WO2019174113A1 - 一种gps/bds紧组合载波差分定位方法 - Google Patents

一种gps/bds紧组合载波差分定位方法 Download PDF

Info

Publication number
WO2019174113A1
WO2019174113A1 PCT/CN2018/085572 CN2018085572W WO2019174113A1 WO 2019174113 A1 WO2019174113 A1 WO 2019174113A1 CN 2018085572 W CN2018085572 W CN 2018085572W WO 2019174113 A1 WO2019174113 A1 WO 2019174113A1
Authority
WO
WIPO (PCT)
Prior art keywords
difference
gps
bds
ambiguity
double
Prior art date
Application number
PCT/CN2018/085572
Other languages
English (en)
French (fr)
Inventor
潘树国
高旺
王彦恒
高成发
王庆
张瑞成
张建
刘国良
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US16/626,570 priority Critical patent/US11294073B2/en
Publication of WO2019174113A1 publication Critical patent/WO2019174113A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/04Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing carrier phase data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/071DGPS corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/32Multimode operation in a single same satellite system, e.g. GPS L1/L2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/421Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system
    • G01S19/425Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system by combining or switching between signals derived from different satellite radio beacon positioning systems

Definitions

  • the invention relates to a multi-system fusion navigation and positioning technology, in particular to a GPS/BDS tight combined carrier differential positioning method, belonging to the field of GNSS (Global Navigation Satellite System) positioning and navigation technology.
  • GNSS Global Navigation Satellite System
  • the research on tightly combined positioning mainly focuses on the same frequency of different systems, and it is mainly applied to the single frequency positioning model.
  • the multi-GNSS observation fusion process different frequencies are encountered more frequently, for example, the GPS/BDS dual system has no common frequency. Therefore, it is not conducive to better exploit the advantages of multi-GNSS fusion positioning by studying the differential positioning algorithm of the same frequency between systems.
  • the present invention provides a GPS/BDS tight combined carrier differential positioning method, which uses GPS/BDS observations to construct an inter-system double difference model.
  • the BDS reference satellite performs parameter decorrelation, guarantees the continuous estimability of the deviation between the carrier differential systems through the reference conversion, and finally uses the fixed ambiguity to form the ionosphere-free combination and combines the estimated carrier-difference system-to-system deviation for tight combination positioning.
  • the invention provides a GPS/BDS tight combined carrier differential positioning method, which comprises the following steps:
  • Step 1 Select the GPS reference satellite to construct a double-difference ionosphere-free combined model between the double-difference ionosphere-free combined model and the GPS/BDS system in the GPS system and a double-difference wide-channel ambiguity calculation model in the GPS/BDS system;
  • step 2 the inter-system deviation parameter of the non-ionospheric combination form is de-correlated with the single difference and the double difference ambiguity;
  • Step 3 performing a benchmark conversion to achieve continuous measurability of the deviation between the differential systems without ionosphere
  • Step 4 separating the base carrier ambiguity by using the combination of no ionization layer and wide lane ambiguity
  • step 5 the base carrier is used to form a non-ionization layer combination for positioning.
  • step 1 is specifically:
  • Step 11 Construct a single-difference ionosphere-free combined model between the stations without ionosphere:
  • equations (1) and (2) are the single-difference ionospheric combined carrier observation equation and pseudo-range observation equation between GPS stations, respectively.
  • Equations 3) and (4) are the single-difference ionosphere combination between BDS stations.
  • Equation (5) is a combination of non-ionospheric combination of single-difference carrier observations between GPS stations and single-difference ambiguity without ionization layer between stations
  • equation (6) is a BDS inter-station single
  • the difference carrier observation value has no ionospheric combination form and the inter-station single difference ambiguity non-ionization layer combination form
  • the formula (7) is a combination of GPS and BDS inter-station single-difference pseudo-range non-ionization layer
  • f 1, G represents the frequency value of the GPS satellite L1, and f 2, G represents the frequency value of the GPS satellite L2;
  • Indicates the single-difference carrier observation between the BDS stations of the BDS satellite Indicates the single-difference carrier observation between the BDS stations of the BDS satellite, Indicates the single-difference ambiguity between the BDS stations of the BDS satellites, Indicates the single-difference ambiguity between the BDS stations of the BDS satellites, Indicates the single-pitch pseudorange observation between the BDS stations of the BDS satellite, Indicates the single-difference pseudorange observation between the BDS stations of the BDS satellite, f 1, C represents the frequency value of the BDS satellite B1, and f 2, C represents the frequency value of the BDS satellite B2;
  • Step 12 Select the GPS reference satellite, and establish a double-difference ionosphere-free combined model in the GPS system and a double-difference ionosphere-free combination model between the GPS/BDS systems according to the single-difference ionosphere-free combination model established in step 11:
  • Equations (8) and (9) are the double-difference ionosphere-free combined model in GPS system. Equations (10) and (11) are double-difference-free ionization between GPS/BDS systems.
  • Representing the double-difference ionospheric combined carrier observations in the GPS system Indicates the star distance of the double-difference station in the GPS system.
  • Representing the double-difference ionosphere combined ambiguity in the GPS system Represents the double-difference tropospheric delay in the GPS system, Representing the double-difference ionospheric combined carrier observation noise in the GPS system, Represents the pseudo-distance observation of the double-difference ionosphere in the GPS system.
  • Representing the double-difference ionospheric combined carrier observation noise in the GPS system Represents the double-difference ionospheric combined carrier observation between GPS/BDS systems, Indicates the star distance between the GPS/BDS systems.
  • Represents the double-difference ionospheric combined ambiguity between GPS/BDS systems Representing the single-difference ionosphere combined ambiguity between GPS reference satellite stations, Indicates the deviation between GPS/BDS non-ionospheric combined carrier differential systems.
  • Step 13 Select the BDS reference satellite to construct a double-difference wide-channel ambiguity calculation model in the GPS and BDS systems:
  • the system of double-difference wide-channel ambiguity in the system of GPS and BDS is:
  • the GPS and BDS double-difference wide lanes are obtained by smoothing rounding off multiple epochs, and round represents the rounding and rounding operator, and k represents the number of calendars.
  • step 2 is specifically:
  • Step 21 According to the BDS reference satellite selected in step 13, the GPS/BDS system double-difference ionosphere-free combination ambiguity is re-parameterized:
  • step 12 the double-difference ionosphere-free ambiguity between GPS/BDS systems is expressed as:
  • step 22 the common parameters are merged, and the deviation between the non-ionospheric combined carrier differential systems is re-parameterized to implement parameter decorrelation:
  • step 3 is specifically:
  • Step 31 perform a GPS reference conversion:
  • the GPS reference satellite is converted from 1 G to i G , then the corresponding t-epoch element is separated by the ionospheric combined carrier differential system. for:
  • Step 32 perform a BDS benchmark conversion:
  • the BDS reference satellite is converted from 1 C to i C , and the GPS reference satellite at this time is i G in step 31, then the corresponding e-ion epoch combined carrier-difference system difference between systems for:
  • step 4 is specifically:
  • step 41 using the combination and combination of the ionosphere, the GPS L1 ambiguity and the BDS B1 ambiguity are separated according to the wide lane ambiguity obtained in step 13:
  • Step 42 Calculate the GPS L2 ambiguity integer solution and the BDS L2 ambiguity integer solution according to the wide lane ambiguity obtained in step 13 and the GPS L1 ambiguity and BDS B1 ambiguity obtained in step 41:
  • the Lambda method is used to search for the GPS L1 and BDS B1 ambiguity integer solutions.
  • step 5 is specifically: combining the set of non-ionization layers and steps according to the combination of the ambiguity integer solution and the carrier observation value obtained in steps 41 and 42 according to the composition of the double-difference ionosphere layer as shown in step 21. 2
  • the obtained ionospheric-free combined carrier-difference system-to-system deviation is brought into the equation (5) and equation (7) for positioning.
  • the present invention has the following technical effects:
  • the present invention adopts carrier frequency differential combination positioning of different frequency observation values between GNSS systems, and overcomes the shortcomings that the frequency of observation values between systems must be the same in the existing research;
  • the invention can reduce the parameters to be estimated, is beneficial to enhance the stability of the observation model in the occlusion environment, and improve the positioning accuracy and reliability.
  • Figure 1 is a 7-day positioning deviation map of the loose N-direction.
  • Figure 2 is a 7-day positioning deviation map in the E direction.
  • Fig. 3 is a 7-day positioning deviation map of the loose combination N direction.
  • Fig. 4 is a 7-day positioning deviation map in the E direction.
  • Fig. 5 is a 7-day positioning deviation diagram of the loose combination E direction.
  • Fig. 6 is a 7-day positioning deviation map in the E direction.
  • Figure 7 is a flow chart of the method of the present invention.
  • the GPS/BDS tight combined carrier differential positioning algorithm of the present invention includes the following steps:
  • Step 1 Select the GPS (Global Positioning System) reference satellite to construct a double-difference ionosphere-free combined model between the GPS system and the GPS/BDS (Bei Dou Navigation Satellite System) system and the GPS/BDS system. Double difference wide lane ambiguity solving model;
  • step 2 the inter-system deviation parameter of the non-ionosphere combination is de-correlated with the single difference and the double difference ambiguity
  • Step 3 performing a benchmark conversion to achieve continuous measurability of the difference between the differential systems
  • Step 4 separating the base carrier ambiguity by using the combination of no ionization layer and wide lane ambiguity
  • step 5 the base carrier is used to form a non-ionization layer combination for positioning.
  • step 1 constructing a double difference model between the GPS system and the GPS/BDS system includes the following steps:
  • Step 11 Construct a single-difference ionosphere-free combined model between the stations without ionosphere:
  • the single-difference ionospheric combined observation model between stations can be expressed as:
  • Equations (1) and (2) are the single-difference ionosphere-free subcarrier observation equations and pseudorange observation equations between GPS stations, respectively.
  • Equations 3) and (4) are the single-difference ionosphere combinations between BDS stations.
  • Carrier observation equation and pseudo-range observation equation; Equation (5) is a combination of non-ionospheric combination of single-difference carrier observations between GPS stations and single-difference ambiguity without ionosphere, and equation (6) is a single difference between BDS stations.
  • the carrier observation value has no ionospheric combination form and the inter-station single-difference ambiguity non-ionization layer combination form
  • the formula (7) is a combination of GPS and BDS inter-station single-difference pseudo-distance ionization layer.
  • the ionospheric combination shown in the formula (5)(6)(7) is equally applicable to the non-difference form and the double difference form.
  • Representing single-difference non-ionization layer combined pseudorange measurement noise between GPS satellite stations; (superscript q 1 C , 2 C ,..., n C denotes BDS satellite) means the single-difference ionospheric combined carrier observation value (m) between BDS satellite stations, Indicates the satellite distance between single-station stations of BDS satellite stations, ⁇ NL, C represents the narrow-lane wavelength of BDS satellites, ⁇ IF, and C represents the hardware delay of the single-difference ionosphere-free carrier between the BDS satellite receivers.
  • Step 12 Select the GPS reference satellite, and establish a double-difference ionosphere-free combined model in the GPS system and a double-difference ionosphere-free combination model between the GPS/BDS systems according to the single-difference ionosphere-free combination model established in step 11:
  • the model can be expressed as:
  • Equations (8) and (9) are the double-difference ionosphere-free combined model in the GPS system, and the double-difference ionosphere-free combined model between the equations (10) and (11), ie, the GPS/BDS system.
  • Step 13 Select the BDS reference satellite to construct a double-difference wide-channel ambiguity calculation model in the GPS and BDS systems:
  • Equation 12) and Equation 13) are the double-difference wide-channel ambiguity solving model in the GPS system and the double-difference wide-lane ambiguity solving model in the BDSS system.
  • Multi-element smooth rounding and rounding of equations (12) and (13) can obtain the full-circumference ambiguity of double-difference wide lanes, as shown in the following equation:
  • the GPS and BDS double-difference wide lanes are obtained by smoothing rounding off multiple epochs, and round represents the rounding and rounding operator, and k represents the number of calendars.
  • the de-correlation between the non-ionization layer combined system deviation parameter and the single difference and double difference ambiguity includes the following steps:
  • Step 21 According to the BDS reference satellite selected in step 23, the ambiguity of the double-difference ionosphere-free combination between the GPS/BDS systems is re-parameterized:
  • step 12 the double-difference ionosphere combined ambiguity between the GPS/BDS systems can be expressed as:
  • formula 15 can be expressed as:
  • Equation (10) Parameters are common to all BDS satellites and are linearly related.
  • step 22 the common parameters are merged, and the deviation between the non-ionospheric combined carrier differential systems is re-parameterized to implement parameter decorrelation:
  • Equation (16) the combined observation equation of the double-difference ionosphere between GPS/BDS systems after combining the common parameters can be expressed as:
  • the reference conversion is performed to realize the continuous evaluability of the deviation between the non-ionosphere combined differential systems, including the following steps:
  • Step 31 perform a GPS reference conversion:
  • the GPS reference satellite changes from 1 G to i G
  • the corresponding t-epoch is separated by the ionospheric combined carrier differential system. for:
  • Step 32 perform a BDS benchmark conversion:
  • the BDS reference satellite changes from 1 C to i C , and the GPS reference satellite at this time is i G in step 41, then the corresponding e-day epoch combined carrier-difference system difference between systems for:
  • step 4 using the non-ionization layer combination combined with the wide lane ambiguity to separate the base carrier ambiguity includes the following steps:
  • step 41 the degree of GPS L1 ambiguity and BDS B1 ambiguity are separated by combining the ionosphere-free combination with the wide lane ambiguity obtained according to step 23:
  • Step 42 Calculate the GPS L2 ambiguity integer solution and the BDS L2 ambiguity integer solution according to the wide lane ambiguity obtained in step 23 and the GPS L1 ambiguity and BDS B1 ambiguity obtained in step 41:
  • the positioning using the base carrier composition without ionosphere combination includes the following steps:
  • Step 61 according to the ambiguity integer solution and the carrier observation value obtained in steps 41 and 42 according to the composition of the double-difference ionosphere layer as shown in step 21, combining the set of ionospheric layers and the ionospheric-free combined carrier difference system obtained in step 2.
  • the deviation is brought into the equation (5) and the equation (7) is used for positioning. It should be noted that the deviation between the ionospheric-free combined carrier differential systems must be consistent with the reference satellites of equations (5) and (7).
  • Figures 1, 3 and 5 show the three-direction positioning deviation of the loose combination N/E/U, respectively.
  • Figures 2, 4 and 5 show the N/E/U three-direction positioning deviation.
  • the method uses GPS as the reference system to form a non-ionospheric combination for tightly combined carrier differential positioning between GPS/BDS systems.
  • the inter-system deviation of the carrier-free ionospheric combination is estimated in real time, and the base carrier ambiguity is separated by the combination of the ionosphere-free and wide-lane combination. Finally, the base carrier is combined with the ionosphere-free combination for tight combined differential positioning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种GPS/BDS紧组合载波差分定位方法,首先,以GPS为基准系统,构建GPS系统内双差无电离层组合模型与GPS/BDS系统间双无电离层组合差模型,然后选取BDS基准卫星,对GPS/BDS系统间双差无电离层组合模糊度重参化并进行参数去相关,实时估计无电离层组合载波差分系统间偏差,并在必要时刻对无电离层组合载波差分系统间偏差进行基准转换以实现无电离层组合载波差分系统间偏差的持续可估性,最后利用模糊度已固定的基础载波观测值形成无电离层组合并结合已估计的无电离层载波差分系统间偏差进行系统间双差无电离层组合紧组合定位。

Description

一种GPS/BDS紧组合载波差分定位方法 技术领域
本发明涉及一种多系统融合导航定位技术,特别涉及一种GPS/BDS紧组合载波差分定位方法,属于GNSS(Global Navigation Satellite System)定位与导航技术领域。
背景技术
在相对定位中,不同的卫星系统进行观测值融合处理时,通常采用两种模型:一种是各系统选择各自参考星的松组合模型,即系统内差分模型;另一种是不同系统选择共同参考星的紧组合模型,即系统间差分模型。对于CDMA(Code Division Multiple Access)系统,卫星进行系统内差分时能够消除接收机端的载波和伪距硬件延迟,而在进行系统间差分时,由于各系统采用的信号调制方式不同,硬件延迟通常难以消除,需要提取出差分系统间偏差作为先验信息来进行紧组合定位。
目前针对紧组合定位的研究主要集中于不同系统的相同频率之间,其主要应用于单频定位模型。在多GNSS观测值融合处理中会更多地遇到不同频率的情况,例如GPS/BDS双系统没有共同频率。因此仅研究系统间相同频率的差分定位算法不利于更好地发挥多GNSS融合定位的优势。
已有研究结果表明,不同系统间不同频率的载波差分系统间偏差呈现时域稳定性,这种特性为进行载波差分紧组合定位提供了技术基础。
发明内容
为弥补现有研究的不足,更好地发挥多GNSS紧组合定位的优势,本发明提供一种GPS/BDS紧组合载波差分定位方法,利用GPS/BDS观测值构建系统间双差模型,通过引入BDS基准卫星进行参数去相关,通过基准转换保证载波差分系统间偏差的持续可估性,最后利用已固定的模糊度组成无电离层组合并结合已估计的载波差分系统间偏差进行紧组合定位。
本发明为解决上述技术问题采用以下技术方案:
本发明提供一种GPS/BDS紧组合载波差分定位方法,包括以下步骤:
步骤1,选择GPS基准卫星,构建GPS系统内双差无电离层组合模型与GPS/BDS系统间双差无电离层组合模型及GPS/BDS系统内双差宽巷模糊度解算模型;
步骤2,实现无电离层组合形式的系统间偏差参数与单差、双差模糊度去相关;
步骤3,进行基准转换,实现无电离层组合差分系统间偏差持续可估性;
步骤4,利用无电离层组合结合宽巷模糊度分离基础载波模糊度;
步骤5,利用基础载波组成无电离层组合进行定位。
作为本发明的进一步技术方案,步骤1具体为:
步骤11,构建无电离层组合站间单差无电离层组合模型:
Figure PCTCN2018085572-appb-000001
Figure PCTCN2018085572-appb-000002
Figure PCTCN2018085572-appb-000003
Figure PCTCN2018085572-appb-000004
Figure PCTCN2018085572-appb-000005
Figure PCTCN2018085572-appb-000006
Figure PCTCN2018085572-appb-000007
其中,式(1)与式(2)分别是GPS站间单差无电离层组合载波观测方程和伪距观测方程,式3)与式(4)分别是BDS站间单差无电离层组合子载波观测方程和伪距观测方程;式(5)是GPS站间单差载波观测值无电离层组合形式与站间单差模糊度无电离层组合形式,式(6)是BDS站间单差载波观测值无电离层组合形式与站间单差模糊度无电离层组合形式,式(7)是GPS与BDS的站间单差伪距无电离层组合形式;
式中,s=1 G,2 G,…,m G,m G表示GPS卫星数,
Figure PCTCN2018085572-appb-000008
表示GPS卫星s站间单差无电离层组合载波观测值,
Figure PCTCN2018085572-appb-000009
表示GPS卫星s站间单差站星距,Δdt表示站间单差接收机钟差,λ NL,G表示GPS卫星窄巷波长,Δδ IF,G表示GPS卫星接收机端站间单差无电离层组合载波硬件延迟,
Figure PCTCN2018085572-appb-000010
表示GPS卫星s站间单差无电离层组合模糊度,
Figure PCTCN2018085572-appb-000011
表示GPS卫星站间单差对流层延迟,
Figure PCTCN2018085572-appb-000012
表示GPS卫星合站间单差无电离层组测量噪声,
Figure PCTCN2018085572-appb-000013
表示GPS卫星s的站间单差无电离层组合伪距观测值,Δd IF,G表示GPS卫星接收机端站间单差无电离层组合伪距硬件延迟,
Figure PCTCN2018085572-appb-000014
表示GPS卫星s站间单差无电离层组合伪距测量噪声;q=1 C,2 C,…,n C,n C表示BDS卫星,
Figure PCTCN2018085572-appb-000015
表示BDS卫星q站间单差无电离层组合载波观测值,
Figure PCTCN2018085572-appb-000016
表示BDS卫星q站间单差站星距,λ NL,C表示BDS卫星窄巷波长,Δδ IF,C表示BDS卫星接收机端站间单差无 电离层组合载波硬件延迟,
Figure PCTCN2018085572-appb-000017
表示BDS卫星q站间单差无电离层组合模糊度,
Figure PCTCN2018085572-appb-000018
表示BDS卫星q站间单差对流层延迟,
Figure PCTCN2018085572-appb-000019
表示BDS卫星q站间单差无电离层组合测量噪声,
Figure PCTCN2018085572-appb-000020
表示BDS卫星q站间单差无电离层组合伪距观测值,Δd IF,C表示BDS卫星接收机端站间单差无电离层组合伪距硬件延迟,
Figure PCTCN2018085572-appb-000021
表示BDS卫星q站间单差无电离层组合伪距测量噪声;
Figure PCTCN2018085572-appb-000022
表示GPS卫星s L1站间单差载波观测值,
Figure PCTCN2018085572-appb-000023
表示GPS卫星s L2站间单差载波观测值,
Figure PCTCN2018085572-appb-000024
表示GPS卫星s L1站间单差模糊度,
Figure PCTCN2018085572-appb-000025
表示GPS卫星s L2站间单差模糊度,
Figure PCTCN2018085572-appb-000026
表示GPS卫星s L1站间单差伪距观测值,
Figure PCTCN2018085572-appb-000027
表示GPS卫星s L2站间单差伪距观测值,f 1,G表示GPS卫星L1的频率值,f 2,G表示GPS卫星L2的频率值;
Figure PCTCN2018085572-appb-000028
表示BDS卫星q B1站间单差载波观测值,
Figure PCTCN2018085572-appb-000029
表示BDS卫星q B2站间单差载波观测值,
Figure PCTCN2018085572-appb-000030
表示BDS卫星q B1站间单差模糊度,
Figure PCTCN2018085572-appb-000031
表示BDS卫星q B2站间单差模糊度,
Figure PCTCN2018085572-appb-000032
表示BDS卫星q B1站间单差伪距观测值,
Figure PCTCN2018085572-appb-000033
表示BDS卫星q B2站间单差伪距观测值,f 1,C表示BDS卫星B1的频率值,f 2,C表示BDS卫星B2的频率值;
步骤12,选择GPS基准卫星,根据步骤11所建站间单差无电离层组合模型,建立GPS系统内双差无电离层组合模型及GPS/BDS系统间双差无电离层组合模型:
以GPS卫星1 G为基准卫星,则式(8)与式(9)为GPS系统内双差无电离层组合模型,式(10)与式(11)为GPS/BDS系统间双差无电离层组合模型:
Figure PCTCN2018085572-appb-000034
Figure PCTCN2018085572-appb-000035
Figure PCTCN2018085572-appb-000036
Figure PCTCN2018085572-appb-000037
其中,
Figure PCTCN2018085572-appb-000038
表示GPS系统内双差无电离层组合载波观测值,
Figure PCTCN2018085572-appb-000039
表示GPS系统内双差站星距,
Figure PCTCN2018085572-appb-000040
表示GPS系统内双差无电离层组合模糊度,
Figure PCTCN2018085572-appb-000041
表示GPS系统内双差对流层延迟,
Figure PCTCN2018085572-appb-000042
表示GPS系统内双差无电离层组合载波观测噪声,
Figure PCTCN2018085572-appb-000043
表示GPS 系统内双差无电离层组合伪距观测值,
Figure PCTCN2018085572-appb-000044
表示GPS系统内双差无电离层组合载波观测噪声;
Figure PCTCN2018085572-appb-000045
表示GPS/BDS系统间双差无电离层组合载波观测值,
Figure PCTCN2018085572-appb-000046
表示GPS/BDS系统间双差站星距,
Figure PCTCN2018085572-appb-000047
表示GPS/BDS系统间双差无电离层组合模糊度,
Figure PCTCN2018085572-appb-000048
表示GPS基准卫星站间单差无电离层组合模糊度,
Figure PCTCN2018085572-appb-000049
表示GPS/BDS无电离层组合载波差分系统间偏差,
Figure PCTCN2018085572-appb-000050
表示GPS/BDS系统间双差对流层延迟,
Figure PCTCN2018085572-appb-000051
表示GPS/BDS系统间双差无电离层组合载波观测噪声,
Figure PCTCN2018085572-appb-000052
表示GPS/BDS系统间双差无电离层组合伪距观测值,
Figure PCTCN2018085572-appb-000053
表示GPS/BDS无电离层组合伪距差分系统间偏差,
Figure PCTCN2018085572-appb-000054
表示GPS/BDS系统间双差无电离层组合伪距观测噪声;
步骤13,选择BDS基准卫星,构建GPS与BDS系统内双差宽巷模糊度解算模型:
以BDS卫星1 C为BDS的基准卫星,则GPS与BDS各自的系统内双差宽巷模糊度解算模型分别为:
Figure PCTCN2018085572-appb-000055
Figure PCTCN2018085572-appb-000056
式中,
Figure PCTCN2018085572-appb-000057
表示GPS双差宽巷模糊度,
Figure PCTCN2018085572-appb-000058
表示GPS双差宽巷载波观测值,
Figure PCTCN2018085572-appb-000059
表示GPS L1双差伪距观测值,
Figure PCTCN2018085572-appb-000060
表示GPS L2双差伪距观测值,λ WL,G表示GPS宽巷波长;
Figure PCTCN2018085572-appb-000061
表示BDS双差宽巷模糊度,
Figure PCTCN2018085572-appb-000062
表示BDS双差宽巷载波观测值,
Figure PCTCN2018085572-appb-000063
表示BDS B1双差伪距观测值,
Figure PCTCN2018085572-appb-000064
表示BDS B2双差伪距观测值,λ WL,C表示BDS宽巷波长。
对式(12)与式(13)进行多历元平滑四舍五入取整,得到双差宽巷整周模糊度:
Figure PCTCN2018085572-appb-000065
式中,
Figure PCTCN2018085572-appb-000066
Figure PCTCN2018085572-appb-000067
即分别为通过多历元平滑四舍五入取整得到的GPS与BDS双 差宽巷整周模糊度,round表示四舍五入取整算子,k表示历个数。
作为本发明的进一步技术方案,步骤2具体为:
步骤21,根据步骤13所选BDS基准卫星,将GPS/BDS系统间双差无电离层组合模糊度重参化:
根据步骤12,GPS/BDS系统间双差无电离层组合模糊度表示为:
Figure PCTCN2018085572-appb-000068
式中,
Figure PCTCN2018085572-appb-000069
表示BDS基准卫星的站间单差无电离层组合模糊度,
Figure PCTCN2018085572-appb-000070
表示BDS系统内双差无电离层组合模糊度,
Figure PCTCN2018085572-appb-000071
表示BDS基准卫星与GPS基准卫星的GPS/BDS系统间双差无电离层组合模糊度;
根据式(15),式10)表示为:
Figure PCTCN2018085572-appb-000072
式(10)中,
Figure PCTCN2018085572-appb-000073
为所有BDS卫星共有参数并且线性相关;
步骤22,合并共有参数,将无电离层组合载波差分系统间偏差重参化,实现参数去相关:
根据式(16),合并共有参数后的GPS/BDS系统间双差无电离层组合观测方程表示为:
Figure PCTCN2018085572-appb-000074
式中,
Figure PCTCN2018085572-appb-000075
为重参化之后的无电离层组合载波差分系统间偏差,
Figure PCTCN2018085572-appb-000076
作为本发明的进一步技术方案,步骤3具体为:
步骤31,进行GPS基准转换:
假设在第t历元,GPS基准卫星从1 G转换为i G,则对应的第t历元的无电离层组合载波差分系统间偏差
Figure PCTCN2018085572-appb-000077
为:
Figure PCTCN2018085572-appb-000078
式中,
Figure PCTCN2018085572-appb-000079
为第t-1历元的无电离层组合载波差分系统间偏差;
步骤32,进行BDS基准转换:
假设在第j历元,BDS基准卫星从1 C转换为i C,而此时的GPS基准卫星为步骤31中的i G, 则对应的第j历元的无电离层组合载波差分系统间偏差
Figure PCTCN2018085572-appb-000080
为:
Figure PCTCN2018085572-appb-000081
式中,
Figure PCTCN2018085572-appb-000082
为第j-1历元的无电离层组合差分载波系统间偏差;
至此,已实现无电离层组合载波差分系统间偏差的持续可估性。
作为本发明的进一步技术方案,步骤4具体为:
步骤41,利用无电离层组合与结合,根据步骤13所得的宽巷模糊度分离GPS L1模糊度与BDS B1模糊度:
Figure PCTCN2018085572-appb-000083
Figure PCTCN2018085572-appb-000084
式中,
Figure PCTCN2018085572-appb-000085
为分离出来的GPS L1模糊度浮点解,
Figure PCTCN2018085572-appb-000086
为分离出的BDS B1模糊度浮点解,
Figure PCTCN2018085572-appb-000087
为GPS L1模糊度整数解,
Figure PCTCN2018085572-appb-000088
为BDS B1模糊度整数解;
步骤42,根据步骤13所得的宽巷模糊度与步骤41所得的GPS L1模糊度与BDS B1模糊度,计算GPS L2模糊度整数解与BDS L2模糊度整数解:
Figure PCTCN2018085572-appb-000089
式中,
Figure PCTCN2018085572-appb-000090
Figure PCTCN2018085572-appb-000091
分别为GPS L2与BDS B2的模糊度整数解。
作为本发明的进一步技术方案,利用Lambda法搜索得到GPS L1与BDS B1模糊度整数解
Figure PCTCN2018085572-appb-000092
Figure PCTCN2018085572-appb-000093
作为本发明的进一步技术方案,步骤5具体为:根据步骤41与步骤42所得模糊度整数解及载波观测值按照步骤21所示组成双差无电离层组合,将所组无电离层组合与步骤2所得的无电离层组合载波差分系统间偏差带入式(5)与式(7)进行定位。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:
(1)本发明采用GNSS系统间不同频率观测值进行载波差分紧组合定位,克服了现有研究中系统间观测值频率必须相同的缺点;
(2)本发明可以减少待估参数,有利于在遮挡环境下增强观测模型稳定性,提高定位精度与可靠性。
附图说明
图1是松组合N方向7天定位偏差图。
图2是紧组合E方向7天定位偏差图。
图3是松组合N方向7天定位偏差图。
图4是紧组合E方向7天定位偏差图。
图5是松组合E方向7天定位偏差图。
图6是紧组合E方向7天定位偏差图。
图7是本发明的方法流程图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
本发明一种GPS/BDS紧组合载波差分定位算法,如图7所示,包括以下步骤:
步骤1,选择GPS(Global Positioning System)基准卫星,构建GPS系统内双差无电离层组合模型与GPS/BDS(Bei Dou Navigation Satellite System)系统间双差无电离层组合模型及GPS/BDS系统内双差宽巷模糊度解算模型;
步骤2,实现无电离层组合的系统间偏差参数与单差、双差模糊度去相关;
步骤3,进行基准转换,实现差分系统间偏差持续可估性;
步骤4,利用无电离层组合结合宽巷模糊度分离基础载波模糊度;
步骤5,利用基础载波组成无电离层组合进行定位。
所述步骤1中,构建GPS系统内双差模型与GPS/BDS系统间双差模型包括以下步骤:
步骤11,构建无电离层组合站间单差无电离层组合模型:
假设共观测到m颗GPS卫星和n颗BDS卫星,站间单差无电离层组合观测模型可以表示为:
Figure PCTCN2018085572-appb-000094
Figure PCTCN2018085572-appb-000095
Figure PCTCN2018085572-appb-000096
Figure PCTCN2018085572-appb-000097
Figure PCTCN2018085572-appb-000098
Figure PCTCN2018085572-appb-000099
Figure PCTCN2018085572-appb-000100
式(1)与式(2)分别是GPS站间单差无电离层组合子载波观测方程和伪距观测方程,式3)与式(4)分别是BDS站间单差无电离层组合子载波观测方程和伪距观测方程;式(5)是GPS站间单差载波观测值无电离层组合形式与站间单差模糊度无电离层组合形式,式(6)是BDS站间单差载波观测值无电离层组合形式与站间单差模糊度无电离层组合形式,式(7)是GPS与BDS的站间单差伪距无电离层组合形式。式(5)(6)(7)所示无电离层组合形式同样适用于非差形式与双差形式。
式中,
Figure PCTCN2018085572-appb-000101
(上标s=1 G,2 G,…,m G表示GPS卫星)表示GPS卫星站间单差无电离层组合载波观测值(米),
Figure PCTCN2018085572-appb-000102
表示GPS卫星站间单差站星距,Δdt表示站间单差接收机钟差,λ NL,G表示GPS卫星窄巷波长,
Figure PCTCN2018085572-appb-000103
表示GPS卫星接收机端站间单差无电离层组合载波硬件延迟,
Figure PCTCN2018085572-appb-000104
表示GPS卫星站间单差无电离层组合模糊度,
Figure PCTCN2018085572-appb-000105
表示GPS卫星站间单差对流层延迟,
Figure PCTCN2018085572-appb-000106
表示GPS卫星合站间单差无电离层组测量噪声,
Figure PCTCN2018085572-appb-000107
表示GPS卫星的站间单差无电离层组合伪距观测值,Δd IF,G表示GPS卫星接收机端站间单差无电离层组合伪距硬件延迟,
Figure PCTCN2018085572-appb-000108
表示GPS卫星站间单差无电离层组合伪距测量噪声;
Figure PCTCN2018085572-appb-000109
(上标q=1 C,2 C,…,n C表示BDS卫星)表示BDS卫星站间单差无电离层组合载波观测值(米),
Figure PCTCN2018085572-appb-000110
表示BDS卫星站间单差站星距,λ NL,C表示BDS卫星窄巷波长,Δδ IF,C表示BDS卫星接收机端站间单差无电离层组合载波硬件延迟,
Figure PCTCN2018085572-appb-000111
表示BDS卫星站间单差无电离层组合模糊度,
Figure PCTCN2018085572-appb-000112
表示BDS卫星站间单差对流层延迟,,
Figure PCTCN2018085572-appb-000113
表示BDS卫星站间单差无电离层组合测量噪声,
Figure PCTCN2018085572-appb-000114
表示BDS卫星站间单差无电离层组合伪距观测值,Δd IF,C表示BDS卫星接收机端站间单差无电离层组合伪距硬件延迟,
Figure PCTCN2018085572-appb-000115
表示BDS卫星站间单差无电离层组合伪距测量噪声。
Figure PCTCN2018085572-appb-000116
表示GPS L1站间单差载波观测值(米),
Figure PCTCN2018085572-appb-000117
表示GPS L2站间单差载波观测值(米),
Figure PCTCN2018085572-appb-000118
表示GPS L1站间单差模糊度,
Figure PCTCN2018085572-appb-000119
表示GPS L2站间单差模糊度,
Figure PCTCN2018085572-appb-000120
表示GPS L1站间单差伪距观测值,
Figure PCTCN2018085572-appb-000121
表示GPS L2站间单差伪距观测值,f 1,G表示GPS L1的频率值,f 2,G表示GPS L2的频率值;
Figure PCTCN2018085572-appb-000122
表示BDS B1站间单差载波观测值(米),
Figure PCTCN2018085572-appb-000123
表示BDS B2站间单差载波观测值(米),
Figure PCTCN2018085572-appb-000124
表示BDS B1站间单差模糊度,
Figure PCTCN2018085572-appb-000125
表示BDS B2站间单差模糊度,
Figure PCTCN2018085572-appb-000126
表示BDS B1站间单差伪距观测值,
Figure PCTCN2018085572-appb-000127
表示BDS B2站间单差伪距观测值,f 1,C表示BDS B1的频率值,f 2,C表示BDS B2的频率值。
步骤12,选择GPS基准卫星,根据步骤11所建站间单差无电离层组合模型,建立GPS系统内双差无电离层组合模型及GPS/BDS系统间双差无电离层组合模型:
假设以GPS卫星1 G为基准卫星,则所建模型可表示为:
Figure PCTCN2018085572-appb-000128
Figure PCTCN2018085572-appb-000129
Figure PCTCN2018085572-appb-000130
Figure PCTCN2018085572-appb-000131
式(8)与式(9)即GPS系统内双差无电离层组合模型,式(10)与式(11)即GPS/BDS系统间双差无电离层组合模型。
其中,
Figure PCTCN2018085572-appb-000132
表示GPS/BDS无电离层组合载波差分系统间偏差,
Figure PCTCN2018085572-appb-000133
表示GPS/BDS无电离层组合伪距差分系统间偏差,
Figure PCTCN2018085572-appb-000134
表示GPS系统内双差无电离层组合载波观测值,
Figure PCTCN2018085572-appb-000135
表示GPS系统内双差站星距,
Figure PCTCN2018085572-appb-000136
表示GPS系统内双差无电离层组合模糊度,
Figure PCTCN2018085572-appb-000137
表示GPS系统内双差对流层延迟,
Figure PCTCN2018085572-appb-000138
表示GPS系统内双差无电离层组合载波观测噪声,
Figure PCTCN2018085572-appb-000139
表示GPS系统内双差无电离层组合伪距观测值,
Figure PCTCN2018085572-appb-000140
表示GPS系统内双差无电离层组合载波观测噪声;
Figure PCTCN2018085572-appb-000141
表示GPS/BDS系统间双差无电离层组合载波观测值,
Figure PCTCN2018085572-appb-000142
表示GPS/BDS系统间双差站星距,
Figure PCTCN2018085572-appb-000143
表示GPS/BDS系统间双差无电离层组合模糊度,
Figure PCTCN2018085572-appb-000144
表示GPS基准卫星站间单差无电离层组合 模糊度,
Figure PCTCN2018085572-appb-000145
表示GPS/BDS系统间双差对流层延迟,
Figure PCTCN2018085572-appb-000146
表示GPS/BDS系统间双差无电离层组合载波观测噪声,
Figure PCTCN2018085572-appb-000147
表示GPS/BDS系统间双差无电离层组合伪距观测值,
Figure PCTCN2018085572-appb-000148
表示GPS/BDS系统间双差无电离层组合伪距观测噪声。
步骤13,选择BDS基准卫星,构建GPS与BDS系统内双差宽巷模糊度解算模型:
假设以BDS卫星1 C为BDS的基准卫星,则GPS与BDS各自的系统内双差宽巷模糊度解算模型如下所示:
Figure PCTCN2018085572-appb-000149
Figure PCTCN2018085572-appb-000150
式12)与式13)分别为GPS系统内双差宽巷模糊度解算模型与BDSS系统内双差宽巷模糊度解算模型。
式中,
Figure PCTCN2018085572-appb-000151
表示GPS双差宽巷模糊度,
Figure PCTCN2018085572-appb-000152
表示GPS双差宽巷载波观测值(周),
Figure PCTCN2018085572-appb-000153
表示GPS L1双差伪距观测值,
Figure PCTCN2018085572-appb-000154
表示GPS L2双差伪距观测值,λ WL,G表示GPS宽巷波长;
Figure PCTCN2018085572-appb-000155
表示BDS双差宽巷模糊度,
Figure PCTCN2018085572-appb-000156
表示BDS双差宽巷载波观测值(周),
Figure PCTCN2018085572-appb-000157
表示BDS B1双差伪距观测值,
Figure PCTCN2018085572-appb-000158
表示BDS B2双差伪距观测值,λ WL,C表示BDS宽巷波长。
对式(12)与式(13)进行多历元平滑四舍五入取整可得到双差宽巷整周模糊度,如下式所示:
Figure PCTCN2018085572-appb-000159
式中,
Figure PCTCN2018085572-appb-000160
Figure PCTCN2018085572-appb-000161
即分别为通过多历元平滑四舍五入取整得到的GPS与BDS双差宽巷整周模糊度,round表示四舍五入取整算子,k表示历个数。
所述步骤2中,实现无电离层组合系统间偏差参数与单差、双差模糊度去相关包括以下步骤:
步骤21,根据步骤23所选BDS基准卫星,将GPS/BDS系统间双差无电离层组合模糊度重参化:
根据步骤12,GPS/BDS系统间双差无电离层组合模糊度可表示为:
Figure PCTCN2018085572-appb-000162
式中,
Figure PCTCN2018085572-appb-000163
表示BDS基准卫星的站间单差无电离层组合模糊度,
Figure PCTCN2018085572-appb-000164
表示BDS系统内双差无电离层组合模糊度,
Figure PCTCN2018085572-appb-000165
表示BDS基准卫星与GPS基准卫星的GPS/BDS系统间双差无电离层组合模糊度。
根据式(15),式10)可表示为:
Figure PCTCN2018085572-appb-000166
式(10)中,
Figure PCTCN2018085572-appb-000167
为所有BDS卫星共有参数并且线性相关。
步骤22,合并共有参数,将无电离层组合载波差分系统间偏差重参化,实现参数去相关:
根据式(16),合并共有参数后的GPS/BDS系统间双差无电离层组合观测方程可表示为:
Figure PCTCN2018085572-appb-000168
式中,
Figure PCTCN2018085572-appb-000169
Figure PCTCN2018085572-appb-000170
为重参化之后的无电离层组合载波差分系统间偏差,后文将以
Figure PCTCN2018085572-appb-000171
形式作为无电离层组合载波差分系统间偏差。
所述步骤3中,进行基准转换,实现无电离层组合差分系统间偏差的持续可估性包括以下步骤:
步骤31,进行GPS基准转换:
假设在第t历元,GPS基准卫星从1 G变为i G,则对应的第t历元的无电离层组合载波差分系统间偏差
Figure PCTCN2018085572-appb-000172
为:
Figure PCTCN2018085572-appb-000173
式中,
Figure PCTCN2018085572-appb-000174
为第t-1历元的无电离层组合载波差分系统间偏差。
步骤32,进行BDS基准转换:
假设在第j历元,BDS基准卫星从1 C变为i C,而此时的GPS基准卫星为步骤41中的i G,则对应的第j历元的无电离层组合载波差分系统间偏差
Figure PCTCN2018085572-appb-000175
为:
Figure PCTCN2018085572-appb-000176
式中,
Figure PCTCN2018085572-appb-000177
为第j-1历元的无电离层组合差分载波系统间偏差。至此,已实现无电离层组合载波差分系统间偏差得持续可估性。
所述步骤4中,利用无电离层组合结合宽巷模糊度分离基础载波模糊度包括以下步骤:
步骤41,利用无电离层组合与结合根据步骤23所得的宽巷模糊度分离GPS L1模糊度与BDS B1模糊的度:
Figure PCTCN2018085572-appb-000178
Figure PCTCN2018085572-appb-000179
式中,
Figure PCTCN2018085572-appb-000180
为分离出来的GPS L1模糊度浮点解,
Figure PCTCN2018085572-appb-000181
为分离出的BDS B1模糊度浮点解。利用Lambda(Least—squares Ambiguity Decorrelation Adjustment)搜索得到GPS L1与BDS B1模糊度整数解
Figure PCTCN2018085572-appb-000182
Figure PCTCN2018085572-appb-000183
步骤42,根据步骤23所得的宽巷模糊度与步骤41所得的GPS L1模糊度与BDS B1模糊度计算GPS L2模糊度整数解与BDS L2模糊度整数解:
Figure PCTCN2018085572-appb-000184
式中,
Figure PCTCN2018085572-appb-000185
Figure PCTCN2018085572-appb-000186
分别为GPS L2与BDS B2的模糊度整数解。
所述步骤5中,利用基础载波组成无电离层组合进行定位包括以下步骤:
步骤61,根据步骤41与步骤42所得模糊度整数解及载波观测值按照步骤21所示组成双差无电离层组合,将所组无电离层组合与步骤2所得的无电离层组合载波差分系统间偏差带入式(5)与式(7)进行定位。需要注意的是,无电离层组合载波差分系统间偏差与式(5)与(7)的基准卫星须保持一致。
定位偏差如图1-6所示,图1、3、5分别表示松组合N/E/U三方向定位偏差图,图2、4、5分别表示紧组合N/E/U三方向定位偏差图。
本方法以GPS为基准系统,组成无电离层组合进行GPS/BDS系统间紧组合载波差分定位。实时估计载波无电离层组合形式的系统间偏差,并利用无电离层组合与宽巷组合分离出基础载波模糊度,最后利用基础载波组成无电离层组合进行紧组合差分定位。
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可理解想到的变换或替换,都应涵盖在本发明的包含范围之内,因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (7)

  1. 一种GPS/BDS紧组合载波差分定位方法,其特征在于,包括以下步骤:
    步骤1,选择GPS基准卫星,构建GPS系统内双差无电离层组合模型与GPS/BDS系统间双差无电离层组合模型及GPS/BDS系统内双差宽巷模糊度解算模型;
    步骤2,实现无电离层组合形式的系统间偏差参数与单差、双差模糊度去相关;
    步骤3,进行基准转换,实现无电离层组合差分系统间偏差持续可估性;
    步骤4,利用无电离层组合结合宽巷模糊度分离基础载波模糊度;
    步骤5,利用基础载波组成无电离层组合进行定位。
  2. 根据权利要求1所述的一种GPS/BDS紧组合载波差分定位方法,其特征在于,步骤1具体为:
    步骤11,构建无电离层组合站间单差无电离层组合模型:
    Figure PCTCN2018085572-appb-100001
    Figure PCTCN2018085572-appb-100002
    Figure PCTCN2018085572-appb-100003
    Figure PCTCN2018085572-appb-100004
    Figure PCTCN2018085572-appb-100005
    Figure PCTCN2018085572-appb-100006
    Figure PCTCN2018085572-appb-100007
    其中,式(1)与式(2)分别是GPS站间单差无电离层组合载波观测方程和伪距观测方程,式3)与式(4)分别是BDS站间单差无电离层组合子载波观测方程和伪距观测方程;式(5)是GPS站间单差载波观测值无电离层组合形式与站间单差模糊度无电离层组合形式,式(6)是BDS站间单差载波观测值无电离层组合形式与站间单差模糊度无电离层组合形式,式(7)是GPS与BDS的站间单差伪距无电离层组合形式;
    式中,s=1 G,2 G,…,m G,m G表示GPS卫星数,
    Figure PCTCN2018085572-appb-100008
    表示GPS卫星s站间单差无电离层组合载波观测值,
    Figure PCTCN2018085572-appb-100009
    表示GPS卫星s站间单差站星距,Δdt表示站间单差接收机钟差,λ NL,G表示GPS卫星窄巷波长,Δδ IF,G表示GPS卫星接收机端站间单差无电离层组合载波硬件延迟,
    Figure PCTCN2018085572-appb-100010
    表示GPS卫星s站间单差无电离层组合模糊度,
    Figure PCTCN2018085572-appb-100011
    表示GPS卫星站间单差对流层延迟,
    Figure PCTCN2018085572-appb-100012
    表示GPS卫星合站间单差无电离层组测量噪声,
    Figure PCTCN2018085572-appb-100013
    表示GPS卫星s的站间单差无电离层组合伪距观测值,Δd IF,G表示GPS卫星接收机端站间单差无电离层组合伪距硬件延迟,
    Figure PCTCN2018085572-appb-100014
    表示GPS卫星s站间单差无电离层组合伪距测量噪声;q=1 C,2 C,…,n C,n C表示BDS卫星,
    Figure PCTCN2018085572-appb-100015
    表示BDS卫星q站间单差无电离层组合载波观测值,
    Figure PCTCN2018085572-appb-100016
    表示BDS卫星q站间单差站星距,λ NL,C表示BDS卫星窄巷波长,Δδ IF,C表示BDS卫星接收机端站间单差无电离层组合载波硬件延迟,
    Figure PCTCN2018085572-appb-100017
    表示BDS卫星q站间单差无电离层组合模糊度,
    Figure PCTCN2018085572-appb-100018
    表示BDS卫星q站间单差对流层延迟,
    Figure PCTCN2018085572-appb-100019
    表示BDS卫星q站间单差无电离层组合测量噪声,
    Figure PCTCN2018085572-appb-100020
    表示BDS卫星q站间单差无电离层组合伪距观测值,Δd IF,C表示BDS卫星接收机端站间单差无电离层组合伪距硬件延迟,
    Figure PCTCN2018085572-appb-100021
    表示BDS卫星q站间单差无电离层组合伪距测量噪声;
    Figure PCTCN2018085572-appb-100022
    表示GPS卫星s L1站间单差载波观测值,
    Figure PCTCN2018085572-appb-100023
    表示GPS卫星s L2站间单差载波观测值,
    Figure PCTCN2018085572-appb-100024
    表示GPS卫星s L1站间单差模糊度,
    Figure PCTCN2018085572-appb-100025
    表示GPS卫星s L2站间单差模糊度,
    Figure PCTCN2018085572-appb-100026
    表示GPS卫星s L1站间单差伪距观测值,
    Figure PCTCN2018085572-appb-100027
    表示GPS卫星s L2站间单差伪距观测值,f 1,G表示GPS卫星L1的频率值,f 2,G表示GPS卫星L2的频率值;
    Figure PCTCN2018085572-appb-100028
    表示BDS卫星q B1站间单差载波观测值,
    Figure PCTCN2018085572-appb-100029
    表示BDS卫星q B2站间单差载波观测值,
    Figure PCTCN2018085572-appb-100030
    表示BDS卫星q B1站间单差模糊度,
    Figure PCTCN2018085572-appb-100031
    表示BDS卫星q B2站间单差模糊度,
    Figure PCTCN2018085572-appb-100032
    表示BDS卫星q B1站间单差伪距观测值,
    Figure PCTCN2018085572-appb-100033
    表示BDS卫星q B2站间单差伪距观测值,f 1,C表示BDS卫星B1的频率值,f 2,C表示BDS卫星B2的频率值;
    步骤12,选择GPS基准卫星,根据步骤11所建站间单差无电离层组合模型,建立GPS系统内双差无电离层组合模型及GPS/BDS系统间双差无电离层组合模型:
    以GPS卫星1 G为基准卫星,则式(8)与式(9)为GPS系统内双差无电离层组合模型,式(10)与式(11)为GPS/BDS系统间双差无电离层组合模型:
    Figure PCTCN2018085572-appb-100034
    Figure PCTCN2018085572-appb-100035
    Figure PCTCN2018085572-appb-100036
    Figure PCTCN2018085572-appb-100037
    其中,
    Figure PCTCN2018085572-appb-100038
    表示GPS系统内双差无电离层组合载波观测值,
    Figure PCTCN2018085572-appb-100039
    表示GPS系统内双差站星距,
    Figure PCTCN2018085572-appb-100040
    表示GPS系统内双差无电离层组合模糊度,
    Figure PCTCN2018085572-appb-100041
    表示GPS系统内双差对流层延迟,
    Figure PCTCN2018085572-appb-100042
    表示GPS系统内双差无电离层组合载波观测噪声,
    Figure PCTCN2018085572-appb-100043
    表示GPS系统内双差无电离层组合伪距观测值,
    Figure PCTCN2018085572-appb-100044
    表示GPS系统内双差无电离层组合载波观测噪声;
    Figure PCTCN2018085572-appb-100045
    表示GPS/BDS系统间双差无电离层组合载波观测值,
    Figure PCTCN2018085572-appb-100046
    表示GPS/BDS系统间双差站星距,
    Figure PCTCN2018085572-appb-100047
    表示GPS/BDS系统间双差无电离层组合模糊度,
    Figure PCTCN2018085572-appb-100048
    表示GPS基准卫星站间单差无电离层组合模糊度,
    Figure PCTCN2018085572-appb-100049
    表示GPS/BDS无电离层组合载波差分系统间偏差,
    Figure PCTCN2018085572-appb-100050
    表示GPS/BDS系统间双差对流层延迟,
    Figure PCTCN2018085572-appb-100051
    表示GPS/BDS系统间双差无电离层组合载波观测噪声,
    Figure PCTCN2018085572-appb-100052
    表示GPS/BDS系统间双差无电离层组合伪距观测值,▽Δd IF,GC=Δd IF,C-Δd IF,G表示GPS/BDS无电离层组合伪距差分系统间偏差,
    Figure PCTCN2018085572-appb-100053
    表示GPS/BDS系统间双差无电离层组合伪距观测噪声;
    步骤13,选择BDS基准卫星,构建GPS与BDS系统内双差宽巷模糊度解算模型:
    以BDS卫星1 C为BDS的基准卫星,则GPS与BDS各自的系统内双差宽巷模糊度解算模型分别为:
    Figure PCTCN2018085572-appb-100054
    Figure PCTCN2018085572-appb-100055
    式中,
    Figure PCTCN2018085572-appb-100056
    表示GPS双差宽巷模糊度,
    Figure PCTCN2018085572-appb-100057
    表示GPS双差宽巷载波观测值,
    Figure PCTCN2018085572-appb-100058
    表示GPS L1双差伪距观测值,
    Figure PCTCN2018085572-appb-100059
    表示GPS L2双差伪距观测值,λ WL,G表示GPS宽巷波长;
    Figure PCTCN2018085572-appb-100060
    表示BDS双差宽巷模糊度,
    Figure PCTCN2018085572-appb-100061
    表示BDS双差宽巷载波观测值,
    Figure PCTCN2018085572-appb-100062
    表示BDS B1双差伪距观测值,
    Figure PCTCN2018085572-appb-100063
    表示BDS B2双差伪距观测值,λ WL,C表示BDS宽巷波长。
    对式(12)与式(13)进行多历元平滑四舍五入取整,得到双差宽巷整周模糊度:
    Figure PCTCN2018085572-appb-100064
    式中,
    Figure PCTCN2018085572-appb-100065
    Figure PCTCN2018085572-appb-100066
    即分别为通过多历元平滑四舍五入取整得到的GPS与BDS双差宽巷整周模糊度,round表示四舍五入取整算子,k表示历个数。
  3. 根据权利要求2所述的一种GPS/BDS紧组合载波差分定位方法,其特征在于,步骤2具体为:
    步骤21,根据步骤13所选BDS基准卫星,将GPS/BDS系统间双差无电离层组合模糊度重参化:
    根据步骤12,GPS/BDS系统间双差无电离层组合模糊度表示为:
    Figure PCTCN2018085572-appb-100067
    式中,
    Figure PCTCN2018085572-appb-100068
    表示BDS基准卫星的站间单差无电离层组合模糊度,
    Figure PCTCN2018085572-appb-100069
    表示BDS系统内双差无电离层组合模糊度,
    Figure PCTCN2018085572-appb-100070
    表示BDS基准卫星与GPS基准卫星的GPS/BDS系统间双差无电离层组合模糊度;
    根据式(15),式10)表示为:
    Figure PCTCN2018085572-appb-100071
    式(10)中,
    Figure PCTCN2018085572-appb-100072
    ▽Δδ IF,GC为所有BDS卫星共有参数并且线性相关;
    步骤22,合并共有参数,将无电离层组合载波差分系统间偏差重参化,实现参数去相关:
    根据式(16),合并共有参数后的GPS/BDS系统间双差无电离层组合观测方程表示为:
    Figure PCTCN2018085572-appb-100073
    式中,
    Figure PCTCN2018085572-appb-100074
    为重参化之后的无电离层组合载波差分系统间偏差,
    Figure PCTCN2018085572-appb-100075
  4. 根据权利要求3所述的一种GPS/BDS紧组合载波差分定位方法,其特征在于,步骤3具体为:
    步骤31,进行GPS基准转换:
    假设在第t历元,GPS基准卫星从1 G转换为i G,则对应的第t历元的无电离层组合载波差分系统间偏差
    Figure PCTCN2018085572-appb-100076
    为:
    Figure PCTCN2018085572-appb-100077
    式中,
    Figure PCTCN2018085572-appb-100078
    为第t-1历元的无电离层组合载波差分系统间偏差;
    步骤32,进行BDS基准转换:
    假设在第j历元,BDS基准卫星从1 C转换为i C,而此时的GPS基准卫星为步骤31中的i G,则对应的第j历元的无电离层组合载波差分系统间偏差
    Figure PCTCN2018085572-appb-100079
    为:
    Figure PCTCN2018085572-appb-100080
    式中,
    Figure PCTCN2018085572-appb-100081
    为第j-1历元的无电离层组合差分载波系统间偏差;
    至此,已实现无电离层组合载波差分系统间偏差的持续可估性。
  5. 根据权利要求4所述的一种GPS/BDS紧组合载波差分定位方法,其特征在于,步骤4具体为:
    步骤41,利用无电离层组合与宽巷组合相结合,根据步骤13所得的宽巷模糊度分离GPS L1模糊度与BDS B1模糊度:
    Figure PCTCN2018085572-appb-100082
    Figure PCTCN2018085572-appb-100083
    式中,
    Figure PCTCN2018085572-appb-100084
    为分离出来的GPS L1模糊度浮点解,
    Figure PCTCN2018085572-appb-100085
    为分离出的BDS B1模糊度浮点解,
    Figure PCTCN2018085572-appb-100086
    为GPS L1模糊度整数解,
    Figure PCTCN2018085572-appb-100087
    为BDS B1模糊度整数解;
    步骤42,根据步骤13所得的宽巷模糊度与步骤41所得的GPS L1模糊度与BDS B1模糊度,计算GPS L2模糊度整数解与BDS L2模糊度整数解:
    Figure PCTCN2018085572-appb-100088
    式中,
    Figure PCTCN2018085572-appb-100089
    Figure PCTCN2018085572-appb-100090
    分别为GPS L2与BDS B2的模糊度整数解。
  6. 根据权利要求5所述的一种GPS/BDS紧组合载波差分定位方法,其特征在于,利用Lambda法搜索得到GPS L1与BDS B1模糊度整数解
    Figure PCTCN2018085572-appb-100091
    Figure PCTCN2018085572-appb-100092
  7. 根据权利要求5所述的一种GPS/BDS紧组合载波差分定位方法,其特征在于,步骤5具体为:根据步骤41与步骤42所得模糊度整数解及载波观测值按照步骤21所示组成双差无电离层组合,将所组无电离层组合与步骤2所得的无电离层组合载波差分系统间偏差带入式(5)与式(7)进行定位。
PCT/CN2018/085572 2018-03-16 2018-05-04 一种gps/bds紧组合载波差分定位方法 WO2019174113A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/626,570 US11294073B2 (en) 2018-03-16 2018-05-04 Tightly combined GPS/BDS carrier differential positioning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810217695.7 2018-03-16
CN201810217695.7A CN108519614A (zh) 2018-03-16 2018-03-16 一种gps/bds紧组合载波差分定位方法

Publications (1)

Publication Number Publication Date
WO2019174113A1 true WO2019174113A1 (zh) 2019-09-19

Family

ID=63432848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085572 WO2019174113A1 (zh) 2018-03-16 2018-05-04 一种gps/bds紧组合载波差分定位方法

Country Status (3)

Country Link
US (1) US11294073B2 (zh)
CN (1) CN108519614A (zh)
WO (1) WO2019174113A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110780323A (zh) * 2019-11-08 2020-02-11 厦门理工学院 一种长距离下基于北斗三频信号的实时分米级定位方法
CN111751853A (zh) * 2020-06-20 2020-10-09 北京华龙通科技有限公司 一种gnss双频载波相位整周模糊度解算方法
CN112485814A (zh) * 2020-11-17 2021-03-12 中国人民解放军战略支援部队航天工程大学 Glonass测距码实时校准的rtk定位方法及系统
CN112485813A (zh) * 2020-11-17 2021-03-12 中国人民解放军战略支援部队航天工程大学 Glonass测站间非组合测距码频间偏差校正方法及系统
CN113126133A (zh) * 2021-04-16 2021-07-16 上海寰果信息科技有限公司 基于bds或gps的中长基线多频rtk定位的快速收敛方法
CN115856945A (zh) * 2023-02-03 2023-03-28 北京航空航天大学 适用于gnss多频点的精密单点授时方法、装置及介质
CN117233799A (zh) * 2023-11-08 2023-12-15 武汉大学 基于虚拟基准站的煤矿采空区地表形变监测方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109613582B (zh) * 2018-12-17 2021-11-23 中国科学院国家授时中心 一种车载实时单频米级伪距定位方法
CN109683182A (zh) * 2018-12-24 2019-04-26 中国电子科技集团公司第二十研究所 一种引入系统间偏差的gnss多模组合差分定位方法
CN109581455B (zh) * 2019-01-24 2022-07-22 东南大学 一种bds和gps融合的三频宽巷紧组合定位方法
CN110058274B (zh) * 2019-05-08 2020-10-20 中国科学院国家授时中心 一种卫星导航系统间的时差监测方法及系统
CN110018507B (zh) * 2019-05-08 2020-11-20 中国科学院国家授时中心 一种基于星座间作差的组合精密单点定位方法及系统
CN110208841B (zh) * 2019-06-26 2022-09-02 哈尔滨工程大学 一种改进的面向非重叠频率的gnss紧组合方法
CN110398762A (zh) * 2019-07-15 2019-11-01 广州中海达卫星导航技术股份有限公司 实时钟差估计中的模糊度固定方法、装置、设备及介质
CN110376629B (zh) * 2019-07-16 2021-03-19 东南大学 基于ratio值最大原则的卫星差分系统间偏差确定方法
CN110515097B (zh) * 2019-09-02 2021-06-22 江苏省测绘工程院 应用于基准站的gnss卫星观测粗差剔除方法和装置
CN111308528B (zh) * 2019-12-10 2023-02-14 哈尔滨工程大学 一种北斗/gps紧组合虚拟参考站定位方法
CN110873887A (zh) * 2019-12-26 2020-03-10 广东星舆科技有限公司 Gps和bds紧结合的定位方法及可读存储介质
CN111505685B (zh) * 2020-04-15 2022-03-15 中国科学院国家授时中心 一种基于改正系统间偏差的多系统组合rtk模型的定位方法
CN111427076B (zh) * 2020-06-10 2020-10-16 交通运输部公路科学研究所 基于双模卫星信息深度融合的车辆性能测评方法及系统
CN111505689A (zh) * 2020-06-15 2020-08-07 中国南方电网有限责任公司 全球导航卫星系统的模糊度固定方法、装置和计算机设备
CN112051598B (zh) * 2020-06-24 2023-09-29 中铁第四勘察设计院集团有限公司 一种基于双重校正的车载gnss/ins组合导航方法
CN112462397B (zh) * 2020-11-10 2022-07-05 武汉大学 一种全星座多频北斗数据的实时动动定位方法及系统
CN113203414B (zh) * 2021-05-21 2023-06-13 北京交通大学 一种基于gps+bds ppp/imu紧组合的列车定位方法
CN113777641A (zh) * 2021-09-10 2021-12-10 中北大学 一种区域网络化节点高精度自定位方法及系统
CN113970772B (zh) * 2021-10-27 2024-04-12 东南大学 一种面向城市环境的多频bds-2/bds-3/ins车载组合定位方法
CN114994728A (zh) * 2022-05-25 2022-09-02 中南大学 混用不同通道观测值的精密单点定位方法及系统
CN115061170B (zh) * 2022-07-13 2023-12-01 武汉大学 短距离大高差环境网络rtk方法
CN115343734B (zh) * 2022-10-13 2023-01-17 武汉地铁集团有限公司 一种基于双线性内插半球模型的gnss变形监测方法
CN116299615B (zh) * 2022-12-15 2023-11-03 长安大学 一种实现单北斗实时ppp模糊固定的相位偏差估计方法
CN115932922B (zh) * 2022-12-28 2024-04-09 辽宁工程技术大学 一种基于bds四频数据的周跳探测方法
CN116338752B (zh) * 2023-01-29 2023-11-07 北京航空航天大学 一种用于载波相位单差时间传递的精确模糊度固定方法
CN116106953B (zh) * 2023-04-14 2023-07-04 中南大学 一种gnss相对定位半参数估计的时间差分载波相位增强方法
CN116660958B (zh) * 2023-07-31 2023-10-20 武汉大学 整周模糊度并行滤波解算方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103728643A (zh) * 2014-01-20 2014-04-16 东南大学 附有宽巷约束的北斗三频网络rtk模糊度单历元固定方法
CN103941272A (zh) * 2014-04-09 2014-07-23 上海华测导航技术有限公司 Gps、glonass和bds联合解算的定位方法
CN104459745A (zh) * 2014-12-25 2015-03-25 东南大学 一种多星座长基线网络rtk部分模糊度快速解算方法
CN105223598A (zh) * 2015-09-28 2016-01-06 厦门理工学院 一种gnss载波相位整周模糊度单历元解算方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724343B2 (en) * 2002-04-30 2004-04-20 The Johns Hopkins University Weak signal and anti-jamming Global Positioning System receiver and method using full correlation grid
ATE400823T1 (de) * 2004-10-01 2008-07-15 Nokia Corp Doppelfrequenzempfang von spreizspektrumsignalen
EP1972959B1 (en) * 2007-03-22 2012-08-15 DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for processing a set of signals of a global navigation satellite system with at least three carriers
NL2013473B1 (en) * 2014-09-15 2016-09-28 Fugro N V Precise GNSS positioning system with improved ambiguity estimation.
US10422885B2 (en) * 2016-03-18 2019-09-24 Deere & Company Rapid recovery of precise position after temporary signal loss

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103728643A (zh) * 2014-01-20 2014-04-16 东南大学 附有宽巷约束的北斗三频网络rtk模糊度单历元固定方法
CN103941272A (zh) * 2014-04-09 2014-07-23 上海华测导航技术有限公司 Gps、glonass和bds联合解算的定位方法
CN104459745A (zh) * 2014-12-25 2015-03-25 东南大学 一种多星座长基线网络rtk部分模糊度快速解算方法
CN105223598A (zh) * 2015-09-28 2016-01-06 厦门理工学院 一种gnss载波相位整周模糊度单历元解算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GAO, WANG ET AL.: "Combined GPS and BDS for Single-Frequency Continuous RTK Positioning Through Real-Time Estimation of Differential Inter-System Biases", GPS SOLUTIONS (2018, 21 November 2017 (2017-11-21), XP036401536 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110780323A (zh) * 2019-11-08 2020-02-11 厦门理工学院 一种长距离下基于北斗三频信号的实时分米级定位方法
CN110780323B (zh) * 2019-11-08 2021-10-15 厦门理工学院 一种长距离下基于北斗三频信号的实时分米级定位方法
CN111751853A (zh) * 2020-06-20 2020-10-09 北京华龙通科技有限公司 一种gnss双频载波相位整周模糊度解算方法
CN111751853B (zh) * 2020-06-20 2023-10-03 北京华龙通科技有限公司 一种gnss双频载波相位整周模糊度解算方法
CN112485814A (zh) * 2020-11-17 2021-03-12 中国人民解放军战略支援部队航天工程大学 Glonass测距码实时校准的rtk定位方法及系统
CN112485813A (zh) * 2020-11-17 2021-03-12 中国人民解放军战略支援部队航天工程大学 Glonass测站间非组合测距码频间偏差校正方法及系统
CN112485814B (zh) * 2020-11-17 2023-06-30 中国人民解放军战略支援部队航天工程大学 Glonass测距码实时校准的rtk定位方法及系统
CN112485813B (zh) * 2020-11-17 2024-01-02 中国人民解放军战略支援部队航天工程大学 Glonass测站间非组合测距码频间偏差校正方法及系统
CN113126133A (zh) * 2021-04-16 2021-07-16 上海寰果信息科技有限公司 基于bds或gps的中长基线多频rtk定位的快速收敛方法
CN115856945A (zh) * 2023-02-03 2023-03-28 北京航空航天大学 适用于gnss多频点的精密单点授时方法、装置及介质
CN117233799A (zh) * 2023-11-08 2023-12-15 武汉大学 基于虚拟基准站的煤矿采空区地表形变监测方法
CN117233799B (zh) * 2023-11-08 2024-02-09 武汉大学 基于虚拟基准站的煤矿采空区地表形变监测方法

Also Published As

Publication number Publication date
US20200116872A1 (en) 2020-04-16
US11294073B2 (en) 2022-04-05
CN108519614A (zh) 2018-09-11

Similar Documents

Publication Publication Date Title
WO2019174113A1 (zh) 一种gps/bds紧组合载波差分定位方法
US10185038B2 (en) Integer ambiguity-fixed precise point positioning method and system
EP2044457B1 (en) A method for increasing the reliability of position information when transitioning from a regional, wide-area, or global carrier-phase differential navigation (wadgps) to a local real-time kinematic (rtk) navigation system
Zhang et al. Performance analysis of triple-frequency ambiguity resolution with BeiDou observations
JP6023225B2 (ja) 無線ナビゲーション信号を処理する方法
AU2009250992B2 (en) A method for combined use of a local RTK system and a regional, wide-area, or global carrier-phase positioning system
EP3462213A1 (en) Method for precise point positioning in a satellite navigation system
Zhao et al. Three-carrier ambiguity resolution using the modified TCAR method
CN109581455B (zh) 一种bds和gps融合的三频宽巷紧组合定位方法
Zhang et al. Models, methods and assessment of four-frequency carrier ambiguity resolution for BeiDou-3 observations
WO2019218766A1 (zh) 一种惯导辅助的北斗三频载波相位整周模糊度求解方法
CN108037521A (zh) 一种基于北斗超宽巷约束的bds/gps宽巷模糊度单历元固定方法
CN111239787A (zh) 一种集群自主协同中的gnss动态卡尔曼滤波方法
CN106569242A (zh) 固定参考星的gnss单差处理方法
US20200041658A1 (en) Gnss receiver with a capability to resolve ambiguities using an uncombined formulation
CN109597105B (zh) 一种顾及载波系统间偏差的gps/glonass紧组合定位方法
CN110109158A (zh) 基于gps、glonass和bds多系统的事后超快速rtk定位算法
WO2017181221A1 (en) A method of analysing multiple signals transmitted by discrete global navigation satellite systems
CN109752747B (zh) 差分数据确定方法、装置、服务器及存储介质
CN114994729A (zh) 多频多模宽巷-窄巷-非组合upd实时序贯估计方法
Dabove et al. Achievable positioning accuracies in a network of GNSS reference stations
Tolman et al. Absolute precise kinematic positioning with GPS and GLONASS
CN111290003B (zh) 一种动态精密单点定位快速初始收敛方法
Wang et al. All-Frequency GNSS PPP-RTK Using Observable-Specific Signal Biases for Urban Environments
CN116893436B (zh) 一种混合频率的rtk定位方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909489

Country of ref document: EP

Kind code of ref document: A1