WO2019174327A1 - 转子结构、永磁辅助同步磁阻电机及电动汽车 - Google Patents

转子结构、永磁辅助同步磁阻电机及电动汽车 Download PDF

Info

Publication number
WO2019174327A1
WO2019174327A1 PCT/CN2018/119876 CN2018119876W WO2019174327A1 WO 2019174327 A1 WO2019174327 A1 WO 2019174327A1 CN 2018119876 W CN2018119876 W CN 2018119876W WO 2019174327 A1 WO2019174327 A1 WO 2019174327A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnet slot
rotor
rotor body
segment
Prior art date
Application number
PCT/CN2018/119876
Other languages
English (en)
French (fr)
Inventor
黄辉
胡余生
陈彬
肖勇
童童
卢素华
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to EP18909962.5A priority Critical patent/EP3767795B1/en
Priority to DK18909962.5T priority patent/DK3767795T3/da
Priority to US16/981,258 priority patent/US11664692B2/en
Publication of WO2019174327A1 publication Critical patent/WO2019174327A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/103Motors having windings on the stator and a variable reluctance soft-iron rotor without windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to the field of electrical equipment, and in particular to a rotor structure, a permanent magnet assisted synchronous reluctance motor, and an electric vehicle.
  • Electric vehicles have the characteristics of energy saving and environmental protection, and have been rapidly developed.
  • Existing electric vehicle drive motors In order to realize the high power density and high efficiency of the motor, more and more motors use high performance rare earth permanent magnet motors.
  • Rare earth permanent magnet motors can achieve high efficiency and high power density, mainly relying on high-performance rare earth permanent magnets.
  • the most widely used NdFeB rare earth permanent magnets The most widely used NdFeB rare earth permanent magnets.
  • rare earth is a non-renewable resource, the price is relatively expensive, and the fluctuation of rare earth price is also large, which leads to high production cost of electric vehicle driving motor, which is very unfavorable for promoting the comprehensive development of electric vehicle.
  • a ferrite permanent magnet auxiliary synchronous reluctance motor is also applied to an electric vehicle, but the motor has problems of high noise, easy demagnetization, and low efficiency.
  • the main object of the present invention is to provide a rotor structure, a permanent magnet assisted synchronous reluctance motor and an electric vehicle to solve the problem of low efficiency of the motor in the prior art.
  • a rotor structure comprising: a rotor body having a permanent magnet slot group disposed thereon, the permanent magnet slot group including a plurality of permanent magnet slots, and a plurality of permanent magnet slots
  • the first permanent magnet slot includes: a first permanent magnet slot, the first end of the first permanent magnet slot extends toward the pivot hole of the rotor body, and the second end of the first permanent magnet slot Provided toward an outer edge of the rotor body; a first folding groove, the first end of the first folding groove is in communication with the second end of the first permanent magnet groove segment, and the second end of the first folding groove extends toward the outer edge of the rotor body Providing that the distance from the midpoint of the sidewall of the second end of the first chamfer near the outer edge of the rotor body to the point where the geometric center line of the first permanent magnet slot intersects the outer edge of the rotor body is A, The width of the end of the second end of a permanent magnet slot
  • a plane of the side wall of the first folding groove near the straight axis side is coplanar or has an angle with a plane of the side wall of the first permanent magnet groove section on the side close to the straight axis.
  • a first magnetic bridge is formed between the second end of the first chamfer and the outer edge of the rotor body, wherein 0.4 ⁇ M ⁇ (H-H1), or 0.4 ⁇ M ⁇ (H-H1) ⁇ 2 ⁇ M, M is the width of the end of the second end of the first permanent magnet slot segment, H is the distance from the second end of the first permanent magnet slot segment to the outer edge of the rotor body, and H1 is the first magnetic bridge width.
  • the width of the first end of the first folding groove is smaller than the width of the second end of the first permanent magnet groove segment, and/or the width of the second end of the first folding groove is smaller than the width of the second end of the first permanent magnet groove segment.
  • M is the width of the end of the second end of the first permanent magnet slot segment
  • D1 is the first hinge groove The width of the second end.
  • the first permanent magnet slot further includes a second permanent magnet slot segment, the first end of the second permanent magnet slot segment extending toward the shaft hole of the rotor body and communicating with the first end of the first permanent magnet slot segment, a second end of the second permanent magnet slot segment is disposed toward an outer edge of the rotor body, the first permanent magnet slot segment and the second permanent magnet slot segment are located on either side of the straight axis of the rotor body, or the second permanent magnet slot segment
  • the first end extends toward the rotating shaft hole of the rotor body and is disposed at a distance from the first end of the first permanent magnet slot segment, and the second end of the second permanent magnet slot segment is disposed toward the outer edge of the rotor body, the first permanent magnet
  • the slot section and the second permanent magnet slot section are located on either side of the straight axis of the rotor body.
  • the first permanent magnet slot further includes: a second folding groove, the first end of the second folding groove is in communication with the second end of the second permanent magnet groove segment, and the second end of the second folding groove is facing the rotor body
  • the outer edge extends such that the distance between the end of the second chamfer and the axis of intersection of the rotor body is less than the distance between the end of the second end of the second permanent magnet slot and the axis of intersection.
  • first folding groove and the second folding groove are symmetrically arranged about a straight axis.
  • the permanent magnet slot group further includes a second permanent magnet slot disposed adjacent to the first permanent magnet slot, a magnetic flux path is formed between the first permanent magnet slot and the second permanent magnet slot, and the second permanent magnet slot includes a third permanent magnet slot segment, a fourth permanent magnet slot segment and a fifth permanent magnet slot segment are disposed, the third permanent magnet slot segment, the fourth permanent magnet slot segment and the fifth permanent magnet slot segment are sequentially connected to form an opening facing the rotor a U-shaped structure of the outer edge of the body, or a third permanent magnet slot segment, a fourth permanent magnet slot segment and a fifth permanent magnet slot segment are sequentially spaced apart, the third permanent magnet slot segment, the fourth permanent magnet slot segment and A second magnetic bridge is formed between two adjacent ones of the fifth permanent magnet slot segments.
  • the third permanent magnet groove includes a third folding groove, and the first end of the third folding groove communicates with the end of the third permanent magnet groove near the outer edge of the rotor body, and the second end of the third folding groove faces An outer edge of the rotor body extends and gradually approaches the intersecting axis;
  • the fifth permanent magnet slot includes a fourth folded groove, and the first end of the fourth folded groove communicates with an end of the fifth permanent magnet groove adjacent to an outer edge of the rotor body, The second end of the fourth chamfer extends toward the outer edge of the rotor body and gradually approaches the axis of intersection.
  • the third folding groove and the fourth folding groove are symmetrically arranged with respect to the straight axis.
  • extension line between the side walls of the first folding groove and the second folding groove on the side close to the straight axis has an angle A1
  • first permanent magnet groove segment and the second permanent magnet groove segment are close to the straight axis.
  • the extension line between the side walls of one side has an included angle A, where 2 x A ⁇ A1.
  • extension line between the side walls of the third folding groove and the side of the fourth folding groove near the straight axis has an angle B1
  • side of the third permanent magnet groove and the fifth permanent magnet groove near the straight axis has an included angle B, where 2 x B ⁇ B1.
  • the rotor structure further includes a first permanent magnet and a second permanent magnet, the first permanent magnet is disposed in the first permanent magnet slot, and the second permanent magnet is disposed in the second permanent magnet slot.
  • a surface of the first permanent magnet near the side of the straight axis of the rotor body and close to the edge of the rotor body forms an angle ⁇ 1 with the line connecting the shaft hole of the rotor body and the straight axis of the rotor body.
  • the surface of the two permanent magnets near the side of the straight axis of the rotor body and close to the edge of the rotor body forms an angle ⁇ 2 with the line connecting the shaft hole of the rotor body and the straight axis of the rotor body, wherein 1.3 ⁇ ( Sin ⁇ 1/sin ⁇ 2) ⁇ S1/S2 ⁇ 2 ⁇ (sin ⁇ 1/sin ⁇ 2), S1 is the surface area of the first permanent magnet near the straight axis side of the rotor body, and S2 is the straight side of the second permanent magnet close to the rotor body Surface area.
  • the thickness of at least a portion of the second permanent magnet is greater than the thickness of the first permanent magnet.
  • the thickness of the first permanent magnet is M1
  • the thickness of the second permanent magnet is M2, wherein 1.1M1 ⁇ M2 ⁇ 1.8 ⁇ M1.
  • the second permanent magnet slot includes a third permanent magnet slot segment and a fifth permanent magnet slot segment
  • the third permanent magnet slot segment includes a third hinge slot
  • the fifth permanent magnet slot segment includes a fourth hinge slot
  • the third fold The width of the second end of the groove and/or the fourth groove is D2, wherein D2 ⁇ 0.6 ⁇ M2, wherein M2 is the thickness of the second permanent magnet.
  • the length of the surface of the first permanent magnet located in the first permanent magnet slot section or the second permanent magnet slot section on the side close to the straight axis is L, the first permanent magnet slot section and the second permanent magnet slot section
  • the maximum width is C, where 0.8 x C ⁇ L.
  • the width of the magnetic flux guiding passage gradually increases outward in the radial direction of the rotor body, or the width of the magnetic conductive passage gradually decreases outward in the radial direction of the rotor body, or the width of the magnetic conductive passage is along the rotor body.
  • the radial direction gradually increases outwardly and then gradually decreases, or the width of the magnetic conductive channel gradually decreases outward in the radial direction of the rotor body and then gradually increases.
  • the permanent magnet slot group is plural, and the plurality of permanent magnet slot groups are evenly disposed along the rotor body.
  • At least one of the second permanent magnet slot and the first permanent magnet slot is plural.
  • a permanent magnet assisted synchronous reluctance motor comprising a rotor structure which is the rotor structure described above.
  • an electric vehicle comprising a rotor structure which is the rotor structure described above.
  • the first permanent magnet slot includes a first permanent magnet slot segment, a second permanent magnet slot segment and a first hinge slot, and the geometric centerline of the first slot is longitudinally spaced from the straight axis along the rotor
  • the radial direction of the body gradually increases outward.
  • the magnetic circuit of the rotor structure is optimized, the magnetic force of the rotor structure is improved, and the overall anti-demagnetization capability of the rotor structure is effectively improved, thereby improving the inductance of the motor q-axis, reducing the motor torque ripple, and reducing the vibration of the motor.
  • noise effectively improve the motor efficiency of the rotor structure with the structure, and increase the anti-demagnetization capability of the motor.
  • FIG. 1 is a cross-sectional structural view showing a first embodiment of a rotor structure according to the present invention
  • Figure 2 is a cross-sectional structural view showing a second embodiment of a rotor structure according to the present invention.
  • Figure 3 is a schematic view showing the structure of a third embodiment of a rotor structure according to the present invention.
  • Figure 4 is a schematic view showing the structure of a fourth embodiment of a rotor structure according to the present invention.
  • Figure 5 is a schematic view showing the structure of a fifth embodiment of a rotor structure according to the present invention.
  • Figure 6 is a schematic view showing the structure of a sixth embodiment of a rotor structure according to the present invention.
  • Figure 7 is a schematic view showing the q-axis magnetic field walking path of the seventh embodiment of the rotor structure according to the present invention.
  • Figure 8 is a block diagram showing the structure of the eighth embodiment of the rotor structure according to the present invention.
  • FIG. 9 is a schematic view showing a q-axis magnetic line travel path of an embodiment of a conventional rotor structure
  • Figure 10 is a schematic view showing the structure of a ninth embodiment of a rotor structure according to the present invention.
  • Figure 11 is a block diagram showing the structure of a tenth embodiment of a rotor structure according to the present invention.
  • Figure 12 is a view showing the structure of a permanent magnet groove of a rotor structure according to the present invention.
  • Figure 13 is a schematic view showing the structure of the eleventh embodiment of the rotor structure according to the present invention.
  • Figure 14 is a cross-sectional structural view showing a twelfth embodiment of a rotor structure according to the present invention.
  • Figure 15 is a schematic view showing the influence of the length of the permanent groove of the rotor structure on the performance of the motor
  • Figure 16 is a view showing the effect of the width of the end of the groove of the rotor structure according to the present invention on the parameters of the motor;
  • Figure 17 is a view showing the relationship between the ratio of the thickness of the permanent magnet of the rotor structure and the torque
  • Figure 18 is a view showing the influence of the ratio of the first and second permanent magnet groove area ratios of the rotor structure to the flux linkage;
  • Figure 19 is a schematic illustration of the q-axis magnetic field line distribution of a rotor structure in accordance with the present invention.
  • a rotor structure is provided in accordance with an embodiment of the present invention.
  • the rotor structure includes a rotor body 10 on which a permanent magnet slot group is disposed, the permanent magnet slot group includes a plurality of permanent magnet slots, and the multilayer permanent magnet slot includes a first permanent magnet slot 11 and a first permanent magnet
  • the slot 11 includes a first permanent magnet slot segment 111 and a first slotted groove 113.
  • the first end of the first permanent magnet slot segment 111 extends toward the pivot hole of the rotor body 10, and the second end of the first permanent magnet slot segment 111 faces.
  • the outer edge of the rotor body 10 is disposed.
  • the first end of the first folding groove 113 communicates with the second end of the first permanent magnet groove segment 111, and the second end of the first folding groove 113 extends toward the outer edge of the rotor body 10, and the first folding groove 113
  • the distance from the midpoint of the side wall of the two ends near the outer edge of the rotor body 10 to the point where the geometric center line of the first permanent magnet slot section 111 intersects the outer edge of the rotor body 10 is A
  • the first permanent magnet slot section The width of the end of the second end of 111 is M, where 0.6M ⁇ A.
  • the magnetic circuit optimized for the rotor structure is arranged, and the magnetic force of the rotor structure is improved, so that the overall anti-demagnetization capability of the rotor structure is effectively improved, thereby improving the inductance of the motor q-axis and reducing the motor torque.
  • the pulsation reduces the vibration and noise of the motor, effectively improves the efficiency of the motor of the rotor structure having the structure, and increases the anti-demagnetization capability of the motor.
  • the plane of the side wall of the first folding groove 113 on the side close to the straight axis is coplanar or has an angle with the plane of the side wall of the first permanent magnet groove segment 111 on the side close to the straight axis. This arrangement can better guide the stator magnetic lines to enter the magnetic channels more evenly.
  • a first magnetic bridge is formed between the second end of the first folding groove 113 and the outer edge of the rotor body 10, wherein 0.4 ⁇ M ⁇ (H-H1), or 0.4 ⁇ M ⁇ (H-H1) ⁇ 2 ⁇ M, M is the width of the end of the second end of the first permanent magnet slot segment 111, and H is the distance from the second end of the first permanent magnet slot segment 111 to the outer edge of the rotor body 10, H1 is the first The width of the magnetic bridge. This setting allows the magnetic field lines to be guided better and achieves a larger q-axis inductance.
  • the width of the first end of the first folding groove 113 is smaller than the width of the second end of the first permanent magnet groove segment 111, or the width of the second end of the first folding groove 113 is smaller than the second of the first permanent magnet groove segment 111.
  • the first permanent magnet slot 11 further includes a second permanent magnet slot segment 112, and the first end of the second permanent magnet slot segment 112 extends toward the pivot hole of the rotor body 10 and is coupled to the first permanent magnet slot segment.
  • the first end of the first permanent magnet slot section 112 is disposed toward the outer edge of the rotor body 10, and the first permanent magnet slot section 111 and the second permanent magnet slot section 112 are located on the straight axis of the rotor body 10.
  • the second permanent magnet slot section 112 extends toward the shaft hole of the rotor body 10 and is disposed at a distance from the first end of the first permanent magnet slot section 111, the second permanent magnet slot section The second end of the 112 is disposed toward the outer edge of the rotor body 10, and the first permanent magnet slot section 111 and the second permanent magnet slot section 112 are located on either side of the straight axis of the rotor body 10. This setting allows the magnetic field lines to be guided better and achieves a larger q-axis inductance.
  • the first permanent magnet slot 11 further includes a second folding groove 114, and the first end of the second folding groove 114 communicates with the second end of the second permanent magnet groove segment 112, and the second folding groove 114
  • the second end extends toward the outer edge of the rotor body 10, and the distance between the end of the second groove 114 and the intersection of the rotor body 10 is smaller than the end of the second end of the second permanent magnet slot 112 and the axis of intersection. The distance between them. This setting allows the magnetic field lines to be guided better and achieves a larger q-axis inductance.
  • the first folding groove 113 and the second folding groove 114 are symmetrically arranged about a straight axis. This arrangement can better guide the stator magnetic lines to enter the magnetic channels more evenly.
  • the second permanent magnet slot 12 includes a third permanent magnet slot segment 121, a fourth permanent magnet slot segment 122, and a fifth permanent magnet slot segment 123, a third permanent magnet slot segment 121, and a fourth portion.
  • the permanent magnet slot section 122 and the fifth permanent magnet slot section 123 are sequentially in communication to form a U-shaped structure with the opening facing the outer edge of the rotor body 10, or the third permanent magnet slot section 121, the fourth permanent magnet slot section 122, and the fifth
  • the permanent magnet slot segments 123 are disposed at intervals, and a second magnetic bridge is formed between the adjacent two of the third permanent magnet slot segment 121, the fourth permanent magnet slot segment 122, and the fifth permanent magnet slot segment 123. This arrangement enhances the mechanical strength of the rotor.
  • the third permanent magnet slot section 121 includes a third chamfer 124, and the first end of the third chamfer 124 communicates with the end of the third permanent magnet slot section 121 near the outer edge of the rotor body 10.
  • the second end of the third folding groove 124 extends toward the outer edge of the rotor body 10 and gradually approaches the intersecting axis;
  • the fifth permanent magnet groove segment 123 includes a fourth folding groove 125, and the first end and the fifth end of the fourth folding groove 125
  • the end of the permanent magnet slot section 123 adjacent the outer edge of the rotor body 10 communicates with the second end of the fourth chamfer slot 125 extending toward the outer edge of the rotor body 10 and gradually approaching the axis of intersection.
  • the q-axis flux linkage of the stator 40 can be more effectively guided into the respective magnetic channels, thereby increasing the q-axis inductance of the motor and improving the reluctance torque of the motor.
  • third folding groove 124 and the fourth folding groove 125 are symmetrically arranged about a straight axis. This arrangement can better guide the stator magnetic lines to enter the magnetic channels more evenly.
  • the extension line between the side walls of the first folding groove 113 and the side of the second folding groove 114 near the straight axis has an angle A1
  • the first permanent magnet groove segment 111 and the second permanent magnet groove segment 112 are close to each other.
  • the extension line between the side walls of one side of the straight axis has an included angle A, where 2 x A ⁇ A1. This arrangement can more effectively guide the stator q-axis flux lines into the respective magnetic flux channels more evenly.
  • the extension line between the side walls of the third folding groove 124 and the fourth folding groove 125 on the side close to the straight axis has an angle B1, a third permanent magnet groove segment 121 and a fifth permanent magnet groove.
  • the extension line between the side walls of the side of the segment 123 near the straight axis has an angle B, where 2 x B ⁇ B1.
  • the rotor structure further includes a first permanent magnet 20 and a second permanent magnet 30.
  • the first permanent magnet 20 is disposed in the first permanent magnet slot 11
  • the second permanent magnet 30 is disposed in the second permanent magnet slot 12.
  • a fifth angle ⁇ 1 is formed therebetween, a surface of the second permanent magnet 30 near the side of the straight axis of the rotor body 10 and close to the edge of the rotor body 10, and a connection with the shaft hole of the rotor body 10 and the rotor body 10
  • a sixth angle ⁇ 2 is formed between the straight axes, wherein 1.3 ⁇ (sin ⁇ 1/sin ⁇ 2) ⁇ S1/S2 ⁇ 2 ⁇ (sin ⁇ 1/sin ⁇ 2), and S1 is a direct axis of the first permanent magnet 20 close to the rotor body 10.
  • the surface area of the side, S2 is the surface area of the second permanent magnet 30 near the straight axis side of the rotor body 10.
  • the thickness of at least a portion of the second permanent magnet 30 is greater than the thickness of the first permanent magnet 20. This arrangement allows the rotor poles to be evenly distributed over the circumference.
  • the thickness of the first permanent magnet 20 is M1
  • the thickness of the second permanent magnet 30 is M2, wherein 1.1M1 ⁇ M2 ⁇ 1.8 ⁇ M1. This arrangement makes the first and second permanent magnets have the same anti-demagnetization capability.
  • the second permanent magnet slot 12 includes a third permanent magnet slot segment 121 and a fifth permanent magnet slot segment 123.
  • the third permanent magnet slot segment 121 includes a third slotted groove 124 and a fifth permanent magnet slot segment 123.
  • the second end of the third folding groove 125 or the fourth folding groove 125 has a width D2, or the width of the second end of the third folding groove 124 and the fourth folding groove 125 is D2, wherein D2 ⁇ 0.6 ⁇ M2, where M2 is the thickness of the second permanent magnet 30.
  • the midpoint of the line of the sidewall of the first permanent magnet slot 11 near the edge of the rotor body 10 to the edge of the rotor body 10 is P, centered on the center of the rotor body 10, The distance from the center point to the point P is taken as a radius, and an arc is formed along the circumferential direction of the rotor body 10.
  • the ratio of the thickness of the permanent magnet to the thickness of the magnetic permeability channel is in a superior range, which can ensure a higher working point of the permanent magnet, obtain a larger anti-demagnetization capability and a higher degree.
  • the no-load flux linkage of the motor can make the motor obtain a large difference between the AC and DC axes and improve the reluctance torque of the motor.
  • the length of the surface of the first permanent magnet 20 located in the first permanent magnet slot section 111 or the second permanent magnet slot section 112 on the side close to the straight axis is L, the first permanent magnet slot section 111 and The maximum width of the second permanent magnet slot section 112 is C, where 0.8 x C ⁇ L.
  • the width of the magnetic flux guiding passage 13 gradually increases outward in the radial direction of the rotor body 10, or the width of the magnetic conductive passage 13 gradually decreases outward in the radial direction of the rotor body 10, or The width of the magnetic passage 13 gradually increases outward in the radial direction of the rotor body 10 and then gradually decreases, or the width of the magnetic conductive passage 13 gradually decreases outward in the radial direction of the rotor body 10 by a predetermined distance. Then gradually increase.
  • This arrangement allows the magnetic lines of the stator 40 to enter the magnetic flux passage more, which allows the rotor to obtain a larger reluctance torque, thereby improving the working efficiency of the rotor.
  • At least one of the second permanent magnet slot 12 and the first permanent magnet slot 11 is plural.
  • the arrangement increases the magnetic force of the rotor structure, so that the overall anti-demagnetization capability of the rotor structure is effectively improved, thereby improving the working efficiency of the rotor and effectively improving the working efficiency of the motor having the rotor structure.
  • a permanent magnet assisted synchronous reluctance motor comprising a rotor structure which is the rotor structure in the above embodiment.
  • the rotor structure in the above embodiment can also be used in the field of vehicle equipment technology, that is, according to another aspect of the present invention, an electric vehicle including a rotor structure having the rotor structure described above is provided.
  • the motor comprises a stator structure and a rotor structure.
  • the stator structure comprises a stator core and a winding embedded in the stator core.
  • the rotor structure comprises a permanent magnet slot and a permanent magnet placed in the permanent magnet slot.
  • a magnetic pole includes a plurality of permanent magnets.
  • the plurality of layers means that the number of layers is greater than or equal to 2.
  • the permanent magnets in the same magnetic pole have the same polarity toward the stator 40, and the permanent magnet slots have a shape convex toward the inner side of the rotor.
  • the two ends of the permanent magnet slot are close to the outer circumference of the rotor, the center of the permanent magnet slot is close to the inner side of the rotor, and a magnetic conductive channel is formed between any two adjacent permanent magnet slots in the same magnetic pole, wherein one or more magnetic conductive passage ends have a section
  • the turning deflection in the direction of the second permanent magnet is as shown in FIGS. 1 and 3.
  • the magnetic flux guiding channel 13 includes a first component segment 131 , a second component segment 132 and a third component segment 133 which are sequentially connected.
  • the first end of the first component segment 131 is disposed toward the rotating shaft hole of the rotor body 10 .
  • the second end of the first component segment 131 extends toward the outer edge of the rotor body 10, the first end of the third component segment 133 is disposed toward the rotating shaft hole of the rotor body 10, and the second end of the third component segment 133 faces the rotor body 10.
  • the outer edge extends and the first component segment 131 and the third component segment 133 are located on both sides of the straight axis, and the distance from the first component segment 131 to the straight axis gradually increases outward from the radial direction of the rotor body 10.
  • This arrangement effectively guides the direction of the q-axis magnetic flux f, so that more magnetic flux is generated under the same excitation current, which improves the q-axis inductance of the motor, increases the reluctance torque of the motor, and improves the efficiency of the motor and Power density.
  • the third component segment 133 includes a first straight segment 134 and a second straight segment 135.
  • the first end of the first straight section 134 is coupled to the second component section 132.
  • the first end of the second straight section 135 is connected to the second end of the first straight section 134, and the second end of the second straight section 135 extends along the outer edge of the rotor body 10 and gradually approaches the intersecting axis.
  • the first straight section 134 The geometric centerline has a first angle with the extension of the geometric centerline of the second straight segment 135. This arrangement facilitates efficient introduction of magnetic lines of force within the magnetically conductive passage.
  • the first straight segment 134 and the second straight segment 135 have the same width. This arrangement can better guide the magnetic lines to enter the magnetic channels more evenly.
  • the first component segment 131 includes a third straight segment 136 and a fourth straight segment 137.
  • the first end of the third straight section 136 is connected to the second component section 132
  • the second end of the fourth straight section 137 is connected to the second end of the third straight section 136
  • the second end of the fourth straight section 137 is connected.
  • the outer edge of the rotor body 10 extends and gradually approaches the axis of intersection, and the geometric centerline of the third straight section 136 has a second angle with the extension of the geometric centerline of the fourth straight section 137. This arrangement facilitates efficient introduction of magnetic lines of force within the magnetically conductive passage.
  • the permanent magnet auxiliary synchronous reluctance motor utilizes the difference between the AC and DC inductances to generate the reluctance torque, and can also utilize the permanent magnet torque generated by the permanent magnet.
  • the motor's cross-axis inductance can be increased, the direct-axis inductance of the motor can be reduced, the reluctance torque of the motor can be increased, and the no-load flux linkage of the motor can increase the permanent magnet torque of the motor. It is found that when the motor stator 40 is connected to the three-phase symmetrical alternating current, the magnetic lines of force on the teeth of the stator 40 are not uniform, and the closer to the boundary line, the more magnetic lines on the teeth of the stator 40.
  • FIG. 9 a schematic diagram of a q-axis magnetic line distribution of a conventional permanent magnet auxiliary synchronous reluctance motor including a two-layer permanent magnet, wherein the q-axis magnetic flux line has three magnetic conductive channels respectively entering the rotor from the stator teeth.
  • the magnetic path f3 is formed between the innermost permanent magnet slots of two adjacent magnetic poles
  • the magnetic conductive path f2 is formed between the innermost permanent magnet slot and the second permanent magnet slot
  • the magnetic flux path f1 is The magnetic field between the two-layer permanent magnet groove and the outer circumference of the rotor is formed.
  • the magnetic flux entering the magnetic conductive path f3 is the most, and the magnetic flux entering the magnetic conductive path f1 is the least, and the magnetic conductive path f3
  • the magnetic circuit of the magnetic flux guiding channel f2 is relatively saturated.
  • the q-axis inductance of the motor will be greatly reduced, which affects the reluctance torque utilization of the motor.
  • a permanent magnet-assisted synchronous reluctance motor using a ferrite is more severe in order to increase the efficiency and anti-demagnetization capability of the motor, the permanent magnet is thick, and the width of the magnetic flux path is hard to increase.
  • the solution proposes a deflection of the end of the magnetic flux guiding channel toward the second permanent magnet.
  • the distribution of the q-axis magnetic field line f of the motor is shown in FIG. 7 .
  • the orientation of the q-axis magnetic field f of the stator can be effectively guided, and the magnetic lines of force originally entering the high magnetic saturation region, as shown in the magnetic field of the magnetic channel f2,
  • the magnetic channel f1 in the figure generates more magnetic flux under the same excitation current, which improves the q-axis inductance of the motor, increases the reluctance torque of the motor, and improves the magnetic resistance. Motor efficiency and power density.
  • the second permanent magnet of the rotor is the first layer, and the end of the second permanent magnet slot calculated from the inside to the outside has a turn deflected toward the end of the inner permanent magnet slot, as shown in FIG.
  • the deflection of the end of the magnet slot can better guide the stator magnetic lines to enter the magnetic channels more evenly.
  • the width of the turning portion at the end of the permanent magnet slot gradually increases from the outer surface of the rotor toward the inside.
  • the midpoint of the end edge of the second permanent magnet slot after the turning is The distance from the midpoint of the end edge of the second layer permanent magnet slot before the turning is defined as A, and the width of the unconverted portion of the second layer permanent magnet slot near the end of the rotor is M, 0.6M ⁇ A.
  • the shape before the end of the magnetic flux guiding channel is not determined by the following method.
  • the two edges of the permanent magnet slot are extended, and the distance between the outer edge of the permanent magnet slot and the outer circumference of the rotor is
  • the permanent magnet slot is the same after turning; when the arc permanent magnet is installed in the permanent magnet slot, an arc tangent line is formed at the end of the arc permanent magnet slot, and the tangent is extended, and the permanent magnet slot is close to the outer edge of the rotor and the outer circumference of the rotor.
  • the distance is the same as after the transition.
  • the near-outer end point of the corner end edge of the second layer permanent magnet slot after the turning is closer to the Q axis of the rotor than the end point of the end edge of the second layer permanent magnet slot before the turning. This setting is for better magnetic line guiding.
  • the distance between the end point of the end of the second permanent magnet slot after the turning and the end point of the end of the second permanent magnet slot before the turning is Ga, and the distance of Ga is substantially equal to the length of the stator air gap g. Integer multiple.
  • the length of the end portion of the second layer permanent magnet slot is H-H1
  • the width of the end portion of the non-turned portion of the permanent magnet slot is M, which satisfies 0.4 ⁇ M ⁇ (H-H1).
  • H is the distance from the outer edge of the permanent magnet slot turning portion to the outer circumference of the rotor
  • H1 is the thickness of the magnetic bridge formed by the permanent magnet rotor turning portion and the outer circumference of the rotor
  • the width of the end of the non-turning portion of the permanent magnet slot is M.
  • the length of the permanent magnet groove turning part has a great influence on the motor q-axis inductance and the motor flux linkage.
  • the q-axis inductance can be significantly improved, but greater than 2 ⁇ M, which causes the magnetic flux area of the second layer of permanent magnets to decrease, resulting in a drop in the no-load flux linkage of the motor. Therefore, preferably, 0.4 ⁇ M ⁇ (H - H1) ⁇ 2 ⁇ M.
  • the width Md of the end portion of the second permanent magnet groove near the rotor is smaller than the width M of the end of the unfolded portion of the permanent magnet groove.
  • the width D1 of the end of the second layer permanent magnet groove turning portion is smaller than the width M of the end of the unfolded portion of the second layer permanent magnet groove, 0.25 ⁇ M ⁇ D1 ⁇ 0.8 ⁇ M, preferably 0.3 ⁇ M ⁇ D1 ⁇ 0.45 ⁇ M.
  • the width D1 of the end of the permanent magnet groove turning part has a certain influence on the intersection and direct axis inductance of the motor. As shown in Fig. 16, when the width D1 is larger than 0.8 ⁇ M, the end of the permanent magnet slot blocks the q-axis flux. More, it will cause the q-axis inductance to drop.
  • the magnetic field lines of the d-axis inductor can easily pass through the magnetic bridge between the rotor permanent magnet slot and the outer circumference of the rotor, in order to obtain a larger intersection,
  • the difference in the direct-axis inductance increases the reluctance torque of the motor, 0.25 ⁇ M ⁇ D1 ⁇ 0.8 ⁇ M, and further preferably, 0.3 ⁇ M ⁇ D1 ⁇ 0.45 ⁇ M.
  • the portion where the end of the permanent magnet slot is not placed with permanent magnets can effectively slow down the local demagnetization of the terminal permanent magnet and improve the anti-demagnetization capability of the motor.
  • the number of layers of the rotor permanent magnet is 2 layers or 3 layers.
  • the permanent magnet of the rotor of the motor is a ferrite permanent magnet
  • the center of the rotor is a circular arc as a circular arc
  • the arc passes through a center point P from the outermost side of the first permanent magnet, and the sum of the thicknesses of the permanent magnets of the rotor at the arc and the arc
  • the ratio of the circumference length is 45% to 70%.
  • the motor can obtain a large difference between the AC and DC axes and improve the reluctance torque of the motor.
  • the ratio of the sum of the thicknesses of the rotor permanent magnets at the arc to the circumference of the arc is 55%-65%.
  • one or more magnetic isolation bridges are provided in the middle of each layer of permanent magnet slots.
  • the inner permanent magnet groove of the rotor is placed with a flat permanent magnet near the outer circumference of the outer circumference of the rotor.
  • a second permanent magnet slot is placed near the end of the outer circumference of the rotor to place a flat permanent magnet.
  • the number of permanent magnet layers of the rotor is two
  • the first permanent magnet slot is substantially V-shaped
  • the length of one permanent magnet in the V-type permanent magnet slot is L
  • the maximum width of the V-shaped permanent magnet is C, which satisfies 0.8 ⁇ C ⁇ L.
  • the first permanent magnet slot is generally U-shaped and is composed of at least three permanent magnets.
  • the surface area ratio of the first permanent magnet and the second permanent magnet to the outside of the rotor is S1/S2, and the first permanent magnet and the second permanent magnet are close to the rotor.
  • the angle between the outer apex of the surface end and the center of the rotor is 2 ⁇ ⁇ 1, 2 ⁇ ⁇ 2, respectively, and satisfies the relationship: 1.3 ⁇ (sin ⁇ 1 / sin ⁇ 2 ) ⁇ S 1 / S 2 ⁇ 2 ⁇ (sin ⁇ 1 / sin ⁇ 2 ).
  • the working point of the permanent magnet can be better adjusted, so that the average working motor of the first and second permanent magnets is higher, and the second The proportion of the magnetic lines entering the first permanent magnet and directly entering the stator 40 in the permanent magnet is more reasonable, which increases the permanent magnet flux linkage of the motor and improves the efficiency and power factor of the motor.
  • the influence of the first and second permanent magnet surface area ratios on the motor flux linkage is as shown in the figure, by setting the first and second permanent magnet surface area ratios to 1.3 ⁇ (sin ⁇ 1/sin ⁇ 2) ⁇ S1/S2 ⁇ 2 ⁇ (sin ⁇ 1/ Sin ⁇ 2), a large motor no-load flux linkage can be obtained.
  • the thickness M2 of the flat permanent magnets on both sides of the innermost layer of the rotor is greater than the thickness M1 of the second flat end permanent magnets, 1.1 M1 ⁇ M2 ⁇ 1.8 M1, and it is found that when the stator 40 applies a directional magnetic field, the first The working point of the second permanent magnet is not the same.
  • the working point of the second permanent magnet is lower than that of the first permanent magnet, so that the second permanent magnet is more prone to local demagnetization, which affects the overall anti-demagnetization capability of the motor, in order to alleviate this phenomenon.
  • the second permanent magnet thickness M2 is set to be larger than the first permanent magnet M1.
  • the inner and first rectangular permanent magnets form unequal widths of the magnetic conductive channels, and the width of the magnetic conductive channels is smaller near the outer surface of the rotor.
  • the magnetic flux area of the inner and first permanent magnets can be better adjusted, and the consistency of the working points of the inner and first permanent magnets can be achieved.
  • the angle between the outer edge of the first permanent magnet groove turning portion is A1
  • the angle of the outer edge of the unbroken portion of the first permanent magnet slot is A, 2 ⁇ A ⁇ A1
  • the end of the second permanent magnet slot The surface has a trimming edge
  • the angle of the outer edge of the trimming portion of the second permanent magnet slot is B1
  • the angle of the outer edge of the uncut portion of the permanent magnet slot is B, 2 ⁇ B ⁇ B1, and 1.1 ⁇ B1 ⁇ A1.
  • stator q-axis flux linkage can be more effectively guided into the respective magnetic flux channels, thereby increasing the q-axis inductance of the motor and improving The reluctance torque of the motor.
  • Inner end of the rotor The outer surface of the permanent magnet slot has a trimming edge.
  • the width of the end of the permanent magnet slot after the chamfering is D1
  • the width of the end of the non-beveled portion of the permanent magnet slot is D2, D1 ⁇ 0.6 ⁇ D2.
  • the stator flux can be effectively increased into the rotor, and the q-axis inductance of the motor is improved.
  • the end of the second permanent magnet slot has a turning point toward the deflection of the magnetic pole boundary line, which can better distribute the number of magnetic lines entering the magnetic conductive path f2 and the magnetic conductive path f3, reduce the local saturation of the magnetic conductive channel, and improve the magnetic resistance of the motor.
  • All the ends of the permanent magnet slots have a transition point toward the deflection of the magnetic pole boundary line, which can further adjust the magnetic field line distribution of each magnetic conductive channel and reduce local saturation. All rotor poles are evenly distributed over the circumference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种转子结构、永磁辅助同步磁阻电机及电动汽车,转子结构包括转子本体(10),转子本体(10)上设置有永磁体槽组,永磁体槽组包括多层永磁体槽,多层永磁体槽包括第一永磁体槽(11),第一永磁体槽(11)包括第一永磁体槽段(111)和第一折槽(113)。第一折槽(113)的第一端与第一永磁体槽段(111)的第二端相连通,第一折槽(113)的第二端朝向转子本体(10)的外边沿延伸设置,第一折槽(113)的第二端的靠近转子本体(10)的外边沿处的侧壁的中点至第一永磁体槽段(111)的几何中心线与转子本体(10)的外边沿处相交的点的距离为A,第一永磁体槽段(111)的第二端的端部的宽度为M,其中,0.6M≤A。这样设置优化了转子结构的磁路,使得转子结构的整体的抗退磁能力得到了有效提高,提高了具有该结构的转子结构的电机效率。

Description

转子结构、永磁辅助同步磁阻电机及电动汽车 技术领域
本发明涉及电机设备技术领域,具体而言,涉及一种转子结构、永磁辅助同步磁阻电机及电动汽车。
背景技术
电动汽车具有节能、环保等特点,得到了迅速的发展。现有的电动汽车驱动电机为了实现电机的高功率密度、高效率等功能,越来越多的电机采用高性能稀土永磁电机。稀土永磁电机能够实现高效率和高功率密度,主要依赖于高性能的稀土永磁体,目前应用最多的是钕铁硼稀土永磁体。但稀土是一种不可再生资源,价格较为昂贵,并且稀土价格的波动也较大,导致电动汽车驱动电机的生产成本较高,这对于推动电动汽车全面发展是非常不利的。进一步地,现有技术中了还将铁氧体永磁辅助同步磁阻电机应用于电动汽车,但该种电机存在噪声大、易退磁、效率低等问题。
发明内容
本发明的主要目的在于提供一种转子结构、永磁辅助同步磁阻电机及电动汽车,以解决现有技术中电机效率低的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种转子结构,包括:转子本体,转子本体上设置有永磁体槽组,永磁体槽组包括多层永磁体槽,多层永磁体槽包括第一永磁体槽,第一永磁体槽包括:第一永磁体槽段,第一永磁体槽段的第一端朝向转子本体的转轴孔延伸设置,第一永磁体槽段的第二端朝向转子本体的外边沿设置;第一折槽,第一折槽的第一端与第一永磁体槽段的第二端相连通,第一折槽的第二端朝向转子本体的外边沿延伸设置,第一折槽的第二端的靠近转子本体的外边沿处的侧壁的中点至第一永磁体槽段的几何中心线与转子本体的外边沿处相交的点的距离为A,第一永磁体槽段的第二端的端部的宽度为M,其中,0.6M≤A。
进一步地,第一折槽的靠近直轴一侧的侧壁所在的平面与第一永磁体槽段的靠近直轴一侧的侧壁所在的平面共面或者具有夹角。
进一步地,第一折槽的第二端与转子本体的外边沿之间形成第一隔磁桥,其中,0.4×M≤(H-H1),或者,0.4×M≤(H-H1)≤2×M,M为第一永磁体槽段的第二端的端部的宽度,H为第一永磁体槽段的第二端至转子本体的外边沿的距离,H1为第一隔磁桥的宽度。
进一步地,第一折槽的第一端的宽度小于第一永磁体槽段的第二端的宽度,和/或第一折槽的第二端的宽度小于第一永磁体槽段的第二端的宽度。
进一步地,0.25×M≤D1≤0.8×M,或者,0.3×M≤D1≤0.45×M,其中,M为第一永磁体槽段的第二端的端部的宽度,D1为第一折槽的第二端的宽度。
进一步地,第一永磁体槽还包括第二永磁体槽段,第二永磁体槽段的第一端朝向转子本体的转轴孔延伸设置并与第一永磁体槽段的第一端相连通,第二永磁体槽段的第二端朝向转子本体的外边沿设置,第一永磁体槽段和第二永磁体槽段位于转子本体的直轴的两侧,或者,第二永磁体槽段的第一端朝向转子本体的转轴孔延伸设置并与第一永磁体槽段的第一端具有距离地设置,第二永磁体槽段的第二端朝向转子本体的外边沿设置,第一永磁体槽段和第二永磁体槽段位于转子本体的直轴的两侧。
进一步地,第一永磁体槽还包括:第二折槽,第二折槽的第一端与第二永磁体槽段的第二端相连通,第二折槽的第二端朝向转子本体的外边沿延伸设置,第二折槽的端部与转子本体的交轴之间的距离小于第二永磁体槽段的第二端的端部与交轴之间的距离。
进一步地,第一折槽与第二折槽关于直轴对称地设置。
进一步地,永磁体槽组还包括与第一永磁体槽相邻设置的第二永磁体槽,第一永磁体槽与第二永磁体槽之间形成导磁通道,第二永磁体槽包括依次设置的第三永磁体槽段、第四永磁体槽段和第五永磁体槽段,第三永磁体槽段、第四永磁体槽段和第五永磁体槽段依次连通以形成开口朝向转子本体的外边缘的U形结构,或者,第三永磁体槽段、第四永磁体槽段和第五永磁体槽段依次间隔地设置,第三永磁体槽段、第四永磁体槽段和第五永磁体槽段中相邻的两个之间形成有第二隔磁桥。
进一步地,第三永磁体槽包括第三折槽,第三折槽的第一端与第三永磁体槽的靠近转子本体的外边缘的端部相连通,第三折槽的第二端朝向转子本体的外边缘延伸并逐渐靠近交轴;第五永磁体槽包括第四折槽,第四折槽的第一端与第五永磁体槽的靠近转子本体的外边缘的端部相连通,第四折槽的第二端朝向转子本体的外边缘延伸并逐渐靠近交轴。
进一步地,第三折槽与第四折槽关于直轴对称地设置。
进一步地,第一折槽和第二折槽的靠近直轴的一侧的侧壁之间的延长线具有夹角A1,第一永磁体槽段和第二永磁体槽段的靠近直轴的一侧的侧壁之间的延长线具有夹角A,其中,2×A≤A1。
进一步地,第三折槽和第四折槽的靠近直轴的一侧的侧壁之间的延长线具有夹角B1,第三永磁体槽和第五永磁体槽的靠近直轴的一侧的侧壁之间的延长线具有夹角B,其中,2×B≤B1。
进一步地,1.1×B1≤A1。
进一步地,转子结构还包括第一永磁体和第二永磁体,第一永磁体设置于第一永磁体槽内,第二永磁体设置于第二永磁体槽内。
进一步地,第一永磁体的靠近转子本体的直轴一侧且靠近转子本体的边沿处的表面,与转子本体的转轴孔的连线与转子本体的直轴之间形成有夹角α1,第二永磁体的靠近转子本体的直轴一侧且靠近转子本体的边沿处的表面,与转子本体的转轴孔的连线与转子本体的直轴之间形成有夹角α2,其中,1.3×(sinα1/sinα2)≤S1/S2≤2×(sinα1/sinα2),S1为第一永磁体的靠近转子本体的直轴一侧的表面积,S2为第二永磁体的靠近转子本体的直轴一侧的表面积。
进一步地,第二永磁体的至少部分的厚度大于第一永磁体的厚度。
进一步地,第一永磁体的厚度为M1,第二永磁体的厚度为M2,其中,1.1M1≤M2≤1.8×M1。
进一步地,第二永磁体槽包括第三永磁体槽段和第五永磁体槽段,第三永磁体槽段包括第三折槽,第五永磁体槽段包括第四折槽,第三折槽和/或第四折槽的第二端的宽度为D2,其中,D2≤0.6×M2,其中,M2为第二永磁体的厚度。
进一步地,第一永磁体槽的靠近转子本体的边沿的侧壁的中点至转子本体的边沿处的连线的中点为P,以转子本体的中心为圆心,圆心至点P的距离作为半径,并沿转子本体的周向作圆弧,与圆弧相交处的第一永磁体和第二永磁体的厚度总和为M3,圆弧的周长为C1,其中,M3/C1=T2,45%≤T2≤70%。
进一步地,位于第一永磁体槽段或第二永磁体槽段内的第一永磁体的靠近直轴一侧的表面的长度为L,第一永磁体槽段和第二永磁体槽段的最大宽度为C,其中,0.8×C≤L。
进一步地,导磁通道的宽度沿转子本体的径向方向向外逐渐增加,或者,导磁通道的宽度沿转子本体的径向方向向外逐渐减小,或者,导磁通道的宽度沿转子本体的径向方向向外逐渐增加预设距离后再逐渐减小,或者,导磁通道的宽度沿转子本体的径向方向向外逐渐减小预设距离后再逐渐增加。
进一步地,永磁体槽组为多个,多个永磁体槽组沿转子本体均匀地设置。
进一步地,第二永磁体槽和第一永磁体槽中的至少一个为多个。
根据本发明的另一方面,提供了一种永磁辅助同步磁阻电机,包括转子结构,转子结构为上述的转子结构。
根据本发明的另一方面,提供了一种电动汽车,包括转子结构,转子结构为上述的转子结构。
应用本发明的技术方案,第一永磁体槽包括第一永磁体槽段、第二永磁体槽段和第一折槽,第一折槽的长度方向的几何中心线与直轴的距离沿转子本体的径向方向向外逐渐增加。这样设置优化了转子结构的磁路,提升了转子结构的磁力,使得转子结构的整体的抗退磁能力得到了有效提高,进而提高了电机q轴的电感,降低电机转矩脉动,降低电机的振动和噪声,有效地提高了具有该结构的转子结构的电机效率,增加了电机的抗退磁能力。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的转子结构的实施例一的剖视结构示意图;
图2示出了根据本发明的转子结构的实施例二的剖视结构示意图;
图3示出了根据本发明的转子结构的实施例三的结构示意图;
图4示出了根据本发明的转子结构的实施例四的结构示意图;
图5示出了根据本发明的转子结构的实施例五的结构示意图;
图6示出了根据本发明的转子结构的实施例六的结构示意图;
图7示出了根据本发明的转子结构的实施例七的q轴磁力线行走路径示意图;
图8示出了根据本发明的转子结构的实施例八的结构示意图;
图9示出了现有转子结构的实施例的q轴磁力线行走路径示意图;
图10示出了根据本发明的转子结构的实施例九的结构示意图;
图11示出了根据本发明的转子结构的实施例十的结构示意图;
图12示出了根据本发明的转子结构的永磁体槽的结构示意图;
图13示出了根据本发明的转子结构的实施例十一的结构示意图;
图14示出了根据本发明的转子结构的实施例十二的剖视结构示意图;
图15示出了转子结构的永磁体槽末端折槽长度对电机性能影响的示意图;
图16示出了根据本发明的转子结构的折槽末端宽度对电机参数影响的示意图;
图17示出了转子结构的永磁体厚度占比与转矩关系的示意图;
图18示出了转子结构的第一、第二永磁体槽面积比值对磁链影响示意图;
图19示出了根据本发明的转子结构的q轴磁力线分布的示意图。
其中,上述附图包括以下附图标记:
10、转子本体;11、第一永磁体槽;12、第二永磁体槽;13、导磁通道;111、第一永磁体槽段;112、第二永磁体槽段;113、第一折槽;114、第二折槽;
121、第三永磁体槽段;122、第四永磁体槽段;123、第五永磁体槽段;124、第三折槽;125、第四折槽;
20、第一永磁体;
30、第二永磁体;
40、定子。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
结合图1至图8,图10至图19所示,根据本发明的实施例,提供了一种转子结构。
具体地,该转子结构包括转子本体10,转子本体10上设置有永磁体槽组,永磁体槽组包括多层永磁体槽,多层永磁体槽包括第一永磁体槽11,第一永磁体槽11包括第一永磁体槽段111和第一折槽113,第一永磁体槽段111的第一端朝向转子本体10的转轴孔延伸设置,第一永磁体槽段111的第二端朝向转子本体10的外边沿设置。第一折槽113的第一端与第一永磁体槽段111的第二端相连通,第一折槽113的第二端朝向转子本体10的外边沿延伸设置,第一折槽113的第二端的靠近转子本体10的外边沿处的侧壁的中点至第一永磁体槽段111的几何中心线与转子本体10的外边沿处相交的点的距离为A,第一永磁体槽段111的第二端的端部的宽度为M,其中,0.6M≤A。
在本实施例中,这样设置优化了转子结构的磁路,提升了转子结构的磁力,使得转子结构的整体的抗退磁能力得到了有效提高,进而提高了电机q轴的电感,降低电机转矩脉动,降低电机的振动和噪声,有效地提高了具有该结构的转子结构的电机效率,增加了电机的抗退磁能力。
其中,第一折槽113的靠近直轴一侧的侧壁所在的平面与第一永磁体槽段111的靠近直轴一侧的侧壁所在的平面共面或者具有夹角。这样设置可以更好的引导定子磁力线更均匀的进入各导磁通道。
另外,第一折槽113的第二端与转子本体10的外边沿之间形成第一隔磁桥,其中,0.4×M≤(H-H1),或者,0.4×M≤(H-H1)≤2×M,M为第一永磁体槽段111的第二端的端部的宽度,H为第一永磁体槽段111的第二端至转子本体10的外边沿的距离,H1为第一隔磁桥的宽度。这样设置可以使得磁力线的引导效果更佳,获得更大的q轴电感。
进一步地,第一折槽113的第一端的宽度小于第一永磁体槽段111的第二端的宽度,或第一折槽113的第二端的宽度小于第一永磁体槽段111的第二端的宽度,或两种情况同时存在,这样设置通过逐渐变小的导磁通道宽度设计,可以更好的调节第一、第二永磁体的磁通面积,实现第一、第二永磁体工作点的一致性调节。
在本实施例中,0.25×M≤D1≤0.8×M,或者,0.3×M≤D1≤0.45×M,其中,M为第一永磁体槽段111的第二端的端部的宽度,D1为第一折槽113的第二端的宽度。这样设置使得磁 力线很容易从转子永磁体槽与转子外圆之间的隔磁桥通过,从而获得较大的交、直轴电感差值,提升电机的磁阻转矩。
在本实施例中,第一永磁体槽11还包括第二永磁体槽段112,第二永磁体槽段112的第一端朝向转子本体10的转轴孔延伸设置并与第一永磁体槽段111的第一端相连通,第二永磁体槽段112的第二端朝向转子本体10的外边沿设置,第一永磁体槽段111和第二永磁体槽段112位于转子本体10的直轴的两侧,或者,第二永磁体槽段112的第一端朝向转子本体10的转轴孔延伸设置并与第一永磁体槽段111的第一端具有距离地设置,第二永磁体槽段112的第二端朝向转子本体10的外边沿设置,第一永磁体槽段111和第二永磁体槽段112位于转子本体10的直轴的两侧。这样设置可以使得磁力线的引导效果更佳,获得更大的q轴电感。在本实施例中,第一永磁体槽11还包括第二折槽114,第二折槽114的第一端与第二永磁体槽段112的第二端相连通,第二折槽114的第二端朝向转子本体10的外边沿延伸设置,第二折槽114的端部与转子本体10的交轴之间的距离小于第二永磁体槽段112的第二端的端部与交轴之间的距离。这样设置可以使得磁力线的引导效果更佳,获得更大的q轴电感。
其中,第一折槽113与第二折槽114关于直轴对称地设置。这样设置可以更好的引导定子磁力线更均匀的进入各导磁通道。
在本实施例中,第二永磁体槽12包括依次设置的第三永磁体槽段121、第四永磁体槽段122和第五永磁体槽段123,第三永磁体槽段121、第四永磁体槽段122和第五永磁体槽段123依次连通以形成开口朝向转子本体10的外边缘的U形结构,或者,第三永磁体槽段121、第四永磁体槽段122和第五永磁体槽段123依次间隔地设置,第三永磁体槽段121、第四永磁体槽段122和第五永磁体槽段123中相邻的两个之间形成有第二隔磁桥。这样设置增强了转子的机械强度。
如图1所示,第三永磁体槽段121包括第三折槽124,第三折槽124的第一端与第三永磁体槽段121的靠近转子本体10的外边缘的端部相连通,第三折槽124的第二端朝向转子本体10的外边缘延伸并逐渐靠近交轴;第五永磁体槽段123包括第四折槽125,第四折槽125的第一端与第五永磁体槽段123的靠近转子本体10的外边缘的端部相连通,第四折槽125的第二端朝向转子本体10的外边缘延伸并逐渐靠近交轴。设置永磁体槽折槽部分的夹角,可以更加有效的引导定子40的q轴磁链线更均匀的进入各导磁通道,增大电机的q轴电感,提升电机的磁阻转矩。
进一步地,第三折槽124与第四折槽125关于直轴对称地设置。这样设置可以更好的引导定子磁力线更均匀的进入各导磁通道。
其中,第一折槽113和第二折槽114的靠近直轴的一侧的侧壁之间的延长线具有夹角A1,第一永磁体槽段111和第二永磁体槽段112的靠近直轴的一侧的侧壁之间的延长线具有夹角A,其中,2×A≤A1。这样设置可以更加有效的引导定子q轴磁链线更均匀的进入各导磁通道。
在本实施例中,第三折槽124和第四折槽125的靠近直轴的一侧的侧壁之间的延长线具有夹角B1,第三永磁体槽段121和第五永磁体槽段123的靠近直轴的一侧的侧壁之间的延长 线具有夹角B,其中,2×B≤B1。这样设置可以更加有效的引导定子q轴磁链线更均匀的进入各导磁通道。
进一步地,1.1×B1≤A1。这样设置可以更好的引导磁力线更均匀的进入各导磁通道。
另外,转子结构还包括第一永磁体20和第二永磁体30,第一永磁体20设置于第一永磁体槽11内,第二永磁体30设置于第二永磁体槽12内。这样设置优化了转子结构的磁路,提升了转子结构的磁力,使得转子结构的整体的抗退磁能力得到了有效提高。
在本实施例中,第一永磁体20的靠近转子本体10的直轴一侧且靠近转子本体10的边沿处的表面,与转子本体10的转轴孔的连线与转子本体10的直轴之间形成有第五夹角α1,第二永磁体30的靠近转子本体10的直轴一侧且靠近转子本体10的边沿处的表面,与转子本体10的转轴孔的连线与转子本体10的直轴之间形成有第六夹角α2,其中,1.3×(sinα1/sinα2)≤S1/S2≤2×(sinα1/sinα2),S1为第一永磁体20的靠近转子本体10的直轴一侧的表面积,S2为第二永磁体30的靠近转子本体10的直轴一侧的表面积。通过将第一永磁体的排布形状以及第一、第二永磁体厚度比值的设置,可以更好的调整永磁体的工作点,使得第一、第二永磁的平均工作电机更高,第二永磁体中磁力线进入第一永磁体和直接进入定子40的比例更加合理,增加了电机的永磁体磁链,提升了电机的效率和功率因数。
其中,第二永磁体30的至少部分的厚度大于第一永磁体20的厚度。这样设置使得转子磁极在圆周上均匀分布。
进一步地,第一永磁体20的厚度为M1,第二永磁体30的厚度为M2,其中,1.1M1≤M2≤1.8×M1。这样设置使得第一、第二永磁体抗退磁能力一致。
在本实施例中,第二永磁体槽12包括第三永磁体槽段121和第五永磁体槽段123,第三永磁体槽段121包括第三折槽124,第五永磁体槽段123包括第四折槽125,第三折槽124或第四折槽125的第二端的宽度为D2,或第三折槽124和第四折槽125的第二端的宽度同时为D2,其中,D2≤0.6×M2,其中,M2为第二永磁体30的厚度。这样设置可以有效增加定子磁通进入转子,提升了电机的q轴电感。
在本实施例中,第一永磁体槽11的靠近转子本体10的边沿的侧壁的中点至转子本体10的边沿处的连线的中点为P,以转子本体10的中心为圆心,圆心至点P的距离作为半径,并沿转子本体10的周向作圆弧,与圆弧相交处的第一永磁体20和第二永磁体30的厚度总和为M3,圆弧的周长为C1,其中,M3/C1=T2,45%≤T2≤70%。通过将永磁体的厚度设置在这个范围内,使得永磁体厚度比导磁通道厚度的比值处于比较优的范围,既可以保证永磁体工作点较高,获得较大的抗退磁能力和较高的电机空载磁链,又可以使得电机获得较大的交、直轴电感差值,提升电机的磁阻转矩。
在本实施例中,位于第一永磁体槽段111或第二永磁体槽段112内的第一永磁体20的靠近直轴一侧的表面的长度为L,第一永磁体槽段111和第二永磁体槽段112的最大宽度为C, 其中,0.8×C≤L。这样设置可以在相同的转子内放置更多的永磁体,提升电机的效率和抗退磁能力。
在本实施例中,导磁通道13的宽度沿转子本体10的径向方向向外逐渐增加,或者,导磁通道13的宽度沿转子本体10的径向方向向外逐渐减小,或者,导磁通道13的宽度沿转子本体10的径向方向向外逐渐增加预设距离后再逐渐减小,或者,导磁通道13的宽度沿转子本体10的径向方向向外逐渐减小预设距离后再逐渐增加。这样设置使得定子40的磁力线更多的进入导磁通道,这样可以使得转子获得更大的磁阻转矩,进而提高转子的工作效率。
其中,永磁体槽组为多个,多个永磁体槽组沿转子本体10均匀地设置。这样设置使得转子磁极在圆周上均匀分布,使得电机磁极对称分布,减小电机负载时的转矩脉动,减小电机的振动和噪声。
在本实施例中,第二永磁体槽12和第一永磁体槽11中的至少一个为多个。这样设置提升了转子结构的磁力,使得转子结构的整体的抗退磁能力得到了有效提高,进而提升了转子的工作效率,有效地提高了具有该转子结构的电机的工作效率。
根据本发明的另一方面,提供了一种永磁辅助同步磁阻电机,包括转子结构,转子结构为上述实施例中的转子结构。
上述实施例中的转子结构还可以用于车辆设备技术领域,即根据本发明的另一方面,提供了一种电动汽车,包括转子结构,转子结构为上述的转子结构。
在本实施例中,电机包含定子结构和转子结构,定子结构包含定子铁芯及其嵌入定子铁芯的绕组,转子结构上含有放置永磁体槽以及放置在永磁体槽中的永磁体,转子同一个磁极上包含多层永磁体,本方案中的多层是指层数大于等于2,同一磁极内的永磁体朝定子40方向具有相同的极性,永磁体槽具有朝转子内侧凸起的形状,永磁体槽的两端靠近转子外圆,永磁体槽的中心靠近转子内侧,同一磁极内任意两相邻的永磁体槽之间形成导磁通道,其中一个或多个导磁通道末端具有一段朝第二永磁体方向偏转的转折,如图1及图3所示。
如图1所示,导磁通道13包括依次连接的第一组成段131、第二组成段132和第三组成段133,第一组成段131的第一端朝向转子本体10的转轴孔设置,第一组成段131的第二端朝向转子本体10的外边沿延伸设置,第三组成段133的第一端朝向转子本体10的转轴孔设置,第三组成段133的第二端朝向转子本体10的外边沿延伸设置,且第一组成段131与第三组成段133位于直轴的两侧,第一组成段131至直轴的距离从转子本体10的径向方向向外逐渐增加。这样设置有效引导q轴磁力线f的走向,这样在相同的激磁电流下产生了更多的磁通,提高了电机的q轴电感,增大了电机的磁阻转矩,提高了电机的效率和功率密度。
在本实施例中,第三组成段133包括第一直段134和第二直段135。第一直段134的第一端与第二组成段132相连接。第二直段135的第一端与第一直段134的第二端相连接,第二直段135的第二端沿转子本体10的外边缘延伸并逐渐靠近交轴,第一直段134的几何中心线 与第二直段135的几何中心线的延伸线具有第一夹角。这样设置便于导磁通道内的磁力线高效的导入。
其中,第一直段134和第二直段135的宽度相同。这样设置可以更好的引导磁力线更均匀的进入各导磁通道。
在本实施例中,第一组成段131包括第三直段136和第四直段137。第三直段136的第一端与第二组成段132相连接,第四直段137的第二端与第三直段136的第二端相连接,第四直段137的第二端沿转子本体10的外边缘延伸并逐渐靠近交轴,第三直段136的几何中心线与第四直段137的几何中心线的延伸线具有第二夹角。这样设置便于导磁通道内的磁力线高效的导入。
如图19所示,永磁辅助同步磁阻电机利用交、直轴电感的差异来产生磁阻转矩,还可以利用永磁体产生的永磁转矩。其中,可以增加电机的交轴电感、减小电机的直轴电感,可以提升电机的磁阻转矩,增加电机的空载磁链可以提升电机的永磁转矩。研究发现电机定子40通入三相对称的交流电时,定子40各个齿上的磁力线并不均匀,越靠近分界线的位置,定子40齿上的磁力线越多。
如图9所示,现有的包含2层永磁体的永磁辅助式同步磁阻电机的q轴磁力线分布示意图,q轴磁链线有分别从定子齿进入转子的3个导磁通道,导磁通道f3是由两个相邻磁极的最内层永磁体槽之间形成,导磁通道f2是由最内层永磁体槽和第二层永磁体槽之间形成,导磁通道f1是第二层永磁体槽到转子外圆之间的导磁区域形成,由于磁力线在定子齿上的不均匀分布,进入导磁通道f3的磁力线最多,进入导磁通道f1的磁力线最少,导磁通道f3和导磁通道f2的磁路较为饱和,当电机负载较重时,电机的q轴电感会大幅度下降,影响电机的磁阻转矩利用。尤其是采用铁氧体的永磁辅助同步磁阻电机,为了提升电机的效率和抗退磁能力,永磁体较厚,导磁通道的宽度很难增加时,这一现象变得更为严重。为此,本方案提出了导磁通道末端朝第二永磁体方向偏转的转折,该电机的q轴磁力线f分布示意图如图7所示。通过在导磁通道末端设置一段朝内层永磁体槽末端偏转的转折,可以有效引导定子q轴磁力线f的走向,将原来进入高磁饱和区域的磁力线,如图中进入磁通道f2的磁力线,改为进入低磁饱和区域,如图中的磁通道f1,在相同的激磁电流下产生了更多的磁通,提高了电机的q轴电感,增大了电机的磁阻转矩,提高了电机的效率和功率密度。
另外,以转子最第二永磁体为第一层,从内朝外计算的第二层永磁体槽的末端具有一段朝内层永磁体槽末端方向偏转的转折,如图11所示,通过永磁体槽末端的偏转,可以更好的引导定子磁力线更均匀的进入各导磁通道。
进一步的,永磁体槽末端发生转折部分的宽度从靠近转子外表面朝里逐渐增加。通过将永磁体槽转折部分的宽度设置成外窄内宽,一方面可以减少永磁体槽偏转后,导磁通道f2入口宽度变小,导致的q轴磁通下降,另一方面还可以更好的引导原从进入导磁通道f2的磁力线,变成从导磁通道f3进入转子。
如图10至图14所示,为了更好的引导磁力线从高磁饱和导磁通道通过转为从低磁饱和导磁通道通过,将转折后的第二层永磁体槽末端边线的中点与转折前第二层永磁体槽末端边线的中点的距离定义为A,第二层永磁体槽未转折部分靠近过转子末端的宽度为M,0.6M≤A。导磁通道末端未转折前的形状由下述方法确定,当永磁体槽内安装平板永磁体时,延长永磁体槽的两条边线,永磁体槽靠近转子的外边线与转子外圆的距离与永磁体槽转折后相同;当永磁体槽内安装弧形永磁体时,在弧形永磁体槽的端点作弧形的相切线,并延长切线,永磁体槽靠近转子的外边线与转子外圆的距离与转折后相同。通过控制永磁体槽末端偏转的幅度,将A设置成大于等于0.6M,可以使得磁力线的引导效果更佳,获得更大的q轴电感。
在本实施例中,转折后的第二层永磁体槽末端边线的靠近外侧的端点与转折前的第二层永磁体槽末端边线的靠近内侧的端点相比,更靠近转子的Q轴。这样设置是为了实现更好的磁力线引导效果。
进一步的,转折后的第二层永磁体槽末端边线靠近外侧的端点与转折前的第二层永磁体槽末端边线靠近内侧的端点的距离为Ga,Ga的距离大致等于定转子气隙长度g的整数倍。通过将Ga的距离设置成定转子气隙长度g的整数倍,有可以有效减少气隙的谐波磁场含量,降低电机的谐波损耗和转矩脉动,这里范围是0.95倍到1.05倍。
进一步的,第二层永磁体槽末端转折部位的长度为H-H1,永磁体槽未转折部分末端的宽度为M,满足0.4×M≤(H-H1)。其中H为永磁体槽转折部分的外边线到转子外圆的距离,H1为永磁体转子转折部分与转子外圆形成的磁桥厚度,永磁体槽未转折部分末端的宽度为M。
如图15所示,研究发现永磁体槽转折部分的长度对电机q轴电感和电机磁链有较大影响,当0.4×M≤(H-H1)时,可以明显提升q轴电感,但大于2×M,会导致第二层永磁体磁通面积减少,导致电机空载磁链下降,因此,优选地,0.4×M≤(H-H1)≤2×M。
如图5所示,为了更好的固定永磁体,第二层永磁体槽末端转折部位的靠近转子内侧的宽度Md小于永磁体槽未转折部分末端的宽度M。第二层永磁体槽转折部分末端的宽度D1小于第二层永磁体槽未转折部分末端的宽度M,0.25×M≤D1≤0.8×M,优选地,0.3×M≤D1≤0.45×M。
研究发现,永磁体槽转折部分末端的宽度D1对于电机的交、直轴电感都有一定影响,如图16所示,当宽度D1大于0.8×M时,永磁体槽末端对q轴磁通阻挡较多,会导致q轴电感下降,如果宽度D1小于0.25×M时,d轴电感的磁力线很容易从转子永磁体槽与转子外圆之间的隔磁桥通过,为了获得较大的交、直轴电感差值,提升电机的磁阻转矩,0.25×M≤D1≤0.8×M,进一步更优的,0.3×M≤D1≤0.45×M。另外,永磁体槽末端发生转折的部分不放置永磁体,可以有效减缓末端永磁体的局部退磁,提升电机的抗退磁能力。
进一步的,转子永磁体的层数为2层或者3层。通过将转子永磁体的层数为2层或者3层,既可以提升电机的磁阻转矩,又可以避免永磁体层数过多,带来的单层永磁体工作点下降,提升了电机的效率和抗退磁能力。
其中,电机转子永磁体为铁氧体永磁体,以转子中心为转轴孔作圆弧,圆弧经过从最第一永磁体外边线的中心点P,圆弧处转子永磁体厚度的总和与该圆弧圆周长的比值为45%-70%。在电机转子永磁体为铁氧体时,通过将永磁体的厚度设置在这个范围内,使得永磁体厚度比导磁通道厚度的比值处于比较优的范围,既可以保证永磁体工作点较高,获得较大的抗退磁能力和较高的电机空载磁链,又可以使得电机获得较大的交、直轴电感差值,提升电机的磁阻转矩。优选地,圆弧处转子永磁体厚度的总和与该圆弧圆周长的比值为55%-65%。
在本实施例中,为了增强转子的机械强度,各层永磁体槽中间具有1个或多个隔磁桥。并且,转子内层永磁体槽在靠近转子外圆的两端放置平板永磁体。第二层永磁体槽靠近转子外圆的末端放置平板永磁体。通过在永磁体槽末端放置平板永磁体,可以在相同的转子内放置更多的永磁体,提升电机的效率和抗退磁能力。
进一步的,转子永磁体层数为两层,第一永磁体槽大致程V型,V型永磁体槽中一侧永磁体的长度为L,V型排布永磁体的最大宽度为C,满足0.8×C≤L。第一永磁体槽大致程U型,至少由三段永磁体组成,第一永磁体和第二永磁体靠近转子外侧的表面积比值为S1/S2,第一永磁体和第二永磁体靠近转子外表面末端的外侧顶点与转子中心形成的夹角分别为2×α1、2×α2,满足一下关系:1.3×(sinα1/sinα2)≤S1/S2≤2×(sinα1/sinα2)。
通过将第一永磁体的排布形状以及内、第一永磁体面积比值的设置,可以更好的调整永磁体的工作点,使得第一、第二永磁的平均工作电机更高,第二永磁体中磁力线进入第一永磁体和直接进入定子40的比例更加合理,增加了电机的永磁体磁链,提升了电机的效率和功率因数。第一、第二永磁体表面积比值对电机磁链的影响如图所示,通过将第一、第二永磁体表面积比值设置成1.3×(sinα1/sinα2)≤S1/S2≤2×(sinα1/sinα2),可以获得较大的电机空载磁链。优选地,1.5×(sinα1/sinα2)≤S1/S2≤1.8×(sinα1/sinα2)。
在本实施例中,转子最内层两侧平板永磁体厚度M2大于第二层末端平板永磁体的厚度M1,1.1M1≤M2≤1.8M1,研究发现,在定子40施加方向磁场时,第一、第二永磁体的工作点并不相同,第二永磁体的工作点要低于第一永磁体,使得第二永磁体更容易出现局部退磁,影响电机整体抗退磁能力,为了缓解这一现象,将第二永磁体厚度M2设置成大于第一永磁体M1,为了使得内、第一永磁体抗退磁能力一致,1.1×M1≤M2≤1.8×M1。优选地,1.1×M1≤M2≤1.3×M1。
其中,内、第一矩形永磁体形成导磁通道宽度不相等,导磁通道宽度靠近转子外表面宽度越小。通过逐渐变小的导磁通道宽度设计,可以更好的调节内、第一永磁体的磁通面积,实现内、第一永磁体工作点的一致性调节。
在本实施例中,第一永磁体槽转折部分外边线的夹角为A1,第一永磁体槽未转折部分外边线的夹角为A,2×A≤A1,第二永磁体槽末端外表面具有切边,第二永磁体槽切边部分外边线的夹角为B1,永磁体槽未切边部分外边线的夹角为B,2×B≤B1,并且1.1×B1≤A1。通过设置永磁体槽未转折部分外边线的夹角与未转折部分的夹角,可以更加有效的引导定子q轴磁链线更均匀的进入各导磁通道,增大电机的q轴电感,提升电机的磁阻转矩。转子内层 永磁体槽的外表面末端具有切边,斜切后永磁体槽端部的宽度为D1,永磁体槽未斜切部分端部的宽度为D2,D1≤0.6×D2。通过切边减少第二永磁体槽末端的宽度,可以有效增加定子磁通进入转子,提升了电机的q轴电感。第二永磁体槽末端具有一段朝磁极分界线向偏转的转折,可以更好的分配进入导磁通道f2和导磁通道f3的磁力线数量,减少导磁通道的局部饱和,提升电机的磁阻转矩。所有永磁体槽末端具有一段朝磁极分界线向偏转的转折,可以进一步调节各导磁通道的磁力线分布,减少局部饱和。所有转子磁极在圆周上均匀分布。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (26)

  1. 一种转子结构,其特征在于,包括:
    转子本体(10),所述转子本体(10)上设置有永磁体槽组,所述永磁体槽组包括多层永磁体槽,多层所述永磁体槽包括第一永磁体槽(11),所述第一永磁体槽(11)包括:
    第一永磁体槽段(111),所述第一永磁体槽段(111)的第一端朝向所述转子本体(10)的转轴孔延伸设置,所述第一永磁体槽段(111)的第二端朝向所述转子本体(10)的外边沿设置;
    第一折槽(113),所述第一折槽(113)的第一端与所述第一永磁体槽段(111)的第二端相连通,所述第一折槽(113)的第二端朝向所述转子本体(10)的外边沿延伸设置,所述第一折槽(113)的第二端的靠近所述转子本体(10)的外边沿处的侧壁的中点至所述第一永磁体槽段(111)的几何中心线与所述转子本体(10)的外边沿处相交的点的距离为A,所述第一永磁体槽段(111)的第二端的端部的宽度为M,其中,0.6M≤A。
  2. 根据权利要求1所述的转子结构,其特征在于,所述第一折槽(113)的靠近直轴一侧的侧壁所在的平面与所述第一永磁体槽段(111)的靠近所述直轴一侧的侧壁所在的平面具有夹角。
  3. 根据权利要求1所述的转子结构,其特征在于,所述第一折槽(113)的第二端与所述转子本体(10)的外边沿之间形成第一隔磁桥,其中,0.4×M≤(H-H1),或者,0.4×M≤(H-H1)≤2×M,M为所述第一永磁体槽段(111)的第二端的端部的宽度,H为所述第一永磁体槽段(111)的第二端至所述转子本体(10)的外边沿的距离,H1为所述第一隔磁桥的宽度。
  4. 根据权利要求1所述的转子结构,其特征在于,
    所述第一折槽(113)的第一端的宽度小于所述第一永磁体槽段(111)的第二端的宽度,和/或
    所述第一折槽(113)的第二端的宽度小于所述第一永磁体槽段(111)的第二端的宽度。
  5. 根据权利要求1所述的转子结构,其特征在于,0.25×M≤D1≤0.8×M,或者,0.3×M≤D1≤0.45×M,其中,M为所述第一永磁体槽段(111)的第二端的端部的宽度,D1为所述第一折槽(113)的第二端的宽度。
  6. 根据权利要求1所述的转子结构,其特征在于,所述第一永磁体槽(11)还包括第二永磁体槽段(112),
    所述第二永磁体槽段(112)的第一端朝向所述转子本体(10)的转轴孔延伸设置并与所述第一永磁体槽段(111)的第一端相连通,所述第二永磁体槽段(112)的第二端朝向所述转子本体(10)的外边沿设置,所述第一永磁体槽段(111)和所述第二永磁体槽段(112)位于所述转子本体(10)的直轴的两侧,或者,
    所述第二永磁体槽段(112)的第一端朝向所述转子本体(10)的转轴孔延伸设置并与所述第一永磁体槽段(111)的第一端具有距离地设置,所述第二永磁体槽段(112)的第二端朝向所述转子本体(10)的外边沿设置,所述第一永磁体槽段(111)和所述第二永磁体槽段(112)位于所述转子本体(10)的直轴的两侧。
  7. 根据权利要求6所述的转子结构,其特征在于,所述第一永磁体槽(11)还包括:
    第二折槽(114),所述第二折槽(114)的第一端与所述第二永磁体槽段(112)的第二端相连通,所述第二折槽(114)的第二端朝向所述转子本体(10)的外边沿延伸设置,所述第二折槽(114)的端部与所述转子本体(10)的交轴之间的距离小于所述第二永磁体槽段(112)的第二端的端部与所述交轴之间的距离。
  8. 根据权利要求7所述的转子结构,其特征在于,所述第一折槽(113)与所述第二折槽(114)关于所述直轴对称地设置。
  9. 根据权利要求7所述的转子结构,其特征在于,所述永磁体槽组还包括与所述第一永磁体槽(11)相邻设置的第二永磁体槽(12),所述第一永磁体槽(11)与所述第二永磁体槽(12)之间形成导磁通道(13),所述第二永磁体槽(12)包括依次设置的第三永磁体槽段(121)、第四永磁体槽段(122)和第五永磁体槽段(123),
    所述第三永磁体槽段(121)、所述第四永磁体槽段(122)和所述第五永磁体槽段(123)依次连通以形成开口朝向所述转子本体(10)的外边缘的U形结构,或者,
    所述第三永磁体槽段(121)、所述第四永磁体槽段(122)和所述第五永磁体槽段(123)依次间隔地设置,所述第三永磁体槽段(121)、所述第四永磁体槽段(122)和所述第五永磁体槽段(123)中相邻的两个之间形成有第二隔磁桥。
  10. 根据权利要求9所述的转子结构,其特征在于,
    所述第三永磁体槽段(121)包括第三折槽(124),所述第三折槽(124)的第一端与所述第三永磁体槽段(121)的靠近所述转子本体(10)的外边缘的端部相连通,所述第三折槽(124)的第二端朝向所述转子本体(10)的外边缘延伸并逐渐靠近所述交轴;
    所述第五永磁体槽段(123)包括第四折槽(125),所述第四折槽(125)的第一端与所述第五永磁体槽段(123)的靠近所述转子本体(10)的外边缘的端部相连通,所述第四折槽(125)的第二端朝向所述转子本体(10)的外边缘延伸并逐渐靠近所述交轴。
  11. 根据权利要求10所述的转子结构,其特征在于,所述第三折槽(124)与所述第四折槽(125)关于所述直轴对称地设置。
  12. 根据权利要求10所述的转子结构,其特征在于,所述第一折槽(113)和所述第二折槽(114)的靠近所述直轴的一侧的侧壁之间的延长线具有夹角A1,所述第一永磁体槽段(111)和所述第二永磁体槽段(112)的靠近所述直轴的一侧的侧壁之间的延长线具有夹角A,其中,2×A≤A1。
  13. 根据权利要求12所述的转子结构,其特征在于,所述第三折槽(124)和所述第四折槽(125)的靠近所述直轴的一侧的侧壁之间的延长线具有夹角B1,所述第三永磁体槽段(121)和所述第五永磁体槽段(123)的靠近所述直轴的一侧的侧壁之间的延长线具有夹角B,其中,2×B≤B1。
  14. 根据权利要求13所述的转子结构,其特征在于,1.1×B1≤A1。
  15. 根据权利要求9所述的转子结构,其特征在于,所述转子结构还包括第一永磁体(20)和第二永磁体(30),所述第一永磁体(20)设置于所述第一永磁体槽(11)内,所述第二永磁体(30)设置于所述第二永磁体槽(12)内。
  16. 根据权利要求15所述的转子结构,其特征在于,所述第一永磁体(20)的靠近所述转子本体(10)的直轴一侧且靠近所述转子本体(10)的边沿处的表面,与所述转子本体(10)的转轴孔的连线与所述转子本体(10)的直轴之间形成有夹角α1,所述第二永磁体(30)的靠近所述转子本体(10)的直轴一侧且靠近所述转子本体(10)的边沿处的表面,与所述转子本体(10)的转轴孔的连线与所述转子本体(10)的直轴之间形成有夹角α2,其中,1.3×(sinα1/sinα2)≤S1/S2≤2×(sinα1/sinα2),S1为所述第一永磁体(20)的靠近所述转子本体(10)的直轴一侧的表面积,S2为所述第二永磁体(30)的靠近所述转子本体(10)的直轴一侧的表面积。
  17. 根据权利要求15所述的转子结构,其特征在于,所述第二永磁体(30)的至少部分的厚度大于所述第一永磁体(20)的厚度。
  18. 根据权利要求15所述的转子结构,其特征在于,所述第一永磁体(20)的厚度为M1,所述第二永磁体(30)的厚度为M2,其中,1.1M1≤M2≤1.8×M1。
  19. 根据权利要求15所述的转子结构,其特征在于,所述第二永磁体槽(12)包括第三永磁体槽段(121)和第五永磁体槽段(123),所述第三永磁体槽段(121)包括第三折槽(124),所述第五永磁体槽段(123)包括第四折槽(125),所述第三折槽(124)和/或所述第四折槽(125)的第二端的宽度为D2,其中,D2≤0.6×M2,其中,M2为所述第二永磁体(30)的厚度。
  20. 根据权利要求15所述的转子结构,其特征在于,所述第一永磁体槽(11)的靠近所述转子本体(10)的边沿的侧壁的中点至所述转子本体(10)的边沿处的连线的中点为P,以所述转子本体(10)的中心为圆心,所述圆心至点P的距离作为半径,并沿所述转子本体(10)的周向作圆弧,与所述圆弧相交处的所述第一永磁体(20)和所述第二永磁体(30)的厚度总和为M3,所述圆弧的周长为C1,其中,M3/C1=T2,45%≤T2≤70%。
  21. 根据权利要求15所述的转子结构,其特征在于,位于所述第一永磁体槽段(111)或所述第二永磁体槽段(112)内的所述第一永磁体(20)的靠近所述直轴一侧的表面的长度为L,所述第一永磁体槽段(111)和所述第二永磁体槽段(112)的最大宽度为C,其中,0.8×C≤L。
  22. 根据权利要求9所述的转子结构,其特征在于,
    所述导磁通道(13)的宽度沿所述转子本体(10)的径向方向向外逐渐增加,或者,
    所述导磁通道(13)的宽度沿所述转子本体(10)的径向方向向外逐渐减小,或者,
    所述导磁通道(13)的宽度沿所述转子本体(10)的径向方向向外逐渐增加预设距离后再逐渐减小,或者,
    所述导磁通道(13)的宽度沿所述转子本体(10)的径向方向向外逐渐减小预设距离后再逐渐增加。
  23. 根据权利要求1所述的转子结构,其特征在于,所述永磁体槽组为多个,多个所述永磁体槽组沿所述转子本体(10)均匀地设置。
  24. 根据权利要求9所述的转子结构,其特征在于,所述第二永磁体槽(12)和所述第一永磁体槽(11)中的至少一个为多个。
  25. 一种永磁辅助同步磁阻电机,包括转子结构,其特征在于,所述转子结构为权利要求1至24中任一项所述的转子结构。
  26. 一种电动汽车,包括转子结构,其特征在于,所述转子结构为权利要求1至24中任一项所述的转子结构。
PCT/CN2018/119876 2018-03-16 2018-12-07 转子结构、永磁辅助同步磁阻电机及电动汽车 WO2019174327A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18909962.5A EP3767795B1 (en) 2018-03-16 2018-12-07 Rotor structure, permanent magnet auxiliary synchronous reluctance motor, and electric vehicle
DK18909962.5T DK3767795T3 (da) 2018-03-16 2018-12-07 Rotorstruktur, permanentmagnet-synkronreluktans-hjælpemotor, og elektrisk køretøj
US16/981,258 US11664692B2 (en) 2018-03-16 2018-12-07 Rotor structure, permanent magnet auxiliary synchronous reluctance motor and electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810219857.0A CN108336845B (zh) 2018-03-16 2018-03-16 转子结构、永磁辅助同步磁阻电机及电动汽车
CN201810219857.0 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019174327A1 true WO2019174327A1 (zh) 2019-09-19

Family

ID=62932213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119876 WO2019174327A1 (zh) 2018-03-16 2018-12-07 转子结构、永磁辅助同步磁阻电机及电动汽车

Country Status (5)

Country Link
US (1) US11664692B2 (zh)
EP (1) EP3767795B1 (zh)
CN (6) CN111725918B (zh)
DK (1) DK3767795T3 (zh)
WO (1) WO2019174327A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114640226A (zh) * 2022-03-09 2022-06-17 上海电机系统节能工程技术研究中心有限公司 二极电机转子冲片设计方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108321954B (zh) 2018-03-16 2020-10-23 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN111725918B (zh) * 2018-03-16 2021-07-27 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机
CN108566006A (zh) 2018-03-16 2018-09-21 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
JP7331356B2 (ja) * 2018-12-14 2023-08-23 Tdk株式会社 永久磁石および回転電機
JP2020096484A (ja) * 2018-12-14 2020-06-18 Tdk株式会社 永久磁石および回転電機

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101057381A (zh) * 2004-11-12 2007-10-17 格伦德福斯联合股份公司 永磁转子
JP2011083066A (ja) * 2009-10-02 2011-04-21 Osaka Prefecture Univ 永久磁石補助形同期リラクタンスモータ
WO2015120959A1 (de) * 2014-02-11 2015-08-20 Liebherr-Aerospace Lindenberg Gmbh Luftfahrzeug mit einer synchronreluktanzmaschine
CN205566051U (zh) * 2015-12-29 2016-09-07 丹佛斯(天津)有限公司 电动机
CN108321955A (zh) * 2018-03-16 2018-07-24 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN108321952A (zh) * 2018-03-16 2018-07-24 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN108321951A (zh) * 2018-03-16 2018-07-24 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN108336844A (zh) * 2018-03-16 2018-07-27 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN108336845A (zh) * 2018-03-16 2018-07-27 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN108566006A (zh) * 2018-03-16 2018-09-21 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN208094312U (zh) * 2018-03-16 2018-11-13 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006021489A1 (de) * 2006-05-09 2007-11-15 Robert Bosch Gmbh Elektrische Maschine
CN101741199B (zh) * 2008-11-12 2013-06-12 通用汽车环球科技运作公司 用于带有附加转子槽的永磁电机的方法和装置
JP2011035997A (ja) * 2009-07-30 2011-02-17 Toyota Motor Corp Ipmモータ用ロータとipmモータ
JP5482544B2 (ja) * 2010-07-28 2014-05-07 トヨタ自動車株式会社 回転電機
US20130169098A1 (en) * 2011-12-28 2013-07-04 Remy Technologies, Llc Multi-grade magnet for an electric machine
CN102790457A (zh) * 2012-03-05 2012-11-21 珠海格力节能环保制冷技术研究中心有限公司 永磁辅助同步磁阻电机转子及其电机和电机的安装方法
CN103280904A (zh) 2013-05-03 2013-09-04 苏州和鑫电气股份有限公司 电动汽车用双层v型内置式永磁电机转子
JP6191370B2 (ja) * 2013-10-03 2017-09-06 シンフォニアテクノロジー株式会社 同期電動機
JP2015073417A (ja) * 2013-10-04 2015-04-16 株式会社豊田自動織機 磁石埋込式回転電機
KR20150078467A (ko) * 2013-12-30 2015-07-08 현대자동차주식회사 매입형 영구자석 모터의 회전자
CN205453333U (zh) * 2015-12-29 2016-08-10 冶金自动化研究设计院 一种高功率密度且易弱磁调速的永磁转子结构
CN106936284B (zh) * 2015-12-29 2024-04-16 丹佛斯(天津)有限公司 电动机
CN105958690A (zh) * 2016-06-08 2016-09-21 苏州瑞驱电动科技有限公司 一种用于电动汽车电推进的永磁辅助磁阻同步电机
CN106329773B (zh) * 2016-08-31 2018-11-27 恒大法拉第未来智能汽车(广东)有限公司 电机的转子、电机及车辆
DE102017209207A1 (de) * 2016-09-27 2018-03-29 Robert Bosch Gmbh Elektrische Maschine umfassend einen Rotor und einen Stator

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101057381A (zh) * 2004-11-12 2007-10-17 格伦德福斯联合股份公司 永磁转子
JP2011083066A (ja) * 2009-10-02 2011-04-21 Osaka Prefecture Univ 永久磁石補助形同期リラクタンスモータ
WO2015120959A1 (de) * 2014-02-11 2015-08-20 Liebherr-Aerospace Lindenberg Gmbh Luftfahrzeug mit einer synchronreluktanzmaschine
CN205566051U (zh) * 2015-12-29 2016-09-07 丹佛斯(天津)有限公司 电动机
CN108321955A (zh) * 2018-03-16 2018-07-24 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN108321952A (zh) * 2018-03-16 2018-07-24 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN108321951A (zh) * 2018-03-16 2018-07-24 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN108336844A (zh) * 2018-03-16 2018-07-27 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN108336845A (zh) * 2018-03-16 2018-07-27 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN108566006A (zh) * 2018-03-16 2018-09-21 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN208094312U (zh) * 2018-03-16 2018-11-13 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3767795A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114640226A (zh) * 2022-03-09 2022-06-17 上海电机系统节能工程技术研究中心有限公司 二极电机转子冲片设计方法
CN114640226B (zh) * 2022-03-09 2024-03-26 上海电机系统节能工程技术研究中心有限公司 二极电机转子冲片设计方法

Also Published As

Publication number Publication date
CN111725918A (zh) 2020-09-29
CN111725916A (zh) 2020-09-29
CN111725920B (zh) 2021-07-27
CN108336845A (zh) 2018-07-27
CN111725917A (zh) 2020-09-29
EP3767795A1 (en) 2021-01-20
CN111725921B (zh) 2021-07-27
CN111725916B (zh) 2021-07-27
US20210044167A1 (en) 2021-02-11
EP3767795A4 (en) 2021-04-21
CN111725918B (zh) 2021-07-27
US11664692B2 (en) 2023-05-30
DK3767795T3 (da) 2023-05-15
CN111725917B (zh) 2021-07-27
CN108336845B (zh) 2020-11-03
EP3767795B1 (en) 2023-03-08
CN111725921A (zh) 2020-09-29
CN111725920A (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
WO2019174323A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
WO2019174327A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
WO2019174326A1 (zh) 永磁辅助同步磁阻电机及具有其的电动汽车
WO2019174324A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
WO2019174313A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
CN208316434U (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
WO2019174325A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
WO2019174322A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
CN208094415U (zh) 永磁辅助同步磁阻电机及具有其的电动汽车
CN208015469U (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
CN208094312U (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018909962

Country of ref document: EP