WO2021057144A1 - 同步磁阻电机 - Google Patents

同步磁阻电机 Download PDF

Info

Publication number
WO2021057144A1
WO2021057144A1 PCT/CN2020/098636 CN2020098636W WO2021057144A1 WO 2021057144 A1 WO2021057144 A1 WO 2021057144A1 CN 2020098636 W CN2020098636 W CN 2020098636W WO 2021057144 A1 WO2021057144 A1 WO 2021057144A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
rotor core
magnetic flux
point
reluctance motor
Prior art date
Application number
PCT/CN2020/098636
Other languages
English (en)
French (fr)
Inventor
陈彬
胡余生
童童
卢素华
廖克亮
李扬
王勇
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to EP20870216.7A priority Critical patent/EP4037152B1/en
Publication of WO2021057144A1 publication Critical patent/WO2021057144A1/zh
Priority to US17/669,843 priority patent/US20220166269A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/103Motors having windings on the stator and a variable reluctance soft-iron rotor without windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present disclosure relates to the technical field of motors, and in particular to a synchronous reluctance motor.
  • IPM permanent magnet synchronous motors
  • the present disclosure provides a synchronous reluctance motor, which includes a stator core and a rotor core.
  • the stator core includes stator teeth.
  • the rotor core includes a plurality of magnetic barrier groups arranged in a circumferential direction, and each magnetic barrier group includes a plurality of The magnetic flux barriers arranged at intervals in the radial direction form a magnetic channel between adjacent magnetic flux barriers under the same pole.
  • the magnetic flux barrier of the same pole includes a first part extending in a tangential direction of the rotor core and a second part located at both ends of the first part, and the second part is bent radially outward with respect to the first part.
  • the extension lines of the two side walls of the second part of each magnetic flux barrier intersect the outer circumference of the rotor core to form an A near the Q axis.
  • Class points and Class B points away from the Q axis.
  • the angle formed by the line between its two class A points and the central axis of the rotor core is A 0 , Among them, 0.27 ⁇ A 0 /( ⁇ /p) ⁇ 0.3.
  • the included angle formed by the line between two adjacent class A points and the central axis of the rotor core are A 1-2 , A 2-3 , ... A (N-1)-N , the angle formed by the line between the two adjacent class B points and the central axis of the rotor core is in order B 1-2 , B 2-3 , ... B (N-1)-N , where
  • ⁇ 0.03, i 2 3 «N.
  • the included angle formed by the line between two adjacent class A points and the central axis of the rotor core is A 1-2 , A 2-3 , whil
  • ⁇ 0.18, i 3, 4...N.
  • the maximum position of the salient pole difference of the rotor core under the same pole is located on the angular bisector between the Q axis and the D axis under the pole, where the salient pole difference is L d -L q , and L d is D axis inductance, L q is Q axis inductance.
  • the radial thickness of the first part of the magnetic flux barrier is sinusoidally distributed.
  • the magnetic permeable channel under the same pole is located between the class A point and the class B point on the same side of the Q axis, there is a class C point, and the class C point is located at the class A point and the class B point at the end of each magnetic permeable channel
  • the line between the C point and the central axis of the rotor core and the angular bisector of the Q axis and the D axis form an angle ⁇ in sequence 1 ⁇ 2 ... ⁇ N , along the radially inward direction, the radial thickness of the first part of the magnetic flux barrier is W 1 , W 2 ...W N , where
  • the second part includes a first bent section communicating with the first part and a second bent section located at an end of the second part away from the first part, in a section perpendicular to the central axis of the rotor core, from The intersection of the two end points of the end of the second bending section of each magnetic flux barrier with the straight line extending in the radial direction and the outer circumference of the rotor core, forming a class A point close to the Q axis and a class B point far away from the Q axis , Wherein the distance between the end points of the second bending section 9 and the intersection of a straight line extending from the end point in the radial direction and the outer circumference of the rotor core is the distance between the end point and the outer circumference of the rotor core shortest distance.
  • the synchronous reluctance motor includes a stator core and a rotor core.
  • the stator core includes stator teeth.
  • the rotor core includes a plurality of magnetic barrier groups arranged in the circumferential direction, and each magnetic barrier group includes a plurality of magnetic barriers.
  • the magnetic flux barriers arranged at radial intervals form a magnetic channel between adjacent magnetic flux barriers under the same pole.
  • Fig. 1 is a schematic structural diagram of a synchronous reluctance motor according to an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of a first-size structure of a synchronous reluctance motor according to an embodiment of the disclosure
  • FIG. 3 is a schematic diagram of a second-dimension structure of a synchronous reluctance motor according to an embodiment of the disclosure
  • FIG. 4 is a diagram showing the distribution structure of class A points and class B points of a synchronous reluctance motor according to some embodiments of the present disclosure
  • FIG. 5 is a diagram showing the distribution structure of type A points and type B points of a synchronous reluctance motor according to some other embodiments of the present disclosure
  • FIG. 6 is a comparison diagram of torque curves between the synchronous reluctance motor of the embodiment of the disclosure and the synchronous reluctance motor of the prior art.
  • a synchronous reluctance motor includes a stator core 1 and a rotor core 2.
  • the stator core 1 includes stator teeth 3, and the rotor core 2 includes a plurality of magnetic barrier groups arranged in the circumferential direction.
  • Each magnetic barrier group includes a plurality of magnetic flux barriers 4 arranged at intervals in the radial direction.
  • the stator core 1 includes a rotor accommodating cavity, and the rotor core 2 is arranged in the rotor accommodating cavity and can rotate relative to the central axis of the stator core 1.
  • the inner circumference of the stator core 1 and the rotor core There is an air gap between the outer circumferences of 2.
  • the inner peripheral side of the stator core 1 has a plurality of stator teeth 3 and stator slots uniformly arranged in the circumferential direction.
  • the rotor core 2 is not provided with permanent magnets.
  • a magnetic flux barrier 4 is formed by hollowing out a plurality of air slots on the magnetic material disk, and a magnetic channel 5 is formed between adjacent magnetic flux barriers. There are multiple magnetic flux barriers 4 and magnetic permeability.
  • the channels 5 are arranged alternately along the radial direction to form a pole, and an even number of poles are evenly distributed along the circumference.
  • the magnetic flux barrier 4 of the same pole includes a first part 6 extending in a tangential direction of the rotor core 2 and a second part 7 located at both ends of the first part 6.
  • the second part 7 is bent radially outward relative to the first part 6.
  • the extension lines of the two side walls of the second part 7 of each magnetic flux barrier 4 intersect the outer circumference of the rotor core 2 to form a close Type A points on the Q axis and B points away from the Q axis.
  • the magnetic flux barrier 4 on the rotor core 2 is sequentially defined as a magnetic flux barrier a1, a magnetic flux barrier a 2 ... a magnetic flux barrier a N along the radial direction from the outside to the inside.
  • Each of the magnetic flux barriers 4 has a first part 6 that is horizontal in the tangential direction and a second part 7 that is bent in the radial direction.
  • the part of the second part 7 bent in the radial direction near the circumference of the rotor is the end of the magnetic flux barrier. This end is not connected to the air gap, and has a thin-walled structure distributed along the tangential direction, forming a tangential rib.
  • the directional rib is formed by the intersection of the extension lines of the two side walls of the second part 7 and the outer circumference of the rotor core 2, and the thickness of the rib is usually 0.3-1.0 mm.
  • the two ends of each rib form two marking points on the outer circumference of the rotor core 2.
  • the points under each pole close to the pole axis Qaxis are collectively referred to as type A points, and those far away from the Qaxis axis are collectively referred to as type B points.
  • each of the above-mentioned tangential ribs has one type A point and one type B point, and the magnetic flux barrier a 1 and the magnetic flux barrier a 2 are of the type A of the magnetic flux barrier a 1 and the magnetic flux barrier a 2 located on the same side of the Q axis under the same pole.
  • the point and the angle presented by the center of the rotor core 2 as the origin are A 1-2 , the A point of the magnetic flux barrier a 2 and the magnetic flux barrier a 3 and the angle presented by the center of the rotor core 2 as the origin Is A 2-3 , the angle between the B-type point of the magnetic flux barrier a 1 and the magnetic flux barrier a 2 and the origin of the rotor core 2 is B 1-2 , the magnetic flux barrier a 2 and the magnetic flux barrier The angle between the B type point of a 3 and the origin with the center of the rotor core 2 as the origin is B 2-3 ....
  • the magnetic flux barrier 4 located at the radially outermost side of the rotor core 2 under the same pole is the line between the two A points on both sides of the Q axis and the central axis of the rotor core 2
  • the formed angle is A 0 , where 0.27 ⁇ A 0 /( ⁇ /p) ⁇ 0.3, at this time, the motor torque output can be maintained at a relatively high level.
  • a 0 /( ⁇ /P) is less than 0.27, the span of the outermost magnetic channel 5 is too small, and the magnetic pulling force cannot be effectively used to generate reluctance torque.
  • a 0 /( ⁇ /p) is greater than 0.3, the outermost magnetic channel 5 has a too large span, which not only squeezes the structural space of the magnetic channel 5 of the remaining layers, but also does not produce effective magnetism in the increased span. Resistance torque.
  • the angle formed by the line between the two adjacent class A points and the central axis of the rotor core 2 is A 1- 2.
  • ⁇ 0.03, i 2, 3 «N .
  • the angles of the ends of the adjacent magnetic channels 5 of each layer are basically equivalent, and are maintained within a small fluctuation range. Since the stator slots are uniformly distributed and the width of each slot is fixed, the rotor adopts the same design as the stator slot principle, which is beneficial to avoid the generation of torque ripple harmonics caused by the inconsistent structure of a rotor slot.
  • the width of the end of each magnetic channel 5 is equivalently adjusted, so as to adjust the phase difference of each magnetic channel 5 when the reluctance torque is generated, so that Each magnetic channel of the rotor realizes staggered output and suppresses torque pulsation.
  • the angles of the ends of the adjacent magnetic channels 5 of each layer can be basically the same and maintained within a small fluctuation range. Since the stator slots are evenly distributed, and the width of each slot is fixed, when the rotor slot adopts the same design as the stator slot, it is helpful to avoid the torque pulsation caused by the inconsistent structure of a certain rotor slot The generation of harmonics.
  • the continuous outer circle becomes notched.
  • the gear Take the gear as an analogy. For example, if the stator slot forms a gear, then the rotor slot matches the structure formed by the stator slot to better mesh, so that the output torque is more stable.
  • the torque ripple can be suppressed to a level of 4% to 5% while ensuring the torque output.
  • the maximum position of the salient pole difference of the rotor core 2 under the same pole is on the angular bisector between the Q axis and the D axis under the pole, where the salient pole difference is L d -L q , L d is the D axis inductance, L q is the Q axis inductance.
  • T e is the electromagnetic torque
  • p is the number of pole pairs of the motor
  • L d is the inductance of the D axis
  • L q is the inductance of the Q axis
  • is the torque control angle
  • i s is the combined current value of the three-phase winding.
  • the sin (2 ⁇ ) variable can get the maximum value. Therefore, in the structural design, the position of the salient range L d -L q is designed on the angular bisector of Qaxis and Daxis The torque can be maximized.
  • the thickness of the first part 6 of the rotor magnetic channel 5 along the tangential level along the radial direction has the characteristics of sinusoidal distribution. Through this design, the optimal rotation of the rotor structure can be reduced.
  • the moment control angle is controlled at 45° (electrical angle).
  • the saturation of the magnetic circuit can be relieved, which is equivalent to increasing the inductance value of L d , so that the salient pole difference is increased, thereby improving the performance of the motor.
  • the magnetic channel 5 under the same pole is located between the A point and the B point on the same side of the Q axis.
  • There is a C point and the C point is located on the circumference between the A point and the B point at the end of each magnetic channel 5
  • the line between the C-type point and the central axis of the rotor core 2 and the angular bisector of the Q-axis and the D-axis sequentially form an angle ⁇ 1 ⁇ 2 ... ⁇ N , along the radially inward direction
  • the thickness of the magnetic channel 5 is W 1 , W 2 ...W N , for example, where W 1 is the thickness of the magnetic channel of the first layer, and W 6 is the sixth layer The thickness of the magnetic channel.
  • the aforementioned a is, for example, 5, and a% is a margin for appropriately adjusting the thickness ratio of the magnetic channel 5 according to problems such as spatial arrangement.
  • each magnetic channel 5 of the rotor realizes staggered output, effectively suppressing torque pulsation.
  • the thick line in FIG. 6 is the torque curve diagram of the synchronous reluctance motor of the present disclosure
  • the thin line is the torque curve diagram of the synchronous reluctance motor in the prior art. It can be seen from the figure that the synchronous reluctance motor of the present disclosure is Compared with the prior art, the torque ripple of the resistance motor is greatly reduced.
  • the second part 7 includes a first bending section 8 communicating with the first section 6 and a second bending section 9 located at an end of the second section 7 away from the first section 6.
  • a straight line extending in the radial direction from the two end points of the second bending section 9 of each magnetic flux barrier 4 intersects the outer circumference of the rotor core 2.
  • Points forming a class A point close to the Q axis and a class B point far away from the Q axis, wherein the end points of the second bending section 9 and the straight line extending in the radial direction from the end point and the outer circumference of the rotor core 2
  • the distance between the intersection points is the minimum distance between the end point and the outer circumference of the rotor core 2.
  • the point where it divides each magnetic channel is still the end of the thin-walled structure, and the effective part of the rib is the thin-walled structure.
  • the design of 4 can meet the limitation of the above formula and ensure that the opening angle of the end of the rotor flux barrier is basically the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本公开提供一种同步磁阻电机。该同步磁阻电机包括定子铁芯(1)和转子铁芯(2),定子铁芯(1)包括定子齿(3),转子铁芯(2)包括多个沿周向排布的磁障组,每个磁障组包括多个沿径向间隔排布的磁通屏障(4),同一极下相邻的磁通屏障(4)之间形成导磁通道(5),其中定子齿数N s、每个极下磁通屏障层数B s和转子极数2p具有如下关系:N s/2p=B s+1。

Description

同步磁阻电机
相关申请的交叉引用
本公开是以申请号为201910923586.1,申请日为2019年9月27日,发明名称为“同步磁阻电机”的中国专利申请为基础,并主张其优先权,该中国专利申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及电机技术领域,具体涉及一种同步磁阻电机。
背景技术
工业电机广泛应用于风机、水泵、通用机械等领域,行业耗电量高达8000多亿千瓦时,节能潜力巨大。当前仍主要以IE2异步电机为主,其效率低、体积大、工艺复杂;部分高能效场合采用永磁同步电机(IPM)可达到IE4或以上能效,但高性能的永磁体通常含有稀土成分,难以节省能源、降低成本。
随着电磁和控制技术的不断进步,无永磁体、工艺简单的同步磁阻电机成为同步电机去永磁体化研究的新宠儿。但同步磁阻电机由于无任何永磁体,且转子结构具有多层磁通屏障结构,转矩脉动的抑制手段以及设计难度都较大。
发明内容
本公开提供一种同步磁阻电机,包括定子铁芯和转子铁芯,定子铁芯包括定子齿,转子铁芯包括多个沿周向排布的磁障组,每个磁障组包括多个沿径向间隔排布的磁通屏障,同一极下相邻的磁通屏障之间形成导磁通道,其中定子齿数N s、每个极下磁通屏障层数B s和转子极数2p具有如下关系:N s/2p=B s+1。
在一些实施例中,同一极的磁通屏障包括沿转子铁芯的切向延伸的第一部分和位于第一部分两端的第二部分,第二部分相对于第一部分沿径向向外弯折。
在一些实施例中,在垂直于转子铁芯的中心轴线的截面内,各磁通屏障的第二部分的两个侧壁的延长线与转子铁芯的外圆周相交,形成靠近Q轴的A类点和远离Q轴的B类点。
在一些实施例中,同一极下位于转子铁芯的径向最外侧的磁通屏障,其两个A类 点与转子铁芯的中心轴线之间的连线所形成的夹角为A 0,其中0.27<A 0/(π/p)<0.3。
在一些实施例中,同一极下,在Q轴的同一侧,沿着远离Q轴的方向,相邻的两个A类点与转子铁芯的中心轴线之间的连线所形成的夹角依次为A 1-2、A 2-3、……A (N-1)-N,相邻的两个B类点与转子铁芯的中心轴线之间的连线所形成的夹角依次为B 1-2、B 2-3、……B (N-1)-N,其中|A (i-1)-i/B (i-1)-i-1|<0.03,i=2、3……N。
在一些实施例中,同一极下,在Q轴的同一侧,沿着远离Q轴的方向,相邻的两个A类点与转子铁芯的中心轴线之间的连线所形成的夹角依次为A 1-2、A 2-3、……A (N-1)-N,其中|A (i-2)-(i-1)/A (i-1)-i-1|<0.18,i=3、4……N。
在一些实施例中,同一极下转子铁芯的凸极差最大值位置位于该极下Q轴和D轴之间的角平分线上,其中凸极差为L d-L q,L d为D轴电感,L q为Q轴电感。
在一些实施例中,沿着径向向内的方向,磁通屏障的第一部分的径向厚度呈正弦分布。
在一些实施例中,同一极下导磁通道位于Q轴同一侧的A类点和B类点之间具有C类点,C类点位于各导磁通道端部的A类点和B类点之间的圆周段的中点上,沿着远离Q轴的方向,C类点与转子铁芯的中心轴线之间的连线和Q轴与D轴的角平分线之间依次形成夹角α 1α 2…α N,沿着径向向内的方向,磁通屏障的第一部分的径向厚度依次为W 1、W 2…W N,其中
Figure PCTCN2020098636-appb-000001
i=2、3…N,a为调整裕量。
在一些实施例中,第二部分包括与第一部分连通的第一弯折段和位于第二部分远离第一部分一端的第二弯折段,在垂直于转子铁芯的中心轴线的截面内,从各磁通屏障的第二弯折段末端的两个端点各自出发沿径向延伸的直线与转子铁芯的外圆周的相交点,形成靠近Q轴的A类点和远离Q轴的B类点,其中第二弯折段9末端的各端点与从该端点出发沿径向延伸的直线与转子铁芯的外圆周的相交点之间的距离为该端点与转子铁芯的外圆周之间的最小距离。
本公开提供的同步磁阻电机,包括定子铁芯和转子铁芯,定子铁芯包括定子齿,转子铁芯包括多个沿周向排布的磁障组,每个磁障组包括多个沿径向间隔排布的磁通屏障,同一极下相邻的磁通屏障之间形成导磁通道,其中定子齿数N s、每个极下磁通 屏障层数B s和转子极数2p具有如下关系:N s/2p=B s+1。定子齿数、磁通屏障层数和转子极数之间相互存在着关联,这种关联影响着电机的工作性能,通过最优的定子齿数和转子导磁通道层数的拓扑研究,将三者之间的关系限定在上述公式中,能够合理设定定子齿数、磁通屏障层数和转子极数,从而降低电机转矩脉动,将同步磁阻电机的转矩脉动抑制在较低水平,减小电机转动噪音,提高电机性能。
附图说明
图1为本公开实施例的同步磁阻电机的结构示意图;
图2为本公开实施例的同步磁阻电机的第一尺寸结构示意图;
图3为本公开实施例的同步磁阻电机的第二尺寸结构示意图;
图4为本公开一些实施例的同步磁阻电机的A类点和B类点分布结构图;
图5为本公开另一些实施例的同步磁阻电机的A类点和B类点分布结构图;
图6为本公开实施例的同步磁阻电机与现有技术的同步磁阻电机的转矩曲线比较图。
具体实施方式
结合参见图1至图6所示,根据本公开的实施例,同步磁阻电机包括定子铁芯1和转子铁芯2。定子铁芯1包括定子齿3,转子铁芯2包括多个沿周向排布的磁障组,每个磁障组包括多个沿径向间隔排布的磁通屏障4,同一极下相邻的磁通屏障4之间形成导磁通道5,其中定子齿数N s、每个极下磁通屏障层数B s和转子极数2p具有如下关系:N s/2p=B s+1。
定子齿数、磁通屏障层数和转子极数之间相互存在着关联,这种关联影响着电机的工作性能,本公开通过最优的定子齿数和转子导磁通道层数的拓扑研究,将三者之间的关系限定在上述公式中,能够合理设定定子齿数、磁通屏障层数和转子极数,使得定子齿数、磁通屏障层数和转子极数能够合理匹配,从而降低电机转矩脉动,将同步磁阻电机的转矩脉动抑制在较低水平,减小电机转动噪音,提高电机性能。通过采用上述方案,能够将同步磁阻电机的转矩波动整体维持在10%以下。
通过转子拓扑结构研究发现,基于该定子齿数、转子极数、磁通屏障层数匹配下的转矩脉动相比其他结构匹配下的电机均可以取得较小转矩脉动水平,如24槽4极5层磁障、36槽6极5层磁障、48槽6极7层磁障等。
在本实施例中,定子铁芯1包括转子容纳腔,转子铁芯2设置在转子容纳腔内,并且能够相对于定子铁芯1的中心轴线旋转,定子铁芯1的内圆周和转子铁芯2的外圆周之间存在气隙。定子铁芯1的内周侧具有多个沿周向均匀设置的定子齿3和定子槽。
转子铁芯2上不设置永磁体,由导磁材料圆盘上镂空多个空气槽形成磁通屏障4,相邻磁通屏障之间形成导磁通道5,多个磁通屏障4和导磁通道5沿径向交替排布,形成一个极,偶数个极沿圆周均匀分布。
同一极的磁通屏障4包括沿转子铁芯2的切向延伸的第一部分6和位于第一部分6两端的第二部分7,第二部分7相对于第一部分6沿径向向外弯折。通过设置弯折部,能够加大直轴电感与交轴电感的差值,从而加大凸极比,改善同步磁阻电机的工作性能。
在一些实施例中,在垂直于转子铁芯2的中心轴线的截面内,各磁通屏障4的第二部分7的两个侧壁的延长线与转子铁芯2的外圆周相交,形成靠近Q轴的A类点和远离Q轴的B类点。
转子铁芯2上的磁通屏障4沿着径向由外而内的方向依次定义为磁通屏障a1、磁通屏障a 2…磁通屏障a N。其中各个磁通屏障4具有沿切向水平的第一部分6以及沿径向弯折的第二部分7。沿径向弯折的第二部分7靠近转子圆周侧的部分为磁通屏障末端,该末端同气隙之间并不是相通的,具有沿切向分布的薄壁结构,形成切向肋,切向肋由第二部分7的两个侧壁的延长线与转子铁芯2的外圆周相交形成,通常该肋的厚度为0.3-1.0mm。每个肋的两端在转子铁芯2的外圆周形成2个记号点,其中每个极下靠近该极轴线Qaxis的统称为A类点,远离Qaxis轴的统称为B类点。
在一些实施例中,上述的各个切向肋均具有1个A类点和1个B类点,其中同一极下位于Q轴同一侧的磁通屏障a 1和磁通屏障a 2的A类点和以转子铁芯2的圆心为原点所呈现的角度为A 1-2,磁通屏障a 2和磁通屏障a 3的A类点和以转子铁芯2的圆心为原点所呈现的角度为A 2-3,磁通屏障a 1和磁通屏障a 2的B类点和以转子铁芯2的圆心为原点所呈现的角度为B 1-2,磁通屏障a 2和磁通屏障a 3的B类点和以转子铁芯2的圆心为原点所呈现的角度为B 2-3…。
在一些实施例中,同一极下位于转子铁芯2的径向最外侧的磁通屏障4,其位于Q轴两侧的两个A类点与转子铁芯2的中心轴线之间的连线所形成的夹角为A 0,其中0.27<A 0/(π/p)<0.3,此时,电机转矩出力可以维持在较高的水平。
当A 0/(π/P)小于0.27时,其最外层导磁通道5的跨距过小,无法有效的利用磁拉力产生磁阻转矩。当A 0/(π/p)大于0.3时,最外层的导磁通道5跨距过大,不仅挤压其余层导磁通道5的结构空间,其跨距增加部分亦不产生有效的磁阻转矩。
同一极下,在Q轴的同一侧,沿着远离Q轴的方向,相邻的两个A类点与转子铁芯2的中心轴线之间的连线所形成的夹角依次为A 1-2、A 2-3、……A (N-1)-N,相邻的两个B类点与转子铁芯2的中心轴线之间的连线所形成的夹角依次为B 1-2、B 2-3、……B (N-1)-N,其中|A (i-1)-i/B (i-1)-i-1|<0.03,i=2、3……N。
任意相邻两磁通屏障4末端肋部的A类点和B类点所形成的角度是接近的,其角度相差在3%的范围内。如下:
|A 1-2/B 1-2-1|<0.03
|A 2-3/B 2-3-1|<0.03
|A (N-1)-N/B (N-1)-N-1|<0.03
结合转子结构可以发现,通过上式的限制,其各层相邻导磁通道5末端的角度是基本相当的,并维持在一个较小的波动范围内。由于定子开槽是均布的,且各槽口的宽度是固定的,转子采用同定子槽口原理相同的设计,有利于避开某个转子开槽结构不一致导致的转矩脉动谐波产生。
同一极下,在Q轴的同一侧,沿着远离Q轴的方向,相邻的两个A类点与转子铁芯2的中心轴线之间的连线所形成的夹角依次为A 1-2、A 2-3、……A (N-1)-N,其中|A (i-2)-(i-1)/A (i-1)-i-1|<0.18,i=3、4……N。
当转子逆时针旋转时,依次相邻的磁通屏障末端肋部的A类点角度存在一定的差值,且其比值差在0.1~0.18范围内取得转矩脉动最小值。
0.1<|A 1-2/A 2-3-1|<0.18
0.1<|A 2-3/A 3-4-1|<0.18
0.1<|A (N-2)-(N-1)/A (N-1)-N-1|<0.18
基于转子磁通屏障末端开口角度基本相当的设计,通过上式的限制,等效调整各导磁通道5末端的宽度,从而调整各个导磁通道5在产生磁阻转矩时具备相位差,使得转子各导磁通道实现交错出力,抑制转矩脉动。
通过上述设计,可以使得各层相邻导磁通道5末端的角度是基本相当的,且维持 在一个较小的波动范围内。由于定子开槽是均布的,且各槽口的宽度是固定的,因此当转子槽口采用同定子槽口原理相同的设计,有利于避开某个转子开槽结构不一致导致的转矩脉动谐波的产生。
由于转子槽口的存在,使得连续的外圆变得有缺口。以齿轮作为类比,比如定子槽口形成一个齿轮,那么转子槽口同定子槽口形成的结构相匹配,才能更好的啮合,这样输出的转矩更加平稳。
通过上述的三个公式限定各个导磁通道5的末端角度,能够在确保转矩出力的情况下,使得转矩脉动可以抑制到4%~5%水平。
同一极下转子铁芯2的凸极差最大值位置位于该极下Q轴和D轴之间的角平分线上,其中凸极差为L d-L q,L d为D轴电感,L q为Q轴电感。
电机转矩出力公式:
Figure PCTCN2020098636-appb-000002
其中T e为电磁转矩;p为电机极对数;L d为D轴电感;L q为Q轴电感;θ为转矩控制角度;i s为三相绕组合成电流值。
当θ取值为45°(电角度)时,其sin(2θ)变量可以获得最大值,因此在结构设计上,将凸极差L d-L q的位置设计在Qaxis和Daxis的角平分线上可以实现转矩最大化。通过设计导磁通道大致呈正弦分布的结构,和磁场分布相匹配,有利于缓解磁路饱和,提升输出转矩。因此,沿着径向向内的方向,上述的转子导磁通道5沿切向水平的第一部分6沿径向的厚度具有正弦分布的特点,通过该设计,可以降转子结构上的最佳转矩控制角控制在45°(电角度)。
通过上述设计,能够缓解磁路饱和,等效于增加L d的电感值,这样凸极差就增加了,进而提高了电机性能。
同一极下导磁通道5位于Q轴同一侧的A类点和B类点之间具有C类点,C类点位于各导磁通道5端部的A类点和B类点之间的圆周段的中点上,沿着远离Q轴的方向,C类点与转子铁芯2的中心轴线之间的连线和Q轴与D轴的角平分线之间依次形成夹角α 1α 2…α N,沿着径向向内的方向,导磁通道5的厚度依次为W 1、W 2…W N,例如,其中W 1为第一层导磁通道厚度,W 6为第六层导磁通道厚度。
其中
Figure PCTCN2020098636-appb-000003
i=2、3…N,a为调整裕量。
上述的a例如为5,a%为根据空间排布等问题对导磁通道5的厚度比进行适当调整的裕量。
基于转子磁通屏障末端开口角度基本相当的设计,等效优化各导磁通道末端的宽度,从而调整各个导磁通道5在产生磁阻转矩时具备相位差,使得转矩实现峰-谷的互补作用,转子各导磁通道5实现交错出力,有效抑制转矩脉动。
图6中的粗线为本公开的同步磁阻电机的转矩曲线图,细线为现有技术中的同步磁阻电机的转矩曲线图,从图中可以看出,本公开的同步磁阻电机的转矩脉动相比于现有技术大幅度降低。
在本公开的另一些实施例中,第二部分7包括与第一部分6连通的第一弯折段8和位于第二部分7远离第一部分6一端的第二弯折段9。在垂直于转子铁芯2的中心轴线的截面内,从各磁通屏障4的第二弯折段9末端的两个端点各自出发沿径向延伸的直线与转子铁芯2的外圆周的相交点,形成靠近Q轴的A类点和远离Q轴的B类点,其中第二弯折段9末端的各端点与从该端点出发沿径向延伸的直线与转子铁芯2的外圆周的相交点之间的距离为该端点与转子铁芯2的外圆周之间的最小距离。
在本实施例中,虽然磁通屏障4的两臂结构上出现至少两次弯折,但是其分割各个导磁通道的点仍然是薄壁结构的末端,其肋部的有效部分为薄壁结构等厚段的部分,或从最薄处沿周向向两端拓展时,开始变厚的部分的点,因此仍然可以适用于上述的A类点和B类点的划分,进而使得磁通屏障4的设计能够满足上述公式的限定,保证转子磁通屏障末端开口角度基本相当。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组合、叠加。
以上仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。以上仅是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本公开的保护范围。

Claims (10)

  1. 一种同步磁阻电机,包括定子铁芯(1)和转子铁芯(2),所述定子铁芯(1)包括定子齿(3),所述转子铁芯(2)包括多个沿周向排布的磁障组,每个所述磁障组包括多个沿径向间隔排布的磁通屏障(4),同一极下相邻的所述磁通屏障(4)之间形成导磁通道(5),其中定子齿数N s、每个极下磁通屏障层数B s和转子极数2p具有如下关系:N s/2p=B s+1。
  2. 根据权利要求1所述的同步磁阻电机,其中,同一极的所述磁通屏障(4)包括沿所述转子铁芯(2)的切向延伸的第一部分(6)和位于所述第一部分(6)两端的第二部分(7),所述第二部分(7)相对于所述第一部分(6)沿径向向外弯折。
  3. 根据权利要求2所述的同步磁阻电机,其中,在垂直于所述转子铁芯(2)的中心轴线的截面内,各所述磁通屏障(4)的第二部分(7)的两个侧壁的延长线与所述转子铁芯(2)的外圆周相交,形成靠近Q轴的A类点和远离Q轴的B类点。
  4. 根据权利要求3所述的同步磁阻电机,其中,同一极下位于所述转子铁芯(2)的径向最外侧的所述磁通屏障(4),其两个A类点与转子铁芯(2)的中心轴线之间的连线所形成的夹角为A 0,其中0.27<A 0/(π/p)<0.3。
  5. 根据权利要求3所述的同步磁阻电机,其中,同一极下,在Q轴的同一侧,沿着远离Q轴的方向,相邻的两个A类点与转子铁芯(2)的中心轴线之间的连线所形成的夹角依次为A 1-2、A 2-3、……A (N-1)-N,相邻的两个B类点与转子铁芯(2)的中心轴线之间的连线所形成的夹角依次为B 1-2、B 2-3、……B (N-1)-N,其中|A (i-1)-i/B (i-1)-i-1|<0.03,i=2、3……N。
  6. 根据权利要求3所述的同步磁阻电机,其中,同一极下,在Q轴的同一侧,沿着远离Q轴的方向,相邻的两个A类点与转子铁芯(2)的中心轴线之间的连线所形成的夹角依次为A 1-2、A 2-3、……A (N-1)-N,其中|A (i-2)-(i-1)/A (i-1)-i-1|<0.18,i=3、4……N。
  7. 根据权利要求1所述的同步磁阻电机,其中,同一极下所述转子铁芯(2)的凸极差最大值位置位于该极下Q轴和D轴之间的角平分线上,其中凸极差为L d-L q,L d为D轴电感,L q为Q轴电感。
  8. 根据权利要求2所述的同步磁阻电机,其中,沿着径向向内的方向,所述磁通屏障(4)的第一部分(6)的径向厚度呈正弦分布。
  9. 根据权利要求3所述的同步磁阻电机,其中,同一极下所述导磁通道(5)位于Q轴同一侧的A类点和B类点之间具有C类点,C类点位于各所述导磁通道(5)端部的A类点和B类点之间的圆周段的中点上,沿着远离Q轴的方向,C类点与转子铁芯(2)的中心轴线之间的连线和Q轴与D轴的角平分线之间依次形成夹角α 1α 2…α N,沿着径向向内的方向,所述磁通屏障(4)的第一部分(6)的径向厚度依次为W 1、W 2…W N,其中
    Figure PCTCN2020098636-appb-100001
    i=2、3…N,a为调整裕量。
  10. 根据权利要求2所述的同步磁阻电机,其中,所述第二部分(7)包括与所述第一部分(6)连通的第一弯折段(8)和位于所述第二部分(7)远离所述第一部分(6)一端的第二弯折段(9),在垂直于所述转子铁芯(2)的中心轴线的截面内,从各所述磁通屏障(4)的第二弯折段(9)末端的两个端点各自出发沿径向延伸的直线与所述转子铁芯(2)的外圆周的相交点,形成靠近Q轴的A类点和远离Q轴的B类点,其中所述第二弯折段(9)末端的各端点与从该端点出发沿径向延伸的直线与所述转子铁芯(2)的外圆周的相交点之间的距离为该端点与所述转子铁芯(2)的外圆周之间的最小距离。
PCT/CN2020/098636 2019-09-27 2020-06-28 同步磁阻电机 WO2021057144A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20870216.7A EP4037152B1 (en) 2019-09-27 2020-06-28 Synchronous reluctance motor
US17/669,843 US20220166269A1 (en) 2019-09-27 2022-02-11 Synchronous reluctance motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910923586.1A CN110635591A (zh) 2019-09-27 2019-09-27 同步磁阻电机
CN201910923586.1 2019-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/669,843 Continuation US20220166269A1 (en) 2019-09-27 2022-02-11 Synchronous reluctance motor

Publications (1)

Publication Number Publication Date
WO2021057144A1 true WO2021057144A1 (zh) 2021-04-01

Family

ID=68973050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098636 WO2021057144A1 (zh) 2019-09-27 2020-06-28 同步磁阻电机

Country Status (4)

Country Link
US (1) US20220166269A1 (zh)
EP (1) EP4037152B1 (zh)
CN (1) CN110635591A (zh)
WO (1) WO2021057144A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110635591A (zh) * 2019-09-27 2019-12-31 珠海格力电器股份有限公司 同步磁阻电机
CN113315437B (zh) * 2021-06-09 2024-03-15 河北工业大学 同步磁阻电机转子形状优化方法及一种同步磁阻电机
CN113708527B (zh) * 2021-09-02 2022-09-20 哈尔滨工业大学(威海) 隐极式电励磁绕线转子及其同步电机
CN114337017A (zh) * 2021-12-29 2022-04-12 安徽皖南新维电机有限公司 一种同步磁阻电机转子冲片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903080A (en) * 1996-06-18 1999-05-11 Okuma Corporation Reluctance type synchronous motor
CN104901452A (zh) * 2015-05-12 2015-09-09 上海吉亿电机有限公司 一种可用于高速场合的永磁辅助同步磁阻电机转子
CN105490495A (zh) * 2016-01-26 2016-04-13 珠海格力节能环保制冷技术研究中心有限公司 电机转子及具有其的电机
CN110635591A (zh) * 2019-09-27 2019-12-31 珠海格力电器股份有限公司 同步磁阻电机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10491061B2 (en) * 2015-12-08 2019-11-26 General Electric Company Rotor for a reluctance machine
KR101904922B1 (ko) * 2016-12-16 2018-10-15 효성중공업 주식회사 라인기동식 동기형 릴럭턴스 전동기 및 그 회전자
CN108768015B (zh) * 2018-07-20 2020-04-17 珠海格力电器股份有限公司 转子组件及电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903080A (en) * 1996-06-18 1999-05-11 Okuma Corporation Reluctance type synchronous motor
CN104901452A (zh) * 2015-05-12 2015-09-09 上海吉亿电机有限公司 一种可用于高速场合的永磁辅助同步磁阻电机转子
CN105490495A (zh) * 2016-01-26 2016-04-13 珠海格力节能环保制冷技术研究中心有限公司 电机转子及具有其的电机
CN110635591A (zh) * 2019-09-27 2019-12-31 珠海格力电器股份有限公司 同步磁阻电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DONG, YAN ET AL.: "Rotor Optimal Design of the Gradient Flux-Barrier for Torque Ripple Reduction in Synchronous Reluctance Motor", TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY, vol. 32, no. 19, 31 October 2017 (2017-10-31), pages 21 - 31, XP055795611 *

Also Published As

Publication number Publication date
EP4037152B1 (en) 2023-10-04
EP4037152A4 (en) 2022-11-16
US20220166269A1 (en) 2022-05-26
CN110635591A (zh) 2019-12-31
EP4037152A1 (en) 2022-08-03

Similar Documents

Publication Publication Date Title
WO2021057144A1 (zh) 同步磁阻电机
WO2019114803A1 (zh) 异步起动同步磁阻电机转子、电机及压缩机
US9515526B2 (en) Motor and rotor thereof
WO2015161668A1 (zh) 永磁同步电机及其转子
WO2015096525A1 (zh) 永磁电机
US20140167550A1 (en) Motor rotor and motor having same
CN104578493A (zh) 永磁铁旋转电机和使用其的压缩机
WO2013020312A1 (zh) 电动机转子及具有其的电动机
WO2013013435A1 (zh) 永磁同步电机
CN109861413B (zh) 一种聚磁型交替极容错永磁游标电机
WO2019174314A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
CN110022043A (zh) 一种整数槽分布绕组虚拟极轮辐式永磁同步电机及其低脉动设计方法
CN106374712B (zh) 同步磁阻电机和压缩机
JP2018137853A (ja) 埋込磁石同期モータ
WO2024078113A1 (zh) 永磁辅助同步磁阻电机及压缩机
CN107425629B (zh) 一种永磁电机转子
CN210350986U (zh) 一种双转子永磁同步磁阻电机
CN109873511B (zh) 反凸极式切向充磁型多相永磁容错电机
WO2013020314A1 (zh) 永磁同步电机
CN109713868B (zh) 轴向并列型多相永磁容错电机
CN110460185A (zh) 电机转子和电机
CN206135581U (zh) 电机转子以及永磁电机
CN210380416U (zh) 同步磁阻电机
CN110611386B (zh) 电机转子、电机、压缩机
CN109842257B (zh) 反凸极式轴向并列型多相永磁容错电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020870216

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020870216

Country of ref document: EP

Effective date: 20220428