Info

Publication number
WO2019176128A1
WO2019176128A1 PCT/JP2018/027893 JP2018027893W WO2019176128A1 WO 2019176128 A1 WO2019176128 A1 WO 2019176128A1 JP 2018027893 W JP2018027893 W JP 2018027893W WO 2019176128 A1 WO2019176128 A1 WO 2019176128A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fuel
injection
intake
pipe
Prior art date
Application number
PCT/JP2018/027893
Other languages
English (en)
French (fr)
Inventor
進太郎 首藤
山田 哲
和郎 堀田
知宏 野口
健一 飯塚
祐樹 中村
Original Assignee
三菱重工エンジン&ターボチャージャ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジン&ターボチャージャ株式会社 filed Critical 三菱重工エンジン&ターボチャージャ株式会社
Priority to EP18909690.2A priority Critical patent/EP3722586B1/en
Priority to CN201880085402.2A priority patent/CN111566331B/zh
Priority to US16/958,101 priority patent/US11608798B2/en
Publication of WO2019176128A1 publication Critical patent/WO2019176128A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0278Port fuel injectors for single or multipoint injection into the air intake system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/04Gas-air mixing apparatus
    • F02M21/042Mixer comprising a plurality of bores or flow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10216Fuel injectors; Fuel pipes or rails; Fuel pumps or pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/16Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines characterised by use in vehicles
    • F02M35/165Marine vessels; Ships; Boats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0281Adapters, sockets or the like to mount injection valves onto engines; Fuel guiding passages between injectors and the air intake system or the combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a gas engine and a ship equipped with the same.
  • the fuel gas In a gas engine, in order to burn the fuel gas and air in a uniformly mixed state, the fuel gas is supplied in front of a supercharger located upstream of the cylinder, and the fuel gas and air are mixed in advance. Sometimes.
  • Patent Document 1 by disposing a fuel gas injection nozzle having a plurality of openings in each of a plurality of passages disposed in front of a cylinder intake valve, the size of the apparatus is increased and the cost is increased. The problem can be addressed.
  • Patent Document 1 since the distance from the fuel gas supply to the cylinder is short, the fuel gas and air may not be sufficiently mixed. Further, when the flow velocity of the gas flowing through each passage is different for each passage, the concentration of the fuel gas with respect to the air may be uneven for each passage, and the combustion of air and fuel gas in the cylinder may be uneven. is there. When fuel gas and air are not sufficiently mixed, or when the concentration of fuel gas is uneven for each passage, when ignition is performed in the cylinder, generation of NOx, occurrence of knocking, unburned content Events such as an increase in
  • the present invention has been made in view of such circumstances, and ensures a distance at which the fuel and the oxidant can be mixed, and even when the flow rates of the gases toward the respective intake pipes are different, the oxidant and It is an object of the present invention to provide a gas engine capable of uniformly mixing fuel and a ship equipped with the same.
  • a gas engine according to an aspect of the present invention includes an intake passage through which a gas flows and a plurality of intake air that is branched at a downstream branch portion in the gas flow direction and opens into a cylinder at a downstream end.
  • a gas engine comprising a pipe and fuel injection means for injecting fuel into the intake passage, wherein the fuel injection means is provided upstream of the branch portion in the gas flow direction, and a plurality of the intake air Different amounts of fuel are injected into the tubes.
  • the fuel injection means is provided upstream of the branching portion in the gas flow direction. According to this, compared with the case where fuel is injected into the intake pipe located downstream of the intake passage, the distance that the fuel (for example, fuel gas) and the oxidant (for example, air) can be mixed becomes longer. It becomes easy to mix the agent and the fuel uniformly.
  • the fuel injection means can inject different amounts of fuel into the plurality of intake pipes. According to this, for example, for an intake pipe in which the flow rate of gas (for example, a mixed gas of air and fuel gas) is increased, the amount of fuel is increased and the intake pipe in which the flow rate of gas is decreased. Can reduce the amount of fuel.
  • the fuel injection unit includes one injection pipe having a plurality of injection ports, and the plurality of injection ports are respectively formed in a plurality of directions.
  • the total area of the one or more injection ports directed in the direction toward the one intake pipe is different from the total area of the one or more injection holes directed in the direction toward the other intake pipe .
  • the total area of the injection ports facing the direction toward one intake pipe is different from the total area of the injection holes facing the direction toward the other intake pipe.
  • the amount of fuel to be adjusted can be adjusted for a plurality of directions (for a plurality of intake pipes). For example, for an intake pipe in which the flow rate of gas (for example, a mixed gas of an oxidant such as air and fuel gas) is increased, the amount of fuel is increased, and for an intake pipe in which the gas flow rate is decreased. The amount of fuel can be reduced.
  • the plurality of injection ports included in the injection pipe have the same area of one or more of the injection ports directed in the direction toward the one intake pipe.
  • the respective areas thus made are different from the respective areas where the areas of the one or more injection ports directed in the direction toward the other intake pipes are the same.
  • the total area of the injection ports formed in the respective directions can be made different.
  • the number of intake pipes is two (that is, when the number of directions toward the intake pipe is two)
  • the number of injection ports directed in each direction is the same (eg, three each). ) If the area of all the injection ports in the direction toward one intake pipe is 1 and the area of all the injection holes in the direction toward the other intake pipe is 2, respectively, the direction toward the one intake pipe is The total area of the injection ports that face is 3 and the total area of the injection holes that faces the other intake pipes can be 6.
  • the plurality of injection ports of the injection pipe have the same area, and the one or more injection ports directed in a direction toward the one intake pipe.
  • the number is different from the number of the one or more injection ports directed in the direction toward the other intake pipes.
  • the total area of the injection ports formed in the respective directions can be made different.
  • the direction toward one intake pipe If the number of the injection ports is three and the number of injection ports in the direction toward the other intake pipes is two, the total area of the injection ports facing the direction toward one intake pipe is set to 3, and the other intake pipes The total area of the injection nozzles facing in the direction toward can be set to 2.
  • the injection pipe is arranged close to a gas flow having a high flow velocity among the gas flows toward each of the plurality of intake pipes.
  • the amount of fuel injected in each direction can be adjusted by the arrangement of the injection pipe. For example, by placing the injection pipe close to the gas flow having a high flow rate among the gas flows toward the plurality of intake pipes, the amount of fuel is increased for the intake pipe in which the gas flow rate is high. The amount of fuel can be reduced for the intake pipe where the gas flow rate is slow.
  • the fuel injection unit includes one injection pipe having a plurality of injection ports, and the injection pipe has a gas flow toward each of the plurality of intake pipes. Of these, they are arranged by being drawn to a gas flow having a high flow velocity.
  • the amount of fuel injected in each direction can be adjusted by the arrangement of the injection pipe. For example, by arranging the injection pipe close to the gas flow with a high flow speed among the gas flows toward the plurality of intake pipes, the amount of fuel is increased for the intake pipe with a high flow velocity, The amount of fuel can be reduced for the intake pipe where the flow rate of the fuel becomes slow. As a result, even when the flow velocity of the gas toward each intake pipe is different, the fuel concentration of the mixed gas supplied into the cylinder (combustion chamber) via each intake pipe can be made uniform regardless of the intake pipe. it can. As a result, combustion of the mixed gas of the oxidant and fuel in the combustion chamber can be made uniform. Thereby, generation
  • the fuel injection means includes a rotation mechanism capable of rotating the injection pipe around an axis.
  • the fuel injection means includes a rotation mechanism capable of rotating the injection pipe around the axis. According to this, the amount of fuel supplied toward each direction can be adjusted by the rotation of the injection pipe. As a result, the fuel can be injected in the optimum direction that promotes the mixing of the oxidant and the fuel.
  • the rotation angle of the injection pipe may be determined in accordance with the output of the gas engine and changes in the rotation speed. For example, a map created from data obtained in advance through experiments (for example, the output and rotation speed are parameters). And).
  • the plurality of the injection ports are formed toward the downstream side in the gas flow direction.
  • the gas engine includes an intake passage through which a gas flows, and a plurality of intake air that is branched at a downstream branch portion in the gas flow direction and opens into a cylinder at a downstream end.
  • a gas engine comprising a pipe and fuel injection means for injecting fuel into the intake passage, wherein the fuel injection means is provided upstream of the branch portion in the gas flow direction, and a plurality of the intake pipes Engine that injects fuel against
  • the fuel injection means is provided upstream of the branching portion in the gas flow direction.
  • the distance that the fuel (for example, fuel gas) and the oxidant (for example, air) can be mixed becomes longer. It becomes easy to mix the agent and the fuel uniformly.
  • combustion of the mixed gas of the oxidant and fuel in the combustion chamber can be made uniform, events such as generation of NOx, occurrence of knocking, and increase in unburned content can be suppressed.
  • the ship which concerns on 1 aspect of this invention is equipped with the above-mentioned gas engine.
  • the present invention it is possible to secure a distance at which the fuel and the oxidant can be mixed, and even when the flow rates of the gases toward the intake pipes are different, the gas that can uniformly mix the oxidant and the fuel.
  • An engine and a ship equipped with the engine can be provided.
  • FIG. 1 is a plan view of a cylinder head of a gas engine according to a first embodiment of the invention. It is a perspective view of the intake passage with which the gas engine concerning a 1st embodiment of the present invention is provided.
  • FIG. 4 is a plan view of FIG. 3.
  • 1A is a plan view of an injection pipe provided in a gas engine according to a first embodiment of the present invention
  • FIG. 2B is a developed view thereof
  • FIG. 3A is a plan view
  • FIG. 3B is a developed view
  • FIG. 3C is a longitudinal sectional view taken along a cutting line III-III of the injection tube rotated around the axis. It is the figure which showed an example of the map based on rotation speed and an output.
  • FIG. 1 shows a configuration in the vicinity of a cylinder 16 provided in the gas engine 1.
  • the cylinder 16 has a cylindrical shape, and a cylinder head 16a is attached to the upper portion thereof.
  • a piston (not shown) that reciprocates in the cylinder 16 is accommodated in the cylinder 16.
  • a combustion chamber 18 defined by an inner wall of the cylinder 16 and a piston is formed in the cylinder 16.
  • the intake ports 22A and 22B provided in the upper part of the cylinder head 16a attached to the cylinder 16 are connected to one end of a curved tubular intake pipe 12A and 12B communicating with an intake passage 10 described later (downstream of the gas flow). Side end) (see FIG. 2).
  • the intake valves 20A and 20B whose outer shapes are funnel-shaped are installed at the connection portions between the intake ports 22A and 22B of the cylinder head 16a and the intake pipes 12A and 12B.
  • the intake valves 20A and 20B are urged to the upper side shown in FIG. 1 by a mechanism (not shown) so that the funnel-shaped tapered portions block the intake ports 22A and 22B provided in the cylinder head 16a from the lower side shown in FIG.
  • the intake pipes 12A and 12B and the combustion chamber 18 can be communicated with each other by pushing down the intake valves 20A and 20B into the cylinder 16 as necessary (for example, when intake into the cylinder 16).
  • the intake passage 10 forms a passage extending in the vertical direction shown in FIG.
  • a fuel injection means 31 for injecting fuel gas is installed in the intake passage 10.
  • the intake pipes 12A and 12B are curved passages in which the intake passage 10 is branched in two directions by a branching portion 14.
  • the intake pipe having a longer path shown in FIG. 1 is referred to as an intake pipe 12A
  • the intake pipe having a shorter path is referred to as an intake pipe 12B.
  • the fuel injection means 31 for injecting fuel gas into the intake passage 10 can inject different amounts of fuel gas into the intake pipe 12A and the intake pipe 12B.
  • the fuel injection means 31 includes a single injection pipe 40.
  • the injection pipe 40 is inserted and provided so as to be orthogonal to the intake passage 10 along the axial direction so as to be positioned near the center in the intake passage 10.
  • the injection tube 40 has two rows in the axial direction and is symmetrical with respect to the axis (angle ⁇ formed with respect to the horizontal plane shown in FIG. 5C).
  • a plurality of injection holes 42 respectively oriented in two directions are formed.
  • the plurality of injection ports facing one direction are the injection ports 42A
  • the plurality of injection ports facing the other direction are the injection ports 42B.
  • the number of injection ports 42A and the number of injection ports 42B are equal.
  • the areas of the plurality of injection holes 42A are all equal, and the areas of the plurality of injection holes 42B are all equal.
  • the one direction referred to here is a direction toward the gas flowing toward the intake pipe 12A
  • the other direction is a direction toward the gas flowing toward the intake pipe 12B, for example.
  • the area of the opening of the injection port 42A is set larger than the area of the opening of the injection port 42B. Further, as described above, the number of injection ports 42A and the number of injection ports 42B are equal. Further, as described above, the areas of the plurality of injection holes 42A are all equal, and the areas of the plurality of injection holes 42B are all equal. Thereby, the total area of the plurality of injection ports 42A facing in one direction is different from the total area of the plurality of injection ports 42B facing in the other direction. In other words, the total area of the plurality of injection ports 42A facing the gas flowing toward the intake pipe 12A is larger than the total area of the plurality of injection ports 42B facing the gas flowing toward the intake pipe 12B. That is, more fuel gas can be injected into the gas flowing toward the intake pipe 12A.
  • the total area of the plurality of injection ports 42A facing the gas flowing toward the intake pipe 12A is set larger than the total area of the plurality of injection ports 42B facing the gas flowing toward the intake pipe 12B.
  • the total area of the plurality of injection ports facing the intake pipe with the higher flow velocity may be larger than the total area of the plurality of injection ports facing the other direction.
  • An intercooler (not shown) is installed below the intake passage 10 shown in FIG.
  • the air cooled by the intercooler flows from the lower side of the intake passage 10 through the intake passage 10 toward the upper branching portion 14.
  • fuel gas is injected from the fuel injection means 31 inserted into the intake passage 10 toward the air flowing through the intake passage 10.
  • the air and the fuel gas injected toward the air reach the branch portion 14 and then are guided to the intake pipe 12A and the intake pipe 12B.
  • the total area of the plurality of injection ports 42A facing the gas flowing toward the intake pipe 12A is larger than the total area of the plurality of injection ports 42B facing the gas flowing toward the intake pipe 12B. More gas is injected into the gas flowing toward the intake pipe 12A, and less fuel gas is injected into the gas flowing toward the intake pipe 12B.
  • the air and the fuel gas are gradually mixed as they flow through the intake passage 10 and the intake pipes 12A and 12B.
  • the mixed gas that has been mixed in the intake pipes 12A and 12B is guided to the combustion chamber 18 when the intake valves 20A and 20B are pushed down and the intake ports 22A and 22B are opened.
  • the shape of the flow path is different between the intake pipe 12A and the intake pipe 12B, the flow velocity of the flowing mixed gas differs between the intake pipe 12A and the intake pipe 12B.
  • the flow rate of the mixed gas toward the intake pipe 12A is different from the flow rate of the mixed gas toward the intake pipe 12B.
  • the mixed gas of air and fuel gas that flows through the intake pipes 12A and 12B and is guided to the combustion chamber 18 is ignited and burned by an ignition device (not shown).
  • an ignition device not shown
  • the present embodiment has the following effects.
  • the fuel injection means 31 is provided upstream of the branch portion 14 in the gas flow direction. According to this, compared with the case where fuel is directly injected into each of the intake pipes 12A and 12B located downstream of the intake passage 10, the distance that the air and the fuel gas can be mixed becomes longer, and the air and the fuel gas It becomes easy to mix with.
  • the fuel injection means 31 can inject different amounts of fuel into the plurality of intake pipes 12A and 12B.
  • the injection port that faces the direction of the gas toward the intake pipe 12A The total area of 42A can be made larger than the total area of the injection port 42B facing the direction of the gas toward the intake pipe 12B.
  • the fuel concentration of the mixed gas supplied to the combustion chamber 18 via the intake pipes 12A and 12B can be made uniform regardless of the intake pipes 12A and 12B.
  • events such as generation of NOx, occurrence of knocking, and increase in unburned content can be suppressed.
  • the injection pipe 40 provided in the fuel injection means 32 has two rows in the axial direction and is symmetrical with respect to the axis (on the horizontal plane shown in FIG. 6 (C)).
  • a plurality of injection holes 42 respectively oriented in two directions are formed at an angle ⁇ (see FIG. 2).
  • the plurality of injection ports facing one direction are the injection ports 42A
  • the plurality of injection ports facing the other direction are the injection ports 42B.
  • the area per one of the injection ports 42A and 42B is equal.
  • the one direction referred to here is a direction toward the gas flowing toward the intake pipe 12A
  • the other direction is a direction toward the gas flowing toward the intake pipe 12B, for example.
  • the number of injection ports 42A is more perforated than the number of injection ports 42B. Further, as described above, the area per one of the injection ports 42A and 42B is equal. Thereby, the total area of the plurality of injection ports 42A facing in one direction is different from the total area of the plurality of injection ports 42B facing in the other direction. In other words, the total area of the plurality of injection ports 42A facing the gas flowing toward the intake pipe 12A is larger than the total area of the plurality of injection ports 42B facing the gas flowing toward the intake pipe 12B. That is, more fuel gas can be injected into the gas flowing toward the intake pipe 12A.
  • the total area of the plurality of injection ports 42A facing the gas flowing toward the intake pipe 12A is set larger than the total area of the plurality of injection ports 42B facing the gas flowing toward the intake pipe 12B.
  • the total area of the plurality of injection ports facing the intake pipe with the higher flow velocity may be larger than the total area of the plurality of injection ports facing the other direction.
  • the present embodiment has the following effects.
  • the injection port 42A that faces the direction of the gas toward the intake pipe 12A
  • the total area can be made larger than the total area of the injection ports 42B facing the direction of the gas toward the intake pipe 12B.
  • the fuel concentration of the mixed gas supplied to the combustion chamber 18 via the intake pipes 12A and 12B can be made uniform regardless of the intake pipes 12A and 12B.
  • events such as generation of NOx, occurrence of knocking, and increase in unburned content can be suppressed.
  • the fuel injection means 33 includes a single injection tube 40 in which a plurality of injection ports 42 are formed in a line in the axial direction. Moreover, the injection pipe 40 is arranged close to the faster flow velocity of the flowing gas out of the gas flowing toward the intake pipe 12A and the gas flowing toward the intake pipe 12B.
  • the flow velocity of the mixed gas toward the intake pipe 12A is faster than the flow velocity of the mixed gas toward the intake pipe 12B.
  • the intake passage 10 shown in FIG. It is assumed that the gas mainly flowing toward the intake pipe 12A flows on the lower side. Therefore, in FIG. 7, the injection pipe 40 is disposed in the intake passage 10 (the intake passage 10 below the axis extending in the left and right direction) through which the gas mainly toward the intake pipe 12A flows.
  • the present embodiment has the following effects.
  • the fuel quantity is reduced for the intake pipe 12A in which the injection pipe 40 is placed close to the gas flow having a high flow speed to increase the gas flow speed.
  • the amount of fuel can be reduced for the intake pipe 12B, which is increased and the gas flow rate becomes slower.
  • the fuel concentration of the mixed gas supplied to the combustion chamber 18 via the intake pipes 12A and 12B can be made uniform regardless of the intake pipes 12A and 12B.
  • events such as generation of NOx, occurrence of knocking, and increase in unburned content can be suppressed.
  • the fuel injection means 31, 32, 33 of the first to third embodiments may be provided with a rotation mechanism (not shown) that can rotate the injection pipe 40 about the axis front (see FIG. 8). .
  • the rotation mechanism is preferably driven by a servo motor or the like that can arbitrarily adjust the rotation angle of the injection tube 40 and can acquire information on the rotation angle.
  • the rotation angle is determined by a control unit (not shown) from the actual output and rotation speed of the gas engine 1 based on the output and rotation speed map (see FIG. 9) of the gas engine 1 created from data obtained in advance. It is determined uniquely.
  • the injection port 42 drilled in the injection pipe 40 provided in the fuel injection means 31, 32, 33 of the first to third embodiments is formed toward the downstream side in the gas flow direction.
  • the range of the angles ⁇ and ⁇ formed with respect to the horizontal plane shown in FIGS. 5C, 6C, and 8C may be 0 ° or more and 90 ° or less. According to this, even when gas flows backward from the cylinder 16 side at the time of low output of the gas engine 1, the fuel gas injected from the plurality of injection ports 42 is not injected to the upstream side of the gas. The fuel gas injected from the injection port 42 is unlikely to flow backward upstream. Thereby, it is possible to prevent the fuel gas from flowing backward to the intercooler (not shown) installed on the downstream side of the gas.
  • the configurations of the fuel injection means 31, 32, 33 of the first to third embodiments can be combined. For example, you may arrange
  • the intake pipes 12A and 12B can be arranged symmetrically toward the intake ports 22A and 22B in relation to the arrangement of other components (not shown) constituting the gas engine 1, and the flow velocity after branching is uniform. In this case, the amount of fuel injected from the injection ports 42A and 42B does not have to be different depending on the intake pipes 12A and 12B, and the same amount of fuel may be injected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ocean & Marine Engineering (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

燃料と酸化剤とが混合可能な距離を確保し、更に、それぞれの吸気管に向かう気体の流速が異なる場合でも、酸化剤と燃料とを均一に混合することができるガスエンジンおよびこれを備えた船舶を提供することを目的とする。気体が流れる吸気通路(10)と、吸気通路(10)が気体の流れ方向の下流の分岐部(14)にて分岐され、下流端にてシリンダ(16)に開口する複数の吸気管(12A,12B)と、吸気通路(10)内に燃料を噴射する燃料噴射手段(31)とを備えるガスエンジン(1)であって、燃料噴射手段(31)は、分岐部(14)よりも気体の流れ方向の上流に設けられるとともに、複数の吸気管(12A,12B)に対してそれぞれ異なる量の燃料を噴射するガスエンジン(1)。

Description

ガスエンジンおよびこれを備えた船舶
 本発明は、ガスエンジンおよびこれを備えた船舶に関する。
 ガスエンジンにおいては、燃料ガスと空気とを均一に混合した状態で燃焼させるために、シリンダの上流に位置する過給機の前に燃料ガスを供給して、予め燃料ガスと空気とを混合させることがある。
 前述のガスエンジンを舶用ガスエンジンとして使用する場合、防爆などの安全性を考慮して、燃料ガス系統を二重管にする必要があり、過給機の前に燃料ガスを供給する場合、ガスエンジン全体を二重管とする必要があり、装置の大型化やコストの増加が懸念される。
 特許文献1のように、シリンダの吸気弁の手前に配置される複数の通路それぞれに、複数の開口を有した燃料ガス用の噴射ノズルを配置することで、装置の大型化やコストの増加という課題は対処できる。
特開2008-138565号公報
 ところが、特許文献1においては、燃料ガス供給からシリンダまでの距離が短いために、燃料ガスと空気とが十分に混合されない可能性がある。また、各通路内を流通する気体の流速が通路ごとに異なる場合、空気に対する燃料ガスの濃度が通路ごとに不均一になり、シリンダ内における空気と燃料ガスの燃焼が不均一になる可能性がある。燃料ガスと空気とが十分に混合されなかったり、燃料ガスの濃度が通路ごとに不均一であったりした場合、シリンダ内で点火が行われたとき、NOxの発生、ノッキングの発生、未燃分の増加などの事象が発生する可能性がある。
 本発明はこのような事情を鑑みてなされたものであって、燃料と酸化剤とが混合可能な距離を確保し、更に、それぞれの吸気管に向かう気体の流速が異なる場合でも、酸化剤と燃料とを均一に混合することができるガスエンジンおよびこれを備えた船舶を提供することにある。
 上記課題を解決するために、本発明のガスエンジンおよびこれを備えた船舶は以下の手段を採用する。
 すなわち、本発明の一態様に係るガスエンジンは、気体が流れる吸気通路と、該吸気通路が、気体の流れ方向の下流の分岐部にて分岐され、下流端にてシリンダに開口する複数の吸気管と、前記吸気通路内に燃料を噴射する燃料噴射手段とを備えるガスエンジンであって、前記燃料噴射手段は、前記分岐部よりも気体の流れ方向の上流に設けられるとともに、複数の前記吸気管に対してそれぞれ異なる量の燃料を噴射する。
 本態様に係るガスエンジンにおいて、燃料噴射手段は、分岐部よりも気体の流れ方向の上流に設けられている。これによれば、吸気通路の下流に位置する吸気管に燃料を噴射した場合と比べて、燃料(例えば、燃料ガス)と酸化剤(例えば、空気)とが混合し得る距離が長くなり、酸化剤と燃料とを均一に混合しやすくなる。また、燃料噴射手段は、複数の吸気管に対してそれぞれ異なる量の燃料を噴射できる。これによれば、例えば、気体(例えば、空気と燃料ガスとの混合気体)の流速が早くなる吸気管に対しては、燃料量を増加させて、気体の流速が遅くなる吸気管に対しては、燃料量を減少させることができる。これによって、それぞれの吸気管に向かう気体の流速が異なる場合でも、それぞれの吸気管を介してシリンダ内(燃焼室)に供給される混合気体の燃料濃度を吸気管によらず均一にすることができる。ひいては、燃焼室における酸化剤と燃料との混合気体の燃焼を均一化することができる。これにより、NOxの発生、ノッキングの発生、未燃分の増加などの事象を抑制することができる。
 また、本発明の一態様に係るガスエンジンにおいて、前記燃料噴射手段は、複数の噴射口を有する1本の噴射管を備え、複数の前記噴射口は複数の方向に向かってそれぞれ1つ以上形成され、一の前記吸気管に向かう方向に向けられた1つ以上の前記噴射口の総面積が、他の前記吸気管に向かう方向に向けられた1つ以上の前記噴射口の総面積と異なる。
 本態様に係るガスエンジンによれば、一の吸気管に向かう方向を向いている噴射口の総面積が、他の吸気管に向かう方向を向いている噴射口の総面積と異なるので、供給される燃料量を複数の方向ごと(複数の吸気管ごと)に調節することができる。例えば、気体(例えば、空気などの酸化剤と燃料ガスとの混合気体)の流速が早くなる吸気管に対しては、燃料量を増加させて、気体の流速が遅くなる吸気管に対しては、燃料量を減少させることができる。
 また、本発明の一態様に係るガスエンジンにおいて、前記噴射管が有する複数の前記噴射口は、一の前記吸気管に向かう方向に向けられた1つ以上の前記噴射口の、面積が同一とされたそれぞれの面積が、他の前記吸気管に向かう方向に向けられた1つ以上の前記噴射口の、面積が同一とされたそれぞれの面積と異なる。
 本態様に係るガスエンジンによれば、それぞれの方向に向かって形成された噴射口の総面積をそれぞれ異なるものとできる。例えば、吸気管を2つとした場合(即ち、吸気管に向かう方向の数を2方向とした場合)であって、それぞれの方向に向けられた噴射口の数が同じ場合(例えば3ずつとする)、一の吸気管に向かう方向の噴射口の全ての面積をそれぞれ1とし、他の吸気管に向かう方向の噴射口の全ての面積をそれぞれ2とすれば、一の吸気管に向かう方向を向く噴射口の総面積を3として、他の吸気管に向かう方向を向く噴射口の総面積を6とすることができる。
 また、本発明の一態様に係るガスエンジンにおいて、前記噴射管が有する複数の前記噴射口は面積が同一とされ、一の前記吸気管に向かう方向に向けられた1つ以上の前記噴射口の数が、他の前記吸気管に向かう方向に向けられた1つ以上の前記噴射口の数と異なる。
 本態様に係るガスエンジンによれば、それぞれの方向に向かって形成された噴射口の総面積をそれぞれ異なるものとできる。例えば、吸気管を2つとした場合(即ち、方向の数を2方向とした場合)であって、全ての噴射口の面積が同一の場合(例えば1とする)、一の吸気管に向かう方向の噴射口の数を3つとし、他の吸気管に向かう方向の噴射口の数を2つとすれば、一の吸気管に向かう方向を向く噴射口の総面積を3として、他の吸気管に向かう方向を向く噴射口の総面積を2とすることができる。
 また、本発明の一態様に係るガスエンジンにおいて、前記噴射管は、複数の前記吸気管のそれぞれに向かう気体の流れのうち、流速が速い気体の流れに寄せられて配置されている。
 本態様に係るガスエンジンによれば、それぞれの方向に向けて噴射される燃料量を、噴射管の配置によって調節することができる。例えば、複数の吸気管に向かう気体の流れのうち、流速の速い気体の流れに噴射管を寄せて配置することで、気体の流速が早くなる吸気管に対しては、燃料量を増加させて、気体の流速が遅くなる吸気管に対しては、燃料量を減少させることができる。
 また、本発明の一態様に係るガスエンジンにおいて、前記燃料噴射手段は、複数の噴射口を有する1本の噴射管を備え、前記噴射管は、複数の前記吸気管のそれぞれに向かう気体の流れのうち、流速が速い気体の流れに寄せられて配置されている。
 本態様に係るガスエンジンによれば、それぞれの方向に向けて噴射される燃料量を、噴射管の配置によって調節することができる。例えば、複数の吸気管に向かう気体の流れのうち、流速の速い気体の流れに噴射管を寄せて配置することで、流速が早くなる吸気管に対しては、燃料量を増加させて、気体の流速が遅くなる吸気管に対しては、燃料量を減少させることができる。これによって、それぞれの吸気管に向かう気体の流速が異なる場合でも、それぞれの吸気管を介してシリンダ内(燃焼室)に供給される混合気体の燃料濃度を吸気管によらず均一にすることができる。ひいては、燃焼室における酸化剤と燃料との混合気体の燃焼を均一化することができる。これにより、NOxの発生、ノッキングの発生、未燃分の増加などの事象を抑制することができる。
 また、本発明の一態様に係るガスエンジンにおいて、前述の前記燃料噴射手段は、前記噴射管を軸線周りに回転可能な回転機構を備えている。
 本態様に係るガスエンジンにおいて、燃料噴射手段は、噴射管を軸線周りに回転可能な回転機構を備えている。これによれば、それぞれの方向に向けて供給される燃料量を、噴射管の回転によって調節することができる。これによって、酸化剤と燃料との混合を促進する最適な方向に燃料を噴射できる。このとき、噴射管の回転角度はガスエンジンの出力や回転数の変化に応じて決定されても良く、例えば、実験によって予め得られたデータから作成されたマップ(例えば、出力と回転数をパラメータとする)から決定される。
 また、本発明の一態様に係るガスエンジンにおいて、前述の複数の前記噴射口は、気体の流れ方向の下流側に向かって形成されている。
 本態様に係るガスエンジンによれば、ガスエンジンの低出力時に、シリンダ側から気体が逆流した場合でも、複数の噴射口から噴射される燃料は、気体の上流側に噴射されないので、複数の噴射口から噴射された燃料は逆流しにくくなる。これによって、燃料が気体の下流側に設置されているインタークーラ側に逆流することを防ぐことができる。
 また、本発明の一態様に係るガスエンジンは、気体が流れる吸気通路と、該吸気通路が、気体の流れ方向の下流の分岐部にて分岐され、下流端にてシリンダに開口する複数の吸気管と、前記吸気通路内に燃料を噴射する燃料噴射手段と備えるガスエンジンであって、前記燃料噴射手段は、前記分岐部よりも気体の流れ方向の上流に設けられるとともに、複数の前記吸気管に対して燃料を噴射するガスエンジン。
 本態様に係るガスエンジンにおいて、燃料噴射手段は、分岐部よりも気体の流れ方向の上流に設けられている。これによれば、吸気通路の下流に位置する吸気管に燃料を噴射した場合と比べて、燃料(例えば、燃料ガス)と酸化剤(例えば、空気)とが混合し得る距離が長くなり、酸化剤と燃料とを均一に混合しやすくなる。これにより、燃焼室における酸化剤と燃料との混合気体の燃焼を均一化することができるので、NOxの発生、ノッキングの発生、未燃分の増加などの事象を抑制することができる。
 また、本発明の一態様に係る船舶は、前述のガスエンジンを備えている。
 本発明によれば、燃料と酸化剤とが混合可能な距離を確保し、更に、それぞれの吸気管に向かう気体の流速が異なる場合でも、酸化剤と燃料とを均一に混合することができるガスエンジンおよびこれを備えた船舶を提供できる。
本発明の第1実施形態に係るガスエンジンのシリンダ付近の構成を示す縦断面図である。 発明の第1実施形態に係るガスエンジンのシリンダヘッドの平面図である。 本発明の第1実施形態に係るガスエンジンが備える吸気通路の斜視図である。 図3の平面図である。 本発明の第1実施形態に係るガスエンジンが備える噴射管の(A)平面図、(B)展開図、(C)切断線I-Iにおける縦断面図である。 本発明の第2実施形態に係るガスエンジンが備える噴射管の(A)平面図、(B)展開図、(C)切断線II-IIにおける縦断面図である。 本発明の第3実施形態に係るガスエンジンが備える吸気通路の平面図である。 軸線周りに回転した噴射管の(A)平面図、(B)展開図、(C)切断線III-IIIにおける縦断面図である。 回転数と出力に基づくマップの一例を示した図である。
 以下に、本発明の一実施形態に係るガスエンジンについて、図1乃至9を用いて説明する。
〔第1実施形態〕
 以下に、本発明の第1実施形態に係るガスエンジンについて、図1乃至5を用いて説明する。
 まず、ガスエンジン1の構成について説明する。
 図1には、ガスエンジン1が備えるシリンダ16付近の構成が示されている。シリンダ16は筒状とされ、その上部にシリンダヘッド16aが取り付けられている。シリンダ16内には、シリンダ16内を往復摺動するピストン(図示せず)が収められている。また、シリンダ16内には、シリンダ16の内壁とピストンとによって区画された燃焼室18が形成されている。
 シリンダ16に取り付けられているシリンダヘッド16aの上部に設けられた吸気口22A,22Bには、後述の吸気通路10と連通している曲管状の吸気管12A,12Bの一端(気体の流れの下流側の端部)が接続されている(図2参照)。
 シリンダヘッド16aの吸気口22A,22Bと吸気管12A,12Bとの接続部分には、外形が漏斗状とされた吸気バルブ20A,20Bが設置されている。吸気バルブ20A,20Bは、漏斗状のテーパ部分がシリンダヘッド16aに設けられた吸気口22A,22Bを図1で示す下側から塞ぐように、図示しない機構によって図1で示す上側に付勢されているが、必要に応じて(例えば、シリンダ16への吸気時)吸気バルブ20A,20Bをシリンダ16内に押し下げることで、吸気管12A,12Bと燃焼室18とを連通させることができる。
 吸気通路10は、図1で示す上下方向に延在する通路を形成している。また、吸気通路10内には、燃料ガスを噴射する燃料噴射手段31が設置されている。
 図1に示すように、吸気管12A,12Bは、吸気通路10が分岐部14にて2方向に分岐された曲管状の通路とされる。本実施形態においては、図1で示す経路が長い方の吸気管を吸気管12Aとし、経路が短い方の吸気管を吸気管12Bとする。
 次に、前述の燃料噴射手段31について説明する。
 本実施形態において、燃料ガスを吸気通路10内に噴射する燃料噴射手段31は、吸気管12Aと吸気管12Bに対して、それぞれ異なる量の燃料ガスを噴射することができる。
 以下、燃料噴射手段31について詳細に説明する。
 燃料噴射手段31は、図3,4に示すように、1本の噴射管40を備えている。噴射管40は、吸気通路10内の中心付近に位置するように軸線方向に沿って吸気通路10に直交するように挿入されて設けられている。
 噴射管40は、図5(A),(B),(C)に示すように、軸線方向に2列、軸線に対して対称に(図5(C)で示す水平面に対してなす角θを参照)、2つの方向にそれぞれ向けられた複数の噴射口42が穿設されている。図5(A),(B),(C)の場合、一の方向に向く複数の噴射口を噴射口42Aとし、他の方向を向く複数の噴射口を噴射口42Bとしている。なお、噴射口42Aの数と噴射口42Bの数は等しい。また、複数の噴射口42Aの面積は全て等しく、複数の噴射口42Bの面積は全て等しい。ここで言う一の方向とは、例えば、吸気管12Aに向かって流れる気体に向く方向であり、他の方向とは、例えば、吸気管12Bに向かって流れる気体に向く方向である。
 噴射口42Aの開口の面積は、噴射口42Bの開口の面積と比べて大きく設定されている。また、前述したように、噴射口42Aの数と噴射口42Bの数は等しい。また、前述したように、複数の噴射口42Aの面積は全て等しく、複数の噴射口42Bの面積は全て等しい。これにより、一の方向に向く複数の噴射口42Aの総面積と、他の方向を向く複数の噴射口42Bの総面積とを異なるものとしている。換言すれば、吸気管12Aに向かって流れる気体に向く複数の噴射口42Aの総面積を、吸気管12Bに向かって流れる気体に向く複数の噴射口42Bの総面積よりも大きいものとしている。即ち、吸気管12Aに向かって流れる気体に対しては、より多くの燃料ガスを噴射できることになる。
 なお、前述の説明においては、吸気管12Aに向かって流れる気体に向く複数の噴射口42Aの総面積を、吸気管12Bに向かって流れる気体に向く複数の噴射口42Bの総面積よりも大きく設定したが、特にこの組み合わせに限定するものではない。実際には、流速が早い方の吸気管に向く複数の噴射口の総面積を、他の方向に向く複数の噴射口の総面積よりも大きくすれば良い。これは、気体の流速が速い方が、単位時間あたりに流れる燃料ガスの量、即ち、必要な燃料ガスの量が多くなる、ということから明らかである。
 次に、本実施形態に係るガスエンジン1の気体の流れについて説明する。
 吸気通路10の図1で示す下方には、図示しないインタークーラが設置されている。インタークーラによって冷却された空気が、吸気通路10の下方から吸気通路10内を流れて上方に位置する分岐部14側に向かう。このとき、吸気通路10に挿入された燃料噴射手段31から吸気通路10内を流れる空気に向かって燃料ガスが噴射される。空気と空気に向かって噴射された燃料ガスは、分岐部14に到達した後、吸気管12Aと吸気管12Bとに導かれる。
 前述の通り、吸気管12Aに向かって流れる気体に向く複数の噴射口42Aの総面積を、吸気管12Bに向かって流れる気体に向く複数の噴射口42Bの総面積よりも大きいものとしているので、吸気管12Aに向かって流れる気体に対しては、より多くの燃料ガスを噴射していて、吸気管12Bに向かって流れる気体に対しては、より少ない燃料ガスを噴射している。
 空気と燃料ガスとは、吸気通路10内や吸気管12A,12B内を流れるにつれ徐々に混合される。吸気管12A,12B内で混合が進んだ混合気体は、吸気バルブ20A,20Bが押し下げられ吸気口22A,22Bが開状態となったときに燃焼室18に導かれる。このとき、吸気管12Aと吸気管12Bとは流路の形状が異なるので、流通する混合気体の流速は、吸気管12Aと吸気管12Bとで異なる。このため、吸気通路10内においても、吸気管12Aに向かう混合気体の流速と、吸気管12Bに向かう混合気体の流速とが異なる。なお、ここでは、吸気管12A内を流れる混合気体の流速が、吸気管12B内を流れる混合気体の流速よりも速いものと仮定している。即ち、吸気通路10内において、吸気管12Aに向かう混合気体の流速が、吸気管12Bに向かう混合気体の流速よりも速いものと仮定している。
 それぞれの吸気管12A,12Bを流れて燃焼室18に導かれた空気と燃料ガスとの混合気体は、図示しない点火装置によって着火されて燃焼する。このとき、それぞれの吸気管12A,12Bから導かれた混合気体に燃料濃度のばらつきがある場合、燃焼室18での燃焼が不均一なものになり、NOxの発生、ノッキングの発生、未燃分の増加などの可能性が生じる。
 本実施形態においては、以下の効果を奏する。
 燃料噴射手段31は、分岐部14よりも気体の流れ方向の上流に設けられている。これによれば、吸気通路10の下流に位置する吸気管12A,12Bのそれぞれに燃料を直に噴射した場合と比べて、空気と燃料ガスとが混合し得る距離が長くなり、空気と燃料ガスとを均一に混合しやすくなる。
 また、燃料噴射手段31は、複数の吸気管12A,12Bに対してそれぞれ異なる量の燃料を噴射できる。例えば、吸気通路10内において、吸気管12Aに向かう混合気体の流速が、吸気管12Bに向かう混合気体の流速よりも速いものとした場合、吸気管12Aに向かう気体の方向を向いている噴射口42Aの総面積を、吸気管12Bに向かう気体の方向を向いている噴射口42Bの総面積と比べて大きくすることができる。これにより、空気と燃料ガスとの混合気体の流速が早くなる吸気管12Aに対しては、燃料量を増加させて、気体の流速が遅くなる吸気管12Bに対しては、燃料量を減少させることができる。これによって、それぞれの吸気管12A,12Bを介して燃焼室18に供給される混合気体の燃料濃度を吸気管12A,12Bによらず均一にすることができる。ひいては、燃焼室18における空気と燃料ガスとの混合気体の燃焼を均一化することができるので、NOxの発生、ノッキングの発生、未燃分の増加などの事象を抑制することができる。
〔第2実施形態〕
 以下に、本発明の第2実施形態について図6を参照して説明する。本実施形態は第1実施形態に対して燃料噴射手段の形態が異なり、その他の点については同様である。したがって、第1実施形態と異なる点についてのみ説明し、その他は同一の符号を用いてその説明を省略する。
 燃料噴射手段32が備える噴射管40は、図6(A),(B),(C)に示すように、軸線方向に2列、軸線に対して対称(図6(C)で示す水平面に対してなす角θを参照)に、2つの方向にそれぞれ向けられた複数の噴射口42が穿設されている。図6(A),(B),(C)の場合、一の方向に向く複数の噴射口を噴射口42Aとし、他の方向を向く複数の噴射口を噴射口42Bとしている。なお、噴射口42A,42Bの1つ当たりの面積は等しい。ここで言う一の方向とは、例えば、吸気管12Aに向かって流れる気体に向く方向であり、他の方向とは、例えば、吸気管12Bに向かって流れる気体に向く方向である。
 噴射口42Aの数は、噴射口42Bの数よりも多く穿設されている。また、前述したように、噴射口42A,42Bの1つ当たりの面積は等しい。これにより、一の方向に向く複数の噴射口42Aの総面積と、他の方向を向く複数の噴射口42Bの総面積とを異なるものとしている。換言すれば、吸気管12Aに向かって流れる気体に向く複数の噴射口42Aの総面積を、吸気管12Bに向かって流れる気体に向く複数の噴射口42Bの総面積よりも大きいものとしている。即ち、吸気管12Aに向かって流れる気体に対しては、より多くの燃料ガスを噴射できることになる。
 なお、前述の説明においては、吸気管12Aに向かって流れる気体に向く複数の噴射口42Aの総面積を、吸気管12Bに向かって流れる気体に向く複数の噴射口42Bの総面積よりも大きく設定したが、特にこの組み合わせに限定するものではない。実際には、流速が早い方の吸気管に向く複数の噴射口の総面積を、他の方向に向く複数の噴射口の総面積よりも大きくすれば良い。これは、気体の流速が速い方が、単位時間あたりに流れる燃料ガスの量、即ち、必要な燃料ガスの量が多くなる、ということから明らかである。ここでは、吸気管12A内を流れる混合気体の流速が、吸気管12B内を流れる混合気体の流速よりも速いものと仮定している。即ち、吸気通路10内において、吸気管12Aに向かう混合気体の流速が、吸気管12Bに向かう混合気体の流速よりも速いものと仮定している。
 本実施形態においては、以下の効果を奏する。
 吸気通路10内において、吸気管12Aに向かう混合気体の流速が、吸気管12Bに向かう混合気体の流速よりも速いものとした場合、吸気管12Aに向かう気体の方向を向いている噴射口42Aの総面積を、吸気管12Bに向かう気体の方向を向いている噴射口42Bの総面積と比べて大きくすることができる。これにより、空気と燃料ガスとの混合気体の流速が早くなる吸気管12Aに対しては、燃料量を増加させて、気体の流速が遅くなる吸気管12Bに対しては、燃料量を減少させることができる。これによって、それぞれの吸気管12A,12Bを介して燃焼室18に供給される混合気体の燃料濃度を吸気管12A,12Bによらず均一にすることができる。ひいては、燃焼室18における空気と燃料ガスとの混合気体の燃焼を均一化することができるので、NOxの発生、ノッキングの発生、未燃分の増加などの事象を抑制することができる。
〔第3実施形態〕
 以下に、本発明の第3実施形態について図7を参照して説明する。本実施形態は第1及び第2実施形態に対して燃料噴射手段の形態が異なり、その他の点については同様である。したがって、第1及び第2実施形態と異なる点についてのみ説明し、その他は同一の符号を用いてその説明を省略する。
 燃料噴射手段33は、複数の噴射口42が軸線方向に一列に穿設された1本の噴射管40を備えている。また、噴射管40は、吸気管12Aに向かって流れる気体と吸気管12Bに向かって流れる気体のうち、流れる気体の流速が速い方に寄せて配置されている。
 なお、ここでは、吸気管12Aに向かう混合気体の流速が、吸気管12Bに向かう混合気体の流速よりも速いものと仮定し、さらに、図7で示す吸気通路10内において、左右に延びる軸線より下側に、主として吸気管12Aに向かう気体が流れるものと仮定している。そのため、図7において、噴射管40は、主として吸気管12Aに向かう気体が流れる吸気通路10(左右に延びる軸線より下側の吸気通路10)に配置されている。
 本実施形態においては、以下の効果を奏する。
 複数の吸気管12A,12Bに向かう気体の流れのうち、流速の速い気体の流れに噴射管40を寄せて配置することで、気体の流速が早くなる吸気管12Aに対しては、燃料量を増加させて、気体の流速が遅くなる吸気管12Bに対しては、燃料量を減少させることができる。これによって、それぞれの吸気管12A,12Bを介して燃焼室18に供給される混合気体の燃料濃度を吸気管12A,12Bによらず均一にすることができる。ひいては、燃焼室18における空気と燃料ガスとの混合気体の燃焼を均一化することができるので、NOxの発生、ノッキングの発生、未燃分の増加などの事象を抑制することができる。
 なお、第1乃至第3実施形態の燃料噴射手段31,32,33には、噴射管40を軸前周りに回転可能な回転機構(図示せず)を備えていても良い(図8参照)。これによって、空気と燃料ガスとの混合を促進する最適な方向に燃料ガスを噴射できる。このとき、回転機構の駆動は、噴射管40の回転角度を任意に調整でき、かつ、回転角度の情報を取得可能な、サーボモータ等が好ましい。回転角度は、例えば、予め得られたデータから作成されたガスエンジン1の出力と回転数のマップ(図9参照)を基に、実際のガスエンジン1の出力と回転数から図示しない制御部で一義的に決定される。
 また、第1乃至第3実施形態の燃料噴射手段31,32,33が備える噴射管40に穿設された噴射口42は、気体の流れ方向の下流側に向いて形成されていることが好ましい。具体的には、図5(C),図6(C),図8(C)で示す水平面に対してなす角θやφの範囲が、0°以上90°以下とされていれば良い。これによれば、ガスエンジン1の低出力時に、仮に、シリンダ16側から気体が逆流した場合でも、複数の噴射口42から噴射される燃料ガスは、気体の上流側に噴射されないので、複数の噴射口42から噴射された燃料ガスは上流側に逆流しにくくなる。これによって、燃料ガスが気体の下流側に設置されているインタークーラ(図示せず)側に逆流することを防ぐことができる。
 また、第1乃至第3実施形態の燃料噴射手段31,32,33の構成は、それぞれ組み合わせることができる。例えば、第1実施形態の燃料噴射手段31が備える噴射管40を、第3実施形態の燃料噴射手段33のように、気体の流速が速い方に寄せて配置しても良い。
 なお、ガスエンジン1を構成する他の部品(図示せず)の配置との関係で、吸気管12A,12Bを吸気口22A,22Bに向けて対称的に配置可能となり分岐後の流速が均一となる場合は、噴射口42A,42Bから噴射される燃料量を吸気管12A,12Bによって異なる量とする必要は無く、同量の燃料を噴射すればよい。
1 ガスエンジン
10 吸気通路
12A,12B 吸気管
14 分岐部
16 シリンダ
16a シリンダヘッド
18 燃焼室
20A,20B 吸気バルブ
22A,22B 吸気口
31,32,33 燃料噴射手段
40 噴射管
42(42A,42B) 噴射口

Claims (10)

  1.  気体が流れる吸気通路と、
     該吸気通路が、気体の流れ方向の下流の分岐部にて分岐され、下流端にてシリンダに開口する複数の吸気管と、
     前記吸気通路内に燃料を噴射する燃料噴射手段と、
    を備えるガスエンジンであって、
     前記燃料噴射手段は、前記分岐部よりも気体の流れ方向の上流に設けられるとともに、複数の前記吸気管に対してそれぞれ異なる量の燃料を噴射するガスエンジン。
  2.  前記燃料噴射手段は、複数の噴射口を有する1本の噴射管を備え、複数の前記噴射口は複数の方向に向かってそれぞれ1つ以上形成され、一の前記吸気管に向かう方向に向けられた1つ以上の前記噴射口の総面積が、他の前記吸気管に向かう方向に向けられた1つ以上の前記噴射口の総面積と異なる請求項1に記載のガスエンジン。
  3.  前記噴射管が有する複数の前記噴射口は、一の前記吸気管に向かう方向に向けられた1つ以上の前記噴射口の、面積が同一とされたそれぞれの面積が、他の前記吸気管に向かう方向に向けられた1つ以上の前記噴射口の、面積が同一とされたそれぞれの面積と異なる請求項2に記載のガスエンジン。
  4.  前記噴射管が有する複数の前記噴射口は面積が同一とされ、一の前記吸気管に向かう方向に向けられた1つ以上の前記噴射口の数が、他の前記吸気管に向かう方向に向けられた1つ以上の前記噴射口の数と異なる請求項2に記載のガスエンジン。
  5.  前記噴射管は、複数の前記吸気管のそれぞれに向かう気体の流れのうち、流速が速い気体の流れに寄せられて配置されている請求項2乃至4のいずれかに記載のガスエンジン。
  6.  前記燃料噴射手段は、複数の噴射口を有する1本の噴射管を備え、
     前記噴射管は、複数の前記吸気管のそれぞれに向かう気体の流れのうち、流速が速い気体の流れに寄せられて配置されている請求項1に記載のガスエンジン。
  7.  前記燃料噴射手段は、前記噴射管を軸線周りに回転可能な回転機構を備えている請求項2乃至6のいずれかに記載のガスエンジン。
  8.  複数の前記噴射口は、気体の流れ方向の下流側に向かって形成されている請求項2乃至7のいずれかに記載のガスエンジン。
  9.  気体が流れる吸気通路と、
     該吸気通路が、気体の流れ方向の下流の分岐部にて分岐され、下流端にてシリンダに開口する複数の吸気管と、
     前記吸気通路内に燃料を噴射する燃料噴射手段と、
    を備えるガスエンジンであって、
     前記燃料噴射手段は、前記分岐部よりも気体の流れ方向の上流に設けられるとともに、複数の前記吸気管に対して燃料を噴射するガスエンジン。
  10.  請求項1乃至9のいずれかに記載のガスエンジンを備えた船舶。
PCT/JP2018/027893 2018-03-16 2018-07-25 ガスエンジンおよびこれを備えた船舶 WO2019176128A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18909690.2A EP3722586B1 (en) 2018-03-16 2018-07-25 Gaseous-fueled engine and ship provided with same
CN201880085402.2A CN111566331B (zh) 2018-03-16 2018-07-25 燃气发动机及具备该燃气发动机的船舶
US16/958,101 US11608798B2 (en) 2018-03-16 2018-07-25 Gas engine and ship provided with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-049229 2018-03-16
JP2018049229A JP2019157819A (ja) 2018-03-16 2018-03-16 ガスエンジンおよびこれを備えた船舶

Publications (1)

Publication Number Publication Date
WO2019176128A1 true WO2019176128A1 (ja) 2019-09-19

Family

ID=67907030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027893 WO2019176128A1 (ja) 2018-03-16 2018-07-25 ガスエンジンおよびこれを備えた船舶

Country Status (5)

Country Link
US (1) US11608798B2 (ja)
EP (1) EP3722586B1 (ja)
JP (2) JP2019157819A (ja)
CN (1) CN111566331B (ja)
WO (1) WO2019176128A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114508448A (zh) * 2020-11-17 2022-05-17 华益机电有限公司 一种带步进电机的双燃气供给系统
GB2606773A (en) * 2021-05-21 2022-11-23 Diffusion Tech Limited Fluid introduction system and method
JPWO2023074360A1 (ja) 2021-10-27 2023-05-04
FR3146713A1 (fr) * 2023-03-16 2024-09-20 Renault S.A.S groupe motopropulseur doté d’un système d’injection de gaz GPL optimisé

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185266A (ja) * 1989-12-14 1991-08-13 Mitsubishi Motors Corp 燃料噴射装置および燃料噴射装置付き成層燃焼内燃機関
JPH06173828A (ja) * 1993-07-19 1994-06-21 Yamaha Motor Co Ltd 燃料噴射式エンジンの吸気装置
JPH1047166A (ja) * 1996-07-30 1998-02-17 Yanmar Diesel Engine Co Ltd ガスエンジンの給気通路への燃料ガス噴射構造
JP2003097359A (ja) * 2001-09-20 2003-04-03 Tokyo Gas Co Ltd ガスエンジン
WO2004106722A2 (de) * 2003-05-27 2004-12-09 Avl List Gmbh Brennkraftmaschine
JP2005307904A (ja) * 2004-04-23 2005-11-04 Denso Corp 燃料噴射装置
JP2008075642A (ja) * 2006-08-21 2008-04-03 Osaka Gas Co Ltd 燃料供給機構及びエンジン
JP2008138565A (ja) 2006-11-30 2008-06-19 Mitsubishi Heavy Ind Ltd ガスエンジンの燃料ガス供給装置
JP2017133491A (ja) * 2016-01-21 2017-08-03 株式会社Ihi ガスエンジンの燃料ガス供給装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755330Y2 (ja) * 1987-12-18 1995-12-20 三菱自動車工業株式会社 3個の吸気弁を備えた内燃エンジン
JP4732381B2 (ja) 2007-02-19 2011-07-27 日立オートモティブシステムズ株式会社 内燃機関の燃料噴射装置及び燃料噴射方法
US7841322B2 (en) * 2007-11-16 2010-11-30 Dynamic Fuel Systems, Inc. Super cooled air and fuel induction system for internal combustion engines
CA2767247C (en) * 2012-02-07 2014-03-25 Westport Power Inc. Apparatus and method for igniting a gaseous fuel in a direct injection internal combustion engine
DE102014205454A1 (de) * 2014-03-24 2015-09-24 Robert Bosch Gmbh Gasinjektor mit Doppelventilnadel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185266A (ja) * 1989-12-14 1991-08-13 Mitsubishi Motors Corp 燃料噴射装置および燃料噴射装置付き成層燃焼内燃機関
JPH06173828A (ja) * 1993-07-19 1994-06-21 Yamaha Motor Co Ltd 燃料噴射式エンジンの吸気装置
JPH1047166A (ja) * 1996-07-30 1998-02-17 Yanmar Diesel Engine Co Ltd ガスエンジンの給気通路への燃料ガス噴射構造
JP2003097359A (ja) * 2001-09-20 2003-04-03 Tokyo Gas Co Ltd ガスエンジン
WO2004106722A2 (de) * 2003-05-27 2004-12-09 Avl List Gmbh Brennkraftmaschine
JP2005307904A (ja) * 2004-04-23 2005-11-04 Denso Corp 燃料噴射装置
JP2008075642A (ja) * 2006-08-21 2008-04-03 Osaka Gas Co Ltd 燃料供給機構及びエンジン
JP2008138565A (ja) 2006-11-30 2008-06-19 Mitsubishi Heavy Ind Ltd ガスエンジンの燃料ガス供給装置
JP2017133491A (ja) * 2016-01-21 2017-08-03 株式会社Ihi ガスエンジンの燃料ガス供給装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3722586A4

Also Published As

Publication number Publication date
US11608798B2 (en) 2023-03-21
JP7196242B2 (ja) 2022-12-26
EP3722586A1 (en) 2020-10-14
EP3722586B1 (en) 2022-03-09
CN111566331B (zh) 2022-04-05
JP2021175897A (ja) 2021-11-04
EP3722586A4 (en) 2020-11-25
CN111566331A (zh) 2020-08-21
US20200340428A1 (en) 2020-10-29
JP2019157819A (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
WO2019176128A1 (ja) ガスエンジンおよびこれを備えた船舶
US11008932B2 (en) Engine mixing structures
US20200191045A1 (en) Engine mixing structures
US20060060172A1 (en) Venturi mixing system for exhaust gas recirculation (egr)
RU2012136428A (ru) Впрыск дизельного топлива с egr (рециркуляцией выхлопных газов) с использованием трубки вентури
JPS5950850B2 (ja) 内燃機関の吸気装置
JP2002371917A (ja) ガスエンジンのガス噴射装置
US9650999B2 (en) Recirculated exhaust gases distribution device, corresponding inlet manifold and corresponding inlet module
JP2008075642A (ja) 燃料供給機構及びエンジン
KR100399109B1 (ko) 내연기관의흡기장치
US10563597B2 (en) Fuel injector
CA2841653C (en) Port fuel injection apparatus
JP6865163B2 (ja) ガスタービンにおけるNOx放出を低減する方法、空気燃料混合器、ガスタービン、および旋回翼
EP3073099B1 (en) Adapting flow dynamics for internal combustion engines
JP2017089574A (ja) 内燃機関の燃料噴射弁及び内燃機関
JP2005155570A (ja) 内燃機関の燃料供給装置及び方法
US11519365B2 (en) Intake system for natural gas engine
CN113374570B (zh) 发动机混合结构
US20110036326A1 (en) Throttle assembly
US7066129B2 (en) Intake manifold and runner apparatus
GB2575111A (en) Low pressure gaseous fuel injector shroud
US20230015517A1 (en) Engine mixing structures
JPH07103078A (ja) 筒内直接噴射式エンジンのegr装置
CN110735735A (zh) 低压气态燃料喷射器护罩
CN116412047A (zh) 天然气发动机及其混合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909690

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018909690

Country of ref document: EP

Effective date: 20200707

NENP Non-entry into the national phase

Ref country code: DE