WO2021134276A1 - 电机的转子、驱动电机和车辆 - Google Patents

电机的转子、驱动电机和车辆 Download PDF

Info

Publication number
WO2021134276A1
WO2021134276A1 PCT/CN2019/130064 CN2019130064W WO2021134276A1 WO 2021134276 A1 WO2021134276 A1 WO 2021134276A1 CN 2019130064 W CN2019130064 W CN 2019130064W WO 2021134276 A1 WO2021134276 A1 WO 2021134276A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor core
rotor
groove
permanent magnet
center point
Prior art date
Application number
PCT/CN2019/130064
Other languages
English (en)
French (fr)
Inventor
肖洋
诸自强
陈金涛
吴迪
Original Assignee
安徽威灵汽车部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽威灵汽车部件有限公司 filed Critical 安徽威灵汽车部件有限公司
Priority to EP19958192.7A priority Critical patent/EP3955427B1/en
Priority to PCT/CN2019/130064 priority patent/WO2021134276A1/zh
Publication of WO2021134276A1 publication Critical patent/WO2021134276A1/zh
Priority to US17/515,978 priority patent/US12003140B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • This application relates to the field of motor technology, and more specifically, to a rotor of a motor, a driving motor, and a vehicle.
  • the angle difference between the peak point of the permanent magnet torque and the reluctance torque is relatively large, resulting in low utilization of the reluctance torque and the permanent magnet torque at the peak point of the synthetic torque.
  • the rotor of the built-in permanent magnet motor in the related technology has problems such as large permanent magnet leakage and low material utilization rate, and is also affected by factors such as iron core saturation.
  • an object of the present application is to provide a rotor of a motor, which improves the peak torque of the motor and the utilization of the permanent magnet torque and the reluctance torque component at the peak torque point.
  • Another object of the present application is to provide a drive motor with the above-mentioned rotor.
  • Another object of the present application is to provide a vehicle with the above-mentioned drive motor.
  • the rotor of the motor includes a rotor core, the rotor core is provided with a plurality of slot groups, the plurality of slot groups are distributed along the circumferential direction of the rotor core, and each of the slot groups includes air
  • the slot, the first slot body and the second slot body, the ends of the air slot, the first slot body and the second slot body close to the center point of the rotor core are close to each other and far from the rotor core
  • One end of the center point is far away from each other
  • a first magnetic isolation structure is provided between the air groove and the close end of the first groove body, and the first groove body and the second groove body are close to each other.
  • a second magnetic isolation structure is provided between one end, and one end of the air slot, the first slot body, and the second slot body away from the center point of the rotor core is distributed along the first rotation direction of the rotor
  • a plurality of first permanent magnets and a plurality of second permanent magnets, the first permanent magnets are installed in the first tank, and the second permanent magnets are installed in the second tank.
  • the asymmetric rotor structure is used to significantly reduce the current lead corresponding to the peak point of the permanent magnet torque and the reluctance torque under the premise of the same amount of permanent magnets and the inner and outer diameters of the rotor.
  • the difference of the angle thereby improving the peak torque of the motor and the utilization of the permanent magnet torque and reluctance torque components at the peak torque point.
  • Magnetic flux leakage improves material utilization, reduces the amount of permanent magnets, and reduces production costs.
  • the rotor of the motor according to the foregoing embodiment of the present application may also have the following additional technical features:
  • a third magnetic isolation structure is provided on the side of the first slot away from the center point of the rotor core, and the side of the second slot away from the rotor core
  • a fourth magnetic isolation structure is provided on one side of the center point
  • a fifth magnetic isolation structure is provided on the side of the air slot away from the center point of the rotor core, wherein, along the first rotation direction, the The hysteresis end point of the third magnetism isolation structure and the hysteresis end point of the fifth magnetism isolation structure and the center point of the rotor core respectively have an angle ⁇ , and the hysteresis end point of the third magnetism isolation structure and the The angle between the line connecting the super tip point of the fourth magnetic isolation structure and the center point of the rotor core is ⁇ , and the ⁇ is smaller than the ⁇ .
  • the distance between the end of the first permanent magnet close to the center point of the rotor core and the end far away from the center point of the rotor core is L1
  • the distance between the end of the second permanent magnet close to the center point of the rotor core and the center point of the rotor core is L1.
  • the distance between the end of the center point of the rotor core and the end far away from the center point of the rotor core is L2, and the L1 is less than or equal to the L2.
  • the first magnetic isolation structure is a first inner magnetic bridge located between the air groove and one end of the first groove body that are close to each other, or connects the air groove and The first communication port at one end of the first tank body that is close to each other; and/or, the second magnetic isolation structure is located between the first tank body and the end of the second tank body that are close to each other.
  • the second inner magnetic bridge is or is a second communication port that connects the ends of the first tank body and the second tank body that are close to each other.
  • the first magnetic isolation structure is a first inner magnetic bridge located between the air groove and the end of the first groove that are close to each other.
  • the circumferential thickness of the rotor core is equal to 4 mm, or greater than 0 mm and less than 4 mm; and/or, the second magnetic isolation structure is located at one end of the first groove body and the second groove body close to each other.
  • the thickness of the second inner magnetic bridge along the circumferential direction of the rotor core is equal to 4 mm, or greater than 0 mm and less than 4 mm.
  • a third magnetic isolation structure is provided on the side of the first tank away from the center point of the rotor core, and the third magnetic isolation structure is located on the first tank.
  • One end of the center point extends to the outer circumferential surface of the rotor core and a first notch formed on the outer circumferential surface of the rotor core; and/or, a first slot of the second groove body away from the center point of the rotor core
  • a fourth magnetic isolation structure is provided on the side, and the fourth magnetic isolation structure is a second outer magnet located between an end of the second slot body far from the center point of the rotor core and the outer circumferential surface of the rotor core Bridge; or, the fourth magnetic isolation structure is the second slot body that is away from the center point of the rotor core and extends to
  • a fifth magnetic isolation structure is provided on the side of the air slot away from the center point of the rotor core, and the fifth magnetic isolation structure is located on the air slot away from the rotor
  • the third outer magnetic bridge between one end of the center point of the core and the outer circumferential surface of the rotor core; or, the fifth magnetic isolation structure is that the end of the air slot that is far from the center point of the rotor core extends to The outer peripheral surface of the rotor core and a third notch formed on the outer peripheral surface of the rotor core.
  • a first outer magnetic bridge is formed between one end of the first slot body away from the center point of the rotor core and the outer peripheral surface of the rotor core, and the first outer magnetic bridge
  • the thickness along the radial direction of the rotor core is equal to 3.5 mm, or greater than 0 mm and less than 3.5 mm; and/or, an end of the second groove body far from the center point of the rotor core is connected to the outer circumference of the rotor core
  • a second outer magnetic bridge is formed between the surfaces, and the thickness of the second outer magnetic bridge along the radial direction of the rotor core is equal to 3.5 mm, or greater than 0 mm and less than 3.5 mm; and/or, the distance of the air groove
  • a third outer magnetic bridge is formed between one end of the center point of the rotor core and the outer peripheral surface of the rotor core, and the thickness of the third outer magnetic bridge in the radial direction of the rotor core is equal to 3.5 mm or greater than
  • the rotor core includes: a first part, the first part is located at a side of the slot group close to the center point of the rotor core; a second part, the second part is located at the center of the rotor core; On the side of the slot group far away from the center point of the rotor core, the second part and the first part are connected by a first connecting part, and the second part includes a third part and a fourth part.
  • the third part is located between the first groove body and the second groove body, and the fourth part is located between the first groove body and the air groove, wherein ,
  • the third part and the fourth part are respectively connected to the first part through the first connecting portion and the third part and the fourth part are not directly connected, or the third part and The fourth part is connected by a second connecting part, and at least one of the third part and the fourth part and the first part are connected by the first connecting part.
  • the number of poles of the rotor is K
  • the side of the second slot body far from the center point of the rotor core is provided with a fourth magnetic isolation structure
  • the air slot is far away from the center point of the rotor core.
  • a fifth magnetic isolation structure is provided on one side of the center point of the rotor core.
  • the included angle of the line connecting the center points of the rotor core is ⁇ , and the ⁇ is less than or equal to 170°/K.
  • the first groove body includes at least one first groove section, the first permanent magnet is installed in at least one of the first groove sections, and the extension of a plurality of the first groove sections
  • the directions are the same or different
  • the second groove body includes at least one second groove section, the second permanent magnet is installed in at least one of the second groove sections, and the extension directions of the plurality of second groove sections are the same Or not the same.
  • the number of the first groove segments in each first groove body does not exceed 3, and the number of the second groove segments in each second groove body does not exceed 3. More than 3.
  • the groove wall surface of the first groove section where the first permanent magnet is not installed is one or more combinations of a flat surface, an arc surface, and a bent surface, and the groove wall surface is not installed with the first permanent magnet.
  • the groove wall surface of the second groove section of the second permanent magnet is one or more combinations of a flat surface, an arc surface, and a bent surface.
  • the air groove includes at least one third groove section, and the groove wall surface of the third groove section is one or more combinations of a flat surface, an arc surface, and a bent surface.
  • the rotor includes a multilayer permanent magnet structure under the same magnetic pole, and the first permanent magnet and the second permanent magnet in the same slot group constitute one of the permanent magnets. Magnet structure.
  • the rotor further includes: a plurality of third permanent magnets, the plurality of third permanent magnets are mounted on the rotor core and distributed along the circumferential direction of the rotor core, and the third permanent magnets
  • the permanent magnet constitutes another layer of the permanent magnet structure.
  • the third permanent magnet is provided between the first groove body and the second groove body of the groove group in the circumferential direction of the rotor core, and the third permanent magnet is The magnets extend perpendicular to the radial direction of the rotor core or extend obliquely to the radial direction of the rotor core or are arranged in a V-shaped permanent magnet structure.
  • the third permanent magnet is provided between two adjacent groove groups in the circumferential direction of the rotor core, and the third permanent magnet extends along the radial direction of the rotor core Or extend obliquely to the radial direction of the rotor core.
  • a third groove body is provided on one side of the groove group close to the center point of the rotor core, and the third groove body is a V-shaped groove body or a U-shaped groove body.
  • the third permanent magnet is arranged in the third groove body, the third permanent magnet is arranged in a V-shaped permanent magnet structure or a U-shaped permanent magnet structure, and the groove group is located in the V-shaped groove body or the U-shaped groove. Within the area enclosed by the body.
  • the air gap magnetic fields generated by the first permanent magnet and the second permanent magnet in the same slot group strengthen each other, and the first permanent magnets in the adjacent slot group
  • the magnetizing directions of the magnets are opposite, and the magnetizing directions of the second permanent magnets in the adjacent groove groups are opposite.
  • the number of the slot groups is M
  • the number of poles of the rotor is K
  • the M is equal to the K
  • the drive motor according to the embodiment of the present application includes the rotor of the motor according to the embodiment of the present application.
  • the vehicle according to the embodiment of the present application includes the drive motor according to the embodiment of the present application.
  • Fig. 1 is a schematic diagram of a partial structure of a rotor according to a first embodiment of the present application
  • Figure 2 is a partial structural diagram of a symmetrical V-shaped built-in permanent magnet motor rotor in the related art
  • Fig. 3 is a graph of peak torque of the rotor in Fig. 1 and Fig. 2;
  • Fig. 4 is a graph of permanent magnet torque and reluctance torque of the rotor in Figs. 1 and 2;
  • Fig. 5 is a partial structural diagram of a rotor according to a second embodiment of the present application.
  • Fig. 6 is a partial structural diagram of a rotor according to a third embodiment of the present application.
  • Fig. 7 is a partial structural diagram of a rotor according to a fourth embodiment of the present application.
  • Fig. 8 is a partial structural diagram of a rotor according to a fifth embodiment of the present application.
  • Fig. 9 is a partial structural diagram of a rotor according to a sixth embodiment of the present application.
  • Fig. 10 is a partial structural diagram of a rotor according to a seventh embodiment of the present application.
  • Fig. 11 is a partial structural diagram of a rotor according to an eighth embodiment of the present application.
  • Fig. 12 is a partial structural diagram of a rotor according to a ninth embodiment of the present application.
  • Fig. 13 is a partial structural diagram of a rotor according to a tenth embodiment of the present application.
  • Fig. 14 is a schematic structural diagram of a rotor according to the first embodiment of the present application.
  • Rotor core 10 first part 101; second part 102; third part 103; fourth part 104; slot group 11; air slot 12; third slot section 121; first slot body 13; first slot section 131; A groove wall plane 132; a second groove body 14; a second groove section 141; a second groove wall plane 142; a first outer magnetic bridge 15; a second outer magnetic bridge 16; a third outer magnetic bridge 17; Bridge 18; second inner magnetic bridge 19; third tank 41;
  • the first permanent magnet 20 The first permanent magnet 20;
  • the second permanent magnet 30 The second permanent magnet 30;
  • the third permanent magnet 40 The third permanent magnet 40.
  • first feature and second feature may include one or more of these features, and “plurality” means two or more than two.
  • the built-in permanent magnet motor mainly adopts a symmetrical rotor structure, and there is an angular difference of no less than 45 degrees between the peak point of the permanent magnet torque and the reluctance torque.
  • the peak point of torque, the utilization of reluctance torque and permanent magnet torque are all reduced to a certain extent.
  • traditional built-in permanent magnet motors have problems such as large permanent magnet leakage and low material utilization. At the same time, they are affected by factors such as iron core saturation.
  • the present application proposes a special asymmetric rotor 100.
  • the rotor 100 according to the embodiment of the present application can significantly reduce the angular difference between the peak point of the permanent magnet torque and the reluctance torque, thereby simultaneously increasing the peak torque point.
  • the utilization of the two torque components (reluctance torque and permanent magnet torque) increases the peak torque and torque density of the motor.
  • the rotor 100 of the motor includes: a rotor core 10, a plurality of first permanent magnets 20 and a plurality of second permanent magnets 30.
  • the rotor core 10 is provided with a plurality of slot groups 11, and the plurality of slot groups 11 are distributed along the circumferential direction of the rotor core 10.
  • Each slot group 11 includes an air slot 12, a first slot body 13 and a second slot body 14. .
  • the end of the air slot 12, the first slot body 13 and the second slot body 14 close to the center point of the rotor core 10 are close to each other, and the air slot 12, the first slot body 13 and the second slot body 14 are far away from the rotor core 10
  • One end of the center point is far away from each other.
  • the air groove 12 and the first groove body 13 are provided with a first magnetic isolation structure between the close ends of each other.
  • the first magnetic isolation structure can function as a magnetic isolation so that the main magnetic flux (that is, other magnetic fluxes except leakage magnetic Pass) does not pass between the air groove 12 and the end of the first groove body 13 close to each other.
  • a second magnetic isolation structure is provided between the ends of the first trough body 13 and the second trough body 14 that are close to each other.
  • the second magnetic isolation structure can perform a magnetic isolation function so that the main magnetic flux does not pass from the first trough body 13. It passes between the two ends of the second tank 14 that are close to each other.
  • the first magnetic isolation structure and the second magnetic isolation structure may be a magnetic bridge or a communication port between two troughs, etc., and only need to meet the requirements for achieving a magnetic isolation effect.
  • one end of the air groove 12, the first groove body 13 and the second groove body 14 away from the center point of the rotor core 10 is distributed along the first rotation direction of the rotor 100.
  • the end of the slot group 11 away from the rotor core 10 is the air slot 12, the first slot body 13, and the second slot body 14 in order along the first rotation direction.
  • the first permanent magnet 20 is installed in the first tank body 13, and the second permanent magnet 30 is installed in the second tank body 14.
  • each slot group 11 can form a trident rotor slot structure, the first permanent magnet 20 and the second permanent magnet 30 lead the air slot 12 in the trident rotor slot structure, and the first permanent magnet 20 Leading the second permanent magnet 30, as a result, the entire slot group 11 and the first permanent magnet 20 and the second permanent magnet 30 arranged in the slot group 11 constitute an asymmetric structure, and the entire rotor 100 is formed as an asymmetric rotor 100 structure , That is, a structure that is asymmetric with respect to the radial direction of the rotor 100.
  • the torque can be regarded as a combination of permanent magnet torque and reluctance torque.
  • the magnetic circuit of the permanent magnetic field generated by the permanent magnet of one pole passes through the permanent magnet, the rotor core, the air gap and the stator core, and is closed with the magnetic circuit of the permanent magnetic field generated by the permanent magnet of the adjacent pole, forming a relative The permanent magnet rotating magnetic field where the rotor is stationary but rotating relative to the stator.
  • the stator multi-phase winding is connected with alternating current to form the stator rotating magnetic field.
  • the torque generated by the interaction between the stator and the permanent magnetic field that drives the rotor to rotate is the permanent magnet torque.
  • the permanent magnet torque reaches a peak point when the stator rotating magnetic field axis and the permanent magnet magnetic field axis differ by 90 degrees in electrical angle, that is, when the current lead angle is 0 degrees in electrical angle.
  • the reluctance torque is caused by the alternation of the rotor's permeance, which makes the inductance of the rotor's AC and DC axes different. Without considering the influence of non-linear factors such as saturation, the reluctance torque reaches its peak point when the current lead angle is 45 electrical degrees. At this time, the axis of the permanent magnetic field coincides with the axis of the reluctance d-axis, that is, the axis of the point of maximum reluctance.
  • the present application uses the aforementioned asymmetric rotor 100 structure to reduce the angular difference between the current lead angle corresponding to the peak point of the permanent magnet torque and the reluctance torque.
  • the axis of the permanent magnet field is deviated from and ahead of the axis of the reluctance d-axis (that is, the point of maximum reluctance) along the first rotation direction, so that the current corresponding to the peak point of the permanent magnet torque is
  • the lead angle can be increased and close to the current lead angle corresponding to the peak point of the reluctance torque, thereby increasing the peak value of the motor's synthetic torque.
  • the present application improves the utilization of the permanent magnet torque component and the reluctance torque component at the peak torque point of the motor by setting the asymmetric rotor 100 structure described above without adding permanent magnet materials, that is, at the peak torque point of the motor.
  • the rotor 100 of the motor according to the embodiment of the present application will be described below in conjunction with specific embodiments and comparative examples.
  • Embodiment 1 shows a rotor 100 of a motor according to the first embodiment of the present application
  • FIG. 1 shows the rotor of a V-shaped built-in permanent magnet motor for a mature electric vehicle
  • Comparative Example 2 The difference from Embodiment 1 is the arrangement sequence of the first slot body 13, the second slot body 14 and the air slot 12 at the end far from the center point of the rotor core 10 in the first rotation direction of the rotor 100 It is: the first tank body 13, the air tank 12 and the second tank body 14.
  • Example 1 Under the premise of the same stator design, rotor inner and outer diameter, permanent magnet amount and current and voltage amplitude limits, Example 1 can increase the peak torque by nearly 10% compared to Comparative Example 1, and can increase the peak torque compared to Comparative Example 2. The torque is increased by nearly 5%.
  • the torque ripples of the three at the peak torque point are: 11.2% in Example 1, 13.4% in Comparative Example 1, and 14.5% in Comparative Example 2.
  • the rotor 100 of the motor can significantly increase the peak torque of the motor, reduce torque ripple, and improve the running stability of the motor.
  • Figure 3 shows the peak torque curves of Example 1 and Comparative Example 1. Obviously, the peak torque of Example 1 exceeds that of Comparative Example 1.
  • Figure 4 compares the permanent magnet torque and reluctance torque components of the torque. It can be clearly seen that the magnitudes of the permanent magnet torque components of the two are roughly the same, and the magnitude of the reluctance torque component of Comparative Example 1 exceeds that of Example 1.
  • the peak current angle difference P between the permanent magnet torque and the reluctance torque of Example 1 is lower than the peak current angle difference Q of the permanent magnet torque and the reluctance torque of Comparative Example 1, the synthesis of Example 1 The torque has been improved.
  • Table 1 further provides the simulation result data of Example 1 and Comparative Example 1. It can be seen that at the torque peak point, the permanent magnet torque and reluctance torque of the motor of Example 1 compared to Comparative Example 1 The moment utilization rate has been greatly improved.
  • the arrangement sequence of the air slot 12, the first slot body 13 and the second slot body 14, the arrangement position of the first permanent magnet 20 and the second permanent magnet 30, etc. will affect the permanent magnet torque and reluctance rotation.
  • the asymmetric rotor 100 structure is used to significantly reduce the peak points of the permanent magnet torque and the reluctance torque under the premise of the same amount of permanent magnets and the inner and outer diameters of the rotor.
  • the difference of the current lead angle improves the peak torque of the motor and the utilization of the permanent magnet torque and reluctance torque at the peak torque point. This is not only beneficial to increase the power density of the motor, but also beneficial to Reduce permanent magnet leakage, improve material utilization, reduce the amount of permanent magnets, and reduce production costs.
  • the “first rotation direction” can be understood as the rotation direction of the rotor 100 around the axis in the main working state of the motor in the actual working process.
  • the main working state may be a forward driving state of the vehicle.
  • the rotor 100 may also have a second rotation direction, the second rotation direction is opposite to the first rotation direction, for example, it may be the rotation direction of the rotor 100 in the reverse state of the vehicle.
  • a third magnetic isolation structure is provided on the side of the first trough body 13 away from the center point of the rotor core 10, and the second trough body 14
  • the side away from the center point of the rotor core 10 is provided with a fourth magnetic isolation structure
  • the side of the air slot 12 away from the center point of the rotor core 10 is provided with a fifth magnetic isolation structure.
  • the third, fourth, and fifth magnetic isolation structures may be magnetic bridges or slots (the first slot 13, the second 14 or the air slot 12).
  • the notches and the like formed on the outer circumferential surface of the rotor core 10 only need to meet the requirements for achieving a magnetic isolation effect.
  • the angle between the hysteresis end point of the third magnetic isolation structure and the hysteresis end point of the fifth magnetic isolation structure and the center point of the rotor core 10 is ⁇
  • the hysteresis of the third magnetic isolation structure The angle between the end point and the leading end point of the fourth magnetic isolation structure and the center point of the rotor core 10 is ⁇ , and ⁇ is smaller than ⁇ .
  • the hysteresis end point of the third magnetic isolation structure refers to the end point of the magnetic bridge opposite to the first rotation direction
  • the end of the third magnetic isolation structure The leading end point refers to the end point of the magnetic bridge along the first rotation direction; in the embodiment where the third magnetic isolation structure is a notch, the hysteresis end point of the third magnetic isolation structure refers to the end point of the notch opposite to the first rotation direction.
  • the super front end point of the third magnetic isolation structure refers to the end point of the notch along the first rotation direction. According to the above description, the super front end point and the hysteresis end point of the fourth magnetic barrier structure and the fifth magnetic barrier structure are understandable.
  • the center point of the rotor core 10 is o, along the first rotation direction, the hysteresis end point of the fifth magnetic isolation structure is a, the hysteresis end point of the third magnetic isolation structure is b, and the fourth magnetic isolation structure
  • the front end point of the structure is c
  • the straight line segment connecting the center point o and the lag end point a is oa
  • the straight line segment connecting the center point o and the lag end point b is ob
  • the straight line segment connecting the center point o and the super front end point c is oc.
  • the angle between the segment oa and ob is ⁇
  • the angle between the straight segment ob and oc is ⁇
  • the angle between the straight segment ob and oc
  • the distance between the first groove body 13 and the air groove 12 is closer than the distance between the first groove body 13 and the second groove body 14, so as to improve the asymmetry of the groove group 11,
  • the axis of the permanent magnetic field generated by the second permanent magnet 30 in the second tank body 14 and the first permanent magnet 20 in the first tank body 13 deviates from the first rotation direction and leads the axis of the reluctance d-axis. Large, so that the difference between the current lead angle between the peak point of the permanent magnet torque and the peak point of the reluctance torque is smaller, thereby further increasing the peak value of the combined torque.
  • the number of poles of the rotor 100 is K, along the first rotation direction, the hysteresis end point of the fifth magnetic isolation structure and the fourth magnetic isolation structure
  • the included angle between the leading end point of ⁇ and the center point of the rotor core 10 is ⁇ , and ⁇ is less than or equal to 170°/K.
  • ⁇ + ⁇ .
  • the angle between the straight line oa and oc is ⁇ , and ⁇ 170°/K, that is, ⁇ + ⁇ 170°/K.
  • may be 165°/K, 160°/K, 155°/K, 150°/K, or the like.
  • may be 165°/K, 160°/K, 155°/K, 150°/K, or the like.
  • the distance between the end of the first permanent magnet 20 close to the center point of the rotor core 10 and the end far away from the center point of the rotor core 10 is L1
  • the distance between the end of the second permanent magnet 30 close to the center point of the rotor core 10 and the end far away from the center point of the rotor core 10 is L2, and L1 is less than or equal to L2, that is, L1 ⁇ L2.
  • the permanent magnets in the first trough body 13 and the second trough body 14 constitute an asymmetric permanent magnet structure, and along the first rotation direction, the length of the first permanent magnet 20 that is ahead of the position is longer, even if the influence of the air slot 12 is ignored ,
  • the asymmetric permanent magnet structure of the first permanent magnet 20 and the second permanent magnet 30 can also reduce the difference in the current lead angle between the peak point of the permanent magnet torque and the peak point of the reluctance torque, thereby increasing the peak value of the combined torque. ⁇ Improve the effect of permanent magnet torque and reluctance torque component utilization.
  • the asymmetric permanent magnet structure and the air slot 12 can better improve the peak value of the combined torque and increase the permanent magnet torque and reluctance torque. The effect of portion utilization.
  • an air gap is formed between the outer circumferential surface of the rotor 100 and the stator core.
  • the outer ends of the air slot 12, the first slot body 13 and the second slot body 14 are away from the center point of the rotor core 10
  • a magnetic bridge can be separated from the air gap at one end, or directly connected to the air gap, so as to effectively reduce the magnetic leakage at the end and improve the material utilization rate.
  • the aforementioned third magnetic isolation structure may be between an end of the first slot body 13 far from the center point of the rotor core 10 and the outer circumferential surface of the rotor core 10
  • the first outer magnetic bridge 15, the first outer magnetic bridge 15 can reduce magnetic leakage while ensuring the structural strength of the rotor core 10; or in other embodiments, the first slot body 13 is far away from the center point of the rotor core 10
  • One end extends to the outer circumferential surface of the rotor core 10.
  • the third magnetic isolation structure mentioned above can be a first slot formed by the first slot body 13 on the outer circumferential surface of the rotor core 10. The first slot can also significantly reduce magnetic leakage. .
  • the aforementioned fourth magnetic isolation structure may be the second slot between the end of the second slot body 14 far from the center point of the rotor core 10 and the outer circumferential surface of the rotor core 10.
  • the outer magnetic bridge 16 and the second outer magnetic bridge 16 can reduce magnetic leakage while ensuring the structural strength of the rotor core 10; or in other embodiments, the end of the second slot body 14 far from the center point of the rotor core 10 extends to
  • the aforementioned fourth magnetic isolation structure may be a second slot formed on the outer circumferential surface of the rotor core 10 by the second slot body 14. The second slot can also significantly reduce magnetic flux leakage.
  • the aforementioned fifth magnetic isolation structure may be a third outer surface formed between an end of the air slot 12 that is far from the center point of the rotor core 10 and the outer circumferential surface of the rotor core 10.
  • the magnetic bridge 17 and the third outer magnetic bridge 17 can reduce magnetic leakage while ensuring the structural strength of the rotor core 10; or in other embodiments, the end of the air slot 12 away from the center point of the rotor core 10 extends to the rotor core 10
  • the fifth magnetic isolation structure mentioned above can be a third notch formed by the air slot 12 on the outer peripheral surface of the rotor core 10, and the third notch can also significantly reduce magnetic leakage.
  • the thickness L3 of the first outer magnetic bridge 15 in the radial direction of the rotor core 10 is equal to 3.5 mm, or greater than 0 mm and less than 3.5 mm, That is, 0mm ⁇ L3 ⁇ 3.5mm.
  • L3 may be 0.5 mm, 1 mm, 1.5 mm, 2 mm, 3 mm, 3.5 mm, and so on. If the thickness L3 of the first outer magnetic bridge 15 is too large, the effect of reducing magnetic flux leakage will be weakened. If the thickness L3 of the first outer magnetic bridge 15 is too small, the mechanical strength of the rotor core 10 will be reduced. Reduce the requirements for magnetic flux leakage and ensure mechanical strength, and the structure design is more reasonable.
  • the thickness L4 of the second outer magnetic bridge 16 along the radial direction of the rotor core 10 is equal to 3.5 mm, or greater than 0 mm and less than 3.5 mm, that is, 0 mm ⁇ L4 ⁇ 3.5mm.
  • L4 may be 0.5 mm, 1 mm, 1.5 mm, 2 mm, 3 mm, 3.5 mm, and so on. If the thickness L4 of the second outer magnetic bridge 16 is too large, the effect of reducing magnetic flux leakage will be weakened. If the thickness L4 of the second outer magnetic bridge 16 is too small, the mechanical strength of the rotor core 10 will be reduced. Reduce the requirements for magnetic flux leakage and ensure mechanical strength, and the structure design is more reasonable.
  • the thickness L5 of the third outer magnetic bridge 17 along the radial direction of the rotor core 10 is equal to 3.5 mm, or greater than 0 mm and less than 3.5 mm, that is, 0 mm ⁇ L5 ⁇ 3.5mm.
  • L5 may be 0.5 mm, 1 mm, 1.5 mm, 2 mm, 3 mm, 3.5 mm, and so on. If the thickness L5 of the third outer magnetic bridge 17 is too large, the effect of reducing magnetic flux leakage will be weakened. If the thickness L5 of the third outer magnetic bridge 17 is too small, the mechanical strength of the rotor core 10 will be reduced. Reduce the requirements for magnetic flux leakage and ensure mechanical strength, and the structure design is more reasonable.
  • the first magnetic isolation structure may be a first inner magnetic bridge 18 located between the air groove 12 and the end of the first groove body 13 close to each other, or the first magnetic isolation structure may be air-connected The groove 12 and the first communication port at one end of the first groove body 13 close to each other.
  • the second magnetic isolation structure may be a second inner magnetic bridge 19 located between the ends of the first tank body 13 and the second tank body 14 close to each other, or the second magnetic isolation structure may be a connection between the first tank body 13 and the second tank body 13
  • the second communication ports at the ends of the tank body 14 close to each other have the effect of reducing the magnetic leakage at the ends.
  • the air groove 12 and the first groove body 13 are closer to each other, and the first groove body 13 and the second groove body 14 are closer to each other.
  • the air groove 12, the first groove body 13 and the first groove body 13 are closer to each other.
  • the two-slot body 14 can be regarded as extending from the same inner position of the rotor core 10 to the outer peripheral surface of the rotor core 10, and the formed trident structure can increase the current lead angle corresponding to the peak point of the permanent magnet torque and approach the magnetic field.
  • the current lead angle corresponding to the peak point of the drag torque increases the peak value of the synthetic torque.
  • the thickness L6 of the first inner magnetic bridge 18 along the circumferential direction of the rotor core 10 is equal to 4 mm, or greater than 0 mm and less than 4 mm, That is, 0mm ⁇ L6 ⁇ 4mm.
  • L6 may be 0.5 mm, 1 mm, 1.5 mm, 2 mm, 3 mm, 3.5 mm, 4 mm, and so on. If the thickness L6 of the first inner magnetic bridge 18 is too large, it will weaken the effect of reducing the magnetic flux leakage and at the same time affect the deviation of the permanent magnetic field axis along the first rotation direction.
  • the mechanical strength of 10 is within the above-mentioned size range, while taking into account the requirements of reducing magnetic flux leakage, increasing the peak value of the synthetic torque and ensuring the mechanical strength, and the structure design is more reasonable.
  • the thickness L7 of the second inner magnetic bridge 19 along the circumferential direction of the rotor core 10 is equal to 4 mm, or greater than 0 mm and less than 4 mm, That is, 0mm ⁇ L7 ⁇ 4mm.
  • L7 may be 0.5 mm, 1 mm, 1.5 mm, 2 mm, 3 mm, 3.5 mm, 4 mm, and so on. If the thickness L7 of the second inner magnetic bridge 19 is too large, it will weaken the effect of reducing the magnetic flux leakage and at the same time affect the deviation of the permanent magnet magnetic field axis along the first rotation direction.
  • the mechanical strength of 10 is within the above-mentioned size range, while taking into account the requirements of reducing magnetic flux leakage, increasing the peak value of the synthetic torque and ensuring the mechanical strength, and the structure design is more reasonable.
  • the rotor core 10 includes a first part 101 and a second part 102.
  • the first part 101 is located on the side of the slot group 11 close to the center point of the rotor core 10
  • the second part 102 is located on the side of the slot group 11 far from the center point of the rotor core 10
  • the first part 101 and the second part 102 The first connecting portion is connected to connect the rotor core 10 as a whole to ensure the structural reliability of the rotor core 10 and at the same time improve the fixing stability of the rotor core 10 to the first permanent magnet 20 and the second permanent magnet 30.
  • the second part 102 includes a third part 103 and a fourth part 104, wherein, in the circumferential direction of the rotor core 10, the third part 103 is located between the first trough body 13 and the second trough body 14. Meanwhile, the fourth part 104 is located between the air groove 12 and the first groove body 13.
  • the third part 103 and the fourth part 104 are respectively connected to the first part 101 by a first connecting part, and the third part 103 and the fourth part 104 are not directly connected to each other, so as to realize the first part 101 and the second part.
  • connection of the part 102 in other embodiments, the third part 103 and the fourth part 104 are connected by a second connection part, and at least one of the third part 103 and the fourth part 104 is connected to the first part by the first connection part 101 is connected, so that the first part 101 and the second part 102 are connected.
  • the first connecting portion may include a second outer magnetic bridge 16, a third outer magnetic bridge 17, a first inner magnetic bridge 18, and a second inner magnetic bridge 19, and the second connecting portion may be a second An external magnetic bridge 15.
  • the rotor core 10 may be provided with a second outer magnetic bridge 16, a third outer magnetic bridge 17, a first inner magnetic bridge 18, and a second inner magnetic bridge.
  • the rotor core 10 may be provided with a first outer magnetic bridge 15 and a second outer magnetic bridge 16, or a first outer magnetic bridge 15 and a third outer magnetic bridge 17, or a first outer magnetic bridge 15 and the first inner magnetic bridge 18, or the first outer magnetic bridge 15 and the second inner magnetic bridge 19, or the second outer magnetic bridge 16 and the third outer magnetic bridge 17, or the second outer magnetic bridge 16 and the second inner magnetic bridge
  • the rotor core 10 may be provided with a first outer magnetic bridge 15, a second outer magnetic bridge 16, a third outer magnetic bridge 17, a first inner magnetic bridge 18, and a second inner magnetic bridge 19.
  • the rotor core 10 may be provided with a first outer magnetic bridge 15, a second outer magnetic bridge 16, a third outer magnetic bridge 17, a first inner magnetic bridge 18, and a second inner magnetic bridge 19.
  • the rotor core 10 may be provided with a first outer magnetic bridge 15, a second outer magnetic bridge 16, a third outer magnetic bridge 17, a first inner magnetic bridge 18, and a second inner magnetic bridge 19.
  • the rotor core 10 may be provided with a first outer magnetic bridge 15, a second outer magnetic bridge 16, a third outer magnetic bridge 17, a first inner magnetic bridge 18, and a second inner magnetic bridge 19 at the same time. Five types of magnetic bridges. This is all within the scope of protection of this application.
  • the specific extension structure of the first trough body 13, the second trough body 14 and the air trough 12 can be flexibly set according to actual conditions.
  • the first groove body 13 may include a first groove section 131 in which at least one first permanent magnet 20 is installed.
  • the first groove body 13 may include a plurality of first groove sections 131, wherein at least one first permanent magnet 20 is provided in at least one of the first groove sections 131, In other words, at least one first permanent magnet 20 may be provided in one of the first groove sections 131, or at least one first permanent magnet 20 may be provided in each of the plurality of first groove sections 131.
  • the extending directions of the plurality of first groove sections 131 are the same or different, and the first groove section 131 without the first permanent magnet 20 is formed as an air section.
  • the first groove body 13 includes two first groove sections 131, the two first groove sections 131 communicate with each other and extend in different directions, which are close to the rotor core 10
  • the first permanent magnet 20 is provided in the first slot section 131 of the outer circumferential surface of the rotor core 10.
  • the distance between the first permanent magnet 20 and the outer circumferential surface of the rotor core 10 is closer, which is beneficial to increase the electromagnetic torque and is close to the center point of the rotor core 10
  • the first slot section 131 can also reduce the magnetic leakage at the end of the first permanent magnet 20, which is beneficial to improve the utilization rate of the first permanent magnet 20.
  • the number of first groove segments 131 in each first groove body 13 does not exceed 3, that is, A ⁇ 3, and the structure of the first groove body 13 is simple, which is beneficial to The processing difficulty is reduced, the design and processing are easy, and the structure of the first permanent magnet 20 in the first tank body 13 is simplified.
  • the second groove body 14 may include a second groove section 141 in which at least one second permanent magnet 30 is installed.
  • the second groove body 14 may include a plurality of second groove sections 141, of which at least one second permanent magnet 30 is provided in at least one of the second groove sections 141, that is to say At least one second permanent magnet 30 may be provided in one of the second groove sections 141, or at least one second permanent magnet 30 may be provided in each of the plurality of second groove sections 141.
  • the extending directions of the plurality of second groove segments 141 are the same or different, and the second groove segments 141 without the second permanent magnets 30 are formed as air segments.
  • the second groove body 14 includes two second groove sections 141, which communicate with each other and extend in different directions, and are close to the outer circumferential surface of the rotor core 10.
  • a second permanent magnet 30 is provided in the second slot section 141 of the rotor core 10, and the distance between the second permanent magnet 30 and the outer circumferential surface of the rotor core 10 is closer, which is beneficial to increase the electromagnetic torque.
  • the second slot near the center point of the rotor core 10 The section 141 can also reduce the magnetic leakage at the end of the second permanent magnet 30, which is beneficial to improve the utilization rate of the second permanent magnet 30.
  • the number of second groove segments 141 in each second groove body 14 does not exceed 3, that is, D ⁇ 3, and the structure of the second groove body 14 is simple, which is beneficial to The processing difficulty is reduced, the design and processing are easy, the mechanical strength is improved, and the structure of the second permanent magnet 30 in the second tank body 14 is simplified.
  • the air groove 12 may include a third groove section 121.
  • the air groove 12 may include a plurality of third groove sections 121, and the extension directions of the plurality of third groove sections 121 are the same or different.
  • the air groove 12 may include G third groove segments 121, and G ⁇ 1.
  • the air groove 12 includes two third groove sections 121, which communicate with each other and extend in different directions.
  • the width of the part of the rotor core 10 between the third slot section 121 and the first slot body 13 close to the outer circumferential surface of the rotor core 10 is more uniform, so as to improve the mechanical strength and meet the high-speed operating stress requirements.
  • the groove wall structure of the first groove body 13, the second groove body 14 and the air groove 12 can also be flexibly set according to actual needs.
  • the portion of the first groove body 13 where the first permanent magnet 20 is installed has two first groove wall surfaces that are opposite and parallel to each other.
  • the wall surfaces of the first groove are flat, and the two first groove wall surfaces are respectively parallel to the two side surfaces of the first permanent magnet 20, so that the first permanent magnet 20 can pass through the two first grooves of the first groove body 13
  • the wall surface is limited to prevent the first permanent magnet 20 from shaking or even coming out, and the structure of the first permanent magnet 20 and the first groove body 13 is simple, and it is easy to process and assemble.
  • the first groove section 131 on which the first permanent magnet 20 is installed has two first groove wall planes 132 opposite and parallel to each other, and two first groove wall planes 132 are parallel to each other.
  • a groove wall plane 132 is formed as the aforementioned first groove wall surface and is respectively parallel to the two side surfaces of the first permanent magnet 20. The first permanent magnet 20 can be reliably restricted by the two first groove wall planes 132.
  • the portion of the second groove body 14 where the second permanent magnet 30 is installed has two second groove wall surfaces that are opposite and parallel to each other.
  • the wall surfaces of the two second grooves are flat, and the two second groove wall surfaces are respectively parallel to the two side surfaces of the second permanent magnet 30, so that the second permanent magnet 30 can pass through the two second grooves of the second groove body 14.
  • the wall surface is limited to prevent the second permanent magnet 30 from shaking or even coming out, and the structure of the second permanent magnet 30 and the second trough body 14 is simple and easy to process and assemble.
  • the second groove section 141 on which the second permanent magnet 30 is installed has two second groove wall planes 142 opposite and parallel to each other, and the two The two groove wall planes 142 are formed as the aforementioned second groove wall surfaces and are respectively parallel to the two side surfaces of the second permanent magnet 30, and the second permanent magnet 30 can be reliably restricted by the two second groove wall planes 142.
  • At least one of the first permanent magnet 20 and the second permanent magnet 30 has a rectangular cross section perpendicular to the axial direction of the rotor 100.
  • the structure of the first permanent magnet 20 and the second permanent magnet 30 is simpler, which is beneficial to reduce the difficulty of the machining process and reduce the machining error.
  • the first permanent magnet 20 and the first groove section 131, the second permanent magnet 30 and the second groove section 141 is not easy to assemble or the permanent magnet is easy to fall off due to large machining errors, which is beneficial to improve the qualification rate.
  • the groove wall surface of the first groove section 131 where the first permanent magnet 20 is not installed is one or more combinations of a flat surface, a curved surface, and a bent surface, and the first permanent magnet 20 is not installed.
  • the groove wall surface of the second groove section 141 of the two permanent magnets 30 is one or more combinations of a flat surface, a curved surface, and a bent surface
  • the groove wall surface of the third groove section 121 is a flat surface, a curved surface, or a bent surface.
  • One or more combinations are all within the protection scope of this application.
  • first groove section 131 (or the second groove section 141 and the third groove section 121) can be It is only a flat surface, a curved surface or a bent surface, or the groove wall surface of the first groove section 131 (or the second groove section 141 and the third groove section 121) may include two types of flat, curved surface and bent surface, or The groove wall surface of the first groove section 131 (or the second groove section 141 and the third groove section 121) may simultaneously include three structures: a flat surface, an arc surface, and a bent surface.
  • the shape of the groove wall surface of the first groove section 131, the second groove section 141 and the third groove section 121 includes but is not limited to the aforementioned plane, arc surface and bending surface. According to actual needs, it can also be set to any The desired shape.
  • the groove wall surfaces of the plurality of first groove segments 131 may be connected by straight edges or connected by arc edges;
  • the second groove body 14 includes a plurality of second groove sections 141
  • the groove wall surfaces of the plurality of second groove sections 141 may be connected by straight edges or connected by arc edges;
  • the air groove 12 includes a plurality of third groove sections
  • the groove wall surfaces of the plurality of third groove segments 121 may be connected by straight edges or connected by arc edges, which are all within the protection scope of the present application. Connecting by straight edges or connecting by arc edges is beneficial to reduce the stress at the junction of two adjacent first groove sections 131 (or two adjacent second groove sections 141, or two adjacent third groove sections 121) Concentration is conducive to improving mechanical strength and high-speed performance.
  • the slot group 11 constituted by the air slot 12, the first slot body 13, and the second slot body 14 can be used as the rotor slot in the single-layer built-in permanent magnet motor rotor 100, or in the single-layer built-in permanent magnet motor rotor 100.
  • any one layer of rotor slots is used in the multilayer built-in permanent magnet motor rotor 100.
  • the rotor 100 includes a multi-layer permanent magnet structure under the same magnetic pole.
  • the multi-layer permanent magnet structure mentioned here refers to the diameter of the rotor 100 Toward the cross section, the permanent magnet structure is multilayered. The portion of the rotor core 10 located between two adjacent layers of permanent magnet structures allows magnetic flux to pass through. The first permanent magnet 20 and the second permanent magnet 30 in the same slot group 11 constitute one layer of permanent magnet structure.
  • the rotor 100 is a rotor 100 of a multilayer built-in permanent magnet motor, and the rotor 100 further includes a plurality of third permanent magnets 40. Accordingly, the rotor core 10 is provided with a third permanent magnet 40 for mounting the third permanent magnet 40. Three tank body 41. A plurality of third permanent magnets 40 are installed on the rotor core 10, and the plurality of third permanent magnets 40 are distributed along the circumferential direction of the rotor core 10.
  • the third permanent magnet 40 constitutes another permanent magnet structure in the multilayer permanent magnet structure, that is, the first permanent magnet 20, the second permanent magnet 30, and the third permanent magnet 40 in the same slot group 11 Forming a two-layer permanent magnet structure in the multilayer permanent magnet structure, the third slot body 41 and the slot group 11 constitute a two-layer rotor slot of the multilayer built-in motor rotor 100.
  • a third groove body 41 is provided between two adjacent groove groups 11, and a third groove body 41 is provided in the third groove body 41.
  • the third permanent magnet 40 is a spoke-type permanent magnet structure, and the first permanent magnet 20 and the second permanent magnet 30 in the asymmetric trident-type groove group 11 can be combined with a symmetrical or asymmetrical spoke-type permanent magnet structure. In combination, to cooperate to obtain a larger synthetic torque, and to achieve a higher utilization rate of the permanent magnet torque and reluctance torque components.
  • the groove set 11 combined with the spoke permanent magnet structure includes but is not limited to the structure shown in the embodiment in FIG. 7. In other embodiments, the groove set 11 combined with the spoke permanent magnet structure It may also be the asymmetric trident groove set 11 in the embodiment in FIG. 5, the embodiment in FIG. 6, or other embodiments, which are all within the protection scope of the present application.
  • a third groove body is provided between the first groove body 13 and the second groove body 14 of the groove group 11 41.
  • a third permanent magnet 40 is provided in the third slot body 41, the slot group 11 is formed as an inner rotor slot, and the third slot body 41 is formed as an outer rotor slot.
  • the third permanent magnet 40 may extend perpendicular to the radial direction of the rotor core 10 (for example, as shown in FIGS. 8 and 9), or inclined to the radial extension of the rotor core 10 (for example, as shown in FIG. 10), or set to V Shaped permanent magnet structure (for example, as shown in Figure 11).
  • arranged in a V-shaped permanent magnet structure can be understood as a third permanent magnet 40 in a V-shaped section perpendicular to the axial direction of the rotor 100, or in a section perpendicular to the axial direction of the rotor 100, a plurality of second permanent magnets
  • the three permanent magnets 40 are arranged in a V shape.
  • the V-shaped permanent magnet structure between the first trough body 13 and the second trough body 14 can be a symmetrical permanent magnet structure as shown in FIG.
  • the magnet structure can also be an asymmetric permanent magnet structure, that is, the lengths of the two sides of the V-shape are not equal.
  • the third permanent magnet 40 is a "one"-shaped permanent magnet structure or a V-shaped permanent magnet structure
  • the asymmetrical trident-shaped groove group 11 structure can be compatible with a symmetrical or asymmetrical "one"-shaped permanent magnet structure.
  • the groove set 11 combined with the "one"-shaped permanent magnet structure and the V-shaped permanent magnet structure includes but is not limited to the structure shown in the embodiment in FIGS. 8-11, and only needs to meet the geometric constraint requirements That's it.
  • a third slot body 41 is provided on the side of the slot group 11 close to the center point of the rotor core 10, and a third slot body 41 is provided in the third slot body 41.
  • the slot group 11 is formed as an outer rotor slot
  • the third slot body 41 is formed as an inner rotor slot.
  • the third groove body 41 is a V-shaped groove body and the third permanent magnet 40 is arranged in a V-shaped permanent magnet structure (for example, as shown in FIG. 12), the opening of the V-shaped groove body faces away from the center point of the rotor core 10, and the groove group 11 is located in the area enclosed by the V-shaped groove body.
  • the third groove body 41 is a U-shaped groove body and the third permanent magnet 40 is arranged in a U-shaped permanent magnet structure (for example, as shown in FIG. 13), the opening of the U-shaped groove body faces away from the center point of the rotor core 10, and the groove group 11 is located in the area enclosed by the U-shaped trough.
  • the V-shaped permanent magnet structure provided on the side of the slot group 11 close to the center point of the rotor core 10 may be a symmetrical permanent magnet structure as shown in FIG. 12, that is, the two sides of the V-shaped have the same length.
  • the V-shaped permanent magnet structure can also be an asymmetric permanent magnet structure, that is, the lengths of the two sides of the V-shape are not equal.
  • the U-shaped permanent magnet structure can be a symmetrical permanent magnet structure as shown in FIG. 13, that is, the two sides of the U-shape are symmetrical with respect to the center line of the bottom side.
  • the U-shaped permanent magnet structure can also be an asymmetric permanent magnet structure, that is, U The sides of the shape are asymmetric with respect to the centerline of the base.
  • the third permanent magnet 40 is a V-shaped permanent magnet structure or a U-shaped permanent magnet structure
  • the asymmetric trident groove group 11 can be combined with a symmetrical or asymmetric V-shaped permanent magnet structure, or with a symmetrical or asymmetrical V-shaped permanent magnet structure.
  • the asymmetric U-shaped permanent magnet structure is combined to obtain a larger combined torque and achieve a higher utilization rate of the permanent magnet torque and reluctance torque components.
  • the groove set 11 combined with the V-shaped permanent magnet structure and the U-shaped permanent magnet structure includes, but is not limited to, the structure shown in the embodiment in FIGS. 12 and 13, and only needs to meet the geometric constraint requirements. .
  • the magnetizing directions of the first permanent magnet 20 and the second permanent magnet 30 in the same slot group 11 are the same.
  • the air gap magnetic fields generated by the first permanent magnet 20 and the second permanent magnet 30 in the same slot group 11 strengthen each other.
  • the magnetic field is inside the permanent magnet (including the first permanent magnet 20 and the second permanent magnet 30), and the S pole represented by the outside points to the N pole.
  • the first permanent magnet 20 and the second permanent magnet in the same slot group 11 30 corresponds to the same pole.
  • the first permanent magnet 20 and the second permanent magnet 30 under the same pole generate magnetic flux with the same radial direction in the air gap, so that the magnetization directions of the permanent magnets in the same slot group 11 are mutually opposite.
  • the magnetizing directions of the first permanent magnets 20 in the adjacent groove groups 11 are opposite, and the magnetizing directions of the second permanent magnets 30 in the adjacent groove groups 11 are opposite to facilitate the formation of a closed magnetic circuit.
  • the first permanent magnet 20 is magnetized along the short side of the rectangle, that is, perpendicular to the long side of the rectangle. Magnetization, that is, the direction of magnetization is parallel to the short side of the rectangle.
  • the number of slot groups 11 is M
  • the number of poles of the rotor 100 is K
  • each magnetic pole corresponds to a slot group 11 and the first permanent magnet 20 and the second permanent magnet 30 in the slot group 11.
  • the rotor slot structure under each magnetic pole is simpler, which reduces the difficulty of structural design and improves Structural strength.
  • the number of poles K of the rotor 100 is an even number and satisfies 4 ⁇ K ⁇ 12, that is, the rotor 100 can be four-pole, six-pole, eight-pole, ten-pole, or twelve-pole, so that the rotor 100 can meet the use requirements of more motors, and the corresponding size design of the slot group 11, the first permanent magnet 20, and the second permanent magnet 30 can also be more reasonable, so as to improve the electromagnetic torque and structural strength.
  • the drive motor according to the embodiment of the present application includes the rotor 100 of the motor according to the embodiment of the present application. Since the rotor 100 of the motor according to the embodiment of the present application has the above-mentioned beneficial technical effects, the drive motor according to the embodiment of the present application uses an asymmetrical structure of the rotor 100, and it is obvious that the amount of permanent magnets and the inner and outer diameters of the rotor 100 are the same. It reduces the difference between the current lead angle corresponding to the peak point of the permanent magnet torque and the reluctance torque, thereby increasing the peak torque of the motor and the difference between the permanent magnet torque and the reluctance torque component at the peak torque point. Utilization rate, thus, not only helps to increase the power density of the motor, but also helps to reduce permanent magnet leakage, improve material utilization, reduce the amount of permanent magnets, and reduce production costs.
  • the rotor 100 When the rotor 100 is used to drive a motor, it can increase the torque of the drive motor.
  • the vehicle has strong climbing ability, strong starting and acceleration capabilities, good high-speed performance of the drive motor, and high maximum speed, so the volume and weight of the drive motor can be made smaller , It saves space and reduces the weight of the vehicle.
  • the drive motor has a wide speed adjustment range, which can meet the requirements of the vehicle in different road conditions.
  • the vehicle according to the embodiment of the present application includes the drive motor according to the embodiment of the present application. Since the drive motor according to the embodiment of the present application has the above-mentioned beneficial technical effects, the vehicle according to the embodiment of the present application uses an asymmetric rotor 100 structure to significantly reduce the amount of permanent magnets and the inner and outer diameters of the rotor 100. The difference between the current lead angle corresponding to the peak point of the permanent magnet torque and the reluctance torque is improved, thereby improving the peak torque of the motor and the utilization of the permanent magnet torque and the reluctance torque component at the peak torque point. Therefore, it is not only beneficial to increase the power density of the motor, but also beneficial to reduce the permanent magnet leakage, increase the material utilization rate, reduce the amount of permanent magnets, and reduce the production cost.
  • the drive motor When the drive motor is used in a vehicle, it can increase the torque of the drive motor.
  • the vehicle has strong climbing ability, strong starting and acceleration capabilities, good high-speed performance of the drive motor, and high maximum speed, so the volume and weight of the drive motor can be made smaller. Save space and reduce the weight of the vehicle.
  • the drive motor has a wide speed adjustment range, which can meet the requirements of the vehicle in different road conditions.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meanings of the above terms in this application can be understood under specific circumstances.
  • the description with reference to the terms “embodiment”, “specific embodiment”, “example”, etc. means that the specific feature, structure, material, or characteristic described in combination with the embodiment or example is included in at least the application. In one embodiment or example. In this specification, the schematic representations of the above-mentioned terms do not necessarily refer to the same embodiment or example. Moreover, the described specific features, structures, materials or characteristics can be combined in any one or more embodiments or examples in a suitable manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

一种电机的转子(100)、驱动电机和车辆,转子(100)包括:转子铁心(10),转子铁心(10)设有多个槽组(11),多个槽组(11)沿转子铁心(10)的周向分布,每个槽组(11)包括空气槽(12)、第一槽体(13)和第二槽体(14),空气槽(12)、第一槽体(13)和第二槽体(14)的靠近转子铁心(10)的中心点的一端彼此靠近而远离转子铁心(10)的中心点的一端彼此远离,空气槽(12)和第一槽体(13)的彼此靠近的一端之间设有第一隔磁结构,第一槽体(13)和第二槽体(14)的彼此靠近的一端之间设有第二隔磁结构,空气槽(12)、第一槽体(13)和第二槽体(14)的远离转子铁心(10)的中心点的一端沿转子的第一转动方向分布;多个第一永磁体(20)和多个第二永磁体(30),第一永磁体(20)安装于第一槽体(13)内,第二永磁体(30)安装于第二槽体(14)内。

Description

电机的转子、驱动电机和车辆 技术领域
本申请涉及电机技术领域,更具体地,涉及一种电机的转子、驱动电机和车辆。
背景技术
相关技术中的内置式永磁电机转子,永磁转矩和磁阻转矩的峰值点角度差较大,导致在合成转矩峰值点,磁阻转矩和永磁转矩的利用率低。此外,相关技术中的内置式永磁电机转子还存在永磁漏磁大、材料利用率低等问题,同时受铁心饱和等因素影响。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个目的在于提出一种电机的转子,所述转子提高了电机的峰值转矩与在峰值转矩点永磁转矩与磁阻转矩分量的利用率。
本申请的另一个目的在于提出一种具有上述转子的驱动电机。
本申请的另一个目的在于提出一种具有上述驱动电机的车辆。
根据本申请实施例的电机的转子,包括:转子铁心,所述转子铁心设有多个槽组,多个所述槽组沿所述转子铁心的周向分布,每个所述槽组包括空气槽、第一槽体和第二槽体,所述空气槽、所述第一槽体和所述第二槽体的靠近所述转子铁心的中心点的一端彼此靠近而远离所述转子铁心的中心点的一端彼此远离,所述空气槽和所述第一槽体的彼此靠近的一端之间设有第一隔磁结构,所述第一槽体和所述第二槽体的彼此靠近的一端之间设有第二隔磁结构,所述空气槽、所述第一槽体和所述第二槽体的远离所述转子铁心的中心点的一端沿所述转子的第一转动方向分布;多个第一永磁体和多个第二永磁体,所述第一永磁体安装于所述第一槽体内,所述第二永磁体安装于所述第二槽体内。
根据本申请实施例的电机的转子,利用不对称的转子结构,在相同永磁体用量与转子内外径的前提下明显的减小了永磁转矩和磁阻转矩峰值点所对应的电流超前角的差值,从而提高了电机的峰值转矩与在峰值转矩点永磁转矩与磁阻转矩分量的利用率,由此,既有利于提高电机的功率密度,又有利于降低永磁漏磁,提高材料利用率,减少永磁体的用量,降低生产成本。
另外,根据本申请上述实施例的电机的转子还可以具有如下附加的技术特征:
根据本申请一些实施例的电机的转子,所述第一槽体的远离所述转子铁心的中心点的一侧设有第三隔磁结构,所述第二槽体的远离所述转子铁心的中心点的一侧设有第四隔磁结 构,所述空气槽的远离所述转子铁心的中心点的一侧设有第五隔磁结构,其中,沿着所述第一转动方向,所述第三隔磁结构的滞后端点和所述第五隔磁结构的滞后端点分别与所述转子铁心的中心点的连线的夹角为α,所述第三隔磁结构的滞后端点和所述第四隔磁结构的超前端点分别与所述转子铁心的中心点的连线的夹角为β,所述α小于所述β。
根据本申请的一些实施例,所述第一永磁体的靠近所述转子铁心的中心点的一端和远离所述转子铁心的中心点的一端的间距为L1,所述第二永磁体的靠近所述转子铁心的中心点的一端和远离所述转子铁心的中心点的一端的间距为L2,所述L1小于或者等于所述L2。
根据本申请的一些实施例,所述第一隔磁结构为位于所述空气槽和所述第一槽体的彼此靠近的一端之间的第一内磁桥,或为连通所述空气槽和所述第一槽体的彼此靠近的一端的第一连通口;和/或,所述第二隔磁结构为位于所述第一槽体和所述第二槽体的彼此靠近的一端之间的第二内磁桥,或为连通所述第一槽体和所述第二槽体的彼此靠近的一端的第二连通口。
根据本申请的一些实施例,所述第一隔磁结构为位于所述空气槽和所述第一槽体的彼此靠近的一端之间的第一内磁桥,所述第一内磁桥沿所述转子铁心的周向的厚度等于4mm,或者大于0mm且小于4mm;和/或,所述第二隔磁结构为位于所述第一槽体和所述第二槽体的彼此靠近的一端之间的第二内磁桥,所述第二内磁桥沿所述转子铁心的周向的厚度等于4mm,或者大于0mm且小于4mm。
根据本申请的一些实施例,所述第一槽体的远离所述转子铁心的中心点的一侧设有第三隔磁结构,所述第三隔磁结构为位于所述第一槽体的远离所述转子铁心的中心点的一端与所述转子铁心的外周面之间的第一外磁桥;或者,所述第三隔磁结构为所述第一槽体的远离所述转子铁心的中心点的一端延伸至所述转子铁心的外周面且在所述转子铁心的外周面形成的第一槽口;和/或,所述第二槽体的远离所述转子铁心的中心点的一侧设有第四隔磁结构,所述第四隔磁结构为位于所述第二槽体的远离所述转子铁心的中心点的一端与所述转子铁心的外周面之间的第二外磁桥;或者,所述第四隔磁结构为所述第二槽体的远离所述转子铁心的中心点的一端延伸至所述转子铁心的外周面且在所述转子铁心的外周面形成的第二槽口;和/或,所述空气槽的远离所述转子铁心的中心点的一侧设有第五隔磁结构,所述第五隔磁结构为位于所述空气槽的远离所述转子铁心的中心点的一端与所述转子铁心的外周面之间的第三外磁桥;或者,所述第五隔磁结构为所述空气槽的远离所述转子铁心的中心点的一端延伸至所述转子铁心的外周面且在所述转子铁心的外周面形成的第三槽口。
根据本申请的一些实施例,所述第一槽体的远离所述转子铁心的中心点的一端与所述转子铁心的外周面之间形成有第一外磁桥,所述第一外磁桥沿所述转子铁心的径向的厚度等于3.5mm,或者大于0mm且小于3.5mm;和/或,所述第二槽体的远离所述转子铁心的中心点 的一端与所述转子铁心的外周面之间形成有第二外磁桥,所述第二外磁桥沿所述转子铁心的径向的厚度等于3.5mm,或者大于0mm且小于3.5mm;和/或,所述空气槽的远离所述转子铁心的中心点的一端与所述转子铁心的外周面之间形成有第三外磁桥,所述第三外磁桥沿所述转子铁心的径向的厚度等于3.5mm,或大于0mm且小于3.5mm。
根据本申请的一些实施例,所述转子铁心包括:第一部分,所述第一部分位于所述槽组的靠近所述转子铁心的中心点的一侧;第二部分,所述第二部分位于所述槽组的远离所述转子铁心的中心点的一侧,所述第二部分与所述第一部分通过第一连接部连接,且所述第二部分包括第三部分和第四部分,在所述转子铁心的周向上,所述第三部分位于所述第一槽体和所述第二槽体之间,所述第四部分位于所述第一槽体和所述空气槽之间,其中,所述第三部分和所述第四部分分别通过所述第一连接部与所述第一部分连接且所述第三部分和所述第四部分不直接连接,或者,所述第三部分与所述第四部分通过第二连接部连接且所述第三部分和所述第四部分中的至少一个与所述第一部分通过所述第一连接部连接。
根据本申请的一些实施例,所述转子的极数为K,所述第二槽体的远离所述转子铁心的中心点的一侧设有第四隔磁结构,所述空气槽的远离所述转子铁心的中心点的一侧设有第五隔磁结构,沿着所述第一转动方向,所述第五隔磁结构的滞后端点和所述第四隔磁结构的超前端点分别与所述转子铁心的中心点的连线的夹角为γ,所述γ小于或者等于170°/K。
根据本申请的一些实施例,所述第一槽体包括至少一个第一槽段,至少一个所述第一槽段内安装有所述第一永磁体,多个所述第一槽段的延伸方向相同或不相同;所述第二槽体包括至少一个第二槽段,至少一个所述第二槽段内安装有所述第二永磁体,多个所述第二槽段的延伸方向相同或不相同。
根据本申请的一些实施例,每个所述第一槽体中的所述第一槽段的数量不超过3个,每个所述第二槽体中的所述第二槽段的数量不超过3个。
根据本申请的一些实施例,未安装有所述第一永磁体的所述第一槽段的槽壁面为平面、弧面、折弯面中的一种或多种组合,未安装有所述第二永磁体的所述第二槽段的槽壁面为平面、弧面、折弯面中的一种或多种组合。
根据本申请的一些实施例,所述空气槽包括至少一个第三槽段,所述第三槽段的槽壁面为平面、弧面、折弯面中的一种或多种组合。
根据本申请的一些实施例,所述转子的同一磁极下包括多层永磁体结构,同一个所述槽组内的所述第一永磁体和所述第二永磁体构成其中一层所述永磁体结构。
根据本申请的一些实施例,所述转子还包括:多个第三永磁体,多个所述第三永磁体安装于所述转子铁心且沿所述转子铁心的周向分布,所述第三永磁体构成其中另一层所述永磁体结构。
根据本申请的一些实施例,在所述转子铁心的周向上所述槽组的所述第一槽体和所述第二槽体之间设有所述第三永磁体,所述第三永磁体垂直于所述转子铁心的径向延伸或倾斜于所述转子铁心的径向延伸或设置成V形永磁体结构。
根据本申请的一些实施例,在所述转子铁心的周向上相邻两个所述槽组之间设有所述第三永磁体,所述第三永磁体沿所述转子铁心的径向延伸或倾斜于所述转子铁心的径向延伸。
根据本申请的一些实施例,所述槽组的靠近所述转子铁心的中心点的一侧设有第三槽体,所述第三槽体为V形槽体或U形槽体,所述第三永磁体设于所述第三槽体内,所述第三永磁体设置成V形永磁体结构或U形永磁体结构,所述槽组位于所述V形槽体或所述U形槽体所围设的区域内。
根据本申请的一些实施例,同一所述槽组内的所述第一永磁体和所述第二永磁体所产生的气隙磁场相互增强,相邻所述槽组内的所述第一永磁体的充磁方向相反,相邻所述槽组内的所述第二永磁体的充磁方向相反。
根据本申请的一些实施例,所述槽组的数量为M,所述转子的极数为K,所述M等于所述K。
根据本申请实施例的驱动电机包括根据本申请实施例的电机的转子。
根据本申请实施例的车辆包括根据本申请实施例的驱动电机。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请第一实施例的转子的局部结构示意图;
图2是相关技术中对称V型内置式永磁电机转子的局部结构示意图;
图3是图1和图2中的转子的峰值转矩曲线图;
图4是图1和图2中的转子的永磁转矩和磁阻转矩的曲线图;
图5是根据本申请第二实施例的转子的局部结构示意图;
图6是根据本申请第三实施例的转子的局部结构示意图;
图7是根据本申请第四实施例的转子的局部结构示意图;
图8是根据本申请第五实施例的转子的局部结构示意图;
图9是根据本申请第六实施例的转子的局部结构示意图;
图10是根据本申请第七实施例的转子的局部结构示意图;
图11是根据本申请第八实施例的转子的局部结构示意图;
图12是根据本申请第九实施例的转子的局部结构示意图;
图13是根据本申请第十实施例的转子的局部结构示意图;
图14是根据本申请第一实施例的转子的结构示意图。
附图标记:
转子100;
转子铁心10;第一部分101;第二部分102;第三部分103;第四部分104;槽组11;空气槽12;第三槽段121;第一槽体13;第一槽段131;第一槽壁平面132;第二槽体14;第二槽段141;第二槽壁平面142;第一外磁桥15;第二外磁桥16;第三外磁桥17;第一内磁桥18;第二内磁桥19;第三槽体41;
第一永磁体20;
第二永磁体30;
第三永磁体40。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本申请的描述中,“第一特征”、“第二特征”可以包括一个或者更多个该特征,“多个”的含义是两个或两个以上。
随着传统工业的发展与新兴产业的不断涌现,现代工业对电机各方面特性的需求日渐提高,高性能永磁电机的应用场合不断扩展、技术经济性显著提升。在交通电气化领域,如电动汽车、电动飞机、电动游艇中,内置式永磁电机因其所具备的高转矩/功率密度、高效率、宽调速范围与高可靠性等优势,得到了广泛的应用。
为了提高电机转矩/功率密度,设计人员常通过采用高性能永磁体、增加永磁体体积等技术手段改进设计使得提高永磁体性能与体积的边际收益逐渐降低。但是,高性能稀土永磁材料价格昂贵,开采与加工过程存在环境污染风险,也对其应用产生了制约。
为减少永磁材料的使用,利用并提高磁阻转矩成为改进内置式永磁电机转矩密度的重要方法。通过增加永磁体层数、优化永磁体槽与磁障的结构,能够大幅度提高磁阻转矩,从而改善电机的转矩密度。此类电机也被称为永磁辅助式同步磁阻电机。然而,永磁辅助式同步磁阻电机往往具有结构复杂、永磁体块数多等缺点,使得其设计优化与工业应用都具有很大的困难。
在相关技术中,内置式永磁电机主要采用对称转子结构,其永磁转矩与磁阻转矩的峰值点之间存在不少于45度电角度的角度差,这一特性造成了在合成转矩的峰值点,磁阻转矩与永磁转矩的利用率都被一定程度的降低。此外,传统内置式永磁电机存在永磁漏磁大、材料利用率低等问题,同时受铁心饱和等因素影响。
因此,本申请提出了一种特殊的不对称的转子100,根据本申请实施例的转子100能够显著减小永磁转矩和磁阻转矩峰值点的角度差,从而同时提高峰值转矩点的两种转矩分量(磁阻转矩和永磁转矩)的利用率,增大电机峰值转矩和转矩密度。
下面参考附图描述根据本申请实施例的电机的转子100。
参照图1所示,根据本申请实施例的电机的转子100包括:转子铁心10、多个第一永磁体20和多个第二永磁体30。
具体而言,转子铁心10设有多个槽组11,多个槽组11沿转子铁心10的周向分布,每个槽组11包括空气槽12、第一槽体13和第二槽体14。其中,空气槽12、第一槽体13和第二槽体14的靠近转子铁心10的中心点的一端彼此靠近,空气槽12、第一槽体13和第二槽体14的远离转子铁心10的中心点的一端彼此远离。空气槽12和第一槽体13的彼此靠近的一端之间设有第一隔磁结构,第一隔磁结构能够起到隔磁作用,以使主磁通(即除去漏磁外的其他磁通)不从空气槽12和第一槽体13的彼此靠近的一端之间经过。第一槽体13和第二槽体14的彼此靠近的一端之间设有第二隔磁结构,第二隔磁结构能够起到隔磁作用,以使主磁通不从第一槽体13和第二槽体14的彼此靠近的一端之间经过。在本申请的实施例中,第一隔磁结构和第二隔磁结构可以为磁桥或者两个槽体之间的连通口等,只需要满足能够起到隔磁效果的要求即可。
并且,空气槽12、第一槽体13和第二槽体14的远离转子铁心10的中心点的一端沿转子100的第一转动方向分布。换言之,槽组11的远离转子铁心10的端部沿着第一转动方向依次为空气槽12、第一槽体13和第二槽体14。第一永磁体20安装于第一槽体13内,第二永磁体30安装于第二槽体14内。
通过设置上述结构,使得每个槽组11能够构成三叉戟式转子槽结构,第一永磁体20和第二永磁体30在三叉戟式转子槽结构中超前于空气槽12,第一永磁体20超前于第二永磁体30,由此,整个槽组11以及设于槽组11内的第一永磁体20和第二永磁体30构成不对 称结构,进而整个转子100形成为不对称转子100结构,即相对于转子100的径向不对称的结构。
内置式永磁电机中,转矩可以视为由永磁转矩与磁阻转矩两部分合成。其中,一极永磁体所产生的永磁磁场的磁路通过永磁体、转子铁心、气隙与定子铁心,并与相邻极永磁体所产生的永磁磁场的磁路相闭合,形成相对于转子静止但相对于定子旋转的永磁旋转磁场。而定子多相绕组通入交流电形成定子旋转磁场。定子与永磁磁场相互作用所产生的推动转子旋转的转矩为永磁转矩。永磁转矩在定子旋转磁场轴线与永磁磁场轴线相差90度电角度,即电流超前角为0度电角度时达到峰值点。磁阻转矩是转子磁导交变,使得转子交直轴电感不同所产生的。在不考虑饱和等非线性因素影响时,磁阻转矩在电流超前角为45度电角度时达到峰值点。此时,永磁磁场的轴线与磁阻d轴的轴线,即磁阻最大点的轴线,相重合。
本申请通过前面所说的不对称转子100结构,使得永磁转矩与磁阻转矩的峰值点对应的电流超前角的角度差减小。具体地,通过不对称转子100结构的设计,使得永磁磁场轴线沿第一转动方向偏离并超前磁阻d轴(即磁阻最大点)的轴线,从而使得永磁转矩峰值点对应的电流以超前角得以增大并靠近磁阻转矩峰值点所对应的电流超前角,从而增大电机合成转矩的峰值。换言之,本申请通过设置上述不对称转子100结构,在不增加永磁材料的前提下,提高了在电机的峰值转矩点永磁转矩分量与磁阻转矩分量的利用率,即在峰值转矩点永磁转矩分量与磁阻转矩分量的值相对于两者峰值的比率。
下面结合具体实施例和对比例描述根据本申请实施例的电机的转子100。
实施例1:如图1所示根据本申请第一实施例的电机的转子100;
对比例1:如图2所示某成熟电动汽车用V型内置式永磁电机的转子;
对比例2:与实施例1的区别为,第一槽体13、第二槽体14和空气槽12的远离转子铁心10的中心点的一端在转子100的第一转动方向上的排布顺序为:第一槽体13、空气槽12和第二槽体14。
在相同定子设计、转子内外径、永磁体用量与电流电压幅值限制的前提下,实施例1相比于对比例1能够将峰值转矩提升近10%,相比于对比例2能够将峰值转矩提升近5%。三者在峰值转矩点的转矩脉动分别为:实施例1为11.2%,对比例1为13.4%,对比例2为14.5%。
由此可知,根据本申请实施例的电机的转子100能够显著提高电机的峰值转矩,降低转矩脉动,提高电机运行稳定性。
具体地,如图3所示为实施例1和对比例1的峰值转矩曲线图,显然,实施例1的转矩峰值超过了对比例1,为进一步说明并验证转矩提升的机理,如图4所示对比了转矩的永磁转矩和磁阻转矩分量。可以明显看到,两者的永磁转矩分量幅值大致相当,对比例1的磁阻转矩分量的幅值超过了实施例1。但由于实施例1的永磁转矩和磁阻转矩的峰值电流角度差 P较对比例1的永磁转矩和磁阻转矩的峰值电流角度差Q得以降低,使得实施例1的合成转矩得到了提升。
表1进一步提供了实施例1和对比例1的仿真结果数据,可以看到,在转矩峰值点,实施例1相比于对比例1的电机的永磁转矩和磁阻转矩的转矩利用率都得到了大幅度的提高。
表1
Figure PCTCN2019130064-appb-000001
综上所述,空气槽12、第一槽体13和第二槽体14的排布顺序、第一永磁体20和第二永磁体30的设置位置等都会影响永磁转矩和磁阻转矩峰值点所对应的电流超前角的差值,及在峰值转矩点永磁转矩和磁阻转矩分量的利用率。根据本申请实施例的电机的转子100,利用不对称的转子100结构,在相同永磁体用量与转子内外径的前提下明显的减小了永磁转矩和磁阻转矩峰值点所对应的电流超前角的差值,从而提高了电机的峰值转矩与在峰值转矩点永磁转矩与磁阻转矩分量的利用率,由此,既有利于提高电机的功率密度,又有利于降低永磁漏磁,提高材料利用率,减少永磁体的用量,降低生产成本。
需要说明的是,在本申请的实施例中,“第一转动方向”可以理解为在实际工作过程中,电机的主要工作状态下,转子100绕轴线的转动方向。例如,在电机用于车辆的实施例中,该主要工作状态可以为车辆前进行驶状态。在一些实施例中,转子100还可以具有第二转动方向,第二转动方向与第一转动方向相反,例如可以为在车辆倒车状态下转子100的转动方向。
根据本申请的一些实施例,如图1、图5和图6所示,第一槽体13的远离转子铁心10 的中心点的一侧设有第三隔磁结构,第二槽体14的远离转子铁心10的中心点的一侧设有第四隔磁结构,空气槽12的远离转子铁心10的中心点的一侧设有第五隔磁结构。
在本申请的实施例中,第三隔磁结构、第四隔磁结构和第五隔磁结构可以为磁桥或者槽体(第一槽体13、第二槽体14或者空气槽12)在转子铁心10的外周面上形成的槽口等,只需要满足能够起到隔磁效果的要求即可。
其中,沿着第一转动方向,第三隔磁结构的滞后端点和第五隔磁结构的滞后端点分别与转子铁心10的中心点的连线的夹角为α,第三隔磁结构的滞后端点和第四隔磁结构的超前端点分别与转子铁心10的中心点的连线的夹角为β,α小于β。
以第三隔磁结构为例,在第三隔磁结构为磁桥的实施例中,第三隔磁结构的滞后端点是指磁桥逆着第一转动方向的端点,第三隔磁结构的超前端点是指磁桥顺着第一转动方向的端点;在第三隔磁结构为槽口的实施例中,第三隔磁结构的滞后端点是指槽口逆着第一转动方向的端点,第三隔磁结构的超前端点是指槽口顺着第一转动方向的端点。根据以上描述,第四隔磁结构和第五隔磁结构的超前端点和滞后端点是可以理解的。
换言之,如图1所示,转子铁心10的中心点为o,沿着第一转动方向,第五隔磁结构的滞后端点为a,第三隔磁结构的滞后端点为b,第四隔磁结构的超前端点为c,连接中心点o和滞后端点a的直线段为oa,连接中心点o和滞后端点b的直线段为ob,连接中心点o和超前端点c的直线段为oc,直线段oa和ob的夹角为α,直线段ob和oc的夹角为β,且α<β。
通过α<β使得在转子100的周向上,第一槽体13与空气槽12的间距较第一槽体13与第二槽体14的间距更近,以提高槽组11的不对称性,进而使第二槽体14内的第二永磁体30和第一槽体13内的第一永磁体20所产生永磁磁场轴线沿第一转动方向偏离并超前磁阻d轴的轴线的幅度更大,从而使得永磁转矩峰值点与磁阻转矩峰值点的电流超前角的差值更小,从而进一步增大合成转矩的峰值。
在本申请的一些实施例中,参照图1、图5和图6所示,转子100的极数为K,沿着第一转动方向,第五隔磁结构的滞后端点和第四隔磁结构的超前端点分别与转子铁心10的中心点的连线的夹角为γ,γ小于或者等于170°/K。在本申请的实施例中,γ=α+β。换言之,直线段oa和oc的夹角为γ,并且γ≤170°/K,即α+β≤170°/K。例如,在一些具体实施例中,γ可以为165°/K、160°/K、155°/K或150°/K等。防止每个槽组11在转子100周向上的跨度过大,导致相邻两个槽组11之间的间距过小而导致转子铁心10的机械强度差,在上述尺寸范围内,既能保证转子100所产生磁场的高转矩、高效率、高调速范围的要求,还能保证转子铁心10的结构强度,使转子100满足高可靠性的要求。
根据本申请的一些实施例,如图1、图5和图6所示,第一永磁体20的靠近转子铁心 10的中心点的一端和远离转子铁心10的中心点的一端的间距为L1,第二永磁体30的靠近转子铁心10的中心点的一端和远离转子铁心10的中心点的一端的间距为L2,L1小于或者等于L2,即L1≤L2。第一槽体13和第二槽体14内的永磁体构成不对称永磁体结构,并且沿着第一转动方向,位置超前的第一永磁体20的长度更长,即使忽略空气槽12的影响,第一永磁体20和第二永磁体30的不对称永磁体结构同样能够减小永磁转矩峰值点和磁阻转矩峰值点的电流超前角的差值,起到提高合成转矩峰值、提高永磁转矩和磁阻转矩分量利用率的效果,不对称永磁体结构与空气槽12配合,能够起到更佳的提高合成转矩峰值、提高永磁转矩和磁阻转矩分量利用率的效果。
根据本申请的一些实施例,转子100的外周面与定子铁心之间形成气隙,在空气槽12、第一槽体13和第二槽体14的外端,即远离转子铁心10的中心点的一端,与气隙之间可以隔有磁桥,或者直接与气隙连通,以有效减少端部漏磁,提高材料利用率。
具体地,在一些实施例中,如图1所示,前文所说的第三隔磁结构可以为第一槽体13的远离转子铁心10的中心点的一端与转子铁心10的外周面之间的第一外磁桥15,第一外磁桥15可以减少漏磁,同时保证转子铁心10的结构强度;或者在另一些实施例中,第一槽体13的远离转子铁心10的中心点的一端延伸至转子铁心10的外周面,前文所说的第三隔磁结构可以为第一槽体13在转子铁心10的外周面形成的第一槽口,第一槽口同样可以显著减少漏磁。
在一些实施例中,如图1所示,前文所说的第四隔磁结构可以为第二槽体14的远离转子铁心10的中心点的一端与转子铁心10的外周面之间的第二外磁桥16,第二外磁桥16可以减少漏磁,同时保证转子铁心10的结构强度;或者在另一些实施例中,第二槽体14的远离转子铁心10的中心点的一端延伸至转子铁心10的外周面,前文所说的第四隔磁结构可以为第二槽体14在转子铁心10的外周面形成的第二槽口,第二槽口同样可以显著减少漏磁。
在一些实施例中,如图1所示,前文所说的第五隔磁结构可以为空气槽12的远离转子铁心10的中心点的一端与转子铁心10的外周面之间形成的第三外磁桥17,第三外磁桥17可以减少漏磁,同时保证转子铁心10的结构强度;或者在另一些实施例中,空气槽12的远离转子铁心10的中心点的一端延伸至转子铁心10的外周面,前文所说的第五隔磁结构可以为空气槽12在转子铁心10的外周面形成的第三槽口,第三槽口同样可以显著减少漏磁。
此外,在设有第一外磁桥15的实施例中,参照图1所示,第一外磁桥15沿转子铁心10的径向的厚度L3等于3.5mm,或者大于0mm且小于3.5mm,即0mm<L3≤3.5mm。例如,在一些具体实施例中,L3可以为0.5mm、1mm、1.5mm、2mm、3mm和3.5mm等。第一外磁桥15的厚度L3过大,会削弱减少漏磁的效果,第一外磁桥15的厚度L3过小,会降低转子铁心10的机械强度,在上述尺寸范围内,同时兼顾了减少漏磁和保证机械强度的要求,结构 设计更合理。
在设有第二外磁桥16的实施例中,参照图1所示,第二外磁桥16沿转子铁心10的径向的厚度L4等于3.5mm,或者大于0mm且小于3.5mm,即0mm<L4≤3.5mm。例如,在一些具体实施例中,L4可以为0.5mm、1mm、1.5mm、2mm、3mm和3.5mm等。第二外磁桥16的厚度L4过大,会削弱减少漏磁的效果,第二外磁桥16的厚度L4过小,会降低转子铁心10的机械强度,在上述尺寸范围内,同时兼顾了减少漏磁和保证机械强度的要求,结构设计更合理。
在设有第三外磁桥17的实施例中,参照图1所示,第三外磁桥17沿转子铁心10的径向的厚度L5等于3.5mm,或者大于0mm且小于3.5mm,即0mm<L5≤3.5mm。例如,在一些具体实施例中,L5可以为0.5mm、1mm、1.5mm、2mm、3mm和3.5mm等。第三外磁桥17的厚度L5过大,会削弱减少漏磁的效果,第三外磁桥17的厚度L5过小,会降低转子铁心10的机械强度,在上述尺寸范围内,同时兼顾了减少漏磁和保证机械强度的要求,结构设计更合理。
此外,继续参照图1所示,第一隔磁结构可以为位于空气槽12和第一槽体13彼此靠近的一端之间的第一内磁桥18,或者第一隔磁结构可以为连通空气槽12和第一槽体13的彼此靠近的一端的第一连通口。第二隔磁结构可以为位于第一槽体13和第二槽体14彼此靠近的一端之间的第二内磁桥19,或者第二隔磁结构可以为连通第一槽体13和第二槽体14的彼此靠近的一端的第二连通口,以起到减少端部漏磁的效果。
并且空气槽12和第一槽体13的彼此靠近的一端距离较近,第一槽体13和第二槽体14的彼此靠近的一端距离较近,空气槽12、第一槽体13和第二槽体14可以视为从转子铁心10的同一内部位置向转子铁心10的外周面延伸,所形成的三叉戟式结构能够使得永磁转矩峰值点对应的电流超前角得以增大并靠近磁阻转矩峰值点对应的电流超前角,增大合成转矩的峰值。
如图1所示,在第一隔磁结构为第一内磁桥18的实施例中,第一内磁桥18沿转子铁心10的周向的厚度L6等于4mm,或者大于0mm且小于4mm,即0mm<L6≤4mm。例如,在一些具体实施例中,L6可以为0.5mm、1mm、1.5mm、2mm、3mm、3.5mm和4mm等。第一内磁桥18的厚度L6过大,会削弱减少漏磁的效果,同时影响永磁磁场轴线沿第一转动方向的偏离,第一内磁桥18的厚度L6过小,会影响转子铁心10的机械强度,在上述尺寸范围内,同时兼顾了减少漏磁、提高合成转矩峰值和保证机械强度的要求,结构设计更合理。
如图1所示,在第二隔磁结构为第二内磁桥19的实施例中,第二内磁桥19沿转子铁心10的周向的厚度L7等于4mm,或者大于0mm且小于4mm,即0mm<L7≤4mm。例如,在一些具体实施例中,L7可以为0.5mm、1mm、1.5mm、2mm、3mm、3.5mm和4mm等。第二内磁桥 19的厚度L7过大,会削弱减少漏磁的效果,同时影响永磁磁场轴线沿第一转动方向的偏离,第二内磁桥19的厚度L7过小,会影响转子铁心10的机械强度,在上述尺寸范围内,同时兼顾了减少漏磁、提高合成转矩峰值和保证机械强度的要求,结构设计更合理。
在本申请的实施例中,如图1所示,转子铁心10包括第一部分101和第二部分102。其中,第一部分101位于槽组11的靠近转子铁心10的中心点的一侧,第二部分102位于槽组11的远离转子铁心10的中心点的一侧,并且第一部分101和第二部分102通过第一连接部连接,以使转子铁心10连接成一个整体,保证转子铁心10的结构可靠性,同时提高转子铁心10对第一永磁体20和第二永磁体30的固定稳定性。
此外,参照图1所示,第二部分102包括第三部分103和第四部分104,其中,在转子铁心10的周向上,第三部分103位于第一槽体13和第二槽体14之间,第四部分104位于空气槽12和第一槽体13之间。在一些实施例中,第三部分103和第四部分104分别与第一部分101通过第一连接部连接,且第三部分103和第四部分104彼此不直接连接,以实现第一部分101和第二部分102的连接;在另一些实施例中,第三部分103和第四部分104通过第二连接部连接,并且第三部分103和第四部分104中的至少一个通过第一连接部与第一部分101连接,从而实现第一部分101和第二部分102的连接。
在本申请的一些实施例中,第一连接部可以包括第二外磁桥16、第三外磁桥17、第一内磁桥18和第二内磁桥19,第二连接部可以为第一外磁桥15。具体地,在设有第一外磁桥15的实施例中,转子铁心10上可以设有第二外磁桥16、第三外磁桥17、第一内磁桥18和第二内磁桥19中的至少一个,在未设有第一外磁桥15的实施例中,即第三隔磁结构为第一槽口的实施例中,转子铁心10上,第二外磁桥16和第二内磁桥19至少设有一个,且第三外磁桥17和第一内磁桥18至少设有一个。
例如,在一些具体实施例中,转子铁心10可以设有第一外磁桥15和第二外磁桥16、或者第一外磁桥15和第三外磁桥17、或者第一外磁桥15和第一内磁桥18、或者第一外磁桥15和第二内磁桥19、或者第二外磁桥16和第三外磁桥17、或者第二外磁桥16和第二内磁桥19、或者第三外磁桥17和第一内磁桥18、或者第一内磁桥18和第二内磁桥19。
例如,在一些具体实施例中,转子铁心10可以设有第一外磁桥15、第二外磁桥16、第三外磁桥17、第一内磁桥18和第二内磁桥19中的任意三种磁桥。例如,在一些具体实施例中,转子铁心10可以设有第一外磁桥15、第二外磁桥16、第三外磁桥17、第一内磁桥18和第二内磁桥19中的任意四种磁桥。例如,在一些具体实施例中,转子铁心10可以同时设有第一外磁桥15、第二外磁桥16、第三外磁桥17、第一内磁桥18和第二内磁桥19五种磁桥。这都在本申请的保护范围之内。
在本申请的实施例中,第一槽体13、第二槽体14和空气槽12的具体延伸结构可以根据 实际情况灵活设置。
在一些实施例中,如图6所示,第一槽体13可以包括一个第一槽段131,该第一槽段131内安装有至少一个第一永磁体20。在另一些实施例中,如图1和图5所示,第一槽体13可以包括多个第一槽段131,其中至少一个第一槽段131内设有至少一个第一永磁体20,也就是说,可以其中一个第一槽段131内设有至少一个第一永磁体20,也可以多个第一槽段131内均设有至少一个第一永磁体20。多个第一槽段131的延伸方向相同或者不相同,而未安装有第一永磁体20的第一槽段131则形成为空气段。换言之,第一槽体13可以包括A个第一槽段131,A个第一槽段131中的B个内安装有第一永磁体20,C个内未安装有第一永磁体20,A=B+C,且A≥1,B≥1,C≥0。
例如,在如图1和图5所示的示例中,第一槽体13包括两个第一槽段131,这两个第一槽段131彼此连通且延伸方向不相同,其中靠近转子铁心10的外周面的第一槽段131内设有第一永磁体20,第一永磁体20与转子铁心10的外周面的距离更近,有利于提高电磁转矩,靠近转子铁心10的中心点的第一槽段131还能够降低该第一永磁体20的端部漏磁,有利于提高第一永磁体20的利用率。
需要说明的是,在本申请的实施例中,每个第一槽体13中的第一槽段131的数量不超过3个,即A≤3,第一槽体13的结构简单,有利于降低加工工艺难度,易于设计和加工,且有利于简化第一槽体13内第一永磁体20的结构。
在一些实施例中,如图1和图5所示,第二槽体14可以包括一个第二槽段141,该第二槽段141内安装有至少一个第二永磁体30。在另一些实施例中,如图6所示,第二槽体14可以包括多个第二槽段141,其中至少一个第二槽段141内设有至少一个第二永磁体30,也就是说,可以其中一个第二槽段141内设有至少一个第二永磁体30,也可以多个第二槽段141内均设有至少一个第二永磁体30。多个第二槽段141的延伸方向相同或者不相同,而未安装有第二永磁体30的第二槽段141则形成为空气段。换言之,第二槽体14可以包括D个第二槽段141,D个第二槽段141中的E个内安装有第二永磁体30,F个内未安装有第二永磁体30,D=E+F,且D≥1,E≥1,F≥0。
例如,在如图6所示的示例中,第二槽体14包括两个第二槽段141,这两个第二槽段141彼此连通且延伸方向不相同,其中靠近转子铁心10的外周面的第二槽段141内设有第二永磁体30,第二永磁体30与转子铁心10的外周面的距离更近,有利于提高电磁转矩,靠近转子铁心10的中心点的第二槽段141还能够减少该第二永磁体30的端部漏磁,有利于提高第二永磁体30的利用率。
需要说明的是,在本申请的实施例中,每个第二槽体14中的第二槽段141的数量不超过3个,即D≤3,第二槽体14的结构简单,有利于降低加工工艺难度,易于设计和加工, 提高机械强度,且有利于简化第二槽体14内第二永磁体30的结构。
在一些实施例中,如图1和图6所示,空气槽12可以包括一个第三槽段121。在另一些实施例中,如图5所示,空气槽12可以包括多个第三槽段121,多个第三槽段121的延伸方向相同或者不相同。换言之,空气槽12可以包括G个第三槽段121,且G≥1。
例如,在如图5所示的示例中,空气槽12包括两个第三槽段121,这两个第三槽段121彼此连通且延伸方向不相同。其中靠近转子铁心10的外周面的第三槽段121与第一槽体13之间的转子铁心10部分的宽度更均匀,以利于提高机械强度,满足高速运行应力要求。
第一槽体13、第二槽体14和空气槽12的槽壁面结构也可也根据实际情况需要灵活设置。
在一些实施例中,如图1所示,在转子100的周向上,第一槽体13的安装有第一永磁体20的部分具有彼此相对且相互平行的两个第一槽壁面,这两个第一槽壁面为平面,且这两个第一槽壁面分别与第一永磁体20的两个侧面平行,以使第一永磁体20能够通过第一槽体13的这两个第一槽壁面进行限位,防止第一永磁体20发生晃动甚至脱出,且第一永磁体20和第一槽体13的结构简单,易于加工和装配。
例如,在第一槽体13包括第一槽段131的实施例中,安装有第一永磁体20的第一槽段131具有彼此相对且平行的两个第一槽壁平面132,两个第一槽壁平面132形成为上述的第一槽壁面且分别与第一永磁体20的两个侧面平行,通过两个第一槽壁平面132可以对第一永磁体20进行可靠限位。
在一些实施例中,如图1所示,在转子100的周向上,第二槽体14的安装有第二永磁体30的部分具有彼此相对且相互平行的两个第二槽壁面,这两个第二槽壁面为平面,且这两个第二槽壁面分别与第二永磁体30的两个侧面平行,以使第二永磁体30能够通过第二槽体14的这两个第二槽壁面进行限位,防止第二永磁体30发生晃动甚至脱出,且第二永磁体30和第二槽体14的结构简单,易于加工和装配。
例如,在第二槽体14包括第二槽段141的实施例中,安装有第二永磁体30的第二槽段141具有彼此相对且平行的两个第二槽壁平面142,两个第二槽壁平面142形成为上述的第二槽壁面且分别与第二永磁体30的两个侧面平行,通过两个第二槽壁平面142可以对第二永磁体30进行可靠限位。
根据本申请的一些实施例,第一永磁体20和第二永磁体30中的至少一个垂直于转子100的轴向的截面为长方形。第一永磁体20和第二永磁体30的结构更加简单,有利于降低加工工艺难度,减小加工误差,第一永磁体20与第一槽段131、第二永磁体30与第二槽段141不易因加工误差大而导致难以装配或永磁体易脱落,有利于提高合格率。
此外,在本申请的一些实施例中,未安装有第一永磁体20的第一槽段131的槽壁面为平面、弧面、折弯面中的一种或多种组合,未安装有第二永磁体30的第二槽段141的槽壁 面为平面、弧面、折弯面中的一种或多种组合,第三槽段121的槽壁面为平面、弧面、折弯面中的一种或多种组合,这都在本申请的保护范围之内。
需要说明的是,这里“平面、弧面、折弯面中的一种或多种组合”是指,第一槽段131(或第二槽段141、第三槽段121)的槽壁面可以仅为平面、弧面或者折弯面,或者第一槽段131(或第二槽段141、第三槽段121)的槽壁面可以包括平面、弧面和折弯面中两种,再或者第一槽段131(或第二槽段141、第三槽段121)的槽壁面可以同时包括平面、弧面和折弯面三种结构。当然,第一槽段131、第二槽段141和第三槽段121的槽壁面形状包括但不限于前面所说的平面、弧面和折弯面,根据实际情况需要,还可以设置为任意所需形状。
另外,需要说明的是,在第一槽体13包括多个第一槽段131的实施例中,多个第一槽段131的槽壁面可以通过直线边缘连接或通过弧线边缘连接;在第二槽体14包括多个第二槽段141的实施例中,多个第二槽段141的槽壁面可以通过直线边缘连接或通过弧线边缘连接;在空气槽12包括多个第三槽段121的实施例中,多个第三槽段121的槽壁面可以通过直线边缘连接或通过弧线边缘连接,这都在本申请的保护范围之内。通过直线边缘连接或通过弧线边缘连接有利于减少相邻两个第一槽段131(或相邻两个第二槽段141、或相邻两个第三槽段121)的连接处的应力集中,有利于提高机械强度,提高高速性能。
在本申请的实施例中,空气槽12、第一槽体13和第二槽体14构成的槽组11,既可以在单层内置式永磁电机转子100中作为其转子槽,也可以在满足几何约束要求的前提下,在多层内置式永磁电机转子100中作为其中的任意一层转子槽。
换言之,在本申请的一些实施例中,如图7-图13所示,转子100的同一磁极下包括多层永磁体结构,这里所说的多层永磁体结构,是指在转子100的径向截面内,永磁体结构为多层。转子铁心10的位于相邻两层永磁体结构之间的部分允许磁通通过。同一个槽组11内的第一永磁体20和第二永磁体30构成其中一层永磁体结构。
在一些实施例中,转子100为多层内置式永磁电机的转子100,并且转子100还包括多个第三永磁体40,相应地,转子铁心10设有用于安装第三永磁体40的第三槽体41。多个第三永磁体40安装于转子铁心10,并且多个第三永磁体40沿转子铁心10的周向分布。第三永磁体40构成多层永磁体结构中的其中另一层永磁体结构,也就是说,同一个槽组11内的第一永磁体20和第二永磁体30、以及第三永磁体40构成多层永磁体结构中的两层永磁体结构,第三槽体41和槽组11构成多层内置式电机转子100的两层转子槽。
例如,在一些具体实施例中,如图7所示,在转子铁心10的周向上,相邻两个槽组11之间设有第三槽体41,且第三槽体41内设有第三永磁体40,并且第三永磁体40沿转子铁心10的径向延伸(例如图7所示)或倾斜于转子铁心10的径向延伸。也就是说,第三永磁体40为轮辐式永磁体结构,不对称的三叉戟式槽组11内的第一永磁体20和第二永磁体30 能够与对称或者不对称的辐式永磁体结构相结合,以配合得到更大的合成转矩,以及实现永磁转矩和磁阻转矩分量更高的利用率。
需要说明的是,与辐式永磁体结构相结合的槽组11包括但不限于图7中实施例所示的结构,在另一些实施例中,与辐式永磁体结构相结合的槽组11还可以为图5中实施例、图6中实施例或其它实施例中的不对称的三叉戟式槽组11,这都在本申请的保护范围之内。
例如,在另一些具体实施例中,如图8-图11所示,在转子铁心10的周向上,槽组11的第一槽体13和第二槽体14之间设有第三槽体41,第三槽体41内设有第三永磁体40,槽组11形成为内层转子槽,第三槽体41形成为外层转子槽。其中,第三永磁体40可以垂直于转子铁心10的径向延伸(例如图8和图9所示)、或倾斜于转子铁心10的径向延伸(例如图10所示)、或设置成V形永磁体结构(例如图11所示)。这里,“设置成V形永磁体结构”可以理解为一个第三永磁体40在垂直于转子100的轴向的截面为V形,或者在垂直于转子100的轴向的截面上,多个第三永磁体40沿V形排布。
需要说明的是,第一槽体13和第二槽体14之间的V形永磁体结构可以为如图11所示的对称永磁体结构,即V形的两条边长度相等,V形永磁体结构也可以为不对称永磁体结构,即V形的两条边长度不相等。也就是说,第三永磁体40为“一”字形永磁体结构或V形永磁体结构,不对称的三叉戟式槽组11结构能够与对称或者不对称的“一”字型永磁体结构相结合,或者能够与对称或者不对称的V形永磁体结构相结合,以配合得到更大的合成转矩,以及实现永磁转矩和磁阻转矩分量更高的利用率。另外,需要说明的是,与“一”字形永磁体结构和V形永磁体结构相结合的槽组11包括但不限于图8-图11中实施例所示的结构,只需要满足几何约束要求即可。
例如,在又一些实施例中,如图12和图13所示,槽组11的靠近转子铁心10的中心点的一侧设有第三槽体41,第三槽体41内设有第三永磁体40,槽组11形成为外层转子槽,第三槽体41形成为内层转子槽。其中,第三槽体41为V形槽体且第三永磁体40设置成V形永磁体结构(例如图12所示),V形槽体的开口背向转子铁心10的中心点,槽组11位于V形槽体所围设的区域内。或者,第三槽体41为U形槽体且第三永磁体40设置成U形永磁体结构(例如图13所示),U形槽体的开口背向转子铁心10的中心点,槽组11位于U形槽体所围设的区域内。
需要说明的是,设于槽组11的靠近转子铁心10的中心点的一侧的V形永磁体结构可以为如图12所示的对称永磁体结构,即V形的两条边长度相等,V形永磁体结构也可以为不对称永磁体结构,即V形的两条边长度不相等。U形永磁体结构可以为如图13所示的对称永磁体结构,即U形的两侧边相对于底边的中心线对称,U形永磁体结构也可以为不对称永磁体结构,即U形的两侧边相对于底边的中心线不对称。
也就是说,第三永磁体40为V形永磁体结构或U形永磁体结构,不对称的三叉戟式槽组11能够与对称或者不对称的V形永磁体结构相结合,或者与对称或不对称的U形永磁体结构相结合,以配合得到更大的合成转矩,以及实现永磁转矩和磁阻转矩分量更高的利用率。另外,需要说明的是,与V形永磁体结构和U形永磁体结构相结合的槽组11包括但不限于图12和图13中实施例所示的结构,只需要满足几何约束要求即可。
在本申请的实施例中,如图14所示,同一槽组11内的第一永磁体20和第二永磁体30的充磁方向相同。换言之,同一个槽组11内的第一永磁体20和第二永磁体30所产生的气隙磁场相互增强。具体地,磁场在永磁体(包括第一永磁体20和第二永磁体30)内部由其外表征的S极指向N极方向,同一槽组11内的第一永磁体20和第二永磁体30对应同一极,同一极下的第一永磁体20和第二永磁体30产生在气隙中具有相同径向方向的磁通,使得同一槽组11内的各永磁体的充磁方向均相互增强其他永磁体所产生的气隙磁场。相邻槽组11内的第一永磁体20的充磁方向相反,相邻槽组11内的第二永磁体30的充磁方向相反,以利于形成闭合磁路。
在第一永磁体20(或第二永磁体30)垂直于转子100的轴向的截面为长方形的实施例中,第一永磁体20沿长方形的短边充磁,即垂直于长方形的长边充磁,即充磁方向与长方形的短边平行。
在本申请的一些实施例中,如图14所示,槽组11的数量为M,转子100的极数为K,M等于K,即M=K。也就是说,每个磁极对应一个槽组11以及该槽组11内的第一永磁体20、第二永磁体30,每个磁极下转子槽结构更简单,降低了结构设计难度,且提高了结构强度。
例如在一些具体实施例中,转子100的极数K为偶数且满足4≤K≤12,也就是说,转子100可以为四极、六极、八极、十极或者十二极,使转子100可以满足更多电机的使用需求,并且相应的槽组11、第一永磁体20、第二永磁体30的尺寸设计也可以更合理,以利于提高电磁转矩和结构强度。
根据本申请实施例的驱动电机包括根据本申请实施例的电机的转子100。由于根据本申请实施例的电机的转子100具有上述有益的技术效果,因此根据本申请实施例的驱动电机,利用不对称的转子100结构,在相同永磁体用量与转子100内外径的前提下明显的减小了永磁转矩和磁阻转矩峰值点所对应的电流超前角的差值,从而提高了电机的峰值转矩与在峰值转矩点永磁转矩与磁阻转矩分量的利用率,由此,既有利于提高电机的功率密度,又有利于降低永磁漏磁,提高材料利用率,减少永磁体的用量,降低生产成本。
该转子100用于驱动电机时,可以提高驱动电机的扭矩,车辆的爬坡能力强,起动、加速能力强,驱动电机的高速性能好,最高转速大,则驱动电机的体积与重量可做小,节省了空间,降低了车辆的重量。驱动电机调速范围宽,能够满足车辆在不同路况时的要求。
根据本申请实施例的车辆包括根据本申请实施例的驱动电机。由于根据本申请实施例的驱动电机具有上述有益的技术效果,因此根据本申请实施例的车辆,利用不对称的转子100结构,在相同永磁体用量与转子100内外径的前提下明显的减小了永磁转矩和磁阻转矩峰值点所对应的电流超前角的差值,从而提高了电机的峰值转矩与在峰值转矩点永磁转矩与磁阻转矩分量的利用率,由此,既有利于提高电机的功率密度,又有利于降低永磁漏磁,提高材料利用率,减少永磁体的用量,降低生产成本。
该驱动电机用于车辆时,可以提高驱动电机的扭矩,车辆的爬坡能力强,起动、加速能力强,驱动电机的高速性能好,最高转速大,则驱动电机的体积与重量可做小,节省了空间,降低了车辆的重量。驱动电机调速范围宽,能够满足车辆在不同路况时的要求。
根据本申请实施例的车辆、驱动电机和转子100的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,参考术语“实施例”、“具体实施例”、“示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (22)

  1. 一种电机的转子,其特征在于,所述转子包括:
    转子铁心,所述转子铁心设有多个槽组,多个所述槽组沿所述转子铁心的周向分布,每个所述槽组包括空气槽、第一槽体和第二槽体,所述空气槽、所述第一槽体和所述第二槽体的靠近所述转子铁心的中心点的一端彼此靠近而远离所述转子铁心的中心点的一端彼此远离,所述空气槽和所述第一槽体的彼此靠近的一端之间设有第一隔磁结构,所述第一槽体和所述第二槽体的彼此靠近的一端之间设有第二隔磁结构,所述空气槽、所述第一槽体和所述第二槽体的远离所述转子铁心的中心点的一端沿所述转子的第一转动方向分布;
    多个第一永磁体和多个第二永磁体,所述第一永磁体安装于所述第一槽体内,所述第二永磁体安装于所述第二槽体内。
  2. 根据权利要求1所述的电机的转子,其特征在于,所述第一槽体的远离所述转子铁心的中心点的一侧设有第三隔磁结构,所述第二槽体的远离所述转子铁心的中心点的一侧设有第四隔磁结构,所述空气槽的远离所述转子铁心的中心点的一侧设有第五隔磁结构,其中,
    沿着所述第一转动方向,所述第三隔磁结构的滞后端点和所述第五隔磁结构的滞后端点分别与所述转子铁心的中心点的连线的夹角为α,所述第三隔磁结构的滞后端点和所述第四隔磁结构的超前端点分别与所述转子铁心的中心点的连线的夹角为β,所述α小于所述β。
  3. 根据权利要求1或2所述的电机的转子,其特征在于,所述第一永磁体的靠近所述转子铁心的中心点的一端和远离所述转子铁心的中心点的一端的间距为L1,所述第二永磁体的靠近所述转子铁心的中心点的一端和远离所述转子铁心的中心点的一端的间距为L2,所述L1小于或者等于所述L2。
  4. 根据权利要求1-3中任一项所述的电机的转子,其特征在于,所述第一隔磁结构为位于所述空气槽和所述第一槽体的彼此靠近的一端之间的第一内磁桥,或为连通所述空气槽和所述第一槽体的彼此靠近的一端的第一连通口;和/或,
    所述第二隔磁结构为位于所述第一槽体和所述第二槽体的彼此靠近的一端之间的第二内磁桥,或为连通所述第一槽体和所述第二槽体的彼此靠近的一端的第二连通口。
  5. 根据权利要求1-4中任一项所述的电机的转子,其特征在于,所述第一隔磁结构为位于所述空气槽和所述第一槽体的彼此靠近的一端之间的第一内磁桥,所述第一内磁桥沿所述转子铁心的周向的厚度等于4mm,或者大于0mm且小于4mm;和/或,
    所述第二隔磁结构为位于所述第一槽体和所述第二槽体的彼此靠近的一端之间的第二内磁桥,所述第二内磁桥沿所述转子铁心的周向的厚度等于4mm,或者大于0mm且小于4mm。
  6. 根据权利要求1-5中任一项所述的电机的转子,其特征在于,
    所述第一槽体的远离所述转子铁心的中心点的一侧设有第三隔磁结构,所述第三隔磁结构为位于所述第一槽体的远离所述转子铁心的中心点的一端与所述转子铁心的外周面之间的第一外磁桥;或者,所述第三隔磁结构为所述第一槽体的远离所述转子铁心的中心点的一端延伸至所述转子铁心的外周面且在所述转子铁心的外周面形成的第一槽口;和/或,
    所述第二槽体的远离所述转子铁心的中心点的一侧设有第四隔磁结构,所述第四隔磁结构为位于所述第二槽体的远离所述转子铁心的中心点的一端与所述转子铁心的外周面之间的第二外磁桥;或者,所述第四隔磁结构为所述第二槽体的远离所述转子铁心的中心点的一端延伸至所述转子铁心的外周面且在所述转子铁心的外周面形成的第二槽口;和/或,
    所述空气槽的远离所述转子铁心的中心点的一侧设有第五隔磁结构,所述第五隔磁结构为位于所述空气槽的远离所述转子铁心的中心点的一端与所述转子铁心的外周面之间的第三外磁桥;或者,所述第五隔磁结构为所述空气槽的远离所述转子铁心的中心点的一端延伸至所述转子铁心的外周面且在所述转子铁心的外周面形成的第三槽口。
  7. 根据权利要求1-6中任一项所述的电机的转子,其特征在于,
    所述第一槽体的远离所述转子铁心的中心点的一端与所述转子铁心的外周面之间形成有第一外磁桥,所述第一外磁桥沿所述转子铁心的径向的厚度等于3.5mm,或者大于0mm且小于3.5mm;和/或,
    所述第二槽体的远离所述转子铁心的中心点的一端与所述转子铁心的外周面之间形成有第二外磁桥,所述第二外磁桥沿所述转子铁心的径向的厚度等于3.5mm,或者大于0mm且小于3.5mm;和/或,
    所述空气槽的远离所述转子铁心的中心点的一端与所述转子铁心的外周面之间形成有第三外磁桥,所述第三外磁桥沿所述转子铁心的径向的厚度等于3.5mm,或大于0mm且小于3.5mm。
  8. 根据权利要求1-7中任一项所述的电机的转子,其特征在于,所述转子铁心包括:
    第一部分,所述第一部分位于所述槽组的靠近所述转子铁心的中心点的一侧;
    第二部分,所述第二部分位于所述槽组的远离所述转子铁心的中心点的一侧,所述第二部分与所述第一部分通过第一连接部连接,且所述第二部分包括第三部分和第四部分,在所述转子铁心的周向上,所述第三部分位于所述第一槽体和所述第二槽体之间,所述第四部分位于所述第一槽体和所述空气槽之间,其中,
    所述第三部分和所述第四部分分别通过所述第一连接部与所述第一部分连接且所述第三部分和所述第四部分不直接连接,或者,所述第三部分与所述第四部分通过第二连接部连接且所述第三部分和所述第四部分中的至少一个与所述第一部分通过所述第一连接部连接。
  9. 根据权利要求1-8中任一项所述的电机的转子,其特征在于,所述转子的极数为K,所述第二槽体的远离所述转子铁心的中心点的一侧设有第四隔磁结构,所述空气槽的远离所述转子铁心的中心点的一侧设有第五隔磁结构,沿着所述第一转动方向,所述第五隔磁结构的滞后端点和所述第四隔磁结构的超前端点分别与所述转子铁心的中心点的连线的夹角为γ,所述γ小于或者等于170°/K。
  10. 根据权利要求1-9中任一项所述的电机的转子,其特征在于,
    所述第一槽体包括至少一个第一槽段,至少一个所述第一槽段内安装有所述第一永磁体,多个所述第一槽段的延伸方向相同或不相同;
    所述第二槽体包括至少一个第二槽段,至少一个所述第二槽段内安装有所述第二永磁体,多个所述第二槽段的延伸方向相同或不相同。
  11. 根据权利要求10所述的电机的转子,其特征在于,每个所述第一槽体中的所述第一槽段的数量不超过3个,每个所述第二槽体中的所述第二槽段的数量不超过3个。
  12. 根据权利要求10或11所述的电机的转子,其特征在于,未安装有所述第一永磁体的所述第一槽段的槽壁面为平面、弧面、折弯面中的一种或多种组合,未安装有所述第二永磁体的所述第二槽段的槽壁面为平面、弧面、折弯面中的一种或多种组合。
  13. 根据权利要求1-12中任一项所述的电机的转子,其特征在于,所述空气槽包括至少一个第三槽段,所述第三槽段的槽壁面为平面、弧面、折弯面中的一种或多种组合。
  14. 根据权利要求1-13中任一项所述的电机的转子,其特征在于,所述转子的同一磁极下包括多层永磁体结构,同一个所述槽组内的所述第一永磁体和所述第二永磁体构成其中一层所述永磁体结构。
  15. 根据权利要求14所述的电机的转子,其特征在于,还包括:
    多个第三永磁体,多个所述第三永磁体安装于所述转子铁心且沿所述转子铁心的周向分布,所述第三永磁体构成其中另一层所述永磁体结构。
  16. 根据权利要求15所述的电机的转子,其特征在于,在所述转子铁心的周向上所述槽组的所述第一槽体和所述第二槽体之间设有所述第三永磁体,所述第三永磁体垂直于所述转子铁心的径向延伸或倾斜于所述转子铁心的径向延伸或设置成V形永磁体结构。
  17. 根据权利要求15所述的电机的转子,其特征在于,在所述转子铁心的周向上相邻两个所述槽组之间设有所述第三永磁体,所述第三永磁体沿所述转子铁心的径向延伸或倾斜于所述转子铁心的径向延伸。
  18. 根据权利要求15所述的电机的转子,其特征在于,所述槽组的靠近所述转子铁心的中心点的一侧设有第三槽体,所述第三槽体为V形槽体或U形槽体,所述第三永磁体设于所述第三槽体内,所述第三永磁体设置成V形永磁体结构或U形永磁体结构,所述槽组 位于所述V形槽体或所述U形槽体所围设的区域内。
  19. 根据权利要求1-18中任一项所述的电机的转子,其特征在于,同一所述槽组内的所述第一永磁体和所述第二永磁体所产生的气隙磁场相互增强,相邻所述槽组内的所述第一永磁体的充磁方向相反,相邻所述槽组内的所述第二永磁体的充磁方向相反。
  20. 根据权利要求1-19中任一项所述的电机的转子,其特征在于,所述槽组的数量为M,所述转子的极数为K,所述M等于所述K。
  21. 一种驱动电机,其特征在于,包括根据权利要求1-20中任一项所述的电机的转子。
  22. 一种车辆,其特征在于,包括根据权利要求21所述的驱动电机。
PCT/CN2019/130064 2019-12-30 2019-12-30 电机的转子、驱动电机和车辆 WO2021134276A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19958192.7A EP3955427B1 (en) 2019-12-30 2019-12-30 Rotor of electric motor, driving electric motor, and vehicle
PCT/CN2019/130064 WO2021134276A1 (zh) 2019-12-30 2019-12-30 电机的转子、驱动电机和车辆
US17/515,978 US12003140B2 (en) 2019-12-30 2021-11-01 Rotor for motor, drive motor and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130064 WO2021134276A1 (zh) 2019-12-30 2019-12-30 电机的转子、驱动电机和车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/515,978 Continuation US12003140B2 (en) 2019-12-30 2021-11-01 Rotor for motor, drive motor and vehicle

Publications (1)

Publication Number Publication Date
WO2021134276A1 true WO2021134276A1 (zh) 2021-07-08

Family

ID=76686253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130064 WO2021134276A1 (zh) 2019-12-30 2019-12-30 电机的转子、驱动电机和车辆

Country Status (3)

Country Link
US (1) US12003140B2 (zh)
EP (1) EP3955427B1 (zh)
WO (1) WO2021134276A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113489200A (zh) * 2021-08-20 2021-10-08 浙江浙能技术研究院有限公司 新型不对称交替极转子

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116566087B (zh) * 2023-05-16 2024-02-13 山东理工大学 削弱谐波磁场的极间非对称永磁发电机及稳压发电系统
CN116742856B (zh) * 2023-07-03 2024-05-31 山东理工大学 一种带有圆弧形隔磁障的磁场分布可调电机
CN116742857B (zh) * 2023-07-03 2024-08-30 山东理工大学 少稀土非对称磁极稀土永磁驱动电机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150171683A1 (en) * 2013-12-12 2015-06-18 Samsung Electronics Co., Ltd. Motor
CN107317415A (zh) * 2017-07-12 2017-11-03 中国北方车辆研究所 一种v字型不对称永磁电机转子
CN108418321A (zh) * 2018-03-13 2018-08-17 东南大学 一种非对称转子型永磁电机
CN208316442U (zh) * 2018-06-25 2019-01-01 苏州汇川联合动力系统有限公司 转子和永磁电机
CN208923939U (zh) * 2018-11-07 2019-05-31 珠海格力节能环保制冷技术研究中心有限公司 电机转子及电机
CN110323863A (zh) * 2019-06-11 2019-10-11 东南大学 非对称混合磁极型永磁电机
WO2019220798A1 (ja) * 2018-05-16 2019-11-21 株式会社デンソー 回転電機

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104962A (ja) 2002-09-12 2004-04-02 Toshiba Industrial Products Manufacturing Corp 永久磁石式リラクタンス型回転電機
JP4449035B2 (ja) * 2004-03-10 2010-04-14 日立オートモティブシステムズ株式会社 電動車両用の永久磁石回転電機
US8044548B2 (en) * 2006-08-23 2011-10-25 Kabushiki Kaisha Toshiba Permanent-magnet-type rotating electrical machine
JP5212680B2 (ja) * 2006-12-12 2013-06-19 日本電産株式会社 モータ
JP4404223B2 (ja) 2007-03-20 2010-01-27 株式会社安川電機 電磁鋼板形成体、電磁鋼板積層体、これを備えた永久磁石形同期回転電機用回転子、永久磁石形同期回転電機、該回転電機を用いた車両、昇降機、流体機械、加工機
US7791236B2 (en) * 2007-08-16 2010-09-07 Ford Global Technologies, Llc Permanent magnet machine
US8179011B2 (en) * 2008-12-17 2012-05-15 Asmo Co., Ltd. Brushless motor
JP5480176B2 (ja) * 2011-02-03 2014-04-23 アイシン・エィ・ダブリュ株式会社 回転電機用回転子
US8487494B2 (en) 2011-09-21 2013-07-16 GM Global Technology Operations LLC Interior permanent magnet machine with radially asymmetric magnet configuration
JP6007593B2 (ja) * 2012-05-25 2016-10-12 株式会社ジェイテクト ロータ及びこれを備えた回転電機、及びロータの製造方法
US20170155294A1 (en) * 2015-11-26 2017-06-01 New Widetech Industries Co., Ltd. Interior permanent magnet motor with flux strengthening
CN105914925B (zh) 2016-05-18 2018-04-13 江苏仪能电机有限公司 一种高转矩密度永磁磁阻同步电机转子结构
CN106026585B (zh) 2016-08-01 2018-09-11 哈尔滨工业大学 增磁式内置u型可调磁通电机
US10516307B2 (en) 2016-08-30 2019-12-24 Hamilton Sundstrand Corporation Interior permanent magnet motor/rotor with curved and spoke-type permanent magnets
JP6903144B2 (ja) * 2017-09-28 2021-07-14 三菱電機株式会社 永久磁石式回転電機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150171683A1 (en) * 2013-12-12 2015-06-18 Samsung Electronics Co., Ltd. Motor
CN107317415A (zh) * 2017-07-12 2017-11-03 中国北方车辆研究所 一种v字型不对称永磁电机转子
CN108418321A (zh) * 2018-03-13 2018-08-17 东南大学 一种非对称转子型永磁电机
WO2019220798A1 (ja) * 2018-05-16 2019-11-21 株式会社デンソー 回転電機
CN208316442U (zh) * 2018-06-25 2019-01-01 苏州汇川联合动力系统有限公司 转子和永磁电机
CN208923939U (zh) * 2018-11-07 2019-05-31 珠海格力节能环保制冷技术研究中心有限公司 电机转子及电机
CN110323863A (zh) * 2019-06-11 2019-10-11 东南大学 非对称混合磁极型永磁电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3955427A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113489200A (zh) * 2021-08-20 2021-10-08 浙江浙能技术研究院有限公司 新型不对称交替极转子

Also Published As

Publication number Publication date
EP3955427A4 (en) 2022-08-03
EP3955427A1 (en) 2022-02-16
US20220060071A1 (en) 2022-02-24
EP3955427B1 (en) 2024-09-11
US12003140B2 (en) 2024-06-04

Similar Documents

Publication Publication Date Title
WO2021134276A1 (zh) 电机的转子、驱动电机和车辆
US11177707B2 (en) Motor rotor and permanent magnet motor
EP3672027B1 (en) Motor rotor and permanent magnet motor
US11637464B2 (en) Rotor structure, permanent magnet auxiliary synchronous reluctance motor and electric vehicle
WO2019174327A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
CN110048530B (zh) 一种永磁辅助同步磁阻电机的转子结构及设计方法
WO2019174316A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
WO2019174314A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
US11705767B2 (en) Rotor structure, permanent magnet auxiliary synchronous reluctance motor and electric vehicle
WO2014183410A1 (en) Rotor for permanent magnet motor
WO2019174313A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
CN204205765U (zh) 电机转子及具有其的电机
WO2024078117A1 (zh) 具有磁障的电机转子、电机及压缩机
WO2024078131A1 (zh) 具有磁障的转子、电机及压缩机
JP2005006416A (ja) 自己始動型リラクタンスモータ
CN112968580A (zh) 一种内置式永磁同步电机的转子结构及设计方法
CN113131640B (zh) 电机的转子、驱动电机和车辆
CN116388419A (zh) 一种变磁通高速电机结构
CN113131643B (zh) 电机的转子、驱动电机和车辆
CN113410930A (zh) 电机的转子、电机和车辆
CN113131642B (zh) 电机的转子、驱动电机和车辆
CN212033852U (zh) 电机的转子、电机和车辆
CN113746234A (zh) 一种取向硅钢制作的电机凸极转子
CN113410931B (zh) 电机的转子、电机和车辆
CN212435452U (zh) 转子结构、电机及压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019958192

Country of ref document: EP

Effective date: 20211112

NENP Non-entry into the national phase

Ref country code: DE