WO2024078117A1 - 具有磁障的电机转子、电机及压缩机 - Google Patents

具有磁障的电机转子、电机及压缩机 Download PDF

Info

Publication number
WO2024078117A1
WO2024078117A1 PCT/CN2023/113067 CN2023113067W WO2024078117A1 WO 2024078117 A1 WO2024078117 A1 WO 2024078117A1 CN 2023113067 W CN2023113067 W CN 2023113067W WO 2024078117 A1 WO2024078117 A1 WO 2024078117A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
magnetic
magnetic barrier
rotor
motor rotor
Prior art date
Application number
PCT/CN2023/113067
Other languages
English (en)
French (fr)
Inventor
李宏涛
朱晓光
邱小华
Original Assignee
广东美芝制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美芝制冷设备有限公司 filed Critical 广东美芝制冷设备有限公司
Publication of WO2024078117A1 publication Critical patent/WO2024078117A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present application relates to the field of motor technology, and in particular to a motor rotor, a motor and a compressor with a magnetic barrier.
  • a permanent magnet synchronous motor is a motor that places a layer of permanent magnets on the inside of the rotor and mainly uses permanent magnet torque and reluctance torque as an auxiliary.
  • the motor performance is mainly improved by improving the performance of permanent magnets, that is, by increasing the value of output torque by increasing the permanent magnet torque, thereby improving the motor efficiency.
  • a common practice is to build in rare earth permanent magnets.
  • rare earths are non-renewable resources and are expensive, the wider application of this type of motor is limited.
  • simply improving the performance of permanent magnets to improve motor performance cannot meet the urgent need to further improve motor efficiency.
  • most current motors use a structure with two or more layers of permanent magnets, which results in high motor cost and weak anti-demagnetization ability.
  • a multi-layer permanent magnet structure is used, which affects the motor production rhythm and affects the performance of the motor rotor.
  • the main purpose of the present application is to propose a motor rotor with a magnetic barrier, aiming to improve the motor efficiency by increasing the magnetic resistance torque, thereby reducing the amount of rare earth permanent magnets used.
  • the present application proposes a motor rotor with a magnetic barrier, wherein the motor rotor with a magnetic barrier comprises:
  • a plurality of curved grooves disposed on the rotor core and arranged at intervals along the circumference of the rotor core, with both ends of the curved grooves extending toward the edge of the rotor core;
  • a plurality of magnetic barrier groups wherein the plurality of magnetic barrier groups are arranged on one side of the plurality of curved slots away from the center of the rotor core, wherein the magnetic barrier groups include at least one layer of magnetic barrier holes arranged at intervals along the d-axis direction of the motor rotor with magnetic barriers, wherein the number of magnetic barrier holes in one layer is set to be multiple, and the plurality of magnetic barrier holes are arranged at intervals along the extension direction of the slot wall of the curved slot; an angle a is formed between two ends of one layer of magnetic barrier holes and a line connecting the center of the rotor core, and satisfies a ⁇ (1/8)*(2 ⁇ /p), wherein p is the number of poles of the motor where the motor rotor with magnetic barriers is located.
  • the curved groove has a first side wall and a second side wall that are arranged opposite to each other, and both the first side wall and the second side wall are convex toward the center of the rotor core.
  • a direct-axis magnetic conductive channel is formed between any two adjacent magnetic barrier holes in a layer of magnetic barrier holes.
  • the motor rotor with magnetic barriers further includes a plurality of permanent magnets, and the plurality of permanent magnets are installed in the plurality of curved slots.
  • the thickness of the permanent magnet in the d-axis direction of the motor rotor with a magnetic barrier is T
  • the magnetic barrier hole has a first side and a second side that are relatively arranged, the second side is located on the side of the first side away from the center of the rotor core, and the distance from the first side to the second side is the thickness H of the magnetic barrier hole, satisfying T>H.
  • the thickness of the middle portion of the permanent magnet is greater than the thickness of both ends of the permanent magnet.
  • the curved groove is arranged in a U shape.
  • the curved groove is arranged in a V-shape.
  • the curved groove is arranged in an arc shape.
  • the present application also proposes a motor, the motor comprising the motor rotor with magnetic barriers, and a stator sleeved on the outside of the motor rotor with magnetic barriers, the stator comprising a stator core and a winding wound on the stator teeth.
  • the motor rotor with magnetic barriers comprises a rotor core, a plurality of curved slots and a plurality of magnetic barrier groups; the plurality of curved slots are arranged on the rotor core and arranged at intervals along the circumferential direction of the rotor core, and the two ends of the curved slots extend toward the edge of the rotor core; the plurality of magnetic barrier groups are arranged on the side of the plurality of curved slots away from the center of the rotor core, the magnetic barrier group comprises at least one layer of magnetic barrier holes arranged at intervals along the d-axis direction of the motor rotor with magnetic barriers, the number of magnetic barrier holes in one layer is set to be multiple, and the plurality of magnetic barrier holes are arranged at intervals along the extension direction of the slot wall of the curved slot; the angle formed by the connecting line between the two ends of one layer of magnetic barrier holes and the center of the rotor core is a, satisfying a ⁇ (1/8)*(2 ⁇ /p), wherein p is the number of pole
  • the thickness of the motor rotor having the magnetic barrier along the axial direction thereof is not less than the thickness of the stator along the axial direction thereof.
  • the present application also proposes a compressor, the compressor comprising a motor, the motor comprising the motor rotor with magnetic barriers, and a stator sleeved on the outside of the motor rotor with magnetic barriers, the stator comprising a stator core and a winding wound on the stator teeth.
  • the motor rotor with magnetic barriers comprises a rotor core, a plurality of curved slots and a plurality of magnetic barrier groups; the plurality of curved slots are arranged on the rotor core and arranged at intervals along the circumferential direction of the rotor core, and the two ends of the curved slots extend toward the edge of the rotor core; the plurality of magnetic barrier groups are arranged on the side of the plurality of curved slots away from the center of the rotor core, the magnetic barrier group comprises at least one layer of magnetic barrier holes arranged at intervals along the d-axis direction of the motor rotor with magnetic barriers, the number of magnetic barrier holes in one layer is set to be multiple, and the plurality of magnetic barrier holes are arranged at intervals along the extension direction of the slot wall of the curved slot; the angle formed by the connecting line between the two ends of one layer of magnetic barrier holes and the center of the rotor core is a, satisfying a ⁇ (1/8)*(2 ⁇ /p), wherein p is the number of pole
  • the motor rotor with magnetic barriers of the present application comprises a rotor core, a plurality of curved grooves and a plurality of magnetic barrier groups; the plurality of curved grooves are arranged on the rotor core and are arranged at intervals along the circumferential direction of the rotor core, and the two ends of the curved grooves extend toward the edge of the rotor core; the plurality of magnetic barrier groups are arranged on the side of the plurality of curved grooves away from the center of the rotor core, the magnetic barrier group comprises at least one layer of magnetic barrier holes arranged at intervals along the d-axis direction of the motor rotor with magnetic barriers, the number of the magnetic barrier holes in one layer is set to be multiple, and the plurality of magnetic barrier holes are arranged at intervals along the extension direction of the groove wall of the curved groove; the angle formed by the connecting line between the two ends of one layer of magnetic barrier holes and the center of the rotor core is a, satisfying a ⁇ (1/8)*(2 ⁇ /p
  • FIG1 is a schematic structural diagram of an embodiment of a motor rotor with a magnetic barrier according to the present application
  • FIG2 is an enlarged view of point A in FIG1 ;
  • FIG3 is a schematic structural diagram of another embodiment of a motor rotor with a magnetic barrier according to the present application.
  • FIG. 4 is a schematic diagram showing the relationship between the output torque of the motor of the present application and the range of the angle a.
  • Label name Label name 10 Motor rotor with magnetic barrier 310 Magnetic barrier hole 100 Rotor core 311 First side 200 Curved groove 312 Second side 210 First side wall 400 Direct axis magnetic channel 220 Second side wall 500 Permanent magnets 300 Magnetic barrier group 600 Cross-axis magnetic channel
  • the present application proposes an embodiment of a motor rotor with a magnetic barrier, namely, a motor rotor of a permanent magnet assisted synchronous reluctance motor, which is mainly used in air-conditioning compressors, electric vehicles and fan systems.
  • the synchronous reluctance motor has multiple layers of rotor magnetic barriers and works by relying on the reluctance torque generated by the asymmetry of the rotor magnetic circuit.
  • This type of motor has the advantages of low cost, simple manufacturing, and low rotor loss, but has the disadvantages of low power factor and torque density and large torque pulsation.
  • a certain amount of low-performance permanent magnets can be inserted into the rotor magnetic barrier to assist in excitation, thereby reducing the excitation component of the motor current and generating permanent magnet torque.
  • This is a permanent magnet assisted synchronous reluctance motor.
  • T mp*(Lq-Ld)*id*iq+mp* ⁇ PM*iq.
  • T is the output torque of the motor. Increasing the value of T can improve the performance of the motor.
  • the first term in the equation after T is the reluctance torque, and the second term is the permanent magnet torque.
  • ⁇ PM is the maximum value of the stator-rotor coupling flux generated by the permanent magnet of the motor
  • m is the number of phases of the stator conductor
  • Ld and Lq are the d-axis and q-axis inductances, respectively, where the d-axis refers to the axis coinciding with the main magnetic pole axis, and the q-axis refers to the axis perpendicular to the main magnetic pole axis, where perpendicular refers to the electrical angle;
  • id and iq are the components of the armature current in the d-axis and q-axis directions, respectively.
  • increasing the difference between the inductances of Ld and Lq and ⁇ PM can increase the output torque, that is, while ensuring that one of the reluctance torque and the permanent magnet torque remains unchanged, increasing the other of the two can increase the total output torque of the motor, thereby improving the efficiency of the motor.
  • the motor performance is mainly improved by improving the performance of permanent magnets, that is, by increasing the value of output torque by increasing the permanent magnet torque, thereby improving the motor efficiency.
  • a common practice is to build in rare earth permanent magnets.
  • rare earths are non-renewable resources and are expensive, the wider application of this type of motor is limited.
  • simply improving the performance of permanent magnets to improve motor performance cannot meet the urgent need to further improve motor efficiency.
  • most current motors use a structure with two or more layers of permanent magnets, which results in high motor cost and weak anti-demagnetization ability.
  • a multi-layer permanent magnet structure is used, which affects the motor production rhythm and affects the performance of the motor rotor.
  • the motor rotor 10 with magnetic barriers includes a rotor core 100, a plurality of curved grooves 200, and a plurality of magnetic barrier groups 300.
  • the plurality of curved grooves 200 are arranged on the rotor core 100 and are arranged at intervals along the circumference of the rotor core 100. Both ends of the curved grooves 200 extend toward the edge of the rotor core 100.
  • the plurality of magnetic barrier groups 300 are arranged on a side of the plurality of curved grooves 200 away from the center of the rotor core 100.
  • the magnetic barrier groups 300 include a plurality of curved grooves 200 arranged on the rotor core 100.
  • At least one layer of magnetic barrier holes 310 is arranged at intervals in the d-axis direction, the number of the magnetic barrier holes 310 in one layer is set to be multiple, and the multiple magnetic barrier holes 310 are arranged at intervals along the extension direction of the slot wall of the curved slot 200; the angle formed by the connecting line between the two ends of the magnetic barrier holes 310 in one layer and the center of the rotor core 100 is a, satisfying a ⁇ (1/8)*(2 ⁇ /p), where p is the number of poles of the motor where the motor rotor 10 with the magnetic barrier is located.
  • the motor rotor includes a rotor core 100 and a permanent magnet 500.
  • the rotor core 100 is formed by stacking silicon steel sheets and has a certain stack height.
  • the rotor core 100 is driven by the magnetic effect of the permanent magnet 500, and the motor rotor can rotate relative to the motor stator to achieve normal operation of the motor.
  • the rotor core 100 is formed by stacking high magnetic permeability materials or silicon steel punchings. It is formed by stacking high magnetic permeability materials or silicon steel punchings, has high magnetic flux, high structural strength, and is easy to process.
  • a plurality of curved grooves 200 are provided on the rotor core 100.
  • the curved grooves 200 are arranged in a curved shape.
  • the curved grooves 200 may have one curved portion or may have multiple curved portions, and there is no specific limitation on this. When the curved grooves 200 have multiple curved portions, their shape is generally arranged in a wave shape.
  • the plurality of curved grooves 200 are arranged at intervals along the circumference of the rotor core 100, and are specifically evenly distributed along the circumference with the center of the rotor core 100 as the center of the circle.
  • the two ends of the curved grooves 200 extend toward the edge of the rotor core 100, and form an area for the arrangement of the plurality of magnetic barrier groups 300 between the edges of the rotor core 100.
  • the plurality of magnetic barrier groups 300 are arranged on the side of the plurality of curved grooves 200 away from the center of the circle of the rotor core 100.
  • the curved groove 200 is mainly used to install the permanent magnet 500, and the permanent magnet 500 has a magnetic pole, so the number of the curved grooves 200 is set to an even number.
  • 6 curved grooves 200 are arranged at intervals along the circumferential direction of the rotor core 100, and at least one permanent magnet 500 is placed in each curved groove 200.
  • the polarities of the permanent magnets 500 in any two adjacent curved grooves 200 are opposite, and multiple permanent magnets 500 are distributed alternately according to N poles and S poles along the circumferential direction of the rotor core 100.
  • the plurality of curved grooves 200 are arranged as a single-layer structure.
  • the permanent magnets 500 are placed in the curved grooves 200 with a single-layer structure, so that the thickness of the permanent magnets 500 can be increased within a limited volume, thereby improving the anti-demagnetization ability of the permanent magnets 500 and improving the reliability of the motor; at the same time, the production efficiency of the motor rotor with a single-layer curved groove 200 structure is also higher; at the same time, the number of permanent magnets 500 required to be placed in the curved grooves 200 with a single-layer structure is relatively reduced, and the overall usage of the permanent magnets 500 is reduced, so the production cost of the rotor can be further reduced, thereby reducing the production cost of the motor.
  • the magnetic barrier group 300 includes at least one layer of magnetic barrier holes 310 arranged at intervals along the extension direction of the slot wall of the curved slot 200.
  • the number of magnetic barrier holes 310 in one layer is set to be multiple, and the magnetic barrier holes 310 can be used to fill air or other non-magnetic conductive materials.
  • the slot wall of the curved slot 200 can be a first side wall 210 close to the edge of the rotor core 100, or a second side wall 220 close to the center of the rotor core 100.
  • the extension directions of the first side wall 210 and the second side wall 220 can be the same or different.
  • the extension directions of the first side wall 210 and the second side wall 220 are substantially the same, so the multiple magnetic barrier holes 310 are arranged at intervals along the extension direction of the first side wall 210 of the curved slot 200 or along the extension direction of the second side wall 220 of the curved slot 200.
  • a direct-axis magnetic channel 400 is formed between two adjacent magnetic barrier holes 310.
  • the magnetic resistance in the d-axis direction where the direct-axis magnetic channel 400 is located is small, with high magnetic flux and large inductance Ld; and the magnetic resistance in the q-axis direction at the center line of the magnetic barrier hole 310 is very high, and the inductance Lq is small, which can increase the inductance difference between the d-axis and q-axis directions, thereby improving the torque output capacity of the motor.
  • the magnetic barrier hole 310 is arranged between the first side wall 210 of the curved slot 200 and the edge of the rotor core 100, which can reduce the impact on the permanent magnetic force, and at the same time regulate the path of the magnetic line of force, weaken the magnetic field harmonics in the air gap, and alleviate the degree of magnetic saturation.
  • a magnetic barrier is formed during the rotation of the motor rotor to improve the power density and torque density of the motor, improve the overload capacity of the motor, and effectively improve the torque pulsation of the motor.
  • the motor performance is greatly improved, and the product competitiveness is improved.
  • the angle formed by the lines connecting the two ends of a layer of the magnetic barrier hole 310 and the center of the rotor core 100 is a.
  • the angle a satisfies a ⁇ (1/8)*(2 ⁇ /p) (p is the number of poles of the motor where the motor rotor 10 with the magnetic barrier is located)
  • the q-axis inductance of the motor rotor can be significantly improved, and the inductance difference between the d-axis and q-axis of the motor can be increased, which is more conducive to improving the reluctance torque of the motor, so that the unit current generates a larger electromagnetic torque, thereby improving the efficiency of the motor.
  • the motor rotor 10 with magnetic barriers of the present application comprises a rotor core 100, a plurality of curved grooves 200 and a plurality of magnetic barrier groups 300; the plurality of curved grooves 200 are arranged on the rotor core 100 and are arranged at intervals along the circumference of the rotor core 100, and the two ends of the curved grooves 200 extend toward the edge of the rotor core 100; the plurality of magnetic barrier groups 300 are arranged on a side of the plurality of curved grooves 200 away from the center of the rotor core 100, and the magnetic barrier groups 300 include a plurality of curved grooves 200 and a plurality of magnetic barrier groups 300 along the motor rotor 10 with magnetic barriers.
  • At least one layer of magnetic barrier holes 310 is arranged at intervals in the d-axis direction, the number of magnetic barrier holes 310 in one layer is set to be multiple, and the multiple magnetic barrier holes 310 are arranged at intervals along the circumferential direction of the rotor core 100; the angle formed by the connecting line between the two ends of the magnetic barrier holes 310 in one layer and the center of the rotor core 100 is a, and satisfies a ⁇ (1/8)*(2 ⁇ /p), wherein p is the number of poles of the motor where the motor rotor 10 with magnetic barriers is located.
  • the q-axis inductance of the motor rotor can be significantly improved, and the inductance difference between the d-axis and q-axis of the motor can be increased, which is more conducive to improving the reluctance torque of the motor, so that the unit current generates a larger electromagnetic torque, thereby improving the efficiency of the motor.
  • the curved groove 200 in the present application is mainly used to place the permanent magnet 500, and the curved groove 200 is set as a single-layer structure, which can increase the thickness of the permanent magnet 500 placed in the curved groove 200, thereby improving the anti-demagnetization ability of the permanent magnet 500 and ensuring the reliability of the motor.
  • the amount of permanent magnet 500 placed in the curved groove 200 with a single-layer structure is reduced compared to the amount of permanent magnet 500 with a double-layer structure, thereby reducing the production cost of the motor rotor.
  • the production efficiency of the motor rotor with a single-layer curved groove 200 structure is also higher than that of the motor rotor with a double-layer curved groove 200 structure.
  • the curved slot 200 has a first side wall 210 and a second side wall 220 that are oppositely disposed. Both the first side wall 210 and the second side wall 220 are convex toward the center of the rotor core 100 .
  • the curved slot 200 has a first side wall 210 and a second side wall 220 that are arranged opposite to each other. The first side wall 210 is arranged close to the center of the rotor core 100, and the second side wall 220 is arranged away from the center of the rotor core 100.
  • the magnetic barrier group 300 includes at least one layer of magnetic barrier holes 310 arranged at intervals along the circumferential direction of the rotor core 100, the number of magnetic barrier holes 310 in one layer is set to be multiple, and the arrangement of the multiple magnetic barrier holes 310 requires a certain spatial position.
  • the second side wall 220 is arranged toward the edge of the rotor core 100. In this way, an area can be formed between the second side wall 220 and the edge of the rotor core 100.
  • the multiple magnetic barrier groups 300 are arranged on the side of the multiple curved slots 200 away from the center of the rotor core 100, that is, they are arranged in the area formed between the second side wall 220 and the edge of the rotor core 100.
  • a direct-axis magnetic conductive channel 400 is formed between any two adjacent magnetic barrier holes 310 in a layer of magnetic barrier holes 310.
  • the magnetic resistance in the d-axis direction where the direct-axis magnetic conductive channel 400 is located is small, has a high magnetic flux, and has a large inductance Ld; while the magnetic resistance in the q-axis direction at the center line of the magnetic barrier hole 310 is very high, and the inductance Lq is small.
  • the surface of the magnetic conductive channel can be coated with a magnetic conductive material, so as to achieve a better magnetic conductive effect.
  • the motor rotor 10 with magnetic barriers further includes a plurality of permanent magnets 500, and the plurality of permanent magnets 500 are installed in the plurality of curved grooves 200.
  • the number of the permanent magnets 500 is set to be no less than the number of the curved grooves 200, and at least one permanent magnet 500 should be placed in each curved groove 200.
  • the shape of the permanent magnet 500 is adapted to the shape of the curved groove 200, and the permanent magnet 500 has at least two oppositely disposed side edges that abut against the inner wall surface of the curved groove 200 to ensure the stability of the permanent magnet 500 after being installed in the curved groove 200.
  • an appropriate amount of residual magnetic flux density of the permanent magnet 500 can cause a certain saturation in the gap between the two ends of the permanent magnet 500 and the two ends of the curved slot 200, which is very beneficial for reducing the d-axis inductance.
  • the main output torque of the motor is the reluctance torque, especially when the motor enters the high-speed weak magnetic region, the proportion of the reluctance torque in the entire electromagnetic torque is further increased, so it is very necessary to select the appropriate permanent magnet 500 material performance to affect the difference between the d-axis inductance and the q-axis inductance.
  • the thickness of the permanent magnet 500 in the axial direction of the motor rotor 10d with magnetic barriers is T.
  • the magnetic barrier hole 310 has a first side 311 and a second side 312 that are arranged opposite to each other.
  • the second side 312 is located on the side of the first side 311 away from the center of the rotor core 100.
  • the distance from the first side 311 to the second side 312 is the thickness H of the magnetic barrier hole 310, and T>H is satisfied.
  • the greater the thickness of the permanent magnet 500 in the axial direction of the motor rotor 10d with magnetic barriers the higher the permanent magnet torque of the motor, thereby increasing the output torque of the motor and the efficiency of the motor.
  • the thickness of the magnetic barrier hole 310 should not be too large. Therefore, the thickness of the permanent magnet 500 is set to be greater than the thickness of one layer of magnetic barrier hole 310.
  • the thickness of the magnetic barrier hole 310 refers to the distance from the first side 311 to the second side 312 of the magnetic barrier hole 310.
  • the thickness of the magnetic barrier hole 310 refers to the shortest distance from the first side 311 to the second side 312; if the first side 311 and the second side 312 are not arranged in parallel, the thickness of the magnetic barrier hole 310 refers to the distance from the first side 311 close to the middle part of the magnetic barrier hole 310 to the second side 312; if the magnetic barrier hole 310 is designed in an irregular shape, the thickness of the magnetic barrier hole 310 may be the average value between the maximum distance and the minimum distance from the first side 311 to the second side 312.
  • the thickness of the middle part of the permanent magnet 500 is greater than the thickness of the two ends of the permanent magnet 500.
  • the permanent magnet 500 can be set to a structure with a thick middle and thin ends, so that the thickness of the middle part of the permanent magnet 500 is greater than the thickness of the two ends.
  • the arc-shaped permanent magnet 500 is usually prone to local demagnetization in the middle inner surface area of the permanent magnet 500.
  • Designing the arc-shaped permanent magnet 500 to be a structure with a thick middle and thin ends can alleviate the local demagnetization phenomenon of the arc-shaped permanent magnet 500.
  • the use of this unequal thickness permanent magnet 500 design can also prevent the permanent magnet 500 from sliding in the curved groove 200, thereby improving the stability of the permanent magnet 500 installed in the curved groove 200.
  • a cross-axis magnetic conductive channel 600 is formed between a layer of the magnetic barrier hole 310 close to the curved groove 200 and the curved groove 200.
  • the width of the cross-axis magnetic conductive channel 600 will be increased, thereby increasing the q-axis inductance, that is, increasing the value of Lq, so that the inductance difference between Ld and Lq increases, increasing the magnetic resistance torque, and thus improving the torque output capacity of the motor.
  • the gap can be filled with air, and further, the gap can also be used to fill non-magnetic conductive medium. Specifically, filling the gap with air or non-magnetic conductive medium avoids the situation where the ends of the permanent magnet 500 are easily demagnetized and magnetization is not saturated, and the anti-demagnetization ability of the motor is also improved.
  • the curved groove 200 is arranged in a U-shape.
  • the curved groove 200 can be divided into three parts: a left part, a bottom part and a right part.
  • the left part, the bottom part and the right part can be interconnected or blocked from each other, as long as the general shape thereof is ensured to be arranged in a U-shape.
  • the permanent magnet 500 is arranged in a rectangular block shape, because the arc permanent magnet 500 is greatly affected by the material in the molding aspect, and there are many finishing processes in the later molding stage, while the molding and processing processes of the rectangular permanent magnet 500 are relatively simple, so the use of the rectangular permanent magnet 500 can improve production efficiency and has strong versatility.
  • the permanent magnet 500 can be placed in any one of the three parts of the left part, the bottom part and the right part, or in any two of the three parts of the left part, the bottom part and the right part, or in all of the three parts of the left part, the bottom part and the right part, and no specific restrictions are made on this.
  • the curved groove 200 is arranged in a V shape (not shown). Specifically, when the curved groove 200 is arranged in a V shape, the curved groove 200 can be divided into a left half and a right half, and the permanent magnet 500 is arranged in a rectangular block shape. The permanent magnet 500 can be installed in the left half of the curved groove 200, or in the right half of the curved groove 200, or in both the left half and the right half.
  • the curved groove 200 is arranged in an arc shape.
  • the shape of the permanent magnet 500 can also be arranged in an arc shape, and the shape of the permanent magnet 500 is adapted to the shape of the curved groove 200 , and the permanent magnet 500 is adapted to be installed in the curved groove 200 .
  • the present application also proposes a motor, which includes a motor rotor 10 with a magnetic barrier, and a stator sleeved on the outside of the motor rotor 10 with a magnetic barrier, wherein the stator includes a stator core and windings wound on the stator teeth.
  • the specific structure of the motor rotor 10 with a magnetic barrier refers to the above embodiment. Since the present motor adopts all the technical solutions of all the above embodiments, it has at least all the beneficial effects brought by the technical solutions of the above embodiments, which will not be described one by one here. Among them, the motor can be used in air-conditioning compressors, electric vehicles, fan systems, etc., which can increase the utilization of the motor's magnetic resistance torque, thereby improving the efficiency of the motor.
  • the thickness of the motor rotor 10 with magnetic barriers along its axial direction is not less than the thickness of the stator along its axial direction (not shown).
  • the permanent magnet 500 is installed in the curved slot 200 of the rotor core 100.
  • the thickness of the motor rotor 10 with magnetic barriers is made thicker, so that the volume of the rotor core 100 for placing the permanent magnet 500 can be larger, thereby improving the permanent magnet torque of the motor and improving the output capacity of the motor.
  • the present application also proposes a compressor, which includes the above-mentioned motor.
  • the specific structure of the motor refers to the above-mentioned embodiment. Since the compressor adopts all the technical solutions of all the above-mentioned embodiments, it at least has all the beneficial effects brought by the technical solutions of the above-mentioned embodiments, which will not be described one by one here.

Abstract

本申请公开一种具有磁障的电机转子、电机及压缩机,其中,所述具有磁障的电机转子包括转子铁芯、多个曲槽以及多个磁障组;多个曲槽设置于转子铁芯,并沿转子铁芯的周向间隔排布,曲槽的两端朝向转子铁芯的边缘延伸;多个磁障组设置于多个曲槽远离转子铁芯的圆心的一侧,磁障组包括至少一层沿曲槽的槽壁的延伸方向间隔排布的多个磁障孔;一层磁障孔的两端分别与转子铁芯的圆心之间的连线所成的夹角为a,满足a≥(1/8)*(2π/p),其中,p为具有磁障的电机转子所在的电机的极数。

Description

具有磁障的电机转子、电机及压缩机
本申请要求于2022年10月14日申请的、申请号为202211270424.0的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机技术领域,特别涉及一种具有磁障的电机转子、电机及压缩机。
背景技术
永磁同步电机(IPM)是一种在转子内侧放置一层永磁体、主要利用永磁转矩、磁阻转矩为辅助的电机。
相关技术中主要通过提高永磁体的性能来提高电机性能,即通过提高永磁转矩的做法来提高输出转矩的值,进而提高电机效率,常见的做法就是内置稀土类永磁体。但是,由于稀土是不可再生资源,且价格昂贵,因此该种电机更广泛的应用受到了限制。另外,仅仅靠提高永磁体性能来提高电机性能,也无法满足进一步提高电机效率的迫切要求。另外,当前的电机大多采用设置两层或者两层以上永磁体的结构,从而导致电机成本高,抗退磁能力弱,同时采用多层永磁体结构,影响电机生产节拍,对电机转子的性能造成影响。
技术问题
本申请的主要目的是提出一种具有磁障的电机转子,旨在通过提高磁阻转矩来提高电机效率,从而减少稀土类永磁体的用量。
技术解决方案
为实现上述目的,本申请提出的具有磁障的电机转子,所述具有磁障的电机转子包括:
转子铁芯;
多个曲槽,设置于所述转子铁芯,并沿所述转子铁芯的周向间隔排布,所述曲槽的两端朝向所述转子铁芯的边缘延伸;以及
多个磁障组,多个所述磁障组设置于多个所述曲槽远离所述转子铁芯的圆心的一侧,所述磁障组包括沿所述具有磁障的电机转子d轴方向间隔排布的至少一层磁障孔,一层所述磁障孔的数量设置为多个,多个所述磁障孔沿所述曲槽的槽壁的延伸方向间隔排布;一层所述磁障孔的两端分别与所述转子铁芯的圆心之间的连线所成的夹角为a,满足a≥(1/8)*(2π/p),其中,p为所述具有磁障的电机转子所在的电机的极数。
在一实施例中,所述曲槽具有相对设置的第一侧壁和第二侧壁,所述第一侧壁和所述第二侧壁均朝向所述转子铁芯的圆心凸设。
在一实施例中,一层所述磁障孔中的任意相邻的两个所述磁障孔之间形成有直轴导磁通道。
在一实施例中,所述具有磁障的电机转子还包括多个永磁体,多个所述永磁体安装于多个所述曲槽。
在一实施例中,所述永磁体在所述具有磁障的电机转子d轴方向上的厚度为T,所述磁障孔具有相对设置的第一侧边和第二侧边,所述第二侧边位于所述第一侧边远离所述转子铁芯的中心的一侧,所述第一侧边到所述第二侧边的距离为所述磁障孔的厚度H,满足T>H。
在一实施例中,在垂直于所述具有磁障的电机转子轴向方向的截面上,所述永磁体的中间部分的厚度大于所述永磁体的两端的厚度。
在一实施例中,所述永磁体的两端与其嵌入的所述曲槽的两端之间具有空隙,所述空隙用以填充非导磁介质。
在一实施例中,所述曲槽呈U字形设置。
在一实施例中,所述曲槽呈V字形设置。
在一实施例中,所述曲槽呈弧形设置。
本申请还提出一种电机,所述电机包括所述具有磁障的电机转子,以及套设在所述具有磁障的电机转子外侧的定子,所述定子包括定子铁芯以及缠绕在定子齿上的绕组。所述具有磁障的电机转子包括转子铁芯、多个曲槽以及多个磁障组;所述多个曲槽设置于所述转子铁芯,并沿所述转子铁芯的周向间隔排布,所述曲槽的两端朝向所述转子铁芯的边缘延伸;多个所述磁障组设置于多个所述曲槽远离所述转子铁芯的圆心的一侧,所述磁障组包括沿所述具有磁障的电机转子d轴方向间隔排布的至少一层磁障孔,一层所述磁障孔的数量设置为多个,多个所述磁障孔沿所述曲槽的槽壁的延伸方向间隔排布;一层所述磁障孔的两端分别与所述转子铁芯的圆心之间的连线所成的夹角为a,满足a≥(1/8)*(2π/p),其中,p为所述具有磁障的电机转子所在的电机的极数。
在一实施例中,所述具有磁障的电机转子沿其轴向方向上的厚度不小于所述定子沿其轴向方向上的厚度。
本申请还提出一种压缩机,所述压缩机包括电机,所述电机包括所述具有磁障的电机转子,以及套设在所述具有磁障的电机转子外侧的定子,所述定子包括定子铁芯以及缠绕在定子齿上的绕组。所述具有磁障的电机转子包括转子铁芯、多个曲槽以及多个磁障组;所述多个曲槽设置于所述转子铁芯,并沿所述转子铁芯的周向间隔排布,所述曲槽的两端朝向所述转子铁芯的边缘延伸;多个所述磁障组设置于多个所述曲槽远离所述转子铁芯的圆心的一侧,所述磁障组包括沿所述具有磁障的电机转子d轴方向间隔排布的至少一层磁障孔,一层所述磁障孔的数量设置为多个,多个所述磁障孔沿所述曲槽的槽壁的延伸方向间隔排布;一层所述磁障孔的两端分别与所述转子铁芯的圆心之间的连线所成的夹角为a,满足a≥(1/8)*(2π/p),其中,p为所述具有磁障的电机转子所在的电机的极数。
有益效果
本申请的具有磁障的电机转子,包括转子铁芯、多个曲槽以及多个磁障组;所述多个曲槽设置于所述转子铁芯,并沿所述转子铁芯的周向间隔排布,所述曲槽的两端朝向所述转子铁芯的边缘延伸;多个所述磁障组设置于多个所述曲槽远离所述转子铁芯的圆心的一侧,所述磁障组包括沿所述具有磁障的电机转子d轴方向间隔排布的至少一层磁障孔,一层所述磁障孔的数量设置为多个,多个所述磁障孔沿所述曲槽的槽壁的延伸方向间隔排布;一层所述磁障孔的两端分别与所述转子铁芯的圆心之间的连线所成的夹角为a,满足a≥(1/8)*(2π/p),其中,p为所述具有磁障的电机转子所在的电机的极数。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请具有磁障的电机转子一实施例的结构示意图;
图2为图1中A处的放大图;
图3为本申请具有磁障的电机转子另一实施例的结构示意图;
图4为本申请电机的输出转矩与夹角a范围变化的关系示意图。
附图标号说明:
标号 名称 标号 名称
10 具有磁障的电机转子 310 磁障孔
100 转子铁芯 311 第一侧边
200 曲槽 312 第二侧边
210 第一侧壁 400 直轴导磁通道
220 第二侧壁 500 永磁体
300 磁障组 600 交轴导磁通道
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,若全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种具有磁障的电机转子的实施例,即永磁辅助同步磁阻电机的电机转子,主要应用在空调压缩机、电动车以及风扇系统中。同步磁阻电机具有多层转子磁障,依靠转子磁路不对称产生的磁阻转矩工作。这种电机具有成本低、制造简单、转子损耗小的优点,但存在功率因数和转矩密度低以及转矩脉动较大的缺点。为了提高这类电机的转矩和功率因数,可以在转子磁障中插入一定的低性能永磁体(铁氧体或粘接钕铁硼)辅助励磁,从而能够降低电机电流的励磁分量并产生永磁转矩,这就是永磁辅助同步磁阻电机。
在设计磁障中的永磁体时,需要考虑永磁磁通对磁路饱和程度的影响。永磁磁通过大容易引起磁路饱和,降低转子的凸极率;而永磁磁通过小则对转矩和功率因数的提高较小。低性能永磁体虽然矫顽力较低,但其退磁曲线线性度较好。
磁阻转矩与永磁转矩的合成公式如下:
T=mp*(Lq-Ld)*id*iq+mp*ψPM*iq。其中,
T为电机的输出转矩,提高T的值,可以提高电机性能;T后等式中的第一项为磁阻转矩,第二项为永磁转矩;ΨPM为电机永磁体产生的定转子耦合磁通的最大值,m为定子导体的相数,Ld、Lq分别为d轴和q轴电感,其中d轴指与主磁极轴线重合的轴,q轴指与主磁极轴线垂直的轴,其中的垂直指的是电角度;id、iq分别是电枢电流在d轴、q轴方向上的分量。根据公式可知,增加Ld与Lq电感差值以及ΨPM都可提高输出转矩,即在保证磁阻转矩和永磁转矩其中一者保持不变的情况下,提高两者中的另一者均可提高电机的总的输出转矩,从而提高电机的效率。
相关技术中主要通过提高永磁体的性能来提高电机性能,即通过提高永磁转矩的做法来提高输出转矩的值,进而提高电机效率,常见的做法就是内置稀土类永磁体。但是,由于稀土是不可再生资源,且价格昂贵,因此该种电机更广泛的应用受到了限制。另外,仅仅靠提高永磁体性能来提高电机性能,也无法满足进一步提高电机效率的迫切要求。另外,当前的电机大多采用设置两层或者两层以上永磁体的结构,从而导致电机成本高,抗退磁能力弱,同时采用多层永磁体结构,影响电机生产节拍,对电机转子的性能造成影响。
请参阅图1至图3,在本申请的一实施例中,所述具有磁障的电机转子10包括转子铁芯100、多个曲槽200以及多个磁障组300;所述多个曲槽200设置于所述转子铁芯100,并沿所述转子铁芯100的周向间隔排布,所述曲槽200的两端朝向所述转子铁芯100的边缘延伸;多个所述磁障组300设置于多个所述曲槽200远离所述转子铁芯100的圆心的一侧,所述磁障组300包括沿所述具有磁障的电机转子10 d轴方向间隔排布的至少一层磁障孔310,一层所述磁障孔310的数量设置为多个,多个所述磁障孔310沿所述曲槽200的槽壁的延伸方向间隔排布;一层所述磁障孔310的两端分别与所述转子铁芯100的圆心之间的连线所成的夹角为a,满足a≥(1/8)*(2π/p),其中,p为所述具有磁障的电机转子10所在的电机的极数。
具体地,所述电机转子包括转子铁芯100和永磁体500,所述转子铁芯100由硅钢板叠压而成并具有一定叠高。转子铁芯100在永磁体500的磁性作用下受驱动,电机转子可相对于电机定子发生转动,以实现电机的正常运行。所述转子铁芯100由高导磁材料或硅钢冲片叠压而成,采用高导磁材料或硅钢冲片叠压而成,具有高的磁通率,且结构强度高,便于加工。
多个曲槽200开设于所述转子铁芯100上,所述曲槽200呈弯曲状设置,所述曲槽200可以有一个弯曲部,也可以具有多个弯曲部,对此不作具体限制,当曲槽200有多个弯曲部时,其形状大致呈波浪状设置。多个所述曲槽200沿转子铁芯100的周向间隔排布,具体以所述转子铁芯100的中心为圆心按其圆周方向均匀分布,所述曲槽200的两端朝向所述转子铁芯100的边缘延伸,并与转子铁芯100的边缘之间形成供多个磁障组300设置的区域,多个所述磁障组300设置于多个所述曲槽200远离所述转子铁芯100的圆心的一侧。需要说明的是,所述曲槽200主要用于安装永磁体500,而永磁体500具有磁极,因此所述曲槽200的数量设置为偶数,如图1所示,沿所述转子铁芯100的周向间隔排布有6个曲槽200,每个曲槽200中至少放置有一个永磁体500,任一相邻的两个曲槽200中的永磁体500的极性相反,多个永磁体500沿所述转子铁芯100的圆周方向按照N极、S极交替分布。在本申请一实施例中,多个所述曲槽200设置为单层结构,相较于相关技术中的双层结构的电机转子,单层结构的曲槽200中放置永磁体500,可以在有限的体积内,增大永磁体500的厚度,从而提高永磁体500的抗退磁能力,提高电机的可靠性;同时,单层曲槽200结构的电机转子的生产效率也较高一些;同时,单层结构的曲槽200,需要放置永磁体500的量也相对减少,永磁体500的整体用量减少,因此还可以进一步降低转子的生产成本,从而降低电机的生产成本。
所述磁障组300包括沿所述曲槽200的槽壁的延伸方向间隔排布的至少一层磁障孔310,一层所述磁障孔310的数量设置为多个,所述磁障孔310中可以用来填充空气或其他非导磁材料。所述曲槽200的槽壁可以是靠近所述转子铁芯100边缘的第一侧壁210,也可以是靠近所述转子铁芯100圆心的第二侧壁220。所述第一侧壁210和所述第二侧壁220的延伸方向可以相同,也可以不同,在本申请一实施例中,所述第一侧壁210和所述第二侧壁220的延伸方向大致相同,因此多个所述磁障孔310沿所述曲槽200的第一侧壁210的延伸方向间隔排布或沿所述曲槽200的第二侧壁220的延伸方向间隔排布。相邻两个磁障孔310之间形成有直轴导磁通道400,直轴导磁通道400所在的d轴方向磁阻小,具有高的磁通量,电感Ld大;而处于磁障孔310中心线的q轴方向具有很高的磁阻,电感Lq小,可以增加d轴和q轴方向的电感差,从而提高电机的转矩输出能力。另一方面,磁障孔310设置在曲槽200的第一侧壁210与转子铁芯100的边缘之间,可在降低对永磁磁力造成的影响的基础上,同时又可以规范磁力线路径,削弱气隙中磁场谐波,还可以缓解磁饱和程度,在电机转子转动的过程中形成磁障,以提高电机的功率密度和转矩密度,提升电机的过载能力,有效改善电机的转矩脉动,在减少电机的永磁体500的用量,也即减少生产成本的基础上,极大的提升电机性能,提高产品竞争力。
请参阅图1和图4,一层所述磁障孔310的两端分别与所述转子铁芯100的圆心之间的连线所成的夹角为a,当夹角a满足a≥(1/8)*(2π/p)时(p为所述具有磁障的电机转子10所在的电机的极数),可以显著提高电机转子的q轴电感,可使得电机的d轴、q轴的电感差加大,更有利于提高电机的磁阻转矩,使得单位电流产生更大的电磁转矩,从而提高电机的效率。
本申请的具有磁障的电机转子10,包括转子铁芯100、多个曲槽200以及多个磁障组300;所述多个曲槽200设置于所述转子铁芯100,并沿所述转子铁芯100的周向间隔排布,所述曲槽200的两端朝向所述转子铁芯100的边缘延伸;多个所述磁障组300设置于多个所述曲槽200远离所述转子铁芯100的圆心的一侧,所述磁障组300包括沿所述具有磁障的电机转子10 d轴方向间隔排布的至少一层磁障孔310,一层所述磁障孔310的数量设置为多个,多个所述磁障孔310沿所述转子铁芯100周向间隔排布;一层所述磁障孔310的两端分别与所述转子铁芯100的圆心之间的连线所成的夹角为a,满足a≥(1/8)*(2π/p),其中,p为所述具有磁障的电机转子10所在的电机的极数。当夹角a满足a≥(1/8)*(2π/p)时,可以显著提高电机转子的q轴电感,可使得电机的d轴、q轴的电感差加大,更有利于提高电机的磁阻转矩,使得单位电流产生更大的电磁转矩,从而提高电机的效率。本申请中的曲槽200主要用以放置永磁体500,且所述曲槽200设置为单层结构,可以增大放置到曲槽200中的永磁体500的厚度,从而提高永磁体500的抗退磁能力,保证电机的可靠性。同时,单层结构的曲槽200中放置的永磁体500的用量相较于双层结构的永磁体500的用量会有减少,从而可以降低电机转子的生产成本。同时,单层曲槽200结构的电机转子相较于双层曲槽200结构的电机转子,单层曲槽200结构的电机转子的生产效率也较高。
请参阅图1,在上述实施例的基础上,所述曲槽200具有相对设置的第一侧壁210和第二侧壁220,所述第一侧壁210和所述第二侧壁220均朝向所述转子铁芯100的圆心凸设。具体说来,曲槽200具有相对设置的第一侧壁210和第二侧壁220,所述第一侧壁210靠近所述转子铁芯100的圆心设置,所述第二侧壁220远离所述转子铁芯100的圆心设置,由于所述磁障组300包括沿所述转子铁芯100周向间隔排布的至少一层磁障孔310,一层磁障孔310的数量设置为多个,多个磁障孔310的设置需要有一定的空间位置,第二侧壁220朝向转子铁芯100的边缘设置,如此设置,可以使得第二侧壁220与转子铁芯100的边缘之间形成有一片区域,多个所述磁障组300设置于多个所述曲槽200远离所述转子铁芯100的圆心的一侧,即设置在第二侧壁220与转子铁芯100的边缘之间形成的该片区域中。
请参阅图1至图3,进一步地,一层所述磁障孔310中的任意相邻的两个所述磁障孔310之间形成有直轴导磁通道400。具体地,直轴导磁通道400所在的d轴方向磁阻小,具有高的磁通量,电感Ld大;而处于磁障孔310中心线的q轴方向具有很高的磁阻,电感Lq小,如此,可以增加d轴和q轴方向的电感差,即提高公式T=mp*(Lq-Ld)*id*iq+mp*ψPM*iq中(Lq-Ld)的值,从而提高电机的转矩输出能力。所述导磁通道的表面可以涂抹导磁材料,从而起到较佳的导磁作用。
请参阅图1至图3,在一实施例中,所述具有磁障的电机转子10还包括多个永磁体500,多个所述永磁体500安装于多个所述曲槽200中。具体说来,为保证所述具有磁障的电机转子10的性能,所述永磁体500的数量设置为不少于所述曲槽200的数量,且每个所述曲槽200中至少应当放置有一个永磁体500。所述永磁体500的形状和所述曲槽200的形状适配,且所述永磁体500至少有呈相对设置的两个侧边与所述曲槽200的内壁面抵接,以保证所述永磁体500安装到曲槽200中后的稳定性。在永磁体500材料选取方面,为了尽可能增加电机的永磁转矩,一般都希望选取比较高性能的永磁体500,且永磁体500的用量尽可能填充满曲槽200,但在磁阻转矩的利用方面并非永磁体500的剩余磁通密度越高越好,随着永磁体500剩余磁通密度的提高,电机转子也会出现饱和而导致电感下降。其中,转子磁路饱和对q轴电感的影响更大。另外,通过研究发现,适量的永磁体500剩余磁通密度可以使永磁体500的两端与曲槽200的两端之间的空隙部位出现一定的饱和,这对于减小d轴电感是非常有利的。由于电机主要输出转矩是磁阻转矩,特别是电机进入高速弱磁区域,磁阻转矩在整个电磁转矩中的比重进一步加大,因此选取合适的永磁体500材料性能对d轴电感与q轴电感的差值的影响是非常必要的。
请参阅图1,在一实施例中,所述永磁体500在所述具有磁障的电机转子10d轴方向上的厚度为T,所述磁障孔310具有相对设置的第一侧边311和第二侧边312,所述第二侧边312位于所述第一侧边311远离所述转子铁芯100的中心的一侧,所述第一侧边311到所述第二侧边312的距离为所述磁障孔310的厚度H,满足T>H。具体说来,永磁体500在所述具有磁障的电机转子10d轴方向上的厚度越大,则会提高电机的永磁转矩,从而提高电机的输出转矩,提高电机的效率。同时,为保证交轴导磁通道600中的磁路不被挡到,磁障孔310的厚度不应该做的太大,因此将永磁体500的厚度设置为大于一层磁障孔310的厚度。所述磁障孔310的厚度,指的是磁障孔310的第一侧边311到第二侧边312的距离,若所述第一侧边311与所述第二侧边312平行设置,则所述磁障孔310的厚度指所述第一侧边311到所述第二侧边312的最短距离;若所述第一侧边311与所述第二侧边312非平行设置,则所述磁障孔310的厚度指所述磁障孔310的靠近其中间部分的所述第一侧边311到所述第二侧边312的距离距离;若所述磁障孔310呈不规则状设计,则所述磁障孔310的厚度可以是所述第一侧边311到所述第二侧边312的最大距离与最小距离之间的平均值。
请参阅图1,在一实施例中,在垂直于所述具有磁障的电机转子10轴向方向的截面上,所述永磁体500的中间部分的厚度大于所述永磁体500的两端的厚度。具体说来,所述永磁体500可以设置为中间厚、两端薄的结构,使永磁体500中间部位的厚度大于其两端的厚度。以弧形永磁体500为例,通常弧形永磁体500容易在永磁体500中间内表面区域发生局部退磁,将弧形永磁体500设计成为中间厚、两端薄的结构可以缓解弧形永磁体500的局部退磁现象。此外采用这种不等厚的永磁体500设计还可以防止永磁体500在曲槽200内发生滑动,提高永磁体500在曲槽200内安装的稳定性。进一步地,靠近所述曲槽200的一层所述磁障孔310,与所述曲槽200之间形成有交轴导磁通道600,若永磁体500采用中间厚、两端薄的结构,则会增加交轴导磁通道600的宽度,从而增大q轴电感,即增大Lq的值,使得Ld与Lq的电感差值增大,增大磁阻转矩,从而提高电机的转矩输出能力。
请参阅图1至图3,在一实施例中,所述永磁体500的两端与其嵌入的所述曲槽200的两端之间具有空隙,有效地避开了d轴电枢磁势集中作用在永磁体500端部的情况,可以很好地提高电机的退磁电流。所述空隙中可以填充空气,进一步地,所述空隙还可以用来填充非导磁介质。具体说来,在所述空隙中填充空气或非导磁介质,避免了永磁体500的端部易退磁和充磁不饱和的情况发生,同时电机的抗退磁能力也有所提高。
请参阅图3,在一实施例中,所述曲槽200呈U字形设置。具体说来,当曲槽200设置为U字形时,所述曲槽200可以分为左部、底部和右部三部分,所述左部、底部和所述右部可以相互连通,也可以相互阻隔,只要保证其大致形状呈U字形设置即可。所述永磁体500呈矩形块状设置,因为弧形永磁体500在成型方面受材料的影响比较大,而且成型后期的精加工工序多,而矩形永磁体500的成型及加工工序都相对简单,因此采用矩形永磁体500能够提高生产效率,且通用性强。永磁体500可以只放置在左部、底部和右部三部分中的任意一个部分,也可以放置在左部、底部和右部三部分中的任意两个部分,也可以在左部、底部和右部三部分中全部放置,对此不作具体限制。
在另一实施例中,所述曲槽200呈V字形设置(未图示)。具体说来,当曲槽200呈V字形设置时,此时所述曲槽200可以分为左半部和右半部,所述永磁体500呈矩形块状设置。所述永磁体500可以安装在所述曲槽200的左半部中,也可以安装在所述曲槽200的右半部中,还可以在左半部和右半部中均进行安装。
请参阅图1,在又一实施例中,所述曲槽200呈弧形设置。具体说来,当曲槽200呈弧形设置时,所述永磁体500的形状也可以设置为弧形,所述永磁体500的形状与所述曲槽200的形状适配,所述永磁体500适配安装在所述曲槽200中。
本申请还提出一种电机,所述电机包括具有磁障的电机转子10,以及套设在所述具有磁障的电机转子10外侧的定子,所述定子包括定子铁芯以及缠绕在定子齿上的绕组。所述具有磁障的电机转子10的具体结构参照上述实施例,由于本电机采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。其中,所述电机可以应用在空调压缩机、电动车以及风扇系统中等,能增加电机磁阻转矩的利用,从而提高电机的效率。
在一实施例中,所述具有磁障的电机转子10沿其轴向方向上的厚度不小于所述定子沿其轴向方向上的厚度(未图示)。永磁体500安装在转子铁芯100的曲槽200中,将具有磁障的电机转子10的厚度做的更厚,可以使得转子铁芯100中放置永磁体500的体积更大,从而提高电机的永磁转矩,以提高电机的输出能力。
本申请还提出一种压缩机,所述压缩机包括前述电机。所述电机的具体结构参照上述实施例,由于本压缩机采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
以上所述仅为本申请的一些实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (13)

  1. 一种具有磁障的电机转子,其中,所述电机转子包括:
    转子铁芯;
    多个曲槽,设置于所述转子铁芯,并沿所述转子铁芯的周向间隔排布,所述曲槽的两端朝向所述转子铁芯的边缘延伸;以及
    多个磁障组,多个所述磁障组设置于多个所述曲槽远离所述转子铁芯的圆心的一侧,所述磁障组包括沿所述具有磁障的电机转子d轴方向间隔排布的至少一层磁障孔,一层所述磁障孔的数量设置为多个,多个所述磁障孔沿所述曲槽的槽壁的延伸方向间隔排布;一层所述磁障孔的两端分别与所述转子铁芯的圆心之间的连线所成的夹角为a,满足a≥(1/8)*(2π/p),其中,p为所述具有磁障的电机转子所在的电机的极数。
  2. 如权利要求1所述的具有磁障的电机转子,其中,所述曲槽具有相对设置的第一侧壁和第二侧壁,所述第一侧壁和所述第二侧壁均朝向所述转子铁芯的圆心凸设。
  3. 如权利要求1或2所述的具有磁障的电机转子,其中,一层所述磁障孔中的任意相邻的两个所述磁障孔之间形成有直轴导磁通道。
  4. 如权利要求1至3中任一项所述的具有磁障的电机转子,其中,所述具有磁障的电机转子还包括多个永磁体,多个所述永磁体安装于多个所述曲槽。
  5. 如权利要求4所述的具有磁障的电机转子,其中,所述永磁体在所述具有磁障的电机转子d轴方向上的厚度为T,所述磁障孔具有相对设置的第一侧边和第二侧边,所述第二侧边位于所述第一侧边远离所述转子铁芯的中心的一侧,所述第一侧边到所述第二侧边的距离为所述磁障孔的厚度H,满足T>H。
  6. 如权利要求4所述的具有磁障的电机转子,其中,在垂直于所述具有磁障的电机转子轴向方向的截面上,所述永磁体的中间部分的厚度大于所述永磁体的两端的厚度。
  7. 如权利要求4所述的具有磁障的电机转子,其中,所述永磁体的两端与其嵌入的所述曲槽的两端之间具有空隙,所述空隙用以填充非导磁介质。
  8. 如权利要求1至7中任一项所述的具有磁障的电机转子,其中,所述曲槽呈U字形设置。
  9. 如权利要求1至8中任一项所述的具有磁障的电机转子,其中,所述曲槽呈V字形设置。
  10. 如权利要求1至9中任一项所述的具有磁障的电机转子,其中,所述曲槽呈弧形设置。
  11. 一种电机,其中,所述电机包括如权利要求1至10中任意一项所述的具有磁障的电机转子,以及套设在所述具有磁障的电机转子外侧的定子,所述定子包括定子铁芯以及缠绕在定子齿上的绕组。
  12. 如权利要求11所述的电机,其中,所述具有磁障的电机转子沿其轴向方向上的厚度不小于所述定子沿其轴向方向上的厚度。
  13. 一种压缩机,其中,所述压缩机包括如权利要求11所述的电机。
PCT/CN2023/113067 2022-10-14 2023-08-15 具有磁障的电机转子、电机及压缩机 WO2024078117A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211270424.0A CN116191726A (zh) 2022-10-14 2022-10-14 具有磁障的电机转子、电机及压缩机
CN202211270424.0 2022-10-14

Publications (1)

Publication Number Publication Date
WO2024078117A1 true WO2024078117A1 (zh) 2024-04-18

Family

ID=86449615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113067 WO2024078117A1 (zh) 2022-10-14 2023-08-15 具有磁障的电机转子、电机及压缩机

Country Status (2)

Country Link
CN (1) CN116191726A (zh)
WO (1) WO2024078117A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116191723A (zh) * 2022-10-14 2023-05-30 广东美芝制冷设备有限公司 具有磁障的转子、电机及压缩机
CN116191726A (zh) * 2022-10-14 2023-05-30 广东美芝制冷设备有限公司 具有磁障的电机转子、电机及压缩机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213081A1 (ja) * 2019-04-17 2020-10-22 三菱電機株式会社 ロータ、モータ、圧縮機、及び空気調和機
CN112821608A (zh) * 2021-01-22 2021-05-18 珠海格力电器股份有限公司 转子冲片、转子铁芯、电机转子及组装方法、电机
CN113162274A (zh) * 2021-05-10 2021-07-23 美的威灵电机技术(上海)有限公司 转子结构、电机结构和压缩机
WO2022160781A1 (zh) * 2021-01-26 2022-08-04 珠海格力电器股份有限公司 转子组件和自起动永磁同步磁阻电机
CN115001178A (zh) * 2022-06-17 2022-09-02 珠海格力电器股份有限公司 电机转子、电机和电动汽车
CN218387000U (zh) * 2022-10-14 2023-01-24 广东美芝制冷设备有限公司 具有磁障的电机转子、电机及压缩机
CN116191726A (zh) * 2022-10-14 2023-05-30 广东美芝制冷设备有限公司 具有磁障的电机转子、电机及压缩机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213081A1 (ja) * 2019-04-17 2020-10-22 三菱電機株式会社 ロータ、モータ、圧縮機、及び空気調和機
CN112821608A (zh) * 2021-01-22 2021-05-18 珠海格力电器股份有限公司 转子冲片、转子铁芯、电机转子及组装方法、电机
WO2022160781A1 (zh) * 2021-01-26 2022-08-04 珠海格力电器股份有限公司 转子组件和自起动永磁同步磁阻电机
CN113162274A (zh) * 2021-05-10 2021-07-23 美的威灵电机技术(上海)有限公司 转子结构、电机结构和压缩机
CN115001178A (zh) * 2022-06-17 2022-09-02 珠海格力电器股份有限公司 电机转子、电机和电动汽车
CN218387000U (zh) * 2022-10-14 2023-01-24 广东美芝制冷设备有限公司 具有磁障的电机转子、电机及压缩机
CN116191726A (zh) * 2022-10-14 2023-05-30 广东美芝制冷设备有限公司 具有磁障的电机转子、电机及压缩机

Also Published As

Publication number Publication date
CN116191726A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
WO2024078117A1 (zh) 具有磁障的电机转子、电机及压缩机
US9083219B2 (en) Rotor and motor
EP2741402B1 (en) Motor and rotor thereof
WO2015096525A1 (zh) 永磁电机
CN110011442B (zh) 电动机转子和具有其的电动机、压缩机
CN111725918B (zh) 转子结构、永磁辅助同步磁阻电机
KR20200133223A (ko) 회전자 구조, 영구자석 보조 동기 릴럭턴스 전동기 및 전기자동차
US11799333B2 (en) Permanent magnet auxiliary synchronous reluctance motor and electric vehicle provided with same
CN111082560B (zh) 电机转子和电机
WO2024078131A1 (zh) 具有磁障的转子、电机及压缩机
WO2024078113A1 (zh) 永磁辅助同步磁阻电机及压缩机
CN218386999U (zh) 永磁辅助同步磁阻电机及压缩机
CN218387000U (zh) 具有磁障的电机转子、电机及压缩机
CN218633493U (zh) 一种电机转子、电机和压缩机
CN211296356U (zh) 电机转子、磁阻电机和电动汽车
CN218387002U (zh) 具有磁障的转子、电机及压缩机
CN218387001U (zh) 永磁电机及压缩机
CN218633492U (zh) 一种电机转子、电机和压缩机
CN218386997U (zh) 永磁辅助同步磁阻电机及压缩机
CN110971038A (zh) 电机转子、磁阻电机和电动汽车
CN219304557U (zh) 转子、永磁电机及压缩机
CN216819529U (zh) 自起动同步磁阻电机转子和电机
CN116191722A (zh) 永磁电机及压缩机
CN116191721A (zh) 永磁辅助同步磁阻电机及压缩机
CN113364181B (zh) 一种反凸极少稀土永磁同步电机转子及其电机