WO2019174313A1 - 转子结构、永磁辅助同步磁阻电机及电动汽车 - Google Patents

转子结构、永磁辅助同步磁阻电机及电动汽车 Download PDF

Info

Publication number
WO2019174313A1
WO2019174313A1 PCT/CN2018/119784 CN2018119784W WO2019174313A1 WO 2019174313 A1 WO2019174313 A1 WO 2019174313A1 CN 2018119784 W CN2018119784 W CN 2018119784W WO 2019174313 A1 WO2019174313 A1 WO 2019174313A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic steel
permanent magnet
steel groove
magnetic
rotor
Prior art date
Application number
PCT/CN2018/119784
Other languages
English (en)
French (fr)
Inventor
陈彬
胡余生
肖勇
童童
卢素华
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2019174313A1 publication Critical patent/WO2019174313A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to the field of electrical equipment, and in particular to a rotor structure, a permanent magnet assisted synchronous reluctance motor, and an electric vehicle.
  • Electric vehicles have the characteristics of energy saving and environmental protection, and have been rapidly developed.
  • Existing electric vehicle drive motors In order to realize the high power density and high efficiency of the motor, more and more motors use high performance rare earth permanent magnet motors.
  • Rare earth permanent magnet motors can achieve high efficiency and high power density, mainly relying on high-performance rare earth permanent magnets.
  • the most widely used NdFeB rare earth permanent magnets The most widely used NdFeB rare earth permanent magnets.
  • rare earth is a non-renewable resource, the price is relatively expensive, and the fluctuation of rare earth price is also large, which leads to high production cost of electric vehicle driving motor, which is very unfavorable for promoting the comprehensive development of electric vehicle.
  • a ferrite permanent magnet auxiliary synchronous reluctance motor is also applied to an electric vehicle, but the motor has problems of high noise, easy demagnetization, and low efficiency.
  • the main object of the present invention is to provide a rotor structure, a permanent magnet assisted synchronous reluctance motor and an electric vehicle to solve the problem of low efficiency of the motor in the prior art.
  • a rotor structure comprising: a rotor body having a magnetic steel groove group on the rotor body, the magnetic steel groove group including an inner magnetic steel groove, and an inner magnetic steel groove
  • the first inner magnetic steel trough section, the second inner magnetic steel trough section and the third inner magnetic steel trough section are sequentially disposed, and the second inner magnetic steel trough section has an arc structure, and the second inner layer magnetic steel
  • the curved portion of the groove segment is convexly disposed toward a side of the rotating shaft hole of the rotor body, the second inner magnetic steel groove portion is symmetrically disposed with respect to the straight axis of the rotor body, and the ends of the second inner magnetic steel groove segment are end portions
  • the sidewall extension line intersects the straight axis at point Q.
  • the magnetic steel trough group includes an outer magnetic steel trough, the outer magnetic steel trough is disposed adjacent to the inner magnetic steel trough, and a magnetic conductive channel is formed between the outer magnetic steel trough and the inner magnetic steel trough, and the outer layer The magnetic steel trough is located outside the inner magnetic steel trough.
  • the outer magnetic steel trough comprises a plurality of magnetic steel trough sections
  • the plurality of magnetic steel trough sections comprise: a first outer magnetic steel trough section, the first end of the first outer magnetic steel trough section facing the rotating shaft of the rotor body
  • the hole extends, the second end of the first outer magnetic steel groove segment extends toward the outer edge of the rotor body, the first outer magnetic steel groove segment is located on the first side of the straight shaft; the second outer magnetic steel groove segment,
  • the second outer magnetic steel trough section is disposed opposite the first outer magnetic steel trough section and is located on a second side opposite to the first side of the straight shaft, and the first end of the second outer magnetic steel trough section faces the rotor body
  • the shaft hole extends to extend, and the second end of the second outer magnetic steel groove segment extends toward the outer edge of the rotor body.
  • the outer magnetic steel groove further includes: a first folding groove, the first end of the first folding groove is in communication with the second end of the first outer magnetic steel groove segment, and the second end of the first folding groove faces the rotor
  • the outer edge of the body extends and gradually moves away from the straight axis.
  • the outer magnetic steel groove further includes: a second folding groove, the first end of the second folding groove is in communication with the second end of the second outer magnetic steel groove segment, and the second end of the second folding groove is facing the rotor
  • the outer edge of the body extends and gradually moves away from the straight axis.
  • the plurality of magnetic steel trough segments further include: a third outer magnetic steel trough section, the first end of the third outer magnetic steel trough section is in communication with the first end of the first outer magnetic steel trough section, The second end of the three outer magnetic steel trough sections is in communication with the first end of the second outer magnetic steel trough section.
  • first outer magnetic steel trough section, the second outer magnetic steel trough section and the third outer magnetic steel trough section form a V-shaped structural magnetic steel trough, or the first outer magnetic steel trough section and the second The outer magnetic steel trough section and the third outer magnetic steel trough section form a U-shaped structural magnetic steel trough.
  • a distance between a midpoint of the sidewall of the second end of the first folded groove near the outer edge of the rotor body and a geometric centerline of the first outer magnetic steel slot segment is D3, and the first outer magnetic steel slot segment
  • the width of the end of the second end is M, where 0.6M ⁇ D3.
  • a first magnetic bridge is formed between the second end of the first chamfer and the outer edge of the rotor body, wherein 0.4 ⁇ M ⁇ (H-H1), or 0.4 ⁇ M ⁇ (H-H1) ⁇ 2 ⁇ M, M is the width of the end of the second end of the first outer magnetic steel trough section, and H is the distance from the second end of the first outer magnetic steel trough section to the outer edge of the rotor body, and H1 is the first The width of the magnetic bridge.
  • first inner layer magnetic steel trough section, the second inner layer magnetic steel trough section and the third inner layer magnetic steel trough section are sequentially spaced apart, the first inner layer magnetic steel trough section and the second inner layer magnetic steel trough section A second magnetic bridge is formed between the segments, and a third magnetic bridge is formed between the second inner magnetic steel trough segment and the third inner magnetic steel trough segment.
  • the rotor structure further includes: a curved permanent magnet disposed in the second inner magnetic steel slot section, and the magnetic field direction of the curved permanent magnet intersects the straight axis at the point Q.
  • the distance between the two ends of the curved permanent magnet and the second magnetic isolation bridge is L1, wherein L1 ⁇ 0.2 mm.
  • the rotor structure further includes: a first inner layer permanent magnet, the first inner layer permanent magnet is disposed in the first inner layer magnetic steel slot section, and the surface of the first inner layer permanent magnet is adjacent to the side of the second magnetic isolation bridge It is disposed in parallel with the side line of the second magnetic isolation bridge.
  • a distance between a surface of the first inner permanent magnet adjacent to the side of the second magnetic isolation bridge and the second magnetic isolation bridge is L1, wherein L1 ⁇ 0.2 mm.
  • the rotor structure further includes: a third inner layer permanent magnet, the third inner layer permanent magnet is disposed in the third inner layer magnetic steel slot section, and the surface of the third inner layer permanent magnet is adjacent to the side of the third magnetic isolation bridge It is disposed in parallel with the side line of the third magnetic isolation bridge.
  • a distance between a surface of the third inner permanent magnet adjacent to the third magnetic isolation bridge and a third magnetic isolation bridge is L3, wherein L3 ⁇ 0.2 mm.
  • the width of the second magnetic isolation bridge and/or the third magnetic isolation bridge gradually decreases outward in the radial direction of the rotor body.
  • first inner layer permanent magnet and the third inner layer permanent magnet are rectangular permanent magnets.
  • the rotor structure further includes a curved permanent magnet disposed in the second inner magnetic steel slot section, and the magnetic field direction of the curved permanent magnet is collected in the inner arc shaft hole of the curved permanent magnet and the arc is permanent The line connecting the outer arc of the magnet to the shaft hole.
  • the cross section of the inner magnetic steel groove in the radial direction of the rotor body has a U-shaped structure, and both ends of the inner magnetic steel groove are symmetrically arranged with respect to the first geometric center line of the radial direction of the inner magnetic steel groove.
  • first geometric centerline of the second inner layer of magnetic steel troughs is collinear with the second geometric centerline of the outer layer of magnetic steel troughs along the radial direction of the rotor body.
  • the cross section of the outer magnetic steel groove in the radial direction of the rotor body has a V-shaped structure, and the extension line and the outer layer magnetic of the first end of the outer magnetic steel groove toward the second geometric center line An extension of the second end of the steel trough facing the sidewall of the second geometric center line intersects to form a first angle ⁇ 1, where ⁇ 1 ⁇ , ⁇ is an outer magnetic channel located in the inner magnetic steel trough The extreme arc angle.
  • an extension line of the first inner layer magnetic steel groove section facing the side wall of the outer magnetic steel groove intersects with an extension line of the third inner magnetic steel groove section facing the side wall of the outer magnetic steel groove to form the first An angle ⁇ 2, where 0 ⁇ ⁇ 2 - ⁇ 1 ⁇ (1/15) ⁇ ⁇ , ⁇ is the polar arc angle of the outer magnetic conductive channel located in the inner magnetic steel groove.
  • the connecting portion of the first inner magnetic steel trough section and the third inner magnetic steel trough section and the side wall facing the inner magnetic steel trough have an arc structure, the center of the arc structure and the second inner layer magnetic steel The center of the slot is the same.
  • the rotor structure further comprises: an inner layer permanent magnet, the inner layer permanent magnet is disposed in the inner layer magnetic steel groove; the outer layer permanent magnet, the outer layer permanent magnet is disposed in the outer layer magnetic steel groove, and the inner layer permanent magnet has a thickness For H2, the thickness of the outer permanent magnet is H, wherein 0.2 ⁇ H ⁇ H2 - H ⁇ 0.3 ⁇ H.
  • the thickness of the curved permanent magnet is H1
  • ends of the first inner permanent magnet and/or the third inner permanent magnet near the outer edge of the rotor body are provided with trimming edges.
  • a permanent magnet assisted synchronous reluctance motor comprising a rotor structure which is the rotor structure described above.
  • the permanent magnet auxiliary synchronous reluctance motor further includes: a stator body having a plurality of stator teeth disposed on an inner circumferential surface of the stator body, the plurality of stator teeth including a first stator tooth and a second stator tooth, the first stator The teeth are spaced apart from the second stator teeth, the ends of the first inner layer permanent magnets are disposed opposite to the first stator teeth, and the ends of the third inner layer permanent magnets are disposed opposite to the second stator teeth, the first inner The end of the layer permanent magnet remote from the outer permanent magnet is provided with a first trimming edge, and the end of the third inner permanent magnet remote from the outer permanent magnet is provided with a second trimming edge.
  • the plurality of stator teeth further includes a third stator tooth and a fourth stator tooth, the third stator tooth is disposed adjacent to the first stator tooth, and the distance between the third stator tooth and the first geometric center line is greater than the first stator a distance from the sub-tooth to the first geometric center line, the fourth stator tooth being disposed adjacent to the second stator tooth, the distance from the fourth stator tooth to the first geometric center line being greater than the distance from the second stator tooth to the first geometric center line
  • the distance between the first trimming edge and the second trimming edge is L1
  • the surface of the end of the first stator tooth remote from the first geometric center line and the end of the second stator tooth are away from the first geometric center
  • the distance between the surfaces of the wires is L2
  • the distance between the surface of the end of the third stator tooth close to the first geometric center line and the surface of the end of the fourth stator tooth close to the first geometric center line is L3, L2 ⁇ L1 ⁇ L3.
  • the outer layer permanent magnet comprises: a first outer layer permanent magnet, the first outer layer permanent magnet is disposed in the outer layer magnetic steel groove, and the first end of the first outer layer permanent magnet extends toward the shaft hole, first The second end of the outer permanent magnet extends toward the outer edge of the rotor body; the second outer permanent magnet, the second outer permanent magnet is disposed in the outer magnetic steel groove, and the first end of the second outer permanent magnet faces Extending from the shaft hole, the second end of the second outer layer permanent magnet extends toward the outer edge of the rotor body, and the first outer layer permanent magnet and the second outer layer permanent magnet are symmetrically disposed about the second geometric center line.
  • the permanent magnet auxiliary synchronous reluctance motor comprises: a stator body, the stator body has a plurality of stator teeth disposed on an inner circumferential surface thereof, the plurality of stator teeth further includes a fifth stator tooth, and the fifth stator tooth is located at the first outer layer Between the magnet and the second outer layer permanent magnet, the plurality of stator teeth further includes a sixth stator tooth and a seventh stator tooth, the sixth stator tooth being disposed adjacent to the fifth stator tooth, and the end of the first outer layer permanent magnet Opposite the fifth stator teeth, the ends of the second outer layer permanent magnets are disposed opposite the sixth stator teeth.
  • a central angle formed by a line connecting the point on the side wall of the outermost magnetic steel groove farthest from the second geometric center line and the shaft hole is ⁇ 3
  • the sixth stator tooth and a central angle formed by a line connecting the side wall of the seventh stator tooth close to the center of the fifth stator tooth and the center of the rotor body is ⁇ 4
  • a line connecting the two ends of the line at the maximum width of the fifth stator tooth to the shaft hole is formed.
  • the central angle is ⁇ 5, where ⁇ 5 ⁇ ⁇ 3 ⁇ ⁇ 4.
  • an electric vehicle comprising a rotor structure which is the rotor structure described above.
  • the end side wall extension line of the two ends of the second inner layer magnetic steel groove section is intersected with the straight axis of the rotor body at the point Q, so that the motor q-axis inductance strength is increased, and the motor efficiency is increased.
  • FIG. 1 is a cross-sectional structural view showing a first embodiment of a rotor structure according to the present invention
  • Figure 2 is a cross-sectional structural view showing a second embodiment of a rotor structure according to the present invention.
  • Figure 3 is a cross-sectional structural view showing a third embodiment of a rotor structure according to the present invention.
  • Figure 4 is a cross-sectional structural view showing a fourth embodiment of a rotor structure according to the present invention.
  • Figure 5 is a cross-sectional structural view showing a fifth embodiment of a rotor structure according to the present invention.
  • Figure 6 is a cross-sectional structural view showing the sixth embodiment of the rotor structure according to the present invention.
  • Figure 7 is a schematic view showing the structure of a seventh embodiment of a rotor structure according to the present invention.
  • Figure 8 is a block diagram showing the construction of an embodiment of a rotor and stator assembly structure of a rotor structure in accordance with the present invention.
  • Figure 9 is a schematic view showing the influence of the ratio of the inner and outer magnetic steel groove area ratios of the rotor structure to the flux linkage;
  • Figure 10 is a schematic view showing the relationship between the ratio of the thickness of the permanent magnet of the rotor structure and the torque
  • Figure 11 is a schematic view showing the influence of the length of the end of the magnetic steel trough end of the rotor structure on the performance of the motor;
  • Figure 12 is a schematic illustration of the effect of the width of the end of the slot of the rotor structure in accordance with the present invention on motor parameters.
  • an outer permanent magnet 21, a first outer permanent magnet; 22, a second outer permanent magnet;
  • an inner permanent magnet 31, a curved permanent magnet; 32, a first inner permanent magnet; 321, a first trim; 33, a third inner permanent magnet; 331, a second trim;
  • stator body 41, the first stator teeth; 42, the second stator teeth; 43, the third stator teeth; 44, the fourth stator teeth; 45, the fifth stator teeth; 46, the sixth stator teeth; Seventh stator tooth;
  • a rotor structure is provided.
  • the rotor includes a rotor body 10, and the rotor body 10 is provided with a magnetic steel groove group, the magnetic steel groove group includes an inner magnetic steel groove 12, and the inner magnetic steel groove 12 includes a first inner magnetic steel groove disposed in sequence.
  • the segment 121, the second inner layer of the magnetic steel trough section 122 and the third inner layer of the magnetic steel trough section 123, the second inner layer of the magnetic steel trough section 122 has an arc structure, and the curved portion of the second inner layer of the magnetic steel trough section 122 Proximately disposed toward one side of the rotating shaft hole of the rotor body 10, the second inner magnetic steel groove section 122 is symmetrically disposed with respect to the straight axis of the rotor body 10, and the end side walls of the both ends of the second inner magnetic steel grooved section 122 The extension line intersects the straight axis at point Q.
  • the end side wall extension line of the two ends of the second inner layer magnetic steel groove section is intersected with the straight axis of the rotor body at a point Q to improve the permanent magnet auxiliary synchronous reluctance motor (hereinafter referred to as Motor) q-axis inductance strength, increase motor efficiency, reduce motor torque ripple, reduce motor vibration and noise, improve motor efficiency, and improve motor anti-demagnetization capability.
  • Motor permanent magnet auxiliary synchronous reluctance motor
  • the magnetic steel groove group includes an outer magnetic steel groove 11, and the outer magnetic steel groove 11 is disposed adjacent to the inner magnetic steel groove 12, and the outer magnetic steel groove 11 and the inner magnetic steel groove 12 A magnetic conductive path is formed therebetween, and the outer magnetic steel groove 11 is located outside the inner magnetic steel groove 12.
  • the outer magnetic steel groove 11 includes a plurality of magnetic steel groove segments, and the plurality of magnetic steel groove segments include a first outer magnetic steel groove segment and a second outer magnetic steel groove segment.
  • the first end of the first outer magnetic steel trough section 111 extends toward the rotating shaft hole of the rotor body 10, and the second end of the first outer magnetic steel trough section 111 extends toward the outer edge of the rotor body 10, the first outer layer
  • the magnetic steel slot section 111 is located on the first side of the straight shaft.
  • the second outer magnetic steel trough section 112 is disposed opposite the first outer magnetic steel trough section 111 and is located on a second side opposite the first side of the straight shaft, the first end of the second outer magnetic steel trough section 112 Extending toward the shaft hole of the rotor body 10, the second end of the second outer core steel groove section 112 extends toward the outer edge of the rotor body 10. This arrangement facilitates efficient introduction of magnetic lines of force within the magnetically conductive passage.
  • the outer magnetic steel groove 11 further includes a first folding groove 113.
  • the first end of the first folding groove 113 communicates with the second end of the first outer magnetic steel groove segment 111, and the first folding groove 113
  • the two ends extend toward the outer edge of the rotor body 10 and gradually move away from the straight axis. This setting allows the magnetic field lines to be guided better and achieves a larger q-axis inductance.
  • the outer magnetic steel groove 11 further includes a second folding groove 114.
  • the first end of the second folding groove 114 communicates with the second end of the second outer magnetic steel groove section 112, and the second end of the second folding groove 114 The end extends towards the outer edge of the rotor body 10 and gradually away from the straight axis. This setting allows the magnetic field lines to be guided better and achieves a larger q-axis inductance.
  • the plurality of magnetic steel trough sections further includes a third outer magnetic steel trough section 115, the first end of the third outer magnetic steel trough section 115 and the first outer first magnetic steel trough section 111 The ends are in communication, and the second end of the third outer magnetic steel trough section 115 is in communication with the first end of the second outer magnetic steel trough section 112.
  • This arrangement facilitates efficient introduction of magnetic lines of force within the magnetically conductive passage.
  • the first outer magnetic steel groove section 111, the second outer magnetic steel groove section 112 and the third outer magnetic steel groove section 115 form a V-shaped structural magnetic steel groove, that is, in the embodiment, the third outer layer
  • the magnetic steel trough section 115 has a small V-shaped structure.
  • the first outer magnetic steel trough section 111, the second outer outer magnetic steel trough section 112, and the third outer magnetic steel trough section 115 form a U-shaped structural magnetic steel trough, that is, in the present embodiment, the third outer layer
  • the magnetic steel groove section 115 has a small U-shaped structure. This arrangement can better guide the stator magnetic lines to enter the magnetic channels more evenly.
  • the distance between the midpoint of the side wall of the second end of the first folded groove 113 near the outer edge of the rotor body 10 and the geometric center line of the first outer magnetic steel groove section 111 is D3, first
  • the width of the end of the second end of the outer magnetic steel groove section 111 is M, where 0.6M ⁇ D3. This setting allows the magnetic field lines to be guided better and achieves a larger q-axis inductance.
  • a first magnetic bridge is formed between the second end of the first folding groove 113 and the outer edge of the rotor body 10, wherein 0.4 ⁇ M ⁇ (H-H1), or 0.4 ⁇ M ⁇ (H-H1) ⁇ 2 ⁇ M, M is the width of the end of the second end of the first outer magnetic steel groove section 111, and H is the distance from the second end of the first outer magnetic steel groove section 111 to the outer edge of the rotor body 10, H1 is the width of the first magnetic bridge 51.
  • the first inner layer magnetic steel groove section 121, the second inner layer magnetic steel groove section 122 and the third inner layer magnetic steel groove section 123 are disposed at intervals, the first inner layer magnetic steel groove section 121 and A second magnetic bridge 52 is formed between the second inner magnetic steel trough sections 122, and a third magnetic bridge 53 is formed between the second inner magnetic steel trough section 122 and the third inner magnetic steel trough section 123.
  • the magnetic field of the permanent magnet can be used to make the magnetic isolation bridge relatively saturated, so that the axial magnetic line of the stator is difficult to pass through the magnetic isolation bridge, which reduces the shaft inductance of the motor and improves the reluctance torque of the motor.
  • the rotor structure further includes a curved permanent magnet 31 disposed in the second inner magnetic steel groove segment 122, and the magnetic field direction of the curved permanent magnet 31 intersects the straight axis at the point Q.
  • the distance between the two ends of the curved permanent magnet 31 and the second magnetic isolation bridge 52 is L1, where L1 ⁇ 0.2 mm.
  • the rotor structure further includes a first inner layer permanent magnet 32 disposed in the first inner layer magnetic steel slot section 121, and the first inner layer permanent magnet 32 is adjacent to the second partition.
  • the surface on one side of the magnetic bridge 52 is disposed in parallel with the side line of the second magnetic bridge 52.
  • the magnetic field of the permanent magnet can be used to make the magnetic isolation bridge relatively saturated, so that the axial magnetic line of the stator is difficult to pass through the magnetic isolation bridge, which reduces the shaft inductance of the motor and improves the reluctance torque of the motor.
  • the distance between the surface of the first inner permanent magnet 32 on the side close to the second magnetic bridge 52 and the second magnetic bridge 52 is L1, where L1 ⁇ 0.2 mm.
  • the magnetic field of the permanent magnet can be used to make the magnetic isolation bridge relatively saturated, so that the axial magnetic line of the stator is difficult to pass through the magnetic isolation bridge, which reduces the shaft inductance of the motor and improves the reluctance torque of the motor.
  • the rotor structure further includes a third inner layer permanent magnet 33, the third inner layer permanent magnet 33 is disposed in the third inner layer magnetic steel groove section 123, and the third inner layer permanent magnet 33 is adjacent to the third partition.
  • the surface on the side of the magnetic bridge 53 is disposed in parallel with the side line of the third magnetic bridge 53.
  • the magnetic field of the permanent magnet can be used to make the magnetic isolation bridge relatively saturated, so that the axial magnetic line of the stator is difficult to pass through the magnetic isolation bridge, which reduces the shaft inductance of the motor and improves the reluctance torque of the motor.
  • the distance between the surface of the third inner permanent magnet 33 on the side close to the third magnetic bridge 53 and the third magnetic bridge 53 is L3, where L3 ⁇ 0.2 mm.
  • the magnetic field of the permanent magnet can be used to make the magnetic isolation bridge relatively saturated, so that the axial magnetic line of the stator is difficult to pass through the magnetic isolation bridge, which reduces the shaft inductance of the motor and improves the reluctance torque of the motor.
  • the rotor structure further includes a first inner layer permanent magnet 32, the first inner layer permanent magnet 32 is disposed in the first inner layer magnetic steel slot section 121, and the first inner layer permanent magnet 32 and the third inner layer permanent magnet 33 are Rectangular permanent magnet. This arrangement is more conducive to the tight fit of the permanent magnet and the magnetic steel groove.
  • the rotor structure further includes a curved permanent magnet disposed in the second inner magnetic steel slot segment, and the magnetic field direction of the curved permanent magnet is collected in the inner arc shaft hole of the curved permanent magnet and A line connecting the outer arc of the curved permanent magnet to the shaft hole.
  • the inner rotor magnetic steel groove 12 and the outer magnetic steel groove 11 are formed on the rotor body 10, and a magnetic conductive channel is formed between the inner magnetic steel groove 12 and the outer magnetic steel groove 11, and the inner layer magnetic steel is formed.
  • the cross section of the groove 12 in the radial direction of the rotor body 10 has a U-shaped structure, and the ends of the first geometric center line of the inner layer magnetic steel groove 12 in the radial direction of the rotor body 10 are symmetric with respect to the first geometric center line. Ground setting.
  • the technical solution makes the layout of the magnetic steel groove disposed on the rotor body more reasonable, improves the effective area of the work of the magnetic steel provided in the inner and outer magnetic steel grooves, improves the permanent magnet torque of the rotor, and further improves the rotor.
  • the reluctance torque of the structure thereby increasing the output torque of the rotor structure having the rotor structure.
  • the inner magnetic steel groove 12 includes a second inner magnetic steel groove segment 122, and the curved portion of the second inner magnetic steel groove portion 122 is convexly disposed toward the rotating shaft hole 13 of the rotor body 10,
  • the first geometric centerline of the second inner layer of magnetic steel trough sections 122 is collinear with the second geometric centerline of the outer layer of magnetic steel troughs 11 along the radial direction of the rotor body 10. This arrangement ensures that the rotor magnetic field is evenly distributed.
  • the cross section of the outer magnetic steel groove 11 in the radial direction of the rotor body 10 has a V-shaped structure, and the extension line of the first end of the outer magnetic steel groove 11 facing the second geometric center line is An extension line of the second end of the outer magnetic flux groove 11 facing the second geometric center line intersects to form a first angle ⁇ 1, where (13/15) ⁇ ⁇ ⁇ ⁇ 1 ⁇ (17/15) ⁇ ⁇ , ⁇ is the polar arc angle of the outer magnetic conductive channel located in the inner magnetic steel groove 12.
  • the arrangement makes the rotor magnetic poles distributed on the circumference reasonably, so that the magnetic poles of the rotor structure are symmetrically distributed, the torque ripple of the rotor structure load is reduced, and the vibration and noise of the rotor structure are reduced.
  • the inner magnetic steel slot 12 includes a first inner magnetic steel slot segment 121, and the first end of the first inner magnetic steel slot segment 121 is in communication with the first end of the second inner magnetic steel slot portion 122.
  • the second end of an inner magnetic steel groove section 121 extends outward in the radial direction of the rotor body 10; the third inner magnetic steel groove section 123, the first end and the second inner magnetic steel groove section 123
  • the second end of the inner magnetic steel trough section 122 is in communication, and the second end of the third inner magnetic steel trough section 123 extends outward in the radial direction of the rotor body 10, and the orientation of the first inner layer of the magnetic steel trough section 121
  • An extension of the side wall of the outer magnetic steel groove 11 intersects with an extension of the third inner magnetic steel groove section 123 toward the side wall of the outer magnetic steel groove 11 to form a first angle ⁇ 2, where 0 ⁇ 2 - ⁇ 1 ⁇ 1 / 15 ⁇ ⁇ , where ⁇ is the arc
  • connection between the first inner layer magnetic steel groove section 121 and the third inner layer magnetic steel groove section 123 and toward the side wall of the inner layer magnetic steel groove 12 has an arc structure, and the center of the arc structure
  • the center of the second inner magnet steel trough section 122 is the same.
  • the rotor structure further includes: an inner layer permanent magnet 30, the inner layer permanent magnet 30 is disposed in the inner layer magnetic steel groove 12; the outer layer permanent magnet 20, and the outer layer permanent magnet 20 is disposed on the outer layer magnetic steel groove
  • the thickness of the inner permanent magnet 30 is H2
  • the thickness of the outer permanent magnet 20 is H, wherein 0.2 ⁇ H ⁇ H2 - H ⁇ 0.3 ⁇ H.
  • This setting can effectively increase the permanent magnet torque and the demagnetization current, wherein the thickness is set to 0.2 ⁇ H ⁇ H2 - H ⁇ 0.3 ⁇ H is the most cost-effective.
  • the ferromagnetic permanent magnet material can be used for the magnetic steel here, so that the cost can be reduced by 30% compared with the prior art.
  • the inner permanent magnet 30 includes a curved permanent magnet 31, a first inner permanent magnet 32, and a third inner permanent magnet 33, and the arc permanent magnet 31 is disposed in the second inner magnetic steel slot segment 122;
  • the inner permanent magnet 32 is disposed in the first inner magnetic steel groove segment 121;
  • the third inner permanent magnet 33 is disposed in the third inner magnetic steel groove segment 123, and the thickness of the curved permanent magnet 31 is H1, first
  • the ends of the first inner permanent magnet 32 and/or the third inner permanent magnet 33 near the outer edge of the rotor body 10 are provided with trimming edges. This arrangement increases the anti-demagnetization capability of the rotor.
  • the ends of the first inner permanent magnet 32 and the third inner permanent magnet 33 near the outer edge of the rotor body 10 may have a trimming edge at the same time.
  • the rotor structure further includes a stator body 40.
  • the inner circumferential surface of the stator body 40 is provided with a plurality of stator teeth, and the plurality of stator teeth include a first stator tooth 41 and a second stator tooth 42.
  • the sub-tooth 41 is disposed at an interval from the second stator tooth 42.
  • the end of the first inner layer permanent magnet 32 is disposed opposite to the first stator tooth 41, and the end of the third inner layer permanent magnet 33 and the second stator tooth 42 are provided.
  • the end of the first inner permanent magnet 32 remote from the outer permanent magnet 20 is provided with a first trim 321
  • the end of the third inner permanent magnet 33 remote from the outer permanent magnet 20 is provided with a second Trimming 331.
  • This arrangement can make more magnetic flux under the same excitation current, increase the reluctance torque of the rotor structure, improve the efficiency of the rotor structure, and the trimming treatment of the magnetic steel enhances the anti-demagnetization capability of the rotor.
  • the plurality of stator teeth further includes a third stator tooth 43 and a fourth stator tooth 44, the third stator tooth 43 being disposed adjacent to the first stator tooth 41, and the third stator tooth 43 to the first geometric center line
  • the distance is greater than the distance from the first stator tooth 41 to the first geometric center line
  • the fourth stator tooth 44 is disposed adjacent to the second stator tooth 42
  • the distance between the fourth stator tooth 44 and the first geometric center line is greater than the second stator a distance from the tooth 42 to the first geometric centerline; wherein the distance between the first trimming edge 321 and the second trimming edge 331 is L1, the surface of the end of the first stator tooth 41 away from the first geometric center line and The distance between the end of the second stator tooth 42 away from the first geometric center line is L2, the end of the third stator tooth 43 near the first geometric center line and the end of the fourth stator tooth 44 The distance between the surfaces near the first geometric center line is L3, L2 ⁇ L1 ⁇ L3.
  • Such an arrangement can improve the first inner permanent magnet 32 and the third inner permanent magnet 33 on both sides of the U-shaped body on the rotor body, and the first outer permanent magnet 21 and the second outer permanent magnet 22 of the V-shaped magnetic steel.
  • the anti-demagnetization capability further enhances the anti-demagnetization capability of the rotor structure.
  • the outer layer permanent magnet 20 includes a first outer layer permanent magnet 21 and a second outer layer permanent magnet 22, and the first outer layer permanent magnet 21 is disposed in the outer layer magnetic steel groove 11, the first outer layer is forever
  • the first end of the magnet 21 extends toward the shaft hole 13
  • the second end of the first outer layer permanent magnet 21 extends toward the outer edge of the rotor body 10
  • the second outer layer permanent magnet 22 is disposed on the outer layer of the magnetic steel groove 11
  • the first end of the second outer layer permanent magnet 22 extends toward the shaft hole 13
  • the second end of the second outer layer permanent magnet 22 extends toward the outer edge of the rotor body 10
  • the first outer layer permanent magnet 21 and The second outer permanent magnet 22 is symmetrically disposed about the second geometric centerline.
  • This arrangement increases the effective area of the magnetic steel operation and makes the magnetic field lines in the rotor magnetic field evenly distributed and provides more magnetic flux.
  • the permanent magnet torque is increased, which in turn increases the reluctance torque of the rotor structure, thereby increasing the output torque of the rotor structure.
  • the permanent magnet auxiliary synchronous reluctance motor provided by the present application includes a rotor structure and a stator body 40.
  • the inner circumferential surface of the stator body 40 is provided with a plurality of stator teeth, and the plurality of stator teeth further includes a fifth stator tooth 45, and a fifth
  • the stator teeth 45 are located between the first outer layer permanent magnet 21 and the second outer layer permanent magnet 22, and the plurality of stator teeth further include a sixth stator tooth 46 and a seventh stator tooth 47, a sixth stator tooth 46 and a fifth stator tooth 45 is disposed adjacently, the end of the first outer layer permanent magnet 21 is disposed opposite to the fifth stator tooth 45, and the end of the second outer layer permanent magnet 22 is disposed opposite to the sixth stator tooth 46.
  • This arrangement effectively adjusts the magnetic lines of force generated by the stator into the rotor, resulting in more flux at the same excitation current.
  • electromagnetic torque is provided to increase the output torque of the rotor structure.
  • the central angle formed by the line connecting the point on the side wall of the outermost magnetic steel groove 11 farthest from the second geometric center line and the shaft hole 13 is ⁇ 3.
  • the central angle formed by the line connecting the side wall of the sixth stator tooth 46 and the seventh stator tooth 47 close to the fifth stator tooth 45 and the center of the rotor body 10 is ⁇ 4, and the line connecting the maximum width of the fifth stator tooth 45
  • the central angle formed by the line connecting the two ends to the shaft hole 13 is ⁇ 5, where ⁇ 5 ⁇ ⁇ 3 ⁇ ⁇ 4.
  • the rotor structure in the above embodiment can also be used in the field of motor equipment technology, that is, according to another aspect of the present invention, a permanent magnet assisted synchronous reluctance motor is provided, including a rotor structure having the rotor structure described above.
  • the rotor structure in the above embodiment can also be used in the field of vehicle equipment technology, that is, according to another aspect of the present invention, an electric vehicle including a rotor structure having the rotor structure described above is provided.
  • the motor comprises a stator and a rotor
  • the rotor comprises a magnetic steel groove and a permanent magnet placed in the magnetic steel groove.
  • the rotor comprises a plurality of permanent magnets on the same magnetic pole, and the permanent magnet in the same magnetic pole faces the stator The directions have the same polarity
  • the magnetic steel groove has a convex shape toward the inner side of the rotor
  • the two ends of the magnetic steel groove are close to the outer circumference of the rotor
  • the center of the magnetic steel groove is close to the inner side of the rotor
  • the innermost permanent magnet 30 is composed of a plurality of permanent magnets.
  • the magnetic pole center line is an arc-shaped permanent magnet
  • the end of the curved permanent magnet has a magnetic isolation bridge.
  • the magnetic field direction of the curved permanent magnet points to the pivot hole point on the shaft, and the permanent magnet side line also points to the rotating shaft hole point.
  • the center of the magnetic field direction of the inner arc permanent magnet is located on a straight line segment connecting the arc shaft hole of the arc permanent magnet and the outer arc shaft hole, which can provide a larger magnetic field to the air gap and enhance the no-load flux linkage. Reduce current, reduce copper consumption, and improve motor efficiency.
  • the thickness of the magnetic bridge adjacent to the end of the curved permanent magnet in the inner permanent magnet 30 is not equal, and gradually narrows from the inner side of the rotor to the outer side.
  • the stress concentration at the magnetic bridge is reduced, which can be improved.
  • the mechanical strength of the rotor can also make more permanent magnets in the magnetic steel trough, increase the permanent magnet torque of the motor, and make the edge direction of the permanent magnet end closer to the magnetization direction, reducing the local demagnetization of the permanent magnet.
  • the rectangular permanent magnets on both sides of the motor are adjacent to the side line of the magnetic isolation bridge and parallel to the adjacent magnetic isolation bridge edge, and the distance between the side line and the magnetic isolation bridge is less than 0.2 mm, and the permanent magnet filling degree can be utilized.
  • the magnetic field of the permanent magnet makes the magnetic isolation bridge relatively saturated, which makes it difficult for the shaft magnetic field of the stator to pass through the magnetic isolation bridge, which reduces the shaft inductance of the motor and improves the reluctance torque of the motor.
  • the motor comprises a stator structure and a rotor structure.
  • the stator structure comprises a stator core and an embedded stator winding thereof.
  • the rotor structure comprises a magnetic steel slot and a permanent magnet placed in the magnetic steel groove, and the rotor has the same magnetic pole.
  • the upper layer includes a plurality of permanent magnets, and the plurality of layers in the present embodiment means that the number of layers is greater than or equal to 2, and the permanent magnets in the same magnetic pole have the same polarity toward the stator body 40, and the magnetic steel groove has a shape convex toward the inner side of the rotor.
  • the two ends of the magnetic steel groove are close to the outer circumference of the rotor, the center of the magnetic steel groove is close to the inner side of the rotor, and a magnetic conductive channel is formed between any two adjacent magnetic steel grooves in the same magnetic pole, wherein one end of the one or more magnetic conductive channels has a section toward The turning of the inner permanent magnet 30 in the direction of deflection is as shown in FIGS. 1 and 4.
  • the permanent magnet assisted synchronous reluctance motor uses the difference between the AC and DC axes to generate the reluctance torque, and can also utilize the permanent magnet torque generated by the permanent magnet.
  • the motor's cross-axis inductance can be increased, the direct-axis inductance of the motor can be reduced, the reluctance torque of the motor can be increased, and the no-load flux linkage of the motor can increase the permanent magnet torque of the motor. It is found that when the motor stator body 40 is connected to the three-phase symmetrical alternating current, the magnetic lines of force on the respective teeth of the stator body 40 are not uniform, and the closer to the boundary line, the more magnetic lines of force on the teeth of the stator body 40.
  • the end of the second magnetic steel trough calculated from the inside to the outside has a turn which is deflected toward the end of the inner magnetic steel trough, and is deflected by the end of the magnetic steel trough. It can better guide the stator magnetic lines to enter the magnetic channels more evenly.
  • the width of the turning portion at the end of the magnetic steel groove gradually increases from the outer surface of the rotor toward the inner side.
  • the midpoint of the end of the second layer of the magnetic steel groove end after the turning and the turning point is defined as D3
  • the width of the unconverted portion of the second-layer magnetic steel trough near the end of the rotor is M, 0.6M ⁇ D3.
  • the shape before the end of the magnetic flux channel is not converted by the following method.
  • the two edges of the magnetic steel groove are extended, and the distance between the outer edge of the magnetic steel groove and the outer circumference of the rotor is
  • the magnetic steel groove is the same after turning; when the curved permanent magnet is installed in the magnetic steel groove, an arc tangent line is formed at the end of the curved magnetic steel groove, and the tangent is extended, and the magnetic steel groove is close to the outer edge of the rotor and the outer circumference of the rotor.
  • the distance is the same as after the transition.
  • the end point of the end edge of the second layer of the magnetic steel groove after the turning is closer to the q-axis of the rotor than the end point of the end edge of the second layer of the magnetic steel groove before the turning. This setting is for better magnetic line guiding.
  • the distance between the end point of the end of the second layer of the magnetic steel groove and the end point of the end of the second layer of the magnetic steel groove before the turning is Ga, and the distance of Ga is substantially equal to the length of the stator air gap g. Integer multiple.
  • the length of the end portion of the second layer of the magnetic steel groove is H-H1
  • the width of the end of the unfolded portion of the magnetic steel groove is M, which satisfies 0.4 ⁇ M ⁇ H-H1.
  • H is the distance from the outer edge of the turning portion of the magnetic steel trough to the outer circle of the rotor
  • H1 is the thickness of the magnetic bridge formed by the turning portion of the permanent magnet rotor and the outer circle of the rotor
  • the width of the end of the unconverted portion of the magnetic steel trough is M.
  • the length of the turning portion of the magnetic steel trough has a great influence on the motor q-axis inductance and the motor flux linkage.
  • M which causes the magnetic flux area of the second layer of permanent magnets to decrease, resulting in a drop in the no-load flux linkage of the motor. Therefore, preferably, 0.4 ⁇ M ⁇ H - H1 ⁇ 2 ⁇ M.
  • the width Md of the end portion of the second layer of the magnetic steel groove near the inner side of the rotor is smaller than the width M of the end of the unfolded portion of the magnetic steel groove.
  • the width D1 of the end of the turning portion of the second layer of the magnetic steel groove is smaller than the width M of the end of the unfolded portion of the second layer of the magnetic steel groove, 0.25 ⁇ M ⁇ D1 ⁇ 0.8 ⁇ M, preferably 0.3 ⁇ M ⁇ D1 ⁇ 0.45 ⁇ M.
  • the first inner layer magnetic steel groove section 121 includes a third folding groove 124, and the first end of the third folding groove 124 and the outer edge of the first inner layer magnetic steel groove section 121 are adjacent to the outer edge of the rotor body 10. The ends are in communication and the second end of the third fold 124 extends toward the outer edge of the rotor body 10 and gradually away from the straight axis.
  • the third inner magnetic steel groove section 123 includes a fourth folding groove 125, and the first end of the fourth folding groove 125 communicates with the end of the third inner magnetic steel groove section 123 near the outer edge of the rotor body 10, The second end of the four-fold groove 125 extends toward the outer edge of the rotor body 10 and gradually moves away from the straight axis.
  • the q-axis magnetic flux line of the stator body 40 can be more effectively guided into the magnetic conductive channels, the q-axis inductance of the motor is increased, and the reluctance torque of the motor is improved.
  • the width D1 of the end of the turning part of the magnetic steel groove has a certain influence on the intersection and direct shaft inductance of the motor. As shown in Fig. 6, when the width D1 is larger than 0.8 ⁇ M, the end of the magnetic steel groove blocks the q-axis magnetic flux. More, it will cause the q-axis inductance to drop. If the width D1 is less than 0.25 ⁇ M, the magnetic field lines of the shaft inductance can easily pass through the magnetic bridge between the rotor magnet groove and the outer circumference of the rotor, in order to obtain a large intersection and straightness.
  • the difference in shaft inductance increases the reluctance torque of the motor, 0.25 ⁇ M ⁇ D1 ⁇ 0.8 ⁇ M, and further preferably, 0.3 ⁇ M ⁇ D1 ⁇ 0.45 ⁇ M.
  • the portion where the end of the magnetic steel trough turns is not placed with a permanent magnet, which can effectively slow down the local demagnetization of the end permanent magnet and improve the anti-demagnetization capability of the motor.
  • the number of layers of the rotor permanent magnet is 2 layers or 3 layers.
  • the permanent magnet of the motor rotor is a ferrite permanent magnet
  • the arc is centered on the center of the rotor
  • the arc passes through the center point P from the outer edge of the outermost permanent magnet 20, and the sum of the thicknesses of the permanent magnets of the rotor at the arc
  • the ratio of the circumference of the arc is 45%-70%.
  • the motor can obtain a large difference between the AC and DC axes and improve the reluctance torque of the motor.
  • the ratio of the sum of the thicknesses of the rotor permanent magnets at the arc to the circumference of the arc is 55%-65%.
  • one or more magnetic isolation bridges are provided in the middle of each layer of magnetic steel grooves.
  • the inner magnet steel groove of the rotor is placed with flat plate permanent magnets at both ends close to the outer circumference of the rotor.
  • a second layer of magnetic steel trough is placed near the end of the outer circumference of the rotor to place a flat permanent magnet.
  • the number of permanent magnet layers of the rotor is two
  • the outer magnetic steel groove is generally V-shaped
  • the length of one permanent magnet in the V-shaped magnetic steel groove is L
  • the maximum width of the V-shaped permanent magnet is C, which satisfies 0.8 ⁇ C ⁇ L.
  • the outer magnetic steel trough is generally U-shaped, consisting of at least three permanent magnets, and the surface area ratio of the outer permanent magnet 20 and the inner permanent magnet 30 to the outer side of the rotor is S1/S2, the outer permanent magnet 20 and the inner permanent magnet.
  • the angle between the outer apex of the end near the outer surface of the rotor and the center of the rotor is 2 ⁇ ⁇ 1, 2 ⁇ ⁇ 2, respectively, and satisfies the relationship: 1.3 ⁇ (sin ⁇ 1 / sin ⁇ 2 ) ⁇ S 1 / S 2 ⁇ 2 ⁇ (sin ⁇ 1 / sin ⁇ 2 ).
  • the working point of the permanent magnet can be better adjusted, so that the average working motor of the inner and outer permanent magnets is higher.
  • the proportion of the magnetic field lines entering the outer permanent magnet 20 and directly entering the stator body 40 in the layer permanent magnet 30 is more reasonable, which increases the permanent magnet flux linkage of the motor, and improves the efficiency and power factor of the motor.
  • the surface area ratio of the inner and outer permanent magnets to 1.3 ⁇ (sin ⁇ 1 / sin ⁇ 2 ) ⁇ S1/S 2 ⁇ 2 ⁇ (sin ⁇ 1 / sin ⁇ 2 )
  • a large motor no-load flux linkage can be obtained.
  • the thickness M2 of the flat permanent magnets on both sides of the innermost layer of the rotor is greater than the thickness M1 of the second flat end permanent magnets, 1.1 M1 ⁇ M2 ⁇ 1.8 M1, and it is found that when the directional magnetic field is applied to the stator body 40, The operating points of the outer permanent magnets are not the same, and the working point of the inner permanent magnets 30 is lower than that of the outer permanent magnets 20, so that the inner permanent magnets 30 are more prone to local demagnetization, which affects the overall anti-demagnetization capability of the motor, in order to alleviate In this phenomenon, the thickness M2 of the inner permanent magnet 30 is set larger than the outer permanent magnet M1, and in order to make the inner and outer permanent magnets have the same anti-demagnetization ability, 1.1 ⁇ M1 ⁇ M2 ⁇ 1.8 ⁇ M1. Preferably, 1.1 ⁇ M1 ⁇ M2 ⁇ 1.3 ⁇ M1.
  • the inner and outer rectangular permanent magnets form unequal widths of the magnetic conductive channels, and the width of the magnetic conductive channels is smaller near the outer surface of the rotor.
  • the magnetic flux area of the inner and outer permanent magnets can be better adjusted, and the consistency of the working points of the inner and outer permanent magnets can be adjusted.
  • the angle between the outer edge of the outer portion of the outer magnetic steel groove is A1
  • the outer edge of the outer portion of the outer magnetic steel groove is A, 2 ⁇ A ⁇ A1
  • the inner layer of the magnetic steel groove is outside.
  • the surface has a trimming edge
  • the angle of the outer edge of the inner edge of the magnetic steel groove is B1
  • the angle of the outer edge of the uncut portion of the magnetic steel groove is B, 2 ⁇ B ⁇ B1, and 1.1 ⁇ B1 ⁇ A1.
  • the stator q-axis flux linkage can be more effectively guided into the respective magnetic permeability channels, thereby increasing the q-axis inductance of the motor and improving The reluctance torque of the motor.
  • the outer surface of the inner magnetic arc groove of the rotor has a trimming edge, and the width of the end portion of the magnetic steel groove after the chamfering is D1, and the width of the end portion of the non-beveled portion of the magnetic steel groove is D2, D1 ⁇ 0.6 ⁇ D2.
  • the stator flux can be effectively increased into the rotor, and the q-axis inductance of the motor is improved.
  • the end of the inner magnetic steel groove has a turning point toward the deflection of the magnetic pole boundary line, which can better distribute the number of magnetic lines entering the magnetic conductive path f2 and the magnetic conductive path f3, reduce the local saturation of the magnetic conductive channel, and improve the magnetic resistance of the motor.
  • All the ends of the magnetic steel trough have a turning point toward the deflection of the magnetic pole boundary line, which can further adjust the magnetic field line distribution of each magnetic conductive channel and reduce local saturation. All rotor poles are evenly distributed over the circumference.
  • the rotor structure of the solution adopts a ferrite magnetic steel material, which can effectively reduce the cost of the rotor structure.
  • the U+V-shaped structure is adopted to increase the effective area of the magnetic steel, increase the permanent magnet torque and increase the reluctance torque of the rotor structure, thereby increasing the output torque. Effect.
  • the U-shaped magnetic steel in the inner structure of the rotor structure is difficult to process due to its large curvature. Therefore, the design adopts a three-stage type, and the two sides are bilaterally symmetrical and in a single shape, and the magnetic steel at the center position is curved.
  • the axial magnetic circuit distribution between the U-shaped magnetic steel and the V-shaped magnetic steel is reasonable, and the axial magnetic reluctance is reduced, and the center of the center position of the U-shaped magnetic steel coincides with the sharp corner of the V-shaped magnetic steel.
  • the V-shaped open angle design corresponds to the design of the stator tooth angle comparison ⁇ 5 ⁇ 3 ⁇ 4,
  • the rotor structure magnetic steel is designed with different thicknesses.
  • the thickness of the circular section magnetic steel H1 is 10% H1 ⁇ 30 thicker than the one-sided magnetic steel on both sides.
  • the chamfering design is performed on the two-sided magnetic steel on both sides.
  • the above scheme can not only ensure the amount of magnetic steel, but also ensure the shaft magnetic circuit of sufficient width, improve the reluctance torque of the rotor structure, improve the structural performance of the rotor, and ensure the anti-demagnetization capability.
  • the rotor structure comprises a rotor body, an inner layer magnetic steel groove and an outer magnetic steel groove are formed on the rotor body, a magnetic conductive channel is formed between the inner magnetic steel groove and the outer magnetic steel groove, and the inner magnetic steel groove is along the rotor body
  • the cross section in the radial direction has a U-shaped configuration, and both ends of the first geometric center line of the inner magnetic steel groove in the radial direction of the rotor body are symmetrically arranged with respect to the first geometric center line.
  • the inner magnetic steel trough is U-shaped, the outer magnetic steel trough is a central symmetrical structure, and the inner and outer magnetic steel troughs are nested together, and the first geometric center line in the radial direction of the same rotor body is a symmetrical center.
  • This arrangement increases the effective area of the magnetic steel work, increases the permanent magnet torque, and thus increases the reluctance torque of the rotor structure, thereby increasing the output torque of the rotor structure.
  • the technical solution can improve the magnetic torque of the rotor structure of the electric vehicle, improve the demagnetization capability of the rotor structure, and reduce the cost by 30% compared with the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种转子结构、永磁辅助同步磁阻电机及电动汽车,转子结构包括转子本体(10),转子本体(10)上开设有磁钢槽组,磁钢槽组包括内层磁钢槽(12),内层磁钢槽(12)包括依次设置的第一内层磁钢槽段(121)、第二内层磁钢槽段(122)和第三内层磁钢槽段(123),第二内层磁钢槽段(122)呈弧形结构,第二内层磁钢槽段(122)的弧形部朝向转子本体(10)的转轴孔(13)一侧凸出地设置,第二内层磁钢槽段(122)关于转子本体(10)的直轴对称地设置,第二内层磁钢槽段(122)的两端的端部侧壁延长线与直轴相交于点Q。通过设置第二内层磁钢槽段(122)的两端的端部侧壁延长线与转子本体(10)的直轴相交于点Q,使之提高电机q轴电感强度,增大电机效率,降低电机转矩脉动,降低电机的振动和噪声,提高电机效率,提高电机的抗退磁能力。

Description

转子结构、永磁辅助同步磁阻电机及电动汽车 技术领域
本发明涉及电机设备技术领域,具体而言,涉及一种转子结构、永磁辅助同步磁阻电机及电动汽车。
背景技术
电动汽车具有节能、环保等特点,得到了迅速的发展。现有的电动汽车驱动电机为了实现电机的高功率密度、高效率等功能,越来越多的电机采用高性能稀土永磁电机。稀土永磁电机能够实现高效率和高功率密度,主要依赖于高性能的稀土永磁体,目前应用最多的是钕铁硼稀土永磁体。但稀土是一种不可再生资源,价格较为昂贵,并且稀土价格的波动也较大,导致电动汽车驱动电机的生产成本较高,这对于推动电动汽车全面发展是非常不利的。进一步地,现有技术中了还将铁氧体永磁辅助同步磁阻电机应用于电动汽车,但该种电机存在噪声大、易退磁、效率低等问题。
发明内容
本发明的主要目的在于提供一种转子结构、永磁辅助同步磁阻电机及电动汽车,以解决现有技术中电机效率低的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种转子结构,包括:转子本体,转子本体上开设有磁钢槽组,磁钢槽组包括内层磁钢槽,内层磁钢槽包括依次设置的第一内层磁钢槽段、第二内层磁钢槽段和第三内层磁钢槽段,第二内层磁钢槽段呈弧形结构,第二内层磁钢槽段的弧形部朝向转子本体的转轴孔一侧凸出地设置,第二内层磁钢槽段关于转子本体的直轴对称地设置,第二内层磁钢槽段的两端的端部侧壁延长线与直轴相交于点Q。
进一步地,磁钢槽组包括外层磁钢槽,外层磁钢槽与内层磁钢槽相邻地设置,外层磁钢槽与内层磁钢槽之间形成导磁通道,外层磁钢槽位于内层磁钢槽外侧。
进一步地,外层磁钢槽包括多个磁钢槽段,多个磁钢槽段包括:第一外层磁钢槽段,第一外层磁钢槽段的第一端朝向转子本体的转轴孔延伸设置,第一外层磁钢槽段的第二端朝向转子本体的外边沿延伸设置,第一外层磁钢槽段位于直轴的第一侧;第二外层磁钢槽段,第二外层磁钢槽段与第一外层磁钢槽段相对地设置并位于与直轴的第一侧相对的第二侧,第二外层磁钢槽段的第一端朝向转子本体的转轴孔延伸设置,第二外层磁钢槽段的第二端朝向转子本体的外边沿延伸设置。
进一步地,外层磁钢槽还包括:第一折槽,第一折槽的第一端与第一外层磁钢槽段的第二端相连通,第一折槽的第二端朝向转子本体的外边沿延伸并逐渐远离直轴。
进一步地,外层磁钢槽还包括:第二折槽,第二折槽的第一端与第二外层磁钢槽段的第二端相连通,第二折槽的第二端朝向转子本体的外边沿延伸并逐渐远离直轴。
进一步地,多个磁钢槽段还包括:第三外层磁钢槽段,第三外层磁钢槽段的第一端与第一外层磁钢槽段的第一端相连通,第三外层磁钢槽段的第二端与第二外层磁钢槽段的第一端相连通。
进一步地,第一外层磁钢槽段、第二外层磁钢槽段和第三外层磁钢槽段形成V形结构磁钢槽,或者,第一外层磁钢槽段、第二外层磁钢槽段和第三外层磁钢槽段形成U形结构磁钢槽。
进一步地,第一折槽的第二端的靠近转子本体的外边沿处的侧壁的中点与第一外层磁钢槽段的几何中心线的距离为D3,第一外层磁钢槽段的第二端的端部的宽度为M,其中,0.6M≤D3。
进一步地,第一折槽的第二端与转子本体的外边沿之间形成第一隔磁桥,其中,0.4×M≤(H-H1),或者,0.4×M≤(H-H1)≤2×M,M为第一外层磁钢槽段的第二端的端部的宽度,H为第一外层磁钢槽段的第二端至转子本体的外边沿的距离,H1为第一隔磁桥的宽度。
进一步地,第一内层磁钢槽段、第二内层磁钢槽段和第三内层磁钢槽段依次间隔地设置,第一内层磁钢槽段和第二内层磁钢槽段之间形成有第二隔磁桥,第二内层磁钢槽段与第三内层磁钢槽段之间形成有第三隔磁桥。
进一步地,转子结构还包括:弧形永磁体,弧形永磁体设置于第二内层磁钢槽段内,弧形永磁体的磁场方向与直轴交于点Q。
进一步地,弧形永磁体的两端与第二隔磁桥之间的距离为L1,其中,L1≤0.2mm。
进一步地,转子结构还包括:第一内层永磁体,第一内层永磁体设置于第一内层磁钢槽段内,第一内层永磁体的靠近第二隔磁桥一侧的表面与第二隔磁桥的边线平行地设置。
进一步地,第一内层永磁体的靠近第二隔磁桥一侧的表面与第二隔磁桥之间的距离为L1,其中,L1≤0.2mm。
进一步地,转子结构还包括:第三内层永磁体,第三内层永磁体设置于第三内层磁钢槽段内,第三内层永磁体的靠近第三隔磁桥一侧的表面与第三隔磁桥的边线平行地设置。
进一步地,第三内层永磁体的靠近第三隔磁桥一侧的表面与第三隔磁桥之间的距离为L3,其中,L3≤0.2mm。
进一步地,第二隔磁桥和/或第三隔磁桥的宽度沿转子本体的径向方向向外逐渐减小。
进一步地,第一内层永磁体和第三内层永磁体为矩形永磁体。
进一步地,转子结构还包括弧形永磁体,弧形永磁体设置于第二内层磁钢槽段内,弧形永磁体的磁场方向汇集于弧形永磁体的内弧转轴孔和弧形永磁体的外弧转轴孔之间的连线上。
进一步地,内层磁钢槽的沿转子本体径向方向的横截面呈U形结构,内层磁钢槽的两端关于内层磁钢槽的径向方向的第一几何中心线对称地设置。
进一步地,第二内层磁钢槽段的第一几何中心线与外层磁钢槽的沿转子本体的径向方向的第二几何中心线共线。
进一步地,外层磁钢槽的沿转子本体的径向方向的横截面呈V形结构,外层磁钢槽的第一端的朝向第二几何中心线的侧壁的延长线与外层磁钢槽的第二端的朝向第二几何中心线的侧壁的延长线相交以形成第一夹角α1,其中,×α<α1≤×α,α为位于内层磁钢槽的外侧导磁通道的极弧角度。
进一步地,第一内层磁钢槽段的朝向外层磁钢槽的侧壁的延长线与第三内层磁钢槽段的朝向外层磁钢槽的侧壁的延长线相交以形成第一夹角α2,其中,0≤α2-α1≤(1/15)×α,α为位于内层磁钢槽的外侧导磁通道的极弧角度。
进一步地,第一内层磁钢槽段和第三内层磁钢槽段的连接处且朝向内层磁钢槽的侧壁呈弧形结构,弧形结构的圆心与第二内层磁钢槽段的圆心相同。
进一步地,转子结构还包括:内层永磁体,内层永磁体设置于内层磁钢槽内;外层永磁体,外层永磁体设置于外层磁钢槽内,内层永磁体的厚度为H2,外层永磁体的厚度为H,其中,0.2×H≤H2-H≤0.3×H。
进一步地,弧形永磁体的厚度为H1,第一内层永磁体或第三内层永磁体的厚度为H21,其中,H1-H21=t,其中,t∈[0.1×H1,0.3×H1]。
进一步地,第一内层永磁体和/或第三内层永磁体的靠近转子本体的外边沿处的端部设置有切边。
根据本发明的另一方面,提供了一种永磁辅助同步磁阻电机,包括转子结构,转子结构为上述的转子结构。
进一步地,永磁辅助同步磁阻电机还包括:定子本体,定子本体的内周面上设置有多个定子齿,多个定子齿包括第一定子齿和第二定子齿,第一定子齿与第二定子齿间隔地设置,第一内层永磁体的端部与第一定子齿相对地设置,第三内层永磁体的端部与第二定子齿相对地设置,第一内层永磁体的远离外层永磁体的端部设置有第一切边,第三内层永磁体的远离外层永磁体的端部设置有第二切边。
进一步地,多个定子齿还包括第三定子齿和第四定子齿,第三定子齿与第一定子齿相邻地设置,第三定子齿至第一几何中心线的距离大于第一定子齿至第一几何中心线的距离,第四定子齿与第二定子齿相邻地设置,第四定子齿至第一几何中心线的距离大于第二定子齿至 第一几何中心线的距离;其中,第一切边与第二切边之间的距离为L1,第一定子齿的端部的远离第一几何中心线的表面与第二定子齿的端部的远离第一几何中心线的表面之间的距离为L2,第三定子齿的端部的靠近第一几何中心线的表面与第四定子齿的端部的靠近第一几何中心线的表面之间的距离为L3,L2<L1<L3。
进一步地,外层永磁体包括:第一外层永磁体,第一外层永磁体设置于外层磁钢槽内,第一外层永磁体的第一端朝向转轴孔处延伸设置,第一外层永磁体的第二端朝向转子本体的外边沿延伸设置;第二外层永磁体,第二外层永磁体设置于外层磁钢槽内,第二外层永磁体的第一端朝向转轴孔处延伸设置,第二外层永磁体的第二端朝向转子本体的外边沿延伸设置,第一外层永磁体与第二外层永磁体关于第二几何中心线对称地设置。
进一步地,永磁辅助同步磁阻电机包括:定子本体,定子本体的内周面上设置有多个定子齿,多个定子齿还包括第五定子齿,第五定子齿位于第一外层永磁体和第二外层永磁体之间,多个定子齿还包括第六定子齿和第七定子齿,第六定子齿与第五定子齿相邻地设置,第一外层永磁体的端部与第五定子齿相对地设置,第二外层永磁体的端部与第六定子齿相对地设置。
进一步地,外层磁钢槽的远离内层磁钢槽并距离第二几何中心线的最远处的侧壁上的点与转轴孔的连线形成的圆心角为α3,第六定子齿和第七定子齿的靠近第五定子齿的侧壁与转子本体的圆心的连线形成的圆心角为α4,第五定子齿的最大宽度处的连线的两端与转轴孔的连线形成的圆心角为α5,其中,α5<α3<α4。
根据本发明的另一方面,提供了一种电动汽车,包括转子结构,转子结构为上述的转子结构。
应用本发明的技术方案,通过设置第二内层磁钢槽段的两端的端部侧壁延长线与转子本体的直轴相交于点Q,使之提高电机q轴电感强度,增大电机效率,降低电机转矩脉动,降低电机的振动和噪声,提高电机效率,提高电机的抗退磁能力。
附图说明
图1示出了根据本发明的转子结构的实施例一的剖视结构示意图;
图2示出了根据本发明的转子结构的实施例二的剖视结构示意图;
图3示出了根据本发明的转子结构的实施例三的剖视结构示意图;
图4示出了根据本发明的转子结构的实施例四的剖视结构示意图;
图5示出了根据本发明的转子结构的实施例五的剖视结构示意图;
图6示出了根据本发明的转子结构的实施例六的剖视结构示意图;
图7示出了根据本发明的转子结构的实施例七的结构示意图;
图8示出了根据本发明的转子结构的转子和定子装配结构的实施例的结构示意图。
图9示出了转子结构的内、外层磁钢槽面积比值对磁链影响示意图;
图10示出了转子结构的永磁体厚度占比与转矩关系的示意图;
图11示出了转子结构的磁钢槽末端折槽长度对电机性能影响的示意图;
图12示出了根据本发明的转子结构的折槽末端宽度对电机参数影响的示意图。
其中,上述附图包括以下附图标记:
10、转子本体;11、外层磁钢槽;12、内层磁钢槽;13、转轴孔;
111、第一外层磁钢槽段;112、第二外层磁钢槽段;113、第一折槽;114、第二折槽;115、第三外层磁钢槽段;
121、第一内层磁钢槽段;122、第二内层磁钢槽段;123、第三内层磁钢槽段;
124、第三折槽;125、第四折槽;
20、外层永磁体;21、第一外层永磁体;22、第二外层永磁体;
30、内层永磁体;31、弧形永磁体;32、第一内层永磁体;321、第一切边;33、第三内层永磁体;331、第二切边;
40、定子本体;41、第一定子齿;42、第二定子齿;43、第三定子齿;44、第四定子齿;45、第五定子齿;46、第六定子齿;47、第七定子齿;
51、第一隔磁桥;52、第二隔磁桥;53、第三隔磁桥。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
结合图1至图12所示,根据本发明的实施例,提供了一种转子结构。
具体地,该转子包括转子本体10,转子本体10上开设有磁钢槽组,磁钢槽组包括内层磁钢槽12,内层磁钢槽12包括依次设置的第一内层磁钢槽段121、第二内层磁钢槽段122和第三内层磁钢槽段123,第二内层磁钢槽段122呈弧形结构,第二内层磁钢槽段122的弧形部朝向转子本体10的转轴孔一侧凸出地设置,第二内层磁钢槽段122关于转子本体10的直轴对称地设置,第二内层磁钢槽段122的两端的端部侧壁延长线与直轴相交于点Q。
在本实施例中,通过设置第二内层磁钢槽段的两端的端部侧壁延长线与转子本体的直轴相交于点Q,使之提高永磁辅助同步磁阻电机(以下简称为电机)q轴电感强度,增大电机效率,降低电机转矩脉动,降低电机的振动和噪声,提高电机效率,提高电机的抗退磁能力。
如图1所示,磁钢槽组包括外层磁钢槽11,外层磁钢槽11与内层磁钢槽12相邻地设置,外层磁钢槽11与内层磁钢槽12之间形成导磁通道,外层磁钢槽11位于内层磁钢槽12外侧。这样设置可以使得磁力线的引导效果更佳,获得更大的q轴电感。
在本实施例中,外层磁钢槽11包括多个磁钢槽段,多个磁钢槽段包括第一外层磁钢槽段和第二外层磁钢槽段。第一外层磁钢槽段111的第一端朝向转子本体10的转轴孔延伸设置,第一外层磁钢槽段111的第二端朝向转子本体10的外边沿延伸设置,第一外层磁钢槽段111位于直轴的第一侧。第二外层磁钢槽段112与第一外层磁钢槽段111相对地设置并位于与直轴的第一侧相对的第二侧,第二外层磁钢槽段112的第一端朝向转子本体10的转轴孔延伸设置,第二外层磁钢槽段112的第二端朝向转子本体10的外边沿延伸设置。这样设置便于导磁通道内的磁力线高效的导入。
进一步地,外层磁钢槽11还包括第一折槽113,第一折槽113的第一端与第一外层磁钢槽段111的第二端相连通,第一折槽113的第二端朝向转子本体10的外边沿延伸并逐渐远离直轴。这样设置可以使得磁力线的引导效果更佳,获得更大的q轴电感。
另外,外层磁钢槽11还包括第二折槽114,第二折槽114的第一端与第二外层磁钢槽段112的第二端相连通,第二折槽114的第二端朝向转子本体10的外边沿延伸并逐渐远离直轴。这样设置可以使得磁力线的引导效果更佳,获得更大的q轴电感。
在本实施例中,多个磁钢槽段还包括第三外层磁钢槽段115,第三外层磁钢槽段115的第一端与第一外层磁钢槽段111的第一端相连通,第三外层磁钢槽段115的第二端与第二外层磁钢槽段112的第一端相连通。这样设置便于导磁通道内的磁力线高效地导入。
其中,第一外层磁钢槽段111、第二外层磁钢槽段112和第三外层磁钢槽段115形成V形结构磁钢槽,即在本实施例中,第三外层磁钢槽段115为小V形结构。或者,第一外层磁钢槽段111、第二外层磁钢槽段112和第三外层磁钢槽段115形成U形结构磁钢槽,即在本实施例中,第三外层磁钢槽段115为小U形结构。这样设置可以更好的引导定子磁力线更均匀的进入各导磁通道。
在本实施例中,第一折槽113的第二端的靠近转子本体10的外边沿处的侧壁的中点与第一外层磁钢槽段111的几何中心线的距离为D3,第一外层磁钢槽段111的第二端的端部的宽度为M,其中,0.6M≤D3。这样设置可以使得磁力线的引导效果更佳,获得更大的q轴电感。
其中,第一折槽113的第二端与转子本体10的外边沿之间形成第一隔磁桥,其中,0.4×M≤(H-H1),或者,0.4×M≤(H-H1)≤2×M,M为第一外层磁钢槽段111的第二端的端部的宽度,H为第一外层磁钢槽段111的第二端至转子本体10的外边沿的距离,H1为第一隔磁桥51的宽度。这样设置可以使得磁力线的引导效果更佳,获得更大的q轴电感。
在本实施例中,第一内层磁钢槽段121、第二内层磁钢槽段122和第三内层磁钢槽段123依次间隔地设置,第一内层磁钢槽段121和第二内层磁钢槽段122之间形成有第二隔磁桥52,第二内层磁钢槽段122与第三内层磁钢槽段123之间形成有第三隔磁桥53。这样设置可以利 用永磁体的磁场使得隔磁桥较为饱和,使得定子的轴磁力线难以通过隔磁桥,减小了电机的轴电感,提升了电机的磁阻转矩。
进一步地,转子结构还包括弧形永磁体31,弧形永磁体31设置于第二内层磁钢槽段122内,弧形永磁体31的磁场方向与直轴交于点Q。通过将永磁体侧边线指向磁场中心点,可以有效减少永磁体端部的局部退磁,提升电机的抗退磁能力,增加电机的可靠性。
其中,弧形永磁体31的两端与第二隔磁桥52之间的距离为L1,其中,L1≤0.2mm。通过增加永磁体填充度,可以利用永磁体的磁场使得隔磁桥较为饱和,使得定子的轴磁力线难以通过隔磁桥,减小了电机的轴电感,提升了电机的磁阻转矩。
在本实施例中,转子结构还包括第一内层永磁体32,第一内层永磁体32设置于第一内层磁钢槽段121内,第一内层永磁体32的靠近第二隔磁桥52一侧的表面与第二隔磁桥52的边线平行地设置。可以利用永磁体的磁场使得隔磁桥较为饱和,使得定子的轴磁力线难以通过隔磁桥,减小了电机的轴电感,提升了电机的磁阻转矩。
进一步地,第一内层永磁体32的靠近第二隔磁桥52一侧的表面与第二隔磁桥52之间的距离为L1,其中,L1≤0.2mm。可以利用永磁体的磁场使得隔磁桥较为饱和,使得定子的轴磁力线难以通过隔磁桥,减小了电机的轴电感,提升了电机的磁阻转矩。
在本实施例中,转子结构还包括第三内层永磁体33,第三内层永磁体33设置于第三内层磁钢槽段123内,第三内层永磁体33的靠近第三隔磁桥53一侧的表面与第三隔磁桥53的边线平行地设置。可以利用永磁体的磁场使得隔磁桥较为饱和,使得定子的轴磁力线难以通过隔磁桥,减小了电机的轴电感,提升了电机的磁阻转矩。
在本实施例中,第三内层永磁体33的靠近第三隔磁桥53一侧的表面与第三隔磁桥53之间的距离为L3,其中,L3≤0.2mm。可以利用永磁体的磁场使得隔磁桥较为饱和,使得定子的轴磁力线难以通过隔磁桥,减小了电机的轴电感,提升了电机的磁阻转矩。
在本实施例中,第二隔磁桥52或第三隔磁桥53的宽度,或者第二隔磁桥52和第三隔磁桥53的宽度,沿转子本体10的径向方向向外逐渐减小。这样设置有效地提高了具有该结构的转子结构的电机效率,增加了电机的抗退磁能力。
其中,转子结构还包括第一内层永磁体32,第一内层永磁体32设置于第一内层磁钢槽段121内,第一内层永磁体32和第三内层永磁体33为矩形永磁体。这样设置更有利于永磁体和磁钢槽的配合紧密性。
在本实施例中,转子结构还包括弧形永磁体,弧形永磁体设置于第二内层磁钢槽段内,弧形永磁体的磁场方向汇集于弧形永磁体的内弧转轴孔和弧形永磁体的外弧转轴孔之间的连线上。这样设置有效地提高了具有该结构的转子结构的电机效率,增加了电机的抗退磁能力。
在本实施例中,转子本体10上开设有内层磁钢槽12和外层磁钢槽11,内层磁钢槽12和外层磁钢槽11之间形成导磁通道,内层磁钢槽12的沿转子本体10径向方向的横截面呈U形 结构,位于内层磁钢槽12的沿转子本体10的径向方向的第一几何中心线的两端关于第一几何中心线对称地设置。采用该技术方案,使得设置在转子本体上的磁钢槽的布局更加合理,提高了设置于内外层磁钢槽磁钢的工作的有效面积,提高了转子的永磁转矩,进而提升了转子结构的磁阻转矩,从而提升了具有该转子结构的转子结构的输出扭矩。
在本实施例中,内层磁钢槽12包括第二内层磁钢槽段122,第二内层磁钢槽段122的弧形部朝向转子本体10的转轴孔13处凸出地设置,第二内层磁钢槽段122的第一几何中心线与外层磁钢槽11的沿转子本体10的径向方向的第二几何中心线共线。这样设置保证转子磁场分布均匀。
进一步地,外层磁钢槽11的沿转子本体10的径向方向的横截面呈V形结构,外层磁钢槽11的第一端的朝向第二几何中心线的侧壁的延长线与外层磁钢槽11的第二端的朝向第二几何中心线的侧壁的延长线相交以形成第一夹角α1,其中,(13/15)×α<α1≤(17/15)×α,α为位于内层磁钢槽12的外侧导磁通道的极弧角度。这样设置使得转子磁极在圆周上分布合理,使得转子结构磁极对称分布,减小转子结构负载时的转矩脉动,减小转子结构的振动和噪声。
其中,内层磁钢槽12包括第一内层磁钢槽段121,第一内层磁钢槽段121的第一端与第二内层磁钢槽段122的第一端相连通,第一内层磁钢槽段121的第二端沿转子本体10的径向方向向外延伸;第三内层磁钢槽段123,第三内层磁钢槽段123的第一端与第二内层磁钢槽段122的第二端相连通,第三内层磁钢槽段123的第二端沿转子本体10的径向方向向外延伸,第一内层磁钢槽段121的朝向外层磁钢槽11的侧壁的延长线与第三内层磁钢槽段123的朝向外层磁钢槽11的侧壁的延长线相交以形成第一夹角α2,其中,0≤α2-α1≤1/15×α,α为位于所述内层磁钢槽12的外侧导磁通道的极弧角度。这样设置增加了磁钢工作的有效面积,提高了永磁转矩,进而提升了转子结构的磁阻转矩,从而提升了转子结构的输出扭矩。
在本实施例中,第一内层磁钢槽段121和第三内层磁钢槽段123的连接处且朝向内层磁钢槽12的侧壁呈弧形结构,弧形结构的圆心与第二内层磁钢槽段122的圆心相同。这样设置解决了转子上U型整体磁钢弧度过大加工困难的问题,还增加了磁钢工作的有效面积,提高了永磁转矩,进而提升了转子结构的磁阻转矩。
在本实施例中,转子结构还包括:内层永磁体30,内层永磁体30设置于内层磁钢槽12内;外层永磁体20,外层永磁体20设置于外层磁钢槽11内,内层永磁体30的厚度为H2,外层永磁体20的厚度为H,其中,0.2×H≤H2-H≤0.3×H。这样设置可以有效提高永磁扭矩及退磁电流大小,其中厚度设置为0.2×H≤H2-H≤0.3×H是性价比最高。另外,这里磁钢可以采用铁氧体永磁材料,使得与现有技术相比可降低成本30%。
另外,内层永磁体30包括弧形永磁体31、第一内层永磁体32和第三内层永磁体33,弧形永磁体31设置于第二内层磁钢槽段122内;第一内层永磁体32设置于第一内层磁钢槽段121内;第三内层永磁体33设置于第三内层磁钢槽段123内,弧形永磁体31的厚度为H1, 第一内层永磁体32或第三内层永磁体33的厚度为H21,其中,H1-H21=t,其中,t∈[0.1×H1,0.3×H1]。这样设置可以有效提升永磁体转矩及退磁电流大小,且性价比最高。
在本实施例中,第一内层永磁体32和/或第三内层永磁体33的靠近转子本体10的外边沿处的端部设置有切边。这样设置可增加转子的抗退磁能力。另外,第一内层永磁体32和第三内层永磁体33的靠近转子本体10的外边沿处的端部可同时有切边。
在本实施例中,转子结构还包括定子本体40,定子本体40的内周面上设置有多个定子齿,多个定子齿包括第一定子齿41和第二定子齿42,第一定子齿41与第二定子齿42间隔地设置,第一内层永磁体32的端部与第一定子齿41相对地设置,第三内层永磁体33的端部与第二定子齿42相对地设置,第一内层永磁体32的远离外层永磁体20的端部设置有第一切边321,第三内层永磁体33的远离外层永磁体20的端部设置有第二切边331。这样设置可以使得在相同激磁电流下产生更多的磁通,增大了转子结构的磁阻转矩,提高了转子结构的效率,且磁钢的切边处理,增强了转子的抗退磁能力。
进一步地,多个定子齿还包括第三定子齿43和第四定子齿44,第三定子齿43与第一定子齿41相邻地设置,第三定子齿43至第一几何中心线的距离大于第一定子齿41至第一几何中心线的距离,第四定子齿44与第二定子齿42相邻地设置,第四定子齿44至第一几何中心线的距离大于第二定子齿42至第一几何中心线的距离;其中,第一切边321与第二切边331之间的距离为L1,第一定子齿41的端部的远离第一几何中心线的表面与第二定子齿42的端部的远离第一几何中心线的表面之间的距离为L2,第三定子齿43的端部的靠近第一几何中心线的表面与第四定子齿44的端部的靠近第一几何中心线的表面之间的距离为L3,L2<L1<L3。这样设置可以改善转子本体上U型两侧的第一内层永磁体32和第三内层永磁体33以及V字型磁钢的第一外层永磁体21和第二外层永磁体22的抗退磁能力,进一步增强了转子结构的抗退磁能力。
在本实施例中,外层永磁体20包括第一外层永磁体21和第二外层永磁体22,第一外层永磁体21设置于外层磁钢槽11内,第一外层永磁体21的第一端朝向转轴孔13处延伸设置,第一外层永磁体21的第二端朝向转子本体10的外边沿延伸设置;第二外层永磁体22设置于外层磁钢槽11内,第二外层永磁体22的第一端朝向转轴孔13处延伸设置,第二外层永磁体22的第二端朝向转子本体10的外边沿延伸设置,第一外层永磁体21与第二外层永磁体22关于第二几何中心线对称地设置。这样设置增加了磁钢工作的有效面积,并且使得转子磁场内磁力线分布均匀,且可以提供更多的磁通。提高了永磁转矩,进而提升了转子结构的磁阻转矩,从而提升了转子结构的输出扭矩。
其中,本申请提供的永磁辅助同步磁阻电机包括转子结构和定子本体40,定子本体40的内周面上设置有多个定子齿,多个定子齿还包括第五定子齿45,第五定子齿45位于第一外层永磁体21和第二外层永磁体22之间,多个定子齿还包括第六定子齿46和第七定子齿47,第六定子齿46与第五定子齿45相邻地设置,第一外层永磁体21的端部与第五定子齿45相对地设置,第二外层永磁体22的端部与第六定子齿46相对地设置。这样设置可以有效调节定 子产生的磁力线进入转子,使得在相同的激磁电流下产生了更多的磁通。进而提供了电磁扭矩,提升转子结构的输出扭矩。
在本实施例中,外层磁钢槽11的远离内层磁钢槽12并距离第二几何中心线的最远处的侧壁上的点与转轴孔13的连线形成的圆心角为α3,第六定子齿46和第七定子齿47的靠近第五定子齿45的侧壁与转子本体10的圆心的连线形成的圆心角为α4,第五定子齿45的最大宽度处的连线的两端与转轴孔13的连线形成的圆心角为α5,其中,α5<α3<α4。这样设置增加了磁钢工作的有效面积,提高了永磁转矩,进而提升了转子结构的磁阻转矩。
上述实施例中的转子结构还可以用于电机设备技术领域,即根据本发明的另一方面,提供了一种永磁辅助同步磁阻电机,包括转子结构,转子结构为上述的转子结构。
上述实施例中的转子结构还可以用于车辆设备技术领域,即根据本发明的另一方面,提供了一种电动汽车,包括转子结构,转子结构为上述的转子结构。
在本实施例中,电机包含定子和转子,转子上含有放置磁钢槽以及放置在磁钢槽中的永磁体,转子在同一个磁极上包含多层永磁体,同一磁极内的永磁体朝定子方向具有相同的极性,磁钢槽朝转子内侧为凸起的形状,磁钢槽的两端靠近转子外圆,磁钢槽的中心靠近转子内侧,最内层永磁体30由多段永磁体组成,磁极中心线上为弧形永磁体,弧形永磁体的末端具有隔磁桥,弧形永磁体的磁场方向指向位于轴上的转轴孔点,永磁体侧边线也指向该转轴孔点,通过将永磁体侧边线指向磁场中心点,可以有效减少永磁体端部的局部退磁,提升电机的抗退磁能力,增加电机的可靠性。内层弧形永磁体的磁场方向汇聚的中心位于弧形永磁体内弧转轴孔与外弧转轴孔连接而成的直线段上,可以向气隙提供更大的磁场,提升空载磁链,降低电流,降低铜耗,提升电机效率。
在本实施例中,内层永磁体30中与弧形永磁体末端相邻的隔磁桥厚度不相等,从转子内侧朝外侧逐渐变窄,一方面减少隔磁桥处的应力集中,可以提升转子机械强度,还可以使得磁钢槽内放置更多的永磁体,提升电机的永磁转矩,并且使得永磁体末端的边线方向更接近充磁方向,减少永磁体局部退磁。
进一步地,电机两侧的矩形永磁体靠近隔磁桥的侧边线与相邻的隔磁桥边线平行,侧边线与隔磁桥的距离小于0.2mm,通过增加永磁体填充度,可以利用永磁体的磁场使得隔磁桥较为饱和,使得定子的轴磁力线难以通过隔磁桥,减小了电机的轴电感,提升了电机的磁阻转矩。
在本实施例中,电机包含定子结构和转子结构,定子结构包含定子铁芯及其嵌入的定子绕组,转子结构上含有放置磁钢槽以及放置在磁钢槽中的永磁体,转子同一个磁极上包含多层永磁体,本方案中的多层是指层数大于等于2,同一磁极内的永磁体朝定子本体40方向具有相同的极性,磁钢槽具有朝转子内侧凸起的形状,磁钢槽的两端靠近转子外圆,磁钢槽的中心靠近转子内侧,同一磁极内任意两相邻的磁钢槽之间形成导磁通道,其中一个或多个导磁通道末端具有一段朝内层永磁体30方向偏转的转折,如图1及图4所示。
在本实施例中,永磁辅助同步磁阻电机利用交、直轴电感的差异来产生磁阻转矩,还可以利用永磁体产生的永磁转矩。其中,可以增加电机的交轴电感、减小电机的直轴电感,可以提升电机的磁阻转矩,增加电机的空载磁链可以提升电机的永磁转矩。研究发现电机定子本体40通入三相对称的交流电时,定子本体40各个齿上的磁力线并不均匀,越靠近分界线的位置,定子本体40齿上的磁力线越多。
如图1所示。通过在导磁通道末端设置一段朝内层磁钢槽末端偏转的转折,可以有效引导定子q轴磁力线f的走向,将原来进入高磁饱和区域的磁力线,如图8中进入磁通道f2的磁力线,改为进入低磁饱和区域,如图8中的磁通道f1,在相同的激磁电流下产生了更多的磁通,提高了电机的q轴电感,增大了电机的磁阻转矩,提高了电机的效率和功率密度。
另外,以转子最内层永磁体30为第一层,从内朝外计算的第二层磁钢槽的末端具有一段朝内层磁钢槽末端方向偏转的转折,通过磁钢槽末端的偏转,可以更好的引导定子磁力线更均匀的进入各导磁通道。
进一步的,磁钢槽末端发生转折部分的宽度从靠近转子外表面朝里逐渐增加。通过将磁钢槽转折部分的宽度设置成外窄内宽,一方面可以减少磁钢槽偏转后,导磁通道f2入口宽度变小,导致的q轴磁通下降,另一方面还可以更好的引导原从进入导磁通道f2的磁力线,变成从导磁通道f3进入转子。
如图6所示,为了更好的引导磁力线从高磁饱和导磁通道通过转为从低磁饱和导磁通道通过,将转折后的第二层磁钢槽末端边线的中点与转折前第二层磁钢槽末端边线的中点的距离定义为D3,第二层磁钢槽未转折部分靠近过转子末端的宽度为M,0.6M≤D3。导磁通道末端未转折前的形状由下述方法确定,当磁钢槽内安装平板永磁体时,延长磁钢槽的两条边线,磁钢槽靠近转子的外边线与转子外圆的距离与磁钢槽转折后相同;当磁钢槽内安装弧形永磁体时,在弧形磁钢槽的端点作弧形的相切线,并延长切线,磁钢槽靠近转子的外边线与转子外圆的距离与转折后相同。通过控制磁钢槽末端偏转的幅度,将D3设置成大于等于0.6M,可以使得磁力线的引导效果更佳,获得更大的q轴电感。
在本实施例中,转折后的第二层磁钢槽末端边线的靠近外侧的端点与转折前的第二层磁钢槽末端边线的靠近内侧的端点相比,更靠近转子的q轴。这样设置是为了实现更好的磁力线引导效果。
进一步的,转折后的第二层磁钢槽末端边线靠近外侧的端点与转折前的第二层磁钢槽末端边线靠近内侧的端点的距离为Ga,Ga的距离大致等于定转子气隙长度g的整数倍。通过将Ga的距离设置成定转子气隙长度g的整数倍,有可以有效减少气隙的谐波磁场含量,降低电机的谐波损耗和转矩脉动,这里范围是0.95倍到1.05倍。
进一步的,第二层磁钢槽末端转折部位的长度为H-H1,磁钢槽未转折部分末端的宽度为M,满足0.4×M≤H-H1。其中H为磁钢槽转折部分的外边线到转子外圆的距离,H1为永磁体转子转折部分与转子外圆形成的磁桥厚度,磁钢槽未转折部分末端的宽度为M。
如图4所示,研究发现磁钢槽转折部分的长度对电机q轴电感和电机磁链有较大影响,当0.4×M≤H-H1时,可以明显提升q轴电感,但大于2×M,会导致第二层永磁体磁通面积减少,导致电机空载磁链下降,因此,优选地,0.4×M≤H-H1≤2×M。
如图5及图6所示,为了更好的固定永磁体,第二层磁钢槽末端转折部位的靠近转子内侧的宽度Md小于磁钢槽未转折部分末端的宽度M。第二层磁钢槽转折部分末端的宽度D1小于第二层磁钢槽未转折部分末端的宽度M,0.25×M≤D1≤0.8×M,优选地,0.3×M≤D1≤0.45×M。
在本实施例中,第一内层磁钢槽段121包括第三折槽124,第三折槽124的第一端与第一内层磁钢槽段121的靠近转子本体10的外边缘的端部相连通,第三折槽124的第二端朝向转子本体10的外边缘延伸并逐渐远离直轴。第三内层磁钢槽段123包括第四折槽125,第四折槽125的第一端与第三内层磁钢槽段123的靠近转子本体10的外边缘的端部相连通,第四折槽125的第二端朝向转子本体10的外边缘延伸并逐渐远离直轴。设置磁钢槽折槽部分的夹角,可以更加有效的引导定子本体40的q轴磁链线更均匀的进入各导磁通道,增大电机的q轴电感,提升电机的磁阻转矩。
研究发现,磁钢槽转折部分末端的宽度D1对于电机的交、直轴电感都有一定影响,如图6所示,当宽度D1大于0.8×M时,磁钢槽末端对q轴磁通阻挡较多,会导致q轴电感下降,如果宽度D1小于0.25×M时,轴电感的磁力线很容易从转子磁钢槽与转子外圆之间的隔磁桥通过,为了获得较大的交、直轴电感差值,提升电机的磁阻转矩,0.25×M≤D1≤0.8×M,进一步更优的,0.3×M≤D1≤0.45×M。另外,磁钢槽末端发生转折的部分不放置永磁体,可以有效减缓末端永磁体的局部退磁,提升电机的抗退磁能力。
进一步的,转子永磁体的层数为2层或者3层。通过将转子永磁体的层数为2层或者3层,既可以提升电机的磁阻转矩,又可以避免永磁体层数过多,带来的单层永磁体工作点下降,提升了电机的效率和抗退磁能力。
其中,电机转子永磁体为铁氧体永磁体,以转子中心为圆心作圆弧,圆弧经过从最外层永磁体20外边线的中心点P,圆弧处转子永磁体厚度的总和与该圆弧圆周长的比值为45%-70%。在电机转子永磁体为铁氧体时,通过将永磁体的厚度设置在这个范围内,使得永磁体厚度比导磁通道厚度的比值处于比较优的范围,既可以保证永磁体工作点较高,获得较大的抗退磁能力和较高的电机空载磁链,又可以使得电机获得较大的交、直轴电感差值,提升电机的磁阻转矩。优选地,圆弧处转子永磁体厚度的总和与该圆弧圆周长的比值为55%-65%。
在本实施例中,为了增强转子的机械强度,各层磁钢槽中间具有1个或多个隔磁桥。并且,转子内层磁钢槽在靠近转子外圆的两端放置平板永磁体。第二层磁钢槽靠近转子外圆的末端放置平板永磁体。通过在磁钢槽末端放置平板永磁体,可以在相同的转子内放置更多的永磁体,提升电机的效率和抗退磁能力。
进一步的,转子永磁体层数为两层,外层磁钢槽大致程V型,V型磁钢槽中一侧永磁体的长度为L,V型排布永磁体的最大宽度为C,满足0.8×C≤L。外层磁钢槽大致程U型,至少由三段永磁体组成,外层永磁体20和内层永磁体30靠近转子外侧的表面积比值为S1/S2,外层永磁体20和内层永磁体30靠近转子外表面末端的外侧顶点与转子中心形成的夹角分别为2×α1、2×α2,满足一下关系:1.3×(sinα1/sinα2)≤S1/S2≤2×(sinα1/sinα2)。
通过将外层永磁体20的排布形状以及内、外层永磁体20面积比值的设置,可以更好的调整永磁体的工作点,使得内、外层永磁的平均工作电机更高,内层永磁体30中磁力线进入外层永磁体20和直接进入定子本体40的比例更加合理,增加了电机的永磁体磁链,提升了电机的效率和功率因数。通过将内、外层永磁体表面积比值设置成1.3×(sinα1/sinα2)≤S1/S2≤2×(sinα1/sinα2),可以获得较大的电机空载磁链。优选地,1.5×(sinα1/sinα2)≤S1/S2≤1.8×(sinα1/sinα2)。
在本实施例中,转子最内层两侧平板永磁体厚度M2大于第二层末端平板永磁体的厚度M1,1.1M1≤M2≤1.8M1,研究发现,在定子本体40施加方向磁场时,内、外层永磁体的工作点并不相同,内层永磁体30的工作点要低于外层永磁体20,使得内层永磁体30更容易出现局部退磁,影响电机整体抗退磁能力,为了缓解这一现象,将内层永磁体30厚度M2设置成大于外层永磁体M1,为了使得内、外层永磁体抗退磁能力一致,1.1×M1≤M2≤1.8×M1。优选地,1.1×M1≤M2≤1.3×M1。
其中,内、外层矩形永磁体形成导磁通道宽度不相等,导磁通道宽度靠近转子外表面宽度越小。通过逐渐变小的导磁通道宽度设计,可以更好的调节内、外层永磁体的磁通面积,实现内、外层永磁体工作点的一致性调节。
在本实施例中,外层磁钢槽转折部分外边线的夹角为A1,外层磁钢槽未转折部分外边线的夹角为A,2×A≤A1,内层磁钢槽末端外表面具有切边,内层磁钢槽切边部分外边线的夹角为B1,磁钢槽未切边部分外边线的夹角为B,2×B≤B1,并且1.1×B1≤A1。通过设置磁钢槽未转折部分外边线的夹角与未转折部分的夹角,可以更加有效的引导定子q轴磁链线更均匀的进入各导磁通道,增大电机的q轴电感,提升电机的磁阻转矩。转子内层磁钢槽的外表面末端具有切边,斜切后磁钢槽端部的宽度为D1,磁钢槽未斜切部分端部的宽度为D2,D1≤0.6×D2。通过切边减少内层磁钢槽末端的宽度,可以有效增加定子磁通进入转子,提升了电机的q轴电感。内层磁钢槽末端具有一段朝磁极分界线向偏转的转折,可以更好的分配进入导磁通道f2和导磁通道f3的磁力线数量,减少导磁通道的局部饱和,提升电机的磁阻转矩。所有磁钢槽末端具有一段朝磁极分界线向偏转的转折,可以进一步调节各导磁通道的磁力线分布,减少局部饱和。所有转子磁极在圆周上均匀分布。
本方案的转子结构采用铁氧体磁钢材料,可以有效减少转子结构成本。但由于铁氧体材料转子结构成本偏低,因此设计采用U+V字型结构,增加磁钢有效面积,提高永磁转矩的同时提升转子结构的磁阻转矩,从而达到提升输出转矩的效果。其中,转子结构内层U型磁钢由于弧度较大,难以加工,因此设计采用三段式,两侧左右对称并呈一字型,中心位置磁钢呈弧型。并且U型磁钢与V型磁钢之间的轴磁路分布合理,减小了轴磁阻,U型磁钢的中心 位置圆心和V型磁钢尖角处重合。且设计轴磁路时,V型结构空气槽半径R1与U型磁钢圆弧R2同心圆设计,并设计为R2-R1=H3(1±10%),这样可以有效提升转子结构性价比。
铁氧体磁钢抗退磁能力比较差,因此为保证其抗退磁能力,改善外侧V字型结构的抗退磁能力,V字开角设计对应定子齿部夹角设计对比α5<α3<α4,同时为改善内侧U型磁钢的抗退磁能力,在以上的结构基础下,对转子结构磁钢采用不同厚度设计,圆弧段磁钢厚度H1比两侧一字型磁钢厚10%H1~30%H1;为进一步的改善转子结构U型两侧V字型磁钢的抗退磁能力,对两侧一字型磁钢进行切角设计。采用以上方案不但可以保证磁钢用量,,还可以保证足够宽度的轴磁路,改善转子结构磁阻转矩,提升转子结构性能,抗退磁能力得到了保证。
转子结构包括转子本体,转子本体上开设有内层磁钢槽和外层磁钢槽,内层磁钢槽和外层磁钢槽之间形成导磁通道,内层磁钢槽的沿转子本体径向方向的横截面呈U形结构,位于内层磁钢槽的沿转子本体的径向方向的第一几何中心线的两端关于第一几何中心线对称地设置。内层磁钢槽为U型结构,外层磁钢槽为中心对称型结构,内外层磁钢槽嵌套在一起,以同一转子本体的径向方向的第一几何中心线为对称中心。这样设置增加了磁钢工作的有效面积,提高了永磁转矩,进而提升了转子结构的磁阻转矩,从而提升了转子结构的输出扭矩。采用该技术方案,可以提升电动车转子结构的磁转扭矩,改善转子结构的退磁能力,并与现有技术相比,降低了30%的成本。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (34)

  1. 一种转子结构,其特征在于,包括:
    转子本体(10),所述转子本体(10)上开设有磁钢槽组,所述磁钢槽组包括内层磁钢槽(12),所述内层磁钢槽(12)包括依次设置的第一内层磁钢槽段(121)、第二内层磁钢槽段(122)和第三内层磁钢槽段(123),所述第二内层磁钢槽段(122)呈弧形结构,所述第二内层磁钢槽段(122)的弧形部朝向所述转子本体(10)的转轴孔(13)一侧凸出地设置,所述第二内层磁钢槽段(122)关于所述转子本体(10)的直轴对称地设置,所述第二内层磁钢槽段(122)的两端的端部侧壁的延长线与所述直轴相交于点Q。
  2. 根据权利要求1所述的转子结构,其特征在于,所述磁钢槽组包括外层磁钢槽(11),所述外层磁钢槽(11)与所述内层磁钢槽(12)相邻地设置,所述外层磁钢槽(11)与所述内层磁钢槽(12)之间形成导磁通道,所述外层磁钢槽(11)位于所述内层磁钢槽(12)外侧。
  3. 根据权利要求2所述的转子结构,其特征在于,所述外层磁钢槽(11)包括多个磁钢槽段,多个所述磁钢槽段包括:
    第一外层磁钢槽段(111),所述第一外层磁钢槽段(111)的第一端朝向所述转轴孔(13)延伸设置,所述第一外层磁钢槽段(111)的第二端朝向所述转子本体(10)的外边沿延伸设置,所述第一外层磁钢槽段(111)位于所述直轴的第一侧;
    第二外层磁钢槽段(112),所述第二外层磁钢槽段(112)与所述第一外层磁钢槽段(111)相对地设置并位于与所述直轴的第一侧相对的第二侧,所述第二外层磁钢槽段(112)的第一端朝向所述转轴孔(13)延伸设置,所述第二外层磁钢槽段(112)的第二端朝向所述转子本体(10)的外边沿延伸设置。
  4. 根据权利要求3所述的转子结构,其特征在于,所述外层磁钢槽(11)还包括:
    第一折槽(113),所述第一折槽(113)的第一端与所述第一外层磁钢槽段(111)的第二端相连通,所述第一折槽(113)的第二端朝向所述转子本体(10)的外边沿延伸并逐渐远离所述直轴。
  5. 根据权利要求3所述的转子结构,其特征在于,所述外层磁钢槽(11)还包括:
    第二折槽(114),所述第二折槽(114)的第一端与所述第二外层磁钢槽段(112)的第二端相连通,所述第二折槽(114)的第二端朝向所述转子本体(10)的外边沿延伸并逐渐远离所述直轴。
  6. 根据权利要求3所述的转子结构,其特征在于,多个所述磁钢槽段还包括:
    第三外层磁钢槽段(115),所述第三外层磁钢槽段(115)的第一端与所述第一外层磁钢槽段(111)的第一端相连通,所述第三外层磁钢槽段(115)的第二端与所述第二外层磁钢槽段(112)的第一端相连通。
  7. 根据权利要求6所述的转子结构,其特征在于,所述第一外层磁钢槽段(111)、所述第二外层磁钢槽段(112)和所述第三外层磁钢槽段(115)形成V形结构磁钢槽,或者,所述第一外层磁钢槽段(111)、所述第二外层磁钢槽段(112)和所述第三外层磁钢槽段(115)形成U形结构磁钢槽。
  8. 根据权利要求4所述的转子结构,其特征在于,所述第一折槽(113)的第二端的靠近所述转子本体(10)的外边沿处的侧壁的中点与所述第一外层磁钢槽段(111)的几何中心线的距离为D3,所述第一外层磁钢槽段(111)的第二端的端部的宽度为M,其中,0.6M≤D3。
  9. 根据权利要求8所述的转子结构,其特征在于,所述第一折槽(113)的第二端与所述转子本体(10)的外边沿之间形成第一隔磁桥,其中,0.4×M≤(H-H1),或者,0.4×M≤(H-H1)≤2×M,M为所述第一外层磁钢槽段(111)的第二端的端部的宽度,H为所述第一外层磁钢槽段(111)的第二端至所述转子本体(10)的外边沿的距离,H1为所述第一隔磁桥的宽度。
  10. 根据权利要求2所述的转子结构,其特征在于,所述第一内层磁钢槽段(121)、所述第二内层磁钢槽段(122)和所述第三内层磁钢槽段(123)依次间隔地设置,所述第一内层磁钢槽段(121)和所述第二内层磁钢槽段(122)之间形成有第二隔磁桥(52),所述第二内层磁钢槽段(122)与所述第三内层磁钢槽段(123)之间形成有第三隔磁桥(53)。
  11. 根据权利要求10所述的转子结构,其特征在于,所述转子结构还包括:
    弧形永磁体(31),所述弧形永磁体(31)设置于所述第二内层磁钢槽段(122)内,所述弧形永磁体(31)的磁场方向与所述直轴交于点Q。
  12. 根据权利要求11所述的转子结构,其特征在于,所述弧形永磁体(31)的两端与所述第二隔磁桥(52)之间的距离为L1,其中,L1≤0.2mm。
  13. 根据权利要求11所述的转子结构,其特征在于,所述转子结构还包括:
    第一内层永磁体(32),所述第一内层永磁体(32)设置于所述第一内层磁钢槽段(121)内,所述第一内层永磁体(32)的靠近所述第二隔磁桥(52)一侧的表面与所述第二隔磁桥(52)的边线平行地设置。
  14. 根据权利要求13所述的转子结构,其特征在于,所述第一内层永磁体(32)的靠近所述第二隔磁桥(52)一侧的表面与所述第二隔磁桥(52)之间的距离为L1,其中,L1≤0.2mm。
  15. 根据权利要求13所述的转子结构,其特征在于,所述转子结构还包括:
    第三内层永磁体(33),所述第三内层永磁体(33)设置于所述第三内层磁钢槽段(123)内,所述第三内层永磁体(33)的靠近所述第三隔磁桥(53)一侧的表面与所述第三隔磁桥(53)的边线平行地设置。
  16. 根据权利要求15所述的转子结构,其特征在于,所述第三内层永磁体(33)的靠近所述第三隔磁桥(53)一侧的表面与所述第三隔磁桥(53)之间的距离为L3,其中,L3≤0.2mm。
  17. 根据权利要求10所述的转子结构,其特征在于,所述第二隔磁桥(52)和/或所述第三隔磁桥(53)的宽度沿所述转子本体(10)的径向方向向外逐渐减小。
  18. 根据权利要求15所述的转子结构,其特征在于,所述第一内层永磁体(32)和所述第三内层永磁体(33)为矩形永磁体。
  19. 根据权利要求10所述的转子结构,其特征在于,所述转子结构还包括:
    弧形永磁体(31),所述弧形永磁体(31)设置于所述第二内层磁钢槽段(122)内,所述弧形永磁体(31)的磁场方向汇集于所述弧形永磁体(31)的内弧圆心和所述弧形永磁体(31)的外弧圆心之间的连线上。
  20. 根据权利要求2所述的转子结构,其特征在于,所述内层磁钢槽(12)的沿所述转子本体(10)径向方向的横截面呈U形结构,所述内层磁钢槽(12)的两端关于内层磁钢槽(12)的沿所述转子本体(10)的径向方向的第一几何中心线对称地设置。
  21. 根据权利要求20所述的转子结构,其特征在于,所述第二内层磁钢槽段(122)的所述第一几何中心线与所述外层磁钢槽(11)的沿所述转子本体(10)的径向方向的第二几何中心线共线。
  22. 根据权利要求21所述的转子结构,其特征在于,所述外层磁钢槽(11)的沿所述转子本体(10)的径向方向的横截面呈V形结构,所述外层磁钢槽(11)的第一端的朝向所述第二几何中心线的侧壁的延长线与所述外层磁钢槽(11)的第二端的朝向所述第二几何中心线的侧壁的延长线相交以形成第一夹角α1,其中,(13/15)×α<α1≤(17/15)×α,α为位于所述内层磁钢槽(12)的外侧导磁通道的极弧角度。
  23. 根据权利要求22所述的转子结构,其特征在于,所述第一内层磁钢槽段(121)的朝向所述外层磁钢槽(11)的侧壁的延长线与所述第三内层磁钢槽段(123)的朝向所述外层磁钢槽(11)的侧壁的延长线相交以形成第一夹角α2,其中,0≤α2-α1≤(1/15)×α,α为位于所述内层磁钢槽(12)的外侧导磁通道的极弧角度。
  24. 根据权利要求4所述的转子结构,其特征在于,所述第一内层磁钢槽段(121)和所述第三内层磁钢槽段(123)的连接处且朝向所述内层磁钢槽(12)的侧壁呈弧形结构,所述弧形结构的圆心与所述第二内层磁钢槽段(122)的圆心相同。
  25. 根据权利要求15所述的转子结构,其特征在于,所述转子结构还包括:
    内层永磁体(30),所述内层永磁体(30)设置于所述内层磁钢槽(12)内;
    外层永磁体(20),所述外层永磁体(20)设置于所述外层磁钢槽(11)内,所述内层永磁体(30)的厚度为H2,所述外层永磁体(20)的厚度为H,其中,0.2×H≤H2-H≤0.3×H。
  26. 根据权利要求15所述的转子结构,其特征在于,所述弧形永磁体(31)的厚度为H1,所述第一内层永磁体(32)或所述第三内层永磁体(33)的厚度为H21,其中,H1-H21=t,其中,t∈[0.1×H1,0.3×H1]。
  27. 根据权利要求25所述的转子结构,其特征在于,所述第一内层永磁体(32)和/或所述第三内层永磁体(33)的靠近所述转子本体(10)的外边沿处的端部设置有切边。
  28. 一种永磁辅助同步磁阻电机,包括转子结构,其特征在于,所述转子结构为权利要求27中所述的转子结构。
  29. 根据权利要求28所述的永磁辅助同步磁阻电机,其特征在于,所述永磁辅助同步磁阻电机包括:
    定子本体(40),所述定子本体(40)的内周面上设置有多个定子齿,多个所述定子齿包括第一定子齿(41)和第二定子齿(42),所述第一定子齿(41)与所述第二定子齿(42)间隔地设置,所述第一内层永磁体(32)的端部与所述第一定子齿(41)相对地设置,所述第三内层永磁体(33)的端部与所述第二定子齿(42)相对地设置,所述第一内层永磁体(32)的远离所述外层永磁体(20)的端部设置有第一切边(321),所述第三内层永磁体(33)的远离所述外层永磁体(20)的端部设置有第二切边(331)。
  30. 根据权利要求29所述的永磁辅助同步磁阻电机,其特征在于,多个所述定子齿还包括第三定子齿(43)和第四定子齿(44),所述第三定子齿(43)与所述第一定子齿(41)相邻地设置,所述第三定子齿(43)至第一几何中心线的距离大于所述第一定子齿(41)至所述第一几何中心线的距离,所述第四定子齿(44)与所述第二定子齿(42)相邻地设置,所述第四定子齿(44)至所述第一几何中心线的距离大于所述第二定子齿(42)至所述第一几何中心线的距离;
    其中,所述第一切边(321)与所述第二切边(331)之间的距离为L1,所述第一定子齿(41)的端部的远离所述第一几何中心线的表面与所述第二定子齿(42)的端部的远离所述第一几何中心线的表面之间的距离为L2,所述第三定子齿(43)的端部的靠近所述第一几何中心线的表面与所述第四定子齿(44)的端部的靠近所述第一几何中心线的表面之间的距离为L3,L2<L1<L3。
  31. 根据权利要求28所述的永磁辅助同步磁阻电机,其特征在于,所述外层永磁体(20)包括:
    第一外层永磁体(21),所述第一外层永磁体(21)设置于所述外层磁钢槽(11)内,所述第一外层永磁体(21)的第一端朝向所述转轴孔(13)处延伸设置,所述第一外层永磁体(21)的第二端朝向所述转子本体(10)的外边沿延伸设置;
    第二外层永磁体(22),所述第二外层永磁体(22)设置于所述外层磁钢槽(11)内,所述第二外层永磁体(22)的第一端朝向所述转轴孔(13)处延伸设置,所述第二外层永磁体(22)的第二端朝向所述转子本体(10)的外边沿延伸设置,所述第一外层 永磁体(21)与所述第二外层永磁体(22)关于第二几何中心线对称地设置。
  32. 根据权利要求31所述的永磁辅助同步磁阻电机,其特征在于,所述永磁辅助同步磁阻电机包括:
    定子本体(40),所述定子本体(40)的内周面上设置有多个定子齿,多个所述定子齿还包括第五定子齿(45),所述第五定子齿(45)位于所述第一外层永磁体(21)和所述第二外层永磁体(22)之间,多个所述定子齿还包括第六定子齿(46)和第七定子齿(47),所述第六定子齿(46)与所述第五定子齿(45)相邻地设置,所述第一外层永磁体(21)的端部与所述第五定子齿(45)相对地设置,所述第二外层永磁体(22)的端部与所述第六定子齿(46)相对地设置。
  33. 根据权利要求32所述的永磁辅助同步磁阻电机,其特征在于,所述外层磁钢槽(11)的远离所述内层磁钢槽(12)并距离所述第二几何中心线的最远处的侧壁上的点与所述转轴孔(13)的连线形成的圆心角为α3,所述第六定子齿(46)和所述第七定子齿(47)的靠近所述第五定子齿(45)的侧壁与所述转子本体(10)的圆心的连线形成的圆心角为α4,所述第五定子齿(45)的最大宽度处的连线的两端与所述转轴孔(13)的连线形成的圆心角为α5,其中,α5<α3<α4。
  34. 一种电动汽车,包括转子结构,其特征在于,所述转子结构为权利要求1至27中任一项所述的转子结构。
PCT/CN2018/119784 2018-03-16 2018-12-07 转子结构、永磁辅助同步磁阻电机及电动汽车 WO2019174313A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810219856.6A CN108321955B (zh) 2018-03-16 2018-03-16 转子结构、永磁辅助同步磁阻电机及电动汽车
CN201810219856.6 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019174313A1 true WO2019174313A1 (zh) 2019-09-19

Family

ID=62898829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119784 WO2019174313A1 (zh) 2018-03-16 2018-12-07 转子结构、永磁辅助同步磁阻电机及电动汽车

Country Status (2)

Country Link
CN (1) CN108321955B (zh)
WO (1) WO2019174313A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108321955B (zh) * 2018-03-16 2020-10-23 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN108566006A (zh) 2018-03-16 2018-09-21 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN108336845B (zh) 2018-03-16 2020-11-03 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN108736610B (zh) * 2018-08-09 2019-07-16 珠海格力电器股份有限公司 电机转子和永磁电机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202444391U (zh) * 2012-03-05 2012-09-19 珠海格力节能环保制冷技术研究中心有限公司 永磁辅助同步磁阻电机及其转子
CN102769367A (zh) * 2012-03-05 2012-11-07 珠海格力节能环保制冷技术研究中心有限公司 永磁辅助同步磁阻电机及电机的安装方法
US20160204664A1 (en) * 2011-12-29 2016-07-14 Philip Totaro Permanent magnet rotor with intrusion
CN106469953A (zh) * 2015-08-18 2017-03-01 珠海格力节能环保制冷技术研究中心有限公司 一种电机及其转子
CN106936284A (zh) * 2015-12-29 2017-07-07 丹佛斯(天津)有限公司 电动机
CN108321955A (zh) * 2018-03-16 2018-07-24 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN208316434U (zh) * 2018-03-16 2019-01-01 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5059614B2 (ja) * 2004-10-26 2012-10-24 コルモーゲン コーポレイション 永久磁石埋め込み型ロータにおける磁石およびウエブの構成
CN204089392U (zh) * 2014-10-17 2015-01-07 珠海格力节能环保制冷技术研究中心有限公司 一种电机转子及采用其的永磁同步电机
CN106487133B (zh) * 2015-09-02 2018-10-19 珠海格力节能环保制冷技术研究中心有限公司 一种电机及其转子
CN205566051U (zh) * 2015-12-29 2016-09-07 丹佛斯(天津)有限公司 电动机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160204664A1 (en) * 2011-12-29 2016-07-14 Philip Totaro Permanent magnet rotor with intrusion
CN202444391U (zh) * 2012-03-05 2012-09-19 珠海格力节能环保制冷技术研究中心有限公司 永磁辅助同步磁阻电机及其转子
CN102769367A (zh) * 2012-03-05 2012-11-07 珠海格力节能环保制冷技术研究中心有限公司 永磁辅助同步磁阻电机及电机的安装方法
CN106469953A (zh) * 2015-08-18 2017-03-01 珠海格力节能环保制冷技术研究中心有限公司 一种电机及其转子
CN106936284A (zh) * 2015-12-29 2017-07-07 丹佛斯(天津)有限公司 电动机
CN108321955A (zh) * 2018-03-16 2018-07-24 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN208316434U (zh) * 2018-03-16 2019-01-01 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车

Also Published As

Publication number Publication date
CN108321955A (zh) 2018-07-24
CN108321955B (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
WO2019174323A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
WO2019174313A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
WO2019174327A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
WO2019174324A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
WO2019174326A1 (zh) 永磁辅助同步磁阻电机及具有其的电动汽车
CN208316434U (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
WO2019174322A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
WO2019174325A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
CN114844313A (zh) 一种双三相不对称交替极永磁辅助同步磁阻电机
CN206620033U (zh) 一种用于压缩机的永磁式同步电动机
CN208015469U (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
CN113746234B (zh) 一种取向硅钢制作的电机凸极转子
CN212435452U (zh) 转子结构、电机及压缩机
CN212435454U (zh) 转子结构、电机及压缩机
CN112564443B (zh) 一种混合励磁轴向磁场永磁同步电机结构
CN111711293A (zh) 转子结构、电机及压缩机
CN111711291A (zh) 转子结构、电机及压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910071

Country of ref document: EP

Kind code of ref document: A1