WO2019174314A1 - 转子结构、永磁辅助同步磁阻电机及电动汽车 - Google Patents

转子结构、永磁辅助同步磁阻电机及电动汽车 Download PDF

Info

Publication number
WO2019174314A1
WO2019174314A1 PCT/CN2018/119790 CN2018119790W WO2019174314A1 WO 2019174314 A1 WO2019174314 A1 WO 2019174314A1 CN 2018119790 W CN2018119790 W CN 2018119790W WO 2019174314 A1 WO2019174314 A1 WO 2019174314A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
slot
rotor
magnet slot
rotor structure
Prior art date
Application number
PCT/CN2018/119790
Other languages
English (en)
French (fr)
Inventor
周博
胡余生
陈彬
肖勇
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Publication of WO2019174314A1 publication Critical patent/WO2019174314A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to the field of electrical equipment, and in particular to a rotor structure, a permanent magnet assisted synchronous reluctance motor, and an electric vehicle.
  • the main object of the present invention is to provide a rotor structure, a permanent magnet assisted synchronous reluctance motor and an electric vehicle to solve the problem of low efficiency of the motor in the prior art.
  • a rotor structure comprising: a rotor body having an inner layer permanent magnet groove and an outer layer permanent magnet groove, an inner layer permanent magnet groove and an outer layer permanent A magnetic conductive passage is formed between the magnet slots, and a cross section of the inner permanent magnet slot in the radial direction of the rotor body has a U-shaped structure, and a cross section of the outer permanent magnet slot in the radial direction of the rotor body has a V-shaped structure.
  • the inner permanent magnet slot comprises: a third permanent magnet slot, the third permanent magnet slot is curved or rectangular, and the first geometric center line and the outer layer of the third permanent magnet slot along the radial direction of the rotor body The second geometric center line of the magnet slot along the radial direction of the rotor body is collinear.
  • the third permanent magnet slot is curved, the arc portion of the third permanent magnet slot is convexly disposed toward the rotating shaft hole of the rotor body.
  • the inner permanent magnet slot comprises: a first straight permanent magnet slot, the first end of the first straight permanent magnet slot is in communication with the first end of the third permanent magnet slot, and the first straight permanent magnet slot is The second end extends outward in a radial direction of the rotor body, and the groove wall of the first straight permanent magnet groove adjacent to the outer permanent magnet groove has a first angle ⁇ 1 with the second geometric center line, wherein 0.5 ⁇ 11 ⁇ (17/30) ⁇ ⁇ , ⁇ is the polar arc angle of the outer magnetic conductive channel located in the inner permanent magnet slot.
  • the inner permanent magnet slot further includes: a second straight permanent magnet slot, the first end of the second straight permanent magnet slot is in communication with the second end of the third permanent magnet slot, and the second straight permanent magnet slot The second end of the second straight permanent magnet slot has a second angle ⁇ 2 with the second geometric center line, wherein 0 ⁇ 1 - ⁇ 2 ⁇ 0.1 ⁇ ⁇ .
  • the outer permanent magnet slot includes: a first slot segment, the first end of the first slot segment extends inwardly along a radial direction of the rotor body, and the second end of the first slot segment is along a diameter of the rotor body Extending outwardly in the direction; the second slot section, the first end of the second slot section extends inwardly in a radial direction of the rotor body and communicates with the first end of the first slot section, and the second slot section
  • the two ends extend outward in the radial direction of the rotor body and are disposed opposite the first groove segment and have a third angle ⁇ 3, where (13/15) ⁇ ⁇ ⁇ ⁇ 3 ⁇ (17/15) ⁇ ⁇ .
  • junction of the first groove segment and the second groove segment and the side wall facing the inner layer permanent magnet groove have an arc structure.
  • the rotor structure comprises an outer layer permanent magnet
  • the outer layer permanent magnet comprises a first outer layer permanent magnet and a second outer layer permanent magnet
  • the first outer layer permanent magnet is disposed in the first slot segment
  • the second outer layer permanent magnet Set in the second slot.
  • the rotor structure includes an inner layer permanent magnet
  • the inner layer permanent magnet includes: a third permanent magnet, the third permanent magnet is disposed in the permanent magnet slot; the first inner permanent magnet, the first inner permanent magnet is disposed at the first The straight inner permanent magnet slot; the second inner permanent magnet, the second inner permanent magnet is disposed in the second straight permanent magnet slot.
  • the groove wall of the first groove segment close to the first geometric center line has a fourth angle ⁇ 4 with the first geometric center line
  • the groove wall of the second groove segment close to the first geometric center line and the first geometric center line
  • a permanent magnet assisted synchronous reluctance motor comprising a rotor structure which is the rotor structure described above.
  • an electric vehicle comprising a rotor structure which is the rotor structure described above.
  • an outer layer permanent magnet slot and an inner layer permanent magnet slot are disposed on the rotor body, and the inner layer permanent magnet slot is set to a U-shaped structure, and the outer layer permanent magnet slot is set to a V-shaped structure, such that
  • the material that can effectively utilize the rotor body is optimized while optimizing the magnetic circuit of the rotor body, and the material utilization rate of the rotor is effectively improved, and the efficiency of the motor having the rotor structure is effectively improved.
  • Figure 1 is a schematic view showing the structure of a first embodiment of a rotor structure according to the present invention
  • Figure 2 is a schematic view showing the structure of a second embodiment of a rotor structure according to the present invention.
  • Figure 3 is a schematic view showing the comparison of the torque ripple of the prior art and the embodiment of the rotor structure according to the present invention
  • FIG. 4 is a schematic view showing a local magnetic saturation of a q-axis magnetic circuit of a rotor structure in the prior art
  • Figure 5 shows a schematic view of local magnetic saturation of a q-axis magnetic circuit of an embodiment of a rotor structure in accordance with the present invention.
  • a first outer permanent magnet 32. a second outer permanent magnet.
  • a rotor structure is provided.
  • the rotor structure includes a rotor body 10.
  • An inner layer permanent magnet slot 11 and an outer layer permanent magnet slot 12 are defined in the rotor body 10, a magnetic conductive channel is formed between the inner layer permanent magnet slot 11 and the outer layer permanent magnet slot 12, and the inner layer permanent magnet slot 11 is along the rotor body.
  • the cross section of the radial direction of 10 has a U-shaped structure, and the cross section of the outer permanent magnet groove 12 in the radial direction of the rotor body 10 has a V-shaped structure.
  • an outer layer permanent magnet slot and an inner layer permanent magnet slot are disposed on the rotor body, and the inner layer permanent magnet slot is set to a U-shaped structure, and the outer layer permanent magnet slot is set to a V-shaped structure.
  • the material of the rotor body can be effectively utilized while optimizing the magnetic circuit of the rotor body.
  • the material utilization rate of the rotor is effectively improved, and the efficiency of the motor having the rotor structure is effectively improved.
  • the inner permanent magnet slot 11 includes a third permanent magnet slot 111.
  • the third permanent magnet slot 111 is curved or rectangular, the first geometric center line of the third permanent magnet slot 111 in the radial direction of the rotor body 10 and the radial direction of the outer permanent magnet slot 12 in the radial direction of the rotor body 10.
  • the second geometric center line is collinear, and the third permanent magnet groove 111 is curved, the curved portion of the third permanent magnet groove 111 is convexly disposed toward the rotating shaft hole of the rotor body 10. This arrangement optimizes the magnetic circuit of the rotor body and can effectively improve the performance of the rotor.
  • the inner permanent magnet slot 11 further includes a first straight permanent magnet slot 112 and a second straight permanent magnet slot 113.
  • the first end of the first straight permanent magnet slot 112 is in communication with the first end of the third permanent magnet slot 111, and the second end of the first straight permanent magnet slot 112 extends outward in the radial direction of the rotor body 10,
  • the groove wall of the first permanent magnet slot 112 near the outer permanent magnet slot 12 has a first angle ⁇ 1 with the second geometric center line, wherein 0.5 ⁇ 1 ⁇ 17/30 ⁇ , ⁇ is located
  • the first end of the second straight permanent magnet slot 113 is in communication with the second end of the third permanent magnet slot 111.
  • the second end of the second straight permanent magnet slot 113 extends outwardly in the radial direction of the rotor body 10, and the slot wall of the second straight permanent magnet slot 113 adjacent to the outer permanent magnet slot 12 has a second geometric centerline The second angle ⁇ 2, where 0 ⁇ ⁇ 1 - ⁇ 2 ⁇ 0.1 ⁇ ⁇ . That is, in the present embodiment, the segmented permanent magnet slot combination is used to optimize the structure of the permanent magnet slot, improve the performance of the rotor, and effectively reduce the processing cost.
  • the outer permanent magnet slot 12 includes a first slot segment 121 and a second slot segment 122.
  • the first end of the first slot segment 121 extends inwardly along the radial direction of the rotor body 10, first
  • the second end of the slot section 121 extends outwardly in the radial direction of the rotor body 10.
  • the first end of the second slot section 122 extends inwardly in the radial direction of the rotor body 10 and communicates with the first end of the first slot section 121.
  • the second end of the second slot section 122 is along the rotor body 10
  • the radial direction extends outwardly and is disposed opposite the first groove segment 121 and has a third angle ⁇ 3, where 13/15 ⁇ 3 ⁇ 17/15 ⁇ . This arrangement increases the reluctance torque and improves the performance of the rotor.
  • connection between the first slot section 121 and the second slot section 122 and toward the sidewall of the inner layer permanent magnet slot 11 has an arc structure. This arrangement reduces the leakage magnetic flux at the adapter and improves the anti-demagnetization capability of the rotor, that is, effectively improves the utilization of the rotor magnetic field and reduces the loss of the rotor.
  • the rotor structure includes an outer layer permanent magnet
  • the outer layer permanent magnet includes a first outer layer permanent magnet 31 and a second outer layer permanent magnet 32.
  • the first outer layer permanent magnet 31 is disposed in the first slot segment 121.
  • the second outer permanent magnet 32 is disposed in the second slot segment 122. This arrangement facilitates the close fitting of the outer permanent magnet and the outer permanent magnet slot.
  • the rotor structure includes an inner layer permanent magnet including a third permanent magnet 21, a first inner layer permanent magnet 22, and a second inner layer permanent magnet 23.
  • the third permanent magnet 21 is disposed in the third permanent magnet slot 111.
  • the first inner permanent magnet 22 is disposed within the first straight permanent magnet slot 112.
  • the second inner permanent magnet 23 is disposed in the second straight permanent magnet slot 113. This arrangement facilitates the close fitting of the inner permanent magnet and the inner permanent magnet slot.
  • the groove wall of the first groove segment 121 close to the first geometric center line has a fourth angle ⁇ 4 with the first geometric center line
  • the groove wall of the second groove segment 122 close to the first geometric center line The second geometric centerline has a fifth angle ⁇ 5, where ⁇ 4 ⁇ 5, or ⁇ 4 ⁇ 5.
  • the groove wall of the first groove segment 121 close to the first geometric center line intersects the groove wall of the second groove segment 122 near the first geometric center line at a point of the first geometric center line, and the outer V-shaped structure is non-
  • the center is symmetrically distributed, and the inner U-shaped structure adopts a central symmetric distribution, so that a high-efficiency motor is realized, a low-noise design is realized, motor torque ripple is reduced, and local saturation of the magnetic circuit can be improved at the same time.
  • the rotor structure in the above embodiment can also be used in the technical field of electrical equipment, that is, according to another aspect of the present invention, a permanent magnet assisted synchronous reluctance motor (hereinafter referred to as a motor) is provided.
  • the motor includes a rotor structure which is the rotor structure in the above embodiment. This arrangement is convenient for reducing the cost of the motor, increasing the permanent magnet torque and increasing the reluctance torque of the motor. Thereby achieving the effect of increasing the output torque.
  • the rotor structure in the above embodiment can also be used in the field of vehicle equipment technology, that is, according to another aspect of the present invention, an electric vehicle including a rotor structure having the rotor structure described above is provided.
  • the permanent magnet is made of a ferrite permanent magnet material, which can effectively reduce the cost of the motor. Because the motor ferrite material motor cost is low, the design uses U+V-shaped structure to increase the effective area of the permanent magnet, increase the permanent magnet torque and increase the reluctance torque of the motor. Thereby achieving the effect of increasing the output torque.
  • the rotor structure is arranged with asymmetric permanent magnets, which can realize low-noise design and reduce motor torque ripple while achieving high efficiency of the motor.
  • the rotor structure of the present invention can significantly improve the local magnetic saturation of the Q-axis magnetic circuit as compared with the prior art.
  • the rotor adopts a double-layer permanent magnet structure, the outer layer adopts a V-shape, and the inner layer adopts a U-shape. This increases the reluctance torque and increases the motor output while increasing the permanent magnet torque.
  • the motor adopts a magnetic pole asymmetric structure design.
  • the V-shaped structure adopts a central symmetric distribution
  • the U-shaped structural arc segment adopts an intermediate symmetric distribution
  • the two-sided one-word type adopts an intermediate asymmetric distribution.
  • the asymmetric structure needs to limit the V-shaped and U-shaped permanent magnet angles, and at the same time limit the angular relationship between the two angles, wherein the V-shaped ⁇ 3 angle is between 13/15 ⁇ 3 ⁇ 17/15 ⁇ . .
  • the angle between the U-shaped permanent magnet and the V-shaped permanent magnet is 0 ⁇ ⁇ 1 + ⁇ 2 - ⁇ 3 ⁇ 1 / 15 ⁇ ⁇ .
  • the asymmetrical angle has an optimal angle
  • the asymmetric angle of the U-shaped permanent magnet design is 0 ⁇ 1+ ⁇ 2- ⁇ 3 ⁇ 1/10 ⁇ , and the angle of ⁇ 1+ ⁇ 2 is ⁇ /2-(3 ⁇ /5 ) is the optimal torque ripple.
  • the scheme adopts this asymmetric structure, which leads to the asymmetry of the overall magnetic reluctance of the Q-axis, so that the local saturation of the Q-axis magnetic circuit can be effectively alleviated when the maximum efficiency of the motor is driven.
  • the use of ferrite permanent magnet material for permanent magnets reduces the material cost by 30% compared with the prior art; the motor efficiency is improved close to that of the rare earth permanent magnet motor, which effectively increases the permanent magnet torque and increases the reluctance torque.
  • the problem of large torque ripple of the permanent magnet auxiliary synchronous reluctance motor is effectively improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

一种转子结构、永磁辅助同步磁阻电机及电动汽车,转子结构包括转子本体(10),转子本体(10)上开设有内层永磁体槽(11)和外层永磁体槽(12),内层永磁体槽(11)和外层永磁体槽(12)之间形成导磁通道,内层永磁体槽(11)的沿转子本体(10)的径向方向的横截面呈U形结构,外层永磁体槽(12)的沿转子本体(10)径向方向的横截面呈V形结构。上述技术方案能够有效提高转子的材料利用率,同时有效地提高了具有该转子结构的电机的效率。

Description

转子结构、永磁辅助同步磁阻电机及电动汽车 技术领域
本发明涉及电机设备技术领域,具体而言,涉及一种转子结构、永磁辅助同步磁阻电机及电动汽车。
背景技术
现有技术中,由于转子上的永磁体槽设置不合理,造成转子材料的有效利用率降低,从而使得现有技术中的电机转动脉动加大、电机效率低的问题。
发明内容
本发明的主要目的在于提供一种转子结构、永磁辅助同步磁阻电机及电动汽车,以解决现有技术中电机效率低的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种转子结构,包括:转子本体,转子本体上开设有内层永磁体槽和外层永磁体槽,内层永磁体槽和外层永磁体槽之间形成导磁通道,内层永磁体槽的沿转子本体的径向方向的横截面呈U形结构,外层永磁体槽的沿转子本体径向方向的横截面呈V形结构。
进一步地,内层永磁体槽包括:第三永磁体槽,第三永磁体槽为弧形或矩形,第三永磁体槽的沿转子本体的径向方向的第一几何中心线与外层永磁体槽的沿转子本体的径向方向的第二几何中心线共线,第三永磁体槽为弧形时,第三永磁体槽的弧形部朝向转子本体的转轴孔凸出地设置。
进一步地,内层永磁体槽包括:第一直段永磁体槽,第一直段永磁体槽的第一端与第三永磁体槽的第一端相连通,第一直段永磁体槽的第二端沿转子本体的径向方向向外延伸,第一直段永磁体槽的靠近外层永磁体槽的槽壁与第二几何中心线具有第一夹角α1,其中,0.5×α<α1≤(17/30)×α,α为位于内层永磁体槽的外侧导磁通道的极弧角度。
进一步地,内层永磁体槽还包括:第二直段永磁体槽,第二直段永磁体槽的第一端与第三永磁体槽的第二端相连通,第二直段永磁体槽的第二端沿转子本体的径向方向向外延伸,第二直段永磁体槽的靠近外层永磁体槽的槽壁与第二几何中心线具有第二夹角α2,其中,0≤α1-α2≤0.1×α。
进一步地,外层永磁体槽包括:第一槽段,第一槽段的第一端沿所转子本体的径向方向向内延伸设置,第一槽段的第二端沿所转子本体的径向方向向外延伸设置;第二槽段,第二槽段的第一端沿所转子本体的径向方向向内延伸并与第一槽段的第一端相连通,第二槽段的 第二端沿所转子本体的径向方向向外延伸并与第一槽段相对地设置并具有第三夹角α3,其中,(13/15)×α<α3≤(17/15)×α。
进一步地,0≤α1+α2-α3≤(1/15)×α。
进一步地,第一槽段和第二槽段的连接处且朝向内层永磁体槽的侧壁呈弧形结构。
进一步地,转子结构包括外层永磁体,外层永磁体包括第一外层永磁体和第二外层永磁体,第一外层永磁体设置于第一槽段内,第二外层永磁体设置于第二槽段内。
进一步地,转子结构包括内层永磁体,内层永磁体包括:第三永磁体,第三永磁体设置于永磁体槽内;第一内层永磁体,第一内层永磁体设置于第一直段永磁体槽内;第二内层永磁体,第二内层永磁体设置于第二直段永磁体槽内。
进一步地,第一槽段的靠近第一几何中心线的槽壁与第一几何中心线具有第四夹角α4,第二槽段的靠近第一几何中心线的槽壁与第一几何中心线具有第五夹角α5,其中,α4≠α5,或者,α4<α5。
根据本发明的另一方面,提供了一种永磁辅助同步磁阻电机,包括转子结构,转子结构为上述的转子结构。
根据本发明的另一方面,提供了一种电动汽车,包括转子结构,转子结构为上述的转子结构。
应用本发明的技术方案,在转子本体上设置外层永磁体槽和内层永磁体槽,并将内层永磁体槽设置成U形结构,将外层永磁体槽设置成V形结构,这样设置能够有效利用转子本体的材料同时优化了转子本体的磁路,并有效提高转子的材料利用率,同时有效地提高了具有该转子结构的电机的效率。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的转子结构的实施例一的结构示意图;
图2示出了根据本发明的转子结构的实施例二的结构示意图;
图3示出了现有技术与根据本发明的转子结构的实施例的转矩脉动对比示意图;
图4示出了现有技术中转子结构的q轴磁路的局部磁饱和示意图;
图5示出了根据本发明的转子结构的实施例的q轴磁路的局部磁饱和示意图。
其中,上述附图包括以下附图标记:
10、转子本体;11、内层永磁体槽;111、第三永磁体槽;112、第一直段永磁体槽;113、第二直段永磁体槽;
12、外层永磁体槽;121、第一槽段;122、第二槽段;
21、第三永磁体;22、第一内层永磁体;23、第二内层永磁体;
31、第一外层永磁体;32、第二外层永磁体。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
结合图1至图5所示,根据本发明的实施例,提供了一种转子结构。
具体地,如图1所示,该转子结构包括转子本体10。转子本体10上开设有内层永磁体槽11和外层永磁体槽12,内层永磁体槽11和外层永磁体槽12之间形成导磁通道,内层永磁体槽11的沿转子本体10的径向方向的横截面呈U形结构,外层永磁体槽12的沿转子本体10径向方向的横截面呈V形结构。
在本实施例中,在转子本体上设置外层永磁体槽和内层永磁体槽,并将内层永磁体槽设置成U形结构,将外层永磁体槽设置成V形结构,这样设置能够有效利用转子本体的材料,同时优化了转子本体的磁路。有效提高转子的材料利用率,同时有效地提高了具有该转子结构的电机的效率。
进一步地,内层永磁体槽11包括第三永磁体槽111。第三永磁体槽111为弧形或矩形,第三永磁体槽111的沿转子本体10的径向方向的第一几何中心线与外层永磁体槽12的沿转子本体10的径向方向的第二几何中心线共线,第三永磁体槽111为弧形时,第三永磁体槽111的弧形部朝向转子本体10的转轴孔凸出地设置。这样设置优化了转子本体的磁路,能够有效地提高转子的性能。
其中,内层永磁体槽11还包括第一直段永磁体槽112和第二直段永磁体槽113。第一直段永磁体槽112的第一端与第三永磁体槽111的第一端相连通,第一直段永磁体槽112的第二端沿转子本体10的径向方向向外延伸,第一直段永磁体槽112的靠近外层永磁体槽12的槽壁与第二几何中心线具有第一夹角α1,其中,0.5×α<α1≤17/30×α,α为位于内层永磁体槽11的外侧导磁通道的极弧角度。第二直段永磁体槽113的第一端与第三永磁体槽111的第二端相连通。第二直段永磁体槽113的第二端沿转子本体10的径向方向向外延伸,第二直段永磁体槽113的靠近外层永磁体槽12的槽壁与第二几何中心线具有第二夹角α2,其中,0≤α1-α2≤0.1×α。即在本实施例中,采用分段式永磁体槽组合的方式,优化了永磁体槽的结构,提高了转子的性能,并有效地降低了加工成本。
在本实施例中,外层永磁体槽12包括第一槽段121和第二槽段122,第一槽段121的第一端沿所转子本体10的径向方向向内延伸设置,第一槽段121的第二端沿所转子本体10的径向方向向外延伸设置。第二槽段122的第一端沿所转子本体10的径向方向向内延伸并与第一槽段121的第一端相连通,第二槽段122的第二端沿所转子本体10的径向方向向外延伸并与第一槽段121相对地设置并具有第三夹角α3,其中,13/15×α<α3≤17/15×α。这样设置使得磁阻转矩增大,提高了转子的性能。
进一步地,0≤α1+α2-α3≤1/15×α。这样设置使得两个永磁体槽之间形成导磁通道结构合理,能够有效减少转子结构的漏磁量。
其中,第一槽段121和第二槽段122的连接处且朝向内层永磁体槽11的侧壁呈弧形结构。这样设置减少了转接处的漏磁量,提升了转子的抗退磁能力,即有效地提高了转子磁场的利用率,降低了转子的损耗。
在本实施例中,转子结构包括外层永磁体,外层永磁体包括第一外层永磁体31和第二外层永磁体32,第一外层永磁体31设置于第一槽段121内,第二外层永磁体32设置于第二槽段122内。这样设置便于外层永磁体和外层永磁体槽紧密配合。
进一步地,转子结构包括内层永磁体,内层永磁体包括第三永磁体21、第一内层永磁体22和第二内层永磁体23。第三永磁体21设置于第三永磁体槽111内。第一内层永磁体22设置于第一直段永磁体槽112内。第二内层永磁体23设置于第二直段永磁体槽113内。这样设置便于内层永磁体和内层永磁体槽紧密配合。
如图2所示,第一槽段121的靠近第一几何中心线的槽壁与第一几何中心线具有第四夹角α4,第二槽段122的靠近第一几何中心线的槽壁与第二几何中心线具有第五夹角α5,其中,α4≠α5,或者,α4<α5。第一槽段121的靠近第一几何中心线的槽壁与第二槽段122的靠近第一几何中心线的槽壁相交在第一几何中心线的一点上,外层V字型结构采用非中心对称分布,内层U字型结构采用中心对称分布,这样设置实现高效电机的同时,实现低噪设计,降低电机转矩脉动,并且同时可以改善磁路局部饱和。
在本实施例中,上述实施例中的转子结构还可以用于电机设备技术领域,即根据本发明的另一个方面,提供了一种永磁辅助同步磁阻电机(以下简称电机)。该电机包括转子结构,转子结构为上述实施例中的转子结构。这样设置便于降低电机成本,提高永磁转矩的同时提升电机的磁阻转矩。从而达到提升输出转矩的效果。
上述实施例中的转子结构还可以用于车辆设备技术领域,即根据本发明的另一方面,提供了一种电动汽车,包括转子结构,转子结构为上述的转子结构。
在本实施例中,永磁体采用铁氧体永磁体材料,可以有效减少电机成本。由于电机铁氧体材料电机成本偏低,因此设计采用U+V字型结构,增加永磁体有效面积,提高永磁转矩的同时提升电机的磁阻转矩。从而达到提升输出转矩的效果。
如图3所示,转子结构采用非对称永磁体排布,可以在实现电机高效的同时,实现低噪设计,降低电机转矩脉动。
如图4和图5所示,与现有技术相比,本发明转子结构可以明显改善Q轴磁路局部磁饱和。转子采用双层永磁体结构,外层采用V字型,内层采用U型。这样在可以提升永磁转矩的同时提高磁阻转矩,增加电机输出。为进一步降低电机转矩脉动,电机采用磁极不对称结构设计。其中,V字结构采用中心对称分布,U字型结构圆弧段采用中间对称分布,两侧一字型采用中间不对称分布。其中,不对称结构需要限制V型、U型的永磁体角度,同时限制两者夹角之间的角度关系,其中V型α3角度在13/15×α<α3≤17/15×α之间。U型永磁体与V型永磁体夹角设计0≤α1+α2-α3≤1/15×α。其中,不对称夹角具有一个最优角度,U型永磁体设计的不对称角度0≤α1+α2-α3≤1/10×α,且α1+α2夹角在α/2-(3α/5)时为最优转矩脉动。该方案采用此非对称结构,导致了Q轴整体磁阻的不对称,因此在电机最大效率驱动运行时,可以有效的缓解Q轴磁路的局部饱和。另外,永磁体采用铁氧体永磁材料使得材料成本相比现有技术下降30%;提升了电机效率接近稀土永磁电机,有效地提升了永磁转矩的同时提高了磁阻转矩,有效地改善永磁辅助式同步磁阻电机转矩脉动大的问题。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种转子结构,其特征在于,包括:
    转子本体(10),所述转子本体(10)上开设有内层永磁体槽(11)和外层永磁体槽(12),所述内层永磁体槽(11)和所述外层永磁体槽(12)之间形成导磁通道,所述内层永磁体槽(11)的沿所述转子本体(10)的径向方向的横截面呈U形结构,所述外层永磁体槽(12)的沿所述转子本体(10)径向方向的横截面呈V形结构。
  2. 根据权利要求1所述的转子结构,其特征在于,所述内层永磁体槽(11)包括:
    第三永磁体槽(111),所述第三永磁体槽(111)为弧形或矩形,所述第三永磁体槽(111)的沿所述转子本体(10)的径向方向的第一几何中心线与所述外层永磁体槽(12)的沿所述转子本体(10)的径向方向的第二几何中心线共线,所述第三永磁体槽(111)为弧形时,所述第三永磁体槽(111)的弧形部朝向所述转子本体(10)的转轴孔凸出地设置。
  3. 根据权利要求2所述的转子结构,其特征在于,所述内层永磁体槽(11)包括:
    第一直段永磁体槽(112),所述第一直段永磁体槽(112)的第一端与所述第三永磁体槽(111)的第一端相连通,所述第一直段永磁体槽(112)的第二端沿所述转子本体(10)的径向方向向外延伸,所述第一直段永磁体槽(112)的靠近所述外层永磁体槽(12)的槽壁与所述第二几何中心线具有第一夹角α1,其中,0.5×α<α1≤(17/30)×α,α为位于所述内层永磁体槽(11)的外侧导磁通道的极弧角度。
  4. 根据权利要求3所述的转子结构,其特征在于,所述内层永磁体槽(11)还包括:
    第二直段永磁体槽(113),所述第二直段永磁体槽(113)的第一端与所述第三永磁体槽(111)的第二端相连通,所述第二直段永磁体槽(113)的第二端沿所述转子本体(10)的径向方向向外延伸,所述第二直段永磁体槽(113)的靠近所述外层永磁体槽(12)的槽壁与所述第二几何中心线具有第二夹角α2,其中,0≤α1-α2≤0.1×α。
  5. 根据权利要求4所述的转子结构,其特征在于,所述外层永磁体槽(12)包括:
    第一槽段(121),所述第一槽段(121)的第一端沿所转子本体(10)的径向方向向内延伸设置,所述第一槽段(121)的第二端沿所述所转子本体(10)的径向方向向外延伸设置;
    第二槽段(122),所述第二槽段(122)的第一端沿所转子本体(10)的径向方向向内延伸并与所述第一槽段(121)的第一端相连通,所述第二槽段(122)的第二端沿所述所转子本体(10)的径向方向向外延伸并与所述第一槽段(121)相对地设置并具有第三夹角α3,其中,(13/15)×α<α3≤(17/15)×α。
  6. 根据权利要求5所述的转子结构,其特征在于,0≤α1+α2-α3≤(1/15)×α。
  7. 根据权利要求5所述的转子结构,其特征在于,所述第一槽段(121)和所述第二槽段(122)的连接处且朝向所述内层永磁体槽(11)的侧壁呈弧形结构。
  8. 根据权利要求5所述的转子结构,其特征在于,所述转子结构包括外层永磁体,所述外层永磁体包括第一外层永磁体(31)和第二外层永磁体(32),所述第一外层永磁体(31)设置于所述第一槽段(121)内,所述第二外层永磁体(32)设置于所述第二槽段(122)内。
  9. 根据权利要求5所述的转子结构,其特征在于,所述转子结构包括内层永磁体,所述内层永磁体包括:
    第三永磁体(21),所述第三永磁体(21)设置于所述第三永磁体槽(111)内;
    第一内层永磁体(22),所述第一内层永磁体(22)设置于所述第一直段永磁体槽(112)内;
    第二内层永磁体(23),所述第二内层永磁体(23)设置于所述第二直段永磁体槽(113)内。
  10. 根据权利要求5所述的转子结构,其特征在于,所述第一槽段(121)的靠近所述第一几何中心线的槽壁与所述第一几何中心线具有第四夹角α4,所述第二槽段(122)的靠近所述第一几何中心线的槽壁与所述第一几何中心线具有第五夹角α5,其中,α4≠α5,或者,α4<α5。
  11. 一种永磁辅助同步磁阻电机,包括转子结构,其特征在于,所述转子结构为权利要求1至10中任一项所述的转子结构。
  12. 一种电动汽车,包括转子结构,其特征在于,所述转子结构为权利要求1至10中任一项所述的转子结构。
PCT/CN2018/119790 2018-03-16 2018-12-07 转子结构、永磁辅助同步磁阻电机及电动汽车 WO2019174314A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810219479.6A CN108336843B (zh) 2018-03-16 2018-03-16 转子结构、永磁辅助同步磁阻电机及电动汽车
CN201810219479.6 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019174314A1 true WO2019174314A1 (zh) 2019-09-19

Family

ID=62931142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119790 WO2019174314A1 (zh) 2018-03-16 2018-12-07 转子结构、永磁辅助同步磁阻电机及电动汽车

Country Status (2)

Country Link
CN (1) CN108336843B (zh)
WO (1) WO2019174314A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410931A (zh) * 2020-03-16 2021-09-17 安徽威灵汽车部件有限公司 电机的转子、电机和车辆
CN114513069A (zh) * 2021-12-17 2022-05-17 天津大学 一种用于混合动力汽车的永磁启动/发电机双v形转子
CN116742856A (zh) * 2023-07-03 2023-09-12 山东理工大学 一种带有圆弧形隔磁障的磁场分布可调电机
CN116742856B (zh) * 2023-07-03 2024-05-31 山东理工大学 一种带有圆弧形隔磁障的磁场分布可调电机

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336843B (zh) * 2018-03-16 2019-12-13 珠海格力电器股份有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN113131642B (zh) * 2019-12-30 2023-01-31 安徽威灵汽车部件有限公司 电机的转子、驱动电机和车辆
CN112421824B (zh) * 2020-11-25 2022-07-01 广州橙行智动汽车科技有限公司 一种转子结构及驱动电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787316A (zh) * 2016-12-22 2017-05-31 温岭市九洲电机制造有限公司 一种永磁电机的冲片结构
CN106936284A (zh) * 2015-12-29 2017-07-07 丹佛斯(天津)有限公司 电动机
US20170317540A1 (en) * 2016-04-28 2017-11-02 Faraday&Future Inc. Ipm machine with specialized rotor for automotive electric vechicles
CN107659101A (zh) * 2017-09-29 2018-02-02 珠海格力节能环保制冷技术研究中心有限公司 磁阻式交替极永磁电机
CN108336843A (zh) * 2018-03-16 2018-07-27 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN208015470U (zh) * 2018-03-16 2018-10-26 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106936284A (zh) * 2015-12-29 2017-07-07 丹佛斯(天津)有限公司 电动机
US20170317540A1 (en) * 2016-04-28 2017-11-02 Faraday&Future Inc. Ipm machine with specialized rotor for automotive electric vechicles
CN106787316A (zh) * 2016-12-22 2017-05-31 温岭市九洲电机制造有限公司 一种永磁电机的冲片结构
CN107659101A (zh) * 2017-09-29 2018-02-02 珠海格力节能环保制冷技术研究中心有限公司 磁阻式交替极永磁电机
CN108336843A (zh) * 2018-03-16 2018-07-27 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN208015470U (zh) * 2018-03-16 2018-10-26 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410931A (zh) * 2020-03-16 2021-09-17 安徽威灵汽车部件有限公司 电机的转子、电机和车辆
CN113410931B (zh) * 2020-03-16 2023-01-31 安徽威灵汽车部件有限公司 电机的转子、电机和车辆
CN114513069A (zh) * 2021-12-17 2022-05-17 天津大学 一种用于混合动力汽车的永磁启动/发电机双v形转子
CN116742856A (zh) * 2023-07-03 2023-09-12 山东理工大学 一种带有圆弧形隔磁障的磁场分布可调电机
CN116742856B (zh) * 2023-07-03 2024-05-31 山东理工大学 一种带有圆弧形隔磁障的磁场分布可调电机

Also Published As

Publication number Publication date
CN108336843B (zh) 2019-12-13
CN108336843A (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
WO2019174314A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
WO2019114803A1 (zh) 异步起动同步磁阻电机转子、电机及压缩机
WO2020253203A1 (zh) 直接起动同步磁阻电机转子结构、电机及转子结构制造的方法
US11637464B2 (en) Rotor structure, permanent magnet auxiliary synchronous reluctance motor and electric vehicle
US11177707B2 (en) Motor rotor and permanent magnet motor
US9515526B2 (en) Motor and rotor thereof
WO2015096525A1 (zh) 永磁电机
CN110048530B (zh) 一种永磁辅助同步磁阻电机的转子结构及设计方法
WO2019174322A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
WO2019174327A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
WO2021057144A1 (zh) 同步磁阻电机
WO2019174326A1 (zh) 永磁辅助同步磁阻电机及具有其的电动汽车
WO2019174317A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
US11777346B2 (en) Rotor assembly and motor
CN108683313A (zh) 一种高功率密度高效率的轴向磁通永磁电机
US11699930B2 (en) Rotor structure, permanent magnet auxiliary synchronous reluctance motor and electric vehicle
US11705767B2 (en) Rotor structure, permanent magnet auxiliary synchronous reluctance motor and electric vehicle
WO2019174313A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
WO2023184972A1 (zh) 一种电机转子、电机、压缩机及空调器
WO2022116533A1 (zh) 转子和电机
CN208571756U (zh) 一种电机转子和电机
WO2021134276A1 (zh) 电机的转子、驱动电机和车辆
CN110611386A (zh) 电机转子、电机、压缩机
CN215580598U (zh) 转子、电机、汽车
CN108736611A (zh) 一种电机转子和电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909297

Country of ref document: EP

Kind code of ref document: A1