WO2019174325A1 - 转子结构、永磁辅助同步磁阻电机及电动汽车 - Google Patents

转子结构、永磁辅助同步磁阻电机及电动汽车 Download PDF

Info

Publication number
WO2019174325A1
WO2019174325A1 PCT/CN2018/119874 CN2018119874W WO2019174325A1 WO 2019174325 A1 WO2019174325 A1 WO 2019174325A1 CN 2018119874 W CN2018119874 W CN 2018119874W WO 2019174325 A1 WO2019174325 A1 WO 2019174325A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic steel
rotor
groove
rotor body
steel groove
Prior art date
Application number
PCT/CN2018/119874
Other languages
English (en)
French (fr)
Inventor
肖勇
胡余生
陈彬
童童
卢素华
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US16/979,827 priority Critical patent/US11699930B2/en
Priority to EP18910127.2A priority patent/EP3767797B1/en
Publication of WO2019174325A1 publication Critical patent/WO2019174325A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to the field of electrical equipment, and in particular to a rotor structure, a permanent magnet assisted synchronous reluctance motor, and an electric vehicle.
  • the conventional permanent magnet auxiliary synchronous reluctance motor usually has a rotor connecting hole on the rotor, and a structural reinforcing rod such as a rivet or a screw is placed in the connecting hole.
  • the rotor connection hole has two arrangements. One is that the position of the rotor connection hole is located between the magnetic steel groove and the shaft hole, but when the rotor rotates at a high speed, the area where the rotor is easily deformed is the area outside the magnetic steel groove. The bottom rotor connection hole is less effective in suppressing rotor deformation.
  • Another type of rotor connection hole is arranged in the outermost area of the magnetic steel groove, which can effectively reduce the deformation of the rotor region.
  • this method can easily block the magnetic field lines of the permanent magnet from entering the stator, which may cause problems such as reduced efficiency of the motor. .
  • the main object of the present invention is to provide a rotor structure, a permanent magnet auxiliary synchronous reluctance motor and an electric vehicle to solve the problem that the rotor is easily deformed and the motor efficiency is low in the prior art.
  • a rotor structure comprising: a rotor body having a magnetic steel groove group disposed thereon, the magnetic steel groove group including an outer magnetic steel groove and an inner magnetic steel groove A magnetic conductive channel is formed between the outer magnetic steel groove and the inner magnetic steel groove, and a connecting hole is formed in the magnetic conductive channel.
  • the width of the magnetic flux guiding channel near the outer edge of the rotor body is DT1
  • the width of the magnetic conductive channel near the rotating shaft hole 14 of the rotor body is DT2
  • the diameter of the connecting hole is DK, wherein (DT1+DK) ⁇ DT2.
  • the outer magnetic steel groove comprises: a first outer magnetic steel groove, the first outer magnetic steel groove is located on a first side of the straight shaft of the rotor body, and the first end of the first outer magnetic steel groove faces the rotor body
  • the shaft hole 14 extends and is gradually disposed close to the straight shaft of the rotor body, and the second end of the first outer magnetic steel groove extends toward the outer edge of the rotor body and is gradually disposed away from the straight axis of the rotor body;
  • the second outer magnetic steel a groove the second outer magnetic steel groove is located on a second side opposite to the first side of the straight shaft of the rotor body, and the first end of the second outer magnetic steel groove extends toward the rotating shaft hole 14 of the rotor body and gradually approaches the rotor
  • the straight shaft of the body is disposed, and the second end of the second outer magnetic steel groove extends toward the outer edge of the rotor body and is gradually disposed away from the straight axis of the rotor body.
  • first end of the first outer magnetic steel trough is in communication with the first end of the second outer magnetic steel trough.
  • the outer magnetic steel groove further includes: an air groove, the first end of the air groove is in communication with the first end of the first outer magnetic steel groove, and the second end of the air groove and the second outer magnetic steel groove The first ends are connected.
  • the outer magnetic steel groove further includes: a first folding groove, the first end of the first folding groove is communicated with the second end of the first outer magnetic steel groove, and the second end of the first folding groove faces the rotor body
  • the outer edge extends and is gradually disposed away from the straight axis of the rotor body, and the geometric centerline of the first chamfer has a first angle with the geometric centerline of the first outer magnet slot.
  • the width of the first end of the first folding groove to the second end of the first folding groove gradually decreases.
  • the outer magnetic steel groove further includes: a second folding groove, the first end of the second folding groove is in communication with the second end of the second outer magnetic steel groove, and the second end of the second folding groove is facing the rotor body
  • the outer edge extends and is gradually disposed away from the straight axis of the rotor body, and the geometric centerline of the second chamfer has a second angle with the geometric centerline of the first outer magnet channel.
  • the rotor structure further includes: a permanent magnet having a plurality of permanent magnets, wherein the plurality of permanent magnets are respectively disposed in the first outer magnetic steel trough, the second outer magnetic steel trough, and the inner magnetic steel trough.
  • the permanent magnets disposed in the first outer magnetic steel trough and the second outer magnetic steel trough have a length L, and the permanent magnets disposed in the first outer magnetic steel trough and the second outer magnetic steel trough The maximum width between them is C, where 0.8 ⁇ C ⁇ L.
  • a permanent magnet disposed in the first outer magnetic steel groove, the side wall of the permanent magnet adjacent to the straight axis side of the rotor body and close to the edge of the rotor body, and the connection with the rotating shaft hole 14 of the rotor body Forming a third angle ⁇ 1 between the straight shaft of the rotor body and a permanent magnet disposed in the inner magnetic steel groove, the side wall of the permanent magnet near the side of the straight axis of the rotor body and close to the edge of the rotor body a fourth angle ⁇ 2 is formed between the line connecting the shaft hole 14 of the rotor body and the straight axis of the rotor body, wherein 1.5 ⁇ (sin ⁇ 1/sin ⁇ 2) ⁇ S1/S2 ⁇ 1.8 ⁇ (sin ⁇ 1/sin ⁇ 2), S1 S2 is a sum of surface areas of the permanent magnets disposed in the first outer magnetic steel trough and the second outer magnetic steel trough near the straight axis side of the rotor body, and S2 is a permanent magnet
  • a midpoint of a line connecting the midpoint of the side wall of the air groove near the edge of the rotor body to the edge of the rotor body is P
  • the distance from the shaft hole 14 to the point P of the rotor body is taken as a radius
  • the circumferential direction of the body is an arc
  • the total thickness of the permanent magnets at the intersection with the arc is M1
  • the width of the magnetic flux guiding passage gradually decreases outward in the radial direction of the rotor body.
  • At least one of the outer magnetic steel groove and the inner magnetic steel groove is plural.
  • the inner magnetic steel groove has a U-shaped structure, and the curved portion of the inner magnetic steel groove is convexly disposed toward the rotating shaft hole 14 of the rotor body.
  • a permanent magnet assisted synchronous reluctance motor comprising a rotor structure which is the rotor structure described above.
  • an electric vehicle comprising a rotor structure which is the rotor structure described above.
  • Figure 1 is a cross-sectional structural view showing an embodiment of a conventional rotor structure
  • Figure 2 is a cross-sectional structural view showing a first embodiment of a rotor structure according to the present invention
  • Figure 3 is a cross-sectional structural view showing a second embodiment of a rotor structure according to the present invention.
  • Figure 4 is a cross-sectional structural view showing a third embodiment of a rotor structure according to the present invention.
  • Figure 5 is a cross-sectional structural view showing a fourth embodiment of a rotor structure according to the present invention.
  • Figure 6 is a cross-sectional structural view showing a fifth embodiment of a rotor structure according to the present invention.
  • Figure 7 is a schematic view showing the relationship between the ratio of the thickness of the permanent magnet of the rotor structure and the torque
  • Figure 8 is a schematic view showing the influence of the ratio of the inner and outer magnetic steel groove area ratios of the rotor structure to the flux linkage.
  • a rotor structure is provided.
  • the rotor structure includes a rotor body 10 on which a magnetic steel groove group is disposed, the magnetic steel groove group includes an outer magnetic steel groove 11 and an inner magnetic steel groove 12, and an outer magnetic steel groove 11 and an inner layer A magnetic conductive passage 13 is formed between the magnetic steel grooves 12, and a connecting hole 131 is formed in the magnetic conductive passage 13.
  • the connecting hole 131 in the magnetic conductive channel 13 between the outer magnetic steel groove 11 and the inner magnetic steel groove 12, the deformation of the rotor during high-speed rotation is effectively reduced, and the rotor connecting hole pair can be avoided.
  • the magnetic flux barrier increases the efficiency of the motor.
  • the width of the magnetic flux guiding passage 13 near the outer edge of the rotor body 10 is DT1
  • the width of the magnetic conductive passage 13 near the rotating shaft hole 14 of the rotor body 10 is DT2
  • the diameter of the connecting hole 131 is DK. , where (DT1+DK) ⁇ DT2.
  • Such an arrangement can effectively alleviate the magnetic saturation of the region where the magnetic flux guiding channel 13 is placed in the connecting hole 131, improve the q-axis inductance of the motor, and increase the reluctance torque of the motor.
  • the outer magnetic steel groove 11 includes a first outer magnetic steel groove 111 and a second outer magnetic steel groove 112.
  • the first outer magnetic steel groove 111 is located on the first side of the straight shaft of the rotor body 10, and the straight axis is the d-axis.
  • the first end of the first outer magnetic steel groove 111 extends toward the rotating shaft hole 14 of the rotor body 10 and gradually Adjacent to the straight axis of the rotor body 10, the second end of the first outer magnetic flux groove 111 extends toward the outer edge of the rotor body 10 and is gradually disposed away from the straight axis of the rotor body 10.
  • the second outer magnetic steel groove 112 is located on a second side opposite to the first side of the straight shaft of the rotor body 10, and the first end of the second outer magnetic steel groove 112 extends toward the rotating shaft hole 14 of the rotor body 10 and gradually Adjacent to the straight axis of the rotor body 10, the second end of the second outer magnet channel 112 extends toward the outer edge of the rotor body 10 and is progressively disposed away from the straight axis of the rotor body 10. This arrangement can better guide the stator magnetic lines to enter the magnetic channels more evenly.
  • the first end of the first outer magnetic steel groove 111 is in communication with the first end of the second outer magnetic steel groove 112. This setting can better conduct magnetic lines of force.
  • the outer magnetic steel groove 11 further includes an air groove 113.
  • the first end of the air groove 113 communicates with the first end of the first outer magnetic steel groove 111, and the second end of the air groove 113 The first ends of the two outer magnetic steel grooves 112 are in communication.
  • the sample setting can make the magnetic line guide better and obtain a larger q-axis inductance.
  • the outer magnetic steel groove 11 further includes a first folding groove 114, and the first end of the first folding groove 114 communicates with the second end of the first outer magnetic steel groove 111, and the first folding groove 114 The second end extends toward the outer edge of the rotor body 10 and is gradually disposed away from the straight axis of the rotor body 10.
  • the geometric centerline of the first folded groove 114 has a first angle with the geometric centerline of the first outer magnetic steel groove 111. .
  • the q-axis magnetic flux line of the stator 30 can be more effectively guided into the magnetic conductive channels more uniformly, the q-axis inductance of the motor is increased, and the reluctance torque of the motor is improved.
  • the width of the first end of the first folding groove 114 to the second end of the first folding groove 114 gradually decreases. This setting allows the magnetic field lines to be guided better and achieves a larger q-axis inductance.
  • the outer magnetic steel groove 11 further includes a second folding groove 115.
  • the first end of the second folding groove 115 communicates with the second end of the second outer magnetic steel groove 112, and the second folding groove 115
  • the second end extends toward the outer edge of the rotor body 10 and is gradually disposed away from the straight axis of the rotor body 10.
  • the geometric centerline of the second hinge groove 115 has a second angle with the geometric centerline of the first outer magnetic steel groove 111. . This setting allows the magnetic field lines to be guided better and achieves a larger q-axis inductance.
  • the rotor structure further includes a permanent magnet 20, and the plurality of permanent magnets 20 are disposed, and the plurality of permanent magnets 20 are respectively disposed on the first outer magnetic steel groove 111, the second outer magnetic steel groove 112, and the inner magnetic layer. Inside the steel trough 12. It can better guide the stator magnetic lines to enter the magnetic channels more evenly.
  • the length of the permanent magnet 20 disposed in the first outer magnetic steel groove 111 and the second outer magnetic steel groove 112 is L, and is disposed on the first outer magnetic steel groove 111 and the second outer magnetic steel groove 112.
  • the maximum width between the permanent magnets 20 inside is C, where 0.8 ⁇ C ⁇ L. This arrangement allows more permanent magnets to be placed in the same rotor, improving motor efficiency and resistance to demagnetization.
  • the permanent magnet 20 disposed in the first outer magnetic steel groove 111, the side wall of the permanent magnet 20 near the straight axis side of the rotor body 10 and close to the edge of the rotor body 10, and the rotor
  • a third angle ⁇ 1 is formed between the connecting line of the rotating shaft hole 14 of the body 10 and the straight shaft of the rotor body 10, and the permanent magnet 20 is disposed in the inner magnetic steel groove 12, and the permanent magnet 20 is close to the rotor body 10.
  • a side wall at one side of the straight shaft and near the edge of the rotor body 10, and a line connecting the shaft hole 14 of the rotor body 10 and the straight axis of the rotor body 10 are formed with a fourth angle ⁇ 2, where 1.5 ⁇ (sin ⁇ 1) /sin ⁇ 2) ⁇ S1/S2 ⁇ 1.8 ⁇ (sin ⁇ 1/sin ⁇ 2), and S1 is a direct axis of the permanent magnet 20 disposed in the first outer magnetic steel groove 111 and the second outer magnetic steel groove 112 near the rotor body 10
  • the sum of the surface areas on one side, S2, is the surface area of the permanent magnet 20 disposed in the inner magnetic steel groove 12 near the straight axis side of the rotor body 10.
  • the midpoint of the line of the air groove 113 near the side wall of the rim of the rotor body 10 to the edge of the rotor body 10 is P, with the shaft hole 14 to the point P of the rotor body 10
  • the distance is a radius, and an arc is formed along the circumferential direction of the rotor body 10.
  • This arrangement can ensure the working point of the permanent magnet is higher, obtain larger anti-demagnetization ability and higher no-load magnetic flux linkage of the motor, and can make the motor obtain larger difference of the intersection and the direct shaft inductance, and improve the reluctance of the motor. Torque.
  • the width of the magnetic flux guiding passage 13 gradually decreases outward in the radial direction of the rotor body 10. This arrangement allows the magnetic lines of the stator 30 to enter the magnetic flux channel more, which can make the rotor obtain greater reluctance torque, thereby improving the working efficiency of the rotor.
  • At least one of the outer magnetic steel groove 11 and the inner magnetic steel groove 12 is plural. This arrangement allows the rotor to achieve greater reluctance torque, which in turn increases the rotor's operating efficiency.
  • the inner magnetic steel groove 12 has a U-shaped structure, and the curved portion of the inner magnetic steel groove 12 is convexly disposed toward the rotating shaft hole 14 of the rotor body 10. This arrangement can further adjust the magnetic field line distribution of each magnetic conductive channel and reduce local saturation.
  • the rotor structure in the above embodiment can also be used in the field of electrical equipment technology, that is, according to another aspect of the present invention, a permanent magnet assisted synchronous reluctance motor is provided.
  • the motor includes a rotor structure.
  • the rotor structure is the rotor structure in the above embodiment.
  • the rotor structure in the above embodiment can also be used in the field of vehicle equipment technology, that is, according to another aspect of the present invention, an electric vehicle including a rotor structure having the rotor structure described above is provided.
  • the conventional permanent magnet auxiliary synchronous reluctance motor in order to increase the mechanical strength of the rotor, usually has a connecting hole on the rotor, and a structural reinforcing rod such as a rivet or a screw is placed in the connecting hole.
  • the rotor connection hole has two arrangements. One is that the position of the rotor connection hole is located between the magnetic steel groove and the shaft hole, as shown in the bottom rotor connection hole in Fig. 1, but when the rotor rotates at a high speed, the rotor is easily deformed. It is the area outside the magnetic steel trough, and the bottom rotor connecting hole is less effective in suppressing the deformation of the rotor.
  • Another type of rotor connection hole is arranged in the outermost area of the magnetic steel groove, which can effectively reduce the deformation of the rotor region, but this easily blocks the magnetic field lines of the permanent magnet from entering the stator, which leads to a decrease in motor efficiency.
  • the present invention proposes a motor having a completely new arrangement of rotor connection holes, the motor comprising a stator and a rotor, the stator comprising a stator core and an embedded stator winding 31, the rotor comprising a magnetic steel slot and being placed in the slot
  • a permanent magnet the same magnetic pole of the rotor comprises a plurality of permanent magnets
  • the multi-layer of the present invention means that the number of layers is greater than or equal to 2, and the permanent magnets in the same magnetic pole have the same polarity toward the stator, and the magnetic steel trough is convex toward the inner side of the rotor.
  • the shape of the magnetic steel groove is close to the outer circumference of the rotor, and the center of the magnetic steel groove is close to the inner side of the rotor.
  • a magnetic conductive channel is formed between any two adjacent magnetic steel grooves in the same magnetic pole, and the magnetic conductive channel has an increased thickness near the bottom of the rotor, and a rotor connecting hole is placed in the region, as shown in FIG. 2 and FIG. .
  • the thickness DT2 of the thickened region of the magnetic conductive passage 13 is set to be not less than 1.3 times the width DT1 of the magnetic conductive passage near the outer circumference of the rotor, or the magnetic conductive passage width DT2 is not less than the magnetic conductive passage width DT1 and
  • the sum of the diameters of the connecting holes DK can effectively alleviate the magnetic saturation of the region where the magnetic connecting channel is placed in the rotor connecting hole, improve the q-axis inductance of the motor, and increase the reluctance torque of the motor.
  • the magnetic flux channel in which the rotor connecting hole is placed is adjacent to each other and the bottom of the magnetic steel groove near the center of the rotor has an arc convex toward the inner side of the rotor.
  • the magnetic flux channel in which the rotor connecting hole is placed is adjacent to the magnetic steel groove near the outer side of the rotor is substantially V-shaped, and the magnetic conductive channel width DT2 having a larger thickness can be formed more easily.
  • the innermost permanent magnet of the rotor is the first layer, and the end of the second magnetic steel groove calculated from the inside to the outside has a turn which is deflected toward the end of the inner magnetic steel groove.
  • the q-axis magnetic flux lines respectively enter the three magnetic conductive channels of the rotor from the stator teeth, and the magnetic conductive path f3 is formed by the innermost magnetic steel grooves of two adjacent magnetic poles, and the magnetic conductive path f2 is the most
  • the inner magnetic steel trough is formed between the second magnetic steel trough, and the magnetic conductive path f1 is formed by the magnetic conductive region between the second magnetic steel trough and the outer circumference of the rotor.
  • the magnetic flux line entering the magnetic flux guiding channel f3 is the most, the magnetic flux line entering the magnetic conductive channel f1 is the least, and the magnetic circuit of the magnetic conductive channel f3 and the magnetic conductive channel f2 is relatively saturated.
  • the motor load is heavy, the q-axis inductance of the motor will be greatly reduced. Affect the reluctance torque utilization of the motor.
  • a permanent magnet-assisted synchronous reluctance motor using a ferrite is more severe in order to increase the efficiency and anti-demagnetization capability of the motor, the permanent magnet is thick, and the width of the magnetic flux path is hard to increase.
  • the scheme proposes a turning of the end of the magnetic flux guiding channel toward the inner permanent magnet, and the distribution of the q-axis magnetic flux f of the motor is shown in FIG. 7 .
  • the orientation of the q-axis magnetic field f of the stator can be effectively guided, and the magnetic lines of force originally entering the high magnetic saturation region, as shown in the magnetic field line of the magnetic channel f2,
  • the magnetic channel f1 in the figure generates more magnetic flux under the same excitation current, which improves the q-axis inductance of the motor, increases the reluctance torque of the motor, and improves the magnetic resistance. Motor efficiency and power density.
  • the end point of the end edge of the second layer of the magnetic steel groove after the turning is closer to the q-axis of the rotor than the end point of the end edge of the second layer of the magnetic steel groove before the turning. This setting is for better magnetic line guiding.
  • the shape before the end of the magnetic flux channel is not converted by the following method.
  • the two edges of the magnetic steel groove are extended, and the distance between the outer edge of the magnetic steel groove and the outer circumference of the rotor is The magnetic steel groove is the same after turning; when the curved permanent magnet is installed in the magnetic steel groove, an arc tangent line is formed at the end of the curved magnetic steel groove, and the tangent is extended, and the magnetic steel groove is close to the outer edge of the rotor and the outer circumference of the rotor.
  • the distance is the same as after the transition.
  • the distance between the end point of the second layer of the magnetic steel groove and the edge of the second layer of the magnetic steel groove before the turning is close to the inner end, and the distance of the Ga is substantially equal to the stator air gap.
  • the permanent magnet of the motor rotor is a ferrite permanent magnet, with the center of the rotor as the center of the arc, and the arc passes through the center point P from the outermost edge of the outermost permanent magnet.
  • the ratio of the sum of the thicknesses of the magnets to the circumference of the arc is 55%-65%.
  • the permanent magnet of the motor rotor is ferrite, by setting the thickness of the permanent magnet within this range, the ratio of the thickness of the permanent magnet to the thickness of the magnetic permeability channel is in a superior range, and the working point of the permanent magnet is higher. Obtaining a large anti-demagnetization capability and a high motor no-load flux linkage, the motor can obtain a large difference between the AC and DC axes and improve the reluctance torque of the motor.
  • one or more magnetic isolation bridges are provided in the middle of each layer of magnetic steel grooves.
  • the inner magnet steel groove of the rotor is placed near the outer circumference of the rotor to place a flat permanent magnet.
  • a second layer of magnetic steel trough is placed near the end of the outer circumference of the rotor to place a flat permanent magnet.
  • the number of permanent magnet layers of the rotor is two, the outer magnetic steel groove is roughly V-shaped, the length of one permanent magnet in the V-shaped magnetic steel groove is L, and the maximum width of the V-shaped permanent magnet is C, satisfies 0.8 ⁇ C ⁇ L.
  • the outer magnetic steel trough is generally U-shaped and consists of at least three permanent magnets.
  • the surface area ratio of the outer permanent magnet and the inner permanent magnet to the outer side of the rotor is S1/S2, and the outer permanent magnet and the inner permanent magnet are close to the outer rotor.
  • the angle between the outer apex of the surface end and the center of the rotor is 2 ⁇ ⁇ 1, 2 ⁇ ⁇ 2, respectively, and satisfies the following relationship: 1.3 ⁇ (sin ⁇ 1 / sin ⁇ 2 ) ⁇ S 1 / S 2 ⁇ 2 ⁇ (sin ⁇ 1 / sin ⁇ 2 ).
  • the working point of the permanent magnets can be better adjusted, so that the average working motor of the inner and outer permanent magnets is obtained.
  • the proportion of magnetic lines entering the outer permanent magnet and directly entering the stator 30 in the inner permanent magnet is more reasonable, which increases the permanent magnet flux of the motor and improves the efficiency and power factor of the motor.
  • the effect of the surface area ratio of the inner and outer permanent magnets on the motor flux linkage is shown in the figure.
  • the inner and outer rectangular permanent magnets form unequal widths of the magnetic conductive passages, and the width of the magnetic conductive passages is smaller near the outer surface of the rotor.
  • the magnetic flux area of the inner and outer permanent magnets can be better adjusted to achieve uniform adjustment of the working points of the inner and outer permanent magnets.
  • the motor of the embodiment as the driving motor of the electric vehicle can effectively reduce the cost of the motor and reduce the dependence of the new energy electric vehicle on the rare earth resources.
  • the motor takes into account the high efficiency of the rare earth permanent magnet motor and the high reliability of the asynchronous motor. The characteristics can better promote the development of new energy vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Synchronous Machinery (AREA)

Abstract

一种转子结构、永磁辅助同步磁阻电机及电动汽车,转子结构包括转子本体(10),转子本体(10)上设置有磁钢槽组,磁钢槽组包括外层磁钢槽(11)和内层磁钢槽(12),外层磁钢槽(11)与内层磁钢槽(12)之间形成导磁通道(13),导磁通道(13)上开设有连接孔(131)。通过在外层磁钢槽(11)与内层磁钢槽(12)之间形成的导磁通道(13)上开设连接孔(131),有效减少了转子高速旋转时的变形,又可以避免转子连接孔(131)对磁通的阻挡,提高了电机的效率。

Description

转子结构、永磁辅助同步磁阻电机及电动汽车 技术领域
本发明涉及电机设备技术领域,具体而言,涉及一种转子结构、永磁辅助同步磁阻电机及电动汽车。
背景技术
现有的永磁辅助同步磁阻电机为了增加转子的机械强度,通常会在转子上设置转子连接孔,并在连接孔中放置铆钉或螺钉等结构加强杆。通常转子连接孔有两种布置方式,一种是转子连接孔的位置位于磁钢槽与轴孔之间,但当转子高速旋转时,转子容易变形的区域是磁钢槽外侧的区域,这种底部转子连接孔在抑制转子变形上效果较差。另一种转子连接孔是设置方式是放置在磁钢槽的最外侧区域,可以有效的减少转子这一区域的变形,但这方式容易阻挡永磁体的磁力线进入定子,会导致电机效率降低等问题。
发明内容
本发明的主要目的在于提供一种转子结构、永磁辅助同步磁阻电机及电动汽车,以解决现有技术中转子易变形、电机效率低的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种转子结构,包括:转子本体,转子本体上设置有磁钢槽组,磁钢槽组包括外层磁钢槽和内层磁钢槽,外层磁钢槽与内层磁钢槽之间形成导磁通道,导磁通道上开设有连接孔。
进一步地,导磁通道的靠近转子本体的外边沿处的宽度为DT1,导磁通道的靠近转子本体的转轴孔14处的宽度为DT2,连接孔的直径为DK,其中,(DT1+DK)≤DT2。
进一步地,1.3×DT1≤DT2。
进一步地,外层磁钢槽包括:第一外层磁钢槽,第一外层磁钢槽位于转子本体的直轴的第一侧,第一外层磁钢槽的第一端朝向转子本体的转轴孔14处延伸并逐渐靠近转子本体的直轴设置,第一外层磁钢槽的第二端朝向转子本体的外边沿延伸并逐渐远离转子本体的直轴设置;第二外层磁钢槽,第二外层磁钢槽位于与转子本体的直轴的第一侧相对的第二侧,第二外层磁钢槽的第一端朝向转子本体的转轴孔14处延伸并逐渐靠近转子本体的直轴设置,第二外层磁钢槽的第二端朝向转子本体的外边沿延伸并逐渐远离转子本体的直轴设置。
进一步地,第一外层磁钢槽的第一端与第二外层磁钢槽的第一端相连通。
进一步地,外层磁钢槽还包括:空气槽,空气槽的第一端与第一外层磁钢槽的第一端相连通,空气槽的第二端与第二外层磁钢槽的第一端相连通。
进一步地,外层磁钢槽还包括:第一折槽,第一折槽的第一端与第一外层磁钢槽的第二端相连通,第一折槽的第二端朝向转子本体的外边沿延伸并逐渐远离转子本体的直轴设置,第一折槽的几何中心线与第一外层磁钢槽的几何中心线具有第一夹角。
进一步地,第一折槽的第一端至第一折槽的第二端的宽度逐渐减小。
进一步地,第一折槽的靠近转子本体的直轴的一侧的侧壁末端至第一外层磁钢槽的远离转子本体的直轴的一侧的侧壁的延长线的距离为Ga,其中,Ga=N×g,g为定子与转子之间的气隙长度,N为整数。
进一步地,外层磁钢槽还包括:第二折槽,第二折槽的第一端与第二外层磁钢槽的第二端相连通,第二折槽的第二端朝向转子本体的外边沿延伸并逐渐远离转子本体的直轴设置,第二折槽的几何中心线与第一外层磁钢槽的几何中心线具有第二夹角。
进一步地,转子结构还包括:永磁体,永磁体为多个,多个永磁体分别设置于第一外层磁钢槽、第二外层磁钢槽和内层磁钢槽内。
进一步地,设置于第一外层磁钢槽和第二外层磁钢槽内的永磁体的长度为L,设置于第一外层磁钢槽和第二外层磁钢槽内的永磁体之间的最大宽度为C,其中,0.8×C≤L。
进一步地,设置于第一外层磁钢槽内的永磁体,该永磁体的靠近转子本体的直轴一侧且靠近转子本体的边沿处的侧壁,与转子本体的转轴孔14的连线与转子本体的直轴之间形成有第三夹角α1,设置于内层磁钢槽内的永磁体,该永磁体的靠近转子本体的直轴一侧且靠近转子本体的边沿处的侧壁,与转子本体的转轴孔14的连线与转子本体的直轴之间形成有第四夹角α2,其中,1.5×(sinα1/sinα2)≤S1/S2≤1.8×(sinα1/sinα2),S1为设置于第一外层磁钢槽和第二外层磁钢槽内的永磁体的靠近转子本体的直轴一侧的表面积之和,S2为设置于内层磁钢槽内的永磁体的靠近转子本体的直轴一侧的表面积。
进一步地,空气槽的靠近转子本体的边沿的侧壁的中点至转子本体的边沿处的连线的中点为P,以转子本体的转轴孔14至点P的距离作为半径,并沿转子本体的周向作圆弧,与圆弧相交处的永磁体的厚度总和为M1,圆弧的周长为C1,其中,M1/C1=T2,55%≤T2≤65%。
进一步地,导磁通道的宽度沿转子本体的径向方向向外逐渐减小。
进一步地,外层磁钢槽和内层磁钢槽中的至少一个为多个。
进一步地,内层磁钢槽呈U形结构,内层磁钢槽的弧形部朝向转子本体的转轴孔14处凸出地设置。
根据本发明的另一方面,提供了一种永磁辅助同步磁阻电机,包括转子结构,转子结构为上述的转子结构。
根据本发明的另一方面,提供了一种电动汽车,包括转子结构,转子结构为上述的转子结构。
应用本发明的技术方案,通过在外层磁钢槽与内层磁钢槽之间形成导磁通道上开设连接孔,有效减少了转子高速旋转时的变形,又可以避免转子连接孔对磁通的阻挡,提高了电机的效率。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了现有转子结构的实施例的剖视结构示意图;
图2示出了根据本发明的转子结构的实施例一的剖视结构示意图;
图3示出了根据本发明的转子结构的实施例二的剖视结构示意图;
图4示出了根据本发明的转子结构的实施例三的剖视结构示意图;
图5示出了根据本发明的转子结构的实施例四的剖视结构示意图;
图6示出了根据本发明的转子结构的实施例五的剖视结构示意图;
图7示出了转子结构的永磁体厚度占比与转矩关系的示意图;
图8示出了转子结构的内、外层磁钢槽面积比值对磁链影响示意图。
其中,上述附图包括以下附图标记:
10、转子本体;
11、外层磁钢槽;111、第一外层磁钢槽;112、第二外层磁钢槽;113、空气槽;114、第一折槽;115、第二折槽;
12、内层磁钢槽;13、导磁通道;131、连接孔;14、转轴孔;
20、永磁体;
30、定子;31、绕组。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
结合图2至图8所示,根据本发明的实施例,提供了一种转子结构。
具体地,该转子结构包括转子本体10,转子本体10上设置有磁钢槽组,磁钢槽组包括外层磁钢槽11和内层磁钢槽12,外层磁钢槽11与内层磁钢槽12之间形成导磁通道13,导磁通道13上开设有连接孔131。
在本实施例中,通过在外层磁钢槽11与内层磁钢槽12之间形成导磁通道13上开设连接孔131,有效减少了转子高速旋转时的变形,又可以避免转子连接孔对磁通的阻挡,提高了电机的效率。
如图2所示,导磁通道13的靠近转子本体10的外边沿处的宽度为DT1,导磁通道13的靠近转子本体10的转轴孔14处的宽度为DT2,连接孔131的直径为DK,其中,(DT1+DK)≤DT2。这样设置可以有效缓解导磁通道13放置连接孔131这一区域的磁饱和,提升电机的q轴电感,增大电机的磁阻转矩。
进一步地,1.3×DT1≤DT2。这样设置可以有效缓解导磁通道13放置连接孔131这一区域的磁饱和,提升电机的q轴电感,增大电机的磁阻转矩。
在本实施例中,外层磁钢槽11包括第一外层磁钢槽111和第二外层磁钢槽112。第一外层磁钢槽111位于转子本体10的直轴的第一侧,直轴为d轴,第一外层磁钢槽111的第一端朝向转子本体10的转轴孔14处延伸并逐渐靠近转子本体10的直轴设置,第一外层磁钢槽111的第二端朝向转子本体10的外边沿延伸并逐渐远离转子本体10的直轴设置。第二外层磁钢槽112位于与转子本体10的直轴的第一侧相对的第二侧,第二外层磁钢槽112的第一端朝向转子本体10的转轴孔14处延伸并逐渐靠近转子本体10的直轴设置,第二外层磁钢槽112的第二端朝向转子本体10的外边沿延伸并逐渐远离转子本体10的直轴设置。这样设置可以更好的引导定子磁力线更均匀的进入各导磁通道。
其中,第一外层磁钢槽111的第一端与第二外层磁钢槽112的第一端相连通。这样设置可以更好的导通磁力线。
在本实施例中,外层磁钢槽11还包括空气槽113,空气槽113的第一端与第一外层磁钢槽111的第一端相连通,空气槽113的第二端与第二外层磁钢槽112的第一端相连通。样设置可以使得磁力线的引导效果更佳,获得更大的q轴电感。
在本实施例中,外层磁钢槽11还包括第一折槽114,第一折槽114的第一端与第一外层磁钢槽111的第二端相连通,第一折槽114的第二端朝向转子本体10的外边沿延伸并逐渐远离转子本体10的直轴设置,第一折槽114的几何中心线与第一外层磁钢槽111的几何中心线具有第一夹角。设置磁钢槽折槽部分的夹角,可以更加有效的引导定子30的q轴磁链线更均匀的进入各导磁通道,增大电机的q轴电感,提升电机的磁阻转矩。
进一步地,第一折槽114的第一端至第一折槽114的第二端的宽度逐渐减小。这样设置可以使得磁力线的引导效果更佳,获得更大的q轴电感。
如图4所示,第一折槽114的靠近转子本体10的直轴的一侧的侧壁末端至第一外层磁钢槽111的远离转子本体10的直轴的一侧的侧壁的延长线的距离为Ga,其中,Ga=N×g,g为 定子与转子之间的气隙长度,N为整数。这样设置可以有效减少气隙的谐波磁场含量,降低电机的谐波损耗和转矩脉动。
在本实施例中,外层磁钢槽11还包括第二折槽115,第二折槽115的第一端与第二外层磁钢槽112的第二端相连通,第二折槽115的第二端朝向转子本体10的外边沿延伸并逐渐远离转子本体10的直轴设置,第二折槽115的几何中心线与第一外层磁钢槽111的几何中心线具有第二夹角。这样设置可以使得磁力线的引导效果更佳,获得更大的q轴电感。
在本实施例中,转子结构还包括永磁体20,永磁体20为多个,多个永磁体20分别设置于第一外层磁钢槽111、第二外层磁钢槽112和内层磁钢槽12内。可以更好的引导定子磁力线更均匀的进入各导磁通道。
其中,设置于第一外层磁钢槽111和第二外层磁钢槽112内的永磁体20的长度为L,设置于第一外层磁钢槽111和第二外层磁钢槽112内的永磁体20之间的最大宽度为C,其中,0.8×C≤L。这样设置可以在相同的转子内放置更多的永磁体,提升电机的效率和抗退磁能力。
在本实施例中,设置于第一外层磁钢槽111内的永磁体20,该永磁体20的靠近转子本体10的直轴一侧且靠近转子本体10的边沿处的侧壁,与转子本体10的转轴孔14的连线与转子本体10的直轴之间形成有第三夹角α1,设置于内层磁钢槽12内的永磁体20,该永磁体20的靠近转子本体10的直轴一侧且靠近转子本体10的边沿处的侧壁,与转子本体10的转轴孔14的连线与转子本体10的直轴之间形成有第四夹角α2,其中,1.5×(sinα1/sinα2)≤S1/S2≤1.8×(sinα1/sinα2),S1为设置于第一外层磁钢槽111和第二外层磁钢槽112内的永磁体20的靠近转子本体10的直轴一侧的表面积之和,S2为设置于内层磁钢槽12内的永磁体20的靠近转子本体10的直轴一侧的表面积。通过将外层永磁体的排布形状以及内、外层永磁体厚度比值的设置,可以更好的调整永磁体的工作点,使得内、外层永磁的平均工作电机更高。
在本实施例中,空气槽113的靠近转子本体10的边沿的侧壁的中点至转子本体10的边沿处的连线的中点为P,以转子本体10的转轴孔14至点P的距离作为半径,并沿转子本体10的周向作圆弧,与圆弧相交处的永磁体20的厚度总和为M1,圆弧的周长为C1,其中,M1/C1=T2,55%≤T2≤65%。这样设置既可以保证永磁体工作点较高,获得较大的抗退磁能力和较高的电机空载磁链,又可以使得电机获得较大的交、直轴电感差值,提升电机的磁阻转矩。
在本实施例中,导磁通道13的宽度沿转子本体10的径向方向向外逐渐减小。这样设置使得定子30的磁力线更多的进入导磁通道,可以使得转子获得更大的磁阻转矩,进而提高转子的工作效率。
其中,外层磁钢槽11和内层磁钢槽12中的至少一个为多个。这样设置可以使得转子获得更大的磁阻转矩,进而提高转子的工作效率。
在本实施例中,内层磁钢槽12呈U形结构,内层磁钢槽12的弧形部朝向转子本体10的转轴孔14处凸出地设置。这样设置可以进一步调节各导磁通道的磁力线分布,减少局部饱和。
上述实施例中的转子结构还可以用于电机设备技术领域,即根据本发明的另一方面,提供了一种永磁辅助同步磁阻电机。该电机包括转子结构。转子结构为上述实施例中的转子结构。
上述实施例中的转子结构还可以用于车辆设备技术领域,即根据本发明的另一方面,提供了一种电动汽车,包括转子结构,转子结构为上述的转子结构。
如图1所示,现有的永磁辅助同步磁阻电机为了增加转子的机械强度,通常会在转子上设置连接孔,并在连接孔中放置铆钉或螺钉等结构加强杆。通常转子连接孔有两种布置方式,一种是转子连接孔的位置位于磁钢槽与轴孔之间,如图1中的底部转子连接孔,但当转子高速旋转时,转子容易变形的区域是磁钢槽外侧的区域,这种底部转子连接孔在抑制转子变形上效果较差。另一种转子连接孔是设置方式是放置在磁钢槽的最外侧区域,可以有效的减少转子这一区域的变形,但这容易阻挡永磁体的磁力线进入定子,会导致电机效率降低。
为此,本发明提出一种具有全新的转子连接孔布置方式的电机,电机包含定子和转子,定子包含定子铁芯及其嵌入的定子绕组31,转子上含有磁钢槽以及放置在槽中的永磁体,转子同一个磁极上包含多层永磁体,本方案多层是指层数大于等于2,同一磁极内的永磁体朝定子方向具有相同的极性,磁钢槽具朝转子内侧凸起的形状,磁钢槽的两端靠近转子外圆,磁钢槽的中心靠近转子内侧。同一磁极内任意两个相邻磁钢槽之间形成导磁通道,导磁通道在靠近转子底部存在厚度加大区域,在此区域中放置有转子连接孔,具体如图2和图3所示。通过将转子连接孔设置在导磁通道底部,可以有效减少转子高速旋转时的变形,有可以避免转子连接孔对磁通的阻挡,提高了电机的效率。
在本实施例中,通过将导磁通道13加厚区域的厚度DT2设置成不小于1.3倍导磁通道靠近转子外圆处的宽度DT1,或者导磁通道宽度DT2不小于导磁通道宽度DT1与连接孔直径DK之和,可以有效缓解导磁通道放置转子连接孔这一区域的磁饱和,提升电机的q轴电感,增大电机的磁阻转矩。
其中,放置转子连接孔的导磁通道相邻且靠近转子中心一侧的磁钢槽底部具有朝转子内侧凸起的弧形。通过将磁钢槽设置成弧形,可以在形成相同导磁通道宽度DT2条件下,放置更多的永磁体,提升电机空载磁链。
其中,放置转子连接孔的导磁通道相邻且靠近转子外侧的磁钢槽大致程V型,可以更容易形成厚度较大的导磁通道宽度DT2。
如图4所示,以转子最内层永磁体为第一层,从内朝外计算的第二层磁钢槽的末端具有一段朝内层磁钢槽末端方向偏转的转折。
如图5所示,研究发现电机定子通入三相对称的交流电时,定子各个齿上的磁力线并不均匀,越靠近分界线的位置,定子齿上的磁力线越多。
进一步地,q轴磁链线分别从定子齿进入转子的3个导磁通道,导磁通道f3是由两个相邻磁极的最内层磁钢槽之间形成,导磁通道f2是由最内层磁钢槽和第二层磁钢槽之间形成, 导磁通道f1是第二层磁钢槽到转子外圆之间的导磁区域形成,由于磁力线在定子齿上的不均匀分布,进入导磁通道f3的磁力线最多,进入导磁通道f1的磁力线最少,导磁通道f3和导磁通道f2的磁路较为饱和,当电机负载较重时,电机的q轴电感会大幅度下降,影响电机的磁阻转矩利用。尤其是采用铁氧体的永磁辅助同步磁阻电机,为了提升电机的效率和抗退磁能力,永磁体较厚,导磁通道的宽度很难增加时,这一现象变得更为严重。为此,本方案提出了导磁通道末端朝内层永磁体方向偏转的转折,该电机的q轴磁力线f分布示意图如图7所示。通过在导磁通道末端设置一段朝内层磁钢槽末端偏转的转折,可以有效引导定子q轴磁力线f的走向,将原来进入高磁饱和区域的磁力线,如图中进入磁通道f2的磁力线,改为进入低磁饱和区域,如图中的磁通道f1,在相同的激磁电流下产生了更多的磁通,提高了电机的q轴电感,增大了电机的磁阻转矩,提高了电机的效率和功率密度。
在本实施例中,转折后的第二层磁钢槽末端边线的靠近外侧的端点与转折前的第二层磁钢槽末端边线的靠近内侧的端点相比,更靠近转子的q轴。这样设置是为了实现更好的磁力线引导效果。
导磁通道末端未转折前的形状由下述方法确定,当磁钢槽内安装平板永磁体时,延长磁钢槽的两条边线,磁钢槽靠近转子的外边线与转子外圆的距离与磁钢槽转折后相同;当磁钢槽内安装弧形永磁体时,在弧形磁钢槽的端点作弧形的相切线,并延长切线,磁钢槽靠近转子的外边线与转子外圆的距离与转折后相同。进一步的,转折后的第二层磁钢槽折槽边线靠近外侧的端点与转折前的第二层磁钢槽折槽边线靠近内侧的端点的距离为Ga,Ga的距离大致等于定转子气隙长度g的整数倍。通过将Ga的距离设置成定转子气隙长度g的整数倍,有可以有效减少气隙的谐波磁场含量,降低电机的谐波损耗和转矩脉动,这里大致等于的范围是0.95倍-1.05倍。另外磁钢槽末端发生转折的部分不放置永磁体,可以有效减缓末端永磁体的局部退磁,提升电机的抗退磁能力。
如图6和图7所示,电机转子永磁体为铁氧体永磁体,以转子中心为圆心作圆弧,圆弧经过从最外层永磁体外边线的中心点P,圆弧处转子永磁体厚度的总和与该圆弧圆周长的比值为55%-65%。在电机转子永磁体为铁氧体时,通过将永磁体的厚度设置在这个范围内,使得永磁体厚度比导磁通道厚度的比值处于比较优的范围,既可以保证永磁体工作点较高,获得较大的抗退磁能力和较高的电机空载磁链,又可以使得电机获得较大的交、直轴电感差值,提升电机的磁阻转矩。
进一步地,为了增强转子的机械强度,各层磁钢槽中间具有1个或多个隔磁桥。
进一步的,转子内层磁钢槽靠近转子外圆的两端放置平板永磁体。第二层磁钢槽靠近转子外圆的末端放置平板永磁体。通过在磁钢槽末端放置平板永磁体,可以在相同的转子内放置更多的永磁体,提升电机的效率和抗退磁能力。
如图6所示,转子永磁体层数为两层,外层磁钢槽大致程V型,V型磁钢槽中一侧永磁体的长度为L,V型排布永磁体的最大宽度为C,满足0.8×C≤L。外层磁钢槽大致程U型,至少由三段永磁体组成,外层永磁体和内层永磁体靠近转子外侧的表面积比值为S1/S2,外层 永磁体和内层永磁体靠近转子外表面末端的外侧顶点与转子中心形成的夹角分别为2×α1、2×α2,满足以下关系:1.3×(sinα1/sinα2)≤S1/S2≤2×(sinα1/sinα2)。
如图8所示,通过将外层永磁体的排布形状以及内、外层永磁体面积比值的设置,可以更好的调整永磁体的工作点,使得内、外层永磁的平均工作电机更高,内层永磁体中磁力线进入外层永磁体和直接进入定子30的比例更加合理,增加了电机的永磁体磁链,提升了电机的效率和功率因数。内、外层永磁体表面积比值对电机磁链的影响如图所示,通过将内、外层永磁体表面积比值设置成1.3×(sinα1/sinα2)≤S1/S2≤2×(sinα1/sinα2),可以获得较大的电机空载磁链。优选地,1.5×(sinα1/sinα2)≤S1/S2≤1.8×(sinα1/sinα2)。
进一步地,内、外层矩形永磁体形成导磁通道宽度不相等,导磁通道宽度靠近转子外表面宽度越小。通过逐渐变小的磁通道宽度设计,所有转子磁极在圆周上均匀分布。可以更好的调节内、外层永磁体的磁通面积,实现内、外层永磁体工作点的一致性调节。
另外,本实施例的电机作为电动车的驱动电机,可以有效降低电机的成本,减少新能源电动汽车对稀土资源的依赖,同时,本电机兼顾了稀土永磁体电机效率高和异步电机可靠性高的特点,可以更好的推动新能源汽车的发展。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (19)

  1. 一种转子结构,其特征在于,包括:
    转子本体(10),所述转子本体(10)上设置有磁钢槽组,所述磁钢槽组包括外层磁钢槽(11)和内层磁钢槽(12),所述外层磁钢槽(11)与所述内层磁钢槽(12)之间形成导磁通道(13),所述导磁通道(13)上开设有连接孔(131)。
  2. 根据权利要求1所述的转子结构,其特征在于,所述导磁通道(13)的靠近所述转子本体(10)的外边沿处的宽度为DT1,所述导磁通道(13)的靠近所述转子本体(10)的转轴孔(14)处的宽度为DT2,所述连接孔(131)的直径为DK,其中,(DT1+DK)≤DT2。
  3. 根据权利要求2所述的转子结构,其特征在于,1.3×DT1≤DT2。
  4. 根据权利要求2所述的转子结构,其特征在于,所述外层磁钢槽(11)包括:
    第一外层磁钢槽(111),所述第一外层磁钢槽(111)位于所述转子本体(10)的直轴的第一侧,所述第一外层磁钢槽(111)的第一端朝向所述转子本体(10)的所述转轴孔(14)处延伸并逐渐靠近所述转子本体(10)的直轴设置,所述第一外层磁钢槽(111)的第二端朝向所述转子本体(10)的外边沿延伸并逐渐远离所述转子本体(10)的直轴设置;
    第二外层磁钢槽(112),所述第二外层磁钢槽(112)位于与所述转子本体(10)的直轴的第一侧相对的第二侧,所述第二外层磁钢槽(112)的第一端朝向所述转子本体(10)的所述转轴孔(14)处延伸并逐渐靠近所述转子本体(10)的直轴设置,所述第二外层磁钢槽(112)的第二端朝向所述转子本体(10)的外边沿延伸并逐渐远离所述转子本体(10)的直轴设置。
  5. 根据权利要求4所述的转子结构,其特征在于,所述第一外层磁钢槽(111)的第一端与所述第二外层磁钢槽(112)的第一端相连通。
  6. 根据权利要求4所述的转子结构,其特征在于,所述外层磁钢槽(11)还包括:
    空气槽(113),所述空气槽(113)的第一端与所述第一外层磁钢槽(111)的第一端相连通,所述空气槽(113)的第二端与所述第二外层磁钢槽(112)的第一端相连通。
  7. 根据权利要求4所述的转子结构,其特征在于,所述外层磁钢槽(11)还包括:
    第一折槽(114),所述第一折槽(114)的第一端与所述第一外层磁钢槽(111)的第二端相连通,所述第一折槽(114)的第二端朝向所述转子本体(10)的外边沿延伸并逐渐远离所述转子本体(10)的直轴设置,所述第一折槽(114)的几何中心线与所述第一外层磁钢槽(111)的几何中心线具有第一夹角。
  8. 根据权利要求7所述的转子结构,其特征在于,所述第一折槽(114)的第一端至所述第一折槽(114)的第二端的宽度逐渐减小。
  9. 根据权利要求7所述的转子结构,其特征在于,所述第一折槽(114)的靠近所述转子本体(10)的直轴的一侧的侧壁末端至所述第一外层磁钢槽(111)的远离所述转子本体(10)的直轴的一侧的侧壁的延长线的距离为Ga,其中,Ga=N×g,g为定子与转子之间的气隙长度,N为整数。
  10. 根据权利要求7所述的转子结构,其特征在于,所述外层磁钢槽(11)还包括:
    第二折槽(115),所述第二折槽(115)的第一端与所述第二外层磁钢槽(112)的第二端相连通,所述第二折槽(115)的第二端朝向所述转子本体(10)的外边沿延伸并逐渐远离所述转子本体(10)的直轴设置,所述第二折槽(115)的几何中心线与所述第一外层磁钢槽(111)的几何中心线具有第二夹角。
  11. 根据权利要求6所述的转子结构,其特征在于,所述转子结构还包括:
    永磁体(20),所述永磁体(20)为多个,多个所述永磁体(20)分别设置于所述第一外层磁钢槽(111)、所述第二外层磁钢槽(112)和所述内层磁钢槽(12)内。
  12. 根据权利要求11所述的转子结构,其特征在于,设置于所述第一外层磁钢槽(111)和所述第二外层磁钢槽(112)内的所述永磁体(20)的长度为L,设置于所述第一外层磁钢槽(111)和所述第二外层磁钢槽(112)内的所述永磁体(20)之间的最大宽度为C,其中,0.8×C≤L。
  13. 根据权利要求11所述的转子结构,其特征在于,设置于所述第一外层磁钢槽(111)内的所述永磁体(20),该所述永磁体(20)的靠近所述转子本体(10)的直轴一侧且靠近所述转子本体(10)的边沿处的侧壁,与所述转子本体(10)的所述转轴孔(14)的连线与所述转子本体(10)的直轴之间形成有第三夹角α1,设置于所述内层磁钢槽(12)内的所述永磁体(20),该所述永磁体(20)的靠近所述转子本体(10)的直轴一侧且靠近所述转子本体(10)的边沿处的侧壁,与所述转子本体(10)的所述转轴孔(14)的连线与所述转子本体(10)的直轴之间形成有第四夹角α2,其中,1.5×(sinα1/sinα2)≤S1/S2≤1.8×(sinα1/sinα2),S1为设置于所述第一外层磁钢槽(111)和所述第二外层磁钢槽(112)内的所述永磁体(20)的靠近所述转子本体(10)的直轴一侧的表面积之和,S2为设置于所述内层磁钢槽(12)内的所述永磁体(20)的靠近所述转子本体(10)的直轴一侧的表面积。
  14. 根据权利要求11所述的转子结构,其特征在于,所述空气槽(113)的靠近所述转子本体(10)的边沿的侧壁的中点至所述转子本体(10)的边沿处的连线的中点为P,以所述转子本体(10)的所述转轴孔(14)至点P的距离作为半径,并沿所述转子本体(10)的周向作圆弧,与所述圆弧相交处的所述永磁体(20)的厚度总和为M1,所述圆弧的周长为C1,其中,M1/C1=T2,55%≤T2≤65%。
  15. 根据权利要求1所述的转子结构,其特征在于,所述导磁通道(13)的宽度沿所述转子本体(10)的径向方向向外逐渐减小。
  16. 根据权利要求1所述的转子结构,其特征在于,所述外层磁钢槽(11)和所述内层磁钢槽(12)中的至少一个为多个。
  17. 根据权利要求2所述的转子结构,其特征在于,所述内层磁钢槽(12)呈U形结构,所述内层磁钢槽(12)的弧形部朝向所述转子本体(10)的所述转轴孔(14)处凸出地设置。
  18. 一种永磁辅助同步磁阻电机,包括转子结构,其特征在于,所述转子结构为权利要求1至17中任一项所述的转子结构。
  19. 一种电动汽车,包括转子结构,其特征在于,所述转子结构为权利要求1至17中任一项所述的转子结构。
PCT/CN2018/119874 2018-03-16 2018-12-07 转子结构、永磁辅助同步磁阻电机及电动汽车 WO2019174325A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/979,827 US11699930B2 (en) 2018-03-16 2018-12-07 Rotor structure, permanent magnet auxiliary synchronous reluctance motor and electric vehicle
EP18910127.2A EP3767797B1 (en) 2018-03-16 2018-12-07 Rotor structure, permanent magnet auxiliary synchronous reluctance motor and electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810218934.0A CN108321951B (zh) 2018-03-16 2018-03-16 转子结构、永磁辅助同步磁阻电机及电动汽车
CN201810218934.0 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019174325A1 true WO2019174325A1 (zh) 2019-09-19

Family

ID=62897897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119874 WO2019174325A1 (zh) 2018-03-16 2018-12-07 转子结构、永磁辅助同步磁阻电机及电动汽车

Country Status (4)

Country Link
US (1) US11699930B2 (zh)
EP (1) EP3767797B1 (zh)
CN (1) CN108321951B (zh)
WO (1) WO2019174325A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111725917B (zh) 2018-03-16 2021-07-27 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机
CN108566006A (zh) * 2018-03-16 2018-09-21 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN108321951B (zh) * 2018-03-16 2019-12-27 珠海格力电器股份有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN110011444A (zh) * 2019-04-26 2019-07-12 珠海格力节能环保制冷技术研究中心有限公司 电机转子、电机以及压缩机
CN114204710B (zh) * 2021-12-31 2023-09-26 江苏大学 一种多变凸极率永磁电机及其设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104838564A (zh) * 2012-12-14 2015-08-12 Abb技术有限公司 用于电机的转子、电机和用于制造电机的方法
CN107222047A (zh) * 2017-08-09 2017-09-29 珠海格力节能环保制冷技术研究中心有限公司 切向电机、切向电机转子及其转子铁芯
US20170373573A1 (en) * 2016-06-23 2017-12-28 Volvo Car Corporation Electric machine
CN107565723A (zh) * 2016-07-01 2018-01-09 大众汽车有限公司 转子
CN108321951A (zh) * 2018-03-16 2018-07-24 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN208015468U (zh) * 2018-03-16 2018-10-26 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8760025B2 (en) 2012-08-09 2014-06-24 GM Global Technologies Operations LLC Interior permanent magnet machine having off axis centered arc geometry
JP2015122936A (ja) 2013-10-31 2015-07-02 三星電子株式会社Samsung Electronics Co.,Ltd. 埋込磁石型モータ及び埋込磁石型モータの使用方法
KR20150078467A (ko) 2013-12-30 2015-07-08 현대자동차주식회사 매입형 영구자석 모터의 회전자
FR3019948B1 (fr) 2014-04-10 2017-12-22 Moteurs Leroy-Somer Rotor de machine electrique tournante.
US9925889B2 (en) * 2015-08-24 2018-03-27 GM Global Technology Operations LLC Electric machine for hybrid powertrain with dual voltage power system
CN106936284B (zh) * 2015-12-29 2024-04-16 丹佛斯(天津)有限公司 电动机
DE102016225890B3 (de) 2016-12-21 2018-05-30 Magna powertrain gmbh & co kg Rotor für eine elektrische Maschine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104838564A (zh) * 2012-12-14 2015-08-12 Abb技术有限公司 用于电机的转子、电机和用于制造电机的方法
US20170373573A1 (en) * 2016-06-23 2017-12-28 Volvo Car Corporation Electric machine
CN107565723A (zh) * 2016-07-01 2018-01-09 大众汽车有限公司 转子
CN107222047A (zh) * 2017-08-09 2017-09-29 珠海格力节能环保制冷技术研究中心有限公司 切向电机、切向电机转子及其转子铁芯
CN108321951A (zh) * 2018-03-16 2018-07-24 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN208015468U (zh) * 2018-03-16 2018-10-26 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3767797A4 *

Also Published As

Publication number Publication date
EP3767797B1 (en) 2023-06-07
EP3767797A1 (en) 2021-01-20
CN108321951B (zh) 2019-12-27
EP3767797A4 (en) 2021-04-28
CN108321951A (zh) 2018-07-24
US11699930B2 (en) 2023-07-11
US20210057946A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
WO2019174325A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
US11637464B2 (en) Rotor structure, permanent magnet auxiliary synchronous reluctance motor and electric vehicle
WO2019174327A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
WO2019174326A1 (zh) 永磁辅助同步磁阻电机及具有其的电动汽车
WO2019174324A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
WO2019174322A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
CN208316434U (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
WO2019174313A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
CN208094415U (zh) 永磁辅助同步磁阻电机及具有其的电动汽车
CN208015468U (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
CN221408558U (zh) 电机转子和永磁同步电机
CN117458752A (zh) 电机转子和永磁同步电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018910127

Country of ref document: EP